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ABSTRACT

Rocks of east Hinndy represent three Caledonian tectonic settings:
(1) pre-Caledonian crystalline basement (Lofoten terrain), (2) its autoch-
thonous Eocambrian/Cambrian(?) sedimentary cover (Storvann Group) , and
(3) Caledonian allochthons (Narvik, Stangnes, and Salangen Groups).
Affinities of the Storvann Group for the Eocambrian and Cambrian sedimen-
tary rocks of the Baltic foreland support the hypothesis of Griffin and

others (1978) that the Lofoten terrain was part of the Baltic craton in
pre-Caledonian time. The allochthons are considered to have been derived

from west of the present Norwegian coastline, and at least in part to have

originally formed in an oceanic setting.

Five Caledonian deformations are identified on east Hinndy, termed
to D5. D1 and D2 were synchronous with amphibolite facies metamorphist,,
while D3 through D5 post-dated the metamorphic peak. D1 is the thrust

emplacement of the Caledonian allochthons upon the Lofoten terrain. D2
produced thrusting of the Lofoten basement rocks and recumbent folding
and interleaving of the basement with its structural cover on a scale of

at least several kilometers. Analysis of minor structures indicates ESE
-directed transport during D2 . Penetrative deformation associated with D1
and D2 dies out structurally downward in the rocks of the Lofoten terrain,

away from their contacts with metasedimentary rocks which underwent pro-
grade metamorphism during Caledonian orogenesis. This suggests involvement

of the basement in deformation was controlled by introduction of volatiles
liberated by prograde metamorphic reactions in the metasedimentary rocks.

D3 through D5 formed multiple sets of upright to overturned folds,
superposed on earlier structures.

Several NE-trending high angle dip-slip faults of probable early
Cenozoic age cut east Hinndy into several blocks. The present study indi-

cates that this faulting was more intense, and of a more uniform t-rend

and sense of movement than previously recognized.

The Caledonian metamorphic peak reached amphibolite facies (kyani-te

grade) in all rocks of east Hinndy. Sillimanite was recognized at orre

locality. Estimated peak metamorphic conditions are 550-600*C and 5-9 kb.

These conditions were reached during and/or immediately following 02.
D3 through 05 occurred under greenschist facies conditions (biotite grade)

during cooling from the metamorphic peak.



Rb/Sr whole rock ages of 1726 + 31 Ma and 1559 + 155 Ma were determined
for the Middagstind Quartz Syenite and Melaa Granite, respectively, sup-
porting the structural interpretation that these bodies belong to the pre
-Caledonian basement terrain. The former age indicates that the Middagstind
syenite formed as part of the regionally important intrusive episode which
formed roughly half of the Lofoten terrain 1800 to 1700 Ma ago (Griffin
and others, 1978). The large error for the age of the Melaa Granite is due
to disturbance of whole rock Rb/Sr systems by metamorphism. Consideration
of structural relationships and possible sources of disturbance suggests
the actual age may lie at the younger end of this range, and the Melaa
Granite may be correlative with the 1400 Ma LWdingen Granite. Rb/Sr whole
rock study of the Ruggevik Tonalite Gneiss, which intruded the Stangnes
Group prior to its DI emplacement upon the Lofoten terrain, did not yield
an isochron, but suggests a possible late Precambrian age. Four Rb/Sr
biotite/whole rock systems from the Middagstind syenite and Ruggevik tona-
lite give ages of 362 to 347 Ma, indicating cooling following the metamor-
phic peak occurred during Devonian time.

Consideration of the regional geology of the Caledonide orogen suggests
that the part of the mountain belt now preserved in Scandinavia developed

mainly in the underthrusted plate of a continental collision. Large scale
geometry and timing of structures in the region including east Hinndy

(Lofoten-Rombaken transect) have affinities for accretionary prism or fore-

land thrust belt tectonics, despite a position within the metamorphic core

region of the orogen. This has two fundamental implications of potentially

general application. First, orogenic belts may be broad zones of litho-

spheric deformation (the "megasuture" of Bally, 1975) only within the upper

15-20 km of the crust. Deeper lithospheric levels may remain rigid, so t:hat

at depth, the plate tectonic hypothesis of narrow boundaries between rigid

plates may be appropriate for convergent as well as divergent and transform
plate margins. Second, the commonly observed phenomenon of detachment of

crystalline thrust sheets at mid-crustal levels may result from decolle-

ment above an anhydrous, rigid lower crust which does not participate in

deformation due to a lack of volatiles to promote recrystallization. This

implies control of this detachment by distribution of chemical species

rather than thermal structure, and suggests the brittle/ductile transition

may not play a fundamental role in this system.

Thesis supervisor: B. C. Burchfiel
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CHAPTER I: INTRODUCTION

Purpose

This study has two main focuses. It examines the structural behavior

of pre-existing continental crust in the internal portion of a collisional

orogenic belt: specifically, (1) the extent of basement involvement in

metamorphism and deformation, (2) the factors controlling basement in-

volvement and the structural styles developed, and (3) the structural

relationship between basement and cover rocks. The geometry and struc-

tural history of the associated structural cover, and the relationships

between structural and thermal events, have also been investigated. With

these goals in mind, I have studied the structural geology, petrology,

and geochronology of east Hinndy, an area which has proven to be impor-

tant to understanding the tectonics of the Scandinavian Caledonides.

Since there are a finite number of orogenic belts on earth and their

variability is large, a contribution to the understanding of processes

in any one belt can be a significant step in understanding tectonics in

general.

The Scandinavian Caledonide orogen is a major geotectonic belt, ex-

tending 1500 km from southwest Norway to northern Norway, and eastward

into western Sweden (Figure I). It constitutes the eastern part of a

two-sided collisional orogen of early Paleozoic age, the western portion

of which now lies in east Greenland (Figure 2). Structures in Scandinavia

verge mainly east; those in Greenland verge mainly west. The Cenozoic

opening of the Norwegian Sea split the orogen longitudinally through its

central part, so that in Scandinavia, the internal zones lie in the coas-

tal regions and the external zones are inland. The depth of erosion

leaves cover and basement rocks exposed in subequal amounts, making it

ideal for studying their structural relationships.

The Scandinavian Caledonides can be divided into four fundamental

domains passing westward from the foreland (Figure I): (1) the parau-

thochthon, (2) the eastern or lower nappes, (3) the western or higher

nappes, (4) the western gneiss terrain. Domains (I) to (3) are a succes-

sion of progressively structurally higher and more allochthonous thrust

complexes which pinch out westward so that higher allochthons rest directly

on the basement in the west (Gee, 1975; Binns, 1978). In general, higher
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sheets are at higher metamorphic grades, although the timing of metamor-

phism relative to emplacement is not often wel known. Basement rocks

are involved in thrusting, mainly as thin sheets, but the extent of this

is still uncertain. Domain (4) is a complex of Precambrian basement rocks

which in general lie structurally beneath nappes of domain (3) (Wilson and

Nicholson, 1973). The presence of an older continental crystalline ter-

rain to the west of a belt of nappes including rocks of apparent oceanic

origin (eg. Gale and Roberts, 1972, 1974) led Dewey (1969) to propose

that the western gneiss terrain was sutured to Scandinavia in the

Caledonian orogeny. However, subsequent study has shown that the nappes

are derived from the west of the modern Norwegian coastline, and passed

over the western gneiss terrain which apparently belonged to the

Scandinavian craton in Pre-Caledonian time (Gee, 1975).

The structural position of the western gneiss terrain under the meta-

morphic nappes has led to the assumption that much of its intense meta-

morphism and deformation are of Caledonian age, generated at the deepest

exposed levels within the Scandinavian Caledonide orogen. However,

Griffin and others (1978) showed that in exposures of the western gneiss

terrain in the Lofoten Islands (Figure 1), little or no Caledonian meta-

morphism and deformation could be recognized; the structures and mineral

assemblages are Precambrian in age. This led them to hypothesize a

shallow (3 to 9 km) structural level for the Lofoten block during

Caledonian orogenesis, in direct conflict with the notion that it was

buried by nappes which themselves were at medium-pressure amphibolite

facies conditions during emplacement.

The boundary between the Lofoten terrain and the Caledonian nappes

lies on eastern Hinndy (Figure 3). This study examines this boundary

and the structure of the rocks on either side of it, in order to:

(I) resolve the dilemma regarding the Caledonian structural posi-

tion of the Lofoten block posed by the work of Griffin and

others (1978);

(2) provide constraints on the pre-Caledonian position of the Lofoten

block. If it is not structurally equivalent to the rest of the

western gneiss terrain, it could be exotic to Scandinavia;

(3) establish the extent and nature of basement invol'vement in

Caledonian deformation on east Hinndy;
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(4) establish the structural and metamorphic history of the Caledonian

nappes and their geometrical relationships on east Hinndy to im-

prove understanding of the kinematics of the Caledonian deforma-

tions; and

(5) constrain the conditions and timing of deformation and metamor-

phism through metamorphic petrology and Rb/Sr geochronology.

Location and Access

Hinndy (ca. 69"N, 16*E) is the island nearest the mainland of the

archipelago called Lofoten/Vesteraalen. On its northeast corner is the

town of Harstad, population ca. 20,000, where shipbuilding is the main

economic activity. Harstad was the main base of operations for field-

work. The eastern quarter of the study area is occupied principally by

small farms. Summer and permanent homes are concentrated along the shore-

line, much of which is thus privately owned. The remainder of east

Hinndy is sparsely populated, being mainly boggy valleys, forested hill-

sides, and alpine uplands.

The study area appears on portions of the following 1:50,000 topo-

graphic map sheets, available from Norges Geografiske Oppmaaling:

Harstad (1332 IV), Tjeldsund (1332 1i1), Gullesfjord (1232 ii), and

Kvaefjord (1232 I). A major glacial valley running southwest from

Harstad to the head of Kvaefjord (Plate 1) forms the northern boundary

of the map area. The western limit was taken as the shore of Gullesfjord

and Austerfjord, and thence south to Kongsvik on Tjeldsund. Along this

side, I connected my mapping as much as possible with that of Hakkinen

(1977) on west Hinndy. The southern and eastern boundaries were defined

by Tjeldsund, the channel which separates Hinndy from the mainland to the

east and Tjelddy to the south. One small area across Tjeldsund on the

mainland was also mapped (Plate 1), and proved to be of vital importance

for structural interpretations.

Because of the populated nature of the area, roads are fairly exten-

sive, though often unpaved and concentrated along shorelines where the

majority of the people live. There are few places in the study area more

than five kilometers from a road. Public bus service is excellent, and

for the summers of 1978 and 1979 this was nearly the sole means of trans-

portation for fieldwork.



Physiography, Vegetation, and Exposures

North Norway around 69*N is characterized mainly by extreme glacial

topography, with deep, steep-sided fjords separating alpine peaks. Most

of the study area has more moderate relief, with valleys I to 2 km wide

and rather rounded hills 500 to 600 m high. The southwestern portion

underlain by Precambrian granite (Plate 1) approaches the more alpine topo-

graphy with peaks as high as 1100 m. The moderation of the topography

is a result of bedrock lithology to some extent, the schists and marbles

of the Caledonian cover rocks being less resistent to geomorphic pro-

cesses. However, considerable areas of Precambrian basement also under-

lie subdued lowland areas in this vicinity.

Quality and nature of outcrop is mainly a function of elevation.

Shoreline exposures are the cleanest exposures available for measuring

structures and examining contacts, although the rocks are generally some-

what weathered. These are especially abundant along the eastern side of

the study area from Harstad south to Sandtorg, the east shore of Storvann

(S), at the head of Kvaefjord, and across Tjeldsund around Fjeldal. In

most other shoreline areas, Quaternary sediments cover the bedrock.

Inland from the shoreline are a number of lowlying areas (lower than

100 m) of fluvial sediments or fluvially-reworked glacial sediments.

Where well drained, these areas are largely cleared farmland, providing

pasturage for livestock and poor exposures for bedrock geologists. Where

poorly drained, extensive bogs and marshy lakes are developed. This

is probably the least productive elevation zone for bedrock geology, and

is only redeemed occasionally by roadcut exposures.

Most hills which rise above the low valleys reach 300 m or more. The

slopes of these hills are generally either heavily vegetated or are vege-

tated talus piles. In either case, outcrops are a little more abundant

than in the low valleys, but are generally awkward to find and reach.

Vegetation is mainly deciduous trees a few meters in height, especially

birch and willow; the occasional thickets of evergreen are mainly the

result of artificial reforestation efforts.

Treeline varies from about 300 to 400 m depending upon direction of

exposure, bedrock lithology, drainage, etc. Above treeline are three

principal zones. Where little soil has developed over cliffy topography

resulting from a resistant lithology, outcrop is abundant but generally



rather lichen-encrusted and weathered. Marbles occurring within such

areas are generally (but not always) less resistant and consequently are

poorly exposed. Where soil is better developed, rolling heaths are pre-

sent with variable amounts of scrubby trees near treeline, and it is not

uncommon for marble to be better exposed here because the carbonate-rich

soil is less fertile and supports little vegetation. This process is

encouraged by domestic sheep which are pastured in higher meadows during

the summer. The sheep dig out shelter wherever the soil is loose, which

often occurs at marble layers; for many marble outcrops I am entirely

indebted to my woolly friends!

At elevations above about 550 m there is little or no vegetation, and

outcrop becomes nearly 100% except for slope deposits. For example, the

western slope of Middagstind (914 m) is almost devoid of outcrop because

it is mantled by a talus cone which extends all the way to the lake at its

foot.

Previous Investigations

The earliest studies in Lofoten-Vesteraalen were by Helland (1897),

Kolderup (1898), and Vogt (1909), who considered the terrain to be one

of basic "eruptive" rocks. Heier (1960) showed that the rocks of Langdy,

and Lofoten-Vesteraalen as a whole, are mainly intermediate to acid in

composition and owe their dark color to granulite facies conditions of

crystallization. This led to an extensive effort in the late 196 0's and

early 1970's by the Norges Geologiske Undersdkelse (NGU) and the Geologisk

Museum in Oslo, which was headed by Knut Heier and W. L. Griffin, and in-

cluded many others. The objectives of their effort were to map the geol-

ogy and analyze the granulite facies rocks petrologically, geochemically,

and isotopically. The major conclusion from the point of view of

Caledonian tectonics was that the history recorded in Lofoten is nearly

entirely Precambrian; Caledonian effects appear to be few and minor. The

results of this project are summarized in Griffin and others (1978), which

includes references to the many other papers, published and unpublished,

which were produced by the project.

Also included in this effort were structural studies by Rice Univer-

sity students of B. Clark Burchfiel. J. F. Tull (1972, 1977) mapped the

geology of Vestvaagdy in western Lofoten, and J. W. Hakkinen (1977) worked



on west Hinndy directly west of the present study area. This author relied

heavily on Hakkinen's work in his own study, although interpretations

may not always be identical.

The Caledonian nappes carrying metasedimentary rocks, exposed

to the east of Hinndy, were first studied by Vogt (1942, 1950) to the

north of Ofotfjord, and by Foslie (1941, 1949) south of Ofotfjord. The

metasedimentary rocks were considered to be Cambro-Silurian in age, and

to overlie the Tysfjord Granite, a Precambrian granite gneiss whose pre-

cise relationships to Lofoten rocks further north is still a subject

for some debate. The contact between the Lofoten terrain and the nappes,

which is exposed on east Hinndy, was little studied until recently. An

unpublished reconnaissance map of the Harstad 1:100,000 sheet by Th. Vogt

(1955) on file at NGU in Trondheim shows only four units: granite, marble,

mica schist, and Quaternary deposits. Gustavson, in preparation of the

Narvik 1:250,000 map sheet (1974a), produced two maps of east Hinndy

(1966, 1974 b and c) at different stages of his work, as well as synthe-

sizing in English the earlier work of Vogt and Foslie on the mainland

(Gustavson 1966, 1969, 1972). Gustavson's mapping was clearly of a recon-

naissance nature; location of lithologies as well'as structural interpre-

tations were found unreliable by the present author. Consequently, major

differences will be recognized between Gustavson's work and my own, both

in data and interpretations.

Methods and Scope

The primary effort in this work was the preparation of a geologic map

of the study area with attention to major lithotectonic assemblages and

structural relationships. The mapping was done an topographic maps at a

scale of 1:50,000 available from Norges Geografiske Oppmaaling, prepared

in the 1930's and revised in 1952 by the US Army Corps of Engineers. Con-

tour interval is 30 meters; the 1:50,000 sheets are photographic enlarge-

ments of 1:100,000 originals. The maps are consequently not up to the .

standard set by USGS maps in the U. S., and the precision of location of

geologic features suffers accordingly. Partial air photo coverage by

Widerde Flyveselskap was available from Norges Geologiske Undersdkelse.

However, availability and use of these photos was restricted by the

Norwegian Government for military security reasons (two sizable military



installations and several small ones are located in the study area). Hence,

air photos were used only as an aid in reconnaisance and location, and not

for an actual map base.

East Hinndy is geologically a very complex area, and this study can

claim no more than to have reconnoitered some of its intricacies. The

major successes here have been identification of several fundamental ter-

rains and their contact relationships, and a clarification of the nature

and sequence of structural and metamorphic events affecting these terrains.

There remain many potentially fruitful studies of the details of this area

which simply were beyond the time limits imposed here.

Note On Geographic Names

The Norwegian people are fond of names; every minor geographic feature,

be it physical or cultural, is named on their maps. The names are often

descriptive, such as Rundfjell ("Round Mountain") or Breivik ("Broad

Cove"). The descriptive nature of these names together with a history of

physical isolation of communities has led to duplication of names even on

a very local scale. For example, in the study area there are two lakes

named Storvann ("Big Lake") within several kilometers of each other (Plate

1). For the sake of clarity, I have in this study distinguished them as

Storvann(N) and Storvann(S). Other similar duplications occur, but have

here been avoided for geographic references.



CHAPTER 2: LITHOLOGIES AND STRATIGRAPHY

Introduction

Rock units of East Hinndy can be divided into three fundamental assem-

blages: (1) pre-Caledonian crystalline basement rocks, which are considered

to be an eastward extension of the Lofoten terrain (Griffin and others,

1978); (2) the Storvann Group, a sequence of metasedimentary rocks in

depositional or modified depositional contact with the pre-Caledonian

basement, and which is believed to be its Cambrian or Eocambrian sedimen-

tary cover; and (3) Caledonian allochthons, which in the study area com-

prise at least three distinct assemblages of metasedimentary and lesser

metaigneous rocks.

The lithostratigraphic complexity of East Hinndy is markedly greater

than previously recognized. All metasedimentary rocks and most amphibolite

units had been assigned a Cambro-Silurian age and assumed to be practically

all allochthonous along Caledonian thrusts (e.g., Gustavson 1972, 1974 a,

b, c). Many of these rocks have been found to be intruded by Precambrian

granitoid bodies and hence are themselves part of the pre-Caledonian base-

ment. In this study, six different assemblages of rocks have been consi-

dered elements of the basement complex: (1) Archaean gneisses, (2) the

Hesjevann assemblage, (3) the Kvaefjord Group, (4) the Middagstind

Quartz Syenite, (5) the Austerfjord Group, and (6) the Lddingen and

Melaa Granite(s). Three of the above rock associations include metasedi-

tary rocks previously considered part of the Caledonian nappes of

Paleozoic metasedimentary rocks.

Cover rocks and their relationships are also more complex than pre-

viously described. Gustavson (1972) reported a single stratigraphic se-

quence for metasedimentary rocks of East Hinndy, which he apparently con-

sidered adequate to describe all allochthonous and autochthonous units. In

fact, the quartzite he considered to be autochthonous Eocambrian cover of

the pre-Caledonian basement has proven to be intruded by Precambrian Melaa

Granite, and is here included in the Hesjevann assemblage. An extensive

autochthonous sequence of quartz-rich terrigenous metasedimentary rocks

and subordi'nate marbles does occur in this area (the Storvann Group), which

is petrographically quite distinct from the allochthonous units and the

pre-Caledonian metasedimentary rocks. Allochthonous terrains include



(1) slivers of pelitic schists and gneisses correlated with the Narvik

Group, (2) banded amphibolite intruded by a semiconcordant tonalite gneiss

body, here named the Stangnes Group, and (3) marbles and mica schists of

the Salangen Group. At the boundary between the clearly allochthonous and

clearly autochthonous rocks are local occurrences of calcareous schists

with some marble and amphibolite; the affinities and significance of these

latter rocks are uncertain.

Pre-Caledonian Basement

Introduction

The basement terrain of East Hinndy includes six different rock associa-

tions, from oldest to youngest: (1) Archaean gneisses, which include mig-

matitic gneiss, a hornblende diorite body possibly related to the migma-

tites, and the Gullesfjord Gneiss; (2) the Hesjevann assemblage, an

association of quartzite, schists, marbles, and amphibolite, which pro-

bably do not constitute a petrogenetic suite but are commonly associated

rocks, present in pendants and blocks in the basement granitoid gneisses;

(3) the Kvaefjord Group, a sequence of quartzofeldspathic, micaceous, and

mildly calcareous terrigeneous metasedimentary rocks of at least middle

Precambrian and perhaps older age; (4) the Middagstind Quartz Syenite, a

pluton similar in age and composition to the mangerites which form the

bulk of the Lofoten terrain to the west; (5) the Austerfjord Group, a

diverse group of metasedimentary rocks dominated by biotite-rich schist

and calcareous para-amphibolite, with subordinate quartzite, quartzo-

feldspathic schist, and marble; and (6) the Melaa and Lddingen Granites,

which are considered correlative; because this correlation cannot yet be

proven, the local terminology is retained for the present. Age relation-

ships between these units are not all well established; the order above

is in some cases more a matter of best guess than hard data. However,

two fundamental observations appear to be valid and of foremost impor-

tance: (i) All these units form a single continuous pre-Caledonian ter-

rain, and (2) this terrain is continuous with the Lofoten-Vesteraalen

province of Griffin and others (1978). Hence, conclusions reached about

the structural position and tectonic significance of the basement ter-

ra.in of East Hinndy are valid for the entire Lofoten terrain.

Nook



Archaean Gneisses

Introduction

Three units are included in the Archaean Gneisses: migmatitic gneisses,

hornblende diorite, and the Gullesfjord Gneiss. The possibility exists

that the m-igmatites and hornblende diorite are genetically related; how-

ever, the massive character of the diorite argues against this. The

Gullesfjord Gneiss intrudes both of these units; since the Gullesfjord

Gneiss in its type area on West Hinndy has yielded a late Archaean Rb/Sr

whole rock age (Griffin and others, 1978), all these units are assigned

to the Archaean.

Migmatitic Gneiss

Migmatitic gneiss is very extensive on West Hinndy and was described

in detail by Hakkinen (1977). On East Hinndy it is limited to the area

around Revnes and the Melaa, and along a few streams southeast of Storvann

(S). It was not studied in detail and is considered only briefly here.

The migmatitic gneiss is typically a hornblende-biotite-two feldspar

medium to coarse-grained gneiss, commonly of granodioritic composition

but spanning a large range of silica contents. It is heterogeneous on

all scales from hand specimen to mountainside (Figure 4A). Characteristi-

cally it weathers to light or medium gray with layers, stringers, or

irregular masses of darker material within. Plagioclase porphyroblasts

approximately I cm in length are common. The Gullesfjord Gneiss and

Melaa Granite also have migmatitic portions locally which makes identi-

fication of these units in the field sometimes problematic. Two criteria

were generally used: (i) the Melaa and Gullesfjord units both contain im-

portant perthitic microcline, generally as the dominant feldspar, where-

as the migmatitic rocks more commonly are plagioclase-rich; and (2) the

granite gneisses are dominantly very massive, homogeneous rocks with only

local migmatitic areas which seem to result from near-complete digestion

of xenoliths in a melt rather than the in situ anatexis postulated as the

origin of the migmatites (Hakkinen, 1977; Griffin and others, 1978).

On east Hinndy, the only unit with which the migmatites are in contact

is the Gullesfjord Gneiss. The relations are obscure and appear generally

gradational, but in one locality near the Melaa, an outcrop of migmatites



Figure 4A: Archaean migmatite.

Outcrop is in stream bed, about I km SE of Storvann(S).

Figure 4B: Possible graded bedding, Hesjevann assemblage quartzite.

Darker bands are more micaceous than lighter, more pure
quartzite bands, suggesting fining of the protolith.
Bedding would be upright here. Outcrop lies on the crest
of a broad, low ridge about I km west of Gausvik.
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with transposed dikes of granite suggests that the granite gneiss intrudes

the migmatites, a relationship consistent with the isotopic data of

Griffin and others (1978), discussed below.

The Archaean age of the migmatites is based on lithologic correlation

and mapped continuity with rocks on West Hinndy for which Griffin and

others (1978) determined an age of 2685 + 65 Ma from a Pb/Pb whole rock

secondary isochron. This age is believed to indicate isotopic homogeniza-

tion in an anatectic event so that the original rock-forming age would be

somewhat earlier.

Jacobsen and Wasserburg (1978) published Sm/Nd whole rock analyses of

four migmatite samples and one Gullesfjord Gneiss sample from West Hinndy

and Langdy, which gave model ages from 2600 to 2670 Ma. Two other migma-

tite samples, one from Langdy and one from Moskenesdy, gave younger ages

(2390 and 2040 Ma), which the authors attributed to later migmatization;

disturbed isotopic systematics by granulite facies metamorphism at 1800 Ma

cannot be ruled out. Linear regression of the five "good" points yields

an age of 2600 + 360 Ma. Using only the Sm/Nd systematics would not lead

to a confident age assignment, but their consistency with Pb and Rb/Sr (see

Gullesfjord Gneiss below) systematics is reassuring.

Hornblende Diorite

The hornblende diorite is present in the study area only to the west

of Middagstind, mainly on and around the peak called Hornet. It may also

be an important protolith of the mafic to intermediate hornfels exten-

sively developed to the east and south of the Middagstind syenite pluton;

however, the fact that it shows only moderate contact metamorphic over-

print and maintains its own recognizable identity west of Middagstind up

to rather near the syenite pluton argues against this hypothesis.

The hornblende diorite is a dark gray to black, massive, medium

-grained rock, with weak to moderate foliation defined by hornblende and

biotite. It is not uncommon for foliation to be poorly developed. The

age of this fabric is pre-1700 Ma because the adjacent Middagstind sienite

(1726 Ma old; see Chapter 5) cuts this foliation, and is itself unfoliated.

Major minerals in the hornblende diorite include plagioclase (35-65%),

hornblende (15-20%), biotite (15-20%), magnetite (ca. Q%), + quartz

(0-5%), + epidote minerals (0-20%). Plagioclase is typically oligoclase,



variably replaced by fine granular aggregates or dispersed grains of

clinozoisite. Polysynthetic twinning is common. Prior to static meta-

morphism, textures were granoblastic to hypidiomorphic granular. Horn-

blende is blue-green, and equant to stubby prismatic. Its color suggests

a metamorphic rather than igneous origin, so that it is not clear that

the original igneous assemblage included amphibole. Hornblende is now

generally ragged due to partial replacement by granular aggregates of

clinozoisite. Biotite is brown and lepidoblastic, and may be mildly

chloritized. Small amounts of granular quartz are sometimes present.

Magnetite is euhedral to subhedral and shows locally complex laminar or

skeletal textures in association with another oxide (ilmenite?).

The age of the hornblende diorite is presumably late Archaean. It is

not obviously migmatitic, though somewhat heterogeneous; however, it

appears to be intruded by the Gullesfjord gneiss on the basis of granite

dikes in the diorite and hornblende-bearing xenoliths in the gneiss near

their contact. The simplest interpretation is perhaps that the hornblende

diorite is a more mafic portion of the mignatite complex which experienced

less anatexis and thus shows less leucosome development.

Gullesfjord Gneiss

The Gullesfjord Granodiorite Gneiss appears to be the dominant lithol-

ogy of the basement terrain comprising the southwestern half of the study

area. During much of the field study, the granite gneiss here was believed

younger (Melaa Granite; see Chapter 5), and related to the Lddingen Granite.

That some younger granite is present here is still believed by the author,

but the details of contact relationships between it and the Gullesfjord

Gneiss are not well understood. The Gullesfjord Gneiss was originally

described and named by Hakkinen (1977) from his study of West Hinndy. He

considered it to extend in the upper plate of the Austerfjord Thrust onto

East Hinndy where it was mapped in this study. The Gullesfjord Gneiss is

a massive granitic to granodioritic gneiss, white to pink weathering,

medium-grained, ranging texturally from mildly foliated to blastomylonitic.

Xenoliths of biotite rich material, from a few centimeters to a few meters

in long dimension, are common but not ubiquitous. Augen gneiss is common.

The extreme pencil lineation locally found by Hakkinen, and attributed by

him to intersection of two foliations was not observed, although an inter-



section lineation between Precambrian and probably Caledonian fabrics is

present.

The Gullesfjord Gneiss is in contact with the Austerfjord Group along

the Austerfjord thrust all along its southwest edge in the study area.

This thrust has been traced across Tjeldsund to the mainland (Fjelldal

area) where the thrust becomes involved with other Caledonian structures.

The gneiss at Fjelldal is in contact with Storvann Group metasedimentary

rocks. The basal quartzite unit of the Storvann Group is all but missing

here, so that the contact is probably not strictly depositional but rather

a tectonic slide of sorts (Fleuty, 1964); however, the Storvann Group more

generally unconformably overlies the pre-Caledonian basement in the area.

Along the southeast part of the study area, the Gullesfjord Gneiss is in

contact with rocks of the Hesjevann assemblage. The contact with the

Hesjevann assemblage quartzite is not generally well exposed, but is more

or less concordant, not intensely tectonized, and has been previously in-

terpreted as stratigraphic and to be the basal unconformity of the Cale-

donian geosyncline (Gustavson, 1972). However, in an outcrop near Gausvik

the weak compositional banding of the quartzite appears truncated along

the contact, and the quartzite unit is clearly cut out westward along

this contact, leaving the structurally overlying amphibolite in direct

contact with the Gullesfjord Gneiss. Westward across Storvann(S), the

Hesjevann assemblage is clearly intruded by Melaa Granite, a Precambrian

granite possibly correlative with the 1400 Ma Ldingen granite, establish-

ing a Precambrian age for the Hesjevann assemblage rocks (see also below).

Hence, the contact in the Gausvik area is not the basal Caledonian uncon-

formity; however, whether the contact in the Gausvik area is intrusive,

depositional, or a metamorphically-obscured tectonic juxtaposition is

unclear.

The only other unit the Gullesfjord Gneiss clearly contacts is the

Archaean migmatites. As described above, it is believed that the

Gullesfjord Gneiss intrudes the migmatites.

The granite gneiss to the west, south, and east of Storvann(N) is of

questionable affinity. It is shown as Melaa Granite on Plate I, but the

possibility cannot be excluded that it belongs to the Gullesfjord Gneiss;

problems of petrographic distinction of these units will be dealt with

under "Melaa Granite" below. If this gneiss is the Gullesfjord Gneiss,
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the contact relations described here would further support the unity of

the pre-Caledonian basement of East Hinndy as a single terrain, continu-

ous with the Lofoten terrain. Similarly, the correlation of the belt of

granite gneiss stretching from Storvann(S) to Tjeldsund, north of the belt

of Hesjevann assemblage rocks and south of the Storvann Group outcrops, is

ambiguous. Probably the only solution to this dilemma will be detailed

geochronologic study.

Hesjevann Assemblage

General Relationships

The Hesjevann assemblage is a group of rocks that occurs near Hesjevann

as pendants in the Melaa Granite, and with more ambiguous contact relation-

ships with Precambrian granite(s) west and south of Gausvik. For conveni-

ence, other minor blocks of metasedimentary rocks in the basement granites,

e.g., those in the Gullesfjord Gneiss north of Revsnes, have been included

here. The Hesjevann assemblage consists of amphibolite, quartzite, calc

-silicate marble and calc-silicate rocks, and a variety of mica schists.

Most of these rocks where recognized by Gustavson (1974 a, b) were con-

sidered to be allochthonous Caledonian cover rocks, although Gustavson

placed some of the amphibolites within the Precambrian basement. Detailed

mapping has shown all these rocks to be Precambrian, and in general intru-

sively enclosed by the basement granites. There is no evidence that these

rocks represent a genetic association, and it is likely they are not all

the same age. The designation Hesjevann assemblage is informal and used

here for convenience to refer to the association of rocks which appear

to crop up repeatedly within the basement terrain of Hinndy. These rocks

may correlate with the quartzite/amphibolite/marble assemblage at Flesnes

on west Hinndy described by Hakkinen (1977).

Quartzite

The quartzite is a generally massive to weakly banded rock, pure white

in color. Locally it has rhythmic interbeds a few tens of centimeters

thick of quartz-biotite schist suggestive of graded beds (Figure 4B), and

in a few outcrops west and south of Gausvik contains quartz-pebble con-

glomerates with pebbles up to 8 cm in diameter. Medium to coarse grain



size (usually ca. I mm) gives the rock a sugary appearance in weathered

outcrop. Near Gausvik, some cutcrops appear cataclasized but more gener-

ally have a penetrative schistosity which may transect compositional band-

ing defined by varying amounts of mica in the rock.

Compositionally the quartzite has variable but significant amounts (up

to 10%) of' either or both microcline and muscovite. Penetrative schistos-

ity is moderately developed to absent. Quartz and feldspar grains are

generally equant and granular. Quartz often has sutured grain boundaries

and protomylonitic crush zones, indicating late deformation post-dating

the thermal metamorphism. Detritial zircon is a prominent accessory min-

eral.

Quartzite of the Hesjevann assemblage is distinguished from the basal

quartzite unit of the Storvann Group by its pure white color, coarser

grain size, more homogeneous composition, and associated rock types. The

protolith was probably a moderately well-sorted quartz sandstone. The

basement on which it was deposited is undetermined, but Hakkinen (1977)

suggested on the basis of stratigraphic facing that a similar quartzite

at Langvassbugt may have been deposited on the Archaean rocks of west

Hinndy. It is worth noting that apparent graded beds mentioned above also

indicate an upright facing along the contact of this unit with the

Gullesfjord Gneiss near Gausvik (see p. 34 above), suggesting this contact

may be in fact unconformable. The quartzite is structurally overlain by

amphibolite near Gausvik, by marble at Hesjevann, and completely enclosed

by granite north and west of Hesjevann. Hence structural dismemberment

is frequent, and most contacts are probably tectonic to a lesser or

greater degree.

Marbles

Hesjevann marbles are generally siliceous, with typical mineral assem-

blages that include calcite + dolomite, tremolite, and white mica. Clino-

zoisite is common. Textures are usually coarse-grained granoblastic; com-

positional banding is weak to absent except near Gausvik where pink color

bands are present. Tectonite fabrics are generally weak, though a linea-

tion defined by I cm long tremolite needles is present in a road-cut

in Gausvik. The marbles at Gausvik on lithology alone could belong to the

Salangen Group (see below). However, it is difficult to envision how



Salangen Group rocks could be present in such a structural position. The

presence of similar marbles the Hesjevann area which clearly are pa, t

of the basement complex suppor ~- a Precambrian age for the marbles at

Gausvik as well.

The protolith of this unit was a calcareous sedimentary rock. Al-

though the siliceous component in the rocks may be partly original sedi-

mentary material, the presence of aluminous phases like epidote and the

occurrence of these rocks enclosed in granite suggests metasomatic modi-

fication of bulk composition probably occurred.

White Calc-Silicate Rock

The calc-silicate rocks are pure white, porcellainous rocks which were

initially mistaken in the field for quartzite. Thin section study revealed

these rocks to be composed of tremolite, clinozoisite, microcline, plagio-

clase, and quartz, with carbonate and sphene as important minor phases.

The texture is hornfels-like, with randomly-oriented euhedra of tremolite

and clinozoisite in a fine, granoblastic matrix of quartz and feldspar

(Figure 5). The texture and composition suggest these rocks are contact

metamorphic rocks related to intrusion of the Melaa Granite. If so, these

rocks have preserved nearly unchanged Precambrian contact metamorphic

textures through the Caledonian orogeny.

Schists

Various types of mica schists occur with the Hesjevann assemblage, all

of them as more or less isolated bodies. West of Hesjevann, a pendant in-

cludes a brown quartz-biotite schistose hornfels with chlorite pseudo-

morphs after small (3 mm) garnet porphyroblasts. The chlorite and some

biotite develop as part of a spaced cleavage which overprints a static,

decussate texture thought to reflect contact metamorphism by the Melaa

Granite (Figure 6). The absence of any evidence of penetrative schistos-

ity development is striking in so micaceous a rock. The limits of

Caledonian fabric development in basement rocks and its significance will

be further considered in Chapters 3 and 6.

West of Gausvik, outcrops of light gray quartz-muscovite schist are

included in this association. These are very micaceous rocks, showing

strong microfolding of probable late Caledonian age. The rocks are



Figure 5: Photomicrograph of static metamorphic texture, calc-silicate
rock, Hesjevann assemblage.

Needles and elongate prisms are tremolite; stubby prisms are
clinozoisite. Matrix is quartz, microcline, plagioclase, and
opaques. Plane polarized light, 75X.

Figure 6: Photomicrograph of schistose hornfels, Hesjevann assemblage.

Granoblastic and decussate textures of quartz and biotite in
lower left are typical of bulk of rock. Trace of the late
spaced solution cleavage is at upper left. 33X, Plane polarized
light.
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strongly schistose, with dimensional preferred orientation of both quartz

and mica. Micas are polygonized around microfolds, and locally flakes

grow parallel to axial planes of the folds. Textures are granoblastic

to lepidoblastic. Quartz grains have straight boundaries indicating

an absence of post-crystalline strain.

Amphibolite

A major component of the Hesjevann assemblage is dark gray to black,

massive and homogeneous amphibolite. Compositional banding is rare, and

tectonic fabrics are generally weak or absent. Where present, a lineation

defined by hornblende elongation is generally better developed than any

planar fabric. An exception to this is in some of the amphibolite out-

crops southeast of Storvann(S) where a spaced cleavage is locally promi-

nent.

Petrographically, this lithology is dominated by blue-green hornblende

and plagioclase, with clinozoisite, biotite, and garnet variably present

as minor phases. Accessories include sphene, apatite, opaques, and rutile.

Cleavage, where developed, is defined by spaced (solution?) surfaces with

development of retrogressive minerals that include epidote after plagio-

clase and hornblende, and chlorite after biotite and hornblende. Later

fractures in some specimens contain calcite, quartz, and tourmaline.

Textures are granoblastic to decussate, and grain size ranges from 0.5 to

2mm. Randomly-oriented subhedral porphyroblasts of hornblende (up to
8mm) are sometimes present. These textures indicate recrystallization

under static conditions; whether this is preserved from contact metamor-

phism by the Melaa'Granite or is a result of Caledonian heating without

penetrative deformation is unclear.

The massive, homogeneous appearance of this rock, together with its

characteristic associated lithologies (white quartzite, calc-silicated

marble) allows easy distinction of the rock from other amphibolites in

the area, and suggests an intrusive origin.

Kvaefjord Group

General Characteristics

This group of mainly metasedimentary rocks crops out primarily at the



head of Kvaefjord. Paragneisses in the core of the synformal anticline

east and south of Harstad are also believed to belong to this group.

The Kvaefjord Group comprises hornblende-epidote paragneisses, semipeli-

tic paragneisses and schists, and quartzofeldspathic gneisses, with rare

calcareous schists and marbles. A granite-pebble conglomerate (or pseudo-

conglomerate?) is present on the west side of Torskvatsfjell. It is un-

clear to what extent the quartzofeldspathic gneisses may include tecton-

ized granitoid rocks. In part this unit has unavoidably become a "garbage

-basket" designation.

No rocks from western Hinndy or Lofoten are easily correlated with

rocks assigned to the Kvaefjord Group. They constitute an apparently

genetically distinct group in the Lofoten terrain, and consequently the

name Kvaefjord Group is proposed. Possible correlatives may be the early

Proterozoic supracrustal sequence of Lofoten (Griffin and others, 1978),

but the absence of iron formation and metavolcanic rocks makes this

correlation questionable.

The Kvaefjord Group is clearly intruded by the Middagstind Quartz

Syenite, and hence is at least early Proterozoic in age. Contacts be-

tween the Kvaefjord Group with other basement rocks are seldom well-ex-

posed and generally ambiguous due to intense deformation, mostly prior

to 1700 Ma. On Torskvatsfjell, xenoliths of rocks similar to the Kvaefjord

Group occur in the Melaa(?) Granite, and the contact of the granite on the

north side of Torskvatsfjell appears to be gradational through a migmatitic

border zone into Torskvatsfjell paragneisses.

The Kvaefjord Group has experienced a long, complex history including

polyphase folding and probably faulting, polymetamorphism, and intrusion

by granite and syenite. No primary structures have been preserved. Con-

sequently, no lithologic sequence has been established, and no meaning-

ful thickness can be determined for the group. Order of discussion below

is based on the areal importance of rock types and implies no relative age

interpretation.

Semipelitic Paragneiss and Schist

Two mai'n lithologies are included in this unit which were not separated

on the map: a quartz-muscovite-biotite schist and gneiss, and a quartz-gar-

net-mica gneiss. Neither show significant compositional banding, but min-
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erals are segregated into lensoid clusters on the order of a centimeter

in length. Compositionally these rocks, especially the garnet-bearing

variety, are similar to the quartz-garnet schist of the Storvann Group

(see below). The distinction is made on two characteristics: these rocks

are generally coarser-grained and more micaceous, and the associated rock

types are distinctly different.

The quartz-two mica schist is dark gray or brown and often slightly

rusty in outcrop. It is very micaceous so that it is usually intensely

crenulated. Schistosity is defined by anastomosing bands of mica separated

by lensoid aggregates of granular quartz,. Quartz veins one to several

centimeters thick are ubiquitous, but feldspar-bearing pegmatites are

generally absent. Thin layers (5-50 cm thick) of quartzite with mica-

ceous partings are occasionally present.

In thin-section, these rocks are very quartz-rich, containing up to

70% quartz with micas making up essentially the rest of the rock. Mus-

covite generally dominates over biotite. Quartz is granoblastic, with

sutured grain boundaries indicating some late to post-metamorphic strain.

Micas are lepidoblastic, forming bands of both micas intimately inter-

grown with occasional cross-micas. Zircon and opaque minerals are the

main accessory phases.

The garnet-bearing rocks generally are lighter colored and appear

more quartzose and less micaceous in the field. This apparent difference

is not confirmed by thin section study, however. Garnet makes up about

5% of the rock in the form of I cm subhedral porphryroblasts. Micas are

intimately intermingled in intensely microfolded lepidoblastic films.

Accessory phases include zircon, blue-green tourmaline, and opaque minerals.

The protoliths of these rocks were most likely semipelitic and pelitic

terrigenous sedimentary rocks. With the absence of relict sedimentary

structures nothing can be said about original depositional environment.

Hornblende-clinozoisite Paragneiss

This rock type forms the bulk of the outcrops in the core of the

Kanebogen synformal anticline east of Harstad. Especially good exposures

are present in recent road cuts along the main highway leading south from

Harstad. The rock is medium gray to gray-green in color, and banded on

the scale of one centimeter. A strong penetrative gneissosity is typical,



although less micaceous varieties do not generally break along this folia-

tion.

Leucocratic bands are composed of quartz (40-60%), plagioclase (0-40%),

microcline (0-10%), and clinozoisite (0-20%). Mafic bands are dominantly

biotite (20-30%), blue-green hornblende (0-10%), clinozoisite (10-30%), and

plagioclase (0-40%). Accessory minerals include calcite, sphene, white

mica, pyrite, and opaque oxides. The rocks are generally even-grained

and granoblastic in the quartzose bands, decussate in mafic bands with

strong dimensional and lattice preferred orientation of mica and horn-

blende defining the schistosity. Occasionally small subhedral hornblende

porphyroblasts (up to several millimeters long) are present, parallel to

the primary schistosity but not generally aligned. Some fine-grained

specimens show thin quartz ribbons suggesting deformation was in part

mylonitic, but in thin section all grains are now uniformly polygonal,

indicating post-kinematic annealing.

The protolith of this unit is believed to be a somewhat calcareous

terrigenous sedimentary rock on the basis of its high silica content, high

percentage of Ca-silicates, and the presence of calcite. Alternatively,

the protolith could have been a volcanogenic sediment. The highly banded

nature of the rock is also supportive of a sedimentary origin, although

metamorphic differentiation cannot be ruled out.

Quartzofeldspathic Gneiss

Fine-grained, light-colored quartz-feldspar-biotite schists and gneisses

are common on east Hinndy, especially in association with the rock types

described immediately above. These gneisses almost certainly include both

feldspathic metasedimentary rocks and some fine-grained granitoid rocks,

but to distinguish between these two rock types in the field can be diffi-

cult in the extreme. This led Gustavson (1972, 197 4a, b, c) to include

extensive terrains in a blanket designation of "meta-arkose and fine

-grained granites". Much of these areas have been more effectively rein-

terpreted in this more detailed study, but the problem is real and has not

been fully resolved during this study.

Reconnaissance petrographic study has shown that most of the fine

-grained, well-banded feldspathic rocks are probably from sedimentary pro-

toliths. Quartz contents range up to 75%, which seems unlikely for a



granitoid rock, and alkali feldspar, prominent in basement granitoids, is

generally present only as an accessory. Intimate association of the quar-

tzofeldspathic gneiss with definite metasedimentary rocks is interpreted

to indicate a primary stratigraphic relationship.

Similar lithologies have often been considered "meta-sparagmites" in

Scandinavia, since in non-metamorphic areas, the Eocambrian rocks locally

include thick sequences of feldspathic sandstones, which would form quar-

tzofeldspathic gneisses when dynamothermally metamorphosed. The Kvaefjord

Group quartzofeldspathic gneisses are traceable into the contact aureole

of the Middagstind Quartz Syenite where-they are truncated.and contact

metamorphosed. Clearly these gneisses are compositionally similar to

"sparagmite" but of early Proterozoic age. Hence, great care must be

taken in correlating feldspathic metasedimentary rocks with "sparagmite"

on lithologic grounds alone.

Middagstind Quartz Syenite

Introduction

In the northwest corner of the study area, and extending northward

from it onto northern Hinndy, is a massive, coarse-grained syenite pluton

which appears to be post-kinematic. Other than rare, local shear zones of

protomylonitic to mylonitic texture, the syenite is completely without tec-

tonic fabric. It crosscuts structure in surrounding country rocks, and

related dikes and apophyses are unfolded and generally unfoliated. It

developed an extensive contact aureole of hornfels on its south and east

sides (mysteriously, it is thinner on the west side). The hornfels is

also generally massive and unfoliated, although some areas are distinctly

sheared, as are the contacts between the syenite and its wallrocks in

many localities on the east side of the pluton. It was thus surprising

for this author to find that the Middagstind Quartz Syenite gives an Rb/Sr

whole rock age of 1726 my (see Chapter 5), thus predating Caledonian

events.

The syenite is generally pink to tan with rounded dark dots of mafic

minerals 5 mm across (Figure 7). It is not extremely resistant to weather-

ing, perhaps due to its low quartz content, and forms extensive talus

slopes and boulder fields. In the study area, it seems to be scarcely



Figure 7: Middagstind Quartz Syenite, hand specimen.

Note massive, unfoliated texture and irregular mafic clots.
Actual size.

Figure 8: Photomicrograph of exsolution textures in alkali feldspar,
Middagstind Quartz Syenite.

Three types (episodes?).of plagioclase exsolution are recognized:

(1) Rounded blebs (here visibly saussuritized); (2) irregular
laminae, oriented vertically in this view; and (3) very fine
planar lamellae, oriented horizontally in this view. Crossed
polars, 75X.
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unroofed. On Middagstind, a small erosional remnant of the roof is perched

directly on top of the mountain, with a subhorizontal contact with the

underlying syenite (see Plate IIC, section H-H').

The syenite pluton is quite homogeneous. Chilled border zones are

slightly more fine-grained and slightly more mafic, but are only a few

meters to a few tens of meters thick. The southwestern portion is slight-

ly more leucocratic; amphibole is less prominent, and one specimen (291)

may have contained primary quartz.

The only area where the syenite is deformed significantly is the apo-

physis 2 km southeast of the summit of Middagstind, where steep north-dip-

ping shear zones are present (see Plate 1). Here a mylonitic fabric is

developed, imparting an augen gneissic texture to the rock. Porphyro-

clasts of feldspar are separated by mylonite zones (1-5 mm thick) which

nucleated on, and then obliterated mafic clots.

The intermediate, alkali feldspar-rich composition, age, and Sr iso-

topic initial ratio (0.7061; see Chapter 5) are all consistent with the

Middagstind Quartz Syenite having been part of the major plutonic episode

which emplaced mangeritic rocks in Lofoten-Vesteraalen from 1800 to 1700

Ma (Griffin and others, 1978). Some interesting contrasts exist, however.

The mangerite suite of Lofoten was intruded under regional granulite

facies conditions, yet the Middagstind pluton developed a contact aureole.

Both clino- and orthopyroxenes are essential constituents in the Lofoten

mangerites, but no pyroxene has been observed in the Middagstind body.

Petrography

The syenite is composed of complexly exsolved alkali and plagioclase

feldspars, surrounding mafic clots with complex mineralogy and striking

textural relationships. Microcline is the dominant feldspar, comprising

50 to 70% of the rock. It is invariably perthitic, in every stage of

plagioclase exsolution. Stringers and blebs of plagioclase in perthite

grains can be traced into areas of subequal patchy intergrowth of two

feldspars, and further into separate grains of plagioclase. Some micro-

cline grains suggest as many as three phases of plagioclase exsolution on

the basis of different morphology and orientation of exsolution lamellae,

and cross-cutting lamellae (Figure 8). The complexity of these relations

argue for a complex thermal history, which is consistent with relations



of mafic minerals.

Plagioclase is relatively abundant for a syenite (15-35%); some indi-

vidual specimens might be more correctly termed monzonite. The present

composition is estimated to be calcic oligoclase (An 20-An 30) determined by

optical extinction angle. The complex exsolution textures make it diffi-

cult to determine how much plagioclase was present in the primary igneous

mineral assemblage. Alteration of plagioclase to form fine-grained, dis-

seminated clinozoisite is ubiquitous; polysynthetic twinning is only moder-

ately developed. Consequently, the easiest way to distinguish plagioclase

from microcline in orientations not favorable for twinning'is by the

extensive retrogression of igneous plagioclase to clinozoisite.

The mafic clots appear to be corona-type structures, but are no longer

due to near complete replacement of the original mineralogy (Figure 9).

The Middagstind syenite was almost certainly pyroxene-bearing at the time

of its crystallization, (see "Hornfels" below, and Chapter 4), but no

pyroxene relicts have been found in any of the thin sections examined. The

central elements in these annular structures are either an opaque oxide

(magnetite + ilmenite) or a mesh of biotite + quartz. The opaque oxide is

invariably rimmed with sphene or leucoxene, as granular aggregates or ra-

diating bladed collars. The sphene is then commonly overgrown by biotite

in radiating sprays. Intergrown meshes of quartz and biotite may be peri-

pheral to the opaque/sphene/biotite aggregates, or may grow independently.

Small, equant grains of clinozoisite are commonly dispersed in minor

amounts in both types of biotite aggregates.

Small amounts of ferrohastingsite (0-5%) are common, and typically

occur as rims of the quartz-biotite mesh-like aggregates. Grains now

physically separated by quartz and biotite are in optical continuity, sug-

gesting partial replacement. Textures are not conclusive, but ferrohas-

tingsite is a common amphibole in alkalic plutonic rocks and the preferred

interpretation is that this is primary amphibole which formed as late igne-

ous overgrowths on orthopyroxene. The orthopyroxene has been replaced en-

tirely in retrogressive metamorphism to biotite and quartz, but the amphi-

bole was still a stable phase and persists, rimming the pseudomorphs.

Muscovite and garnet occur in accessory amounts. Muscovite generally

appears as coarse euhedra within the mafic clots, growing across the other

grains; it appears to represent a late metamorphic phase. Garnet also



Figure 9: Photomicrograph of corona-like mafic clots in Middagstind
Quartz Syenite.

Note biotite + quartz intergrowths which probably pseudomorph
primary orthopyroxene, and ferrohastingsite rim. High relief
mineral rimming opaque grains is leucoxene. Plane polarized
light, 21X.

Figure 10: Photomicrograph of granoblastic texture of hypersthene
hornfels.

High relief, colorless grains are hypersthene; colored,
transparent grains are brown hornblende; low relief, colorless
mineral is plagioclase. Plane polarized light, 75X.
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generally occurs in association with other mafic phases, especially as a

rim on sphene. Garnet may also occur as isolated grains in the feldspar

matrix; its paragenetic significance is not entirely clear.

The most prominent other accessory phase is apatite which locally

makes up nearly 1% of the rock. It commonly occurs as euhedra, up to I mm

in diameter, which are poikiloblastically enclosed in all other phases de-

scribed above.

Hornfels

The eastern and southern sides of the Middagstind pluton, and to a

lesser extent the western side, preserve a hornfelsic contact zone in wall

rocks. The hornfels consists mostly of mafic to intermediate rocks, pos-

sibly developed from the Archaean hornblende diorite, although more quar-

tzofeldspathic rocks of the Kvaefjord Group are also affected. The horn-

fels is a massive charcoal gray or black, fine-grained, generally struc-

tureless rock in the field. Locally, pre-contact metamorphic composi-

tional banding can still be faintly recognized. In some areas, especi-

ally southeast of Middagstind, the hornfels has been sheared to form a

fine-grained, finely-foliated and lineated amphibolite. This effect

is very zonal, and appears to be the result of ductile shearing.

The areal extent of the hornfelsic rocks is surprising on the east and

southeast sides of the pluton: the exposed width of the contact zone is

one to two kilometers. This is most likely due to low dip of the contact.

The thickness of the contact zone is much less than its outcrop width,

perhaps only a few hundred meters (see Plate llA, A-A'; IIC, H-H').

The hornfels was not extensively sampled, so that only general comments

about the character of the rocks can be made. No isograds could readily

be mapped in the field, but different grades of contact metamorphism were

recognized by petrographic study. The highest grade assemblage observed

came from the immediate contact zone of the pluton on the east side of

Middagstind itself (sample 16D; see location map, Figure 67). Iron-rich

hypersthene (2V~40*), green-brown hornblende, plagioclase (An60 , by Michel

-Levy optical method), and opaque oxide coexist in a granoblastic aggre-

gate (Figure 10). Retrogressive reaction has occurred to a limited extent,

developing thin garnet rims on the opaque phase, surrounded by aggregates

of plagioclase. Hypersthene is often sieved with plagioclase.



Other thin sections examined were not orthopyroxene-bearing. A

typical assemblage is blue-green hornblende + plagioclase + sphene + opaque

+ biotite. One thin section included two coexisting amphiboles, actinolite

and grunerite. Actinolite may rim the grunerite, or the two may be irreg-

ularly or tabularly intergrown. Textures are generally granoblastic to

decussate; rocks with mesoscopically visible relict fabric often preserve

some amphibole preferred orientation, both dimensional and lattice, which

suggests static metamorphic overprint occurred at conditions not very

different from those of the synkinematic metamorphism which predated the

syenite intrusion.

Samples of the hornfels which have been subsequently foliated also dis-

play amphibolite facies mineralogy, but the textures clearly indicate syn-

kinematic metamorphism, with strong dimensional and lattice preferred ori-

entation of hornblende. The lack of any static overprint on these samples

implies that deformation post-dates the pluton and may well be Caledonian

in age. This is supported by the fact that sheared contact rocks from the

immediate contact of the pluton have precisely the same assemblage, blue

-green hornblende + plagioclase + sphene, all trace of pyroxene having

disappeared. Structural arguments for the timing of these shear zones are

presented in Chapter 3.

Austerfjord Group

Introduction

The Austerfjord Group consists of a dismembered sequence of schists,

amphibolite, quartzite, and marble, first described by Hakkinen (1977).

In the present study, the Austerfjord Group was traced southeastward in

the lower plate of the Austerfjord Thrust, from the type area to Kongsvik,

and thence across Tjeldsund to the Fjelldal area. The rocks that crop out

in the extreme northwest of the map area are also tentatively correlated

with the Austerfjord Group, but have not been investigated in detail.

In the map area, the main lithologies represented are sericite quartz-

ite and calcareous amphibolite (the iron-stained amphibolite of Hakkinen,

1977). These have been traced from Hakkinen's map area and constitute



the two structurally highest map units of his 0sterdalen sequence (of the

Austerfjord Group). The only locality where lower units are exposed to any

extent is the stream bed between Tverrfjeli and Kongsviktind (Kongsvik-

dalen). The near absence of the biotite schists which dominated the type

section is probably the result of displacement by the intrusion of the

Lddingen Granite. In outcrops two kilometers west of the summit of

Kongsviktind, Austerfjord Group amphibolite and intensely tectonized

Lddingen Granite are interlayered, apparently by intrusion of the granite.

The contact between massive granite and amphibolite is not exposed, but

numerous deformed small ( <1 m thick) granite dikes inject the amphibolite.

A minimum age for the Austerfjord Group is established by an unpub-

lished Rb/Sr whole rock age of 1415 + 80 Ma on the Ldingen Granite by

P. N. Taylor (pers. comm. to Hakkinen, 1977) on samples from the granite

where it intrudes the Austerfjord Group in its type locality at the head

of Austerfjord. The conclusion of Hakkinen that the Austerfjord Group

underwent prograde metamorphism during Caledonian time suggests its

deposition post-dates the 1700 Ma high-grade metamorphism. Thus, the age

of the Austerfjord Group can be bracketed with reasonable confidence

within a period of 300 Ma.

The base of the Austerfjord Group is not preserved anywhere yet

studied, nor have any primary sedimentary structures been recognized to

indicate stratigraphic facing. From place to place, the precise sequence

of lithologies is variable, although the overall order is consistent

(Hakkinen, 1977); inversions in the order of units are rare. It is likely

that the sequence is not strictly stratigraphic. Hakkinen (1977) suggested

that most contacts are in fact low-angle faults (tectonic slides) which

have "shuffled" the sequence. On what kind of basement, and in what type

of depositional environment, the sequence originally formed, is uncertain.

Lower Units (Kongsvikdalen sequence)

In the stream cut section between Tverrfjell and Kongsviktind, the

following sequence of lithologies was observed passing upward (Table 1):

(1) massive quartzofeldspathic schist with minor fissile biotite schist,

ca. 30 m, grading upward into hornblende-bearing, darker colored schists,

20 m; (2) a thin (3 m) calcareous quartz-muscovite schist that grades

upward into massive to banded buff-colored tremolite-phlogopite marble,



TABLE 1: Comparison of lithologic successions of Austerfjord Group rocks.

0sterdalen sequence (Hakkinen, 1977)-

Unit 7

Quartzite
Quartzofeldspathic schist
Fine grained biotite

schist

Unit 6

Iron-stained
amphibolite

Unit 5

Tremolite-bearing marble
Calcareous schist
Biotite rich amphibolite

Unit 4

Garnet muscovite schist
Biotite schist, minor

amphibolite
Sericite quartzite

Unit 3

Kongsvikdalen sequence (This study)

(10m)
(35m)

(20m)

(120m)

(40m)
(40m)
(10m)

(55m)

(1I0m)
(i0m)

Schistose amphibolite (20m)
Quartzofeldspathic schist ..

with marble layers (25m)
Quartz muscovite schist (10m)
Tremolite phlogopite

marble (20m)
Calcareous schist - (3m)
Hornblende bearing biotite

schist (20m)
Quartzofeldspathic schist (30m)

Garnet amphibolite, inter-
calated with marble (45m)

Unit 2

Chlorite biotite schist (90m)

Unit I

Kyanite garnet biotite
schist

Biotite schist, finely
laminated

(20m)

(150m)



20 m; tremolite prophyroblasts grow unaligned but within the primary schis-

tosity; (3) quartz-muscovite schist with minor randomly-oriented porphy-

roblasts, 10 m; (4) I m of white quartzite, overlain by I m of calcite

marble, in turn overlain by 25 m of quartzofeldspathic schist with 5 to

25 centimeter thick layers of pink marble; (5) schistose amphibolite,

apparently, part of the calcareous amphibolite described in more detail

below, ca. 20 m. This amphibolite is succeeded by fine-grained, strongly

foliated granite gneiss of the upper plate of the Austerfjord Thrust. The

actual thrust contact is not well exposed here, but is very precisely loca-

table on the map scale.

It is difficult to correlate precisely these units to those described

by Hakkinen, although the overall character of the section is similar.

The second unit correlates well with Hakkinen's unit 5 (calcareous schist

and tremolite-bearing marble), but other units do not match well (Table ).

On such limited data, a unique interpretation is impossible.

Calcareous Amphibol ite

This is the dominant map unit in the area studied, reaching a thick-

ness of about 250 meters in the stream cuts on the west side of Kongsvik-

tind. It is mainly moderately to very schistose, dark gray to black amphi-

bolite, with bands of buff-colored marble from several centimeters to

about two meters thick. The marble is generally dolomitic, and may be

tremolite-bearing. The amphibolite is generally carbonate-bearing. The

presence of the marble bands is especially diagnostic, allowing ready dis-

tinction of this unit from other amphibolite units of east Hinndy, especi-

ally in the critical Fjelldal area. The abundance of carbonate is also

believed to indicate a sedimentary origin for this unit, consistent with

Hakkinen's (1977) interpretation that this unit (his iron-stained amphi-

bolite) was a para-amphibolite.

In thin section, the amphibolite is composed of blue-green hornblende,

biotite, epidote and clinozoisite, calcite, quartz, and plagioclase. Re-

trogression of mafic phases to chlorite is extensive in rocks from the

Fjelldal area, possibly an effect of the Fjelldal high-angle fault, since

similar retrogression of Storvann Group rocks has also occurred here

(see Storvann Group, quartz-garnet schist below).



Sericite Quartzite

This milky white quartzite is exposed discontinuously under the

Austerfjord thrust on the west side of Tverrfjell, and in the Fjelldal

area. Its mesoscopic appearance is porcellainous to finely granular;

generally it is finer-grained than the quartzite of the Hesjevann assem-

blage, lacking a sugary appearance in weathered outcrop. Fine-grained

white mica defines the variable-developed foliation. Hakkinen described

this unit as flaggy, presumably due to mylonitic deformation along the

Austerfjord Thrust. Flaggy structure is variably developed in the present

study area; the quartzite is locally quite massive (e.g., the lens at the

west end of sections C-C' and G-G', Plates llA and IIC respectively). If

as concluded in Chapter 3, the Austerfjord Thrust does not have large dis-

placement, it may be that the contact between the quartzite and the over-

lying Gullesfjord Gneiss is not always the most important level of trans-

port. This would explain the fact that commonly on Tverrfjell, the tec-

tonite fabric is strongest away from the granite/metasediment contact; the

upper contact of the lens just described shows no evident tectonization

where well-exposed near its southern end. Although this does not demon-

strate that the contact is primary, it suggests the possibility must be

considered. It should be noted that in the Fjelldal area, the zone of

contact between Austerfjord Group rocks and the small klippe of

Gullesfjord Gneiss is a zone of intense mylonitization, so that signifi-

cant movement would seem to be localized at this level in that particular

area.

The idea that the contact between the uppermost Austerfjord Group

quartzite and the Gullesfjord Gneiss may be locally sedimentary suggests

a further speculative possibility. If the 0sterdalen sequence is consi-

dered as a stratigraphic succession, albeit somewhat dismembered, the

units of sandy, quartz-rich and of calcareous protoliths are concentrated

toward the top while more pelitic and impure psammitic units, with more

poorly sorted or fine-grained terrigenous protoliths, are at the bottom.

Such a sequence would appear to constitute a regressive historical develop-

ment. Such sequences are preserved in the stratigraphic record, but less

commonly than transgressive sequences because sediment just deposited is

more likely to be re-exposed and eroded during a regression. If, however,

the upper contact of quartzite with granite was originally primary and



and stratigraphic, then the sequence can be interpreted as inverted. An

inverted 0sterdalen sequence makes a reasonable transgressive sequence.

Thus, the possibility exists that the Austerfjord rocks record a post

-Svecofennian (1700 Ma) transgression, terminated by recurrence of mag-

matic activity at 1400 Ma with the emplacement of the Lddingen (and

Melaa?) granite(s).

Melaa Granite

The Melaa Granite is the name proposed for the massive granite exposed

on the east side of the Melaa Vannene (telaa Lakes) area, near Hesjevann.

The precise areal extent of this unit is difficult to establish without

further geochronological study. During mapping, I assumed all the granite

gneiss in the western part of the study area was essentially the same unit,

because compositional variation was limited, and textural variation was

clearly not a reliable criterion for subdivision since texture and fabric

are locally very variable. However, existing geochronological data

(Chapter 5) suggest the situation is more complex, and that much of the

granite is of Archaean age (Gullesfjord Gneiss). The present author

considers that a younger granite, the Melaa Granite, is present, but that

its extent is more limited than previously hypothesized.

The Melaa Granite is clearly intrusive into rocks of the Hesjevann

assemblage in the Hesjevann area. Dikes of granite cut bodies of amphi-

bolite and quartzite, marble bodies are converted to calc-silicate mineral

assemblages along their margins, and all metasedimentary units appear

to be "floating" in a "sea" of granite on the map scale (see Plate I, and

Plate IC, section H-H'). Contact relations with other units, in particu-

lar the Gullesfjord Gneiss and the Storvann Group, are uncertain. Pre-

sumably, the Melaa Granite intrudes the former and lies unconformably

beneath the latter, but this cannot be documented at this time.

The Melaa Granite is compositionally a true granite, with 10 to 30%

quartz, 40 to 60% perthitic microcline, 15 to 30% plagioclase (calcic

oligoclase determined by optical methods), 2 to 10% biotite, and accessory

clinozoisite, sphene, muscovite, zircon, apatite, green tourmaline, and

garnet in aplitic phases. Opaque oxides are noticeably scarce.

The alkali feldspar is entirely microcline, generally fresh, and not

uncommonly rims plagioclase to form rapakivi textures (Figure 11). Perthi-



Figure 11: Photomicrograph of Rapakivi feldspar in Melaa Granite.

Dark center is plagioclase strongly retrograded to
clinozoisite. Rim is mi-crocline. Note incipient cataclastic
band in microcline at left. Crossed polars, 30X.



tic plagioclase exsolution, usually in rounded blobs but also in stringers

as well, is ubiquitous. Large phenocrysts are absent, but the alkali feld-

spar is generally coarser-grained than other phases (up to I cm ) and

in some specimens textures are suggestive of accumulation of early-formed

alkali feldspar (R. Wiebe, pers. comm., 1978). This is consistent with

the notion that this is a true granite, of probably crustal anatectic

origin (see also Chapter 5), with alkali feldspar near the liquidus in the

crystallization of the magma.

Plagioclase, calcic oligoclase by optical determinations, is poly-

synthetically twinned and mildly sieved with retrograde clinozoisite

(probably a product of Caledonian thermal overprint); the clinozoisite

grains allow ready distinction of microcline from plagioclase in orienta-

tions where twinning is ambiguous. Rarely, plagioclase is antiperthitic.

Biotite is brown, tabular, and randomly oriented in small aggregates

in undeformed examples. As a whole textures are hypidiomorphic granular;

over an area of a square kilometer or more directly north of Hesjevann,

no tectonite fabric whatsoever can be distinguished in the Melaa Granite.

Discussion of the development of the tectonite fabrics in this granite and

the Gullesfjord Gneiss is deferred to Chapter 3, because it is an integral

part of the structural picture of east Hinndy.

Petrographic distinction between the Gullesfjord Gneiss and Melaa

Granite is tenuous at best; one gneissic granite often looks much like

another, explaining the lack of any striking contact in the field. Three

possible criteria exist: (I) alkali feldspar is clearly dominant in the

Melaa Granite, while plagioclase is slightly dominant in the Gullesfjord

Gneiss (Hakkinen, 1977; this is consistent with the author's own observa-

tions); (2) rapakivi textures are present, but not ubiquitous, in the Melaa

Granite, but have not been reported from the Gullesfjord Gneiss; and (3)

the Gullesfjord Gneiss appears to have been penetratively deformed in

Precambrian time, while the Melaa Granite locally is undeformed, preserving

primary granitic texture. None of these criteria are particularly useful

for field distinctions between gneissic granites. A solution may only

be obtained by detailed multi-system geochronological study.

The Melaa Granite is considered tentatively correlative with the

Ldingen Granite on the basis of gross lithologic similarity, and similar

age (see Chapter 5). If this correlation is valid, it further supports



the argument developed in Chapter 3 that the Austerfjord Thrust is not a

zone of major translation. Further geochronological and chemical study

would better evaluate this possibility.

Caledonian Cover Rocks

Introduction

The Caledonian cover rocks of east Hinndy were described by Gustavson

(1972) as a single stratigraphic sequence, which he considered to comprise

the Harstad and Straumsbotn Nappes. The present study concludes that

these cover rocks include elements of at least four, and perhaps more,

distinct stratigraphic sequences, including both autochthonous and alloch-

thonous units. Hence, Gustavson's nomenclature must be abandoned; new

structural nomenclature will be introduced in Chapter 3. Stratigraphic

subdivisions established in this study are: (I) the Storvann Group, a

newly-distinguished sequence of quartzite, schist, and marble which is

considered to be the autochthonous Eocambrian or Cambrian sedimentary

cover of the Lofoten terrain; (2) the Narvik Group, represented in the

study area by pelitic schists and gneisses with minor intrusions of grani-

toids and amphibolites, and present only in two tectonic slivers at the

base of the nappe pile; (3) the Stangnes Group, a newly-distinguished,

thrust-bounded slab of layered amphibolite intruded by a semi-concordant

tonalite gneiss pluton, the Ruggevik tonalite; and (4) the Salangen Group,

a sequence of marbles and mica schists which comprise the highest unit

of the nappe pile exposed on east Hinndy. All of the above have been

metamorphosed at amphibolite facies conditions during the Caledonian

orogeny. Juxtaposition of the allochthons and the autochthon occurred

prior to or synchronous with metamorphism, so that no abrupt breaks in

metamorphic grade are observed.

The use of the term cover here is consistent with its customary use

in the Scandinavian Caledonides, but different from its use in some othe-r

places. "Cover" refers to both sedimentary cover, that is, the sedimen-

tary rocks deposited during an episode of continental margin development

("geosyncli-nal cycle"), and to structural cover, that is, the allochthon(s)

emplaced upon the autochthonous continental crust during an orogenic

event. The structural cover can, and often does, include rocks from the



pre-existing continental crust, that is, stratigraphic basement. Due to

the intense metamorphism and deformation of most of the rocks in the

Scandinavian Caledonides, recognition of this basement involvement in the

allochthons is often very difficult. As a consequence, the use of "cover"

as primarily a structural term is less ambiguous, if confusing to those

accustomed to classical Alpine usage. Thus, the Storvann Group is actually

part of the structural basement in this usage.

Storvann Group

Introduction

The Storvann Group consists of a sequence of metasedimentary rocks

derived from mainly quartz-rich terrigenous protoliths. It is exposed

extensively in the eastern half of the study area from the southern out-

skirts of Harstad to Storvann(S), and in some critical outcrops in the

extreme southeast of the study area near Fjelldal and on Ramboheia. Out-

crops along the eastern shore of Storvann(S) are designated as a proposed

type section, since a relatively complete and coherent (though still strong-

ly deformed) sequence of rocks from its contact with pre-Caledonian base-

ment to thrust-truncated top is exposed (Figure 12A). Another excellent

set of exposures, tectonically thinned but essentially complete, is pre-

sent along the shoreline and in roadcuts east of Kanebogen to the Harstad

NAF campground (Figure 12B).

Contact Relationships

The basal contact of the Storvann Group is exposed at several places:

(1) on the eastern shoulder of Vikelandsfjell, (2) the north side of

Middagsfjell, (3) on the shoreline at Kanebogen, (4) on the ridge west of

Kanebogen (the other limb of the Kanebogen synformal anticline from the

shoreline section), (5) in a road cut and on the shoreline 1.5 km south

of Kanebogen, (6) northwest of Sdrvikfjell where the basal quartzite unit

is so extensively exposed, (7) the summit area of Finnslettheia, (8) the

east shore of Storvann(S), (9) in roadcut and shoreline exposures at

Tjeldsund bn strike from the Storvann(S) section (Figure 13), (10) on the

shoreline near Fjelldal, and (11) on the southwest side of Ramboheia. In

all cases, the compositional layering of the basal quartzite is parallel
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Figure 13: Basal contact of the Storvann Group at Tjeldsund.

Contact is at center of photograph, with strongly deformed
basement granite at left, white quartzite and quartzofeld-
spathic schist at right. Folds are F3 (see Chapter 3).
Roadcut is along highway on west side of Tjeldsund, about
about 1 km south of Tjeldsund bridge.



to the contact, and although the rocks are tectonized, there is no sug-

gestion of concentrated strain at the contact. On the map scale, litho-

logic units of the Storvann Group in general carry through parallel to the

basal contact. Three of the above exposures (2, 10, and 11) are anoma-

lous in that little or none of the basal quartzite unit is present, and

the quartz-garnet schist (see below) is in direct contact with the base-

ment or separated from it by only a few centimeters to a meter of quartz-

ite. At these places, it is inferred that the contact was sheared early

during the penetrative deformation and thrusting so that no mylonitic

fabric was preserved, or perhaps mylonites were never formed. Rocks at

the base of the Storvann Group were removed in the process; these contacts

are thus considered tectonic slides in the sense of Fleuty (1964). Strict-

ly speaking, it might be preferable to consider the Storvann Group rocks

at these places, Ramboheia in particular, as parautochthonous rather than

autochthonous.

The Storvann Group comprises a transgressive sequence. At the base

is an impure quartzite which is overlain by progressively more aluminous,

though still quartz-rich, rocks, interrupted by two marble horizons. This

compositional change is inferred to reflect fining upward of the terri-

genous clastic input to the sedimentary basin, consistent with a trans-

gressive setting. How much of the sequence has actually been preserved is

unclear, because the stratigraphically upper contact is everywhere a thrust

fault.

The combination of the above relations, that is, (I) lack of discor-

dance of lithologic units at the map and outcrop scales, (2) consistency

of rock sequence above the pre-Caledonian basement, (3) lack of evidence

of concentrated strain at the basal contact, and (4) the transgressive

nature of the sequence, are taken to indicate that the basal contact of

the Storvann Group is a nonconformity.

The upper contact of the Storvann Group is always marked by a thrust

fault, but is not necessarily the same thrust everywhere. On the Stangnes

peninsula, the Storvann Group is overlain by the Stangnes Amphibolite with

an intervening zone of complex mixing of lithologies (see "Calcareous

schists" below for further discussion of this zone). On the east shore

of Storvann(S), an entirely different assemblage of rocks overlies the

Storvann Group. Above the highest schist ("Pelitic schist" below) which



is considered part of the Storvann Group, is an assemblage of mixed litho-

logies similar to that on the Stangnes peninsula, which is in turn overlain

by a slice of Narvik Group pelitic gneiss and schist, which is then over-

lain by marble of the Salangen Group. The allochthony of the latter two

groups is well established (Gustavson, 1966, 1972; J. Tull, pers. comm.,

1979; K. Hodges, work in progress), as well as being clearly demonstrable

an east Hinndy (see descriptions of these units below). An interesting

point is that such completely different rocks occur at the upper contact

of the Storvann Group (see Figure 12). This will be discussed further

with regard to the geometry of the Caledonian nappe pile (Chapter 3).

Correlation and Thickness

The impure, often feldspar-rich, nature of the basal quartzite, and the

mainly terrigenous character of the section, combine to suggest the corre-

lation of this sequence with the autochthonous Eocambrian/Cambrian sections

of the Scandinavian foreland. The basal "sparagmite" unit typical of the

autochthonous sections preserved at the eastern thrust front is feldspa-

thic quartz sandstone and arkose, which would form a feldspathic quartz-

ite upon metamorphism. At this latitude (68-70*N), autochthonous cover

sequences along the eastern thrust front have been described by Moberg

(1908) and Vogt (1918, and unpublished data summarized by Gustavson, 1966).

Gustavson (1966) has described autochthonous sequences from tectonic win-

dows through the nappe pile. The sections are all largely sandstone and

shale, fining upwards, with minor limestone horizons. The sections de-

scribed by Vogt are fossiliferous, bearing Cambrian faunas (Platysolenites

antiquissimus, Torellella sp., Hyolithes sp., and Strenuella). Gustavson's

section from the Dividalen window is similarly dominated by sandstone and

shale, while the other sections from windows are too incomplete for reason-

able comparison. The overall similarities are encouraging. Correlation

unit by unit is not attempted, due to (I) geographical separation (more

than 100 km), and (2) the difference in metamorphic grade (unmetamorphosed

versus amphibolite facies). Nevertheless, I would assert strongly the

correlation of the Storvann Group with the autochthonous sequences of the

Scandinavian foreland, supporting the hypothesis of Griffin and others

(1978) that the Lofoten terrain was indeed part of the Scandinavian craton

in pre-Caledonian time. This is also consistent with structural arguments,
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to be presented in Chapter 3, that the Lofoten block is not a far-travelled

nappe.

The overall thickness of the Storvann Group is highly variable, due to

large variations in strain history from one locality to another. Original

thicknesses can only be conjectured. At Kanebogen, the entire section

from the basal contact to somewhere within the upper marble unit (i.e.,

nearly the entire known section) is about 300 meters thick (Plate IlA,

section A-A'). On Middagsfjell, the quartz-garnet schist unit alone is

about 700 meters thick (also see section A-A').

Lithologies

Quartzite

The basal unit of the Storvann Group is a heterogeneous mixture of mica-

ceous quartzite, vitreous quartzite, and quartz-feldspar-biotite schist,

with local occurrences of quartz-biotite schist and garnet-mica schist.

A separate upper member consisting of the latter lithologies was mapped

separately in the area about 2 km south of Storvann(N).

The vitreous quartzite is usually present as compositional bands a

few centimeters thick, separated by more micaceous layers one mm to several

cm thick. The vitreous layers are fine-grained and range in color from

white to bluish gray and rarely dark gray. The micaceous quartzite is

similar but has mica in discontinuous films and as disseminated grains

defining the schistosity. The compositional banding on a mesoscopic scale

has been transposed by isoclinal folding (FI and F2 ) and has little primary

significance except that its strict concordance at the immediate contact

with the basement supports the interpretation that the contact is strati-

graphic.

Rocks with higher feldspar contents are present in this unit, especi-

ally in its lower parts. In particular, on the north side of Finnslettheia

it is locally difficult to locate the basement/cover contact due to the

compositional similarity of the feldspathic cover (here a "meta-arkose")

with the granitic basement. In such cases, the contact was drawn on the

basis of: (1) the appearance of vitreous or micaceous quartzite inter-

layers, and (2) the better layering and finer grain size of the metasedi-

mentary rocks (in most cases). On and near Torskvatsfjell where the base-



ment is dominated by metasedimentary rocks of the Kvaefjord Group, the

identification of the basal contact can become difficult, and locally can

only be made by assuming the structural geometry is reasonably simple.

However, in general the basal contact can be traced into areas where the

lithologies are more distinctive and the contact more easily located, so

that its geometry can be determined with confidence.

In thin section, the feldspathic quartzites contain both microcline

and saussuritized plagioclase in subequal amounts, forming from a few

percent up to perhaps 25% of the rock. In general, microcline is dominant

in less feldspathic rocks while plagioclase is more important in the

"arkosic" rocks. The thoroughly recrystallized nature of the rocks indi-

cates that the saussuritization is a result of late retrogression rather

than reflecting the sediment source. A change from muscovite to biotite

as the dominant mica also accompanies the transition from less to more

feldspathic compositions. The micas, though concentrated along composi-

tional bands, are commonly individually rotated into an orientation para-

llel to axial planes of late folds. The rotation of micas and the resul-

ting intersection lineation commonly are present even in outcrops which

show no mesoscopic late folding.

The basal several meters of the quartzite unit usually consist of

vitreous quartzite or meta-arkose, but on the east shore of Storvann(S)

and at the north end of the Stangnes peninsula, a quartz-biotite schist

with small feldspar porphyroblasts is present at the base. It is con-

sidered a 'local facies of the basal Storvann Group, but it is also possible

that these are lenses of Precambrian metasedimentary rock occurring locally

below the unconformity. Volumetrically, these rocks represent a rather

minor element of the sequence, so the resolution of this question is of

modest importance.

A layer of quartz-biotite-garnet schist may be locally present at the

top of the quartzite unit. On the east shore of Storvann(S), about 5 m of

a schist very similar to the quartz-garnet schist unit (see below) is pre-

sent at the top of the quartzite, while two km south of Storvann(N), 50 m

or more of this unit occurs as part of a separate, upper member of the

quartzite uhit. This lithology is in a sense transitional to the quartz

-garnet schist present higher in the sequence, although generally separated

from it by the lower marble unit.

Morft;



The other lithology present in the upper member of the quartzite unit

is a quartz-biotite schist. This rather dark-colored, fissile schist is an

atypical rock type in the Storvann Group, but clearly occurs stratigra-

phically between vitreous and feldspathic quartzite more typical of the

quartzite unit and the lower calcite marble. It is thus considered a

facies of the basal quartzite unit.

Thickness of the quartzite unit varies, probably mainly due to finite

strain, from zero (due to tectonic sliding) to about 250 m northwest of

SUrvikfjell. A "typical" thickness for the unit would be about 50 m. The

possibility that some of the thickness variations in the quartzite, inclu-

ding its absence in some areas, are due to facies variations (for instance,

due to infilling of topography) cannot- be ruled out.

The protolith of the quartzite unit was of variable composition but

generally a rather mature sandstone with subordinate shaly facies. The

absence of a basal conglomerate is notable, and unfortunate because the

presence of locally-derived pebbles would reinforce the interpretation

that the basal contact is an unconformity. It is important to note that

the Storvann Group basal quartzite is readily distinguished from the quartz-

ites of the basement complex, on the basis of lithology and associated rock

types, as well as structural position.

Lower Calcite Marble

Often present at the top of the basal quartzite unit is a thin (5-10 m)

gray calcite marble. It is commonly impure, containing several percent

white mica, minor quartz, and occasional accessory pyrite and/or graphite.

Compositional banding is defined by varying concentrations of mica and by

subtle shading of color from light to medium gray. Early isoclinal fold

hinges are moderately common, indicating transposition of bedding by

folding to produce the present compositional banding. Texturally, the

calcite is granoblastic, with lepidoblastic mica films. Quartz occurs

as disseminated equant grains. Calcite is generally intensely twinned,

indicating late to post-metamorphic strain.

A somewhat different facies of this unit is present on the west flank

of Finnslettheia. Outcrop is moderate to poor, but normal marble appears

to pass laterally into a calc-silicate rock composed of tremolite, calcite,

pl.agioclase, quartz, epidote, and sphene. Phlogopite occurs in trace



amounts in one sample. The fabric development of this unit is highly

variable (Figure 14), apparently in spatial relation to its position with-

in an antiform on which it mainly occurs in the west limb (Plate llA,

section C-C'). Away from the hinge little penetrative fabric is present

and the texture in thin section is granoblastic to decussate. Apparent-

ly, the static metamorphism (see Chapter 4) obliterated much of the

Caledonian schistosity. Nearer the fold hinge, a strong foliation is

developed which is defined by dimensional preferred orientation of grains

in rocks of essentially identical mineralogy to those which are unfoliated.

Late fold hinges will be discussed further in Chapter 3.

The lower marble unit is not present everywhere. This is at least in

part due to tectonic slides between the quartzite and quartz-garnet schist

units. In the inverted section on top of Finnslettheia (Plate llA, C-C'),

only three lenses of this marble occur, while the intervening areas where

the marble is absent commonly show more intense foliation. This could

result from either large-scale boudinage of the marble or tectonic sliding.

From what is known of relative ductility of calcite- and quartz-rich rocks

at amphibolite facies conditions, it seems unlikely that marble would be

the boudin-forming lithology. Hence, a tectonic sliding interpretation is

preferred.

The protolith of the calcite marble was presumably a shallow water bio-

genic limestone with some terrigenous component. The reducing conditions

which produced the pyrite and graphite may have resulted from incomplete

oxidation of organic carbon. The calc-silicate facies was in part dolomi-

tic (as evidenced by Mg-bearing phases such as tremolite), and bears no

phase indicating low f0 . It is possible that local secondary dolomiti-
2

zation occurred under oxidizing conditions to form the protolith of the

calc-silicate facies, at the same time oxidizing all remaining carbon in

the rocks.

Quartz-garnet Schist

The quartz-garnet schist is the areally most extensive unit of the

Storvann Group, and one of the most distinctive lithologies. In outcrop it

is a massive, resistant light gray rock with foliation defined by lensoid

or sigmoidal clots of mica one centimeter or less in length. Quartz veins

a few mm to a few cm thick, and several cm to several tens of cm long, are



Figure 14: Photomicrographs of calc-silicate facies of lower marble of
the Storvann Group. Plane polarized light, 30X.

A: Static texture. Radiating needles are tremolite,
matrix of calcite and quartz.

in a

B: Foliated specimen. Tremolite needles have been aligned
in discrete bands (one at center of photo), with inter-
vening bands of granoblastic calcite and quartz.
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Figure 14B.



common. Easily confused with, but distinct from, these veins are bands of

quartzite on the same scale. The quartzite bands are more laterally con-

tinuous and contain mm-scale color bands parallel to the schistosity.

Quartz generally constitutes 60 to 80% of the rock, occasionally ran-

ging up to more than 90% (forming essentially a garnetiferous quartzite).

Quartz generally shows only weak dimensional preferred orientation, mainly

appearing as granoblastic aggregates. Sutured grain boundaries are not

uncommon. Undulatory extinction is locally present. The textures suggest

an annealing recrystallization after schistosity formation, followed by

late to post-metamorphic strain.

Garnet is ubiquitous as small, subhedral porphyroblasts (1-3 mm, occa-

sionally up to 5 mm), composing up to 10% of the rock. The garnets are ran-

domly dispersed throughout the rock. Where late spaced cleavage planes in-

tersect garnet, rims of chlorite + epidote are developed. Although com-

monly sieved with equant blebs of quartz, trails of aligned inclusions have

not been observed in the garnet within this unit.

Both biotite and muscovite are present, but in relatively minor amounts,

together comprising no more than 10% of the rock as a rule. Proportions

of the two micas vary, biotite usually dominating. Continuous, through

-going mica films are seldom present, making the schistosity often ob-

scure in outcrop. A late spaced cleavage defined by mica concentrations

is often more prominent than the earlier foliation. In one specimen,

randomly-oriented, interkinematic biotite porphyroblasts are present.

Green tourmaline is a ubiquitous accessory phase, occurring as small

(<I mm) euhedral or subhedral grains. Other accessory minerals include

zircon, sphene, and apatite.

Three rock types with somewhat different compositions occur locally in

this unit. On Finnslettheia, a plagioclase-porphyroblastic, graphitic

schist is interlayered with more typical quartz-garnet schist near the base

of the unit. The prominent foliation is marked by lepidoblastic inter-

growths of muscovite and graphite, with subordinate biotite. Sparse, albite

-twinned plagioclase porphyroblasts are a few mm across, anhedral, and ran-

domly-oriented. The textural relationships in this rock are complex and

significant for the microstructuml development of the study area; they will

be described in detail in Chapter 3.



In the valley midway between Sdrvikfjell and Storvann(N), a hornblende

-porphyroblastic facies of this unit is locally present near its base.

Hornblende occurs as stubby, randomly-oriented porphyroblasts up to I cm

across. In the shoreline exposures at Fjelldal, the stratigraphically

higher part of the quartz-garnet schist unit becomes more pelitic, with

the minerals kyanite and staurolite appearing. The rocks here are more

retrograded in late events, developing extensive retrograde white mica,

biotite, and chlorite. Equilibrium coexistence of kyanite, staurolite, and

garnet can be documented (Figure 15). Due to the intense retrogression,

it cannot be demonstrated that biotite coexisted with these other phases,

though this seems likely.

The thickness of this unit ranges from about 150 to more than 700 m.

It may be further thinned in the complex folding at the southeast corner

of Storvann(N). Relevance of these thicknesses to original stratigra-

phic thickness is not certain, but it is clear that this was and is the

thickest unit within the Storvann Group.

The protolith of this unit was probably a chemically mature siltstone

with some intermixed sand. The presence of abundant garnet in a relatively

mica-poor rock suggests high alumina relative to alkalis, and hence a clay

-rich, feldspar-poor composition. The feldspar and amphibole bearing

lithologies may reflect a variation in provenance, or a moderate amount

of carbonate which reacted with the silicate phases to form Ca-bearing

silicates during metamorphism.

Upper Calcite Marble

The second gray calcite marble is generally similar to the first, but

may be usually distinguished by its more pure composition and more promi-

nent color banding. A few percent white mica are present and minor quartz,

but graphite and sulfides are absent and the rock is generally more than

95% calcite. While the lower unit is generally homogeneous in color, the

upper marble commonly is banded gray and buff on a scale of one to five cm.

Textures are granoblastic; the early foliation can be recognized by the

color bands and by sparse micaceous layers.

The thickness of the upper marble is difficult to estimate because the

upper contact is generally poorly exposed or tectonic. Only a few meters'

thickness is present in the Kanebogen shoreline section, while its thick-



Figure 15: Photomicrograph of kyanite, staurolite and garnet in quartz
-garnet schist at Fjelldal.

Ragged appearance of staurolite and kyanite is due to retro-
grade metamorphism to muscovite, quartz, and chlorite.
Plane polarized light, 21X.

Figure 16: Photomicrograph of fibrolitic sillimanite in pelitic schist
at Storvann(S).

Fibrolite is intergrown with lepidoblastic muscovite.
Plane polarized light, 300X.
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ness is considerably increased by folding in most other areas of favorable

exposure (e.g., Plate llA, B-B'). Perhaps a representative thickness is

southwestward along the strike from Ruggevik, where the marble is about

100 meters thick (Plate IID, L-L').

Pelitic Schist

This highly garnetiferous schist is the structurally highest unit I

feel confident in assigning to the Storvann Group. It was probably a

mechanically favorable level for detachment, since it commonly occurs as a

thin (10-20 m) layer immediately under the lowest allochthonous unit of the

area. In some areas (e.g., Kanebogen) it appears to be involved in the

zone of tectonic mixing described in the next section. The consistent pre-

sence of a pelitic schist, often rusty-weathering and bearing coarse gar-

net porphyroblasts, at the top of the Storvann Group section, regardless

of the overlying units, leads me to believe this schist belongs to the

Storvann group.

The rock has a well-developed schistosity with the foliation defined

by mica films which anastomose and wrap around the subhedral to euhedral

garnets. The garnets range in size from 0.5 to 2 cm in diameter. In thin

section, major minerals include quartz, muscovite, biotite, garnet, and

often kyanite. One specimen contains fibrolitic sillimanite intergrown

with muscovite. Accessory minerals include green tourmaline, zircon, and

sphene.

The garnet porphyroblasts include trails of elongate quartz grains, re-

cording a two-stage growth history. The inner portion includes abundant

45 linear trails, suggesting growth post-dating an early schistosity. These

inclusion trails continue into the outer zone where inclusions are more

sparse, and curve into a sigmoid pattern indicating synkinematic growth.

Where late spaced cleavage which truncates the internal fabrics of the

g garnet intersects the garnets, retrograde chlorite is developed.

Biotite occurs as two growths. It is present as small, randomly

-oriented porphyroblasts which are bent and truncated by the late cleavage,

and also in secondary quantities to muscovite in the mica films which de-

*} fine that cleavage.

Muscovite forms both the through-going mica films, and also locally

remains in the matrix preserving an earlier foliation in short segments.



It is not clear how this older mica fabric relates to the internal fabric

of the garnet due to strong disruption by the, late cleavage, but these

older fabrics are assumed to be related.

Kyanite occurs as anhedral relicts, replaced in part by white mica,
quartz, and chlorite. The retrogression is interpreted to be related to

late cleavage forming events, although it is not clearly related to clea-

vage traces as the garnet retrogression clearly is.

Sillimanite occurs as fine-grained intergrowths with muscovite in one

kyanite-bearing thin section (Figure 16). The kyanite is replaced in part

by muscovite, suggesting that the kyanite to sillimanite reaction occurred

by two coupled reactions involving muscovite, similar to the relationships

described by Carmichael (1969). This is the first occurrence of silliman-

ite grade Caledonian metamorphism in this part of the Scandinavian

Caledon ides.

On the east shore of Storvann(S), the pelitic schist unit is locally

calcareous in its upper part. Calcite occurs as discontinuous lensoid

interlayers a few mm thick, composed of fine-grained granoblastic aggre-

gates. No calc-silicate minerals are developed.

The structural thickness of this unit is highly variable and in most

areas very uncertain. It is very non-resistant to weathering so that ex-

posures tend to be rare except along some shorelines. Areas of the map and

cross-sections showing apparently large thicknesses of the pelitic schist

unit (ss2) are largely the result of generalization from a few outcrops

which were impossible to map individually on the scale of the study (e.g.,

Plate llA, B-B'). It is probable that in these wooded areas of poor ex-

posure, the structure is far more complex than that shown on the map.

However, the data do not permit a more sophisticated interpretation.

The protolith of the pelitic schist unit was a shale, deposited in part

under reducing conditions, and in part in environments where limestone was

also deposited. It appears to be an expression of continued transgression

of the Scandinavian continental margin in early Paleozoic time. Its posi-

tion and lithology would be consistent with at least a possible correlation

with the Cambrian "alum shale" of the autochthonous foreland sections (Vogt,

1918; Gustavson, 1966), particularly since the alum shale also is commonly

the basal decollement horizon for the frontal thrust belt.



Calcareous Schist and Sliver Zone

A complex mixture of lithologies forms a zone a few meters to perhaps

100 m thick above the top of the Storvann Group at four places,all but one

of these clearly related to the lowest thrust of the Caledonian nappe pile.

These are: (1) the east shore of Storvann(S) (Figure 12A); (2) the roadcut

and shoreline exposures along Tjeldsund along strike from the Storvann(S)

section; (3) under the Stangnes Thrust at Kanebogen (Figure 12B); and (4)

under the Vikeland Thrust at the head of Kvaefjord. Where calcareous

schist is the dominant lithology (although still containing a mixture of

other rocks such as marble and amphibolite), the unit has been mapped as

calcareous schist (cs). Where mixing has been more intense, it has been

mapped as a sliver zone (sz). The lower contact of these rocks is more or

less gradational with the pelitic schist unit of the Storvann Group, but

is probably a thrust fault, but subsequent penetrative deformation and

metamorphism have obscured relationships on the outcrop scale.

Typically, this unit is an intimate mixture in varying proportions of

four lithologies: (1) quartz-plagioclase-calcite-epidote schists, sometimes

containing one or more of the following: actinolite, muscovite, biotite,

and in one case diopside, with accessory sphene and apatite; (2) garnet

-two mica pelitic schists similar to the pelitic schist unit of the

Storvann Group; (3) amphibolite, commonly garnetiferous; and (4) marbles,

both calcitic and dolomitic, often rather impure and grading into the

other three lithologies. Boudinage is often intense and ubiquitous. It is

not certain to what extent the extreme mixing of lithologies may reflect

sedimentary versus tectonic mixing, but the position of this unit below

thrust faults suggests tectonic mixing is important. The interpretation

of this zone as one of tectonic mixing along a major thrust boundary will

be further discussed in Chapter 3.

Narvik Group

Introduction

The rocks of the Narvik Group were first described by Vogt (1922, 1942)

from a typd locale around the town of Narvik, about 80 km east of the

study area on east Hinndy; Vogt termed these rocks the "Narvik schists" or

"Narvik Series". Strand (1960) renamed this assemblage the Narvik Group in



accordance with present stratigraphic nomenclature. Gustavson summarized

these earlier works and gave a generalized stratigraphic sequence for the

Narvik Group, based on the assumption that no major inversions or repeti-

tions occur within this group, from its type area westward to the Tysfjord

culmination (Figure 3) or northward on the east side of the Haafjell syn-

form. However, work in progress by Hodges in the Tysfjord area indicates

that large scale recumbent folding is probably present in the Narvik

Group, and that its extent and contact relations as interpreted by

Gustavson (1966, 1972, 1974a, b, c) are incorrect. Hence, the stratigra-

phic and structural nature of the Narvik Group is currently in a state of

flux.

The principal lithologies of the Narvik Group are quite distinctive,

which allowed its recognition on east Hinndy despite very restricted out-

crop. The predominant rock type is a dark-colored, medium grained, often

rather massive pelitic schist or gneiss, with abundant small garnet porphy-

roblasts, and sparse to abundant augen-shaped feldspar porphyroblasts.

Kyanite is very common, occurring as disseminated bladed porphyroblasts

and as coarse blades in quartz veins. Dikes and dikelets of pegmatitic

and aplitic material, both pre- to synkinematic with respect to the schis-

tosity, are nearly ubiquitous (Figure 17). In some areas, the dikes are

abundant enough to give the rock a migmatitic appearance; in the Tysfjord

area, unambiguously migmatitic rocks occur (Hodges, work in progress).

Sheets and lenses of amphibolite are common, but texturally variable rang-

ing from semi-aphanitic to blastoporphyritic to even-grained phaneritic.

Other lithologies occur in subordinate amounts in the Tysfjord area, but do

not occur on east Hinndy and will not be considered here.

Occurrences on east Hinndy

On east Hinndy, Narvik Group rocks occur in restricted outcrops in

two places: (I) shoreline exposures.at Storvann(S), and (2) in a road cut

at the power station one km west of Kilbotn, together with a string of

natural outcrops leading south from the roadcut for perhaps 0.5 km. At

the first locality, the rocks have a concordant contact with the calcareous

schist unit below. The upper contact is unexposed, but the Narvik Group

rocks are clearly structurally overlain by Salangen Group marbles. This

lens is of very restricted extent, no more than 50 m thick and not trace-



Figure 17: Narvik Group pelitic gneiss.

Exposure is in roadcut by power station, I km west of Kilbotn.
Isoclinally folded white stringers are aplitic dikes.

Figure 18: Photomicrograph of twinned and bent kyanite, Narvik Group
pelitic gneiss.

Kyanite grains are elongate parallel to primary schistcsity
in the rock. Texture is suggestive of boudinage: grains at
upper left may have once been continuous with those at lower
right. Plane polarized light, 30X.
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able along strike from the shoreline outcrops. The only lithology present

in the outcrops on the east shore of Storvann(S) is the pelitic gneiss unit;

kyanite was not observed at this locality.

The power station locality is more varied and interesting. The contact

with the Storvann Group (?) to the west is not exposed, but at the east end

of the roadcut, a contact with the Stangnes amphibolite is exposed. The

contact is sharp, and strongly foliated so that all structures are flat-

tened into parallelism. The contact is considered tectonic due to the

limited extent of typical Narvik Group lithologies and the lack of simi-

larities between Stangnes Group rocks ard typical Narvik Group amphibolites.

However, the possibility cannot be ruled out that the Stangnes Group is an

atypical part of the Narvik Group, at least on the basis of present know-

ledge.

The Narvik Group lithologies at the power station locality include (1)

pelitic gneiss, in part kyanite-bearing both in veins and as disseminated

porphyroblasts, (2) blastoporphyritic foliated amphibolite, and (3) a one

meter thick, fine-grained, unfoliated metadolerite dike injected parallel

to foliation.

The pelitic gneiss is composed of quartz, garnet, white mica, biotite,

plagioclase, and kyanite, with chlorite and white mica occurring as retro-

grade phases formed by late cleavage development. Accessory minerals in-

clude green tourmaline, zircon, apatite, opaques, rutile, and sphene.

Garnet occurs as euhedral to subhedral porphyroblasts (3-5 mm), show-

ing two stages of growth. The early phase forming the cores is sieved with

equant, non-aligned quartz blebs while the later growth is generally inclu-

sion-free. No trails of aligned inclusions are observed here. Locally,

rims overgrow biotite flakes which lie in the schistosity, suggesting the

outer zone at least is post-kinematic with respect to the early penetrative

deformation. In addition to quartz, core zones occasionally include plag-

ioclase, white mica, epidote, and rutile. Where late cleavage traces in-

tersect garnets, retrograde chlorite is often formed. No grain breakage

was observed in thin section, but at some localities crushed garnets are

commonly observed in hand specimen examination.

Kyanite occurs as coarse blades in quartz veins, and locally as dissem-

inated porphyroblasts (ca. 5 mm long) parallel to the predominant schistos-

ity. It is commonly twinned and bent (Figure 18), and is generally rimmed



by variable amounts of retrograde white mica. Garnet/kyanite grain.boun-

daries which are straight and without intervening phases are rarely pre-

served, documenting equilibrium coexistence.

Muscovite and biotite both occur in two habits indicating two phases

of growth. The early phase consists of coarse books or porphyroblasts,

apparently aligned in the schistosity, which are now truncated and bent

along the late cleavage. The second phase of growth is fine-grained,

apparently retrogressive, and related to formation of the late cleavage.

The second growth forms through-going mica films, and rims kyanite porphy-

roblasts.

Plagioclase occurs as saussuritized porphyroblasts in granoblastic

aggregates of quartz. The time of saussuritization is not clear. It may

be related to retrogression during the latest phase of deformation, because

the plagioclase grains are truncated by late spaced cleavage surfaces.

Alternatively, evidence from the associated amphibolite at this exposure

(see below) and from Hodges' work near the Tysfjord culmination suggests

the Narvik Group may have experienced a higher grade metamorphism prior

to emplacement in its present location in the Caledonian nappe pile, re-

sulting in superposition of the kyanite grade mineralogy on previously

higher grade rocks. Hence, the present Caledonian mineral assemblage may

result from a retrogressive metamorphism in the Narvik Group, and thus have

been responsible for the saussuritization of the plagioclase.

The foliated, blastoporphyritic amphibolite is a massive, dark gray

medium-grained rock with white irregular spots several mm across (pseudo-

morphs after original plagioclase phenocrysts?). It is intercalated with

the pelitic gneiss with the contacts entirely transposed. Foliation is

less intense largely due to the absence of mica. The rock contains sub-

equal proportions of blue-green hornblende, sodic andesine, and clinozoi-

site. Accessory minerals include quartz, sphene, and zircon.

Hornblende shows weak preferred orientation, both crystallographically

and dimensionally. No retrogression has affected the hornblende, nor are

relicts preserved of primary igneous phases it must have replaced.

Textural relationships of the plagioclase and clinozoisite are more

complex. The plagioclase has been determined by the Michel-Levy method

to be about An 35. It is partly replaced by granular aggregates of clino-

zoisite, often leaving isolated remnants of plagioclase in optical conti-



Figure 19: Photomicrographs of plagioclase partially replaced by clino-
zoisite, Narvik Group amphibolite. 75X.

A: Plane polarized light. High relief grains are clinozoisite.
Remainder of view is plagioclase.

B: Same view, crossed polars. Note optical continuity of plagio-
clase as indicated by simultaneous extinction.
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nuity (Figure 19). The clinozoisite is evenly disseminated throughout the

specimen and not related to any discernable late cleavage development. It

is interpreted to be a product of the kyanite grade metamorphism, consis-

tent with the observation that metaigneous rocks throughout the study area

bear the assemblage blue-green hornblende + plagioclase + clinozoisite as
a product of the Caledonian thermal peak. The question remains at what

time and under what circumstances the now partly replaced plagioclase

grains originally formed. These could be relicts of primary igneous plagi-

oclase, but the composition is rather sodic for a mafic igneous rock and

the absence of zoning would be surprising for igneous plagioclase in such

a body. The absence of any relicts of primary mafic phases also would

argue against relict igneous mineralogy being preserved. The preferred,

though tentative, interpretation is that these are relicts of the pre

-kyanite grade metamorphism hypothesized to account for relations in the

Tysfjord area (Hodges, pers. comm., 1979).

Perhaps the most curious feature of the outcrops at the power station

is the meter-thick, blastoporphyritic metadolerite dike exposed only in a

small outcrop (less than a meter high). As noted above, it is injected

parallel to foliation into the host Narvik Group rocks but is itself

unfoliated. It preserves chilled margins against its walls: at the edges,

the matrix is essentially aphanitic, and relict phenocrysts are small (ca.

3 mm) and sparse (% of the rock). Toward the middle of the dike, the

matrix becomes fine-grained phaneritic and appears to mimic primary micro-

porphyritic texture, while phenocrysts are larger (5 mm) and more abundant

(ca. 5%). These relations suggest that the host rock had already cooled

considerably from the metamorphic peak at the time of the dike injection.

The present mineralogy of the dolerite dike is actinolite, albitic

plagioclase, epidote and clinozoisite, with biotite, rutile, and sphene as

accessory minerals. Actinolite composes up to 70% of the rock, occurring

as aggregates of randomly-oriented, stubby prismatic to equant anhedral

crystals, often intimately intergrown with epidote. In actinolite-rich

samples, plagioclase is interstitial to the actinolite, while in plagio-

clase-rich samples, the actinolite encloses plagioclase laths apparently

mimetically'preserving primary microporphyritic texture (Figure 20).

Plagioclase laths have been determined by the Michel-Levy method to be

roughly An10 in composition. However, many grains show zoning; oscillatory



Figure 20: Photomicrograph showing relict microporphyritic texture in
metadolerite dike at Kilbotn power station.

Laths of plagioclase, now albite, are encl6sed in matrix of
fine-grained granoblastic actioolite and epidote. Crossed
polars, 17X.

Figure 21: Photomicrograph of blastomylonite gneiss, Stangnes amphibolite.

Porphyroclast is hornblende and plagioclase. Ribbons are horn-
blende, plagioclase, and clinozoisite. Crossed polars, 30X.
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zoning has been locally recognized. Plagioclase phenocrysts have been

replaced in amounts varying from 0 to 100%, commonly retaining subhedral

shape at all stages of replacement.

The mineral assemblage is more suggestive of the greenschist facies

rather than amphibolite facies, and the absence of a tectonite fabric

strongly favors the interpretation that this dike was intruded after the

main penetrative deformation was completed on east Hinndy. Rb/Sr whole

rock/biotite ages from Ruggevik Tonalite samples from a quarry a few hun-

dred meters from the outcrop of the dike gave ages of 358 + 4 and 362 + 5

Ma (Chapter 5), which are taken to record the time of cooling of this area

below approximately 260* C (Hodges and others, 1980). Thus, the meta-

morphism of the dike predates this age. The dike is thus interpreted to

be a late Caledonian intrusion.

Stangnes Group

Introduction

The Stangnes Group contains rocks that are anomalous among the nappes

of east Hinndy. Rock units in all the other tectonic units are dominated

by silica- and alumina-rich terrigenous metasedimentary rocks and marbles,

suggesting close association with continental margin environments. The

Stangnes Group is composed of banded amphibolite, probably mafic metavol-

canic rocks, intruded by the Ruggevik Tonalite Gneiss, a semiconcordant

gneiss sheet of tonalitic to trondhjemitic composition. The tonalitic com-

position alone suggests a rather primitive magma source; present day

Sr/ Sr ratios as low as .7047 (initial ratio is undetermined because

age studies are to date unsuccessful; see Chapter 5), support this inter-

pretation. It is unlikely that this suite of basic metavolcanic rocks,

intruded by primitive granitoids, were associated with continental crust at

the time of their formation. Hence, on the basis of simple petrochemical

considerations, it seems likely that the Stangnes Group rocks belong to an

exotic tectonic unit.

The Stangnes Group occurs as a thrust-bounded slab, about 0.5 km thick,

between the autochthonous Storvann Group and the overlying allochthon com-

posed of the Salangen Group. Structural arguments for the interpretation

of the upper and lower contacts of the Stangnes Group as thrust faults are



presented in Chapter 3 (D -Thrust Faults).

Along the basal thrust, lenses of coarse-grained (up to 3 cm), massive

hornblendite are present. The origin of these bodies is unknown, but their

lack of fabric suggests they crystallized after the main movement on the

thrust. It is possible that enhanced permeability along the thrust zone

increased fluid mobility at this level, leading to growth of very coarse

-grained rocks.

The Stangnes amphibolite is lithologically distinct from those amphibo-

lites the author has observed in the Narvik Group, so that the separation

of these rock sequences is preferred here. Hence, the name the Stangnes

Group is proposed, with the Stangnes peninsula directly east of Harstad

designated as the type locality. The Stangnes Group is also exposed in the

core of the overturned antiform opening northeastward from Middagsfjell

toward Harstad, and in a belt trending southwestward from shoreline expo-

sures near Ruggevik then curving around Kilbotn. On the southwest side of

Sdrvikfjell, the Stangnes Group rocks are truncated by the Storvann Fault

and do not reappear on the other side. This abrupt disappearance of the

Stangnes Group rocks at what is clearly a late high-angle fault can only

be termed fortuitous. The Storvann Fault must nearly coincide with the

lateral pinch-out of the Storvann Group by the joining into a single thrust

of the two thrust faults that bound it.

The age of the Stangnes Group is unknown. Rb/Sr whole rock studies on

the Ruggevik Tonalite Gneiss have not yielded an isochron (Chapter 5).

The entire complex underwent thorough Caledonian metamorphic reconstitution

and penetrative deformation, for which Rb/Sr whole rock/biotite ages give

a minimum age of about 360 Ma. The tonalite is not likely to be older
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than about 1000 Ma. Since tonalitic rocks with primitive Sr/ Sr ratios

are generally intruded into crust which was relatively young at the time of

intrusion, this approximate lower age limit is considered to apply to the

protoliths of the amphibolite as well.

Stangnes Amphibolite

The Stangnes Amphibolite is a fine-grained phaneritic amphibolite which

is thin-banded black and white or pale green on the scale of a few mm to a

few cm. The mechanical anisotropy introduced by this layering has led to

the formation of abundant late upright to overturned chevron folds, giving



the rock a very distinctive appearance in outcrop. This unit is easily

distinguished from the other amphibolites of east Hinndy on this basis.

The Stangnes Amphibolite is composed of blue-green hornblende (40-60%),

plagioclase (35-55%), clinozoisite (0-20%), garnet (0-10%), and quartz

(0-5%). Calcite and chlorite occur as minor alteration products. Acces-

sory minerals include opaques, apatite, and sphene or rutile. One anoma-

lous.specimen has 40% clinozoisite and only 5% plagioclase. This rock

may have resulted from local Ca enrichment during low-grade metamorphism

prior to amphibolite facies conditions (Smith, 1968). Another possible

explanation for the epidote enrichment is suggested by Holland and Norris

(1979): the epidote-enriched bands may be the remains of pillow margins in

strongly deformed and metamorphosed pillow lavas. The latter possibility

is especially interesting in the light of the recent discovery of pillow

lavas in a similar position in the nappe pile at Sulitjelma, 180 km to

the south (Boyle and others, 1979).

The texture of the Stangnes Amphibolite ranges from mylonite gneissic

to protomylonitic to nearly granoblastic. Near the basal thrust contact

(ca. 20 m structurally above), an intense schistosity defined by grain

elongation involves all major minerals. Sparse augen-shaped porphyro-

clasts of hornblende and plagioclase are set in a fine grained, intensely

tectonized matrix of synkinematic hornblende, plagioclase and clinozoisite

(Figure 21). The rock is mylonitic in the sense that considerable tectonic

grain size recuction has occurred; however, it appears that annealing

through grain boundary migration, plastic flow, and sub-grain growth kept

pace with deformation. Reduction in grain size is much less in other

samples (Figure 22). Textures of samples collected structurally higher

(40-50 m above the thrust plane) are protomylonitic. Mechanical twins

and mortar texture are developed in coarser grained hornblende bands,

while plagioclase has been reduced to fine-grained, mylonitic bands in

between.

At distances of more that 50 m from the thrust contact, the mylonitic

texture largely disappears (Figure 23). Mineral alignment is still present,

defining a strong schistosity, but the textures are granoblastic to subi-

dioblastic.

The amphibolite is compositionally heterogeneous, which is expressed

in the estimated modal ranges of minerals. The scale of the variations

(typically a centimeter to a meter) suggests the differences are related



Figure 22: Photomicrograph of protomylonitic Stangnes amphibolite.

Note thin discontinuous and anastomosing bands of mylonitic
material. Plane polarized light, 13X.

Figure 23: Photomicrograph of non-mylonitic Stangnes amphibolite.

Uniform grain size is smaller than the coarse relict grains
in figures 21 and 22, suggesting that tectonically-induced
grain size reduction may have occurred here also, but more
uniformly and more completely annealed during deformation.
Plane polarized light, 30X.
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to primary layering (bedding?), and hence that the protolith was a surface

-deposited rock, probably mafic volcanic and volcanogenic sedimentary rocks.

The tectonic setting where this sequence formed is uncertain, but it seems

probable that it was an oceanic or transitional rather than a continental

environment.

Ruggevik Tonalite Gneiss

The Ruggevik Tonalite Gneiss is a pale gray to white-weathering, medium

grained leucocratic orthogneiss which occurs widely as a semiconcordant

sheet in the middle to upper part of the Stangnes Amphibolite. The con-

tacts are strongly transposed, but local truncation of layering in the am-

phibolite at the contact indicates an intrusive rather than metavolcanic

origin for the tonalite gneiss (Figure 24). Irregularity of the outcrop

pattern in some areas (e.g., one km north of Middagsfjell) also supports

an intrusive origin. The tonalite gneiss is invariably well foliated,

with moderately developed concentrations of hornblende and biotite into

a gneissosity. On the outcrop scale it is even-grained and homogeneous;

rarely, layers or lenses of amphibolite, often now boudins, occur in the

tonalite gneiss.

The Ruggevik Tonalite Gneiss is well exposed in a quarry one km south-

west of Kilbotn, in shoreline exposures on the headland north of Ruggevik,

and in roadcuts and shoreline exposures at Stangnes. Ruggevik is chosen as

the type locality because the other two areas were already designated as

type localities for other units (Stangnes Amphibolite and Kilbotn Schist).

The tonalite is composed of plagioclase (ca. 40-50%), quartz (10-20%),

biotite (-15%), blue-green hornblende (0-20%), and clinozoisite (2-30%).

One specimen contains significant muscovite (5%). Chlorite occurs in vari-

able but minor amounts after hornblende and biotite. Accessory minerals

include sphene, allanite, zircon, calcite, apatite, and opaques.

Plagioclase is entirely metamorphically recrystallized. Twinning is

rare, and grains are subequant and granoblastic. Since no stained sections

were prepared and twinning is rare in the plagioclase, the precise propor-

tions of quarLz and plagioclase are uncertain.

Hornblehde is blue-green and generally has both dimensional and crystal-

lographic preferred orientation parallel to the schistosity. Boudirage of

individual crystals is common. Hornblende poikiloblastically encloses



Figure 24: Intrusive contact of Ruggevik Tonalite Gneiss into Stangnes
Amphibol ite.

Shoreline exposure is on southeast side of Stangnes peninsula.
Note disharmony of folding (F4 ; see Chapter 3) due to contrast
of banded amphibolite and massive tonalite gneiss.



quartz and plagioclase, and to lesser extent biotite. Biotite and chlorite

appear as retrograde phases after hornblende in rocks with a well developed

late cleavage.

Clinozoisite occurs as subidioblastic to granoblastic crystals, and

clearly is a member of the amphibolite facies mineral assemblage. New

growth related to late cleavage formation is also recognized in the form of

finer grained, granoblastic aggregates along cleavage surfaces.

Biotite and muscovite (where present) generally show two phases of

growth, one in the primary schistosity, the other in the late cleavage.

There is little difference in appearance between the two ages of biotite:

both are brown, and occur in unaltered lepidoblastic films and as isolated

plates parallel to one of the two foliations. The younger fabric can be

distinguished by consistent cross-cutting grain relationships. Where

late microfolds are present, the micas are polygonized around them.

Phanerozoic tonalites are typically formed in convergent margin arcs,

such as the tonalite-dominated Southern California Batholith. Tonalitic

intrusions are uncommon in well developed continental crust. The rela-

tively non-radiogenic Sr of the Ruggevik tonalite (initial 7Sr/ 8 6Sr was

probably less than .704; see Chapter 5) also supports formation of this

rock in island arc or very young continental crust. Consequently, it is

suggested as a working hypothesis that the Ruggevik tonalite and the

Stangnes Amphibolite represent a tectonic sliver from an ensimatic arc ter-

rain, analogous to the Trondheim Nappe 500 km to the south.

Salangen Group

Introduction

The Salangen Group comprises the highest unit of the nappe sequence

in the study area. As a whole the rocks are poorly exposed on East Hinndy

and structurally complex. Until relationships in this sequence are better

established in better exposed, structurally less complex areas, it was

considered less valuable to study these rocks in detail on East Hinndy, so

that less time was spent on these units. No stratigraphy or structural se-

quence was identified here, although the lithologies observed can be related

to the sequence developed by J. Tull and M. Steltenpohl (pers. comm., 1979)

in the Haafjell area (see below).



The term Salangen Group was introduced by Gustavson (1966) to include

the Evenes Group and overlying Bogen Group of previous authors (e.g.,

Strand, 1960), on the grounds that these rock sequences were not distin-

guishable from one another. In fact, given the evidence for large scale

inversions in the nappe pile (Chapter 3; also Hodges, unpublished data),

it is likely that the similarities between rocks of the Evenes and Bogen

Groups could be at least partly due to structural repetition. In this case,

the more general term would be the only correct usage. The Salangen Group

is consequently used here, at least pending completion of more detailed

work on the structure and stratigraphy of these units.

The Salangen Group regionally is composed of marbles, subordinate

schists, with one or more conglomerates locally present at the base and

a quartzite unit near the middle. On East Hinndy, three lithologic types

are represented: (1) the Harstad Conglomerate, which appears to be the

locally preserved "basal" conglomerate; (2) a series of variegated marbles

which appear to be the Evenes marbles of Strand and Henningsmoen (1960),

or the lower marble sequence of the Haafjell area as defined by Tull (pers.

comm., 1979); and (3) the Kilbotn schist, a unit composed of garnet-mica

schist with minor calc-schist and garnet amphibolite, which is correlated

on lithologic similarity with the mica schist overlying the Evenes marbles

in the Haafjell area (the basal unit of the Bogen Group in the terminology

of Strand, 1960). The anomalously large apparent thickness of this unit

may be due to a location in the core of a recumbent synform, or may be due

to thrust slicing of the sequence. A further observation is consistent

with this correlation. Overlying the apparently correlative schist in the

Haafjell area is a pure white and tan quartzite with sericitic partings.

Across Tjeldsund to the east of the study area, reconnaissance by the

author indicates that Kilbotn schist is complexly infolded with a litho-

logically identical quartzite (Figure 25).

The basal contact of the Salangen Group on east Hinndy is a thrust con-

tact which brings Harstad conglomerate, calcite marble, and Kilbotn Schist

into contact with the Stangnes Amphibolite (Chapter 3). If the above cor-

relation scheme is correct, this contact is highly transgressive across

Salangen Group units (Figure 31).

The age of the Salangen Group is unknown. As a major metasedimentary

assemblage of the Caledonian nappe terrain, it has been assumed to be lower
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Paleozoic ("Cambro-Silurian") in age. The possible correlation of the

Salangen Group with the Ullsfjord Nappe (Binns, 1978) of Finnmark bears on

this. The marbles of the Ullsfjord Nappe are less intensely metamorphosed

(greenschist facies) and have recently yielded tabulate corals (Favosites)

of Late Ordovician to Early Silurian age (Binns, 1978) and an early

Paleozoic shelly and coral fauna (Olaussen, 1977). Recent studies of the

Salangen Group by Tull, Steltenpohl, and Andresen (pers. comm., 1979) in

the Haafjell area tentatively support this correlation. Hence, on Plate 1,

a Silurian (?) age has been assigned to these rocks.

Harstad Conglomerate

The Harstad Conglomerate is a polymictic, matrix-supported metaconglom-

erate. It is best exposed in outcrops in and around the community park in

downtown Harstad, and is also known by this author to occur on the west

side of Svartdalsaasen (Plate I; Plate lID, section L-L'), and on the

Trondenes Peninsula north of Harstad (not formally mapped in this study,

as noted on Plate 1). The unit was first described by Vogt (1922); its

age, in particular relative to the Evenes marbles (lower marbles of the

Salangen Group), has shifted back and forth since then (Vogt, 1941, p. 205
-208; Gustavson, 1966, p. 44; Gustavson 1972, p. II). Regardless of its

age, the conglomerate unit's structural position is consistently at the

bottom of this nappe in all localities, except at Harstad where the entire

nappe sequence is inverted (see Chapter 3) so that at the time of nappe

emplacement, the conglomerate sat at the base of the nappe. Gustavson's

(1972) primary evidence for the Harstad conglomerate being younger than

the Evenes marbles is the occurrence of pink "color-banded" marble peb-

bles in the conglomerate at Harstad and Evenskjaer (outside the map area).

These pebbles have not been observed by the author at either locality, but

assuming their presence, their age significance remains non-diagnostic,

since pink marbles occur in the basement rocks on east Hinndy as well as

in the Evenes marbles (see Hesjevann assemblage-Marbles; Austerfjord

Group-Lower Units).

In the Haafjell area, Tull (pers. comm., 1979) has observed two dis-

tinct types-of conglomerates: a lower unit with a fine-grained amphibolite

matrix, enclosing mainly clasts of mafic and acid igneous rocks, and an

upper unit with a quartzitic matrix with mainly white to buff-colored
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marble clasts. Both types are present in the Harstad area; on Svartdalsaa-

sen, a third type has been observed with a calcareous schist matrix; this

seems to grade laterally into the amphibolite-matrix type and is thought

to be a facies of it. The mafic igneous clasts observed by Tull near

Ballangen in the Haafjell area have not been observed by the author in

the Harstad area; fine-grained acidic igneous rocks, and possible quartz-

ite clasts, dominate.

The origin of the protolith of this unit is of considerable interest.

It has been suggested that this could be an Eocambrian tillite (E. Tveten,

W. C. Griffin, pers. comm.); however, since the unit is in a sequence domi-

nated by carbonate rocks of possible Silurian age, this seems unlikely.

B. Sturt (pers. comm., 1979) has observed on the Lyngen Peninsula in

Finnmark what he interprets to be an unconformable relationship between

rocks of the Ullsfjord Nappe (possible correlative of Salangen Group mar-

bles, see above) and the underlying Lyngen gabbro. The basal rocks above

the unconformity consist of fluviatile sandstone and conglomerate, with

locally derived clasts from the underlying gabbro. The presence of mafic

clasts in the conglomerate at Haafjell thus suggests a possible environ-

ment of formation of the Harstad conglomerate, and supports the proposed

correlation.

Marbles

A variety of carbonate rocks are included here, some of which have been

mapped separately (Plate I); no coherent structural succession has been

recognized. The dominant lithology is a rather massive, pure, gray calcite

marble, mainly homogeneous with sparse white mica impurities, but occasion-

ally color banded. Locally, tremolite porphyroblasts occur. This lithol-

ogy underlies much of Harstad, and essentially the entirety of Voldstadheia

and Kvitfjell (Plate I; Plate IIB, section D-D' and F- F'). Subordinate

marble lithologies include a white to buff-colored dolomitic unit, and the

pink color-banded unit mentioned above. Tull and Steltenpohl (pers. comm.,

1979) report that this pink marble only occurs in their lower marble group,

that is, the Evenes marbles. This is one of the main reasons for corre-

lating these marbles with the Evenes marbles.

A distinctive unit which reconnaissance suggests may be useable as a

marker horizon is a spectacular zone of schist, amphibolite and skarn-like
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rocks best exposed in a roadcut ca. 2 km southeast of Sdrvik. The most

di-stinctive lithology is composed of euhedral.garnets I to 5 cm in diameter,

randomly-oriented hornblende needles up to 3 cm in length (including veins

of coarse, acicular hornblendite), in a matrix of quartz and white mica.

Other lithologies include coarse granoblastic garnet amphibolite, garnetite

veins, and garnet-muscovite schist. Outcrops of similar rocks were ob-

served along the shoreline to the east during reconnaissance, suggesting

this may be a mappable horizon.

In thin section, the marbles are typically granoblastic, with gener-

ally intensely twinned grains of calcite + dolomite. White mica and quartz

are present in all specimens, but in most cases constitute less than 5% of

the rock. In more siliceous specimens, accessory amounts of plagioclase,

tremolite, and/or epidote or clinozoisite are present, and myrmekitic

intergrowths of quartz and feldspar have been observed. Siotite, chlorite,

and rutile occur as accessory minerals.

Kilbotn Schist

General Characteristics

The Kilbotn Schist is the proposed name for the schist that surrounds

the bay at Kilbotn, extending southward nearly to Sdrvik and cropping out

locally in the vicinity of Harstad. As noted above, it is considered

correlative with the basal schist unit of the Bogen Group of Strand and

Henningsmoen (1960), and hence to overlie the Evenes marbles. The Kilbotn

Schist is mainly a highly micaceous, fine- to medium-grained schist with

ubiquitous small garnets. It is commonly calcareous, at the same time

becoming hornblende-bearing. Boudinaged layers 10 to 100 cm thick of gar-

net amphibolite, almost certainly of metasedimentary origin, occur in the

calcareous parts. This calcareous nature is consistent with the carbonate

-rich nature of the entire Salangen Group.

The thickness of this unit is difficult to determine since the composi-

tional banding is so strongly overprinted by the late cleavage that it is

difficult to decide what surface(s) to refer to in estimating a structural

thickness. The lateral extent, considering overall dip of the area in

which it occurs, suggests a thickness as much as I km. Tfiis is far greater

than the thickness observed for the correlative unit at Haafjell, sugges-
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ting that structural thickening of the unit, for instance in a major recom-

bent fold hinge, probably occurred on east Hihn$y.

Petrography

Mica Schis-t

The bulk of the Kilbotn schist is composed of quartz, garnet, musco-

vite, biotite, and minor plagioclase. Clinozoisite is a common accessory

mineral, and trace amounts of detrital zircon, allanite, green tourmaline,

and rutile are also present.

Garnet is subhedral to anhedral, appearing as small porphyroblasts

0.5 to 2.0 mm in diameter. It is typically sieved with tabular quartz

grains which preserve the trace of a foliation discordant to the dominant

fabric in the matrix. Rarely inclusion trails show slight rotation, but

they are generally planar.

Muscovite and biotite occur generally in subequal amounts, mainly con-

centrated in anastomosing, through-going mica films which define the

main mesoscopic foliation. Biotite is not chloritized, except where cren-

ulation of this foliation is intense, when chlorite.may grow axial planar

to these refolds. Micas are typically polygonized around such folds and

may occasionally be recrystallized into axial planar orientation.

The protolith of this rock was a siltstone or shale. No evidence of

graded beds or other sedimentary structures was noted in this study.

Its close association with quartzite and abundant carbonates suggests a

shallow marine depositional environment.

Calcareous Schist

The calcareous portion of the Kilbotn Schist is typically composed of

quartz, hornblende, biotite, and plagioclase; calcite is generally present,

and muscovite and garnet are common. Chlorite after biotite and hornblende,

and sericite and clinozoisite after plagioclase are common late alterations.

Accessory minerals include abundant detrital zircon, green tourmaline, ru-

tile, allanite, and apatite.

Hornblende is blue-green, and similar to garnet, encloses planar inclu-

sion trails of tabular quartz, and occasionally biotite, preserving a

foliation discordant to the external mica fabric. Hornblende porphyro-
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blasts are now elongate in the second schistosity but show little evidence

of crystallographic preferred orientation. Late microfolds and crenula-

tions are associated with growth of chlorite after hornblende, and locally

bend or break hornblende grains.

Biotite, and muscovite when present, show two phases of growth, both

post-dating the internal fabric of hornblende porphyroblasts. Early bio-

tites are coarse, and may be kink-banded; they often poikiloblastically

include quartz and plagioclase, as well as rimming hornblende. Late mica

growths are fine-grained, lepidoblastic films concentrated at hinges of

late microfolds and crenulations. Replacement of biotite by mats and

lepidoblastic aggregates of colorless to pale green chlorite is commonly

associated with the late folds as well.

Plagioclase is present as anhedral, strongly polysynthetically twinned

isolated porphyroblasts, fresh in weakly crenulated specimens but strongly

sericitized in intensely crenulated rocks. Shared grain boundaries with

hornblende and early biotites are straight and unarmored, indicating the

feldspar was produced by the early, higher-grade metamorphism.

Calcite may occur as either medium-grained lensoid granoblastic aggre-

gates, or as fine-grained granular aggregates replacing hornblende or

plagioclase. While its abundance does not exceed 10% in the specimens

examined, it constitutes an essential phase in most rocks.

Garnet Amphibolite

It is of particular interest to determine if the lenses and boudins of

garnet amphibolite in the Kilbotn Schist are igneous or sedimentary in

origin. Their modal mineralogy strongly suggests the latter, as does the

observation that their contacts with calcareous schists are entirely gra-

dational in thin section. Major phases include hornblende, garnet, quartz,

and calcite; minor constituents include plagioclase, clinozoisite, actin-

olite, and opaques with biotite and rutile as accessories. Chlorite occurs

in small amounts as an alteration of hornblende.

Hornblende is blue-green, and occurs as medium-grained (ca. I mm) decus-

sate aggregates, moderately elongate parallel to foliation. Locally, it

shows lamellar intergrowth with a pale green amphibole, probably actinolite

(Figure 26). Garnet occurs as sparse, subhedral porphyroblasts (ca. 3 mm),

and unlike in the schists, it overgrew and enclosed the dominant external



Figure 26: Photomicrograph of two amphiboles in garnet amphibolite
within the Kilbotn Schist.

Plane polarized light, 300X.
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schistosity. The second cleavage, so strongly developed in the schists, is

practically absent here. Calcite and clinozoisite occur generally together

as fine-grained granoblastic lensoid aggregates, in textural equilibrium

with the other major phases of the rock. Quartz and plagioclase occur

disseminated evenly through the rock; plagioclase surprisingly makes up

less than 5% of the mode.

The garnet amphibolite appears to be of sedimentary derivation, pre-

sumably formed from a limey mud. Because mica is absent, whereas mica is

very abundant in the associated schists, there is a large gradient in the

effects of the late refolding. This will be further examined in the next

two chapters, on structural geology and metamorphism.
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CHAPTER 3: STRUCTURAL GEOLOGY

Introduction

Structures of Precambrian, Caledonian, and perhaps Cenozoic age are

present on east Hinndy. Precambrian structures are not understood in detail,

partly because these were not the primary focus of this study, and partly

because the relationships are not easily deciphered. Hakkinen (1977) was

able to identify three phases of Precambrian folding on west Hinndy in the

early Proterozoic supracrustal rocks ("veined and layered paragneisses"),

in areas where Caledonian effects were-not present. Presumably, the

Archaean gneisses of east Hinndy experienced the same deformations, but

these are all relatively massive units with little layering: macroscopic

structures cannot be mapped, and the age of the foliation(s) present is

difficult if not impossible to determine. As Hakkinen noted (1977, p. 68-

70), in these units it is impossible to separate the effects of the differ-

ent Precambrian deformations.

Where the Precambrian basement lithologies are more likely to record

multiple deformations (e.g., the Kvaefjord Group metasedimentary rocks), the

exposures are poor and the rocks are strongly overprinted by Caledonian

events. As a consequence, only rather general remarks can be made about

Precambrian structures.

Caledonian structures on east Hinndy comprise a complex combination of

thrust and fold nappe tectonics, overprinted by multiple refolding events.

Five deformations, at least two involving thrust faulting, are recognized.

Each deformation produced its own set of minor structures and fabrics; major

structures from all but the youngest deformation (D5 ) have been recognized.

Table 2 summarizes these relationships.

The structural picture of the Caledonian orogeny developed here deviates

from previous interpretations in four significant ways. First, the number,

identities, and geometry of the thrust nappes is quite different from that

proposed by Gustavson (1972) who published the only previous structural

study of east Hinndy. Second, the emplacement of the major allochthonous

sheets is clearly pre- to synmetamorphic, unlike relationships further east

in Troms (Gustavson, 1972; Olesen, 1971), where thrusting clearly post-dates

the main stage of metamorphism. Third, the stack of early thrust nappes is

recumbently folded on a large scale (> 5 km in amplitude), so that over
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extensive areas (indeed, much of the eastern half of the study area) the

nappe pile is inverted. The basement is extensively involved, occurring in

the cores of the recumbent anticlines. Fold nappe tectonics have already

been described in north Norway, in the Sdrfinnset area roughly 200 km to

the south, by Wells and Bradshaw (1970). However, recognition of major

inversions of the Caledonian nappe pile is something new, and may have great

importance for the tectonics of the northern Scandinavian Caledonides (see

Chapter 6). Fourth, contrary to previous statements (e.g., Gustavson, 1972)

that only F1 produced penetrative schistosity on east Hinn0y, as many as

three different fold phases (F,, F2, and F3) produced penetrative or semi

-penetrative fabrics in some rocks (e.g., see Kilbotn Schist, Chapter 2).

This obviously requires a more sophisticated approach to understand the

fabric relationships.

An equally significant observation, first made by Hakkinen (1977) on

west Hinndy but greatly extended here, is that Caledonian deformation is

zonal and limited in extent in the basement rocks (Figure 27). Hakkinen

considered this to be a function of structural level: he argued that the

Lofoten block was a high-level nappe emplaced along the Austerfjord thrust,

over-riding the metamorphic nappe pile, so that metamorphic fabric died out

upwards as a result of lower P/T conditions. Results of the present study

appear to make this interpretation untenable (see "Austerfjord Thrust" below);

a different explanation is required. The evidence for-the limits of

Caledonian deformation in the basement of east Hinndy will be presented

below (see also Chapter 2, Middagstind Quartz Syenite; Melaa Granite).

Possible explanations will be considered in the latter part of this chapter,

and the regional tectonic implications discussed in Chapter 6.

An additional consequence of the variable and zonal deformation of the

basement is that one deformation may produce different types of structures

in basement and cover rocks, depending on previous structural histories.

This requires temporal correlation of, for instance, thrust faults, ductile

shear zones, and folds which appear to all have developed during the second

deformation phase (D2 ), but represent quite different failure mechanisms.

To further understand the geometry and interrelationships of structures

and fabrics, the study area was divided into 15 subareas (Figure 28), plus

the Kvitnes area on the mainland which was only briefly examined and not

included on Plate I (see Figure 25). The boundaries were chosen to achieve

structurally homogeneous domains, often following late fault contacts which
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Figure 27: Extent of pre-Caledonian basement
not penetratively deformed in
Caledonian events.

Ruled: Caledonian fabric absent,
or extremely weak

Stippled: Caledonian fabric
zonal with foliated zones sepa-
rated by volumes of undeformed
rock
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Figure 28.

Structurol subareas used in this study
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juxtapose structurally different blocks. There remains considerable

scatter of the data in some of the domains,.in part due to the numerous

successive deformations. Truly homogeneous domains would require sub-

division beyond the level of detail achieved in most of this study. The

results of the analysis are plotted partly on Plate IV, with the remainder

distributed in figures throughout the chapter. The plots are discussed

where appropriate throughout the text.

High angle faults of probable early Cenozoic age were discussed briefly,

by Gustavson (1972). However, the faults are more abundant than indicated

by Gustavson, and the regional pattern, in the present author's interpre-

tation, is considerably more consistent (Figure 55). The interpretation

presented here integrates all faults into a single kinematic picture which

is compatible with plate tectonic considerations.

Precambrian Structures

The preservation of Precambrian folds and fabrics is clearly documented

in the Middagstind area. As noted in Chapter 2, the Middagstind Quartz

Syenite is a discordant pluton with no internal fabric which cross-cuts

foliations and contacts in the surrounding rock units; since the Middagstind

Quartz Syenite yielded a Rb/Sr whole rock age of 1726 ± 31 Ma (Chapter 5),

the structures it truncates must be at least early Proterozoic in age. The

absence of Caledonian fabric in or near the Middagstind pluton is indispu-

table.

The most widely developed Precambrian structure is a penetrative schis-

tosity or gneissosity. It is defined by alignment of micas and feldspar

elongation in the Gullesfjord Gneiss and the migmatite gneiss, and by

hornblende alignment in the hornblende diorite. Within the contact hornfels

on the east side of the syenite pluton, diffuse compositional banding is

rarely preserved, and in thin section, weak hornblende alignment within

this banding locally preserves the schistosity. Eastward the hornfels

grades outward into rocks unaffected by the contact metamorphism; it is

unknown how the Caledonian fabrics overprint the Precambrian schistosity

here, but the two appear to be subparallel, perhaps explaining the subtlety

of the transition.

All of the rocks in the western half of the field area are allochthonous

along the Austerfjord Thrust (Plate I; Plate 11B; Plate It C, G-G', H-H'),
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a demonstrably Caledonian structure (see below). Above the thrust a

mylonitic zone is developed that is up to I km in structural thickness.

The mylonitic foliation dies out upward into a weaker subparallel pene-

trative gneissosity which is indistinguishable from the foliation cut by

the Middagstind syenite to the north, and apparently in continuity with it.

It is my tentative conclusion that the main fabric extending in the core

of the broad synform from the Middagstind area to Saetertind (Plate 111)

is probably a Precambrian fabric, rather than Caledonian. More detailed

work will be required to fully evaluate this possibility.

A few Precambrian folds have been -ecognized. Occasionally, open,

diffuse mesoscopic folds of schlieren in the Gullesfjord Gneiss are

present. The style of these folds is unlike Caledonian open folds ob-

served in the cover rocks (F3, F , and F5): they are sinusoidal, and

only mildly asymmetrical, whereas the Caledonian late folds in comparable

rocks tend to be chevron-like or concentric and strongly asymmetrical.

Axial trends on these folds are rarely measurable, because they are gen-

erally exposed on glacially polished surfaces so that the third dimension

can not be observed. Hence, the possibility that these folds are Precam-

brian in age cannot be evaluated on a geometrical basis.

On a larger scale, it appears that the structural basin in which the

Middagstind syenite intrudes is at least partly Precambrian. Foliations

dip inward around the pluton, appearing to define a sharp-hinged east-west

trending synform and a more open northwest-southeast synform (Plate Il).

The latter structure is Caledonian in age (F3 ), since it folds the

Austerfjord Thrust in the Tjeldsand area. The former fold appears to

be intruded by the Middagstind syenite, which suggests a Precambrian age,

post-dating the formation of the Precambrian penetrative fabric discussed

above.

Poles to the Precambrian foliation around Middagstind are plotted

stereographically on Plate IV (subarea D). There is a definite suggestion

of a great circle girdle centered around an ENE-trending, gently plunging

axis, although later deformations have complicated the picture. This

fold phase appears also to be present further south in subarea M. Com-

parison of poles to the Precambrian fabric to poles to the Caledonian S2
fabric indicates folding around a similar ENE-trending fold axis predated

formation of the Caledonian S2 fabric. In subarea M, it cannot be ruled

out that the folding is an early Caledonian event.
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Similarly, the diffuse, complex N-S girdle of poles to S-surfaces in

subarea G may in part reflect the presence of an E-W Caledonian fold phase.

However, the presence of Caledonian lineations (Caledonian L 2a see below)

and probable Caledonian D3 shear zones indicates a unique interpretation

of the fabrics in subarea G is not possible. Similarly, the fabrics in

subarea N are complex and poorly understood; it is considered likely that

these include both Precambrian and Caledonian fabrics, as yet unresolved

due to poor exposure and inadequate study.

The two structural events described above, the penetrative foliation

and the folds that fold this foliation, appear to correlate with events

(i) and (iv) of Hakkinen's pre-Caledonian history for west Hinndy (1977,

p. 69). No structures considered to.correspond to the other events in

Hakkinen's structural sequence have been recognized.

Caledonian Structures

Introduction

Five deformational phases of Caledonian age have been recognized on

east Hinndy, which are summarized in Table 2. These can be broadly split

into two groups: synmetamorphic events (DI and D2), and late metamorphic

events (D3 through D 5). The early events comprise the construction of the

nappe pile and its infolding (and thrusting) with the subjacent basement.

The late events redeformed these structures, complicating the picture but

producing no major tectonic transport.

A significant break in time occurred between the synmetamorphic and

late metamorphic events. Most porphyroblasts grew under static conditions

after the synmetamorphic deformations, followed by cooling as much as 200*C

(see Chapter 4) before the beginning of late deformations. However, DI and

D2 are together veiwed as two parts of a single continuum of early defor-

mation, and D3 through D are similarly considered different portions of a

continuous period of late deformation.

Structures assigned to a particular phase of deformation in any specific

location may not have formed strictly synchronously with structures at an-

other location assigned to the same phase. However, over an area the size

of the present study, in the absence of a source of strong thermal gradi-

ents (e.g., plutonic emplacement), the temperature history can be assumed
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TABLE 2: Caledonian deformations on east Hinndy.

Phase Faul ting

D Emplacement of al-
lochthons along
Stangnes and Tjeld-
sund thrusts.

D Austerfjord and
2 Vikeland thrusts

Steep ductile shear
zones near Middags-
tind

D 3 Low T mylonitic
shear zones in
granite gneisses
of basement

Fo I d in

Folding of Storvann
Group, possibly alloch-
thonous rocks as well:
A*: up to several hun-

dred meters
0*: unknown
V*: unknown

Recumbent folding,
refolding DI thrusts,

involving basement and
cover together
A: up to 10 km
0: variable
V: ESE

Upright to overturned
asymmetric, folds
A: up to I km
0: WNW-ESE
V: Mainly SSW

Upright to overturned
asymmetric folds
A: up to several hun-

dred meters
0: NE-SW
V: variable

Local mesoscopic up-
right to overturned
folds
A: up to few meters
0: NW to NNW
V: variable

Fabrics

Penetrative schis-
tosity in cover, ex-
tends less than 1 km
downward into basement

Mylonitic fabric near
thrust contacts

Transposition and
overprinting of SI
to variable degree
to produce new schis-
tosity
Sparsely developed
amphibole lineation
Boudinage

Spaced cleavage,
intense in micaceous
rocks, weak to absent
in mica-less rocks

Spaced cleavage, simi-
lar to S3

Crenulation cleavage
in Kilbotn Schist

* A - amplitude of folds
0 - axial orientation of folds
V - vergence of folds
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to have been relatively uniform. Consequently, similar timing of struc-

tures relative to metamorphism implies similar time of formation if not

struct synchroneity.

During the earliest event recognized, D,, the three major allochthons

in the map area (Narvik Group, Stangnes Group, Salangen Group) were em-

placed along two major thrust planes, here named the Stangnes Thrust and

the Tjeldsund Thrust (Plates 11 and 1i1). Fold interference structures

indicate that some folding developed prior to D2 structures; these folds

have been tentatively attributed to the D event.

During the second deformational event, the basement, its autochthonous

sedimentary cover (the Storvann Group), and the allochthons were recum-

bently infolded. Schistosity development was variable in extent during

this event, but a widely developed hornblende lineation was produced. The

Austerfjord Thrust is considered to have been emplaced during the second

event, and is considered to be a response within the basement equivalent

to the recumbent folding to the northeast. Discrete subvertical shear

zones in the basement rocks of the upper plate of this thrust are also

assigned to this deformational event.

The thrust locally mapped at Kvaefjord, named here the Vikeland Thrust,

developed a thick mylonite zone similar to the Austerfjord Thrust. The

thrust appears to truncate D2 folds at a low angle, but is folded by open

D3 folds. It is tentatively assigned a late-D 2 age, and thought to be

related to the Austerfjord Thrust.

During the third deformational event, D WNW-ESE-trending cross folds

were formed. These are the most prominent late folds in most of the study

area. The folds are mainly of chevron type, and primarily verge to the

southwest. This folding event is tentatively correlated with the formation

of the Tysfjord Culmination (Figure 3) to the southeast of the study area.

Some D3 deformation in the basement was accommodated by development of

mylonitic shear zones rather than folding.

The fourth deformational event, D , is a second late fold event which

produced folds trending nearly perpendicular to those formed in D Folds

of D4 age are only prominent in the northeastern part of the field area.

These are upright folds that trend NE-SW with variable vergence. D3 and

D structures rarely overlap in outcrop, so that chronological distinction

is difficult. Structural analysis supports this relative timing assignment;
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however, the two events are thought to be closely related in time. D3 and

D4 produced widespread semi-penetrative axial planar spaced cleavage; in

micaceous rocks this cleavage can be the dominant planar fabric (e.g.,

Kilbotn Schist).

The fifth deformational event, D locally developed small scale folds

and crenulation. In the Kilbotn Schist, this crenulation cleavage can

strongly disrupt the spaced cleavage(s) formed in D3 and D No macro-

scopic structures of this age have been recognized.

In the discussion below, the following standard abbreviations will be

used to refer to fabric elements: -

S: foliation, either compositional banding, schistosity, or cleavage.

L: lineation, either mineral, intersection, or stretching

F: folds

Subscripts refer to the deformation phase in which the fabric element was

produced. Thus, S3 is the foliation produced in the D3 deformation; it is

not necessarily the third S-surface developed. This approach is deemed

less confusing than simple serial numbering of successive fabrics of each

type, since D3 fabrics could include (for example) S2, F and L . In the

case of intersection lineations, the ages of both S-surfaces involved are

appended in subscript; hence, L1/3 refers to the intersection of S I and S3'

Nappe Sequence and Nomenclature

Figure 29 shows the preferred interpretation of the vertical sequence

of rocks on east Hinndy at the close of D, and its correlation with the

nappes of the Haafjell area to the south. This interpretation differs

radically from that presented by Gustavson (1972). Gustavson recognized

two nappes on east Hinndy, the Harstad Nappe and the Straumsbotn Nappe.

The Harstad Nappe was considered to include all of the rocks included here

in the Storvann Group, the Narvik Group, the Stangnes Group, and the

Salangen Group, plus some of the subjacent basement. On Gustavson's map

(1972), the basal thrust was drawn from Gausvik to Storvann(S), dipping

northward, and thence northward toward Kvaefjord, interrupted by the

Straumsbotn Nappe (see below). The Hesjevann assemblage and Kvaefjord

Group rocks between Rundfjell and the head of Kvaefjord were interpreted

as thrust-bounded and part of a klippe of the Harstad Nappe. The west

boundary of this klippe was drawn under the Melaa Vannene, and between
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the Middagstind Quartz Syenite (not distinguished by Gustavson) and its

contact aureole; the east boundary ran through the east-facing glacial

scarps north of Hesjevann, and disappeared in an unclear manner near

Straumsbotn. The thrust thence was drawn in the valley at the north

side of the present study area and in the hills further north.

The difficulties of this interpretation can be summarized as follows:

(1) There is very little evidence for a thrust fault anywhere along this

proposed trace. Gustavson (1972) cited repetition of the basement/cover

sequence across the valley between Storvann(S) and Gausvik, but as noted

in Chapter 2, there is no repetition; the southern belt of metasedimentary

rocks and amphibolite comprises a different suite of lithologies (Hesjevann

assemblage) from the northern belt of metasedimentary rocks (Storvann Group),

and is demonstrably part of the Lofoten terrain. The "klippe" is composed

of entirely basement rocks, uncorrelative with any of the metasedimentary

rocks of the cover. Most of the contacts bounding the "klippe" either are

intrusive, as in the case of the Middagstind syenite and its contact horn-

fels, or non-existent, as in the case of the continuous marble band

Gustavson (1974 a,b) shows bracketed by thrust faults running along the

east side of Keipfjell. No marble is present except for isolated blocks;

the cirque headwall south of Steinvann (labeled 185 m in Plate I), where

Gustavson shows this thrust-bounded marble band present, is a cliff of

uninterrupted granite gneiss. (2) The Harstad Nappe includes completely

distinct sequences of rocks in mutual thrust contact, including both newly

recognized units, the Storvann and Stangnes Groups, and units traced from

other areas, the Narvik and Salangen Groups. Thus, the Harstad Nappe, as

defined, includes both allochthonous and autochthonous units.

Included in Gustavson's Straumsbotn Nappe are the rocks bounded to the

southeast by the Langvann Fault, and on the northeast by an irregular line

drawn from directly north of Sdrvikfjell to the south end of Storvann(N)

and then west to the head of Kvaefjord.

The rocks of the Straumsbotn Nappe are not distinct from those of the

autochthon, including largely basement granite, Kvaefjord Group, and

Storvann Group rocks. The southwest boundary is clearly a high angle

fault (see "High Angle Faults" below), cross-cutting all Caledonian struc-

tures. Where Gustavson shows the basal thrust of the Straumsbotn Nappe

to turn to the northwest, it is drawn through a cliff of well-exposed,
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uninterrupted quartz-garnet schist of the Storvann Group. The "imbricate

zone" on Finnslettheia (near Storjord, see Gustavson, 1972, p. 13) is in-

correctly mapped; the map pattern Gustavson (1972, 1974 a,b) shows is en-

tirely dissimilar from that on Plate 1, inexplicably since exposures on

the upper part of Finnslettheia are from good to excellent. The structures

here are essentially all folds, with no evidence of imbricate thrusting

(Plate II A, C-C').

Consequently, it is held that there is no evidence for a Straumsbotn

Nappe. Since the Harstad Nappe as defined by Gustavson (1972) is also

unviable, it is felt that the best approach is to start over with entirely

new nomenclature. The structural nomenclature adopted here names the

structures (i.e., folds and faults) rather than the rock bodies (i.e.,

nappes). The reason for this is simple: on east Hinndy, the same rock

bodies have been involved twice in nappe-forming events, first thrusting

(DI) and then large-scale recumbent folding and thrusting (D2). Thus,

the same rock bodies form parts of two different nappe sequences, and

names become confusing. To avoid this, the folds and faults are identified,

and the rock bodies by stratigraphic names only.

D1 : Nappe Emplacement

The significant structural features developed during DI are the emplace-

ment of the three major allochthons, (isoclinal?) folding of the Storvann

Group, and development of the most prominent regional schistosity. Folds

(F1 ) within the allochthons are also likely, but no folds unambiguously

attributable to D have been observed in these rocks.

Thrust Faults

Two major D thrust faults are recognized on east Hinndy. The lower

Stangnes Thrust brings the Stangnes Group amphibolite and tonalite gneiss

into contact with the autochthonous Storvann Group. The higher Tjeldsund

Thrust emplaces the Salangen Group upon the Stangnes Group in the northern

part of the study area, and upon the Storvann Group in the southern part

of the area, where it thus becomes the basal thrust of the nappe pile

(Figure 29). Lenses of Narvik Group rocks occur along both of these

thrusts, supporting the interpretation that the Stangnes and Salangen Group

rocks comprised higher structural units than the Narvik Group in the D

nappe stack.
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Stangnes Thrust

- The lowest thrust of DI age on the northeast part of east Hinndy occurs

at the base of the Stangnes Group, and is termed the Stangnes Thrust. It

occurs upright and well-exposed on shorelines at the north and south ends

of the Stangnes peninsula. The thrust resurfaces to the west and southwest

in the core of a major F recumbent fold (Plate llA, A-A'), so that it is

inverted in the intervening limb of the recumbent fold couple. The thrust

merges southward with the Tjeldsund Thrust.

Three lines of structural evidence support the notion that the basal

contact of the Stangnes Group is a thrust fault. The contact is concordant

on the outcrop scale, but discordant on a regional scale. At the southeast

corner of the Stangnespeninsula (Figure 12B), the Stangnes amphibolite

occurs above a fairly complete sequence of Storvann Group rocks, plus a

zone of mixed lithologies (interpreted as a zone tectonic slivers, see

below). This contact cuts progressively down in the lower plate as it is

traced to the north, until at the north end of the peninsula, only several

meters of basal quartzite, a sliver of marble, and a few meters of the

quartz-garnet schist unit are all that is left between the amphibolite and

the basement. This discordance suggests either an unconformity, a fault,

or an intrusive contact.

The Stangnes Amphibolite has well-developed lithologic layering, inter-

preted to reflect an original bedded nature and thus to indicate that this

is a surface-depostied sequence of rocks; hence, an intrusive contact is

rejected. There are no mafic feeder dikes for these metavolcanic rocks

anywhere that cut the Storvann Group or in the Lofoten terrain on east

Hinndy, nor tonalitic bodies even vaguely resembling the Ruggevik Tonalite.

This argues against an unconformable or intrusive relationship. Further-

more, the amphibolite near the contact is blastomylonitic, with the mylo-

nitic character of the fabric dying out upward away from the contact

(Chapter 2, p. 91). Hence, the lower contact of the Stangnes Group is

considered a thrust fault, probably with large displacement.

The concordance of the Stangnes Thrust with lithologic banding and S

schistosity could result either from emplacement during formation of the

S schistosity, or from transposition of layering and superposition of

the schistosity in already-juxtaposed rocks. The thrust emplacement is

thought to be synchronous with S formation. As described in Chapter 2,
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the texture of the amphibolite moving progressively upward from the thrust

contact goes from blastomylonitic to protomylonitic to granoblastic (Figures

21 to 23). In the blastomylonitic samples, the same minerals have grown

synkinematically in the penetrative schistosity as grew in the non-mylonitic

schistosity of the rocks away from the thrust. There is no petrographic

evidence for more than one schistosity in any of the amphibolite samples;

the mylonitic fabric neither overprints nor is overprinted by the non-mylo-

nitic schistosity. There is no angular discordance between the fabrics in

the field. Consequently, a non-mylonitic penetrative schistosity, SP, is

considered to have formed concurrently with emplacement of the allochthons.

This schistosity has been overprinted to varying extents by S2, but the

actual degree of this overprinting has been difficult to determine (see

discussion of S2 below).

The Stangnes Thrust is thought to have moved during the early part of

the metamorphic peak. No contrast in metamorphic grade is observed across

the contact. The dynamic recrystallization at amphibolite facies evidenced

by the high-temperature mylonites of the thrust zone is regionally succeeded

by refolding, presumably still at high temperature, in turn followed by

static porphyroblast growth. Consequently, movement on the thrust was syn-

chronous with the higher grade metamorphism in the area, but the thermal

peak outlasted movement on the thrust.

No direct information on the direction of thrust emplacement was ob-

served, due in part to the complex overprinting of this early deformation

by subsequent events. Boudinage in the subjacent sliver zone is possibly

related to movement on the thrust, but it is equally likely that the boudins

are a result of stretching in the limbs of F2 folds. Stretching lineations

preserve, in general, a composite of superposed deformations; hence, these

give no simple information as to the finite strain field of any one event.

Regional relationships require that the Stangnes Group be more or less wes-

terly derived. Since none of the Lofoten terrain comprises suitable base-

ment for the Stangnes Group rocks (see "Stangnes Group," Chapter 2), a

minimum distance of transport can be calculated assuming thrusting perpen-

dicular to the modern limit of Lofoten basement some 60 km to the northwest.

However, regional considerations (Chapter 6) indicate the Stangnes Group has

almost certainly traveled much further than this.
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Tjeldsund Thrust

The Tjeldsund Thrust is the name used here for the thrust at the base

of the Salangen Group. Where exposed in roadcuts along the west side of

Tjeldsund, north of Gausvik, it is a complex zone of mixed rocks, juxta-

posing Salangen Group marbles with the lowermost part of the Storvann Group.

In the mixed zone between are lithologies including thin-banded amphibolite

similar to the Stangnes amphibolite. To the west, on the east shore of

Storvann(S), the most complete Storvann Group section known occurs in the

lower plate. Here, the sliver zone includes abundant calc-schists rarely

present at Tjeldsund, and a lens of Narvik Group gneiss at the top, just

underneath the Salangen Group marbles (Figure 12A). This regional di-scor-

dance accompanied by tectonic mixing -along the contact is, as with the

Stangnes Thrust, interpreted to indicate tectonic juxtaposition.

North of the Storvann Fault, the Salangen Group is separated from the

autochthon by the Stangnes Group. Two obvious possibilities exist for the

structural position of the Stangnes Group: (1) the Stangnes Group sits

depositionally at the base of the Salangen Group, perhaps unconformably, so

that the Tjeldsund Thrust and Stangnes Thrust are equivalent; or (2) the

Tjeldsund Thrust continues above the Stangnes Group, no longer the basal

thrust in this area. The contact between the Salangen Group and the Stangnes

Group is exposed in two locations: the southeastern corner of the Stangnes

peninsula, and on a hill across the road from the water at Ruggevik. At the

first location, the amphibolite is in contact with intensely tectonized mar-

ble of the Salangen Group. At the Ruggevik locality, exposures are poorer,

and the contact appears almost gradational between Stangnes amphibolite and

Salangen Group calcareous schist and marble. However, the contact is clearly

discordant at map scale. At different locations, Kilbotn Schist, Harstad

conglomerate, and calcite marble of the Salangen Group appear to be in con-

tact with the amphibolite (Plate I). An unconformity would predict the

contact to be discordant with units of the Stangnes Group, not the Salangen

Group. Hence, it is concluded that this contact is also a thrust fault.

The possibility cannot be excluded that the contact between the Stangnes and

Salangen Groups is a relatively minor thrust and that the main thrust trans-

port represented by the Tjeldsund Thrust in the southern part of the area is

carried by the Stangnes Thrust in the northern part of the area. However,

.there is little lithologic affinity between the two groups. One possible
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connection is the occurrence of the mafic igneous clasts found by Tull in

the Salangen Group meta-conglomerate near Ballangen (see Chapter 2,

"Harstad Conglomerate"), which one might argue could have been derived from

Stangnes amphibolite. However, the massive, unfoliated to weakly foliated

clasts bear little resemblance to the well-banded and foliated Stangnes

amphibolite, so that this interpretation seems unlikely.

Emplacement of the Tjeldsund Thrust appears to have occurred roughly

synchronously with the Stangnes Thrust. The contact is concordant on out-

crop scale with no observed contrast in metamorphic grade across it, and

the rocks have been overprinted following juxtaposition with the same struc-

tural/metamorphic events.

The direction of transport and magnitude of displacement of the

Tjeldsund Thrust are unknown. Relative to the autochthon, it is very far

-travelled, presumably further than the next subjacent thrust sheet, com-

posed of the Stangnes Group. However, the possibility of an earlier phase

of thrusting pre-dating DI on east Hinndy cannot be ruled out, so that

stacking relatinships may be more complex than they appear in Figure 29.

Relationship Between D Thrusts

As noted above, north of the Storvann Fault, two D thrusts are present,

while south of it, only the Tjeldsund Thrust is present (see also Plate HlA

and B). Either the two thrusts merge as one, or one thrust is younger and

truncates the older. The critical relationships which would resolve the

nature of this transition have been apparently cut out by the Storvann

Fault. However, the regional geometry of thrust faults is an anastomosing

pattern with the nappes in between pinching out, and sometimes reappearing

(Figure 29; Chapter 6). The preferred interpretation is that the thrusts

are the same age and merge to form a single surface at Leikvik. This sur-

face splays again into two thrusts south of Ofotfjord.

Significance of the Mixed Zone

A mixed zone of lenticular bands of calcareous and pelitic schist,

marble, and amphibolite is typically associated with the lowest thrust

contact of the nappe stack on east Hinndy (Stangnes Thrust in the north,

Tjeldsund Thrust in the south of study area). The lithologies and petrog-

raphy of these rocks was described briefly in Chapter 2. Occasionally
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some of the rocks in the mixed zone have affinities with the adjacent

autochthonous rocks. The extreme mixing of lithologies suggests tectonic

interleaving. However, this is hard to prove on the outcrop; all contacts

have been strongly metamorphosed, and probably metasomatized, since many

contacts are now gradational.

Regional relationships strongly support the interpretation of this

unit as a zone of tectonic slivers. As the Tjeldsund Thrust is traced

southward from the southeast corner of the study area (Plate 1; Figure 3),

the thrust bifurcates, with a iarge wedge of Narvik Group rocks appearing

in between. Directly south of Ofotfjord (Vargsfjord, Figure 29), another

lens of parautochthonous Storvann Group rocks occurs underneath the basal

thrust. Traced southward to Forsaa,.the thrust progressively cuts out

the Storvann Group rocks. Immediately north of the place where the Stor-

vann Group rocks are cut out, Storvann Group lithologies (quartzite, quartz

-garnet schist, calcite marble) are exposed in a zone of intense mixing

identical in style to those exposed on Hinndy. It is noteworthy that this

locality is also at the base of the nappe pile.

Folding

Evidence for F1 folding of the Storvann Group comes from fold interfer-

ence patterns on both outcrop and map scales. In the basal quartzite unit

of the Storvann Group, mesoscopic Ramsay Type 1 interference patterns

(Ramsay, 1967, p. 521) are abundant in the Storvann(S) section, and common

in the Torskvatsfjell area east of Kvaefjord (Figure 30). The domes and

basins are recumbent, suggesting either two phases of recumbent isoclinal

folds were superposed, or that the second folding flattened the earlier

folds into a recumbent isoclinal geometry. The interference patterns are

the product of F2 (see below) superposed on earlier folds. The F1 folds

are tentatively correlated with the time of nappe emplacement. The S3
axial plane cleavage (not readily visible in the photograph, Figure 30)

clearly cuts obliquely across the interference structure and hence post

-dates its formation. Vergence has not been determined for the FI folds,

since the smooth-surfaced exposures of the quartzite generally make it

impossible to determine whether an interference pattern closes into or

away from the outcrop.
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Figure 30: Interference between F and F2 folds in quartzite of the
Storvann Group.

Ramsay type 1 (dome and basin) interference pattern. S1
and S are subhorizontal. S . difficult to distinguish in
the p~otograph, dips gently to the left (north), and is
,superimposed on the interference pattern.
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The outcrop pattern of Storvann Group rocks on Finnslettheia and

Sjrvikfjell (Plate I; Plate 11 A, C-C') is also suggestive of early fold

superposition. On the east side of Finnslettheia, an eastward closure

of the upper calcite marble is present, enclosed by quartz-garnet schist

(SS ). This is thus a syncline, with younger rocks in the core. To the

east on Sdrvikfjell, a similar eastward closure is present, but the fold

is an anticline: the basal quartzite is enclosed in turn by the lower

calcite marble and quartz-garnet schist. The fact that an anticline and

a syncline close in the same direction implies that these folds are a dome

and a basin. The western closures of these structures are truncated by

the Storvann Fault. Note again that the steeply to moderately dipping

axial planes of west vergen F3 chevron folds are oblique to these early

recumbent structures and hence not related to their formation. This im-

plies the presence of larger scale FI fold structures as well, with ampli-

tudes on the scale of a kilometer or more.

This early fold phase may be correlative with F0 phase tentatively

identified by Hakkinen (1977) on the basis of fold interference patterns

in the Austerfjord area. However, the fact that, on east Hinndy, D3 struc-

tures can be demonstrated to be superimposed on'the earlier interference

patterns, and that the rocks folded are Caledonian metasedimentary rocks,

allows greater confidence in asserting the presence of two early fold

phases.

Fabrics-

The most prominent foliation of the Caledonian nappe terrain and imme-

diately subjacent basement formed at least in part during D . S1 is a

penetrative schistosity defined by dimensional and crystallographic pre-

ferred orientation of micas and amphibole, and to a lesser extent quartz

and feldspar. Carbonate minerals have generally recrystallized to form

equant granoblastic grains that do not define a schistosity. Compositional

banding is parallel to S1 except in F1 fold hinges. However, mos't isocli-

nal folds observed are F2 in age and fold the SI schistosity isoclinally.

The flattening of S compositional banding into S involved both simple

rotation 'and transposition by folding. At the top of Finnslettheia, in-

folding of the quartzite/basement contact is minor, so that the contact

observed in outcrop can be considered actually parallel to SO, the original
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bedding. By contrast, the shoreline exposures at Tjeldsund show this con-

tact to have suffered intense isoclinal folding,-with the result that

several alternating bands of quartzite and granite gneiss are present in

a cross-strike traverse. So, properly defined here by the envelope of F,

folds, is not parallel to S ; its orientation has been lost by intense

transposition.

In micaceous rocks, S1 schistosity may be disrupted or even obliterated

by later foliations, although compositional banding may be coherent enough

to make S still measurable in outcrop. However, in non-micaceous lithol-

ogies, especially amphibolite, SI is generally only folded by successive

deformation phases with very little new fabric development.

No lineation clearly related to DI was recognized. This may be partly

due to the presence of later well-developed lineations (L2 amphibole and

stretching lineations, LI/3, L 2/3 and L intersection lineations), which

obscure earlier structures. If L lineations were developed at a small to

moderate angle to later lineations, which are nearly all subparallel, dis-

tinction of L would be especially unlikely.

A systematic study of pebble elongations in the Harstad Conglomerate

was not made, but brief field examination indicates a mildly constrictive

strain field. Axial ratios are approximately 1:4:10, with the long axis

trending N70E. This constitutes a composite of all five deformations

recognized in the area; there is no obvious way to resolve the DI component

present in this finite strain. Consequently, the characteristics of the

D strain field remain unknown.

D2: Recumbent Folding and Thrusting

The second Caledonian deformation on east Hinndy is a complex composite

of deformation styles, including recumbent isoclinal folding on scales up

to several kilometers, development of mylonitic thrust zones (including

the Austerfjord and Kvaefjord Thrusts), and steep ductile shear zones with-

in the basement transported by these thrusts. A variable but locally

strong amphibole lineation developed, which together with analysis of F2
folds indicates an overall transport direction of ESE for this deformation.

A large-scale kinematic model for D2 incorporating all these features is

presented at the end of this section.
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Recumbent Folding

Major Folds

Several large scale (wave lengths > 1 km) F2 axial surfaces have been

recognized in the study area (Plate 1i1). The average direction of the

traces of these is NE-SW, except the folded thrust near Fjeldal and the

Kanebogen synformal anticline near Kanebogen, where large late upright

folds have re-oriented the F2 axial surfaces to NW-SE traces. The vergence

of the F2 folds is southeast, consistent with the transport direction deter-

mined below using small scale structures. The folds across the northern

side of the area have been rotated to a downward facing orientation so that

anticlines are synformal and synclines antiformal. The F2 folds were

nearly strictly recumbent at the time of their formation. Present steep

dips and/or plunges are a result of refolding.

Hinges of large F2 folds are exposed only on Middagsfjell and near

Sorvikfjell. The nose of the antiformal syncline in the core of which

Harstad is located can be walked around on the north side of Middagsfjell.

This fold clearly folds the nappe-emplacing thrusts and associated S

schistosity (Plate I A, A-A'). The limbs are essentially isoclinal. The

style of the fold is assumed to be more or less similar, but because it

folds two thrust faults, thickness changes from limbs to core are not reli-

able indicators. The appearance of the Harstad Conglomerate in the western

limb is not understood. This may be a second-order antiform on the west

side of the main axial surface.

Hinges of other F2 folds in the northern part of the study area are not

exposed. The Kanebogen synformal anticline is recognized on the basis of

mirror image sequences of Storvann Group and overlying allochthons across

its axial surface. Its synformal geometry is required by the antiform to

the west, and is consistent with the slight synformal convergence of dips

on its limbs (Plate II A, A-A'). This fold is important because it unequivo-

cally demonstrates important basement imvolvement in F2 recumbent folding.

Both Kvaefjord Group rocks and granite gneiss (Gullesfjord Gneiss?) occur

in the core of this fold.

The synformal anticline at Storvann(N) is not readily recognized inde-

pendently since it is mainly developed in massive Preca'ibrian granite gneiss.

An overturned synformal closure of the S schistosity is apparent in the
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Kvaefjord Group rocks immediately west of Storvann(N), but it is not

obvious that this is an F2 fold. However, this area lies between two

F2 antiforms so that it must be synformal in a general way; the simplest

interpretation is that the closure in the Kvaefjord Group rocks on

Torskvatsfjell is this synform. This would thus appear to be a second,

structurally lower, basement-cored recumbent anticline underneath the

Kanebogen anticline.

The hinge of the F2 antiformal syncline at Vikelandsfjell is also

unexposed, but it is believed to be antiformal for two reasons: (1) the

structural plunge in this area is eastward (Plate IV, subarea B), and

the limbs converge in that direction (Plate 1); and (2) if it were synfor-

mal, it would constitute a major F2 fold with opposite vergence from all

other F2 structures. The fold is now rootless, riding on the Kvaefjord

Thrust (Plate I D, I-I'). This is the structurally lowest axial surface

recognized in the F2 fold stack.

Major early fold hinges are also exposed on Sdrvikfjell and Finnslet-

theia. These are the hypothetical dome and basin structures described in

the previous section as resulting from interference of F1 and F2. Conse-

quently these closures are not purely F2 in age. The style of the folds

is isoclinal and similar, but now strongly distorted by F3 refolds. The

few outcrops of Stangnes(?) amphibolite on the SE side of Finnslettheia

are tentatively considered to sit in the core of the basin, the upper

calcite marble perhaps having been cut out along the Stangnes Thrust

locally here.

Additional F2 folds are recognized in this area on the east side of

Sdrvikfjell, where the Stangnes amphibolite is recumbently infolded with

Storvann Group rocks. These folds sit structurally below the recumbent

dome on Sdrvikfjell; the synform cored by Stangnes Group rocks may be

the western hinge of another northerly-closing basin, explaining the

presence of Stangnes Group rocks to the west of their main outcrop belt

near Kilbotn.

The relationship of the folds on S~rvikfjell to those near Harstad is

not obvious but can be inferred by tracing rocks of the inverted limb be-

tween the Harstad antiform and Kanebogen synform southward. The Storvann

Group rocks from the SE side of Storvann(N) south to the Langvann Fault

(Plate 1ii) are folded in a large overturned F3 antiform but all belong
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to the overturned limb of this F2 fold couple (Plate 0ID, J-J', K-K').

Since the Langvann Fault dies out not far westward and thus cannot have

large displacement, the inverted basement/Storvann Group contact north of

the fault reasonably matches the same contact south of the fault on the

top of Finnslettheia. This places the Precambrian granite at the top of

Finnslettheia in the core of the Kanebogen anticline (not synformal here!).

The dome and basin structures underneath appear to be second-order struc-

tures in the inverted limb, because in passing structurally downward to

the east, no major reversal of the stacking sequence occurs.

The upper, upright limb of the Karrebogen anticline is only recognized

in one locality on east Hinndy other than the Stangnes peninsula. Two

kilometers east of the southern end of Straumsbotn, an F3 synformal keel

is cored by Storvann Group quartzite and quartz-garnet schist in upright

sequence (Plate lID, i-1'). Perched on top of basement rocks which are

in structural continuity with the basement which cores the Kanebogen anti-

cline near Finnslettheia, these-rocks can only belong to the upper limb of

the Kanebogen anticline. Everywhere else on east Hinndy this upper limb

has been removed by erosion, exposing lower elements of the F2 structural

pile.

The Kilbotn Schist may include an unrecognized S2 axial surface. It

was suggested in Chapter 2 that the large apparent thickness of this unit

could be due to doubling up by recumbent folding. The Kilbotn Schist lies

structurally lower than the F2 axial surfaces on Sdrvikfjell, and at a

similar level to the Harstad antiformal syncline. It thus possibly con-

tains the southeastward continuation of the axial surface of the Harstad

syncline. Furthermore, the quartzite at Kvitnes (see Salangen Group,

Introduction, and Figure 25) is in the core of a NW-closing antiform,

wrapped around by Kilbotn Schist. If the lithologic correlations sug-

gested in Chapter 2 are correct, this fold is probably a further continua-

tion of the Harstad antiformal syncline, extending its axial surface

nearly 20 km across the strike.

The Kilbotn Schist underlies the Salangen Group marbles south of the

Storvann Fault, which are in turn structurally overlain by the Storvann

Group and Precambrian granite without significant repetition passing south-

ward. This requires that all the rocks exposed in the area south of the

Storvann Fault and north of Gausvik are in the inverted limb, or structural

equivalent thereof, of the Kanebogen anticline.
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The remaining possible major F2 axial surface is recognized in the

southeast corner of the map area near Fjelldal. Salangen Group marbles

with intercalated schists, intensely flattened and boudinaged, are brack-

eted by thrust contacts with the Austerfjord Group above and Precambrian

granite (Lodingen Granite) below. This relationship is equally well-ex-

plained by either interleaving by D2 thrusting of the Salangen Group and

basement rocks, or by recumbent folding of the DI Tjeldsund Thrust under

the D2 Austerfjord Thrust (see Plate 11 B, Section E-E'). The latter inter-

pretation is favored because the rocks strongly affected by DI further

north have generally tended to fold rather than fault during D2. However,

the critical relationships are concealed beneath Tjeldsund or further west.

The position of the hinge (or pinch-out) of this belt of Salangen Group

rocks is shown on Plates I and Ill to be under Tjeldsund. A second possi-

bility exists. The schist and marble poorly exposed on the small hill east

of Kongsvik are not typical Austerfjord Group lithologies (with which they

have been grouped on Plate 1). These could represent the nose of the band

of Salangen Group rocks. The more conservative interpretation was shown

on the map because the extent and quality of exposures encourage caution;

however, if this second alternative is correct, it would increase the ampli-

tude of this fold by several times over that shown on Plates I, 11, and 111.

The amplitude of the major F2 folds is large but poorly constrained.

Simple measurement of present minimum hinge to hinge distances using the

basement/cover contact as a datum yields amplitudes of 5 to 10 km (Figure

31). These are in fact minimum reasonable estimates. Although F2 struc-

tures were strongly refolded in later deformational events, the.axial

direction of F is at a large angle to the F slip line and hence probably

near the intermediate strain axis (see below). Consequently, the post-F 2

length change in a NW-SE direction across most of the area (excluding lo-

cales of strong F4 folding) is probably minor.

As shown in Figure 31, the Kanebogen anticline is the structurally

highest F2 fold recognized in the study area. It need not have been the

structurally highest fold formed in F2 in this area. Reconnaissance by

the author east of the study area, where structurally higher units are

preserved in the core of the Haafjell synform (Figure 2), indicates that

F2 recumbent folding is probably present at higher structural levels as

well.
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A long-known problem of the Scandinavian Caledonides is the observation

that early fold axes are mainly oriented transversely to the trend of the

mountain belt (Kvale, 1953). This has stimulated considerable discussion

leading to a variety of mechanisms being proposed to explain this fold

axial orientation. These include initial formation of fold axes at low

angles to the transport direction (Hansen, 1971), progressive rotation by

continued finite strain into the transport direction (Bryant and Reed, 1969;

Hakkinen, 1977), and tectonic transport parallel to the trend of the orogen

(Olesen, 1971). On east Hinndy, no such problem appears to exist; major

early fold axes are oriented mainly parallel to the trend of the mountain

belt. The relatively modest finite strain values recorded in the Harstad

Conglomerate may be related to this; there may have been inadequate post

-folding strain to rotate the fold axes into the transport direction. This

would support Hakkinen's preferred interpretation that the transverse early

fold axes in the Austerfjord area were produced by rotation by continued

finite strain.

Minor Folds

Minor folds of F2 age are commonly observed in the metasedimentary rocks

of east Hinndy. They are isoclinal and similar in geometry. Amplitude to

wavelength ratios vary from about 3 to very large values. Fold hinges are

sometimes completely isolated by limb attenuation so that no vergence can

be determined.

Although good three-dimensional exposures of early fold axes with deter-

minable asymmetry are not common, enough folds were measured to allow a

slip line analysis by the separation angle method of Hansen (1971). The F2
fold axis data are plotted stereographically in Figures 32A to E. Some sub-

areas included no minor F9 fold axis measurements, while in others only a

few measurements were made, so that data from more than one subarea have

been plotted on the same stereogram. A wide variety of axial orientations

are represented, but vergence of the folds is consistently to the south and

east. The variability of axial trends allows determination of the separa-

tion angle, which is the angle between domains of opposite fold vergence on

a stereographic plot, within which the transport direction lies.

A separation angle only can be determined within the (common) axial

plane of the folds analyzed. Consequently, for each subarea a visual best



133

Figure 32: Structural analysis of F2 folds.

A - E: Equal area plots of F2 fold measurements

F: F2 slip line determination. Great circle segments are
separation angles defined by each subarea, as labeled.
Numbers in parentheses are number of measurements which
were used to define each separation angle. Shaded area
at lower right is the sector of overlap of all indivi-
dual subarea separation angles with compatible vergence.
This area thus contains the transport direction (slip line)
defined by this analysis; this slip line is thought to rep-
resent the actual transport direction during F2 folding
(see text for discussion).



Figure 32A.

F2 axes, subareas A(o), B(t), and E(A)

Figure 32B.

F2 axes, subareas H(e) and 1(o)



Figure 32C.

F2 axes, subarea J

Figure 32D.

F2 axes, subarea K
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fit great circle was drawn through the fold axial measurements to approxi-

mate a mean S2 orientation. A separation ang-le for each subarea was deter-

mined (Figure 32F); because the variability within each subarea is not

large, these individual separation angles are wide, and individually not

very informative.

Comparison of the subareas yields more precise results. The plunges of

F3 and F folds are generally low, except where F4 locally refolds F3 (see

below). This implies that the surface deformed by these folds was sub-hor-

izontal prior to F3 and F . Thus, the most appropriate plane in which to

compare the different individual domains is the horizontal. The deviations

from horizontal of the great circle segments on Figure 32F are due mainly

to F3 folding, which is asymmetrical and typified by long flat limbs and

short steep to inverted limbs. The measurements plotted all lie in low

-dipping, upright limbs except subarea J (the apparent steep dip of subarea

E is an artifact of having only two measurements). Measurements from sub-

area J come from the overturned limb of. the large F3 antiform east of

Storvann(S). Consequently, to restore the great circle segments to horizon-

tal, all subareas but J were rotated the short direction to the primitive;

the great circle segment from subarea J was rotated the long direction

(southward).

There are two sectors where all subarea separation angles overlap, one

in a NW-SE direction and one NE-SW. However, as can be seen in Figure 32F,

the vergences of folds are not compatible in the NE-SW direction. It is

thus considered that separation angle analysis of F2 minor folds constrains

a transport direction within the shaded arc on Figure 32F, with southeast-

ward vergence. The validity of this analysis is reinforced by the lack of

any conflicting measurements; all the F2 fold axis measurements are consis-

tent with this slipline orientation.

An important consideration is to which deformation this separation angle

applies. A separation angle may develop in three ways: (1) Due to areally

variable slip between planar volume elements, the strain trajectories local-

ly vary to produce a variety of fold axial orientations (the tundra slide

model, Hansen, 1971); (2) the surface folded may not have been strictly pla-

nar, or the superposed strain field not spatially homoaxial, leading to a

variety of orientations of intersections between the folded surface and the

XY-plane (plane of flattening) of the strain ellipsoid; this will lead to
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variable fold axial orientation for purely geometrical reasons; and (3) the

superposition of a later, heterogeneous finite strain that rotates pre

-existing homoaxial folds into a variety of orientations. In the first two

cases, the separation angle has kinematic significance for the event which

produced the folds. In the third, the separation angle applies to the kine-

matics of a later, superposed deformation.

. In order to resolve this question, slipline determinations of the F3

and F4 fold phases were attempted using the Weiss (1959) method of folded

lineations (Figures 51, 54). These determinations are discussed below with

regard to the late fold phases, but it is concluded that neither of these

sliplines bears any similarity to the separation angle defined here.

Boudinage of schist and amphibolite within marble, believed to be a re-

sult of stretching in the limbs of F2 folds, has been recognized locally.

The boudins are generally not well exposed in three dimensions, but three

measurements were made in the rocks of the Salangen Group infold west of

Fjeildal (Figure 33). These measurements are consistent with the elongation

direction inferred by the F2 separation angle.

It is believed that this F2 separation angle reflects the kinematics of

the D2 deformation. The preferred mechanism by which the variable F2 axial

orientation developed is the second listed above. Since folds axes within

single subareas are fairly consistent, the heterogeneities required would

be on a rather broad scale, a likely occurrence in superposed deformations.

This obviates the need to appeal to the tundra slide model of Hansen (1971),

which is difficult to relate mechanically to deformation mechanisms in am-

phibolite facies metamorphic terrains.

Thrust Faults

Two thrust faults of D2 age have been mapped in the study area: The

Austerfjord Thrust, named and described by Hakkinen (1977) from a type area

at the western edge of Plate I; and the Vikeland Thrust, a somewhat similar

structure at the head of Kvaefjord, especially well-developed on the west

end of Vikelandsfjell. The possibility exists that these structures are

the same thrust and connect below the surface, but this cannot be demonstra-

ted so loca-1 terminology is retained.

These thrusts are in general characterized by zones of mild to very in-

tense high temperature mylonitization from a few meters to hundreds of
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Figure 33.

Boudin axes, subarea P
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meters thick. Along the Austerfjord thrust, the mylonitic fabric is com-

monly well developed in the upper plate, while mylonitic effects die out

rapidly downward in the lower plate. Similar relationships also occur at

the Vikeland thrust, where, on Vikelandsfjell, more than a hundred meters'

thickness of mylonite gneiss overlies non-mylonitic but structurally dis-

membered metasedimentary rocks of somewhat uncertain affinity. As noted by

Hakkinen with regard to the Austerfjord thrust, these surfaces are synmeta-

morphic in their development. No retrograde metamorphism is recognized

along the contact, and there is no contrast in metamorphic grade across it.

Unlike the DI thrusts, these are not considered to be fundamental tec-

tonic boundaries juxtaposing once widely separated terrains. They are ra-

ther thought to be the response of the massive basement rocks to the defor-

mation which produced recumbent folding in the cover rocks and their immedi-

ately subjacent basement. The transition between these two styles will be

discussed with regard to the kinematic model for D2 '

Austerfjord Thrust

The Austerfjord thrust as described by Hakkinen (1977) placed Archaean

gneisses on top of Middle(?) Proterozoic Austerfjord Group metasedimentary

rocks and the 1400 Ma Ldingen Granite which intrudes it. Hakkinen thus

viewed this thrust as the juxtaposition of two distinct basement terrains

of different ages and as a thrust of potentially major transport.

The contact is readily recognizable in areas where the Austerfjord

Group is present, due to the large contrast in erosion resistance of the

massive granite gneiss of the upper plate and softer metasedimentary rocks

in the lower plate. On the west limb of the F3 antiform at Austerfjord

(directly SW of the present study area), the Austerfjord Group pinches out

and the thrust juxtaposes Precambrian granite against Precambrian granite,

making it much more difficult to trace in the field.

It is not always clear that the actual granite/metasediment contact is

the main locus of movement (see also Chapter 2, p. 56).. At certain locations

along the Austerfjord thrust (e.g., 0.5 km west of the summit of Tverrfjell),

the granite gneiss directly above the Austerfjord Group quartzite and am-

phibolite is only mildly foliated for a few hundred meters upward. The

granite gneiss then grades into fine-grained blastomylonite gneiss, sugges-

ting the main movement was localized within the granite gneiss at a higher
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structural level.

In the present study, the Austerfjord thrust was traced southeastward

from the limits of Hakkinen-s mapping (the west side of Plate I) to and

across Tjeldsund to Fjelldal where it merges with other Caledonian struc-

tures and cannot be confidently traced further as a separate structure. Re-

lationships in the Fjelidal area are of vital importance for understanding

of the Austerfjord thrust for three reasons: (I) they strengthen previously

weak arguments that the thrust is a Caledonian structure; (2) they show that

the thrust cannot be a surface of major tectonic transport; (3) they demon-

strate that the thrust post-dates the emplacement of the Caledonian thrust

nappe stack and is thus a D2 structure.

On a small island in the intertidal foreshore area 2 km west of Fjelldal,

the Austerfjord thrust is exposed placing Precambrian granite gneiss (pro-

bably Gullesfjord Gneiss) in a small klippe on top of Austerfjord Group am-

phibolite and quartzite. The rocks on both sides of the contact are strong-

ly mylonitized for several meters away from the thrust. Structurally under-

neath the Austerfjord Group rocks (contact not exposed) are marbles and sub-

ordinate schists belonging to the Salangen Group. Eastward, the granite

gneiss appears with some of its Storvann Group cover relatively intact, but

inverted, presumably by recumbent F2 folds. Little of the basal quartzite

remains present, so that it is suspected some displacement has occurred a-

long this contact. The Storvann Group rocks overlie Salangen Group marbles.

Plate IIB, section E-E', depicts these relationships. It cannot be deter-

mined whether the Austerfjord thrust truncates the Tjeldsund thrust, so that

the Storvann Group/Salangen Group contact on the east side of the synform

is the Austerfjord Thrust in the strict sense, or if the Austerfjord Thrust

reactivates the older thrust. The critical relationships are cut out by

the Fjelldal Fault. However, it is clear that the Salangen and Storvann

Groups are involved in the movement of the Austerfjord thrust. Prior to

the mapping of this area, the Austerfjord thrust was known only to involve

rocks older than 1400 Ma; the only hard evidence for a Caledonian age of

movement was a single 40Ar/ 9Ar age of 390 Ma from biotite from the folia-

tion along the thrust in the Austerfjord area (J. Sutter, pers. comm. to

Hakkinen, 1977). The Caledonian age of the Austerfjord Thrust is now con-

sidered well-established.

South of the Fjelldal Fault, the Tjeldsund Thrust overrides a large lens
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of parautochthonous Storvann Group rocks on Ramboheia. Since the Fjelldal

Fault is not a major fault, it can be safely stated that the Salangen Group

rocks overlying this lens of Storvann Group are in virtual structural con-

tinuity with the Salangen Group rocks underlying the the Austerfjord Group

2 km west of Fjelldal. The granite gneiss on which the Storvann Group rests

is almost certainly Ldingen Granite, one of the characteristic lower plate.

units of the Austerfjord thrust in its type area. Consequently, it is held

that the Storvann Group rocks on Ramboheia belong to the lower plate of the

Austerfjord thrust.

However, the Storvann Group rocks at Fjelldal are in the upper plate of

the Austerfjord Thrust, as are all the Storvann Group rocks of east Hinndy.

Consequently, it appears that the same rock units are present on both sides

of the thrust, leading to the conclusion that the Austerfjord Thrust is not

a surface of major displacement.

This conclusion is supported by three independent lines of evidence.

Griffin and others (1978) report that at the western margin of the Lodingen

Granite, 30 km west of the Fjelldal area, the Ldingen Granite intrudes

rocks of the Lofoten granulite terrain. A Rb/Sr whole rock age of 1380 +

80 Ma from the granite in this area was reported by Griffin and others

(1978). This age is statistically identical to the 1415 + 80 Ma age obtained

by P. Taylor (pers. comm. to Hakkinen, 1977) from the Austerfjord area.

This clearly supports the conclusion that the Austerfjord thrust is not a

thrust of large displacement since the relations require the thrust to die

out completely to the southwest. E. Tveten (written comm., 1977) has repor-

ted just such a disappearance of the thrust from field observations on

southwest Hinndy, although tracing a granite on granite thrust fault is a

difficult pursuit. Finally, the possible correlation of the Melaa Granite

of the present study with the Ldingen Granite suggests another match of

rock units across the thrust.

It has already been argued that the Salangen Group rocks comprise a far

-travelled nappe. It was Hakkinen's (1977) suggestion that this and other

nappes of metamorphic rocks may have rooted at the Austerfjord thrust, with

the Lofoten terrain riding at the top of the pile. This suggestion becomes

untenable if the Austerfjord thrust is not a major tectonic boundary; the

allochthons must root to the west of the Lofoten terrain. This has implica-

tions for the timing of the Austerfjord Thrust. Salangen Group rocks are
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involved in Austerfjord thrust movements, but were already emplaced as

far-travelled nappes. Consequently, the Austerfjord thrusting must post

-date the emplacement of the thrust nappes and is a post-DI structure.

Since F3 folds deform the Austerfjord thrust and fabrics related to it,

the thrust predates F3 '
Strict synchroneity of the Austerfjord Thrust with F2 recumbent folds

of other parts of the study area is difficult to prove, but two lines of

permissive evidence suggest this is true. Hakkinen found that his F1 iso-

clinal fold phase and movement on the Austerfjord thrust were essentially

inseparable in time. The thrust is (rarely) folded by his F1 folds, but

the mylonitic fabric of the thrust and the axial planar schistosity of the

folds are concordant and continuous with one another. Consequently, the

deformations are essentially synchronous. If the most prominent and

latest phase of Caledonian isoclinal folding in the Austerfjord area can,

be correlated with a similar phase, F2 in this study, several kilometers

to the east in the present map area, the Austerfjord thrust belongs to the

D2 of the present study.

A second argument is based on spatial considerations. Between Harstad

and Storvann(S), a set of large F2 recumbent folds represent an uncertain

but significant amount of shortening of both cover and basement. These

folds plunge under a large, mildly deformed slab of Precambrian basement

to the east of Storvann(S). When the equivalent structural level reappears

on the other side of the broad F3 synform in which the basement slab rests,

only the Austerfjord thrust and a thin lens or nose of Salangen Group rocks

lies between upper and lower massive blocks of basement granite. It ap-

pears that the same strain, distributed through a pile of fold nappes in

the northeastern part of the area, has -been concentrated at a single hori-

zon as a thrust fault in the southwestern part of the area. This implies

synchroneity of F2 folding and movement on the Austerfjord thrust, as well

as suggesting a kinematic model for D2 as a whole. Completion of this

kinematic model is deferred until the Vikeland thrust, the shear zones at

Middagstind, and the D2 penetrative fabrics have been discussed.

Vikeland 'Thrust

The Vikeland thrust is marked by a zone of mylonitization developed in

the Precambrian granite on the western shoulder of Vikelandsfjell, dipping
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gently east. From there it cuts southward to the east shore of Straumsbotn,

and reappears, dipping westward, on the south shore of Kvaefjord west of

Straumsbotn. North of Vikelandsfjell, the thrust disappears under Quater-

nary sediments.

At Kvaefjord, the mylonite zone along the thrust is a fine-grained

schistose mylonite gneiss with a prominent stretching lineation bearing

S64E, developed from Precambrian granite gneiss. This mylonitic fabric is

locally deformed by F3 chevron folds, demonstrating the pre-D 3 age of the

thrust. In the lower plate near the mouth of Straumsbotn, quartzite, mar-

ble and quartz-garnet schist of the Sttrvann Group are exposed along the

shoreline. Since the Storvann Group rocks south of Vikelandsfjell lie in

the upper plate of the thrust, like the Austerfjord thrust the Vikeland

thrust can not be a tectonic boundary of major displacement.

Along the east shore of Straumsbotn, a quartz-garnet schist, similar to

those in Storvann Group, is interlayered with micaceous and feldspathic

paragneisses of the Kvaefjord Group. Exposures lack good continuity so

that the relationships are interpreted somewhat hesitantly, but it is con-

sidered that these rocks mark a zone of tectonic interleaving along the

thrust. Between the east shore of Straumsbotn and Vikelandsfjell, the

thrust is difficult to trace due to poor exposure, but lithologic repeti-

tions suggest more slivering. The large F2 antiform to the east is clearly

rootless, so that the tectonic contact must at least approximate the rela-

tions shown on Plate I and Plate lID, section I-I'.

On the west shoulder of Vikelandsfjell, a zone more than 100 m thick of

mylonitic granite gneiss is developed above a more or less chaotic zone of

Storvann Group lithologies plus calcareous schist, pelitic schist, and mar-

bles reminiscent of the sliver zone on the east shore of Storvann(S).

Lithologies can scarcely be traced from one outcrop to the next. It is

concluded that this is probably the zone of DI slivering reappearing in

the lowest recumbent synform of the F2 fold stack. It has probably been

further dismembered by slivering associated with the Vikeland thrust.

Relative timing and geometry of the F2 folding and Vikeland thrust are

uncertain. No retrograde metamorphism appears associated with the Vike-

land thrust; it appears to be synmetamorphic. On a large scale, it trun-

cates the F2 recumbent antiformal syncline south of Vikelandsfjell, but

if folding and thrusting were closely associated in time, such truncations

would be a natural consequence of the deformation. A weak to moderate
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penetrative schistosity, dipping gently east parallel to the thrust,
crosses at a small angle an earlier schistos.ity (presumed to be S ) in

the upper plate. Stereographic plots of these fabrics (Plate IV, subarea

B, S, and S2) indicate both fabrics have experienced similar structural

histories since the.ir formation.

The Vikeland thrust is thus assigned a late D2 age on the basis of

similar transport direction (based on the stretching lineation) to F2,
similar timing relative to metamorphism and F but its low angle trun-

cation of F2 structure. This is consistent also with its similar style

to the Austerfjord thrust. It would appear that the transition from fold

to thrust tectonics in D2 may be in part accomplished in the manner appar-

ent at Vikelandsfjell, with folds forming and then being cut by thrusts

and transported in the later part of the same deformation.

Shear Zones at Middagstind

In the contact hornfels on the east and southeast sides oF the Middag-

stind Quartz Syenite, commonly at the contact, and to a lesser extent with-

in the pluton itself, zones of intense foliation are developed. These

vary from a few cm to a few tens of meters in width, in one case reaching

several hundred meters wide. The zones were not mapped individually in

this study, but numerous structural attitudes were taken in the shear

zones, and their general characteristics recorded. In the contact zone,

the shear zones are characterized by weak to strong hornblende alignment

(Figure 34). A hornblende lineation within the foliation is common. Where

the shear zones are localized at the contact, the otherwise orthopyroxene

-bearing contact hornfels is retrograded to amphibolite facies. In the

syenite, the shear zones are only a few centimeters thick and very sparse,

except for a 100 m-thick zone of mylonitic augen gneiss that is developed

on the south side of the pluton. No lineation was recognized in the shear

zones within the syenite. The foliation is defined by biotite alignment

and feldspar elongation in the small shear zones. The fabric is developed

by cataclasis, and forms through-going mylonitic bands in the augen gneiss

(Figure 35).
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Figure 34: Photomicrograph of sheared hornfels.

Foliated hornfels (amphibolite) from sheared contact of the
Middagstind syenite pluton. (cf. Figure 10). Plane polarized
light, 75X.
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Figure 35: Mylonitized Middagstind Quartz Syenite.

A: Hand specimen (cf. Figure 7). Actual size.

B: Photomicrograph. Porphyroclasts are perthitic microcline,
commonly with similar complex exsolution patterns observed
in undeformed syenite (cf. Figure 8). Crossed polars, 75X.
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Figure 35A.

Figure 35B.
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In Figure 36, poles to shear zones are contoured, and measurements of

the associated hornblende lineation are plotted. The dominant shear set

is subvertical, striking N70W, and the hornblende lineation generally has

a low plunge within this plane. These data suggest strike-slip motion -

along the shear zones. Unfortunately, no adequate markers were recognized

to allow net slip to be determined.

The similarity of the apparent kinematic direction of these shear

zones to that inferred for D2 folds, boudinage and thrust faults together

with the evidence that the zones formed at amphibolite facies conditions,

leads to the interpretation that these are D2 structures.. These shear

zones may comprise an important link in understanding the large scale

kinematics of D2 deformation on east-Hinndy (see page 160 below).

Fabrics

Two main fabric elements developed during D2: a schistosity, S2, and

a sporadic amphibole lineation, L2a* . Rarely, a stretching lineation is

also preserved. The importance of S2 schistosity has been difficult to

determine. Small scale early folds generally show foliation passing

through their hinges to form an intersection lineation parallel to the

fold axis, and the generally isoclinal form of F2 folds suggests trans-

position of SI has occurred. However, two lines of evidence indicate S2
development may be more limited: (1) The Stangnes amphibolite, although

clearly strongly folded by F2, never shows overprinting of the mylonitic

D, emplacement fabric by a second pervasive schistosity (a later S3 or

S 4 cleavage is rarely present). In the Harstad antiform (F2), the amphi-

bolite, though strongly folded, does not develop a new axial planar schis-

tosity; S can still be traced around the fold. (2) Some thin sections of

Storvann Group schists suggest new mica crystallization did not always

occur with F2 . Figure 65A shows a set of folds that fold the primary

schistosity with only incipient mica growth parallel to the axial surfaces.

The folds are overgrown by plagioclase porphyroblasts, which are in turn

truncated by the S3 spaced cleavage (see below). It is possible that

these folds belong to a third pre-porphyroblast fold phase, otherwise

unrecognized, but this seems unlikely. As a consequence, the folds are

considered to belong to F2, indicating that even in micaceous rocks S2

may have limited importance. However, due to the isoclinal form of the
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Figure 36.

Middagstind shear zones (subarea D)
Contours: poles N Points: hornblende

to shear zones lineation in shear zones
(36 tot'al)

Contours are
1,5,7,9, and e
% per % area
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F2 folds, where the distinction of S and S2 is uncertain they can probably

be assumed to be parallel.

The L2a amphibole lineation is present occasionally in the Stangnes am-

phibolite, commonly in the Hesjevann assemblage amphibolite, and occasion-

ally as aligned tremolite needles in marbles. It is assumed that this line-

ation has the same kinematic significance as a stretching lineation: that

is, preferred growth of the long axis of amphibole crystals parallel to the

maximum finite elongation. This is supported by approximate coincidence of

the measurements of amphibole and stretching lineations (Figures 37 and 38).

Figure 37 plots amphibole lineations from all subareas.- The attitudes

cluster in an east-west direction, with mainly low plunges. Since S2 had

a subhorizontal orientation prior to F3 (see discussion under F 2-Minor

Folds), L2 must also have been sub-horizontal after its formation. F3 and

F4 folds are both of similar types, so that on stereographic projections,

folded lineations describe great circle paths which pass through the slip

lines of the folds. Since both F3 and F4 have steeply plunging slip lines

(see below), reorientation by F3 or F4 folding of the amphibole lineations

would produce steep plunges. It is thus considered that those amphibole

lineations with steep plunges have been reoriented by late folds; low

plunging lineations are only weakly reoriented and preserve their approxi-

mate original orientation.

The orientation of the L2 hornblende lineations is not considered sig-

nificantly different from previously described kinematic indicators of D2
deformation, and is considered to reinforce the interpretation of the D2
transport direction.

Rarely, a stretching lineation defined by elongation of quartz and feld-

spar grains is preserved in quartzites and granite gneisses. Measurements

of this strerching lineation are plotted in Figure 38. It is similar in or-

ientation to the amphibole lineation, but bears slightly north of east.

This may be a reflection of the small data set, or may indicate the linea-

tion records a combination of superposed strains. With regard to the lat-

ter possibility, it is noteworthy that the pebble elongation in the Harstad

conglomerate is also ENE.

Development of the Tectonite Fabric in the Basement

Caledonian schistosities are developed in the basement rocks only in



Figure 37. Figure 38.

L2a amphibole lineations, east Hinnoy Summary of stretching lineations, east Hinney

* Hesjevonn assm. omphibolite

o Stangnes amphibolite

- Tremit. in Storvonr Gp.
lower marble

A Hesjevann ossm.
marble

Sumr.rcry of



153

areas spatially close to contacts with metasedimentary rocks. A strong my-

lonitic fabric is present along the Austerfjord thrust where the Gullesfjord

Gneiss overrides the Austerfjord Group, but dies out at structurally higher

levels, and also downward into the Lddingen Granite below the thrust. The

basement rocks near the stratigraphic contact with the Storvann Group are

intensely foliated, but generally not mylonitic; this fabric similarly

weakens and disappears away from the contact. The exposures of the base-

ment/cover contact on the east shore of Storvann(S) and the roadcuts at

Tjeldsund may form a transition between these two, the basement being very

strongly foliated with local mylonitic bands. The transitional character

of the fabric in the basement at Storvann(S) is consistent with the kine-

matic model described in the next sect-ion.

The progression from Precambrian granite unaffected by the Caledonian

schistosity in the Hesjevann area (Figure 39), to similar rocks on

Finnslettheia completely reworked by the Caledonian (Figure 42), seems to

be controlled by the extent of retrograde metamorphism. The earliest signs

of Caledonian tectonization are crude alignment of biotite and minor sub-

grain development in feldspars (Figure 40). As tectonization progresses,

microcline begins to be replaced by muscovite, and plagioclase by clinozoi-

site. This suggests an addition of water to produce new hydrous (retro-

grade) mineral phases. Significant recrystallization of quartz and feldspar

can lead to grain size reduction, yielding an augen gneiss composed of a

fine-grained matrix of quartz, feldspar, micas, and clinozoisite surround-

ing porphyroblasts of relict igneous perthitic microcline and saussuritized,

polysynthetically twinned plagioclase (Figure 41). In strongly reworked

granite gneisses (Figure 42), the relict igneous feldspars disappear. Feld-

spars are completely re-equilibrated: microcline is non-perthitic, and pla-

gioclase is rarely twinned, contains no clinozoisite inclusions, and is in

textural equilibrium with adjacent phases. Muscovite and clinozoisite

become essential phases of the rock (up to 10%), occurring as discrete,

stable grains.

The extent of retrograde metamorphism described above may be controlled

by the accessability of the water needed for the progress of the reactions.

The spatial relationship between metasedimentary rocks and foliation in the

basement granite suggests that the prograde metamorphism of the metasedi-
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Figure 39: Photomicrograph of undeformed Melaa Granite.

Note random orientation of micas and and preservation of
primary textures in feldspars (such as the Carlsbad twin in
the large microrline grain at upper right). Crossed polars, 30X.

Figure 40: Photomicrograph showing incipient fabric development in
Melaa Granite.

Note alignment of micas, incipient mylonitic bands and
mortar texture in feldspars. Crossed polars, 3.OX.

----- -----
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Figure 39.

Figure 40.
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Figure 41: Photomicrograph of augen gneissic Melaa Granite.

Porphyroclasts of primary feldspars are set in a matrix of
quartz, feldspar, biotite, clinozoisite, and muscovite.
Crossed polars, 30X.

Figure 42: Photomicrograph of thoroughly recrystallized Melaa Granite.

Plagioclase is no longer saussuritized, microcline non-perthitic,
and clinozoisite and muscovite occur as distinct grains in
textural equilibrium with other phases.Crossed polars, 30X.
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Figure 41.

Figure 42.
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mentary rocks may have been the primary source of this water.

If. this is correct, a further speculation is suggested. The Austerfjord

thrust is well developed where the Austerfjord Group is present, but appears

to die out southward where it must break through granite. It may be that

the thrust nucleated on the Austerfjord Group pendants as a result of their

prograde metamorphism resulting from tectonic burial by the DI nappe stack.

This led to the limited thrusting of the basement to deform the overlying

nappes and cover in a fashion similar to that described in the next section.

The absence of a Caledonian foliation in the Middagstind syenite is not un-

derstood. Given the evidence for thorough Caledonian retrograde metamor-

phism in the syenite (Chapter 4), a Caledonian fabric would be expected on

the basis of the arguments above. The accommodation of strain by discrete

shear zones instead of penetrative flow in the area of the syenite could

result from the different compositions of the rocks involved, or the posi-

tion of these rocks within the overall kinematic scheme described in the

next section. No satisfactory conclusion can be reached based on present

knowledge.

Kinematic Model for D2 Deformation

A kinematic model for D2 deformation must incorporate a range of defor-

mation styles including recumbent folding, steep ductile shearing, and low

angle thrust faulting. It should account for the spatial relationships be-

tween these different deformation styles, and relate this to the kinematic

indicators described in the preceding pages. I believe the model shown in

Figure 43 satisfactorily accomplishes these objectives.

The essential feature of the model is the lateral transition from recum-

bent folding to thrusting over a relatively short distance. This is accom-

odated in two ways. First, the Austerfjord thrust is thought to laterally

"ramp", and grade into a zone of dispersed strain accommodated by recumbent

folding. This relationship is indicated by the change in thickness of the

cover rocks underneath the upper plate of the Austerfjord thrust from the

Kongsvik and Fjelldal areas in the south to the Storvann(S) area in the

north. As noted in the Fjelldal area, the Austerfjord thrust may reactivate

or cut out 'the Tjeldsund thrust. Northward toward Storvann(S), the strain

is accommodated by a combination of distributed deformation in the infolded
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Figure 43: Large scale geometrical model for D2 on east Hinnd~y. The Austerfjord thrust passes
laterally into the F recumbent fold sets of the northeast part of the study area.
The transition is accomplished by a combination of lateral ramping, spreading of the
zone of deformation, and ductile tear faulting along steep-dipping shear zones.
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nappes and local mylonitic zones in the basement. Further north, recum-

bent folding has become the dominant mechanism of shortening, distribu-

ting the deformation through a considerable thickness of rock.

Second, ductile tear faulting along the vertical shear zones at

Middagstind may also form a transition between the two structural styles.

The amount and direction of movement in the thrusted basement is nearly

uniform, but the movement field is very non-uniform in the adjacent domain

of folding. The discrepancies are greater the further back from the lead-

ing edge of the thrust sheet one goes. The vertical shear zones may have

developed in response to shear stresses in the vertical plane developed as

a result of this geometrical incompatibility of the two deformation styles.

The cause of this lateral change in structural style is probably to be

found in the Storvann Group. Southward along the basement/cover contact,

the autochthonous cover has largely been stripped from the basement (direct-

ly northward, the mapping lacks adequate detail to evaluate this). In this

part of Norway, only on east Hinndy is there a large thickness of autoch-

thonous cover preserved following DI nappe emplacement. The reason for its

preservation can only be speculated on, but may be connected with pre-D1

lower plate structures. It is worthy of note that the Stangnes Group

pinches out not far from the place where the Storvann Group becomes very

thin, supporting the possibility that a fundamental basement structure is

present which controlled the geometry of nappe emplacement.

The mechanical effect of this apparently well-attached cover may thus

have been to force the basement slab detached along the Austerfjord Thrust

to ride up over its cover locally, causing it to become intimately involved

with the cover in a more ductile deformation style.

D 3: Cross Folding

General Characteristics

The third phase of Caledonian deformation, D is characterized by

upright to overturned tight folds, with axes trending NW-SE to E-W. The

fold geometry ranges from chevron to similar to, less commonly, concentric.

The folds are dominantly overturned to the southwest. Fold amplitudes range

from a few centimeters to more than a kilometer, but are dominated by minor
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folds of several tens of centimeters to several tens of meters amplitude,

and major folds of 500-1000 meters amplitude. A secondary effect of this

deformation within the basement south and west of Storvann(S) is the

development of mylonitic ductile shear zones ranging from a few meters to

a hundred meters or more wide.

The effects of this fold phase are most strikingly displayed on Plate

I in the Finnslettheia/Sdrvikfjell and Voldstadheia areas. However, analy-

sis of structures indicates that little of the study area was entirely

unaffected by this deformation.

Major Folds

There are four major F folds recognized in the study area. The.0 3
westernmost fold is a synform which runs from the southeastern corner of

the map across Tjeldsund to the Melaa Vannene area. It probably continues

as a very open fold beyond this point, but distinction of Caledonian and

Precambrian folds and schistosities in the Middagstind area is uncertain.

To the west of this fold is an upright antiform probably also of F3 age,

which exposes the Austerfjord thrust in the half-window which closes at

Austerfjord. This fold was mapped by Hakkinen (1977) but is not shown on

Plates I and IlIl. To the northeast is an overturned antiform which is

traceable across Voldstadheia to Storvann, and across the west shoulder of

Finnslettheia. The connection of this axial trace to the open antiform at

Straumsbotn is somewhat speculative, but not unreasonable.

In Gustavson's cross-section across the trace of the latter antiform

(1972, p. 23, Fig. 20), he shows the area of Salangen Group marbles as

synformal, making the basement terrain to the south antiformal. Fabric

relations at the east shore of Storvann and along Tjeldsund demonstrate

that the reverse is true; the S3 cleavage consistently dips shallowly to

moderately north while the S schistosity dips steeply north at the contact.

Thus, the belt of steep dip is the steep limb of a fold couple with the

antiform to the north and the synform to the south (see Plate IIB, D-D';

Plate lID, I-I'). The interpretation of the basement region to the south

of Storvann as synformal is reinforced by the fact that structures in the

Salangen 'Group, which can be traced around this closure (in a general way)

to Fjelldal, plunge northward under the basement at Fjelldal (see Plate IIC,

G-G' and H-H', which are drawn parallel to the plunge).
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Two more broad F3 structures are present farther to the northeast.

The rocks north of Voldstadheia to Finnslettheia and northward toward

Torskvatsfjell are broadly synformal. The synform is not well defined,

but can be recognized as a gross structural depression on Plate IlA, B-B'

and C-C', and Plate lID, K-K'. The antiform to the north is much more

clearly recognizable in outcrop as a re-entrant of Storvann Group rocks

into the basement terrain directly south of Storvann(N). F4 folding

begins to be important north of here, and the identification of macroscopic

F3 folds becomes difficult. The northern F3 antiform is refolded by F4
folds so that, on the south side of Blaafjell the fold locally plunges as

much as 70* NW. This refolding is responsible for the rather stubby ap-

pearance of the map pattern of what is a rather tight fold (see Plate IV,

section K-K').

Mesoscopic Folds

Within the cover rocks and much of the adjacent strongly foliated

basement, mesoscopic F3 folds are very abundant. The style of F3 folds

changes markedly from one lithology to another. In schists and quartzites,

the F3 folds are kink-like or chevron folds, usually sharp-hinged and

straight-limbed, with long subhorizontal limbs and short, steep limbs

(Figure 44). Folds in the Stangnes amphibolite are geometrically similar

to those in the schists, but lack the axial plane cleavage common in the

micaceous rocks.

In marbles the F3 folds take on a tighter and more sinusoidal form

(Figure 45). Axial plane cleavage is less developed, and may be entirely

absent.

The strongly foliated Precambrian granite near the contacts with the

metasedimentary cover rocks folds much like the cover rocks, but the style

tends more toward concentric geometry, grading toward chevron folds (Figure

46). Surfaces of slip along the foliation in general have not been ob-

served, suggesting that a flexural slip mechanism (e.g., Ragan,1973,

Chapter 8) may be inappropriate for formation of these folds.

Because earlier folds already had a dome-and-basin geometry, F3 folds

interfere with these to produce both Ramsay Type 3 (Figure 47A) and Type 1

(Figure 47B) interference patterns. Type 3 patterns dominate both at out-

crop scale and on map scale (Plate IIA, C-C'). Type 3 interference patterns
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Figure 44: F3 chevron folds in Storvann Group quartzite.

Note long subhorizontal limbs and short, steep to overturned
limbs. View is westward, of outcrop on southern edge of summit
area of Finnslettheia.
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Figure 45: F3 folds in marbles.

A: Sinusoidal similar folds in impure dolomitic marble of the
Salangen Group. Outcrop is on northeast side of Voldstadheia.

B: Tight similar folds in upper calcite marble of the Storvann
Group. Outcrop is I km southwest of Voldstadheia.



165

Figure 45A.

Figure 45B.
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Figure 46: F3 folds in pre-Caledonian granite gneiss..

Note near-concentric geometry, including cusp in core.
Shoreline exposure is near Fjelldal, a few meters from
contact with the Storvann Group.
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Figure 47: Fold interference patterns involving F3.

A: Ramsay type 3 interference pattern in vitreous and micaceous
quartzite of the Storvann Group, exposed in a roadcut along
the west side of Tjeldsund. Early isoclinal hinge is probably
F2 in age.

B: Ramsay type 1 interference patterns in impure marble of the
Salangen Group, east shore of Storvann(S). The very complex
geometry of these domes and basins is probably due to inter-
action of F, F and F3'
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Figure 47A.

Figure 47B.
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result from folds with reasonably similar axial directions but very dif-

ferent movement directions (Ramsay, 1967), a condition consistent with

the geometrical properties deduced for these fold phases independently.

Shear Zones in the Gullesfjord Gneiss

As the early Caledonian fabrics become less prominent in the basement,

mesoscopic F3 folds all but disappear. Some weak cleavage development

remains, but confident distinction of different phases of Caledonian fabric

development from Precambrian fabric becomes difficult. However, south of

the Melha Vannene, where the large F3 synform becomes overturned, spatial

adjustments in the core of this fold probably were accommodated by the

formation of shear zones in the gneiss.

The shear zones are mainly composed of a brown schistose rock formed

by grain size reduction of the granite and mobilization of quartz to pro-

duce veins which are often large and abundant. Thickness of the zones can

range from 10 cmto several hundred meters, but most commonly they range

from 50 to 200 m. The shear zones often weather to areas of flaggy rock

piled like fallen dominoes (Figure 48). The zones may end abruptly, with

dilatant voids accommodated by large knots of vein quartz (up to several

meters across). No stretching lineations have been recognized in these

zones, but intersection lineations with pre-existing fabrics are common,

and are subparallel to the orientation of F3 fold axes.

Though the zones are schistose, they do not appear mylonitic in the

field. In thin section, the texture is one of cracked and mechanically

twinned feldspar porphyroclasts in a matrix of fine-grained quartz, white

mica, epidote, and biotite (Figure 49). Micas are kinked, and undulatory

extinction is common in quartz. The rocks appear to have deformed under

conditions where relatively little recrystallization accommodated strain.

The orientations of the shear zones are plotted in Figure 50. Their

orientation is equally compatible with a relationship to D2 or D in this

portion of the study area (cf. Plate IV, subareas L and M). However, the

clearly post-metamorphic nature of the zones and the similarity of orien-

tation of the intersection lineations to F3 fold axes argue for a D3 age.

Penetrative Fabrics

Two main fabric elements developed during F3 folding: a weak to strong

spaced cleavage, S and a generally strong intersection lineation between
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Figure 48: Broad shear zone in Gullesfjord Gneiss, Tverrfjell.

Figure 49: Photomicrograph of microcracked feldspar porphyroclast from a
D3 shear zone in the Gullesfjord Gneiss. Crossed polars, 75X.
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Figure 50: Equal area plot of shear zones in Gullesfjord Gneiss.

subareas L and M
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SI or S2, and S3 (often present even when S3 is poorly developed), L 1/3 or

L 2/3. The S3 cleavage is best developed in micaceous schists, where it -

can become the dominant planar fabric in outcrop. This is especially true

for the very micaceous Kilbotn Schist, where it has not been possible to

determine anything conclusively about the geometry of D or D2 structures

due to the strong textural overprint of late fold phases.

Marbles seldom develop a good S3 fabric, presumably due to their low

mica content. The mica present is generally rotated into parallelism with

S3, and some minor flattening of carbonate grains may develop, but usually

it is difficult to measure the S3 fabric in marbles. This has fortunate

consequences for mapping the alternating schists and marbles of the Stor-

vann Group, because one can always find SI in the marbles and S3 in the

schists. It is less fortunate in the Salangen Group marbles, where schists

are rare. The relative paucity of S3 measurements in subarea J (see Plate

IV) is in part a result of this difficulty.

S3 is seldom well-developed in amphibolites. This is presumably due

to the absence of micas and quartz which are the main phases involved in

formation of the S3 fabric. By contrast, some of the granitoid rocks

develop S3 as a prominent secondary biotite foliation crossing the main

schistosity. This is especially true in the shoreline exposures near the

basement/cover contact at Tjeldsund. Here a strong S3 cleavage in the

basement granite crosscuts the steeply-dipping S 2 fabric, which is axial

planar to isoclinal infolds of the Storvann Group basal quartzite and the

basement.

The most prominent lineation throughout most of east Hinndy is pro-

duced by the intersection of S3 with an earlier schistosity. It is de-

fined by the edges of micas in one foliation exposed on the other foliation

surface. Since in this orientation the micas appear elongate, careful

examination is required to distinguish this lineation from a stretching

fabric. However, close parallelism with mesoscopic F3 fold axes reinforces

the interpretation of this lineation as an intersection.

The S3 cleavage formed by a combination of solution and recrystalliza-

tion processes. In thin section, cleavage traces are discrete surfaces,

spaced a'few mm apart, along which earlier grains are bent and truncated

(e.g., Figures 64, 65A and B, 66A and B). New growth of chlorite, biotite,

and muscovite has occurred along these surfaces, but grain truncations such
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as that of the plagioclase porphyroblast in Figure 17A suggest solution

removal also may have occurred.

Structural Analysis

The measurements of S and S2' S3, L1/3 and L2/3 and F3 fold axes from

subareas.E, F, H, I, J, K, L, and P plotted on Plate IV primarily reflect

F3 deformation. Areas A, B, C, M, and Q also show F3 effects, but have

been overprinted by F4 and/or F5 and will be discussed later.

The following general characteristics about F3 are drawn from these

fabric data: (1) F3 folds are nearly homoaxial, bearing mainly WNW-ESE,

and have low plunges, mainly less than 20*; (2) S3 axial planes dip moder-

ately to steeply northward, consistent with southward vergence of the

folds; (3) SI and S2 poles form fairly complete great circle girdles, re-

flecting tight folding (with exceptions discussed below); and (4) the

SI/S2 girdles generally contain point maxima reflecting moderate north

-dipping upright fold limbs and steep south- or north-dipping fold limbs.

The point maxima are particularly well-developed in the data from subareas

J and P.

The consistent axial orientation and low plunges of the folds have two

giajor implications. As discussed previously, the S1/S2 schistosities prior

to F3 must have been nearly planar and horizontal. Also, the homoaxial

character of the folds indicates an absence of either heterogeneous rota-

tional strain in the fold axial plane or heterogeneous slip between struc-

tural levels to produce a variety of axial orientations. The Hansen (1971)

separation angle method of slipline determination clearly can not be used

effectively here.

The bimodality of S3 poles in some areas (e.g., subarea F) is not well

understood. It is not due to poor choice of subarea boundaries, because

both orientations are often observed on a local scale. It may result from

slight F4 folding or from fanning of the S3 cleavage around fold hinges.

Neither of these possibilities would predict specifically a bimodal distri-

bution, however.

Individual variations of SI/S2 patterns result from a variety of local

causes. In subareas I, K, and P, the primary problem is the paucity of

data, leading to very "noisy" looking diagrams with similar overall charac-

teristics to the general pattern. The north-plunging point maximum in
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subarea F results from that area being dominated by the steep south limb

of a large F3 antiform. The north limb of this fold was intensely rede-

formed by F4 , and so was treated separately (subarea C). The point maximum

from subarea L has a similar origin: only data from the western limb of

the large F3 synform which dominates the southwestern portion of the study

area are, included.

The best available method for slipline determination for F3 is that of

Weiss (1959). In similar folds, pre-existing lineations trace out great

circle paths on a stereographic plot. The intersection of such great cir-

cles with the fold axial surface is the slip direction of the folding,

roughly equivalent with the maximum finite elongation. Measurements of L2
reoriented by F3 are sparse, only defining approximate great circle orien-

tations in subareas F and H. The precision of the determinations is fur-

ther reduced by the bimodality of S3 in subarea F.

The approximate F3 slip line determinations are shown in Figure 51.

Although the scatter is considerable, it is safe to conclude that the slip

direction was steep and mainly southwest directed. The variability may

in fact reflect variations in the strain field, folding being by definition

a heterogeneous strain phenomenon in the first place. The orientation of

this slip direction is interesting for two reasons. First, it is clearly

different from the separation angle determined for F2 axes, reinforcing

the interpretation that the F2 separation angle is not a result of later

superposed deformation. Second, the direction of slip bears subparallel

to the trend of the orogenic belt, implying these folds are an expression

of tectonic transport parallel to the orogen. A possible setting for this

will be considered in Chapter 6.

F3 Fold Styles and Mechanical Behavior of Lithologies

The variability of F3 fold styles described above presumably reflects

different mechanical response of the lithologies at the ambient P/T con-

ditions during D3. Johnson and Honea (1975) concluded on the basis of

experimental and theoretical studies that linear mechanical responses (e.g.,

Newtonian behavior) yield continuous, sinusoidal fold forms. To generate

inherently discontinuous fold forms such as concentric and chevron folds,

a nonlinear response is required, with plastic yielding occurring where

shear stress is concentrated at fold hinges. Concentric and chevron folds



Figure 51: (Lower hemisphere equal area projection)

Slip line determinations for F3 folds suboreos: F H
meosurements A A

ixis modes 0 0
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will develop in layered media with elastic/plastic rheology, and either

negligible strength between layers (flexural slip mechanism), or infinite

contact strength. Whether concentric or chevron folds are developed

appears to be largely a function of the strain, with chevron folds resulting

from greater shortening.

In response to layer-parallel stress, media with finite contact strength

produce kink bands rather than regular fold forms, as a result of local

layer-parallel yielding along the contacts (Honea and Johnson, 1976). An

important aspect of kink folds is that unidirectional kinks, produced by

superimposed layer-parallel simple shear, have senses of vergence (i.e.,

rotation of steep limb) opposite that of the superposed simple shear (Reches

and Johnson, 1976). Hence, southward-overturned kink folds would result

from a northward vergent shear couple. This would mean a slip line deter-

mined from such folds would not reflect the characteristics of the overall

strain field.

The sinusoidal form of the F3 folds in the marbles implies that the

marble had no significant yield stress under the ambient conditions (prob-

ably greenschist facies; see Chapter 5). Thus, one can infer that under

these conditions and at the appropriate (unknown) strain rate, carbonate

rocks respond as viscous or pseudoviscous (power law?) materials. The

concentric folds in the Precambrian granite gneisses suggest that at the

same P/T and strain rate conditions, the granite is a plastic material.

The homogeneity of the material and lack of slip surfaces in outcrop sug-

gests that these concentric folds did not result from a flexural slip

mechanism, but rather as a result of no yielding at contacts.

The sharp-hinged folds typical of F3 in quartzite, schist, and amphi-

bolite could be either interpreted as chevron folds or kink folds. Ramberg

and Johnson (1976) have noted that these fold styles are difficult to dis-

tinguish in the field but should have opposite senses of overturning in

the same strain field. The fact that these sharp-hinged F3 folds have the

same vergence as other F3 folds indicates that these are true chevron folds

and not kinks. This has two consequences: (1) the apparent elongation

direction determined in Figure 51 refers to the overall kinematics of D3
deformati'on, and (2) the mechanical response of these rocks to D3 was

plastic similar to the basement gneisses, but due to perhaps lower yield

strength, the cover rocks shortened further to form chevron rather than

concentric folds.
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The development of the axial planar cleavage in F3 (and F ) folds may

be intimately related to the phenomenon of yielding at the fold hinges.

As noted in Chapter 2 with regard to the fabric in the calc-silicate facies

of the Storvann Group lower calcite marble, it is common for S3 to be

stronger at the hinges of the F3 folds than in the limbs. Presumably, clea-

vage formation begins as a result of layer-parallel stress of the layer.

It may have a positive feedback aspect. Since the cleavage-forming reac-

tions involve hydration (Chapter 4), cleavage formation will be enhanced

by better accessability of water where it has already developed. The clea-

vage itself probably increases the permeability of the rock. If the clea-

vage reflects a significant portion of the strain in the rock, this posi-

tive feedback could be the reason for the plastic yielding in the fold

hinges inferred from the fold geometry, and the reason for increased clea-

vage intensity at the fold hinges.

D4 : Upright Folds

General Characteristics

The fourth Caledonian deformation phase, D4 , is much like the third,

comprising upright to overturned folds, but with a NE-SW axial orientation.

It was probably associated closely in time with F3, but post-dates F3 on

two lines of evidence: (1) locally, mesoscopic folds of both fold phases

are recognized in a single outcrop: the NW-SE folds (F 3) are folded around

the NE-SW ones (F ); (2) Ll/3 and poles to S describe great circle paths

on stereographic plots from subareas where both fold phases are present

(see below), suggesting that D3 fabrics are folded by F . The relative

chronology suggested here is presented with reasonable confidence.

F is more locally developed than F , appearing primarily in the north-

eastern part of the study area and to a lesser extent in the southeastern

corner. The fold styles developed are much the same as those seen in F3.

Vergence is variable, as are axial surfaces, leading to generally steep but

widely scattered sliplines. On the south side of the Stangnes peninsula,

southeast vergent F4 folds are often sheared out along low-dipping mesosco-

pic thrust surfaces, while the F4 folds west of Middagsfjell (south end of

J-J', Plate llD) are north vergent.
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The intersection of F3 and F4 folds to form domes and basins is espe-

cially noticeable in the area south of Middagsfjell (subarea C in Figure

28). The interference patterns are well-marked on Plate I by the contacts

of the quartz-garnet schist, upper calcite marble, and pelitic schist

units of the Storvann Group. F3 folding was not very intense, since changes

in plunge of F4 fold axes are modest(20-30*) . Very open northeast-trending

folds also appear to produce open F3/F4 domes and basins in the Fjelldal

and Ramboheia areas, such as the small basin which preserves the tiny klippe

of Gullesfjord Gneiss on the foreshore island 2 km west Fjelldal. Again,

this is an area where F was relatively mild, mainly producing only a broad
.3

open synform.

It appears likely that the intensity of F4 folding is inversely pro-

portional to the extent of F3 "corrugation" of earlier S-surfaces. Strong

F3 folding yielded a configuration too stiff for D movements to deform.

F4 folds interfere with earlier structures as well to produce some

interesting patterns. Figure 52 shows a Ramsay type 3 interference pattern

between F2 and F4 folds. Figure 53 shows the effects of F4 folding on D2

boudins on the south side of Stangnes peninsula. The boudins have been

shoved back together, locally imbricated, and buckled. The maximum shor-

tening direction of D4 was thus nearly coaxial with the earlier elongation.

This would predict a steep slipline for F4 folds; it also suggests that the

D4 shortening component may be important in the composite finite strain

history recorded in the pebbles of the Harstad Conglomerate.

Structural Analysis

Important F4 effects appear in the stereographic plots of subareas A, B,

C, and M. F4 and F3 structures were not plotted separately because the

separation of the two by their field characteristics (other than orienta-

tion) is difficult. However, the bimodality of axial orientations present

in all these areas, especially subareas A and B, suggests two fold sets,

and the patterns displayed by subarea C strongly support this.

Like F the F4 folding is nearly homoaxial, with axes that trend

NE-SW to ENE-WSW, and plunge at generally low angles. S and S2 plots

show in general two partial girdles, of varying strength depending on the

relative strength of the fold phases. Subarea C, dominated by F4 , has

little indication of the NE-SW girdle characteristic of F3 folds, subarea A
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Figure 52: Interference of F2 and F4 folds.

Ramsay type 3 interference pattern between F2 and F4 folds in
the Stangnes Amphibolite, 2 km west of Kanebogen.

Figure 53: D imbrication and buckling of D2(?) boud ins.

Boudins are of amphibolite in calcite marble within the
sliver zone under the Stangnes thrust, exposed on the shoreline
east of Kanebogen.
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Figure 52.

Figure 53.
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shows subequal (weak) development of both, while subarea M shows mainly

F3 folds in the distribution of S2 poles. .

Distribution of S3 and S4 poles is generally complex in these areas,

and difficult to interpret. However, those in area C are very suggestive.

Several point maxima line up along a great circle girdle at a large angle

to the F4 axis. This is suggested to reflect folding of the S3 axial plane

cleavage around F4 folds. The poles to a folded foliation behave like a

folded lineation on a stereographic plot, so that a Weiss (1959) slipline

analysis can be used. The broader point maximum falling slightly west of

this girdle is the S4 cleavage from the area west of Middagsfjell where F4
folds are systematically north vergent. Thus, intersecton of the girdle

of S3 poles and the S4 axial plane yields a determination of the slip

direction for these F4 folds (Figure 54).

Closer examination of the plot of F3 and F4 -.axes and associated inter-

section iLneations from subarea C suggests an additional, though less accu-

rate, way to determine F4 sliplines. A shallow-plunging secondary point

maximum, oriented in a WNW-ESE direction, reflects F3 folds. Steeper

plunging point maxima define a crude vertical great circle girdle (the

girdle could not be confidently inferred in the absence of independent

evidence of refolding of F3 by F4). This "girdle" is thought to reflect

folding of F3 axes by F4. The intersections of this folded lineation with

the S3 girdle and the S4 axial plane geometrically should reflect slip

directions of F4 folds. Agreement of the three intersections is poor, in

part due to the limited data, and in part due to the variations in fold

vergence noted above (also recognizable on Plate lID, L-L'). More detailed

analysis of a larger data set are required to improve understanding of the

kinematics of this fold phase.

F5 : Minor Folds and Crenulation

Local minor folds and crenulations form the last gasp of Caledonian

folding, recognized in three areas; near Harstad (subarea A), in the

Kilbotn Schist, and at the southeast corner of the study area (subarea Q).

In the Kilbotn Schist, a NW-trending, steep crenulation cleavage locally

cross-cuts the S3 spaced cleavage, producing extensive retrograde chlorite

and disrupting the earlier fabric on a microscopic scale. In subareas A

and Q, a NNW-trending set of upright folds on the scale of a few centimeters
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Figure 54.

Slip line determinations for F4 folds, subarea C
N
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to a few meters is present, tentatively correlated with the latest cren-

ulation-forming event at Kilbotn. The vergence of the NNW-trending folds

near Harstad is eastward; those on KvitfjelI in the southeast corner of the

map area verge west. No major structures of this generation are recognized,

and it is considered to have minor significance in the Caledonian structur-

al evolution.

Cenozoic(?) High-Angle Faults

General Characteristics

A set of subvertical faults, trending N30E to N50E, have cut the rocks

in the eastern part of the study area into a series of NE-trending blocks.

The number and continuity of faults is significantly greater than previous-

ly recognized (cf. Gustavson, 1972, 1974a, b, c). Many of the high-angle

fault juxtapositions have been previously explained by folds or thrusts.

For example, the Straumsbotn Nappe of Gustavson (1972) was largely based on

interpretation of the Langvann Fault as a thrust. Although the actual

faults are only rarely exposed, contacts, folds, and fabrics are abruptly

truncated along the traces inferred on the map. The major faults (Langvann,

Storvann, Astafjorden and Fjelldal Faults) are topographically expressed

as linear valleys or fault-line scarps.

Faults or secondary shear surfaces closely associated with them are ex-

posed in four localities: (1) the long but minor fault north of Langvann

is exposed 1 km NNW of Langvann; (2) subsidiary faults along the Langvann

fault are exposed 0.5 km west of Langvann, where the fault places Storvann

Group quartzite against Precambrian granite; (3) subsidiary shears in

Salangen marbles along the Storvann Fault are exposed at the northeast

corner of Storvann(S); and (4) several! areas of subsidiary shearing along

the Fjelldal Fault are exposed west of Fjelldal. Slickensides or other

mesoscopic movement indicators have not been observed. Figure 55 plots

measurements of fault surfaces from these localitites, emphasizing the

steep attitude and consistent strike of the faults, aside from the minor

E-W splays off the Storvann fault on the south side of Sdrvikfjell.

The only well-exposed fault is the minor fault north of Langvann. Where

exposed it cuts massive Precambrian granite so that the magnitude of dis-

placement on this fault is unknown, though it is probably small further east
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Figure 55.

Poles to fault surfaces along Cenozoic(?) faults
N FJELLDAL FAULT S

STORVANN FAULT *
FAULT I KM NORTH

OF LANGVANN
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where it only slightly offsets the basement/cover contact (Plate 1). Rocks

along the fault have been intensely fractured (fracture spacing about 2 to

10 cm), in a vertical zone several meters wide. Local open space fillings

of drusy quartz are present. No gouge or fault breccia were recognized.

The very brittle style suggests movement occurred at low temperature and

pressure, completely post-dating Caledonian events.

Vertical subsidiary fault surfaces are exposed along the Langvann Fault

within the granite north of the main fault contact. F3 folds and all pre-

vious structures in the quartzite are clearly truncated along the contact.

From the ridge west of Langvann, the eastward trace of the fault is clearly

recognizable, trending perfectly straight regardless of topography. Clear-

ly, the steep dip of the shear surfaces here (86*N) applies to the main

fault as well.

At Storvann, the Salangen Group marbles immediately south of the con-

cealed fault are broken by abundant minor subvertical shears trending N35E

and about 1-2 cm apart. The fractures are in part healed by secondary cal-

cite fillings. Southwest-dipping compositional banding is offset right

-laterally; where F3 minor fold axis can be matched across shear surfaces,

they are offset by north side down dip-slip. Attitudes of penetrative

fabrics in the sheared zone are not significantly different from those south

of the zone, indicating that no significant bending or rotation was associ-

ated with faulting.

The exposures along the Fjelldal Fault are similar to the others de-

scribed above: intense vertical fracturing with local open-space fillings

of vein quartz. One minor fault exposed in the granite gneiss directly

north of the main fault trace separates a vertical quartz vein one meter

in a left-lateral sense. Hence, at least some minor strike-slip movement

occurred in this area.

Regional Pattern and Sense of Movement

The major difference in the pattern of high-angle faulting shown in-Fi-

gure 56 from the interpretations of previous workers is the arrangement of

faults around Tjeldsund. Vogt (1942) identified the Astafjorden fault as

a NE-trending dip-slip fault truncated to the southwest by the NNE-trending

Tjeldsund fault. Both of these faults are entirely concealed by water. The

Tjeldsund fault was mapped as curving at its south end and then terminating,
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Figure 56: Map pattern of Cenozoic(?) high angle faults in the vicinity
of the study area.

Note the uniformity of orientation in this interpretation
(cf. Gustavson, 1974a).

Harstad
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since no evidence of the fault tould be Found on land along its projected

trace. Vogt estimated right-lateral strike-slip of 3.5 km on the Tjeldsund

fault while Gustavson (1972), adopting Vogt's overall interpretation, esti-

mated 10 km of net slip.

There are several objections to these interpretations. Only planar fea-

tures offset by the fault were considered by Vogt and Gustavson, thus deter-

mination of net slip requires assumption of the net slip direction. No in-

dependent data exist regarding the direction of slip. The surfaces being

matched have been very complexly folded, so that small dip-slip separations

can produce large surface separations of units. Finally, it is geometri-

cally difficult to terminate a strike-slip fault with 10 km of movement

over a distance of a few kilometers without a trace.

The present study indicates that all the faults trend NE, and consistent-

ly have NW side down dip-slip movement. The faults in general are not pre-

sent in the western part of the map area. The reasons for these views are

detailed below.

Three kilometers of right-lateral separation of the basement/cover con-

tact occurs along the Langvann fault north Finnslettheia. Only 3 km along

the strike, the vertically-dipping Stangnes Group rocks are scarcely separ-

ated across the fault. Consideration of the geometry of section C-C'

(Plate llA) suggests the basement/cover contact was probably only a few hun-

dred meters above the topographic surface at Sdrvikfjell opposite this con-

tact north of the fault. Hence, northwest side down dip-slip best explains

the relationships along this fault.

The major F3 overturned antiform which crosses the Storvann fault is

scarcely offset by it, although different rocks and structural units are

juxtaposed. Tracing of the Storvann Group rocks around the antiform south

fo the fault indicates they intersect the fault a kilometer or more above

the present topographic surface (depending on fold geometry), indicating

northwest side down movement.

On the north side of the Fjelldal Fault, Precambrian granite, its

Storvann Group cover, and the structurally underlying Austerfjord Group

structurally overlie the Salangen Group marbles. South of the fault

these units are absent above the marbles. This relationship again indicates

northwest side down dip-slip movement.

Northwest side down dip-slip movement along a simple extension of the
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Astafjorden fault also best explains the relationships across Tjeldsund.

As developed in the section of F2 recumbent f6lding (see above), the ex-

tensive area of Salangen Group marbles south of the Storvann fault lies in

the inverted limb of the Kanebogen recumbent anticline. It was also sugges-

ted that the quartzite and schist at Kvitnes on the east side of Tjeldsund

are in the core of the underlying Harstad recumbent syncline. The Salangen

Group marbles of the inverted limb would thus project above the rocks at

Kvitnes. Hence, a slight southward bend of the Astafjorden fault to run

through Tjeldsund, with NW side down dip-slip, would satisfy these rela-

tionships without requiring the existence, and abrupt disappearance, of a

separate strike-slip fault in Tjeldsund.

The proposed southward continuation of the Astafjorden fault through

the valley NW of Sandtorg is suggested for three reasons: (1) this is a pro-

minent NE-trending valley discordant to surrounding bedrock structure; many

other similar valleys to the north follow high-angle faults; (2) the F3 fold

axial traces do not readily match across t.he valley. Considering that the

F3 folding is complex and overturned on the north side and open and appar-

ently simple on the south side, a simple one-for-onematching of the fold

axes can not readily be made; and (3) continuation of the Astafjorden fault

through this valley allows minimal deviation from the overall regional

fault pattern.

While many of the faults have been shown to terminate westward, Tjelddy

to the south of the study area has not been mapped in comparable detail, so

that it is uncertain whether the Astafjorden and Fjelldal faults extend be-

yond the western limits shown here.

Timing

Local control of the timing of movement of these faults is very poor.

Their brittle style and total disregard for older structures indicate these

faults post-date Caledonian uplift and cooling, dated at 360 Ma by Rb/Sr bi-

otite/whole rock studies (Chapter 5). The only materials unaffected by the

faults are Quaternary sediments. An early Cenozoic age is preferred on the

basis of regional considerations, discussed in Chapter 6, but no dogmatic

approach is justified at this time.
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CHAPTER 4: CONDITIONS AND TIMING OF METAMORPHISM

I.ttroduct ion

Metamorphic assemblages of both Precambrian (Svecofennian) and early

Paleozoic age are present on east Hinndy. The grades of both metamorphisms

Are mainly in the amphibolite facies, so that in the pre-Caledonian base-

ment rocks, determining from which of the two periods of metamorphism any

Particular mineral assemblage derives is not always straightforward. The

earlier metamorphism, roughly 1830 to 1700 Ma in age (Griffin and others,

1978), developed granulite facies mineral assemblages regionally in rocks

to the south and west of the study area (Heier, 1960; Heier and Compston,

1969; Griffin and others, 1978; see Figure 3). Indications have been found

in this study of local granulite facies conditions on east Hinndy during

this metamorphism, but amphibolite facies assemblages are typical.

Caledonian metamorphism on east Hinndy developed lower to middle am-

Phibolite facies mineral assemblages of the Barrovian or kyanite/silliman-

Ite type (Miyashiro, 1961), characteristic of intermediate P/T conditions.

Cover rocks are entirely recrystallized; no primary textures have been

rocognized other than the pebbles in the Harstad conglomerate. The base-

ment rocks, not far out of equilibrium with the superposed Caledonian P/T

conditions, are re-equilibrated to varying degrees. This probably depended

o1i the availability of water from an external source; the grade of

Precambrian metamorphism was probably somewhat higher, so that re-equili-

beation involved mainly retrograde hydration reactions.

Two types of retrogression of the Caledonian amphibolite facies mineral

assemblages occurred. The late fold phases F3 through FS developed semi

-Penetrative cleavages which involved partial retrogression of the amphi-

bolite facies minerals. A later local chloritization and epidotization of

both basement and cover rocks, of unknown age or origin, is patchily devel-

oped across the area. No fabrics are related to this late retrogression,

nor has it been possible to spatially relate its development to any speci-

fic structures.

The mineral reactions included in the discussion below are undoubtedly

fat simpler' than those which actually occurred in the rocks. However,

thVese remarks are based solely on petrographic observations of a reconnais-

saice nature with respect to metamorphic petrology. Consequently, the sim-
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pie reactions are written to show the general form of the actual reactions

the author believes took place, and to allow some estimate of the metamor-

phic conditions to be made. A more precise analysis would be Justified

only with more extensive sampling and chemical analyses of the mineral

phases involved.

Svecofennian Metamorphism

Petrographic evidence indicates that both amphibolite and granulite

facies mineral assemblages were developed in the Svecofennian metamorphism

on east Hinndy. Evidence for granulite-facies conditions in the vicinity

of the Middagstind syenite is both direct and indirect. The innermost part

of the mafic hornfels developed along the east and south sides of the plu-

ton locally bears the mineral assemblage hypersthene + hornblende + labra-

dorite + opaque, with only slight retrograde effects (Figure 10). This is

a typical assemblage of the lower temperature part of the granulite facies

where some hydrous phases (in this case hornblende) are still stable. In

particular, this assemblage is on the high temperature side of the reaction:

hornblende + almandine + quartz + hypersthene + plagioclase + H2 0 ()

which is one of those suggested by De Waard (1965) to define the granulite

facies. The coexistence of plagioclase and orthopyroxene also puts a rough

maximum of 8 to 10 kb.on the metamorphic pressure (Winkler, 1973); at high-

er pressures, these phases react to form garnet + clinopyroxene + quartz,

the anhydrous equivalent of the left side of reaction (1).

Within the Middagstind pluton itself, no orthopyroxene has been ob-

served. However, the textures in Figure 9 suggest the biotite + quartz

meshes are pseudomorphic after an earlier phase. These pseudomorphs are in

part rimmed by ferrohastingsite. These rims often occur as multiple iso-

lated, optically continuous grains, suggesting they are relicts of an ear-

lier assemblage.

The Middagstind syenite is part of a regionally extensive suite of calc

-alkaline to alkaline, mainly intermediate plutons intruded during the lat-

ter part of the Svecofennian metamorphism (Heier, 1960; Green and Jorde,

1971; Griffin and others, 1975, 1978; Malm and Ormaasen, 1978). These plu-

tons are nearly all orthopyroxene-bearing, having crystallized within a

terrain undergoing regional granulite facies metamorphic conditions. Am-

phibole rims on pyroxenes are common in these rocks. The biotite + quartz
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meshes are thus thought to be pseydomorphic after primary orthopyroxene,

with the original amphibole rims in part stil.l intact.

The arguments for amphibolite facies metamorphic assemblages being pre-

served from the Svecofennian are more circuitous since the Caledonian meta-

morphism is demonstrably of similar grade. Other than in the inner part of

the contact zone of the Middagstind Quartz Syenite, no orthopyroxene is ob-

served, nor any textures suggestive of pseudomorphs thereof. The rocks in

the vicinity of the syenite plutcn can be demonstrated to have little or no

Caledonian fabric on the basis of the truncation of fabrics by the 1726 Ma

old pluton. The static retrogression of these wall rocks to form dispersed

grains or granular aggregates of epidote is probably a Caledonian event.

However, the primary amphibolite facies mineralogy of these rocks is unlike-

ly to be Caledonian. For this to be the case, the rocks would have had to

have undergone a thorough static crystallization mimetic after the Precam-

brian schistosity, followed by a partial static, non-mimetic recrystalliza-

tion. For the rocks to have recrystallized this much in response to Cale-

donian events, yet never developed a Caledonian fabric, seems unlikely.

Consequently, the primary amphibolite facies assemblages in these rocks are

considered to be Precambrian.

The basement rocks of Hinndy are generally not of appropriate composi-

tions to develop diagnostic, low variance mineral assemblages. The most

useful rocks are the hornblende diorite and lower grade parts of the contact

hornfels which develop the assemblages:

hornblende + plagioclase (oligoclase-andesine) + biotite + quartz

actinolite + grunerite + plagioclase + biotite

These assemblages are characteristic of the amphibolite facies but

give little information about metamorphic conditions beyond this.

The Svecofennian metamorphism of the basement on east Hinndy was thus

mainly in the amphibolite facies, but reached granulite facies conditions

locally where intruded by the Middagstind Quartz Syenite. The presence of

such "contact" metamorphism within a regional metamorphic terrain finds an

analogy in the effect of the Bergell granitic complex in eastern Switzerland

(e.g., Ernst, 1973). The upward transfer of heat by the rise of the Bergell

body stretched out the isotherms on the east end of the Ticino thermal dome

to produce contact-like metamorphic zones which are continuous with the

widespread regional metamorphic zones of southern Switzerland. Similarly,
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the rise of the Middagstind syenite pluton above the regional granulite

facies boundary probably stretched the isotherms upward into a local dome,

producing contact-like granulite facies effects in the regional amphibo-

lite facies rocks.

Caledonian Metamorphism

Amphibolite Facies ("Main Stage")

Cover Rocks

All of the rocks of the structural cover on east Hinndy were thoroughly

recrystallized by Caledonian events. A considerable range of compositions

is observed within these rocks. However, there are relatively few occur-

rences of highly aluminous pelites or basic rocks, or of siliceous dolo-

mites, which typically generate low variance mineral assemblages capable

of tightly constraining metamorphic conditions.

The typical mineral assemblage of pelites is garnet + biotite + musco-

vite + quartz, which only indicates a minimum of upper greenschist facies

conditions. However, associated basic rocks (see'below) indicate the am-

phibolite facies was reached throughout the area, so that the absence of

key minerals such as kyanite reflects the modest alumina content of the

rocks rather than a lower grade of metamorphism (Figure 57). Three locali-

ties, (1) the power station roadcuts of Narvik Group rocks I km west of

Kilbotn, (2) the Storvann Group pelitic schist exposures on the east shore

of Storvann(S), and (3) shoreline exposures of Storvann Group quartz-garnet

schist at Fjelldal (Figure 58), include mineral assemblages more restric-

tive of metamorphic conditions. The assemblages, by locality, are:

(1) kyanite + garnet + biotite + muscovite + quartz

(2) kyanite + sillimanite + garnet + biotite + muscovite + quartz

(3) kyanite + staurolite + garnet + biotite + muscovite + quartz

The first of these assemblages lies in a divariant field of P/T space

bounded by the reactions (Figure 61):

staurolite + muscovite + quartz = kyanite + garnet + biotite + H20 (2)

kyanite = sillimanite (3)

muscovite + quartz + H20 = kyanite + melt, or (4)

muscovite + quartz = kyanite + K feldspar + H20 (4a)
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Figure 57: Thompson AFM diagram (Thompson, 1957) for metapelites of
east Hinndy.

Phase compatibilities shown are schematic rather than quanti-
tative. Dashed tie lines from staurolite to kyanite, garnet,
and biotite are present at the Fjelldal locality only.
Sillimanite is known only from one locality. Stippled region
indicates the inferred range of bulk rock compositions
typical of pelitic compositions in this area.

A203
A Kyanite (sillimanite)

FeO MgO

Biotite
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K- kyanite
S- sillimanite
St- staurolite
B- biotite
G-garnet
T-tremolite
C-calcite
Q-quartz
D-dolomite
All pelitic
assemblages T+C4
include quartz
and muscovite

K+S+G
STORVA A

Figure 58: Locations of
key metamorphic mineral
assemblages.
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Carmichael (1978) places the invariant point where reactions (2) and (3)

intersect at 4,8 kb and 540* C, which thus are minima for the conditions

which produced assemblage (2). The intersection of reactions (3) and (4),

which are appropriate to water-saturated conditions, is at 750* C and

9 kb (Mueller and Saxena, 1977). Since melting is nowhere observed, this

intersection provides an upper bound on metamorphic temperature. If the

system was not water-saturated, reaction (4a) may extend up to intersect

reaction (3), instead of reaction (4). This intersection would occur at

lower temperature and pressure than (4a); its precise location would depend

on the actual value of p1H 0. Consequently, the upper bound set by water

-saturated conditions applies to water-undersaturated conditions as well.

The appearance of fibrolitic sillimanite at locality (2) (see also

Chapter 2, p. 77), indicates an increase in metamorphic grade over assem-

blage (I). The temperature must have been near that of reaction (3), since

kyanite and sillimanite coexist in the specimen. The appearance of silli-

manite without the breakdown of the assemblage muscovite + quartz, and

without partial melting, indicates that the geothermal gradient intersected

reaction (3) below its intersection with reaction (4) or (4a), so that this

places a maximum of 9 kb upon the metamorphic pressure.

The occurrence of staurolite with kyanite, garnet, and biotite at lo-

cality (3) may result from one of two causes: (a) the assemblage is genuine-

ly univariant, corresponding to P/T/yI H 0 conditions coinciding with reac-

tion (2); or (b) the concentration of a minor element such as Zn, for which

staurolite has a strong affinity, is high enough to increase the number of

components required to describe the system, making assemblage (3) divariant.

Without an analysis of the staurolite, this ambiguity cannot be resolved.

In either case, the presence of staurolite suggests a somewhat lower grade

of metamorphism than assemblage (1), since even if staurolite is stabilized

by Zn, the rock must have been near the conditions at which reaction (2)

occurs in the absence of Zn.

Basic rocks are distributed throughout the study area, bearing the

assemblage

blue-green hornblende + oligoclase/andesine + clinozoisite + sphene

+ garnet

which is the definitive mineral assemblage for the almandine amphibolite

facies of Turner (1968). The assemblage is consistent with conditions
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inferred from pelites, but is itself not very restrictive of metamorphic

conditions. A para-amphibolite from the Kilbotn schist south of the

Storvann fault bears the mineral assemblage

hornblende + actinolite + garnet + quartz + calcite + clinozoisite

+ plagioclase

The hornblende/actinolite solvus is not calibrated at pressures as high

as 5 kb, so that these data do not further constrain metamorphic condi-

tions at present.

Although most of the carbonate rocks in the study area are calcite

-rich and do not generate diagnostic mineral assemblages at these condi-

tions, the assemblage

tremolite + calcite + quartz (+ white mica)

is widespread if sparsely developed (Figure 58). The absence of diopside

(with one exception discussed below) puts a maximum on metamorphic temper-

ature defined by the reaction:

tremolite + calcite + quartz = diop side + CO2 + H20 (5)

which has a temperature maximum in T/XCO space at X = 0.75. At I kb

the temperature maximum is at 540 + 50* (Winkler, 1913). Linear extrapo-

lation to 5 kb by the Clapeyron equation using thermodynamic parameters

from Robie and Waldbaum (1968) and Robie (1966) increases the temperature

maximum to approximately 625* C (see Figure 61).

Possible phase compatibilities for siliceous marbles on Hinndy are

shown in Figure 59. The reaction that separates the two diagrams,

talc + calcite = tremolite + dolomite + CO2 + H20 (6)

proceeds to the right (Figure 59A to 59B) at X = 0.94-0.98 at I kb and

temperatures within the stability of tremolite + calcite + quartz (Winkler,

1973). The assemblage tremolite + dolomite + quartz has been observed at

Storvann(S) (Figure 58); talc has not been observed in any specimen. Con-

sequently, the phase relationships shown in Figure 59B appear to be correct

for east Hinndy, implying high XCO in the metamorphic fluid of marbles on

east Hinndy. Reaction (6) intersects reaction (5) mear its maximum on a

T-XCO diagram. Consequently, the maximum metamorphic temperature set by

reaction (5) is essentially unaffected by which side of reaction (6) the

mineral assemblages lie.

Diopside is present in trace amounts in a calcareous schist from the

east shore of Storvann(S). Although the sensitivity of reaction (5) to



Figure 59: Phase compatibilities of siliceous marbles of east Hinndy.

A: XC02 < 0.94 - 0.98 B: XCO2 > 0.94 - 0.98

SiO 2

talc

Phase compatibilities shown in Figure 59B are favored (see text), implying high XCo, in volatile phase.
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XCO is moderate because both volatile species occur on the same side of

the reaction, low enough values of XCO (less than about 0.2) will stabi-

lize diopside at temperatures 50* or more below the maximum of the curve.

Consequently, this change in mineralogy probably does not reflect a dif-

ference in metamorphic grade, but rather a different fluid composition.

Basement Rocks

The textural effects of the Caledonian dynamothermal metamorphism on the

granite gneisses of the basement have been discussed in Chapter 3 (p. 151).

The mineralogical effects include the breakdown of plagioclase to more

sodic plagioclase plus clinozoisite, and formation of muscovite at the

expense of K feldspar, by the reaction:

anorthite (in plagioclase) + microcline + water = clinozoisite (7)

+ muscovite + quartz

Because all the phases involved in this reaction can stably coexist in a

granitic composition at a range of P/T conditions, the reaction represents

no change in fundamental mineral compatibilities. As a consequence, the

progress of the reaction does not necessarily require a change in P/T con-

ditions of equilibration. The one vital requirement for the progress of

reaction (7) is addition of water to the system. This further reinforces

the interpretation presented in Chapter 3 that the availability of water

was the main controlling factor in the development of a Caledonian over-

print in the pre-Caledonian granite gneisses.

The Middagstind Quartz Syenite has been thoroughly retrograded to an

amphibolite facies assemblage. Griffin and others (1978) suggested that

widespread retrogression of the granulites in Lofoten reported by Griffin

and Heier (1969) occurred at 1100 to 1000 Ma and was unrelated to Caledonian

events. However, on east Hinndy there is no structural, petrographic, or

geochronologic evidence of an event at 1000 Ma, and the preferred interpre-

tation is that retrogression of the Middagstind syenite was primarily a

Caledonian event.

Two mineral reactions are thought to be primarily responsible for the

Caledonian retrogression:

hypersthene + K feldspar + H20 = biotite + quartz (8)

ilmenite + clinopyroxene (clinoamphibole ?) + 02

= sphene + magnetite + quartz
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Reaction (8) is implied by the interpretation of the biotite + quartz meshes

in Figure 10 as pseudomorphs of orthopyroxene. Reaction (9) is basically

the oxidation of ilmenite to magnetite and sphene to produce the observed

rimming of opaques by sphene in Figure 10. The Ca in sphene may have come

from either the ferrohastingsite now present as relicts (?) in the rock, or

from clinopyroxene now completely consumed by the reaction. It is worthy

of note that the higher Ca/(Mg + Fe) ratio in clinopyroxene is more com-

patible with a balanced reaction. However, without an analysis of the am-

phibole, the interpretation remains uncertain.

Caledonian effects in the syenite thus include hydration and oxidation,

yielding a mineral assemblage stable under amphibolite facies conditions.

The orthopyroxene-bearing hornfels of the contact aureole of the

Middagstind syenite shows incipient retrograde metamorphism. The opaque

phase is thinly rimmed by garnet, which is in turn surrounded by granular

aggregates of plagioclase (Figure 60). This suggests a reaction of the form

plagioclase + magnetite (?) = garnet

Without mineral analyses, it is not possible to satisfactorily balance this

reaction.

Summary of Caledonian "Main Stage" Metamorphism

The conditions of the Caledonian thermal peak inferred for rocks on

east Hinndy are shown graphically in Figure 61. The temperature is con-

sidered to have been between 550* and 600* C on the basis of phase equili-

bria in pelitic and calcareous compositions. Pressure is constrained be-

tween 4.8 and 9 kb, indicating intermediate crustal depths.

No concrete suggestion of significant variation in Caledonian metamor-

phic grade on east Hinndy has been recorded. This contradicts the rela-

tions depicted in Gustavson's (1966, Fig. 2) metamorphic map, which shows

most of east Hinndy at garnet grade (upper greenschist facies), with only

one small area at staurolite or kyanite grade. Evidence from all rocks

examined in this study supports the conclusion that the entire study area

experienced amphibolite facies conditions (kyanite grade) during the

Caledonian orogeny. The absence of key indicator minerals in most rocks

appears to be compositionally controlled, rather than reflecting condi-

tions of metamorphism.
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Figure 60: Photomicrograph of rim of garnet(?) 6n opaque mineral in
hypersthene hornfels.

Plane polarized light, 75X.
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Figure 61: Summary of constraints on conditions of Caledonian main stage
metamorphism from mineral phase equilibria.

Stippled region: range of allowed conditions
Ruled region: range of conditions favored by author.

Abbreviations as in Figure 58, except:
D - diopside
A - andalusite

V - vapor (H20 + CO2) -
L - silicate liquid

Sources of phase boundaries:
A12 Sio 5 system: Holdaway and Lee, 1971

Staurolite breakdown: Carmichael, 1978

Muscovite + quartz breakdown: modified from Storre and
Karotke (1971) to be compatible with Holdaway and Lee
(1971)

Tremolite + calcite + quartz breakdown: Winkler, 1973;
extrapolated in P/T space by the author.
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Retrograde Metamorphism

Two types of retrograde metamorphism can be distinguished on east

Hinndy. The more important is a result of deformation extending beyond

the metamorphic peak (Figure 62; see next section). The late deforma-

tions D3, and. D where present, began to develop new mineral assemblages

replacing the amphibolite facies minerals along spaced cleavage planes

S3 and S . In pelites, the new mineral assemblage includes

chlorite + biotite + muscovite + epidote + quartz

Whether garnet was stable in any composition at this time is not clear; the

garnets produced by amphibolite facies metamorphism are invariably retro-

graded to chlorite + epidote, but this may be a function of composition.

No new garnet growth related to this event has been recognized, however.

In basic rocks, the assemblage

chlorite + biotite + epidote + calcite + quartz

is developed along the spaced cleavages. In carbonate rocks, tremolite is

commonly altered to a fine-grained aggregate of talc? + quartz + carbonate.

In marbles lacking tremolite, no affects attributable to this event are

present except an occasional slight flattening of carbonate grains into an

incipient solution (?) cleavage. The fact that these marbles, strongly

folded in F3 (see Plate 11B, D-D'), show such limited effects is also

supportive of the interpretation that F3 folds formed at still somewhat

elevated temperatures, since it implies the carbonate grains could readily

recrystallize to accomodate strain.

The mineral assemblages from D3 and D are characteristic of the green-

schist facies. A temperature around 350 to 400* C is most likely, but the

high variance of these assemblages does not allow quantitative constraints

to be placed on this.

The late crenulation in the Kilbotn Schist, S further retrogrades all

earlier assemblages, replacing biotite with more chlorite, and growing some

new biotite and muscovite. The essential mineral compatibilities are unal-

tered. To a first approximation, the continuous reaction (taken from

Miyashiro, 1973, P. 208-9)

phengite + chlorite = muscovite + biotite + quartz + H 20 (10)

appears to have shifted toward the left, but no discontinuous reaction,

where new mineral compatibilities are established, has been reached.

There is no indication that the retrogression associated with D3
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through D5 represents a separate metamorphism. More likely the late defor-

mations occurred during cooling after the thermal peak.

Local, strong retrogression is patchily developed in the study area.

parts of the contact aureole on the east side of the Middagstind syenite

have been strongly epidotized, producing both disseminated fine-grained

granular epidote and quartz-epidote-magnetite vein fillings. In the field

this was at first thought to be part of the contact metamorphic effects of

the syenite pluton. However, similar local retrogression occurs 2 km south

of Torskvatsfjell in Kvaefjord Group rocks, in Storvann Group quartz-garnet

schist on the south side of the summit area of Finnslettheia, and in re-

stricted patches throughout east Hinndy. Consequently, the Precambrian age

of the Middagstind syenite precludes any relationship between it and this

retrograde metamorphism. No alternative can be forwarded at this time.

Timing of Caledonian Metamorphism Relative to Deformation

Figure 62 summarizes the timing of deformations relative to an approxi-

mate thermal history. Evidence was presented in Chapter 3 ("Stangnes

Thrust") that the earliest Caledonian structures recognized on east Hinndy,

D,, probably developed under amphibolite facies conditions. In essence,

the mylonitic fabric at the basal thrust contact of the Stangnes Group

involves synkinematic growth of the amphibolite facies mineralogy (horn-

blende, oligoclase, clinozoisite), and has not experienced noticeable over-

printing by later fabrics or post-kinematic annealing.

Evidence for growth of garnet synchronous with early schistosity de-

velopment (generally S2) is common in more aluminous schists, but lacking

in less pelitic compositions. Garnet in the Storvann Group pelitic schist

includes an earlier schistosity (S,) as linear quartz inclusion trails

(Figure 63). These continue into an outer zone with sparser inclusions

which define curving trails, indicating synkinematic growth. Since S3
cleavage truncates this internal fabric at a high angle (Figure 64), the

curvature of the trails indicates growth synkinematic with D2'
Snowball inclusion trails in garnets are also locally preserved in the

Kilbotn Schist and the garnetiferous paragneisses of the Kvaefjord Group.

However, it is not clear in these examples whether the garnets grew syn-

kinematically in D or D2'
Kyanite in the Narvik Group pelitic schist and gneiss at Kilbotn grew
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Figure 62: Plot of metamorphism versus deformation.

Mineral abbreviations for grade in pelites are same as in
Figure 58, except Ch - chlorite.
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Figure 63: Photomicrograph of curving inclusion trails in garnet from
Storvann Group pelitic schist.

Plane polarized light, 30X.

Figure 64: Photomicrograph of relationship between internal and external
foliations of garnet porphyroblast.

Same specimen as Figure 63. Crossed polars, 13X.
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Figure 63.

Figure 64.
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parallel to the schistosity (S, parallel to S2) ; it is uncertain whether

this results from synkinematic growth during early deformations or static

mimetic growth following D2. Kyanite from the other localities mentioned

in the previous section has been too strongly retrograded, and the host

rocks too strongly overprinted by late cleavage formation, to determine

timing of kyanite crystallization relative to early deformations.

Abundant static porphyroblast growth occurred after D . In the Storvann

Group schists, randomly-oriented hornblende and plagioclase porphyroblasts

overgrow D and D2 fabrics (Figure 65). In the calcareous schists of the

sliver zone at the base of the DI nappe sequence, large poikiloblastic pla-

gioclases overgrow the early schistosity and F2 folds which deform it.

In the Kilbotn schist, the garnet and hornblende porphyroblasts preserve

the only evidence of a schistosity earlier than S3 (Figure 66). The in-

ternal foliation preserved in the porphyroblasts is essentially always

planar, indicating post-kinematic porphyroblast growth. The hornblende is

now commonly somewhat elongate parallel to S3, the late spaced cleavage,

but there is no indication of crystallographic preferred orientation. In-

stead, this appears to result from truncation of the hornblende grains by

S3 cleavage surfaces to leave relicts which are elongate in the younger

foliation (Figure 66B). The earlier schistosity is well preserved in the

garnet amphibolite boudins within the Kilbotn Schist. The absence of

quartz and micas, which are the dominant phases participating in the de-

velopment of the late cleavages, apparently made this lithology resistant

to D3 through D5 effects. Consequently, the hornblende still is aligned

both dimensionally and crystallographically to define a strong schistosity

which is locally overgrown, without rotation, by small garnet porphyro-

blasts.

All of the porphyroblasts in the rocks described above are retrograded

where they are intersected by S3 cleavage planes. Retrograde products are

chlorite + epidote in the case of garnet and hornblende, muscovite + quartz

+ chlorite in the case of kyanite and staurolite, and sericite + epidote in

the case of plagioclase (Figures 64, 65, and 66). Thus, the main porphyro-

blast growth appears to have occurred under static conditions between D2
and D3'

It cannot be categorically stated that the metamorphic temperature was

essentially unaltered from at least late D until after D2. Although this
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Figure 65: Photomicrographs of porphyroblast/matrix fabric relationships
in quartz-garnet schist of the Storvann Group.

A: Plagioclase: The albite-twinned porphyroblast grew as a
replacement of white mica which defines the early phase
microfolds seen here. The porphyroblast thus post-dates
these folds(F 2). It is in turn truncated by late solution(?)
cleavage seen running subhorizontally through the upper
part of the photo. Crossed polars, 75X.

B: Hornblende: The porphyroblast includes elongate quartz
inclusion trails which preserve S (or S 2?). The early

schistosity is also preserved by biotite grains in the
upper left corner of the photo. Both the porphyroblast
and internal foliation were then truncated, by later
spaced cleavage surfaces, here seen trending from upper
left to lower right at a high angle to the early schistosity.
Plane polarized light, 30X.
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Figure 65A.

Figure 65B.
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Figure 66: Photomicrographs of porphyroblast/matrix relationships in
Kilbotn schist.

A: Garnet: Poorly defined linear inclusion trails in central
zone of larger prophyroblast preserve early schistosity.
Inclusion-free rim is interpreted as interkinematic (post-D2'
pre-D ). Later spaced cleavage trace truncates garnet at
high Angle to earlier fabric. Plane polarized light, 75X.

B: Hornblende: Elongate quartz grains included in the hornblende
porphyroblast (dark grain in center of photo) preserve ear-
lier foliation. Hornblende elongation now seen is in large
part due to truncation by strong S, cleavage defined by
large biotite grains (subvertical fn photo). Plane polarized
light, 30X.
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is the simplest interpretation consistent with the facts, it cannot be

ignored that evidence of synkinematic growth of key minerals during 0, is

almost completely lacking. The possibility exists for a drop in tempera-

ture before or during D2 time followed by a temperature increase after D2
leading to the major period of porphyroblast growth. On the other hand,

it cannot be inferred that the peak conditions of metamorphism occurred

during the main growth of porphyroblasts. Porphyroblast growth may have

resulted when tectonic grain size reduction ended rather than at the time

of highest temperature. The key mineral assemblage, kyanite + garnet +

biotite, in part developed post-D 2 (the garnets locally overgrow S2), but

probably began to develop earlier, since the kyanite is elongate in 'he

schistosity.

As developed in the previous section on the late retrograde metamor-

phism, the late structural events seem to have occurred after the tempera-

ture had fallen below the amphibolite facies. The progressive retrogres-

sion of more and more biotite to chlorite (especially in the Kilbotn Schist)

suggests that these deformations occurred in a regime of continuously

decreasing temperature, presumably after tectonic stacking had ended, and

uplift and erosion had begun.
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CHAPTER 5: GEOCHRONOLOGY

I ntroduct ion

Prior to this study, no isotopic dating had been attempted of rocks on

east Hinndy. Consequently, it was considered worthwhile to attempt to

establish the rudiments of a temporal framework for some of the rock-form-

ing and structural events recognized in the field study. Rb/Sr geochron-

ology of selected rocks was undertaken with the following objectives: (1)

to determine ages for some of the basement rocks in order to better evalu-

ate the relationship of the basement terrain of east Hinndy to the Lofoten

terrain to the west; (2) to provide constraints on the ages of some of the

cover rocks; and (3) to provide constraints on the time of Caledonian meta-

morphism on east Hinndy. The use of the Rb/Sr decay system on whole rocks

of igneous origin also allows some constraints to be placed on the petro-

genesis of these rocks.

The units chosen for study as whole rocks were the Melaa Granite and

the Middagstind Quartz Syenite of the pre-Caledonian basement complex, and

the Ruggevik Tonalite Gneiss from the allochthonous Stangnes Group. The

selection of the units from the basement was a result of two considera-

tions: (I) both units show clear intrusive relationships with other rocks

of the basement complex so that minimum ages for other units are indirectly

established as well as dating the actual plutonic rocks sampled; and (2)

both of these bodies include undeformed or only slightly deformed portions.

Deformation probably enhances mobility of Rb and Sr, especially when accom-

panied by recrystallization of biotite and feldspar which contain the bulk

of these elements in the rock. Consequently, undeformed rocks are consi-

dered likely to have their whole rock isotopic systematics less disturbed

by metamorphic effects. The Ruggevik tonalite was chosen for study as the

only volumetrically significant granitoid body within the Caledonian alloch-

thons exposed on east Hinndy. It was hoped that this would yield a minimum

age for the formation of the protoliths of the Stangnes amphibolite which

it intrudes. Unfortunately, the whole rock systematics of this body are

badly disturbed, and no meaningful whole rock age can be derived from

the data presently available.

Biotite separates were prepared from samples of the M'iddagstind syenite

and the Ruggevik tonalite to provide a minimum age for Caledonian metamor-
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phism on east Hinndy and to compare the time of cooling from widely separ-

ated portions of the study area.

Sample Collection

Samples were collected mainly in the course of lithologic and struc-

tural mapping, so that the number and size of specimens was perhaps smaller

than that typical of a concerted geochronologic study. Samples were 3 to

5 kg blocks, trimmed of weathered material as much as possoble while on

the outcrop. The standard field criterion for sample freshness was the

author's inability to further crack the specimen with repeated blows of a

3 pound sledge. Petrographic examination appears to justify this criter-

ion.

Sample distributions for the three bodies are shown in Figures 67, 68,
and 69. Geographical spread of sample locations was a primary goal in

an attempt to maximize spread of Rb/Sr ratios. This procedure may have

compounded the difficulties encountered. with the Ruggevik tonalite, since

the petrographic variability (see Chapter 2) encountered in this unit may

result from a composite origin, with variable Sr/ 86Sr initial ratios.

However, the possibility that samples of the tonalite collected on a

smaller scale will yield better results has not yet been tested.

Sample Preparation

Samples were split into several subequant pieces about 5 cm on a

side, and all weathered-appearing material removed with a diamond saw (in-

cluding along any cracks, which occasionally were not noticed during sample

collection). The pieces were washed with water, and then the entire speci-

men was crushed in a jaw crusher and plate mill (steel crushing surfaces)

to maximum grain size of approximately 2 mm. A "representative" 50 to 100

grams of this material was selected for powdering by removing several small

scoopfuls of the crushed material. Powdering was done in a steel shatter-

box for 2 to 3 minutes, until the powder appeared fine and uniform. Powders

were stored in glass jars or polyethylene bags.

Biotite Separations

Four biotite separates were prepared, two from the Middagstind syenite

and two from the Ruggevik tonalite. On the the separations from the tona-
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Figure 67: Sample locations, Middagstind Quartz Syenite.
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Figure 68: Sample locations, Melaa Granite.

Area of granite stippled.
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lite sample 780C, was done using heavy liquids (bromoform) and a magnetic

separator by B. Nilssen at the Mineralogisk Museum in Oslo. Grain size

of this sample was approximately 100 mesh. Some further hand-picking and

concentration by shaking on filter paper yielded a reasonable degree of

purity (>95%).

The other three separates, from samples 26R and 27F of the syenite and

HQ-5 from the tonalite, were prepared by the author at M.I.T. The crushed

material was sieved for grains smaller than 35 mesh and larger than 60 mesh,

from which individual biotite grains were hand-picked. The only signifi-

cant impurity in these separates is quartz in the syenite specimens, which

is often intimately intergrown with biotite (see Chapter 2). However,

quartz should have no effect beyond dilution of the sample, and a high

degree of purity (>99%) is believed to have been achieved.

The lack of significant difference in age results (see Table 6) from

the separates prepared two different ways suggests that no problems with

mineralogical purity, chemical contamination, or bias due to different

grain sizes, were introduced by the biotite separation procedures.

All separates were washed twice each with acetone and ethanol in an

ultrasonic cleaner before dissolving. Chemical procedures were identical

to those used for whole rocks (see Appendix).

Analytical Techniques

Isotopic analyses were performed in two different laboratories. The

whole rock analyses of the Melaa Granite and Ruggevik tonalite samples

were done at the Mineralogisk Huseum of the University of Oslo, Norway.

The Middagstind syenite whole rocks, two Ruggevik tonalite whole rocks

(one a duplicate of a powder analyzed in Oslo), and all the biotite separ-

ates were analyzed at M.I.T. Chemical and filament loading procedures

differ somewhat between the two laboratories; these are detailed in the

Appendix. Slightly different results were obtained for 87Sr/ 6Sr of the

sample run at both laboratories (.70520 at Oslo, .70505 at M.I.T.); the

values barely overlap at the 2a confidence level. Since high precision of
87 86

initial Sr/ Sr was not a primary focus of this study, precise cross

calibration was not attempted (all values are normalized to a value of
87 86

Sr/ Sr = .70800 for Eimer and Amend SrCO 3) In age calculations,

values from only one laboratory were used. This additional small source
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of uncertainty, not explicitly expressed, must be born in mind when inter-

preting initial 8 7Sr/ 86 Sr calculated from whole rock data. The source of

the difference in the analyses from the two laboratories is uncertain, but

is assumed to be systematic so that relative values of analyses are ac-

curate, and hence age calculations are unaffected.

Mineralogisk Museum

Rb and Sr concentrations were determined by X-ray fluorescence spectro-

scopy (XRF), using techniques developed by S. Jakobsen modelled after

Pankhurst and O'Nions (1973). The XRF-analyses for both Rb and Sr of most

of the Melaa Granite samples, and Rb analyses of three of the Ruggevik

tonalite samples, were checked by isotope dilution using a mixed 87Rb- 84 Sr

spike. Agreement of the techniques was consistently within the + 5% accur-

acy estimated for XRF and + 1% estimated for isotope dilution (20 confi-

dence level), with the exception of Sr for one sample (1009-2), which con-

tains less than 10 ppm Sr. The isotope dilution values are considered

more reliable, especially at low concentrations, and are used where avail-

able. Rb and Sr concentrations determined in Oslo are listed in Tables

4 and 5, annotated with regard to the technique used to obtain the value

listed.

Sr isotopic compositions were determined on spiked and unspiked samples

on a Micromass MS30 spectrometer, using precedures modelled after Pankhurst

and O'Nions (1973; see also Appendix below). Analyses and analytical pre-

cision are given in Tables 4 and 5.

M.I.T.

Rb and Sr concentrations were determined by isotope dilution. Ana-

lytical precision is considered better than + 1% in all cases, and probab-

ly close to 0.1% for Sr for which a mass fractionation correction was made,

using 86Sr/ 88Sr = 0.1194 as a normalizing standard.

Sr isotopic compositions were determined on spiked samples on NIMA-B,

a 9 inch-60* solid source mass spectrometer built at the Carnegie Insti-

tution of Washington and now in use at M.I.T. Results are listed in Ta-

bles 3, 5, and 6.

In general, precision of the analyses at M.I.T. is superior, but

greater difficulty was experienced in obtaining a stable ion beam during
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Sr runs. Both of these differences are probably a consequence of two

differences in procedure: (I) the use of perchloric acid rather than ni-

tric acid as an oxidizing agent in the M.I.T. chemical procedure; the

perchloric acid is difficult to remove completely from the sample, and if

present, has disastrous effects upon performance in the spectrometer; and

(2) the use of phosphoric acid in Oslo as a loading medium as opposed to

Ta2O5 at M.I.T. The phosphoric acid seems to promote ionization of Sr

somewhat more consistently, but tends to give a noisier signal.

Results and Discussion

Middagstind Quartz Syenite

The Rb/Sr whole rock data from the Middagstind Quartz Syenite (Table

3) are plotted on an isochron diagram 87 Sr/ 86Sr vs. 87Rb/ 86Sr) in Figure

70. Linear regression of these data using a computer program modelled af-

ter York Model 11 (York, 1966; Brooks and others, 1972), gives an age of

1726 + 31 Ma with initial 87Sr/ 86Sr of 0.7065 + 0.0003 (2a confidence le-

vel). While the points define a reasonably good linear array, departures

from the best fit line exceed analytical error and must be attributed to

geological causes. The most likely source of scatter is the Caledonian

thermal overprint. While no apparent deformation affected any of the

samples analyzed, mobility of fluids during Caledonian time, perhaps as

an intergranular phase, was adequate for water to permeate the intrusion

to the extent that all primary pyroxene was replaced by biotite + quartz

(Chapter 4). Consequently, there is good reason to believe that some

movement of Rb and Sr also occurred, accounting for the mild scatter of

the data.

Both the age and initial ratio indicate that the Middagstind Quartz

Syenite is a product of the period of granulite facies intrusions (mainly

mangerite) widely developed to the west of Hinndy in the Lofoten terrain.

Griffin and others (1978) report ten Rb/Sr whole rock ages from intermedi-

ate to acidic plutons of similar overall chemistry ranging from 1805 to

1695 Ma, and initial 87Sr/ 86Sr ranging from 0.7030 to 0.7051. While the

initial ratio obtained here is above the range reported by Griffin and

others, most of these initial ratios lie above probably inferred mantle

evolution paths of 8 Sr/ 86Sr at 1700 Ma (e.g., Faure, 1977), suggesting
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TABLE 3: Rb/Sr whole rock analyses from the Middagstind Quartz Syenite.
See Figure 67 for sample locations.

Sample Rb(ppm) Sr(ppm) Rb/ Sr Sr/ Sr + 2a

17A 52.3 243.2 0.6013 0.72053 + .00005

17D 47.1 252.1 0.5402 0.72142 + .00006

16A 58.8 247.8 0.6707 0.72146 + .00006

17B 54.4 244.9 0.6279 0.72183 + .00009

27F 54.4 219.0 0.7021 0.72414 + .00006

16E 57.5 185.8 0.8946 0.72848 + .00008

26R 50.9 137.2 1.051 0.73466 + .00006

171 73.7 100.3 2.046 0.75632 + .00008

291 80.0 57.6 3.96 0.80137 + .00006

TABLE 4: Rb/Sr whole rock analyses from the Melaa Granite.
See Figure 68 for sample locations.

Sample Rb(ppm) Sr(ppm) Rb/ Sr 87Sr/86Sr + 2

1013A 87 219 1.15 0.74250 + .00010**

538C1 108* 128* 2.44 0.76656 + .00014

538C2 109* 133* 2.38 0.76731 + .00013

1008-1 100 21.9* 13.4 1.00876 + .00007

1008-2 102* 20.2* 15.31 1.01440 + .00007

1009-2 94.5* 8.20* 36.4 1.65201 + .00012

546 110* 5.34* 68.8 2.24652 + .00014

538B 117* 4.7 81.3 2.14219 + .00015**

* Determined by isotope dilution; other concentrations in Table 4
determined by X-ray fluorescence.

** Unspiked run.
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involvement of some continental crust in the magma genesis of the entire

intrusive suite (Griffin and others, 1978). As a consequence, the slightly
87 86

higher initial Sr/ Sr determined for the Middagstind syenite does not

significantly weigh against this correlation. It is also possible that

the isochron has been rotated slightly by metamorphic overprinting, con-

sequently raising the apparent initial ratio.

It is believed that this age reflects the time of igneous crystalli-

zation of the Middagstind syenite rather than closure after metamorphic

homogenization of Sr. The reasonable uniformity of both initial 8 7Sr/ 86 Sr

and ages now determined for eleven plutons of the suite is good: nine of

the ten ages in Griffin and others (1978) have error ranges which overlap

that presented here. Furthermore, the Proterozoic supracrustal (metavol-

canic?) rocks of Langdy and Austavaagdy gave an only slightly older Rb/Sr

whole rock age of 1830 + 35 Ma (Griffin and others, 1978) which those

authors considered to reflect homogenization of Sr in the granulite facies

metamorphism. It is not clear why the Rb/Sr systems should have closed

so early in the supracrustal rocks when the petrography of the mangerite

suite, younger on the basis of both isotopic and field criteria, indicates

that granulite facies conditions persisted until at least 1700 Ma. The

author as a result prefers the interpretation that the age obtained from

the supracrustal rocks reflects the time of formation of these rocks, ra-

ther than their metamorphism. The Proterozoic supracrustals are intruded

by rocks of the mangerite suite on Flakstaddy, thus indicating that the

mangerites must have initially formed after 1830 Ma. Consequently, the

1800 to 1700 Ma ages are considered to reflect the time of emplacement of

the mangerite plutonic series, consistent with the interpretation of

Griffin and others (1978).

Melaa Granite

Rb/Sr whole rock data from the Melaa Granite are plotted on an isochron

diagram in Figure 71. The best-fit regression line (York model I, Brooks

and others, 1972) shown does not include sample 538B, which came from a

0.5 m thick aplite dike cutting wall rock amphibolite. The dikecontain-

ing only about 5 ppm Sr, was highly vulnerable to contamination by less

radiogenic Sr from the wall rocks. It is thought that the dike rock ex-

changed Sr with its surroundings during Caledonian metamorphism, account-



0 0

Figure 71.

2.0

1.5-

(DC)

(8

0.5

538B
0

Melaa Granite
Rb/Sr whole rocks

1009-2

0.7155 ± 0.0056

20 8 7R b/8 6Sr 40 60 80



226

ing for its position off of the linear trend. All other samples, showing

a smaller degree of disturbance, were included in the regression, which

+ '5 a it iital87 86
yields an age of 1559 + 155 Ma with initial Sr/ Sr = 0.7155 + .0056.

The large error in the age reflects greater disturbance of the isotopic

systematics than in the Middagstind syenite. This is consistent with the

fact that all but one of the samples (1013A) has some amount of tectonite

fabric development. Two possible interpretations of this age are con-

sidered: (I) the igneous crystallization of the Melaa Granite was earlier,

perhaps as part of the petrographically similar Gullesfjord Gneiss, which

gave a Rb/Sr whole rock age of 2660 + 120 Ma (Griffin and others, 1978),

but has been updated by Sr homogenization during metamorphism; or (2)

the age approximately reflects the igneous crystallization of the Melaa

Granite.

The high initial ratio determined here is not compelling evidence for

metamorphic updating. The Lddingen Granite, which may be equivalent to

the Melaa Granite (see below), has an initial Sr/ Sr of 0.7118 + .0015

(Griffin and others, 1978), which overlaps the error range of the Sr

initial ratio determined for the Melaa Granite in this study. Being true

granites, both could result from anatexis of preexisti.ng crust, thus ex-

plaining their high content of radiogenic Sr.

Field observations incline the author to favor the second interpreta-

tion. North of Hesjevann (Plate 1), there is an area of nearly one square

kilometer of fabricless, undeformed Melaa Granite (Figure 41). If this

were equivalent to the Gullesfjord Gneiss, it has survived undeformed sev-

eral phases of Precambrian deformation accompanied by high amphibolite

(sillimanite grade) to granulite facies metamorphism, which succeeded in

penetratively deforming all of the equally massive granitoid rocks of

west Hinndy (Hakkinen, 1977). No known pre-Svecofennian rocks from Lofoten

escaped the Svecofennian deformation; only the later intrusions of the

mangerite suite (such as the Middagstind Quartz Syenite) were undeformed.

Consequently, an age of crystallization younger than about 1750 Ma seems

very likely.

The age determined for the Melaa Granite in this study, 1559 + 155 Ma,

overlaps error ranges of the two age determinations of the Lddingen Gran-

ite on Hinndy (1415 + 80 Ma, P. Taylor, pers. comm. to Hakkinen, 1977;

1380 + 80 Ma, Griffin and others, 1978), though considerably older.

NOW.
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This may reflect Rb loss from some whole rock systems. Sample 1009-2,

which falls above the regression line, was the most strongly foliated

sample analyzed. Because the foliation provides channelways for water,

weathering is a problem in foliated samples, and this specimen was found

somewhat softer than others during preparation. Consequently, Rb loss by

weathering of K feldspar to kaolinite may have occurred in sample 1009-2.

If this point is discarded, and the remaining points are regressed to-

gether, the result is an age of 1465 + 100 Ma with initial 87Sr/ 86Sr of

0.7177 + .0017, considerably closer to the Ldingen Granite determinations.

Consequently, the Melaa Granite is-considered to be middle Protero-

zoic in age and distinct from the Gullesfjord Gneiss. It is possible that

it is correlative with the Lddingen Granite, though separated from it by

the Austerfjord thrust. Further isotopic age and geochemical studies of

these granites are needed to better evaluate this possibility.

Ruggevik Tonalite Gneiss

The Rb/Sr whole rock data collected in Oslo from the Ruggevik tona-

lite are plotted on an isochron diagram in Figure 72. Three observations

about the data are significant. First, the Rb/Sr ratios of the rocks are

uniformly low, so that the evolution of Sr isotopic composition with time

has been small; consequently, even in the absence of a well-constrained

age, some limits can be put on the initial Sr isotopic composition of the

systems. This is especially true since the Sr concentrations are high,

ranging from 490 to 1250 ppm; large amounts of Sr must be transferred to

make major changes in isotopic composition of this unit.

Secondly, the systems are disturbed enough to destroy any convincing

isochron relationship. The samples are petrographically variable. This

may reflect a composite nature to the intrusion, with internal variability

of initial Sr isotopic composition. Thus, some of the scatter may be pri-

mary. However, the more likely explanation is that Caledonian events have

been adequate to move Rb and Sr on a scale larger than the sample size.

The rocks are strongly penetratively deformed and completely recrystal-

ized in Caledonian events.

Linear regression of the data (York Model 1) yields an "age" of 720 +

220 Ma with initial 87Sr/ 86Sr = 0.7045 + .0003. The significance of the

age is questionable at best. It is of the right order to correspond to
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TABLE 5: Rb/Sr whole rock analyses from the Ruggevik Tonalite Gneiss.
See Figure 69 for sample locations.

Sample Rb(ppm) Sr(ppm) 87Rb/ 86Sr 87Sr/86Sr + 2

613A 15.8* 830 .055 0.70525 + .00010

613B 9.28* 600 .045 0.70520 + .00006

613C 24.6* 1246 .057 0.70471 + .00011

613D 38.9 774 .143 0.70552 + .00010

613E 18.0 490 .106 0.70555 + .00012

78081 54.7 1052 .150 .070647 + .00008

780C 39.1 1217 .093 0.70521 + .00011

1014B 25.9 1039 .072 0.70526 + .0008

* Determined by isotope dilution: other concentrations by XRF.

Ruggevik tonalite whole rock analyses done at MIT (all by isotope dilution)

HQ-5 30.5 1207 .0730 0.70476 + .00004

780C 41.1 1241 .0934 0.70526 + .00006

TABLE 6: Rb/Sr biotite analyses from the Middagstind Quartz
Ruggevik Tonalite Gneiss.

Sample Rb(ppm) Sr(ppm) 87Rb/ Sr Sr/ 86Sr + 2a

26R 203 9.89 59.4 1.03442 + .0005

27F 227 5.41 121.4 1.32051 + .0006

HQ-5 290 27.9 30.0 0.85760 + .00015

780C 311 66.4 13.5 0.77109 + .00010

Syenite and

Age(Ma) + 2a

361 + 3

347 + 4

358 + 4

362 + 5
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the early stages of the development of the Iapetus ocean, the closure of

which resulted in the Caledonian orogeny. Hqwever, given the data this is

more speculation than interpretation.

The calculated initial 7Sr/ 86 Sr puts a reliable upper bound on the
8 Sr/ 86 Sr of the rock at the time of crystallization, since any disturbance

is likely to increase rather than decrease the value obtained. While

clearly too high to argue for a source in depleted, ocean ridge type man-

tle, it is very low for granitic rocks developed in Precambrian continen-

tal crust (c.f. Kistler and Peterman, 1973; Armstrong and others, 1977;

Early and Silver, 1973). The most likely setting for the formation of the

Ruggevik tonalite, on the basis of the relatively non-radiogenic Sr isoto-

pic composition, the lithology itself, and the high Sr concentrations, is

in an island arc, with or without some continental basement. Slightly

radiogenic Sr isotopes are typical of island arc settings (e.g., Faure,

1977, p. 116). As noted in Chapter 2, tonalitic plutons are typically

developed in convergent margin arcs in either oceanic or very young con-

tinental crustal basement.

The high bulk Sr content of these (and most) tonalites is an unre-

solved petrogenetic problem. Any residual feldspar in the source region,

or any feldspar crystal fractionation, will prevent Sr concentration in

the magma from approaching the 1250 ppm Sr commonly observed, given reason-

able crystal/melt partition coefficients and bulk Sr concentration in the

system (1000-1500 ppm Sr at a maximum). Certainly, given the Sr concentra-

tions typical of continental crustal rocks (e.g., the rocks of the Lofoten

terrain typically range 100-500 ppm Sr, according to analyses by Griffin

and others, 1978), it is essentially impossible to generate high Sr tona-

lites from typical continental crust even by total melting of the feldspar

component in the source. Consequently, it seems more likely that high Sr

tonalites are generated from melting of Sr-rich mafic materials; nonethe-

less, an eclogite facies mineralogy (plagioclase absent) seems to be

necessary.

Biotite Ages

Four biotite separates, two from the Middagstind Quartz Syenite and

two from the Ruggevik Tonalite Gneiss, were analyzed for Rb/Sr isotopic

systematics with three objectives: (I) to determine if the Middagstind



231

Syenite, given its lack of Caledonian fabric, had suffered Caledonian ther-

mal effects; (2) to place a younger time limit on Caledonian metamorphism;

and (3) to compare the time of closure of the same mineral system from two

areas separated by about 10 km to evaluate the uniformity of post-Caledon-

ian cooling history in the study area.

The data, recorded in Table 6, are plotted in Figure 73. Whole rock

data from tonalites used here were collected at M.I.T., including a new

analysis of sample 780C, in order to eliminate the inter-laboratory ana-

lytical problem noted above. The ages calculated from these data, 358 +

4, 362 + 5, 361 + 3, and 347 + 4 Ma are considered to show satisfactory

consistence. The lower age of sample 27F is not understood, since it is

not significantly different in grain size from the other syenite, 26R, and

was collected only I km away.

The late Devonian ages from the biotites in the Middagstind syenite

indicate that these basement rocks experienced temperatures above a minimum

of about 280* C during Caledonian events (Hodges and others, 1980). The

interpretation that the shear zones at Middagstind, which formed at amphi-

bolite facies conditions, developed in Caledonian D2 (see Chapter 3) im-

plies considerably higher temperatures were reached. These isotopic data

constitute an independent check that elevated temperatures did develop in

the pre-Caledonian basement at Middagstind during Caledonian time.

Similarly, the relatively low closure temperature of the biotite Rb/Sr

system calculated by Hodges and others (1980) implies the actual thermal

peak of Caledonian metamorphism was significantly earlier. This is consis-

tent with stratigraphic observations further south in the Scandinavian

Caledonides (Nilsen, 1973; Gee, 1975) which indicate that Caledonian defor-

mation was completed in early Devonian time. These ages thus appear to

reflect post-kinematic uplift of the area. The consistency of these ages

over the breadth of the study area, and their further consistency with

K/Ar mica ages 60 km to the south (Hodges and others, 1980), suggests this

uplift was essentially a rigid, isostatically controlled process rather

than one that involved significant deformation.

Deformation and the Disturbance of Rb/Sr Whole Rock Systems

Compston and Raaheim, along with others, in empirical studies of the

resetting of Rb/Sr whole rock systems by metamorphism (e.g., Roddock and
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Compston, 1977; Raaheim and Compston, 1977; Gabrielsen and others, 1979),

have emphasized the importance of deformation and fluid mobility in the

movement of Rb and Sr (especially Sr). In the present study, no evidence

of resetting of whole rock systems has been observed, but disturbance of

the systems varies from mild to intense. The degree of disturbance of Rb

/Sr systematics in the plutonic rocks studied on east Hinndy appears to be

grossly proportional to the intensity of Caledonian deformation, but not

related in a simple way to fluid mobility. For instance, water permeated

the entire Middagstind syenite to produce thorough retrograde metamorphism

without seriously disturbing the Rb/Sr systematics on the whole rock scale.

It is possible that the actual mechanism of movement of volatile com-

ponents, e.g., diffusive versus infiltrative movement (Korzhinsky, 1952),

differs depending on the presence or absence of accompanying penetrative

deformation. The dominant transport mechanism under static conditions

(e.g., grain boundary diffusion?) may not significantly affect mobility

of non-volatile components such as Rb and Sr. By contrast, Rb and Sr

may move much more rapidly if a fluid phase carrying non-volatile solutes

is moved infiltratively through a rock. This latter mechanism might oper-

ate when a rock is deforming penetratively, even if interconnected pore

space is not present, since rock volumes are displaced with respect to

one another. Thus, fluid bearing Rb and Sr might be displaced through the

rock in response to deformation at a rate much larger than simple diffu-

sion could transport the Rb and Sr.

Alternatively, the change in apparent mobility of Rb and Sr may be a

result of enhancement of solid state diffusion by plastic deformation of

mineral grains. Introduction of additional dislocations by deformation

will greatly enhance the rate of volume diffusion by crystal defect-con-

trolled mechanisms.

It is not certain which of the above effects is more important in the

enhancement of mobility of Rb and Sr by deformation. However, it seems

certain that static metamorphism alone, regardless of fluid movement, does

not adequately affect mobility of non-volatile species like Rb and Sr to

strongly affect isotopic systematics on the whole rock scale.



234

CHAPTER 6: REGIONAL TECTONICS

Tectonic Context of East Hinndy

Introduction

The Scandinavian Caledonides comprise the eastern half of a two-sided

orogen, extending 1500 km from southwestern to northwestern Norway, and

eastward into western Sweden. The structural vergence is dominantly toward

the Precambrian Baltic Shield. The western half of the orogen is preserved

in east Greenland, the Cenozoic opening of the Norwegian Sea having split

the orogen longitudinally along its axis (Talwani and Eldholm, 1977; see

Figure 2). In east Greenland, Caledonian structural vergence is mainly

westward (Henriksen and Higgins, 1976). Dewey (1969) suggested that the

presence of allochthonous rocks of oceanic affinities in Norway indicated

that the Scandinavian Caledonide orogen formed as a result of closure of

a proto-Atlantic ocean (the lapetus ocean of Harland and Gayer, 1972), cul-

minating in the collision of the Greenland and Baltic cratons in Siluro

-Devonian time. In Scandinavia, the collision caused thrusting of large

sheets of metasedimentary and metavolcanic rocks from oceanic and continen-

tal margin settings, together with varying amounts of pre-Caledonian conti-

nental basement, onto the Baltic craton. Subsequent uplift of coastal

Norway exposed the Baltic continental basement underlying the allochthons.

Consequently, the Caledonian allochthons in Scandinavia are essentially

enormous klippen in a synformal region between the Baltic shield and the

coastal basement exposures ("western gneiss terrain") of Norway (Gee,

1975a).

Locally, transverse upwarping has produced a series of windows and half

windows through the nappe pile (Figure I). The Rombak window, one of the

largest of these, appears directly to the southeast of the study area

(Figure 3), exposing (par-)autochthonous granite gneisses of the Baltic

craton in a position underneath the Caledonian nappe stack.

Position Within the Collisional System

Burchfiel and Davis (1968) noted that in two-sided orogenic belts, the

sense of vergence of one of the thrusted terrains is the same as that of

the subduction boundary ("synthetic" thrusting), while the other has the
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opposite sense of vergence ("antithetic" thrusting). Thus, the location

and sense of subduction during convergence and collision is fundamental

to understanding the tectcnic implications of relationships observed in

the Scandinavian Caledonides, since it is vital to know where within the

collisional system specific relationships developed in order to contri-

bute to understanding of the system as a whole.

Gee (1975a) has shown that in the central Scandinavian Caledonides,

the surface trace of the subduction zone must presently lie west of the

present Norwegian coastline. The present study.has demonstrated that

this relationship is also correct at the latitude of Hinndy (see below,

and Chapter 3, "Austerfjord Thrust").

Several lines of evidence suggest-that this subduction was westward

under Greenland, making the thrusting oF the Scandinavian Caledonides

synthetic to the subduction.

A feature typical of convergent plate margins is the presence of a

magmatic belt, commonly of calc-alkaline affinites, in the overriding

plate. No igneous rocks of Caledonian age are known to intrude the

Baltic continental basement anywhere in the Scandinavian Caledonides;

all Caledonian intrusions occur in allochthonous rocks and were probably

emplaced before the allochthons reached their present position upon

Baltic continental basement. By contrast, Siluro-Devonian magmatism

is widespread, though of undetermined volumetric significance, in the

east Greenland Caledonides (Coe, 1975; Steiger and others, 1979). Con-

sequently, it appears that if there was a continental margin magmatic

belt, it was in east Greenland.

Subduction produces a depressed thermal gradient in the downgoing

plate (e.g., Oxburgh and Turcotte, 1970), resulting in relatively high P

metamorphism (e.g., Ernst, 1971). Metamorphism in the Scandinavian

Caledonides is mainly of the intermediate pressure, kyanite/sillimanite

type of Miyashiro (1961). However, the presence of the mineral assem-

blage kyanite + garnet + biotite (Chapter 4) indicates that the metamor-

phism is of a relatively high pressure variety of the kyanite/silliman-

ite type, corresponding to "bathozone 5" of Carmichael (1978). Further-

more, there are possible indications of true high P metamorphism in the

western gneiss terrain of Norway. Brueckner and Griffin (1980) reported

five Sm/Nd garnet-clinopyroxene ages of 407 to 447 Ma from eclogite bodies
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in the western gneiss terrain of Norway. These authors interpret the meta-

morphism to have occurred in situ within the gneisses, thus indicating high

P metamorphism may have occurred in the Baltic continental basement in this

area in Caledonian time.

In the Trondheim region (central Scandinavian Caledonides) rocks of

oceanic petrochemical affinities (Gale and Roberts, 1972, 1974) occur at

the highest preserved structural levels of the orogen in Scandinavia.

Horne (1979) has presented evidence that these rocks comprise an island

arc which was underthrusted synthetically by the Baltic craton in Silurian

time.

Consequently, the evidence consistently supports the view that the rocks

now exposed in the Scandinavian Caledonide orogen were deformed as a synthe-

tic thrust terrain developed in the underthrusted plate of a collisional

orogen. The structural development recorded in the study area primarily

records the effects upon-the downgoing continental crust and its associated

cover rocks during the collision of two continental masses at a convergent

plate boundary.

Tectonic Model for the Caledonian Orogeny in the Lofoten-Rombaken Transect

Regional Comparison of Deformational Sequences

The segment of the Scandinavian Caledonides from the Lofoten terrain

on the west across to the (par-)autochthonous gneisses of the Baltic craton

exposed in the Rombak window is termed for convenience the Lofoten-Rombaken

transect. The present study area on east Hinndy is located near the middle

of this transect (Figure 74), at the contact between the Lofoten terrain

(western gneiss terrain) and the major Caledonian allochthons. Figure 75

summarizes and compares the sequences of Caledonian structural events from

this and other structural studies in the area of the Lofoten-Rombaken tran-

sect (Hakkinen, 1977; Tull and Hodges, work in progress; Olesen, 1971) and

suggests correlations of events. Designations in the following discussion

(DI, D2, etc.) will be those used for events on east Hinndy (see Chapter

3), except where otherwise noted.

The earliest event in the study area, the emplacement of the allochthons

upon the Baltic craton, appears to be expressed on west Hinndy only by ear-

ly mesoscopic isoclinal folding in the Austerfjord Group (.F0 of Hakkinen,



Figure 74: Locations of structural studies to date in the Lofoten-Rombaken
transect. Ha: Hakkinen, 1977; B: this study; T: Tull and Steltenpohl,
unpublished; Ho: Hodges, in progress; 0: Olesen, 1971.



* S 0

Figure 75: Comparison of structural/metamorphic histories from studies in the Lofoten-- Rombaken
transect (see figure 74 for locations).

- Width of strip in middle of each diagram is expression of grade of metamorphism.
Dashed lines indicate suggested correlations of events.
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1977). Tracing in reconnaissance structures of D, age from east Hinndy to

Hodges' study area at the Tysfjord culmination indicates that the emplace-

ment of the allochthons upon the western gneiss terrain was roughly syn-

chronous in the two areas. Hodges (pers. comm., 1979, 1980) has reported

evidence of earlier folds and thrusts which developed elsewhere and are

allochthonous along the D thrusts. No equivalent of these older events

has been recognized on east Hinndy.

As discussed in Chapter 3, movement on the Austerfjord thrust and the

FI fold phase of Hakkinen (1977) are both considered to belong to D2 of the

present study. No clear evidence of structures attributable to this defor-

mation has been reported from the area of the Tysfjord culmination.

Correlation of early events descri-bed by Olesen (1971) from the

Maalselv area to those described here is speculative, given the large inter-

vening area which has been mapped only in reconnaissance. It is likely

that Olesen's F2 fold phase, which produced south vergent recumbent folds

on a scale of kilometers under kyanite grade metamophic conditions, is in

some way related to the present D2 deformation, but need not be strictly

synchronous with it. This would imply that the SI fabric and rare F folds

of Olesen's study may have formed during the initial emplacement of the

nappes and correlate with D on Hinndy. In the Maalselv area, porphyro-

blast growth occurred before the completion of F2, while porphyroblasts

grew mainly after the D2 folding on Hinndy. Whether this records dia-

chroneity of deformation, metamorphism, or (most likely) both, is not

certain.

At least one period of thrusting is present in the Tysfjord and Maalselv

areas that has no apparent equivalent on Hinndy. The thrusts that rim the

Rombak window, and the thrusts which bound Olesen's upper and lower nappes

in the Maalselv area are included in this event. These thrusts post-date

Caledonian amphibol ite facies metamorphism, retrograde mineral assemblages

to greenschist facies along the thrust zones, and truncate earlier struc-

tures (Gustavson, 1966; Olesen, 1971; author's own observations north of

Narvik). The inclusion of all these thrusts in a single phase is a result

of ignorance. When the area between the north edge of the Rombak window

and the Maalselv area is better studied, diachroneity in late thrusting is

likely to be substantiated.

The absence of the post-metamorphic thrusts west of the Rombak window
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requires these thrusts to root into the western gneiss terrain basement,

such as Gee (1975a, b) shows for several thrusts in the central Scandinavian

Caledonides. Some authors (e.g., Nicholson and Rutland, 1969) have assumed

equivalence of the post-metamorphic thrusts of the eastern areas to synmeta-

morphic thrusts further west. In the Lofoten-Rombaken transect, the post

-metamorphic thrusts clearly retrograde the same metamorphic mineral assem-

blages which formed during the synmetamorphic thrusting. There is little

question the two events are distinct in time. Consequently, where the late

thrusts dip westward at the edge of the Rombak window, these thrusts must

pass downward into the basement, making -the western gneiss-terrain alloch-

thonous in this event.

Correlation of late fold phases on a one-to-one basis on this scale is

probably not realistic and has not been seriously attempted in this study.

Milnes (1974) has discussed the local variability of late fold development

in the central Pennine Alps. The local nature of F and F5 on east Hinndy

has been noted in Chapter 3. Late folds in general represent the buckling

and further thickening of the tectonic stack in response to continued con-

vergence after the ending of nappe tectonics. The structural complexity

of the rocks being deformed at this stage is obvious from the complexity of

the preceding events. Corresponding complexity in the mechanical response

of this system to stress is likely. Consequently, significant differences

in late stage strain history from one location to another should be expected.

Generalized Tectonic Model

Figure 76 illustrates the regional tectonic model hypothesized for the

Lofoten-Rombaken transect on the basis of present knowledge, in the form of

NW-SE "cartoon" cross-sections. Figure 76A illustrates the emplacement of

the allochthons upon the Baltic craton, including the Lofoten terrain.

Autochthonous cover rocks (Storvann Group) are locally preserved, but other-

wise have been stripped and transported eastward near the leading edge of

the imbricate nappe stack. The allochthons were emplaced under amphibolite

facies conditions. It is not clear at what time the subjacent pre-Caledon-

ian basement of the Baltic craton reached thermal equilibrium with the over-

riding nappes, but the amphibolite facies metamorphism and basement involve-

ment in the ductile deformation during D2 indicates that thermal equilibrium

was at least approached by D2 time. No evidence of significant thermal in-
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Figure 76: Inferred Caledonian structural/tectonic development of the
Lofoten-Rombaken transect.
A: Emplacement of allochthons as imbricate thrust sheets.

Note local preservation of autochthonous sedimentary cover
(Storvann Group - stippled).

B: Failure of basement along relatively weak Austerfjord Group
rocks (ruled), forming Austerfjord thrust and recumbently
folding cover and basement.

C: Further thrusting of basement and its stuctural cover along
late metamorphic thrusts.

D: Refolding of structural stack.

A

B

C
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version was preserved.

Figure 76B shows the faulting of the Lofoten basement terrain to pro-

duce the Austerfjord thrust and the resulting recumbent infolding of the

autochthonous and allochthonous cover rocks with the basement. This pro-

duces local inversion of the nappe sequence, and brings the Lofoten terrain

to a higher structural position. It is important to note that this struc-

tural elevation of the basement post-dates the emplacement of the nappes

and does not imply a major structural discontinuity between the Lofoten

terrain and the Baltic craton. The primary subduction zone into which the

major nappes root must lie west of the Lofoten block and consequently west

of the modern shoreline of Norway.

Figure 76C shows the further eastward translation of the nappe complex

together with the western gneiss region along the late metamorphic thrusts.

Further imbrication of the eastern portion of the nappe terrain occurred

at this time, but its geometrical relationship to earlier structures is un-

known. Note that the rooting of the late thrusts into the basement implies

ramping of the thrusts, which in turn leads to formation of a basement

-cored ramp anticline in the upper plate. The uplift of the western gneiss

terrain in coastal Norway may thus be as a ramp anticline produced by the

rooting into the basement of regionally extensive late thrusts, a geometry

directly analogous to recent interpretations of the Alleghenian thrusts of

the central and southern Appalchians of the U.S. (Harris, 1979; Cook and

others, 1979), and to the interpretation of the external massifs of the

Swiss Alps presented by Hsu (1979).

Figure 76D shows schematically the refolding of the nappe terrain by

late deformation phases. Although these folds are probably primarily the

expression of continued continental convergence, strike-slip movements may

also be expressed at this stage as well (see discussion of F3 below).

In terms of the plate tectonic context introduced in the previous sec-

tion, Figures 76A-C can be viewed as outward-migrating imbricate thrusting

along the upper surface of a rigid, downgoing slab. This is directly ana-

logous to the development of accretionary prisms at oceanic subduction zones

(e.g., Seely, Vail, and Walton, 1974), or the formation of marginal decolle-

ment thrust belts (e.g., Bally, Gordy, and Stewart, 1966; Harris and Milici,

1978). Much of the structural development in Norway occurred at elevated

temperatures, so that the second-order features of the structural style are
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the results of penetrative ductile flow rather than brittle slip along dis-

crete fault planes. However, the large scale geometry is strikingly simi-

lar. In foreland thrust belts, earlier thrusts are deformed by the ramp

anticlines of later thrusts breaking through underneath. The D2 recumbent

folding of the Caledonian nappe pile on east Hinndy, while accentuated by

superposed ductile strain, can be viewed as having been initiated by the

folding of the nappe-emplacing DI thrusts around the ramp anticline of the

Austerfjord thrust. The uplift of the western gneiss terrain has already

been noted to have probably resulted in the same way. It is equally like-

ly that the uplift of the basement to farm the structural windows and

transverse culminations within the nappe terrain (e.g., the Rombak window)

is a consequence of the rooting into the basement of the most external

thrusts of the Scandinavian Caledonides to form ramp anticlines along the

central axis of the belt.

Nappe Transport Distances

Constraints on the distances the nappes in the Lofoten-Rombaken tran-

sect have traveled are very poor. No rocks can be matched from the autoch-

thon to any of the allochthons, or between the allochthons. Given this

limitation, it is impossible to demonstrate that presently vertically

stacked rock bodies were once side by side, although this was probably

true. Any attempt to quantitatively unstack the nappes in the Lofoten

-Rombaken transect at present would thus be purely speculative. However,

the total amount of movement is likely to have been large.

The composition of the Storvann Group metasedimentary sequence, i.e.,

quartzose terrigenous clastic rocks with laterally continuous carbonate

horizons, implies a platformal or miogeoclinal depositional environment.

However, without fossil control or some other means of estimating the thick-

ness and stratigraphic continuity of the Storvann Group, one cannot distin-

guish between these two possibilities. As a consequence, no inferences can

be made about the position of east Hinndy relative to the pre-Caledonian

continental edge. Thus, one can only say the edge of the continent was lo-

cated somewhere west of the modern limits of the Lofoten terrain.

Arguments were given in Chapters 2 and 5 for an ensimatic origin for

the Stangnes Group. This puts the minimum transport distance of these rocks

at 60 km, their distance from the present limit of the Lofoten terrain.
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However, an oceanic basin of some width presumably existed between the

Baltic craton and the island arc (?) in which the Stangnes Group formed.

Hodges (written comm., 1980) has found evidence that the Narvik Group

pelites, which structurally underlie the Stangnes Group, may have been de-

posited in such an oceanic basin. Consequently, the distance travelled by

the Stangnes Group may have been many times greater than the 60 km minimum

estimate.

In western Sweden where stratigraphic control exists, Gee (1975a, b)

has documented as much as 500 km of structural overlap by Caledonian thrust

faults, an estimate which may be conservative. Given that'the rocks inves-

tigated represent the closure of an oceanic basin, there is every reason to

believe that hundreds of kilometers of- total nappe transport occurred in

the Lofoten-Rombaken transect as well.

Timing of Nappe Emplacement

The "classic" Caledonian orogeny in southern Scandinavia is placed in

Siluro-Devonian time on the basis of stratigraphic data (Gee, 1975a). How-

ever, in recent years Sturt and various coworkers (Sturt and others, 1967,

1975, 1978) have emphasized the importance of the "Finnmarkian phase" of

the Caledonian orogen, a period of complex deformation and plutonic activity

of Cambro-Silurian age recognized in the allochthonous rocks of Finnmark

(northernmost Norway). These have also presented stratigraphic evidence of

pre-latest Ordovician (Ashgillian) deformation in allochthonous rocks south

and east of Bergen (more than 1000 km from Finnmark), which they consider

also to belong to the Finnmarkian phase (Sturt and Thon, 1976; Sturt and

others,1978). In Sturt's view (oral comm., 1979), the Finnmarkian phase

was responsible for most of the penetrative deformation and medium to high

grade metamorphism in the Scandinavian Caledonides. For instance, the

events included in D and D2 of this study would be attributed by Sturt and

coworkers to the Finnmarkian phase.

Two lines of evidence argue against this interpretation. All present

geochronologic data from the Tysfjord transect support a Siluro-Devonian

metamorphism. K/Ar systems from amphiboles from the Narvik Group near the

Tysfjord culmination give ages of 430 to 450 Ma; calculations of the tem-

perature of closure of the amphibole systems with respect to diffusion of

Ar. indicates that theminerals crystallized below their closure temperature,
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so that the age reflects the actual time of amphibolite facies recrystalli-

zation in these rocks (Hodges and others, 1980). J. Sutter (pers. comm. to

Hakkinen, 1977) has determined an age 390 + 6 Ma from biotite growing in

the schistosity related to the D2 Austerfjord thrust, using the 40Ar/39Ar

stepwise release method. K/Ar mica ages from the Tysfjord area (Hodges

and others, 1980), and Rb/Sr whole rock/biotite ages from the present study

(Chapter 5) fall in the range 380 to 350 Ma. Consequently, a metamorphic

peak in Silurian time, with cooling occurring through the Devonian, is in-

dicated.

Sturt and coworkers have not considered the possibility that the defor-

mations attributed to the Finnmarkian phase may have occurred far from the

Baltic craton and never involved rocks of the Baltic continent. In neither

Finnmark not the Bergen area have the pre-late Ordovician deformations been

traced into rocks which were demonstrably part of the Baltic continent in

pre-Caledonian time. For example, Sturt and others (1978, Fig. 6) show

Finnmarkian phase intrusions cutting autochthonous Baltic crystalline base-

ment, but no such relationship has been observed in the field.

From a more conceptual point of view, in pre-Silurian time the lapetus

ocean separated the Greenland and Baltic cratons, with at least one inter-

vening island arc (Horne, 1979). Within this convergent system, deforma-

tion and metamorphism of ensimatic rock sequences would be expected to

occur. These rocks would be later incorporated into the nappes emplaced on

the Baltic continent during collision. The early-Formed structures would

have no contemporaneous counterparts on the Baltic continent, nor would they

even be necessarily time correlative from one place to another.

Consequently, the deformation phases recognized in the present study

area, which clearly do involve pre-Caledonian Baltic crystalline basement,

are considered to be Siluro-Devonian in age. Earlier structures, alloch-

thonous along Silurian thrusts, may be present in the Narvik Group (Hodges,

pers. comm., 1979, 1980). The author remains skeptical that at present any

relationship can be established between these structures and a unified

laterally continuous Finnmarkian orogenic phase of Cambro-Ordovician age

in the Scandinavian Caledonides.

Tectonic Significance of F3 Crossfolds

The kinematics of the F3 crossfolds are puzzling in the context of the



246

overall structural picture. The commonly observed transverse orientation

of early folds in the Scandinavian Caledonides has been satisfactorily ex-

plained by demonstrating that the direction of tectonic transport was at

a small angle to the present fold axial orientation (Hansen, 1971; Bryant

and Reed, 1969; see also Chapter 3, p. 132). Consequently, the transverse

early folds are not in conflict with tectonic movements being primarily di-

rected perpendicular to the trend of the orogen. The transverse orienta-

tion of F3 folds in the present study cannot be similarly explained. The

sliplines of F3 folds are steeply inclined. The folds are nearly perfectly

homoaxial, and the surface folded was subhorizontal prior to folding (Chap-

ter 3). Consideration of this geometry leads to the conclusion that the

maximum principal shortening was very likely subperpendicular to the axial

orientation of the folds and consequently subparallel to the trend of the

orogen.

The F3 folds thus record a major change in the orientation of the

strain field in this area. One explanation of such a phenomenon would be

a transition from simple convergence to "transpression" (Harland, 1971), a

combination of strike-slip and convergent motion along a plate boundary.

As shown in Figure 77, if the F3 folds were produced by transpression, the

sense of strike-slip would be left-lateral.

Several independent lines of evidence support the presence of late

stage left-lateral movements in other parts of the Caledonide orogen. In

western Norway, several basins of Devonian continental clastic sedimentary

rocks are syn-depositionally bounded by both thrust and high-angle faults.

Relations of these basins suggest that the high-angle faults are left

-lateral strike-slip faults, possibly of major displacement (Nilsen, 1973;

pers. comm., 1979).

In the British Caledonides, the Great Glen Fault has long been known as

a major Devono-Carboniferous strike-slip fault. Although there is some

disagreement regarding the magnitude and sense of dtisplacement, most work-

ers prefer left-lateral movement with a cumulative displacement of as much

as 300 km.

In the northern Appalachians, paleomagnetic data from Upper Devonian

continental' redbeds indicate a Devonian paleolatitude for New England as

much as 20* south of that for Upper Devonian rocks of the adjacent North

American platform (Kent and Opdyke, 1978; Vander Voo and others, 1979).
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Figure 77: Schematic map view of relationship of F3 folds to hypothetical
left-lateral strike-slip system.

t i
/

/
/

/
/T Hypothetical

left-lateral
strike - slip
boundary

F folds
3

/

0'



248

This indicates the possibility of very large left-lateral strike-slip dis-

placements in this southern part of the Caledonide orogen.

The suggestion that the F3 crossfolds represent left-lateral transcur-

rent shear remains speculative in the absence of corroborative evidence for

left-lateral displacements in the northern Caledonides. However, the kine-

matic pattern of the folds must somehow reflect the large-scale tectonic

pattern; this possibility deserves further investigation.

Timing and Significance of the Cenozoic (?) High-Angle Faults

Due to the absence of local control-on the timing of the high-angle

faults in the study area (see Chapter 3), an age for the faults can only be

suggested from regional considerations. Two periods of major high-angle

faulting which post-date Caledonian metamorphism are known from Norway.

The first is the Devono-Carboniferous strike-slip faulting mentioned above;

the second is early Cenozoic in age (Oftedahl, 1960) and related to rifting

of the Caledonian orogen which led to opening of the Norwegian Sea (Talwani

and Eldholm, 1977).

While the orientation of the high-angle faults on east Hinndy is com-

patible with either period of faulting, the NW side down dip-slip movement

on the faults (Chapter 3) is more consistent with the faults being related
to Cenozoic rifting. This is also consistent with the suggestion above

that the middle Paleozoic strike-slip movements are expressed by F3 folds

on east Hinndy.

The presence of relatively young high-angle faults in this vicinity is

also corroborated by observations from Anddya, the island north of west

Hinndy (Figure 3). A small area of Upper Jurassic (Oxfordian) to Lower

Cretaceous (Valanginian, and Hauterivian (?)) sandstones and shales is pre-

sent near the north end of the island (0rvig, 1960). A cross-section by

Vogt (1905) reproduced in 0rvig (1960) shows vertical faults within and

bounding the Mesozoic rocks.

Tectonic Implications

Geometry of the Nappe Sequence

Previous tectonic syntheses of various parts of the Scandinavian

Caledonides have emphasized the importance of thrust nappe tectonics, but
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have assumed very simple geometrical relationships. Nicholson and Rutland

(1969), Nicholson (1973), Gee and Wilson (1974), and Gee (1975a) assumed

that the stacking of the Caledonian nappes occurred in a single period of

thrusting, leading to a layer-cake stack of sheets. Sturt and others

(978) and Binns (1978) in synthesizing the tectonics of the northern

Scandinavian Caledonides recognized the importance of multiple events dur-

ing nappe emplacement, but retain simple, layer-cake geometrical models of

the nappe sequence (Sturt and others, 1978, Figure 6; Binns, 1978, Figure

I).

The present study has documented inversions of the nappe sequence on

the scale of several kilometers. Such evidence opens the possibility that

much larger scale inversions may have occurred. Binns (1978) noted that

the rock assemblages he designated nappes 5 and 7 were indistinguishable,

including some rather unique lithologic types ("sagvandites"; see Binns,

1975, 1978). Binns thus inferred that the rocks of these nappes must have

formed in close proximity despite their complete separation in his inter-

pretation of the nappe sequence. Similarly, Gustavson (1966) noted a simi-

larity between rocks of the Narvik Group, which lie structurally beneath the

Salangen Group, and the Niingen Group, which overlies the Salangen Group.

I think the possibility cannot be neglected that these vertical repe-

titions of similar rock associations may represent the results of a second,

superimposed major recumbent folding or thrusting event similar to that pro-

duced on a smaller scale by D2 on East Hinndy. Milnes (1974) and Milnes

and Schmutz (1978) described large scale recumbent folding in the Pennine

nappes of Switzerland which led them to completely reinterpret the vertical

sequence of the nappes prior to the refolding. The same type of relation-

ships seem to be appearing in the nappe terrain of north Norway. Multiple

nappe-forming events overprinting one another, producing extremely complex

large scale geometrical relationships, may thus be typical of intermediate

levels of continental collision zones.

Basement Involvement, Decollement Tectonics, and the Deeper Structural

Levels of Collisional Orogens

Hakkinen (1977) was the first to document the progressive disappearance

of Caledonian structures into the pre-Caledonian basement (Lofoten terrain)

of Hinndy. The limited extent of this deformation is further documented
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in this study (Chapter 3). In order to account for this disappearance

of Caledonian structures, Tull (1977) hypothesized that the Lofoten base-

ment terrain might be a "zwischengebirge" (Kober, 1928; in modern tectonic

terms, something like a microcontinent), and Hakkinen (1977) argued that

the Lofoten block was a high level nappe. The present study has rendered

both these hypotheses untenable by demonstrating that no major zone of

shortening exists between the Lofoten terrain and the Baltic craton, and

that the two were coextensive in pre-Caledonian time. Thus, the Lofoten

block is exposed in a window through the nappe terrain, and the absence of

Caledonian structures in much of the basement terrain represents a downward

and possibly lateral disappearance of penetrative Caledonian deformation.

It has already been noted earlier in this chapter that there are impor-

tant geometrical similarities between the structural style of the Lofoten

-Rombaken transect and the decollement tectonics of foreland thrust belts.

There is also a most important additional similarity: the deformation, with-

in the amphibolite facies metamorphic core of the orogen, dies out downward

into a rigid, non-involved basement. The upper surface of the pre-Caledo-

ian crystalline terrain is strongly involved, to be sure. However, as dis-

cussed in Chapters 3 and 4, the development of a Caledonian structural

overprint in the pre-Caledonian basement seems to be dependent on the avail-

ability of water from an outside source to permit retrograde metamorphic

reactions to occur. At deeper crustal levels of the downgoing plate in a

collisional orogen, there is no likely source of water; consequently, there

is no metamorphic overprint and no new tectonite fabric, except perhaps in

cases where solid-solid reactions can occur (e.g., the Caledonian (?) eclo-

gite facies metamorphism reported from the Precambrian basement of western

Norway by Brueckner and Griffin, 1980).

This has two major implications for the dynamics of collisional orogenic

belts. Bally (1975) introduced the term "megasuture" to describe the por-

tion of the surface of the earth where the lithosphere does not behave ri-

gidly, but deforms in a ductile fashion. Bally included in the megasuture

all areas where metamorphism or penetrative deformation occurs, since these

imply non-rigid behavior. However, the results of this study indicate that

precisely as in marginal fold and thrust terrains, metamorphic fold belts

can be surficial phenomena, only involving the upper 15 to 20 km of the

continental crust in penetrative deformation and recrystallization. At

-----------



251

deeper levels, the lower crust and lithosphere still behave essentially

as a rigid p-late. Consequently, from the viewpoint of the dynamics of the

lithosphere/aesthenosphere system, the plate tectonic assumption of rigid

blocks with narrow boundaries may be accurate even within parts of broad

orogenic belts such as the Scandinavian Caledonides. The broad zones of

deformation, even where metamorphic conditions prevail, may be limited to

the upper 20 km of the crust.

This may also illuminate a widespread problem in the structural geology

of thrusted terrains. It is a common observation in orogenic belts around

the world that crystalline thrust sheets involve rocks of only about the

upper 15 km of the crust. This has been popularly attributed to a zone of

brittle/ductile transition where brittle rocks above the transition are

thrusted while rocks at higher temperatures and deeper levels flow penetra-

tively (Figure 78A). This study suggests that essentially the opposite

relationship may be the correct explanation in at least some cases. The

level of basement detachment may be located in the metamorphic internal

zone of an orogen by a level at which high strain gradients are produced,

due to the limited extent of volatiles available to promote the recrystal-

lization of basement rocks (Figure 78B). Below the detachment, the base-

ment is not deforming ductilely; it may not deform at all. Once this level

of strain concentration is established, it will propogate outward into

lower temperature zones where it will be expressed as brittle thrusting

rather than distributed shear. Displacement along this detachment will

eventually bring crystalline rocks from the high temperature internal zone

out into thrust contact upon the external zone.

This alternative model for the formation of basement-iinvolved thrusts

is considered to better explain the relationships in the Scandinavian

Caledonides than the brittle/ductile transition model. It may prove inap-

propriate to basement-involved antithetic thrusting in Andean type orogens

(cf. Armstrong and Dick, 1974; Burchfiel and Davis, 1975). However, this

model may have general applicability to synthetic thrust terrains developed

is colli-sional orogens. In particular, both Armstrong and Dick, and

Burchfiel and Davis appeal to local high temperatures to cause detachment

of crystall-ine thrust sheets. In a synthetic thrust belt developed in a

collisional orogen, no external heat source, such as a magmatic arc, exists.

Consequently, this model in which the level of detachment is chemically
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Figure 78: Comparison of mod.ls for formation of crystalline thrust sheets.

A: Brittle/ductile transition model(e.g., Armstrong and Dick,
1974): High strain zone is localized by geometrical incom-
patibility of strain fields in brittle and ductile zones
of deformation, leading to decollement at the transition
between these structural domains. Note that this model im-
plies downward extension of deformation and metamorphism
to unspecified levels, perhaps beyond the Moho.

B: Volatile-controlled decollement model (this study): High
strain zone is localized at limit of penetration of volatiles
(mainly water) generated by prograde metamorphism of sedi-
mentary rocks. Below this- level, high temperature and stress
are inadequate to deform crystalline basement in the absence
of additional volatiles. This leads to decollement at the
limit of volatile introduction, and produces a geometry
directly analogous to that seen in marginal thrust belts.

Metamorphic "corell Marginal thrust belt

A.

BRITTLE FRACTURE ++

-_ -_

DUCTILE FLOW
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controlled (by the availability of water), is more appropriate to the ther-

mal structure of synthetic thrust belts.
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APPENDIX: CHEMICAL PROCEDURES FOR ISOTOPIC ANALYSES

Mineralogisk Museum, Oslo

300 to 500 mg of powdered rock was decomposed in concentrated Merck

Suprapur HF in a teflon beaker. The 87Rb/ 84 Sr mixed spike solution, when

used, was added during weighing prior to decomposition. Following decom-

position, the sample was dissolved in concentEated HNO 3, then repeatedly

in 6N HCl to drive off remaining HF and leave the cations as chloride

salts. Samples were then picked up in 2.5N HCl and centrifuged in teflon

tubes.

A two stage cation exchange procedure was employed. Stage 1 used

large diameter columns (resin bed ca. I cm in diameter) and 2.5N HCl

as solvent, leading to relatively rapid cation movement. Large volumes

of elutions were collected (20-25 ml), so that Rb and Sr were concentrated

with little loss but only moderate purity. Stage 2 used smaller columns

(ca. 0.5 cm diameter) and l.ON HCl, and smaller cation peaks were collected

(4-5 ml). The elutions were collected in pyrex beakers and dried without

further chemical procedures.

Rb and Sr samples were picked up with 0.lN HCl and evaporated onto

Ta filaments using phosphoric acid as a loading medium. Rb samples were

not conditioned prior to running in the mass spectrometer. Sr samples

were conditioned in the source chamber of the mass spectrometer by

heating for 1 minute at ca. 2.0 amps, and then for 2-3 minutes at about

1 amp.

M.I.T. (Center for Geoalchemy)

50 to 100 mg of powdered sample or mineral separate, with I gram of
87Rb/ 84Sr mixed spike solution, were dissolved in a mixture of Vycor dis-

tilled HF and HC10 in a covered teflon beaker. Following decomposition,

the samples were dried and converted to chlorides by repeated dissolution

in 6.2N Vycor HCl. The samples were picked up in 2.5N Vycor HCI and centri-

fuged in teflon tubes.

A single pass through cation exchange columns similar to Stage 2 in

Oslo (see above) was used, but using 2.5N HC1. as the solvent. The Sr

fraction of sample 291 (Middagstind Quartz Syenite) yielded poor analy-
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tical results using this procedure, so a second dissolution was passed

twice through the cation exchange column:: with identical procedures. This

eliminated analytical problems.

Elutions from cation exchange columns were collected in teflon beakers.

Alkali elutions were converted to sulfates by addition of a small amount

of H2so4 prior to drying. Sr elutions were oxidized with HC10 4 to remove

any contamination by organic material from the cation exchange resin, then

converted to SrNO 3 by repeated dissolution in HNO 3'
Alkalis were picked up in water and evaporated onto Ta filaments with-

out the use of a loading medium. Alkali samples were not conditioned

prior to analysis.

Sr samples were picked up in O.lN.HNO3 and evaporated onto Ta filaments

using Ta205 as a loading medium. Sr samples, except those from biotite

separates, were conditioned by heating for one to two hours at 1.4 amps

in an evacuated outgassing chamber. Biotite samples were run unconditioned.

Sr isotopic composition was measured on biotite samples after the 85Rb peak

became indistinguishable from background. In some cases, an 87Rb contribu-

tion to the mass 87 peak could be detected after the disappearance of a

recognizable 85Rb peak. This was expressed as a strong monotonic decline

in mass 87/mass 86 ratio as 87Rb continued to burn off of the filament.

In these cases, these early analyses were discarded from calculations.
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