AN INVESTIGATION OF THE PHYSICAL AND NUMERICAL FOUNDATIONS OF TWO-FLUID REPRESENTATION OF SODIUM BOILING WITH APPLICATIONS TO LMFBR EXPERIMENTS

by

Hee Cheon No and Mujid S. Kazimi

Energy Laboratory Report No. MIT-EL 83-003
March 1983
Energy Laboratory
and
Department of Nuclear Engineering

Massachusetts Institute of Technology
Cambridge, Mass. 02139

AN INVESTIGATION OF THE PHYSICAL AND
NUMERICAL FOUNDATIONS OF TWO-FLUID
REPRESENTATION OF SODIUM BOILING
WITH APPLICATIONS TO LMFBR EXPERIMENTS

by
Hee Cheon No and Mujid S. Kazimi

March 1983

Topical Report of the
MIT Sodium Boiling Project

sponsored by
U.S. Department of Energy

Energy Laboratory Report No. MIT-EL 83-003
AN INVESTIGATION OF THE PHYSICAL AND NUMERICAL FOUNDATIONS OF TWO-FLUID REPRESENTATION OF SODIUM BOILING WITH APPLICATIONS TO LMFBR EXPERIMENTS

by

Hee Cheon No and Mujid S. Kazimi

ABSTRACT

This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for simulating LMFBR transient events.

Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem.

Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept.
Interfacial drag coefficients are derived for annular flows with entrainment.

Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied.
We are greatly indebted to our co-workers on the Sodium Boiling Project. Professor Neil E. Todreas, Robert Zielinski and Kang Y. Huh, for useful discussions on several aspects of this work. Very special thanks are given to Professor Andrei Schor, who shared tough times and provided invaluable information on the original THERMIT. Recognition is extended to Gail Jacobson for her skillful typing of this manuscript.

Funding for this project was partially provided by the United States Department of Energy. Specially acknowledged is the financial support of the Korean Government to the first author throughout the period he stayed at M.I.T.

This report is based on the thesis submitted by the first author in partial fulfillment of the requirements of the Ph.D. degree in Nuclear Engineering at M.I.T.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xvii</td>
</tr>
<tr>
<td>Chapter 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Previous Work</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Research Objective and Summary of Study</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 2 TWO-PHASE FLOW MODEL</td>
<td>18</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Local Instant Balance Equation</td>
<td>20</td>
</tr>
<tr>
<td>2.3 General Time Averaged Balance Equation</td>
<td>24</td>
</tr>
<tr>
<td>2.4 General Time-Volume Averaged Balance Equation</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Time-Volume Averaged Conservation Equations</td>
<td>31</td>
</tr>
<tr>
<td>2.6 Interfacial Jump Conditions</td>
<td>40</td>
</tr>
<tr>
<td>2.7 Comparison</td>
<td>41</td>
</tr>
<tr>
<td>Chapter 3 DESCRIPTION OF THERMIT-6S EQUATIONS</td>
<td>49</td>
</tr>
<tr>
<td>3.1 Differential Equations of THERMIT-6S</td>
<td>49</td>
</tr>
<tr>
<td>3.2 Difference Equations of THERMIT-6S</td>
<td>54</td>
</tr>
<tr>
<td>3.3 Solution Procedures of THERMIT-6S</td>
<td>61</td>
</tr>
<tr>
<td>Chapter 4 STUDIES OF VIRTUAL MASS</td>
<td>66</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.2 Physical Significance of Virtual Mass</td>
<td>69</td>
</tr>
</tbody>
</table>
Two-Phase Flow

5.2.3.1 Literature Review 129
5.2.3.2 Model Development 132
5.2.3.3 Comparison to Experiments 143
5.2.4 Interfacial Mass and Momentum Exchange 148
5.2.4.1 Literature Review 149
5.2.4.2 Model Development 150
5.2.4.3 Model Validation 161
5.2.5 Interfacial Momentum Exchange 166
5.2.5.1 Analytical Models 166
5.2.5.2 Model Validation 170
5.3 Constitutive Relations in Post-Dryout 173

Chapter 6 CODE ASSESSMENT

6.1 W-1 Experiments 187
6.1.1 Test Apparatus and Procedures 189
6.1.2 Numerical Simulation of W-7b' 190
6.1.2.1 2-D Analysis of W-7b' 190
6.1.2.2 Results 196
6.2 P3A Experiment 210
6.2.1 Test Apparatus and Procedures 210
6.2.2 Numerical Simulation of P3A 211
6.2.2.1 2-D Analysis of P3A 211
6.2.2.2 Results 214
6.3 OPERA 15-Pin Experiment 219
6.3.1 Test Apparatus and Procedures 219
6.3.2 Numerical Simulation of OPERA 15-Pin 220
6.3.2.1 2-D Analysis of OPERA 15-Pin 220
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2.2 Results</td>
<td>222</td>
</tr>
<tr>
<td>6.4 THORS</td>
<td>228</td>
</tr>
<tr>
<td>6.4.1 Test Apparatus and Procedures</td>
<td>228</td>
</tr>
<tr>
<td>6.4.2 Numerical Simulation of the test 72B, run 101</td>
<td>230</td>
</tr>
<tr>
<td>6.4.2.1 2-D Analysis of the test 72B, run 101</td>
<td>230</td>
</tr>
<tr>
<td>6.4.2.2 Results</td>
<td>231</td>
</tr>
<tr>
<td>6.5 Sensitivity Analysis</td>
<td>239</td>
</tr>
<tr>
<td>6.5.1 Interfacial Mass and Energy Exchange Models</td>
<td>239</td>
</tr>
<tr>
<td>6.5.2 Interfacial Momentum Exchange Model</td>
<td>240</td>
</tr>
<tr>
<td>6.5.3 Boundary Positions</td>
<td>242</td>
</tr>
<tr>
<td>6.5.4 Normalization of Heat Source</td>
<td>245</td>
</tr>
<tr>
<td>Chapter 7 SUMMARY AND RECOMMENDATIONS</td>
<td>251</td>
</tr>
<tr>
<td>7.1 Summary</td>
<td>251</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>260</td>
</tr>
<tr>
<td>References</td>
<td>263</td>
</tr>
<tr>
<td>Appendix A CONDUCTION MODELS</td>
<td>278</td>
</tr>
<tr>
<td>A.1 Fuel Conduction Model</td>
<td>278</td>
</tr>
<tr>
<td>A.2 Structural Conduction Model</td>
<td>281</td>
</tr>
<tr>
<td>A.3 Fluid Conduction Model</td>
<td>286</td>
</tr>
<tr>
<td>A.3.1 Fully Explicit Formulation</td>
<td>287</td>
</tr>
<tr>
<td>A.3.2 Partially Implicit Formulation</td>
<td>291</td>
</tr>
<tr>
<td>Appendix B PROPERTIES</td>
<td>293</td>
</tr>
<tr>
<td>B.1 Sodium Properties</td>
<td>293</td>
</tr>
<tr>
<td>B.2 Properties of Fuel and Structure</td>
<td>299</td>
</tr>
<tr>
<td>Appendix C DERIVATION OF Eq (5.2.1-13)</td>
<td>307</td>
</tr>
<tr>
<td>Appendix D VALVE MODEL</td>
<td>309</td>
</tr>
<tr>
<td>Appendix E GENERALIZED NORMALIZATION OF HEAT SOURCE</td>
<td>311</td>
</tr>
</tbody>
</table>
Appendix F INPUT INFORMATION

F.1 Added or Modified Input Description 312
F.2 Input 313
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Features of several sodium boiling codes</td>
<td>16</td>
</tr>
<tr>
<td>1.2</td>
<td>Main Drawbacks of Various Modelling Approaches</td>
<td>17</td>
</tr>
<tr>
<td>5.1</td>
<td>Constitutive Relations of THERMIT-6S</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Main Parameters of Sodium Boiling Experiments</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>THERMIT-6S Wall Friction and Heat Transfer Models</td>
<td>181</td>
</tr>
<tr>
<td>5.4</td>
<td>THERMIT-6S Interfacial Exchange Models</td>
<td>184</td>
</tr>
<tr>
<td>6.1</td>
<td>Experiments and Codes Selected for THERMIT-6S Code Assessment and Comparison</td>
<td>188</td>
</tr>
<tr>
<td>No.</td>
<td>Figure Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Possible Accident Paths and Lines of Assurance For a Potential CDA</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>Key Events and Potential Accident Paths for Unprotected Loss of Flow Accident</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Key Events and Potential Accident Paths for Loss of Flow Accident</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>Key Events and Potential Accident Paths for Unprotected Transient Overpower Accident</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Key Events and Potential Accident Paths for Inadequate Natural Circulation Decay Heat</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Key Events and Potential Accident Paths for Local Subassembly Accident</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Configuration of Interface</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>A Typical Fluid Mesh Cell Showing Location of Variable and Subscripting Conventions</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Configuration of the Solid Sphere Accelerating in Fluid</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristics Map with Real Characteristics for Given Values of Eq (4.50)</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Stability Diagram of Eq (4.50)</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Vapor Velocity Transients with $\alpha = 0.8$</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>Vapor Velocity Transients with $\alpha = 0.9$</td>
<td>101</td>
</tr>
<tr>
<td>4.6</td>
<td>Restriction on λ to Insure that $\Delta S \geq 0$ for Interfacial Momentum Exchange</td>
<td>102</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5.1 Experimental Two-Phase Friction Pressure Drop</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>with Low Mass Flux or Low Quality Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Experimental Two-Phase Friction Pressure Drop</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>under the Diabatic Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Experimental Two-Phase Friction Pressure Drop</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>with High Mass Flux and High Quality Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Experimental Two-Phase Friction Pressure Drop</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>in Seven-Pin Bundle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5 Ideal Liquid Film in the Tube</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>5.6 Comparison between Data and Correlations</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>5.7 Comparison of Correlations with GE data</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>5.8 Simple Representation of Mass and Heat Transfer</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>around the Vapor-Liquid Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9 Movement of an Eddy in a Fluid</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>5.10 Comparison between Analytic Solution and Results</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Calculated according to the Suggested Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.11 Comparison of Void Volume in the Fuel Bundle</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>between Estimated Experimental Results and Results from the Suggested Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12 Interface Drag Coefficient to Dimensionless Film Thickness</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>6.1 SLSF Loop Steady-State Hydraulics at 145 MW ETR</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>Power and 4.29 lb/sec Test Section Sodium Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 Radial Meshes of the Fuel bundle</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>for the 2-D Numerical Simulation of W-7b'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 Forcing Function of W-7b' Numerical Simulation</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>6.4 Comparison between Temperature Data, and</td>
<td>197</td>
<td></td>
</tr>
</tbody>
</table>
1-D and 2-D Predictions by THERMIT-6S
at 33.7 (from the bottom of the fuel) in the Innermost Channel for the W-7b' Test

6.5 Comparison between Temperature Data of Hex Can-Inner Face, and 1-D and 2-D Predictions by THERMIT-6S at 33.9 (from the bottom of the fuel) for the W-7b' Test

6.6 Comparison between Temperature Data and 2-D Predictions by THERMIT-6S at the Midplane of Heated Section in the Intermediate Channel

6.7 Comparison between Inlet Flow Data and Predictions by THERMIT-6S, SAS-3D, and NATOF-2D for the W-7b' Test

6.8 Profile of Voided Region in the Innermost Channel for the W-7b' Test (2-D Simulation)

6.9 Profile of Voided Region in the Outermost Channel for the W-7b' Test (2-D Simulation)

6.10 Comparison between Inlet Flow Data and 1-D Predictions by THERMIT-6S for the W-7b' Test

6.11 Radial Temperature Gradients at the Last Cell of Heated Section Predicted by THERMIT-6S for the W-7b', P3A, and OPERA-15 Pin

6.12 Radial Meshes of the Fuel Bundle for the 2-D Numerical Simulation of P3A

6.13 Comparison among Temperature Data, COBRA-3M Predictions and 2-D Predictions by THERMIT-6S at 35.7 (from the bottom of the
fuel) in the Innermost Channel for P3A Test

6.14 Comparison among Temperature Data, COBRA-3M Predictions, and 2-D Predictions by THERMIT-6S at 21.7 (from the bottom of the fuel) in the Outermost Channel for the P3A Test

6.15 Comparison between Inlet Flow Data and Predictions by NATOF-2D and THERMIT-6S for the P3A Test

6.16 Geometry of OPERA-15 Pin Bundle

6.17 Comparison of Temperature Transients of OPERA-15 Pin with Pretest Predictions by THERMIT-6S at 35.5 (above fuel bottom) in Innermost and Outermost Channels

6.18 Axial Void Profile in Innermost Channel Predicted by THERMIT-6S for the OPERA-15 Pin Test

6.19 Axial Void Profile in Outermost Channel Predicted by THERMIT-6S for the OPERA-15 Pin Test

6.20 Comparison of Flow Transients of OPERA-15 Pin with Pretest Predictions by THERMIT-6S

6.21 Temperature vs Radius with Time as a Parameter at Z=33 in for the test 72B, run 101 of THORS

6.22 Comparison between Predictions by THERMIT-6S and Temperature Data at 31 (from the bottom of the fuel) in the Intermediate Channel for the test 72B, run 101 of THORS

6.23 Comparison between Inlet Flow Data and Predictions
by THERMIT-6S for the test 72B, run 101 of THORS

6.24 Comparison between Inlet Flow Data and Predictions by THERMIT-6S for the test 72B, run 101 of THORS

6.25 Axial Void Profile in the Innermost Channel Predicted by THERMIT-6S for the test 72B, run 101 of THORS

6.26 Axial Void Profile in the Outermost Channel Predicted by THERMIT-6S for the test 72B, run 101 of THORS

6.27 Comparison of Void Fraction in the Last Cell of Heated Section Predicted with Various Interfacial Momentum Exchange Models

6.28 Comparison of Vapor and Liquid Velocities at the Last Cell of the Heated Section Predicted with Various Interfacial Momentum Exchange Relations

6.29 Comparison of CPU Time for the W-7b' Test Using the Multics Computer

6.30 Comparison between Inlet Flow Data and Predictions for A Boundary and for B Boundary

6.31 Comparison of Temperature and the Rate of Wall Heat Transfer in the Last Cell of Innermost Channel for Case A and Case B of Power Normalization

6.32 Comparison between Centerline Fuel Temperature Data in the Last Cell of Innermost Channel and Predictions for Case A and Case B
of Power Normalization

A.1 Thermit Model of Hex Can with Associated Structure

A.2 Hex Can with Associated Structure

A.3 Top View of Fluid Channels
NOMENCLATURE

A : Area
C : Constant
Cd : Drag Coefficient
D : Diameter
dp : Pressure drop
e : Internal energy
E : Entrainment fraction, Effectiveness of heat transfer by eddies or Total energy
f : Friction factor
F : Force or Rate of momentum transfer per unit volume
g : Gravitational acceleration
G : Mass flux
H : Heat transfer coefficient
h : Heat transfer coefficient or Enthalpy
j : Volumetric flux
k : Thermal conductivity
L : Length
P : Pressure or Perimeter
P : Pressure
Q : Rate of heat transfer per unit volume
q" : Heat flux
Q : Volumetric heat generation rate
R : Radius
s : Slip ratio
S : Entropy
\(t \) : Time
\(T \) : Temperature
\(\Delta t \) : Time interval
\(U \) : Velocity
\(\vec{v} \) : Velocity vector
\(V \) : Volume
\(x \) : Quality
\(X \) : Lockhart-Martinelli parameter
\(W \) : Mass Flow rate
\(\Delta z \) : Axial mesh size
\(\alpha \) : Void fraction
\(\sigma \) : Surface tension
\(\phi \) : Two-phase multiplier
\(\Gamma \) : Vapor generation rate
\(\rho \) : Density
\(\mu \) : Viscosity
\(\tau \) : Shear force
\(\delta \) : Thickness of liquid film

Subscripts

\(b \) : Bulk
\(d \) : Droplets
\(e \) : Equivalent
\(f \) : Saturated liquid or Fluid
\(g \) : Saturated vapor
\(i \) : Interfacial
\(i,j,k \) : Nodal locations
1: Liquid
1d: Liquid droplet
1f: Liquid film
r: radial
s: Saturation
t: Transverse
tt: Turbulent-turbulent flow
v: Vapor
vv: Viscous-Viscous flow
w: Wall
z: Axial
1$: Single-phase
2$: Two-phase

Superscripts
n: Time step
s: Spatial fluctuation
t: Turbulent fluctuation
x,y,z: Spatial directions

Dimensionless Group
Nu: Nusselt number
Pe: Peclet number
pr: Prandtl number
Re: Reynolds number
We: Weber number
Chapter 1 INTRODUCTION

1.1 Background

The growing public concern about the nuclear industry places an increasingly large emphasis on the safety aspects of nuclear reactors. In order to offer sufficient safety margins to assure that the public risk will be acceptably low, the U.S. Fast Breeder Reactor Safety Program approach is to provide four levels of protection, which are mainly aimed at reducing both the probability and consequences of a Core Disruptive Accident (CDA). These levels of protection are referred to as Lines of Assurance (LOA).

Figure 1.1 illustrates possible accident paths and Lines of Assurance for a potential CDA. The main objective of LOA.1 is to reduce the probability of occurrence of a serious accident. The special emphasis is placed on quality control, inspection, and monitoring at the level of construction and operation, and on providing a multilevel redundant plant protection system. The LOA.2 is based on an assumption that low probable but mechanistically possible events involving failure of LOA.1 will occur. LOA.2 places emphasis on an assurance that accidents can be contained within a limited number of fuel assemblies. This is done by providing, through design, ways to control neutronic reactivity and reactor coolability backed up by experimental and analytical works. The failure of LOA's 1 and 2 leads to core disruption and potential release of significant amounts
of radioactivity from the containment building to the environment, which should be mitigated and terminated without harm to the public. The objective of LOA's 3 and 4 is to ensure that the consequences of a postulated CDA can be sufficiently limited by the plant containment capability.

The present work is related to LOA 2, which in general requires an understanding of the mechanisms and design conditions which enable potential accidents to be terminated with limited core damage. Specifically the objective of this work is to develop an understanding of the role multidimensional and non-equilibrium effects of sodium boiling in determining the sequence of events during various accidents. These accidents include

1) Unprotected loss of flow (LOF): loss of electrical power to the primary coolant pumps, resulting in pump rundown and loss of core flow while the reactor is operating at power; coupled with a simultaneous failure of the plant protection system to scram the reactor. This accident corresponds to the low flow/high power condition.

2) Loss of pipe integrity (LOPI): undetected defect or leak in a reactor coolant pipe resulting in rapid decrease in core flow and partial loss of coolant with scram. This accident corresponds to the low flow/low power condition.
3) Unprotected transient overpower (TOP): malfunction of plant reactivity control system or operator error resulting in a sudden increase in core reactivity and power—coupled with a failure to scram.

4) Inadequate natural circulation decay heat removal: postulated inadequate heat removal by natural circulation following shutdown and loss of forced cooling in the primary loops.

5) Local subassembly fault: inlet flow or internal subassembly blockage resulting in cooling disturbance and potential for fuel failure propagation with scram.

The key events relating to each of these accidents can be shown in Figs 1.2-1.6.

1.2 Previous Work

The first code to analyze voiding in the LMFBR was the Transfugue-1 code (2) which used a homogeneous equilibrium model and a momentum integral method (3). This code was the forerunner of SAS 1A (5). The Transfugue-II code (4), an improvement of Transfugue-I, included sectional compressibility, variable vapor densities but time steps determined by the sonic velocity of the homogeneous equilibrium two-phase flow.

SAS codes of ANL represent a long development from the single-channel SAS 1A version through SAS 2A (6), SAS 3A (7), SAS 3D (8), and SAS 4A (9) which is now under
Figure 1.1
Possible Accident Paths and Lines of Assurance
For a Potential CDA
(From Reference 1)
Fault Occurs Leading to Pump/Flow Coastdown & Core Heatup

Failure to Scram

Boiling Two-phase Flow & Heat Transfer; Reactivity & Power Increase

Reactors Scram; Reactivity & Power Decrease

No Damage

Flow/Heat Transfer Instability & CHF

Fuel Pin Failure & Fission Gas/Molten Fuel Release

Reactivity/Power Increase Due to Fuel Motion

MFCI & Subassembly Voiding

Mechanical Disassembly

Core Disruption Accident

Reactivity/Power Decrease Due to Fuel Motion

Some Clad/Fuel Melting but Adequate Cooling Restored

Limited Core Damage

Core Disruption Accident

Bulk Subassembly Voiding; Clad Melting & Relocation

Core Geometry Not Coolable; Gradual Meltdown

Core Disruption Accident

Figure 1.2

Key Events & Potential Accident Paths For Unprotected Loss of Flow Accident
Fault Undetected Loss of Pipe Integrity

Flow Decay and Heatup

Reactor Scram Reactivity and Power Decrease

Boiling, Two Phase Flow and Heat Transfer

Fuel Pin Failure and Fission Gas Release

Flow/Heat Transfer Instability and CHF

Adequate Cooling No CHF

Limited Core Damage

Bulk Subassembly Voiding; Clad Melting and Relocation

Some Clad/Fuel Melting and Relocation but Adequate Cooling Restored

Limited Core Damage

Core Geometry not Coolable; Gradual Meltdown

CDA 3

No Damage

Figure 1.3
Key Events and Potential Accident Path For Loss of Pipe Integrity Accident (From Reference 1)
Figure 1.4
Key Events and Potential Accident Paths
For Unprotected Transient Overpower Accident
Reactor Shutdown; Power & Flow Decrease; Cooldown

Loss of Forced Cooling in Primary Loop

Single-Phase Natural Circulation Flow & Heat Transfer

Adequate Heat Removal with no Coolant Boiling

No Damage

Boiling Natural Circulation Flow & Heat Transfer

Fuel Pin Failure & Fission Gas Release

Inadequate Heat Removal; Flow/Heat Transfer Instability & CHF

Adequate Heat Removal Until Forced Cooling Restored

Bulk Subassembly Voiding; Clad/Fuel Melting & Relocation

Core Geometry Not Coolable; Gradual Meltdown

Core Disruption Accident

Figure 1.5

Key Events and Potential Accident Paths for Inadequate Natural Circulation Decay Heat Removal Accident
Local Fault Due to Clad Defect, Fission Gas/Molten Fuel Release &/or Blockage Formation

Local Flow Restriction & Increased Coolant Temperatures in Wake

Fuel Pin Failure & Fission Gas/Molten Fuel Release; Gradual Blockage Propagation

Local Boiling in Wake

Flow/Heat Transfer Instability & CHF

Fault Tolerated or Detected; Operator or Control Action

No or Minor Core Damage

Pin-to-Pin Failure Propagation

Bulk Subassembly Voiding; Clad/Fuel Melting & Relocation

Fault Tolerated or Detected; Belated Operator or Control Action

Molten Steel-Sodium Interaction; Subassembly Wrapper Failure

Subassembly to Subassembly Propagation

Core Geometry Coolable; Adequate Cooling Restored

Limited Core Damage

Core Disruption Accident

Figure 1.6

Key Events and Potential Accident Paths For Local Subassembly Accident
development. SAS 1A was a single-channel code that included point kinetics and a combination of slip two-phase flow and single-bubble slug-boiling models. The sodium boiling model was later completely rewritten as a multibubble slug-boiling model for the multichannel SAS 2A version. SAS 3A, an expanded version of SAS 2A, contained models to allow complete calculations of cladding and fuel motions. SAS 3D used the same models as SAS 3A but restructured the code for better numerical efficiency.

The SAS coolant dynamics model calculates temporal and spatial void distribution and uses two different models for different times of boiling expulsion. A multibubble slug-boiling model is used for the initial portion of bubble formulation. Voiding is assumed to result from bubbles filling the cross section of the coolant channel, except that a liquid film is left on the clad and structure. Vapor pressure and temperature are assumed to be spatially uniform during initial bubble growth. When the bubble length exceeds a user-specified maximum value, the vapor bubble calculation is switched to a different model where axial variation in vapor pressure within the bubble is accounted for. In this model, the vapor pressure, temperatures, and mass-flow rates are calculated at fixed nodes within the bubble and also at the lower and upper interfaces. This uses a simultaneous solution of the vapor cells momentum and continuity equations with the momentum equations for the liquid slugs setting the boundary conditions at the interfaces. To
obtain numerical stability for reasonably large time steps, an implicit differencing scheme is used. SAS's main limitations are the restriction from a slug model, its lack of a mixing model, and its inability to adequately incorporate the radial heat losses and the multidimensional effect of voiding.

The BLOW code (10) developed in Germany uses a multibubble slug-boiling model, which is similar to that in the SAS 3A, in order to describe sodium voiding phenomena. The main difference between BLOW and SAS is as follows: while the vapor velocity along a bubble can be obtained by solving the vapor momentum equation, the liquid film velocity in the BLOW is directly calculated on a basis of the assumption of an universal velocity profile across the liquid film thickness.

The MOC code (11) was developed by Siegmann in 1971 to predict the behavior of sodium during boiling and expulsion. In the two-phase region a slip flow model is assumed with the liquid and vapor in equilibrium at the saturation temperature. The conservation equations are solved using the method of characteristics. When imaginary characteristic slopes appeared in the two-phase flow with slip flow, numerical difficulties were encountered. The additional limitations of this code are its incapability to consider flow reversal and the use of small time step sizes limited by the sonic velocity.

The COBRA-3M code (12) is a homogenous equilibrium code
with models such as turbulent mixing and wire-wrap mixing on a subchannel basis. The subchannel model network allowed for radial as well as axial sodium voiding and temperature distribution. A major limitation of COBRA-3M is its lack of capability to consider flow reversal, recirculation, and a pressure-pressure boundary condition. To provide these capabilities, an ACE method scheme was developed for the COBRA-IV code (13); a temporally explicit transient pressure-velocity was selected which imposed no restriction on flow velocity and could accept either flow or pressure boundary conditions. However, this code retains a limitation of a homogeneous equilibrium model.

The main features of the BACCHUS code (14) developed at Grenoble are similar to those of COBRA-3M; the homogeneous equilibrium model, marching technique, and mixing model. Their main differences are that the BACCHUS uses the porous body analysis and the assumption that the flow is steady. A transient version is now under development.

The THERMIT-4S code (15) developed at M.I.T. is a nonhomogeneous-equilibrium 3-D code for which the numerical scheme and solution procedures are based on the THERMIT code (16). With the assumption of thermal equilibrium on the saturation line this code solves four equations; mixture mass and internal energy equations, and vapor and liquid momentum equations. This assumption eliminates the need of constitutive equations for interfacial mass and energy exchange which are required for the two-fluid model.
However, as the assumption of thermal equilibrium requires complete condensation of vapor in the subcooled region, numerical difficulties may be encountered due to large pressure fluctuation caused by complete condensation of vapor.

The NATOF code (17) developed at M.I.T. adopts a two-dimensional two-fluid model for the simulation of sodium boiling transients. The numerical scheme and solution procedure are based on THERMIT (16). The code has the structural model of heat sink through the can, the radial liquid conduction model, and the fuel conduction model. As the code solves the conservation equations for both vapor and liquid, the interfacial mass, momentum, and energy exchange must be given through the constitutive equations. The two-fluid approach has the advantage of accounting for non-equilibrium phenomena and slip flow, but heavily depends on the physical models. Although an advanced two-phase flow model and numerical scheme are used in this code, the range of validity of its physical models is limited and the ill-posedness problem of its equations remains unresolved. These are the motivation for development of the present code, THERMIT-6S.

The main features of several codes, that were designed for analysis of sodium boiling in the LMFBR, are given in Table 1.1. Limitations of the codes (see Table 1.2) are attributed to the characteristics of sodium and of the LMFBR such as the high density ratio of liquid to vapor, the
Table 1.1: Feature of Several Sodium Boiling Codes

<table>
<thead>
<tr>
<th></th>
<th>1-D</th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-EM</td>
<td>Transfugue-I,II</td>
<td>BACCHUS</td>
<td>COBRA-3M</td>
</tr>
<tr>
<td>Multi-bubble slug model</td>
<td>SAS-3A,D</td>
<td>BLOW</td>
<td>COBRA-IV</td>
</tr>
<tr>
<td>Slip-EM (3 Eq)</td>
<td>MOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non H-EM (4 Eq)</td>
<td></td>
<td></td>
<td>THERMIT-4S</td>
</tr>
<tr>
<td>Two-Fluid Model</td>
<td></td>
<td>NATOF-2D</td>
<td>THERMIT-6S</td>
</tr>
</tbody>
</table>
Table 1.2 Main Drawbacks of Various Modelling Approaches

I. Two-Phase Model

I.1 HOMOGENEOUS MODEL: No slip -
High void fraction -
High pressure build-up -
Early flow reversal

I.2 EQUILIBRIUM MODEL: Temperature equilibrium -
Large mass exchange -
Rapid pressure transients -
Numerical difficulties

I.3 SLIP MODEL: Need correlation for slip in annular or reversed flow

I.4 TWO-FLUID MODEL: Nonhomogeneous-Nonequilibrium -
Need more correlations

II. Geometrical Representation

II.1 1-D REPRESENTATION: No radial temperature gradient and vapor propagation

II.2 2-D REPRESENTATION: No mixing in the \(\theta \) direction

II.3 3-D REPRESENTATION: Large CPU time
existence of the highly subcooled region, reversed flow, and sharp radial temperature gradients.

The high density ratio induces high slip between liquid and vapor and, as a result, eliminates the possibility of use of the homogeneous model which assumes no slip. The existence of a highly subcooled region in the bundle of the LMFBR, where vapor is condensed, causes numerical difficulties and large pressure fluctuations. The use of the equilibrium approach, in which vapor must be completely condensed in the subcooled region, enlarges pressure fluctuations and in turn numerical difficulties. The non-equilibrium approach instead of the equilibrium approach is better suited to represent real situations. Correlations for slip in annular or reversed flow are not readily available. Hence, the slip model is avoided in the present work. Sharp radial temperature gradients and multi-dimensional voiding behavior lead us to favor a multi-dimensional model. A 3-D model is chosen because it can be transformed into 1-D or 2-D models.

According to the above brief review, a two-fluid 3-D model is selected for the analysis of sodium boiling in the LMFBR. The THERMIT code is taken as the basic tool for the development of a two-fluid 3-D code due to its following main features:

1. Two-fluid 3-D code
2. Advanced numerical scheme
3. General Boundary conditions
Although \((r, \theta, z)\) coordinates are fitted in the geometry of the hexagonal bundle of the LMFBR, \((x, y, z)\) coordinates are used in THERMIT-6S due to the easy adoption of the original THERMIT code which uses \((x, y, z)\) coordinates.

1.3 Research Objective and Summary of Study

The objective of the present work is to provide a multidimensional model for understanding and prediction of the behavior of two-phase flow before fuel melting in the LMFBR subassembly under unprotected loss of flow and loss of pipe integrity, that is, under low flow/high power accidents and low flow/low power accidents. In order to provide information on the multidimensional and non-equilibrium behavior of sodium boiling, the THERMIT code, which is a two-fluid and three dimensional code, is taken as a basic tool for the development of the code.

The present work includes the investigation of the mathematical, numerical, and physical foundations of two-phase flow of sodium. In Chapter 2, the mathematical formulation is developed. The numerical formulation is discussed in Chapter 3. The effects of the virtual mass term on the numerical stability are discussed in Chapter 4. The physical models of the constitutive relations are developed in Chapter 5. In Chapter 6, the code predictions are compared to experimental results. A summary and recommendations are presented in Chapter 7.
Chapter 2 TWO-PHASE FLOW MODEL

General time-volume averaged conservation equations and jump conditions for two-phase flows are derived here. The time-averaged equations for a single phase region in two-phase flow are obtained from local instant balance equations by a technique often used for single phase turbulent flow equations. The results obtained by integrating the time-averaged equations over a flow volume are spatially averaged twice; first, they are averaged over a single phase region of the k-th phase and then averaged over the total volume of the k-th phase, in a flow volume. The mass, momentum, and energy conservation equations are obtained from the general time-volume averaged equations. The advantages of the present model are explained by comparing it with Ishii's model (18) and Banerjee's model (19). Finally, the assumptions and approximate terms of the equations of the THERMIT-6S are clarified.
2.1 Introduction

The most important characteristic of two phase flows is the presence of moving internal interfaces separating phases; a two-phase system consists of a number of single phase regions bounded by moving interfaces. Therefore, a formulation based on these local instant variables and moving interfaces results in a multi-boundary problem which are not known a priori. In order to overcome these difficulties, in the formulation of two-phase flow equations, we do not explicitly integrate the microscopic phenomena but preserve their effect on macroscopic phenomena.

Three approaches have been used widely to develop a two-phase flow model:

1) Mixture Model Approach
2) Control Volume Approach
3) Averaging Approach

Ishii (18, 20) provides an excellent description of these three approaches. The first and second approaches are mainly based on hypothesis, physical intuition, and assumed similarity with a single phase flow system. In these two approaches, even though easy formulation and practicality in simple cases are main advantages, we encounter the difficulty of identifying the effect of the microscopic scales of phenomena on the macroscopic behavior. On the other hand, the averaging approach enables us to set up mathematically rigorous equations. The averaging approach can be classified into three main groups: Eulerian,
Lagrangian, and Boltzmann statistical averages.

In an Eulerian description, time and space coordinates are taken as independent variables and various dependent variables express their changes with respect to these coordinates. As the particle coordinate in a Lagrangian description displaces the spatial variable of the Eulerian description, the Lagrangian average is taken by following a certain particle and observing it in a time interval. The Boltzmann statistical averaging with a concept of the particle number density is widely used when the collective mechanics of large number of particles are in question. The Eulerian average has been considered as the most widely used method, due to its close relation to experimental observations and instrumentations. Therefore, here the time-volume averaged conservation equations of two phase flows are derived on a basis of the Eulerian averaging approach.

2.2 Local Instant Balance Equation

A two-phase flow is considered to be subdivided into several single phase regions separated by moving interfaces. Each separate phase can be connected through jump conditions. Jump conditions constitute a characteristic feature of moving boundaries and provide relations between the phase interaction terms. Therefore, the standard method of continuum mechanics will be first used and then jump conditions will be derived.
Let us start from a general balance equation. For a material of the k-th phase with the volume and surface, V_{mk} and A_{mk}, we can set up the general balance equation.

$$\frac{d}{dt} \int_{V_{mk}} \rho_k \psi_k \, dV = -\int_{A_{mk}} \hat{n} \cdot J_k \, dA + \int_{V_{mk}} \rho_k S_k \, dV$$

(2.1)

where ρ_k is the density of k-th phase, ψ_k is any quantity being conserved in the k-th phase, J_k and S_k are the efflux and source of ψ_k, and \hat{n}_k is an outward unit normal vector for the k-th phase. Using the Reynolds transport theorem (20), we have

$$\frac{d}{dt} \int_{V_{mk}} \rho_k \psi_k \, dV = \int_{V_{mk}} \frac{\partial \psi_k}{\partial t} \, dV + \int_{A_{mk}} c_k \psi_k \hat{v}_k \cdot \hat{n}_k \, dA$$

(2.2)

where \hat{v}_k denotes the velocity of a material of the k-th phase. Note that, while the Reynolds transport theorem is derived for a material volume, the Leibnitz rule (21) (given later by Eq (2.24)) is a purely geometric theorem.

The Gauss's theorem (22) gives a transformation between a volume and surface integral.

$$\int_{A_{mk}} (\rho_k \psi_k \hat{v}_k + J_k) \cdot \hat{n}_k \, dA = \int_{V_{mk}} \nabla \cdot (\rho_k \psi_k \hat{v}_k + J_k) \, dV$$

(2.3)

Substituting Eqs (2.2) and (2.3) into Eq (2.1), we have
By the axiom of continuum, we get the local instant differential balance equation

$$\frac{\partial \rho_k \psi_k}{\partial t} + \nabla \cdot (\rho_k \psi_k \vec{v}_k + \vec{f}_k) - \rho_k S_k = 0 \quad (2.5)$$

The local instant differential balance equation, Eq (2.5) can be applied in each phase up to an interface. Let us derive an interfacial balance equation based on the control volume analysis, neglecting surface tension. As shown in Fig 2.1, control volumes, V_1 and V_2 are surrounded by the areas of each phase, A_1 and A_2, with an interfacial area A_i. As the control volumes, V_1 and V_2, are very thin, we put $n_1 = -n_2$, where n_1 and n_2 are outward unit normal vectors from surfaces, A_1 and A_2, respectively. Now we have the general balance equation for the control volumes, V_1 and V_2.

$$\frac{2}{\Sigma} \frac{d}{dt} \int_{V_k} \rho_k \psi_k dV = \frac{2}{\Sigma} \left[\int_{A_k} \vec{n}_k \cdot \left[\rho_k \psi_k (\vec{v}_k - \vec{v}_1) + \vec{f}_k \right] dA
ight. \left. + \int_{V_k} \rho_k S_k dV \right] \quad (2.6)$$
Fig. 2.1: Configuration of Interface
We let the volumes, V_1 and V_2, shrink down to the interface so that the volumes, V_1 and V_2, vanish, while the interfacial area A_1 remains finite in the limit. The volume integrals vanish and A_k is equal to A_1, in the limit. Then we have the general interfacial balance equation.

\[
\sum_{k=1}^{2} (\dot{m}_k \nu_k + \dot{n}_k \cdot \dot{J}_k) = 0
\]

(2.7)

where $\dot{m}_k = \rho_k (\dot{v}_k - \dot{v}_i) \cdot \dot{n}_k$

(2.8)

\dot{m}_k is the local instant mass flux through the interface.

2.3 General Time Averaged Balance Equation

In a single phase turbulent flow, the Eulerian time averaging is essential and a well-known technique. As a two-phase flow consists of several single phase regions, the technique used in a single phase turbulent flow is taken to obtain the general time-averaged balance equation for one of single phase regions.

Let us integrate the local instant balance equation, Eq (2.5), over a time interval Δt. The time interval Δt should be smaller than the transport time of one single phase to pass through a reference position and than the macroscopic time constant of the unsteadiness of the bulk fluid. Also Δt should be large enough to smooth out the local variations of properties. Ishii (18) and Delhaye (23) used Δt which is a time interval sufficient for several single phase regions to pass through a local position. However, as turbulence originated in a single phase region
will be confined in that phase by the interface and the effect of turbulence in a phase can be transmitted through the other phase, \(\Delta t \) should be smaller than a time interval for a single phase region to pass through a reference point.

As a result, we get a time-averaged equation which is identical to that made in analyzing a single phase turbulent flow.

\[
\frac{\partial \rho_k \psi_k}{\partial t} + \nabla \cdot (\rho_k \psi_k \mathbf{v}_k) + \nabla \cdot \mathbf{j}_k - \rho_k \mathbf{e}_k = 0,
\]

(2.9)

where

\[
\overline{F} = \frac{1}{\Delta t} \int_0^{\Delta t} F \, dt
\]

(2.10)

In order to obtain Eq (2.9), we used the following relationships which come from the Leibnitz rule.

\[
\frac{\partial \overline{F}}{\partial t} = \frac{\partial \overline{F}}{\partial t} \quad \text{and} \quad \nabla \cdot \overline{F} = \nabla \cdot \overline{F}
\]

(2.11)

By including a non-zero scalar weighting function \(w \), we define the general weighted mean value of a function \(F \) as:

\[
\overline{F} = \frac{\overline{wF}}{\overline{w}}
\]

(2.12)

In general, the volume, momentum, energy, and entropy are considered to be extensive variables. If \(F \) is taken as a quantity per unit volume of the extensive characteristic,
it can be expressed in terms of the variable per unit mass ψ as:

$$F = \rho \psi$$

(2.13)

The appropriate mean value for ψ should be weighted by the density as

$$\bar{\psi} = \frac{\bar{\rho} \psi}{\bar{\rho}}$$

(2.14)

Now let us introduce fluctuating components of variables caused by turbulence. In general, as they are defined as a difference between a local instant variable and its weighted mean value, we have

$$F' = F - \bar{F}$$

(2.15)

Since the mean values of ψ and \dot{v} are weighted by mass, the fluctuating components are given as follows:

$$\psi_k = \bar{\psi}_k + \psi'_k \quad \text{and} \quad \dot{v}_k = \bar{\dot{v}}_k + \dot{v}'_k$$

(2.16)

Using Eqs (2.14) and (2.15), we have the additional relationships:

$$\frac{\rho_k \psi_k}{\bar{\rho}} = 0, \quad \frac{\rho_k \psi'_k}{\bar{\rho}} = 0, \quad \frac{\rho_k \dot{v}_k}{\bar{\rho}} = 0$$

$$\frac{\rho_k \psi'_k}{\bar{\rho}} = 0, \quad \frac{\rho_k \dot{v}'_k}{\bar{\rho}} = 0$$

(2.17)
From Eqs (2.16) and (2.17), the convective flux term becomes

\[
\rho_k \vec{v}_k \vec{v}_k = \vec{p}_k \vec{v}_k + \rho_k \vec{v}_k \vec{v}'_k + \rho_k \vec{v}'_k \vec{v}'_k
\]

(2.18)

Now we obtain the time-averaged balance equation

\[
\frac{\partial \rho_k \vec{v}_k}{\partial t} + \nabla \cdot (\rho_k \vec{v}_k \vec{v}_k) + \nabla \cdot (\vec{J}_k + \vec{J}'_k) - \rho_k \vec{S}_k = 0,
\]

(2.19)

where

\[
\vec{J}_k = \rho_k \vec{v}_k \vec{v}_k
\]

(2.20)

In the same manner, we can obtain the time-averaged interfacial balance equation by integrating Eq (2.7) over the time interval, \(\Delta t \).

\[
\sum_{k=1}^{2} \left(\vec{m}_k \vec{v}_k + \vec{n}_k \cdot \vec{J}_k \right) = 0,
\]

(2.21)

where

\[
\vec{J}_k = \vec{m}_k \vec{v}_k / \vec{n}_k
\]

(2.22)

\(\vec{v} \) is weighted by the time averaged mass flux through the interface.

2.4 General Time-Volume Averaged Balance Equation

Many practical problems of two-phase flows are dealt with using time-volume averaged equations. A time-volume averaged equation can be obtained by integrating the local time averaged equation, Eq (2.19), over a flow volume \(V_f \).
which consists of several single phase regions.

\[
\sum_{i=1}^{I} \frac{1}{V_f} \int_{V_{ki}} \left[\frac{\partial \rho_k \mathbf{v}_k}{\partial t} + \mathbf{v} \cdot (\rho_k \mathbf{v}_k \mathbf{v}_k) + \mathbf{v} \cdot (\mathbf{j}_k + \mathbf{j}_k^t) - \rho_k \mathbf{S}_k \right] dV = 0, \quad (2.23)
\]

where \(I \) is the maximum number of the \(k \)-th phase regions in the volume \(V_f \) and \(V_{ki} \) is the volume of the \(i \)-th single phase region of the \(k \)-th phase. The theorems we will use are given below:

Leibnitz rule

\[
\frac{\partial}{\partial t} \int_{V_{ki}} F dV = \int_{V_{ki}} \frac{\partial F}{\partial t} dV + \int_{A_{ki}} F \mathbf{v}_k \cdot \mathbf{n}_k dA, \quad (2.24)
\]

Gauss' theorem

\[
\int_{V_{ki}} \mathbf{v}_k \cdot F dV = \int_{V_{ki}} \mathbf{v}_k \cdot F dV + \int_{A_{ki} + A_{ki}} \mathbf{v}_k \cdot \mathbf{n}_k dA, \quad (2.25)
\]

where \(A_{ki} \) is the area of the \(i \)-th single phase region of the \(k \)-th phase in the volume \(V_f \) and \(\mathbf{v}_k \cdot \mathbf{n}_k \) is the surface displacement velocity of \(A_{ki} \). For a solid interface \(\mathbf{v}_w = 0 \).

Using these theorems, we obtain the equation

\[
\sum_{i=1}^{I} \frac{1}{V_f} \int_{V_{ki}} \left[\frac{\partial \rho_k \mathbf{v}_k}{\partial t} + \mathbf{v} \cdot (\rho_k \mathbf{v}_k \mathbf{v}_k) + \mathbf{v} \cdot (\mathbf{j}_k + \mathbf{j}_k^t) - \rho_k \mathbf{S}_k \right] dV \\
+ \int_{A_{ki}} \mathbf{n}_k \cdot \mathbf{S}_k dA \quad (2.26)
\]

where \(A_{kjw} \) denotes the area of the \(j \)-th single phase region of the \(k \)-th phase contacting the solid surface in the volume
The fifth term in Eq (2.26) can be simplified by using the definition of the turbulent flux, Eq (2.20).

\[B = \left[\rho_k \mathbb{V}_k \left(\mathbb{V}_k - \mathbb{V}_i \right) + \mathbb{J} \right] \cdot \mathbf{n}_k \]

\[= \left(\rho_k \mathbb{V}_k \mathbb{V}_k + \rho_k \mathbb{V}_i \mathbb{V}_i - \rho_k \mathbb{V}_k \mathbb{V}_i \right) \cdot \mathbf{n}_k \quad (2.27) \]

From Eqs (2.14) and (2.18), Eq (2.27) becomes

\[B = \left(\rho_k \mathbb{V}_k \mathbb{V}_k - \rho_k \mathbb{V}_k \mathbb{V}_i \right) \cdot \mathbf{n}_k \quad (2.28) \]

Then, we have the following equation which is consistent with the jump condition, Eq (2.7).

\[B = \mathbb{m}_k \mathbb{V}_k \quad (2.29) \]

Let us introduce spatial averaged relationships for a single phase region.

\[\langle F \rangle = \int_{V_{ki}} F \, dV \left/ \int_{V_{ki}} dV \right. \quad (2.30) \]

\[\langle F \rangle_{ai} = \int_{A_{ki}} F \, dA \left/ \int_{A_{ki}} dA \right. \quad (2.31) \]

\[\langle F \rangle_{wj} = \int_{A_{kwj}} F \, dA \left/ \int_{A_{kwj}} dA \right. \quad (2.32) \]

Substituting Eqs (2.30), (2.31) and (2.32) into Eq. (2.26),
we obtain the equation averaged for a single phase region.

\[
\sum_i \left[\frac{\partial}{\partial t} \alpha_{ki} \langle \rho_{k} \psi \rangle + \nabla \cdot \alpha_{ki} \langle \rho_{k} \psi \psi \rangle + \nabla \cdot \alpha_{ki} \langle \dot{\psi} \rangle + \frac{1}{L_{ai}} \langle \nabla \psi \rangle_{ai} + \langle \mathbf{n}_{k} \cdot \mathbf{j} \rangle_{ai} \right] + \frac{1}{L_{wj}} \langle \mathbf{n}_{k} \cdot \mathbf{j} \rangle_{wj} = 0,
\]

(2.33)

where \(\alpha_{ki} = \frac{V_{fi}}{V_f} \), \(\frac{1}{L_{ai}} = \frac{A_{ki}}{V_f} \), \(\frac{1}{L_{wj}} = \frac{A_{kji}}{V_f} \) (2.34)

Then Eq (2.33) is averaged over the total volume, or over the total surface, of \(k \)-th phase in the volume \(V_f \) by using the following relationships:

\[
<<F>> = \frac{\sum_i \alpha_{ki} \langle F \rangle}{\sum_i \alpha_{ki}} = \frac{\sum_i \alpha_{ki} \langle F \rangle}{\alpha_k} \quad (2.35)
\]

\[
<<F>>_{a} = \frac{\sum_i \frac{1}{L_{ai}} \langle F \rangle_{ai}}{\sum_i \frac{1}{L_{ai}}} = \frac{\sum_i \frac{1}{L_{ai}} \langle F \rangle_{ai}}{1/L_{ak}} \quad (2.36)
\]

\[
<<F>>_{w} = \frac{\sum_j \frac{1}{L_{wj}} \langle F \rangle_{wj}}{\sum_j \frac{1}{L_{wj}}} = \frac{\sum_j \frac{1}{L_{wj}} \langle F \rangle_{wj}}{1/L_{wk}} \quad (2.37)
\]

where \(\alpha_k = \sum_i \alpha_{ki} \), \(\frac{1}{L_{ak}} = \frac{\sum_i A_{ki}}{V_f} \), \(\frac{1}{L_{wk}} = \frac{j A_{kj}}{V_f} \) (2.38)

Substituting Eqs (2.35), (2.36), and (2.37) into Eq(2.33),
we have the general time-volume averaged equation.

\[
\frac{\partial}{\partial t} \alpha_k \langle \rho_k \psi_k \rangle + \nabla \cdot \alpha_k \langle \rho_k \psi_k \nu_k \rangle + \nabla \cdot \alpha_k \langle J_k^\Gamma + J_k^w \rangle - \alpha_k \langle \rho_k S_k \rangle + \frac{1}{L_{ak}} \langle m_k \psi_k \rangle a + \frac{1}{L_{wk}} \langle n_k J_k \rangle_w = 0
\]

(2.39)

Let us obtain the time-volume averaged interfacial jump condition from Eq (2.21). Integrating Eq (2.21) over the interfacial surface area \(A_{ki} \), we get the jump condition.

\[
\sum_{k=1}^{2} \sum_{i} \int_{A_{ki}} (\dot{m}_k \psi_k + \dot{n}_k J_k) \, dA = \sum_{k=1}^{2} \frac{1}{L_{ak}} \langle \dot{m}_k \psi_k + \dot{n}_k J_k \rangle_a = 0
\]

(2.40)

2.5 Time-Volume Averaged Conservation Equations

The forms of the time-volume averaged conservation equations for mass, momentum, and energy of the k-th phase can be written by specifying Eq (2.39) as follows:

Mass

In this case,

\[
\psi_k = 1, \quad \dot{J}_k = 0, \quad S_k = 0
\]

(2.41)
We have
\[
\frac{\partial}{\partial t} \alpha_k << \rho_k v_k >> + \nabla \cdot \alpha_k << \rho_k \vec{v}_k >> + \nabla \alpha_k << \vec{v}_k >> = \Gamma_k',
\]
(2.42)

where \(\bar{J}_k = \rho_k \bar{v}_k = 0 \)

and
\[
\Gamma_k = - \frac{1}{L_{ak}} << \bar{m}_k >> a
\]
(2.43)

\(\Gamma_k \) is the time-volume averaged interfacial mass flow rate per unit volume of \(k \)-th phase.

Momentum

In this case,
\[
\psi_k = \bar{v}_k, \quad \bar{J}_k = \rho_k \bar{I} - \bar{\tau}_k, \quad \bar{S}_k = \bar{p}_k
\]
(2.44)

We have
\[
\frac{\partial}{\partial t} \alpha_k << \rho_k \vec{v}_k >> + \nabla \cdot \alpha_k << \rho_k \vec{v}_k \vec{v}_k >> + \nabla \alpha_k << \vec{v}_k >>
- \nabla \cdot \alpha_k << \tau_k \cdot \bar{n}_k >> - \alpha_k << \bar{\rho}_k \vec{F}_k >> - \nabla \cdot \alpha_k << \bar{\tau}_k \cdot \bar{n}_k >>
+ \frac{1}{L_{ak}} << \bar{m}_k \vec{v}_k >> a + \frac{1}{L_{ak}} << \bar{p}_{ki} >> a - \frac{1}{L_{ak}} << \bar{\tau}_k \cdot \bar{n}_k >> a
- \frac{1}{L_{wk}} << \bar{\tau}_k \cdot \bar{n}_k >> w = 0
\]
(2.45)

where \(\bar{\tau}_k = \bar{\rho}_k \bar{v}_k \bar{v}_k \)
(2.46)

and \(p_{ki} \) is the local interfacial pressure.

The time-averaged local interfacial pressure \(\bar{p}_{ki} \) can be
divided into three terms as follows:

\[
\tilde{P}_{ki} = \langle \langle P_k \rangle \rangle + \Delta P_{ki} + \Delta P'_{ki},
\]

where

\[
\Delta P_{ki} = \langle \langle P_{ki} \rangle \rangle_a - \langle \langle P_k \rangle \rangle,
\]

\[
\Delta P'_{ki} = \tilde{P}_{ki} - \langle \langle P_{ki} \rangle \rangle_a,
\]

and \(\Delta P_{ki}\) is the difference between the average interfacial and average phase pressures and \(\Delta P'_{ki}\) is the difference between the local and average interfacial pressures.

Using Eq (2.25), we obtain the following relationship:

\[
\frac{1}{L_{ak}} \langle \langle P_k \rangle \rangle_a = - (\langle \langle P_k \rangle \rangle + \Delta P_{ki}) \nabla \cdot \alpha_k + \frac{1}{L_{ak}} \langle \langle \Delta P'_{ki} \rangle \rangle_a (2.50)
\]

The second term on the right-hand side in Eq (2.50) is the term which leads to the virtual mass for inviscid flows. Substituting Eq (2.50) into Eq (2.45), we obtain the momentum conservation equation.

\[
\frac{3}{\delta t} \alpha_k \langle \langle \rho_k \dot{v}_k \rangle \rangle + \nabla \cdot \alpha_k \langle \langle \rho_k \dot{v}_k \dot{v}_k \rangle \rangle + \alpha_k \nabla \langle \langle P_k \rangle \rangle
\]

\[
- \alpha_k \langle \langle \rho_k \dot{F}_k \rangle \rangle - \nabla \cdot \alpha_k \langle \langle \tau_k \cdot \hat{n}_k \rangle \rangle
\]

\[
- \nabla \cdot \alpha_k \langle \langle \tau_k \cdot \hat{n}_k \rangle \rangle - \Delta P_{ki} \nabla \cdot \alpha_k
\]

\[
= - \frac{1}{L_{ak}} \langle \langle \dot{m}_k \dot{v}_k + \Delta P'_{ki} - \tau_k \cdot \hat{n}_k \rangle \rangle_a + \frac{1}{L_{wk}} \langle \langle \tau_k \cdot \hat{n}_k \rangle \rangle_w (2.51)
\]
Energy

In this case,

\[v_k = \mathcal{F}_k = e_k + \frac{v_k^2}{2}, \]
\[\mathcal{J}_k = \dot{q}_k - (p_k \mathbf{V} - \tau) \cdot \mathbf{v}_k, \]
\[S_k = \mathcal{F}_k \cdot \mathbf{v}_k + Q_k \]

where \(e_k \) and \(Q_k \) are the specific internal energy and volumetric internal energy generation rate.

In solving two-phase problems, it is often useful to separate the mechanical and thermal effects in the total energy equation. From dotting the local instant momentum equation derived by combining Eqs (2.5) and (2.44) by the velocity of \(k \)-th phase \(\mathbf{v}_k \), we have the mechanical energy balance equation.

\[\frac{\partial}{\partial t} \left(\frac{1}{2} \rho_k v_k^2 \right) + \nabla \cdot \left(\frac{1}{2} \rho_k v_k^2 \mathbf{v}_k \right) + \nabla \cdot \mathbf{p}_k \mathbf{v}_k - p_k \nabla \cdot \mathbf{v}_k \]
\[+ \nabla \cdot (\mathbf{\tau}_k \cdot \mathbf{v}_k) - \mathbf{\tau}_k : \mathbf{v}_k = 0 \]

(2.53)

Using Eqs (2.5) and (2.52), we have the local instant energy balance equation.

\[\frac{\partial}{\partial t} \rho_k (e_k + \frac{1}{2} v_k^2) + \nabla \cdot \rho_k \mathbf{v}_k (e_k + \frac{1}{2} v_k^2) + \nabla \cdot \mathcal{Q}_k \]
\[+ \nabla \cdot (\mathbf{p}_k \mathbf{v}_k) + \nabla \cdot (\mathbf{\tau}_k \cdot \mathbf{v}_k) - \rho_k (\mathcal{F}_k \cdot \mathbf{v}_k + Q_k) = 0 \]

(2.54)
Subtracting Eq (2.53) from Eq (2.54), we can obtain the internal energy equation.

\[
\frac{\partial}{\partial t} \rho_k e_k + \nabla \cdot \rho_k e_k \mathbf{v}_k + \nabla \cdot \mathbf{a}_k + \mathbf{p}_k \nabla \cdot \mathbf{v}_k + \mathbf{r}_k : \mathbf{v}_k \mathbf{v}_k - \mathbf{p}_k Q_k = 0
\]

(2.55)

If we compare the equations of mechanical and thermal energy, Eqs (2.53) and (2.55), we find out that \((p_k \nabla \cdot \mathbf{v}_k)\) and \((\mathbf{r}_k : \mathbf{v}_k \mathbf{v}_k)\) are common to both equations and that they appear with opposite signs in the two equations. Therefore, these terms describe the interconversion of mechanical and thermal energy. The term can be either positive or negative, depending on whether the fluid is expanding or contracting. As a result, it represents a reversible mode of interchange. Using the continuity equation, we have

\[
\mathbf{p}_k \nabla \cdot \mathbf{v}_k = -\mathbf{p}_k \frac{1}{\rho_k} \left[\frac{\partial \rho_k}{\partial t} + \mathbf{v}_k \cdot \nabla \rho_k \right] = -\mathbf{p}_k \frac{1}{\rho_k} \frac{D \rho_k}{D t} \quad (2.56)
\]

For a fluid of constant density, the term \((p_k \nabla \cdot \mathbf{v}_k)\) becomes zero. On the other hand, the term \((-\mathbf{r}_k : \mathbf{v}_k \mathbf{v}_k)\) is always positive and therefore represents an irreversible degradation of mechanical to thermal energy.

Let us get the time averaged internal energy from Eq (2.55).
Using Eqs (2.16), (2.17), and (2.18), we can obtain the time averaged internal energy equation.

\[
\frac{\partial}{\partial t} \frac{\bar{\rho}_k e_k}{\bar{\rho}_k} + \nabla \cdot \left(\bar{\rho}_k \bar{e}_k \bar{v}_k \right) + \nabla \cdot \bar{q}_k + \bar{p}_k \nabla \cdot \bar{v}_k + \bar{\tau}_k : \bar{\nabla}^2 \bar{v}_k
\]

\[- \bar{\rho}_k \bar{Q}_k = 0 \]

(2.57)

The time-volume averaged internal energy equation can be obtained by integrating Eq (2.58) over the flow volume \(V_f \). In order to perform that, the term \((\bar{p}_k \nabla \cdot \bar{v}_k) \) requires a special manipulation as follows. The local instant pressure can be divided into two components: time-averaged local pressure and local time fluctuation of pressure.

\[
\bar{p}_k = \bar{p}_k + \bar{p}_k \]

(2.59)

Then \((\bar{p}_k \nabla \cdot \bar{v}_k) \) becomes

\[
\bar{p}_k \nabla \cdot \bar{v}_k = \bar{p}_k \nabla \cdot \bar{v}_k + \bar{p}_k \bar{\tau}_k \nabla \cdot \bar{v}_k \]

(2.60)

Let us integrate Eq (2.60) over the flow volume \(V_f \). Then,
we have

\[
\sum_{i=1}^{\infty} \frac{1}{V_f} \int_{V_{ki}} \mathbf{p}_k \cdot \nabla \mathbf{v}_k \, dV = \sum_{i=1}^{\infty} \frac{1}{V_f} \int_{V_{ki}} (\bar{\mathbf{p}}_k \nabla \cdot \mathbf{v}_k + \mathbf{p}_k' \nabla \cdot \mathbf{v}_k) \, dV \quad (2.61)
\]

Also the time averaged local pressure can be divided into two components: time-space averaged pressure and time averaged space fluctuation of pressure.

\[
\bar{\mathbf{p}}_k = \langle \langle \mathbf{p}_k \rangle \rangle + \mathbf{p}_k' \quad (2.62)
\]

Substituting Eq (2.62) into Eq (2.61), Eq. (2.61) becomes

\[
\sum_{i=1}^{\infty} \frac{1}{V_f} \left[\langle \langle \mathbf{p}_k \rangle \rangle \int_{V_{ki}} \nabla \cdot \mathbf{v}_k \, dV + \int_{V_{ki}} \left(p_k' \nabla \cdot \mathbf{v}_k + p_k' \mathbf{v}_k \cdot \mathbf{v}_k \right) \, dV \right] \quad (2.63)
\]

Using Eq (2.25), the first term in Eq (2.63) is expressed as follows:

\[
\frac{1}{V_f} \langle \langle \mathbf{p}_k \rangle \rangle \int_{V_{ki}} \nabla \cdot \mathbf{v}_k \, dV
\]

\[
= \langle \langle \mathbf{p}_k \rangle \rangle \nabla \cdot \mathbf{v}_k \frac{1}{V_f} \int_{V_{ki}} \mathbf{v}_k \, dV + \langle \langle \mathbf{p}_k \rangle \rangle \frac{1}{V_f} \int_{A_{ki}} \mathbf{n}_k \cdot \mathbf{v}_k \, dA \quad (2.64)
\]

Then, taking the procedure described in Section 2.4 and
assuming that \(\vec{v}_k \) is equal to \(\vec{v}_k \), we have

\[
\sum_i \frac{1}{V_i} \int \frac{p_k \vec{v}_k \cdot \vec{v}_k}{V_{ki}} \, dv = \langle \langle \vec{p}_k \rangle \rangle \vec{v}_k \cdot \langle \langle \vec{v}_k \rangle \rangle \\
+ \langle \langle \vec{p}_k \rangle \rangle \frac{1}{L_{ak}} \langle \langle \vec{n}_k \cdot \vec{v}_k \rangle \rangle + \alpha_k \langle \langle \vec{p}_k \cdot \vec{v}_k + p_k \vec{t}_k \cdot \vec{v}_k \rangle \rangle (2.65)
\]

Applying the same procedures for other terms in Eq (2.58), we have the time-volume averaged internal energy equation.

\[
\frac{\partial}{\partial t} \alpha_k \langle \langle \vec{p}_k \vec{e}_k \rangle \rangle + \nabla \cdot \alpha_k \langle \langle \vec{p}_k \vec{e}_k \vec{v}_k \rangle \rangle + \nabla \cdot \alpha_k \langle \langle \vec{q}_k + \vec{q}_k \rangle \rangle \\
+ \langle \langle \vec{p}_k \rangle \rangle \vec{v}_k \cdot \langle \langle \vec{v}_k \rangle \rangle + \langle \langle \vec{p}_k \rangle \rangle \frac{1}{L_{ak}} \langle \langle \vec{n}_k \cdot \vec{v}_k \rangle \rangle \\
+ \alpha_k \langle \langle \vec{v}_k \vec{v}_k \rangle \rangle + \alpha_k \langle \langle \vec{p}_k \cdot \vec{v}_k + p_k \vec{t}_k \cdot \vec{v}_k \rangle \rangle \\
= - \frac{1}{L_{ak}} \langle \langle \vec{m}_k \vec{e}_k + \vec{n}_k \cdot \vec{q}_k \rangle \rangle \cdot a - \frac{1}{L_{wk}} \langle \langle \vec{n}_k \cdot \vec{q}_k \rangle \rangle \cdot w (2.66)
\]

The term \(\langle \langle \vec{m}_k \vec{e}_k \rangle \rangle \) can be expressed in terms of enthalpy, \(h \). The enthalpy is defined as follows:

\[
h = e + \frac{p}{\rho} (2.67)
\]

Using the definition \(\dot{m}_k = \rho_k (\vec{v}_k - \vec{v}_i) \cdot \vec{n}_k \), we have

\[
\frac{\dot{m}_k}{\rho_k} = \rho_k (\vec{v}_k - \vec{v}_i) \cdot \vec{n}_k (2.68)
\]

By Eq (2.68), we have

\[
\langle \langle \vec{m}_k \vec{e}_k \rangle \rangle = \langle \langle \vec{m}_k \vec{h}_k \rangle \rangle - \langle \langle \vec{p}_k (\vec{v}_k - \vec{v}_i) \cdot \vec{n}_k \rangle \rangle \\
= \langle \langle \vec{m}_k \vec{h}_k \rangle \rangle - \langle \langle \vec{p}_k (\vec{v}_k - \vec{v}_i) \cdot \vec{n}_k \rangle \rangle (2.69)
\]
Using the definition Eq (2.62), we have

\[\langle \vec{P}_k (\vec{v}_k - \vec{v}_i) \cdot \vec{n}_k \rangle \]

\[= \langle \vec{P}_k \rangle \langle \vec{v}_k - \vec{v}_i \rangle \cdot \vec{n}_k \rangle + \langle \vec{P}_k (\vec{v}_k - \vec{v}_i) \cdot \vec{n}_k \rangle \]

(2.70)

Combining the second term in Eq (2.65) and the first term in Eq (2.70), then we obtain

\[\frac{1}{L_{ak}} [\langle \vec{P}_k \rangle \langle \vec{v}_k \cdot \vec{n}_k \rangle - \langle \vec{P}_k \rangle \langle \vec{v}_i \cdot \vec{n}_k \rangle] \]

\[= \frac{1}{L_{ak}} \langle \vec{P}_k \rangle \langle \vec{v}_i \cdot \vec{n}_k \rangle \]

(2.71)

Applying Leibnitz rule to Eq (2.71), Eq (2.71) becomes

\[\frac{1}{L_{ak}} \langle \vec{P}_k \rangle \langle \vec{v}_i \cdot \vec{n}_k \rangle = \langle \vec{P}_k \rangle \frac{\partial \alpha_k}{\partial t} \]

(2.72)

Then we obtain the final internal energy equation:

\[\frac{\partial}{\partial t} \alpha_k \langle \vec{P}_k \rangle + \nabla \cdot \alpha_k \langle \vec{P}_k \rangle \langle \vec{v}_k \rangle + \nabla \cdot \alpha_k \langle \vec{q}_k + \vec{q}_k \rangle \]

\[+ \langle \vec{P}_k \rangle \nabla \cdot \alpha_k \langle \vec{v}_k \rangle + \langle \vec{P}_k \rangle \frac{\partial \alpha_k}{\partial t} \]

\[+ \alpha_k \langle \vec{r}_k \cdot \vec{v}_k \rangle + \alpha_k \langle \vec{P}_k \rangle \nabla \cdot \vec{v}_k + \vec{P}_k \nabla \cdot \vec{v}_k \rangle \]

\[= - \frac{1}{L_{ak}} \langle \vec{m}_k \cdot \vec{h}_k + \vec{h}_k \cdot \vec{q}_k \rangle \]

\[- \frac{1}{L_{wk}} \langle \vec{h}_k \cdot \vec{q}_k \rangle \]

(2.73)

Using the definition of enthalpy, we can obtain the enthalpy energy equation from Eq (2.73). The first and
second terms on the left-hand side in Eq (2.73) become

\[
\frac{\partial}{\partial t} a_k \langle \vec{\rho}_{k} \vec{e}_{k} \rangle = \frac{\partial}{\partial t} a_k \langle \vec{\rho}_{k} \vec{h}_{k} \rangle - \frac{\partial}{\partial t} a_k \langle \vec{P}_{k} \rangle \tag{2.74}
\]

and

\[
\nabla \cdot a_k \langle \vec{\rho}_{k} \vec{e}_{k} \vec{v}_{k} \rangle
\]

\[
= \nabla \cdot a_k \langle \vec{\rho}_{k} \vec{h}_{k} \vec{v}_{k} \rangle - \nabla \cdot a_k \langle \vec{P}_{k} \vec{v}_{k} \rangle
\]

\[
= \nabla \cdot a_k \langle \vec{\rho}_{k} \vec{h}_{k} \vec{v}_{k} \rangle - \langle \vec{P}_{k} \rangle \nabla \cdot a_k \langle \vec{v}_{k} \rangle
\]

\[
- \langle \nabla \vec{v}_{k} \rangle \cdot \nabla a_k \langle \vec{P}_{k} \rangle - \nabla \cdot a_k \langle \vec{p}' \vec{v}_{k} \rangle \tag{2.75}
\]

Then, we have the final enthalpy energy equation

\[
\frac{\partial}{\partial t} a_k \langle \vec{\rho}_{k} \vec{h}_{k} \rangle + \nabla \cdot a_k \langle \vec{\rho}_{k} \vec{h}_{k} \vec{v}_{k} \rangle + \nabla \cdot a_k \langle \vec{q}_{k} \rangle - \nabla \cdot a_k \langle \vec{q}_{k} \rangle
\]

\[
+ a_k \langle \vec{v}_{k} \rangle \nabla a_k \langle \vec{P}_{k} \rangle - \nabla \cdot a_k \langle \vec{p}' \vec{v}_{k} \rangle + a_k \langle \vec{p}' \vec{v}_{k} \rangle - \vec{p}_{k} \nabla \cdot \vec{v}_{k}
\]

\[
= - \frac{1}{L_{ak}} \langle \vec{n}_{k} \vec{h}_{k} + \vec{h}_{k} \vec{q}_{k} \rangle + \frac{1}{L_{wk}} \langle \vec{q}_{k} \rangle \tag{2.76}
\]

2.6 Interfacial Jump Condition

From Eq (2.40) we can obtain the interfacial jump conditions.

Mass

In this case,

\[
\psi_k = 1, \quad J_k = 0
\]
we have
\[\Sigma r_k = 0 \]
(2.77)

Momentum

In this case,
\[\psi_k = \vec{v}_k, \quad \underline{J}_k = \underline{p}_k - \underline{T}_k \]

we have
\[\frac{2}{\sum \frac{1}{L_{ak}}} \sum_{k=1}^{2} \left(\frac{m_k \vec{v}_k + n_k \left(\underline{p}_k - \underline{T}_k \right) \vec{v}_k}{E_k} \right) = 0 \]
(2.78)

Energy

In this case,
\[\psi_K = E_k = e_k + \frac{v_k^2}{2}, \quad \underline{J}_k = \underline{q}_k - \left(E_k \underline{T}_k - \underline{T}_k \right) \vec{v}_k \]

We have
\[\frac{2}{\sum \frac{1}{L_{ak}}} \sum_{k=1}^{2} \left(\frac{m_k E_k + n_k \left[\underline{q}_k - \left(E_k \underline{T}_k - \underline{T}_k \right) \vec{v}_k \right]}{E_k} \right) = 0 \]
(2.79)

The equation can be written in enthalpy form
\[\frac{2}{\sum \frac{1}{L_{ak}}} \sum_{k=1}^{2} \left(\frac{m_k \vec{h}_k + n_k \left(\vec{q}_k - \left(\underline{p}_k \vec{v}_k + \underline{T}_k \vec{v}_k \right) \right)}{E_k} \right) = 0 \]
(2.80)

2.7 Comparison

Ishii (20) derived time averaged equations by averaging the local equations over a time interval \(\Delta t \) in which several single phase regions with singular interfaces pass through a reference point. Therefore, he was forced to use limiting forms of the Leibniz rule derived by Delhaye and
Achard (23), which lead to a question about the validity about their derivation and an ambiguous physical interpretation of terms describing interfacial transfer phenomena. Ishii's time-averaged conservation equations are as follows:

Mass

\[
\frac{\partial}{\partial t} \alpha_k \rho_k \vec{v}_k + \nabla \cdot \alpha_k \rho_k \vec{v}_k \vec{v}_k = \Gamma_{ki} \tag{2.81}
\]

Momentum

\[
\frac{\partial}{\partial t} \alpha_k \rho_k \vec{v}_k + \nabla \cdot \alpha_k \rho_k \vec{v}_k \vec{v}_k + \nabla \alpha_k \rho_k \vec{F}_k
\]

\[
- \nabla \cdot \alpha_k (\vec{\tau}_k + \vec{\tau}_t) - \alpha_k \rho_k \vec{F}_k = M_{ki} \tag{2.82}
\]

Energy

\[
\frac{\partial}{\partial t} \alpha_k \rho_k \vec{E}_k + \nabla \cdot \alpha_k \rho_k \vec{E}_k \vec{v}_k + \nabla \cdot \alpha_k (\vec{J}_k + \vec{J}_k)
\]

\[
- \alpha_k \rho_k (\vec{P}_k \cdot \vec{v}_k + \vec{Q}_k) = E_{ki} \tag{2.83}
\]

where \(Q_k\) is the body source of energy, and \(\Gamma_{ki}, M_{ki},\) and \(E_{ki}\) are the rate of interfacial mass,
momentum, and energy transfer, respectively:

\[\Gamma_{ki} = -\frac{1}{\Delta t} \sum_j \left(\frac{1}{v_{ni}} n_k \cdot \rho_k (\hat{v}_k - \hat{v}_i) \right) \]

\[M_{ki} = -\frac{1}{\Delta t} \sum_j \left(\frac{1}{v_{ni}} n_k \cdot [\rho_k (\hat{v}_k - \hat{v}_i) \hat{v}_k - (p_k \bar{\tau}_k - \tau_k)] \right) \]

\[E_{ki} = -\frac{1}{\Delta t} \sum_j \left(\frac{1}{v_{ni}} \hat{n}_k \cdot [\rho_k (\hat{v}_k - \hat{v}_i) (e_k + \frac{v_k^2}{2}) - (p_k \bar{\tau}_k - \tau_k)] \right) \]

where \(v_{ni} = \hat{v}_i \cdot \hat{n}_k \) : displacement velocity of the interface

We may notice that Ishii's time averaged equations are basically in the same forms as the time-volume averaged equations derived here. However, it is noticed that Ishii's equations leave difficulties in obtaining time-volume averaged equations which give clear physical meaning for two reasons. First, he introduced the concept of time-averaged void fraction when he derived local time-averaged equations and the natural question is how this concept can be transformed to the concept of volume-averaged void fraction. Secondly, Eqs (2.84)-(2.86) which describe interfacial transfer phenomena are not well-defined forms such as \(\int_{A_k} \mathbf{F}_k \cdot \hat{n}_k \, dA \). As a result, Delhaye and Archard assumed the commutativity of averaging operators to express Eqs (2.84)-(2.86) into the well-defined forms as follows:

\[\int_V \left(\sum_j \frac{1}{\Delta t v_{ni}} (\mathbf{F}_k \cdot \hat{n}_k) \right)_j \, dV = \int_{A_k} \mathbf{F}_k \cdot \hat{n}_k \, dA \] (2.87)
These difficulties mainly come from their averaging the local equations over a time interval in which several single phase with singular interface are allowed to pass through a reference point.

Banerjee and Chan (19) derived one dimensional volume averaged equations by averaging the local equations over a fluid volume V_f which consists of several single phase regions. As their equations are not averaged over a time interval, turbulent contribution terms do not appear in the conservation equations. Except for these turbulent terms and the use of instantaneous properties, their equations are the same as the equations derived here.

Let us compare the time-averaged conservation equations, Eqs (2.42), (2.51), and (2.73) with the conservation equations of the THERMIT-6S. The following equations are used in the THERMIT-6S.

Mass

$$\frac{\partial}{\partial t} (\alpha_k \rho_k) + \nabla \cdot (\alpha_k \rho_k \vec{v}_k) = \Gamma_k$$

Momentum

$$\frac{\partial}{\partial t} \alpha_k \rho_k \vec{v}_k + \nabla \cdot (\alpha_k \rho_k \vec{v}_k \vec{v}_k) + \alpha_k \nabla p_k$$

$$= \Gamma_k \vec{v}_i - \vec{F}_sk - \vec{F}_vk - \vec{F}_wk + \alpha_k \rho_k \vec{g}$$
Energy

\[
\frac{\partial}{\partial t} \alpha_k \rho_k e_k + \nabla \cdot (\alpha_k \rho_k e_k \mathbf{v}_k) + p \nabla \cdot (\alpha_k \mathbf{v}_k) + p \frac{\partial \alpha_k}{\partial t} = Q_{ik} + Q_{wk} + Q_{kk}
\]

(2.90)

where

\(F_{sk} \), \(F_{vk} \), and \(Q_{ik} \) : interfacial standard drag force and virtual mass force, energy exchange rate, per unit volume, respectively,
\(F_{wk} \) and \(Q_{wk} \) : wall friction force and wall heat transfer rate, per unit volume, respectively,
\(Q_{\text{ll}} \) : liquid energy conduction rate per unit volume,
\(\mathbf{g} \) : gravitational force.

Note that \(Q_{VV} \) is put to be zero for the vapor energy equation of the THERMIT-6S. The relationships between Eq (2.89) and Eq (2.51), and between Eq (2.90) and Eq (2.73)
are as follows:

\[v_i = \langle v \rangle \hat{a}, \quad \dot{F}_k = \rho \dot{g}_k \]

\[\dot{F}_{sk} = -\frac{1}{L_{ak}} \langle \dot{\bar{n}}_k \cdot \bar{v}_k \rangle \hat{a} \]

\[\dot{F}_{vk} = \frac{1}{L_{ak}} \langle \Delta p_{ki} \rangle \hat{a} \]

\[\dot{F}_{wk} = -\frac{1}{L_{wk}} \langle \dot{\bar{n}}_k \cdot \bar{v}_k \rangle \hat{w} \]

\[Q_{ik} = -\frac{1}{L_{ak}} \langle \dot{m}_k \bar{h}_k + \dot{\bar{n}}_k \cdot \hat{q}_k \rangle \hat{a} \]

\[Q_{wk} = -\frac{1}{L_{wk}} \langle \dot{n}_k \cdot \hat{q}_k \rangle \hat{w} \]

\[Q_{\lambda \lambda} = -\nabla \cdot \alpha_{\lambda} (\hat{q}_{\lambda} + \hat{q}_{\lambda}^+) \]

Implicitly each property in the equations of the THERMIT-6S can be considered to be averaged in time and volume. Therefore, the THERMIT-6S neglects the fluctuating terms from the nonuniform spatial distribution of properties. Properties can be expressed as the sum of a
spatial average and spatial fluctuating component:

\[\bar{\rho}_k = \langle\bar{\rho}_k\rangle + \rho_k' \quad \text{and} \quad \bar{\psi}_k = \langle\bar{\psi}_k\rangle + \psi_k' \]

Then, \(\langle\bar{\rho}_k \bar{\psi}_k\rangle \) and \(\langle\bar{\rho}_k \bar{\psi}_k v_k\rangle \) become

\[\langle\bar{\rho}_k \bar{\psi}_k\rangle = \langle\bar{\rho}_k\rangle \langle\bar{\psi}_k\rangle + \langle\rho_k' \psi_k'\rangle \]

\[\langle\bar{\rho}_k \bar{\psi}_k v_k\rangle = \langle\bar{\rho}_k\rangle \langle\bar{\psi}_k\rangle \langle v_k\rangle + \langle\rho_k' \psi_k' v_k\rangle \]

An adequate assessment should be given for all terms in the equations by assessing their comparative magnitudes and thereby justify the neglect of these spatial fluctuating terms.

In addition to neglecting the distribution terms, in the momentum equation of the THERMIT-6S, several assumptions are made:

1) Negligible turbulent contribution term, \(\nabla \cdot \alpha_k \langle\bar{\tau}_k \cdot \hat{n}_k\rangle \)

2) Negligible phase shear force, \(\nabla \cdot \alpha_k \langle\bar{\tau}_k \cdot \hat{n}_k\rangle \)

3) The average interfacial pressure \(\langle\bar{p}_{ki}\rangle \) equals the phase pressure \(\langle\bar{p}_k\rangle \). As a result, we have \(\Delta p_{ki} = 0 \)

Similarly, beside the omission of the distribution terms the following assumptions are made in the internal energy equation of the THERMIT-6S:
1) Negligible irreversible conversion to internal energy, \(<\tau_k : \nabla v_k^+>>\)

2) Negligible vapor energy conduction rate,
\(\nabla \cdot \alpha <<\bar{q}_v + \bar{q}_v^t>>\)
Chapter 3 DESCRIPTION OF THERMIT-6S Equations

3.1 Differential Equations of THERMIT-6S

The mathematically rigorous differential equations of two-phase flow derived in Chapter 2 are simplified with several assumptions in order to derive the differential equations of the THERMIT-6S. Eqs (2.42), (2.51), and (2.73) for conservation equations, and Eqs (2.77), (2.78), and (2.80) for jump conditions are used to obtain the equations of the THERMIT-6S.

Conservation Equations

1. Vapor Mass

\[\frac{\partial}{\partial t} (\alpha_v c_v) + \nabla \cdot (\alpha_v \rho_v \hat{v}_v) = \Gamma_v \]

(3.1)

2. Liquid Mass

\[\frac{\partial}{\partial t} (\alpha_l \rho_l) + \nabla \cdot (\alpha_l \rho_l \hat{v}_l) = \Gamma_l \]

(3.2)

3. Vapor Energy

\[\frac{\partial}{\partial t} (\alpha_v \rho_v e_v) + \nabla \cdot \left(\alpha_v \rho_v \hat{v}_v \nabla e_v \right) + p \nabla \cdot (\alpha_v \hat{v}_v) \]

\[+ p \frac{\partial \alpha_v}{\partial t} = Q_{iv} + Q_{wv} \]

(3.3)

4. Liquid Energy

\[\frac{\partial}{\partial t} (\alpha_l \rho_l e_l) + \nabla \cdot \left(\alpha_l \rho_l \hat{v}_l \nabla e_l \right) + \nabla \cdot (\alpha_l \hat{v}_l) \]

\[+ p \nabla \cdot (\alpha_l \hat{v}_l) + p \frac{\partial \alpha_l}{\partial t} = Q_{il} + Q_{w,il} \]

(3.4)
5. **Vapor Momentum**

\[\frac{\partial}{\partial t} \left(\alpha_v \rho_v \dot{v}_v \right) + \nabla \cdot \left(\alpha_v \rho_v \nabla \dot{v}_v \right) + \alpha_v \nabla \mathbf{p} = \Gamma_v \dot{v}_i - \dot{F}_{iv} - \dot{F}_{wv} + \alpha_v \rho_v \ddot{g} \]

(3.5)

6. **Liquid Momentum**

\[\frac{\partial}{\partial t} \left(\alpha_l \rho_l \dot{v}_l \right) + \nabla \cdot \left(\alpha_l \rho_l \nabla \dot{v}_l \right) + \alpha_l \nabla \mathbf{p} = \Gamma_l \dot{v}_i - \dot{F}_{il} - \dot{F}_{wl} + \alpha_l \rho_l \ddot{g} \]

(3.6)

Jump Condition

1. **Mass**

\[\Gamma_v + \Gamma_l = 0 : \Gamma = \Gamma_v = -\Gamma_l \]

(3.7)

2. **Energy**

\[Q_{iv} + Q_{il} = 0 : Q_i = Q_{iv} = -Q_{il} \]

(3.8)

3. **Momentum**

\[\dot{F}_{iv} + \dot{F}_{il} = 0 : \dot{F}_i = \dot{F}_{iv} = -\dot{F}_{il} \]

(3.9)

Here \(Q_i \) and \(\dot{F}_i \) denote interfacial energy and momentum exchange rate, per unit volume, and \(Q_{wv}, Q_{wl}, \dot{F}_{wv}, \) and \(\dot{F}_{wl} \) are the wall heat transfer rates and wall friction force of vapor and liquid, per unit volume, respectively. Note that \(\dot{v}_i \) in the above equations is different from \(\dot{v}_i \cdot \hat{n}_k \) in Eq (2.24); \(\dot{v}_i \) and \(\dot{v}_i \cdot \hat{n}_k \) are the interfacial material velocity and displacement velocity of
the interfacial surface, respectively.

For reasons involved with the selection of a difference strategy for solving these equations, momentum equations are rewritten in a non-conservative form by using mass equations. Then Eqs (3.5) and (3.6) become

\[
\begin{align*}
\alpha_v \rho_v \frac{\partial \vec{V}_v}{\partial t} &+ \alpha_v \rho_v \vec{V}_v \cdot \nabla \vec{V}_v + \alpha_v \nabla p \\
&= \Gamma (\vec{V}_i - \vec{V}_v) - \vec{F}_i - \vec{F}_{wv} + \alpha_v \rho_v \vec{g} \\
&= - \Gamma (\vec{V}_i - \vec{V}_v) + \vec{F}_i - \vec{F}_{wv} + \alpha_v \rho_v \vec{g} \\
\end{align*}
\]

(3.10)

(3.11)

If we assume that \(\vec{V}_i \) is equal to \(\vec{V}_v \), then

\[
\begin{align*}
\Gamma (\vec{V}_i - \vec{V}_v) &= \Gamma (\vec{V}_v - \vec{V}_v) \\
\Gamma (\vec{V}_i - \vec{V}_v) &= 0
\end{align*}
\]

In THERMIT-6S \(\vec{F}_i \) consists of two components: the standard drag force (\(\vec{F}_s \)) and virtual mass force (\(\vec{F}_v \)), per unit volume. Both terms are defined as follows

\[
\vec{F}_s \equiv K (\vec{V}_v - \vec{V}_v) \quad (3.12)
\]

\[
\vec{F}_v \equiv \alpha_v \rho_v \vec{C}_v \left\{ \frac{\partial \vec{V}_v}{\partial t} - \frac{\partial \vec{V}_v}{\partial t} + \vec{V}_v \cdot \nabla (\vec{V}_v - \vec{V}_v) \\
+ (\vec{V}_v - \vec{V}_v) \cdot [(\lambda - 2) \nabla \vec{V}_v + (1 - \lambda) \nabla \vec{V}_v] \right\} \quad (3.13)
\]
For details of the virtual mass force, refer to Chapter 4. Introducing Eqs (3.12) and (3.13) into Eqs (3.10) and (3.11), we get the final momentum equation used in the THERMIT-6S.

\[
\begin{align*}
\left(\alpha_v \rho_v + \alpha_l \rho_l C_v\right) \frac{\partial \vec{v}_v}{\partial t} - \alpha_v \rho_v C_v \frac{\partial \vec{v}_l}{\partial t} + E_v + E_{vm} + \alpha_v \nabla p \\
= -(\Gamma + K)(\vec{v}_v - \vec{v}_l) - \vec{F}_{vw} + \alpha_v \rho_v \vec{g}
\end{align*}
\]

(3.14)

\[
\begin{align*}
\left(\alpha_l \rho_l + \alpha_v \rho_v C_v\right) \frac{\partial \vec{v}_l}{\partial t} - \alpha_v \rho_v C_v \frac{\partial \vec{v}_v}{\partial t} + E_l - E_{vm} + \alpha_l \nabla p \\
= K(\vec{v}_v - \vec{v}_l) - \vec{F}_{wl} + \alpha_l \rho_l \vec{g}
\end{align*}
\]

(3.15)

where

\[
\begin{align*}
E_v &= \alpha_v \rho_v \vec{v}_v \cdot \nabla \vec{v}_v \\
E_l &= \alpha_l \rho_l \vec{v}_l \cdot \nabla \vec{v}_l \\
E_{vm} &= \alpha_v \rho_v C_v \left[(\lambda - 1) \vec{v}_v \cdot \nabla \vec{v}_v - (\lambda - 2) \vec{v}_l \cdot \nabla \vec{v}_v \\
&\quad - \lambda \vec{v}_v \cdot \nabla \vec{v}_l - (1 - \lambda) \vec{v}_l \cdot \nabla \vec{v}_l \right]
\end{align*}
\]

(3.16)

(3.17)

(3.18)

As shown in Eq (2.59), \(Q_{iv} \) and \(Q_{il} \) can be divided into two components contributed by mass exchange and interfacial heat flux. These are defined as follows:

\[
\begin{align*}
Q_{iv} &= \frac{1}{L_v} \left(g_m h_{iv} + q''_{iv} \right) \\
Q_{il} &= -\frac{1}{L_a} \left(g_m h_{il} + q''_{il} \right)
\end{align*}
\]

(3.19)

(3.20)

where \(h_{il} \) and \(h_{iv} \) are the enthalpy on the liquid and vapor side of the interface, respectively.
q''_{il} and q''_{iv} are the heat flux on the liquid and vapor side of the interface,

g_m and $\frac{1}{L_a}$ are the interfacial mass flux and the ratio of interfacial area to fluid volume in the control volume.

\[
q''_{ik} = \langle n_k \cdot \bar{\tau}_{ik} \rangle_a
\]

\[
g_m = -\langle \bar{m}_k \rangle_a
\]

The mass exchange rate Γ can be expressed in terms of g_m and $\frac{1}{L_a}$

\[
\Gamma = \frac{g_m}{L_a}
\]

(3.21)

According to the jump condition, Eq (2.67) with the neglected term $\langle -p_k \cdot \bar{v}_i + \bar{\tau}_k \cdot \bar{v}_k \rangle_a$, the following relation can be obtained

\[
g_m h_{il} + q''_{il} = g_m h_{iv} + q''_{iv}
\]

(3.22)

Assuming the saturation state at the interface, we obtain the relationship between the interfacial mass flux and heat flux.

\[
g_m = \frac{q''_{il} - q''_{iv}}{h_{fg}}
\]

(3.23)

As the interfacial heat flux in the gas phase, q''_{iv} is usually much smaller than q''_{il}, a simplified relationship can be obtained by neglecting q''_{iv}:

\[
g_m = \frac{q''_{il}}{h_{fg}}
\]

(3.24)
If we set up a physical model of q_{iL}^{m}, then mass exchange rate can be obtained by using Eqs (3.21) and (3.24). Substituting Eq (3.24) into Eq (3.19), we have the interfacial energy transfer rate per unit volume,

$$Q_i = \frac{1}{L_a} \frac{q_{iL}^{m} h_q}{h_{fg}}$$ \hspace{1cm} (3.25)

In addition to these conservative equations there are four equations of state:

$$\rho_v = \rho_v(p, T_v), \quad \rho_\ell = \rho_\ell(p, T_\ell)$$
$$e_v = e_v(p, T_v), \quad e_\ell = e_\ell(p, T_\ell)$$ \hspace{1cm} (3.26)

These equations of state can be used to eliminate the densities and internal energies in terms of temperature and pressure. For the closure of the conservation equations terms, which represent the transfer of mass, energy, or momentum at the interface between the solid and fluid, and between liquid and vapor, must be explicitly expressed in terms of primary variables and properties. These terms are as follows:

$$\Gamma, \bar{F}_i, Q_i, \bar{F}_{wv}, \bar{F}_{wl}, Q_{wv}, \text{ and } Q_{wl}$$

The physical models of the above terms, so called constitutive equations, are described in Chapter 5.

3.2 Difference Equations of THERMIT-6S
The difference equations of THERMIT-6S are basically those of THERMIT (17) and can be obtained by discretizing the proceeding set of differential equations. The spatial discretization is characterized by a first-order spatial scheme, donor cell method, and staggered mesh layout. For time discretization a first-order semi-implicit scheme treats implicitly sonic terms and terms relating to local phenomena such as the exchange processes, and explicitly convective terms. A fully explicit method represents the fastest method on a per time step basis, but requires extremely small time steps due to Courant conditions. A implicit method, on the other hand, allows large time steps but leads to greatly increased code structure. The semi-implicit method is a compromise between these two extremes; reasonable time step size but less computation time per time step and simpler code structure than the implicit method.

We begin with the mass and energy equations, which are differenced about the centers of the mesh cells. (See Fig 3.1) The subscripts i, j, and k are used to indicate positions along the x, y, and z axes, respectively. The superscripts n or n+1 refers to the time level at which the variables are evaluated. A superscript n+½ is used only for the exchange terms which are functions of both new and old time values of variables. A and V represents the flow areas of the cell faces and the flow volumes of the cell, respectively. With these definition, the mass and energy
Fig. 3.1: A Typical Fluid Mesh Cell Showing Location of Variables and Subscripting Conventions

cell center (i,j,k):
- a, p, p_v, p_L
- e_v, e_L, T_v, T_L
difference equations are as follows:

Vapor Mass:

\[
\frac{(\alpha_v \rho_v)^{n+1} - (\alpha_v \rho_v)^n}{\Delta t} + \frac{1}{V} \left[(\alpha_v \rho_v)^n (v_x v_x)_{n+1} \right]_{i+\frac{1}{2}} + \frac{1}{V} \left[(\alpha_v \rho_v)^n (v_y v_y)_{n+1} \right]_{j+\frac{1}{2}} - \frac{1}{V} \left[(\alpha_v \rho_v)^n (v_z v_z)_{n+1} \right]_{k+\frac{1}{2}} = \Gamma^{n+\frac{1}{2}} \tag{3.27}
\]

Liquid Mass:

Same as Eq. (3.27) with \(\alpha_v \) replaced by \(\alpha_z \), subscript \(v \) by \(\ell \) and \(\Gamma \) by \(-\Gamma \) \tag{3.28}

Vapor Energy:

\[
\frac{(\alpha_v c_v e_v)^{n+1} - (\alpha_v c_v e_v)^n}{\Delta t} + \frac{1}{V} \left[(\alpha_v c_v e_v + p)^n (v_x v_x)_{n+1} \right]_{i+\frac{1}{2}} - \frac{1}{V} \left[(\alpha_v c_v e_v + p)^n (v_y v_y)_{n+1} \right]_{j-\frac{1}{2}} + \frac{1}{V} \left[(\alpha_v c_v e_v + p)^n (v_z v_z)_{n+1} \right]_{k+\frac{1}{2}} - \frac{1}{V} \left[(\alpha_v c_v e_v + p)^n (v_z v_z)_{n+1} \right]_{k-\frac{1}{2}} + \frac{\alpha_v}{\Delta t} \left[(\alpha_v c_v e_v + p)^n (v_x v_x)_{n+1} \right]_{i+\frac{1}{2}} + \frac{\alpha_v}{\Delta t} \left[(\alpha_v c_v e_v + p)^n (v_y v_y)_{n+1} \right]_{j+\frac{1}{2}} + \frac{\alpha_v}{\Delta t} \left[(\alpha_v c_v e_v + p)^n (v_z v_z)_{n+1} \right]_{k+\frac{1}{2}} = Q_i^{n+\frac{1}{2}} + Q_{w\ell}^{n+\frac{1}{2}} \tag{3.29}
\]

Liquid Energy:

Same as Eq. (3.29) with \(\alpha_v \) replaced by \(\alpha_z \), subscript \(v \) by \(\ell \) and \(Q_i \) by \(-Q_i \), and added \(Q_{\ell\ell} \) \tag{3.30}
The liquid conduction term $\mathbf{v} \cdot \alpha_\ell \left(\dot{q}_\ell^+ + \dot{q}_\ell^- \right)$ is expressed as $Q_{\ell\ell}$ in Eq (3.30) and models for it will be presented in Appendix A. The properties transferred through the cell faces must be explicitly expressed in terms of cell centered quantities such as α, ρ_v, ρ_ℓ, e_v and e_ℓ. The THERMIT-6S uses a particular relationship often referred to as donor-cell differencing; the properties will be transferred through the cell faces with all centered quantities upstream of that cell. If C stands for any cell-centered quantity, the value of $C_{i+\frac{1}{2}}$ is determined as

$$C_{i+\frac{1}{2}} = \begin{cases} C_{i+1} & \text{if } v_{i+\frac{1}{2}}^{n+1} < 0 \\ C_i & \text{if } v_{i+\frac{1}{2}}^{n+1} \geq 0 \end{cases} \quad (3.31)$$

For the donor cell decisions updated velocities are used. The primary reason to use updated velocities is to solve the packing problem which occurred if old velocities for donor-cell criteria were used.

Now let us consider only a single component of the vapor momentum. The additional equations are obtained by permutation of the axes and indices. According to the staggered mesh scheme, each momentum equation is differenced about the center of a face of a mesh cell. Based on Eq (3.14), the one-dimensional vapor momentum equation in the x direction is differenced at the point $(i+\frac{1}{2}, j, k)$ as follows:
\[(\alpha v^o v + \alpha v^o C v)^n_{i+\frac{1}{2}} \frac{(v^x n+1 - v^x n)_{i+\frac{1}{2}}}{\Delta t}
- (\alpha v^o C v)^n_{i+\frac{1}{2}} \frac{(v^x n+1 - v^x n)_{i+\frac{1}{2}}}{\Delta t} + E^n v_{i+\frac{1}{2}} + E^n v_{vm i+\frac{1}{2}}
+ \alpha^n v_{vi+\frac{1}{2}} \frac{(p_{i+1} - p_i)_{n+1}}{\Delta x_{i+\frac{1}{2}}} = k^n (v v - v^x)_{i+\frac{1}{2}} - F_{w l}^{n+\frac{1}{2}}, (3.32)\]

where \[E^n v_{i+\frac{1}{2}} = (\alpha v^o v)^n_{i+\frac{1}{2}} \Delta v^n_{vv}\]
\[E^n v_{vm i+\frac{1}{2}} = (\alpha v^o v C v)^n_{i+\frac{1}{2}} \left[(\lambda - 1) \Delta v^n_{vv} - (\lambda - 2) \Delta v^n_{v^x}\right]
- \lambda \Delta v^n_{v^x} - (1 - \lambda) \Delta v^n_{v^x}\]
\[\Delta v^n_{vv} = v^n v_{vi+\frac{1}{2}} \left(\frac{\Delta v^n v}{\Delta x}\right)_{i+\frac{1}{2}} + v^n v_{vi+\frac{1}{2}} \left(\frac{\Delta v^n v}{\Delta y}\right)_{i+\frac{1}{2}}
+ v^n v_{i+\frac{1}{2}} \left(\frac{\Delta v^n v}{\Delta z}\right)_{i+\frac{1}{2}}\]
\[\Delta v^n_{v^x} = v^n v_{li+\frac{1}{2}} \left(\frac{\Delta v^n v}{\Delta x}\right)_{i+\frac{1}{2}} + v^n v_{li+\frac{1}{2}} \left(\frac{\Delta v^n v}{\Delta y}\right)_{i+\frac{1}{2}}
+ v^n v_{li+\frac{1}{2}} \left(\frac{\Delta v^n v}{\Delta z}\right)_{i+\frac{1}{2}}\]

\[\Delta v^n_{v^x v^x} : \text{same as } \Delta v^n_{v^x v^x} \text{ with subscripts } i \text{ replaced by } v \text{ and } v \text{ by } l.\]
\[\Delta v^n_{v^x v^x} : \text{same as } \Delta v^n_{v^x v^x} \text{ with subscript } v \text{ replaced by } l.\]
In the above equation we have used an expression of the form \(\frac{\Delta_y v_x}{\Delta x} \) to designate the difference approximation of \(\frac{\partial v_x}{\partial x} \) associated with the point \((i+\frac{1}{2}, j, k)\). Similar expressions have been written for the y and z directions. In Eq (3.32) we are again faced with the problem of variables appearing at locations other than those already defined. We first consider the quantity \(\alpha \):

\[
\alpha_{i+\frac{1}{2}} = \frac{\alpha_i + \Delta x_{i+1} + \alpha_i \Delta x_i}{\Delta x_{i+1} + \Delta x_i}
\]

(3.33)

The quantity \(\rho_{v_{i+\frac{1}{2}}} \) can be expressed in the same way as Eq (3.33). Every velocity except \(v^x_{v_{i+\frac{1}{2}}} \) is at the wrong position, so an averaging must be performed. We define

\[
v^Y_{v_{i+\frac{1}{2}}} = \frac{1}{4} [v^Y_{v_i,j-\frac{1}{2}} + v^Y_{v_i,j+\frac{1}{2}} + v^Y_{v_{i+1},j-\frac{1}{2}} + v^Y_{v_{i+1},j+\frac{1}{2}}]
\]

(3.34)

\[
v^Z_{v_{i+\frac{1}{2}}} = \frac{1}{4} [v^Z_{v_i,k-\frac{1}{2}} + v^Z_{v_i,k+\frac{1}{2}} + v^Z_{v_{i+1},k-\frac{1}{2}} + v^Z_{v_{i+1},k+\frac{1}{2}}]
\]

(3.35)

Finally, according to the donor cell scheme, the difference
approximations of the convective derivatives are given by:

\[
\left(\frac{\Delta v^x}{\Delta x} \right)_{i+1} = \begin{cases}
\frac{(v^x_{vi+\frac{1}{2}} - v^x_{vi+\frac{1}{2}})}{\Delta x_{i+1}} & \text{if } v^x_{vi+\frac{1}{2}} < 0 \\
\frac{(v^x_{vi+\frac{1}{2}} - v^x_{vi-\frac{1}{2}})}{\Delta x_i} & \text{if } v^x_{vi+\frac{1}{2}} > 0
\end{cases}
\]

(3.36)

\[
\left(\frac{\Delta v^y}{\Delta y} \right)_{i+1} = \begin{cases}
\frac{(v^y_{vi+\frac{1}{2},j+1} - v^y_{vi+\frac{1}{2},j})}{\Delta y_{j+\frac{1}{2}}} & \text{if } v^y_{vi+\frac{1}{2}} < 0 \\
\frac{(v^y_{vi+\frac{1}{2},j} - v^y_{vi+\frac{1}{2},j-1})}{\Delta y_{j-\frac{1}{2}}} & \text{if } v^y_{vi+\frac{1}{2}} > 0
\end{cases}
\]

(3.37)

\[
\left(\frac{\Delta v^z}{\Delta z} \right)_{i+1} = \begin{cases}
\frac{(v^z_{vi+\frac{1}{2},k+1} - v^z_{vi+\frac{1}{2},k})}{\Delta z_{k+\frac{1}{2}}} & \text{if } v^z_{vi+\frac{1}{2}} < 0 \\
\frac{(v^z_{vi+\frac{1}{2},k} - v^z_{vi+\frac{1}{2},k-1})}{\Delta z_{k-\frac{1}{2}}} & \text{if } v^z_{vi+\frac{1}{2}} > 0
\end{cases}
\]

(3.38)

The mesh spacings \(\Delta y_{j+\frac{1}{2}}\) and \(\Delta z_{k+\frac{1}{2}}\) appearing in the above expressions are evaluated as:

\[
\Delta y_{j+\frac{1}{2}} = (\Delta y_j + \Delta y_{j+1})/2
\]

(3.39)

\[
\Delta z_{k+\frac{1}{2}} = (\Delta z_k + \Delta z_{k+1})/2
\]

(3.40)

We have now completed our specification of the difference equations, with the exception of the exchange terms. These terms are discussed in Chapter 5.

3.3 Solution Procedure of THERMIT-6S

The most important characteristic of our difference equations lies in the treatment of coupling terms. An examination of the mass and energy equations reveals that
cell-centered variables appearing in these equations such as a^{n+1}, p^{n+1}, and e^{n+1} are coupled only to the new-time velocities v^{n+1} on the faces of the mesh cell. The momentum equation relates these velocities only to the pressure in the mesh cell in question and in the six surrounding cells. Thus we see that coupling between mesh cells at time level $n+1$ is through the pressure variable. Hence, we need to solve only the reduced pressure equation.

Let us describe how this solution is accomplished. Denote the system of two-fluid finite difference equations by $F(x) = 0$. Here, x is a vector containing the ten principal unknown variables. We shall use a Newton iteration to solve the non-linear system,

$$F(x) = 0$$

(3.41)

We first linearize the old iterate x^m as

$$F(x) = F(x^{m+1}) = F(x^m) + J(x^m)(x^{m+1} - x^m) = 0$$

(3.42)

where the Jacobian matrix $J(x^m)$ is defined as $J = \frac{\partial F}{\partial x}$.

We then solve the following linear system for

$$J(x^m) \Delta x^{m+1} = -F(x^m)$$

(3.43)

where Δx^{m+1} is the iteration error $(x^{m+1} - x^m)$ and $F(x^m)$ is called a residual error. This linear system is solved either by the direct method or iteration method. (For detail refer to Ref 15) This process is called as the inner iteration. This Newton iteration,
called as the outer iteration, continues until the iteration error Δx^{m+1} or the residual error $F(x^m)$ is sufficiently small.

The first procedure is to express velocities in the momentum equations in terms of pressure. Because the interfacial momentum exchange term has been treated implicitly, the liquid and vapor velocities are coupled with each other. At the face of each mesh cell, the momentum equations can be put in the form

$$
\begin{bmatrix}
 x & x \\
 x & x
\end{bmatrix}
\begin{bmatrix}
 v^m_{v} \\
 v^m_{\ell}
\end{bmatrix} =
\begin{bmatrix}
 a\Delta p^{m+1} + f \\
 b\Delta p^{m+1} + g
\end{bmatrix}
$$

(3.44)

By solving the above 2x2 matrix, we determine each velocity in terms of the pressure difference as

$$
v^{m+1}_{v} = c \Delta p^{m+1} + f',
$$
$$
v^{m+1}_{\ell} = d \Delta p^{m+1} + g'.
$$

(3.45)

The above equations can now be used to eliminate all velocities appearing in the mass and energy. Then we finally obtain a set of four equations for each mesh cell involving the four unknowns, p, a, T_{v}, and T_{ℓ}, at the center of the mesh cells and pressures, at the centers of
the six adjacent cells.

\[
\begin{bmatrix}
xx & xx & xx & xx & xx & xx \\
xx & xx & xx & xx & xx & xx \\
xx & xx & xx & x & xx & xx \\
xx & xx & xx & xx & xx & xx
\end{bmatrix} \begin{bmatrix}
P \\
a \\
T_v \\
T_{v} \\
T_{l} \\
P_6
\end{bmatrix} = \begin{bmatrix}
x \\
x \\
x \\
x \\
x \\
x
\end{bmatrix}
\]

By inverting the 4x4 matrix that appears above, we can put this system in the reduced form:

\[
\begin{bmatrix}
1 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
P \\
a \\
T_v \\
T_{v}
\end{bmatrix} + \begin{bmatrix}
xx & xx & xx & xx \\
xx & xx & xx & xx \\
xx & xx & xx & xx \\
xx & xx & xx & xx
\end{bmatrix} \begin{bmatrix}
P_1 \\
P_1 \\
P_6 \\
P_6
\end{bmatrix} = \begin{bmatrix}
x \\
x \\
x \\
x
\end{bmatrix}
\]

(3.47)

The first equation in the above set is an equation involving only the pressure in a cell and its six neighbors. The remaining three equations relate the void fraction and temperature to the pressure. The pressure equation can be solved iteratively with each complete sweep referred to as an inner iteration. Once the pressure field is found, the other unknowns \(a, T_v,\) and \(T_{v}\) can be found by back substitution. The above procedure is repeated until the pressure iteration error, \(\Delta P^{m+1}\) is sufficiently small. If convergence is not attained in a specified number of iterations, the time step size is reduced and the same procedure is repeated. The method will always converge, if
the time step size is small enough.

A crucial property of the reduced pressure problem is its diagonal dominance. In the one-dimensional flow the pressure equations can be expressed as follows:

\[
p_{i+1}^{m+1} - \left[2 + \left(\frac{a^{-1} \Delta x}{\Delta t} \right)^2 \right] p_i^{m+1} + p_{i-1}^{m+1} = \ldots
\]

where \(a \) is the sound speed

\[
a^{-2} = \left(\frac{\partial c}{\partial p} \right)_p
\]

The amount by which the sum of any row of coefficients exceeds zero can always be expressed in the form \(\left(\frac{a^{-1} \Delta x}{\Delta t} \right)^2 \).
Chapter 4 STUDIES OF VIRTUAL MASS

It is known that the typical six equation two-fluid model of the two-phase flow possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit and constitutes an ill-posed initial value problem. Among the suggestions to overcome these difficulties, one model for the virtual mass force terms is studied here. The virtual mass represents real physical effects which provide dissipation for numerical stability. Also, it was found that the virtual mass has a profound effect upon the mathematical characteristic and numerical stability. Here, quantitative bounds on coefficients of the virtual mass terms are suggested for mathematical hyperbolicity, numerical stability, and satisfaction of the Second Law of Thermodynamics. It is concluded that the finite difference scheme with the suggested virtual mass model is restricted only by the convective stability conditions with the above suggested values.
4.1 Introduction

Among the several models of two-phase flow the two-fluid model offers the most detailed and general description of two-phase flow. But it was reported in early work that the model has inherent instability problems. In 1965 Jarvis (24) tried to solve the two-phase equations using the two-fluid model for modeling the cooldown process in cryogenics and faced instability problems. He attributed the instabilities to the fact that the system was found to be nonhyperbolic. In 1967 Richtmyer and Morton (25) showed that, if the initial value problem (IVP) is ill-posed, then no difference scheme that is consistent with the problem can be stable. In 1971 Siegmann (11) encountered numerical instabilities in his transient sodium boiling code called MOC. In 1973 Boure (26) appears to have encountered severe stability difficulties in the GEVATRAN code. In a round table discussion during the Fifth International Heat Transfer Conference (27), the instability problems in the two-fluid model were shown to be caused by its ill-posed equations. In 1976 Bryce (28) experienced large-scale pressure oscillations with the RELAP-UK code. He demonstrated that any simple two-fluid model with complex characteristics does not give solutions which converge as the mesh size and time step size are refined. He concluded that, though solutions may be obtained by using numerical technique, the significance of these solutions is not clear. In 1976 Lyczkowski (29) did a sample calculation
illustrating error growth caused by complex characteristics. In the 1977 ANS topical meeting on thermal reactor safety, Anderson (30) reported his attempt to achieve stability by using virtual mass terms in the RISQUE code. It was found that the virtual mass has a profound effect on the dynamics of two-phase flow. His code was used to perform numerical calculations on the behavior of interfacial waves. It was observed that for no virtual mass, the wave amplitude grows rapidly, but the computed result with virtual mass shows a stable oscillatory behavior for the wave amplitude. In 1979 Rivard and Travis (31) successfully dealt with critical flow with the two-fluid code, K-FIX. But for the results presented, the value of the interfacial drag coefficient was chosen sufficiently large that there was no relative motion between the phases. In 1980 investigators at R.P.I. (32) showed that without virtual mass it was more costly to run the problem, and even could not run the complete problem using their code, GEAR. Computer running time without virtual mass was forty times longer than that with virtual mass.

It may well be argued that equation sets with complex characteristics may still be adequate for a range of phenomena if the numerical method introduces sufficient dissipation to damp the high frequency instabilities. Obviously there are real physical effects to accomplish the dissipation needed for numerical stability. Among several candidates suggested for numerical stability, Drew's model
(33,38) with the virtual mass terms will be studied here.

4.2 Physical Significance of Virtual Mass

Let us consider a solid sphere motion in an infinite, inviscid, and incompressible fluid. In this perfect fluid there is no dissipation of energy. For inviscid flow about a sphere with the radius r, the pressure distribution along the surface is given by Lamb (34) as

$$\frac{P}{\rho_f} = \frac{1}{2} r \frac{dU}{dt} \cos \theta + \frac{9}{16} U^2 \cos 2\theta - \frac{1}{16} U^2$$

(4.1)

where U is the instantaneous relative velocity between the sphere and fluid, θ is the polar angle measured with respect to the direction of U, and the time derivative is made following the particle, that is,

$$\frac{dU}{dt} = \frac{\partial U}{\partial t} + U \cdot \nabla U$$

(4.2)

The last two terms on the right-hand side of Eq (4.1) are the same for surface elements in the positions θ and $\pi - \theta$; so that, when U is constant, the pressures on the various elements of the anterior half of the sphere are balanced by equal pressures on the corresponding elements of the posterior half. But when the sphere is being accelerated, there is an excess of pressure on the anterior, and a defect on the posterior half. The reverse holds when the motion is being retarded.

Integrating the local pressure, Eq (4.1) over the
Fig. 4.1: Configuration of the Solid Sphere Accelerating in Fluid
surface area of the sphere, we obtain the resultant force in the direction of the motion of the sphere due to acceleration of the body.

\[- \int PdA = \int_{0}^{2\pi} \int_{0}^{\pi} 2\pi r^2 \sin \theta \cos \theta \rho \, d\theta \, d\phi \]

\[= \frac{2}{3} \pi r^3 \rho \frac{dU}{dt} \]

\[= -M' \frac{dU}{dt} = -\frac{1}{2} M \frac{dU}{dt}, \quad (4.2)\]

where \(M' = \frac{2}{3} \pi r^3 \rho \), \(M = \frac{4}{3} \pi r^3 \rho \)

\(M \): mass of the fluid displaced by the sphere

Then, it appears that the effect of the fluid pressure is equivalent simply to an addition to the inertia of the solid, the increment being half the mass of the fluid displaced.

Also, note that Eq (4.2) specifies the equivalent momentum transmitted to the fluid in unit time, \(F \). The external force \(f \) must be equal to the sum of the time derivative of the total momentum of the sphere and \(F \):

\[M_s \frac{dU}{dt} + F = f \quad (4.3)\]

where \(M_s \) is the mass of the sphere.

Using Eq (4.2), we then obtain

\[(M_s + M') \frac{dU}{dt} = f \quad (4.4)\]
This is the equation for a body immersed in a perfect fluid. The presence of the liquid effectively increases the mass of a moving sphere from M to $M+M'$. M' is the virtual mass to be considered for accelerating objects in the fluid.

If we use the notation described in Section 2.5, Eq (4.2) can be expressed as

$$\frac{1}{L_a} \langle \tau \rangle_a = M' \frac{dU}{dt} / V_f = \frac{1}{2} a_b c'_0 \frac{dU}{dt}$$

where $a_b = \frac{4}{3} \pi r^3 / V_f$

Referring to Eq (3.13), the coefficient of the virtual mass for a sphere, C_v, is 0.5.

4.3 Ill-posed Problems and Mathematical Stability

Quantitative physical laws are idealizations of reality. As knowledge grows, a given physical situation can be idealized mathematically in a number of different ways. It is therefore important to characterize those reasonable idealized formulations. Hadamard (35) examined this problem, asserting that a physical formulation is well-posed if its solution exists, is unique, and depends continuously on the external (boundary) conditions. Existence and uniqueness are an affirmation of the principle of determination without which experiments could not be repeated with the expectation of consistent data. The continuous dependence criterion is an expression of the stability of the solution; a small change in any of the
problem's data should produce only a correspondingly small change in the solution.

The general one-dimensional problem can be represented in matrix form, as follows:

\[A(x) \frac{\partial x}{\partial t} + B(x) \frac{\partial x}{\partial z} + C(x) = 0, \]

(4.6)

where \(x \) is a column vector of independent variables, \(A(x) \) and \(B(x) \) are the coefficient matrices, and \(C(x) \) is a source or sink vector.

The Initial Value Problem consideration is to find a solution of Eq (4.6) in some region

\[a < z < b \]

subject to the initial condition

\[x(0, z) = u_0(z) \]

(4.7)

and the value of \(x \) or its derivatives prescribed on the boundaries,

\[z = a \text{ and } z = b \]

(4.8)

When the definition of a well-posed problem by Hadamard (35) is applied to the above system, it is said to be well-posed if the solution of Eq (4.6) exists, is unique, and depends continuously on both of the initial condition, Eq (4.7) and the boundary conditions Eq (4.8). Also Eq (4.6) is defined as hyperbolic if all values of the characteristics of Eq (4.6) are distinct and real.
According to Lax (36) the requirement of a well-posedness in linear partial differential equations of a form like Eq (4.6) is the same as that of hyperbolicity.

Along characteristic curves, the highest-order derivatives in a partial differential equation are indeterminate; characteristics may separate discontinuities in the solution. Therefore, the characteristics are trajectories of discontinuities in the solution. Physically they represent the speed of travel of information in a physical system. The typical two-fluid models have four real and two imaginary characteristics. The real characteristics are two convective velocities of liquid and vapor, and two relative sound velocities to both convective velocities of liquid and vapor through the system. The two imaginary characteristics may represent two relative velocities of interfacial wave propagation to both liquid and vapor. The complex values of the characteristics indicate an instability of interfacial waves.

Characteristics and stability can be shown to be related only in the limit of large frequency, as discussed in the following. The characteristics, μ, of Eq (4.6) are defined by the equation

$$\text{Det (μA - B)} = 0 \quad (4.9)$$

To examine the local linear stability behavior of Eq (4.6), x is replaced by $x_0 + \delta x$ and the result is linearized with
respect to δx, so that

$$
A(x_o) \frac{\partial (\delta x)}{\partial t} + B(x_o) \frac{\partial (\delta x)}{\partial z} + \left(\delta x \left(\frac{\partial A}{\partial x} \right) x_o \right) \frac{\partial x_o}{\partial t} + \left(\delta x \left(\frac{\partial B}{\partial x} \right) x_o \right) \frac{\partial x_o}{\partial z} + \delta x \left(\frac{\partial C}{\partial x} \right) x_o = 0
$$

(4.10)

As Eq (4.10) describes small perturbations, δx, about an unperturbed solution, a uniform steady-state unperturbed solution is assumed, which means that x_o is independent of z and t. We take a wave form for the perturbed amount, δx

$$
\delta x = \delta x_o \exp[i(kz - wt)]
$$

(4.11)

Then Eq (4.10) becomes

$$
-iw A(x_o) \delta x_o + ik B(x_o) \delta x_o + \delta x_o \left(\frac{\partial C}{\partial x} \right) x_o = 0
$$

(4.12)

Eq (4.12) is a homogeneous linear equation in the components of δx_o. For a nontrivial solution the determinant of the coefficient matrix must vanish:

$$
\text{Det}(-iwA + ikB + D) = 0,
$$

(4.13)

where

$$
D = \left(\frac{\partial C}{\partial x} \right)^T x_o,
$$

and the superscript T denoting the matrix transpose.

For nonzero k Eq (4.13) can be rewritten as

$$
\text{Det} \left(\frac{w}{k} A - B + \frac{i}{k} D \right) = 0
$$

(4.14)
Inspection of Eq (4.11) shows that the condition for stability is that the imaginary part, \(\text{Im}(w) \), of \(w \) must be less than or equal to zero for all roots of \(w \). Comparison of Eq (4.9) and Eq (4.14) shows that, if \(D = 0 \) or \(k \to \infty \), the dispersion relations can be obtained from the characteristics simply by equating \(w/k \) to \(u \). Physically the instability at long wavelengths is the well-known Helmholtz instability (37). But the system which possesses complex characteristics exhibits unphysical and unbounded instabilities in the short-wavelength limit. One of the reasons for this behavior lies in the choice that the interfacial pressure is spatially constant and equal to the bulk pressure. This choice leads to an equation set with all real characteristics when the two fluid velocities are equal. The spatial interfacial pressure distribution may be accounted for by the implementation of the virtual mass term and that motivated the present study.

4.4 Characteristic and Stability Analysis of the Two-Fluid Model

The effect of virtual mass on the characteristics can be illustrated by adding the virtual mass terms to the one-dimensional momentum equations of both liquid and vapor. Here Drew's model (33,38) for the virtual mass terms is considered.

The conservation equations for one dimensional flow are as follows:
Conservation of vapor mass:
\[\frac{3}{3t} (\alpha_v \rho_v) + \frac{3}{3z} (\alpha_v \rho_v V_v) = \Gamma \] (4.15)

Conservation of liquid mass:
\[\frac{3}{3t} (\alpha_l \rho_l) + \frac{3}{3z} (\alpha_l \rho_l V_l) = -\Gamma \] (4.16)

Conservation of vapor momentum:
\[\alpha_v \rho_v \frac{3V_v}{3t} + \alpha_v \rho_v V_v \frac{3V_v}{3z} \]
\[\quad = \Gamma (V_i - V_v) - \alpha_v \frac{3p}{3z} \left[F_S + F_v \right] - \alpha_v \rho_v g - F_{wv}, \] (4.17)

where \(V_i \), \(F_S \), \(F_v \) and \(F_{wv} \) are the interfacial velocity, the standard drag force, the virtual mass force, and the vapor wall friction force, per unit volume, respectively, and \(F_S \) and \(F_v \) are defined as follows:

\[F_S = K (V_v - V_l) \] (4.18)

\[F_v = \alpha_v \rho_v C_v \left\{ \frac{3V_v}{3t} - \frac{3V_l}{3t} + V_v \frac{3}{3z} (V_v - V_l) \right\} \]
\[\quad + (V_v - V_l) \left[(1 - 2) \frac{3V_v}{3z} + (1 - \lambda) \frac{3V_l}{3z} \right] \] (4.19)

Conservation of liquid momentum:
\[\alpha_l \rho_l \frac{3V_l}{3t} + \alpha_l \rho_l V_l \frac{3V_l}{3z} = \Gamma (V_l - V_i) - \alpha_l \frac{3p}{3z} \]
\[\quad + \left[F_S + F_v \right] - \alpha_l \rho_l g - F_{wL}, \] (4.20)
where F_{wL} is the liquid wall friction force per unit volume.

For convenience by summing up Eq (4.17) and Eq (4.20), we get the momentum equation:

$$a_v \frac{\partial v}{\partial t} + a_L \frac{\partial L}{\partial t} + a_v \rho L \frac{\partial V}{\partial z} + a_L \rho L \frac{\partial L}{\partial z}$$

$$= \rho \left(V_L - V_v\right) \frac{\partial L}{\partial z} - (a_v \rho L + a_L \rho L) g - (F_{wv} + F_{wL}) \quad (4.21)$$

By multiplying Eq (4.17) by a_L and Eq (4.20) by a_v and then subtracting the first term from the second term, we obtain:

$$a_v(a_L \rho L + a_L \rho L) \frac{\partial V}{\partial t} - a_v(a_L \rho L + a_L \rho L) \frac{\partial L}{\partial t}$$

$$+ \left\{ a_L a_v \rho L + a_v \rho L \rho L (\lambda - 1) \right\} V_v - a_v \rho L \rho L (\lambda - 2) V_L \right\} \frac{\partial V}{\partial z} \quad (4.22)$$

$$- \left\{ a_L a_v \rho L + a_v \rho L \rho L (\lambda - 1) \right\} V_L + a_v \rho L \rho L (\lambda - 1) \frac{\partial L}{\partial z}$$

$$= \rho \left(V_L - a_v V_L - a_L V_v\right) - F_s + a_v a_L \rho L - a_v F_{wv} + a_v F_{wL}$$

Conservation of vapor energy:

$$\frac{\partial}{\partial t} \left(a_v \rho V e_v\right) + \frac{\partial}{\partial z} \left(a_v \rho V e_v V_v\right) + P \frac{\partial}{\partial z} (a_v V_v) + P \frac{\partial a_v}{\partial t} = Q_{wv} + Q_1 \quad (4.23)$$

where Q_{wv} and Q_1 are the heat transfer per unit volume from wall to vapor and from the interface, respectively.

Conservation of liquid energy:

$$\frac{\partial}{\partial t} \left(a_L \rho L e_L\right) + \frac{\partial}{\partial z} \left(a_L \rho L e_L V_L\right) + P \frac{\partial}{\partial z} (a_L V_L) - P \frac{\partial a_v}{\partial t} = Q_{wL} - Q_1 \quad (4.24)$$
where \(Q_{w1} \) is the heat transfer per unit volume from wall to liquid.

The above conservation equations can be put together in the following matrix form:

\[
A(x) \frac{\partial x}{\partial t} + B(x) \frac{\partial x}{\partial z} + C(x) = 0,
\]

where \(x \) is a column vector of independent variables:

\[
x = (a, P, V_v, V_l, e_v, e_l)^T
\]

It is assumed that the density of both liquid and vapor is a function of pressure. Vapor and liquid densities with spatial and time derivatives can be expressed in terms of pressure by using the following definitions of the sound velocities of vapor and liquid:

\[
a_v^{-2} = \left(\frac{\partial \rho_v}{\partial P} \right)_P, \quad a_l^{-2} = \left(\frac{\partial \rho_l}{\partial P} \right)_P
\]

Then, the matrices of \(A(x) \) and \(B(x) \) in Eq (4.25) can be constructed as follows:
\[
A = \begin{pmatrix}
\rho_v & \alpha_v a_v^{-2} \\
-\rho_L & \alpha_L a_L^{-2} \\
\alpha_v \rho_v & \alpha_L \rho_L \\
\alpha_L \rho_v + \rho_L c_v & -\alpha_L \rho_L - \rho_L c_v \\
\rho_v e_v + p & \alpha_v e_v a_v^{-2} & \alpha_v \rho_v \\
-\rho_L e_L - p & \alpha_L \rho_L a_L^{-2} & \alpha_L \rho_L \\
\end{pmatrix}
\]

\[B = \begin{pmatrix}
\rho_v V_v & \alpha_v V_v a_v^{-2} & \alpha_v \rho_v \\
-\rho_L V_L & \alpha_L V_L a_L^{-2} & \alpha_L \rho_L \\
1 & \alpha_v \rho_v V_v & \alpha_L \rho_L V_L \\
\left[\alpha_L \rho_v + \rho_L c_v (\lambda-1)\right] V_v & -\left[(1-\alpha)\rho_L + \rho_L\right] V_L & \left[c_L (1-\lambda)\right] V_L \\
-\rho_L c_v (\lambda-2) V_L & -\rho_L c_v V_v & \alpha_v \rho_v V_v \\
\rho_v e_v V_v + PV_v & \alpha_v e_v V_v a_v^{-2} & \alpha_v \rho_v e_v + \rho_v c_v \\
\left(\alpha_L\right) e_L V_L a_L^{-2} & \alpha_L \rho_L e_L - \alpha_v p & \alpha_L \rho_L V_L \\
\end{pmatrix}
\]
In the same way as Eq (4.9) the characteristics \(\mu \) of Eq (4.25) is defined by the following equation:

\[
\text{Det} \ (\mu A - B) = 0 \quad (4.28)
\]

Reducing the terms related to the energy equations from Eq (4.28), we get

\[
\alpha_v a_v (\mu - V_v) \times \alpha_L a_L (\mu - V_L) \times
\]

\[
\text{Det} \begin{bmatrix}
\rho_v (\mu - V_v) & \alpha_v a_v^{-2}(\mu - V_v) & -\alpha_v \rho_v \\
-\rho_L (\mu - V_L) & \alpha_L a_L^{-2}(\mu - V_L) & 0 \\
0 & -1 & \alpha_v \rho_v (\mu - V_v) \\
0 & 0 & \alpha_L \rho_L (\mu - V_L) \\
0 & 0 & \alpha_L \rho_L (\mu - V_L)
\end{bmatrix} = 0
\]

\[
(4.29)
\]

From the terms related to the energy equations we obtained \(\mu = V_v, V_L \). Physically this means that energy is transferred only by convection.

For simplicity we assume that \(\alpha_v >> V_v \) and \(\alpha_L >> V_L \). Then, we can neglect

\[
\alpha_L a_L^{-2}(\mu - V_L) \text{ and } \alpha_v a_v^{-2}(\mu - V_v)
\]

These terms are related to the sonic velocities transferred through liquid and vapor. Now we get the simplified
determinant form

\[
\begin{bmatrix}
\rho_v (\mu - V_v) & -\alpha_v \rho_v & 0 \\
-\rho_k (\mu - V_k) & 0 & -\alpha_k \rho_k \\
0 & (\alpha_k \rho_v + \rho_k C_v)(\mu - V_v) & -(\alpha_k \rho_k + \rho_k C_v)(\mu - V_k) \\
0 & -\rho_k C_v (\lambda - 2)(V_v - V_k) & +\rho_k C_v \lambda (V_v - V_k)
\end{bmatrix} = 0
\]

(4.30)

From Eq (4.30) we obtain an algebraic equation of the form

\[
a q^2 + b q + c = 0,
\]

(4.31)

where

\[
a = \alpha_k^2 \rho_v + \alpha_v \alpha_k \rho_k + \gamma
\]

\[
b = [\gamma (2 - \lambda) + 2 \alpha_v \alpha_k \rho_k] V_r
\]

\[
c = [\alpha_v \alpha_k \rho_k + \alpha_v \gamma (1 - \lambda)] V_r^2
\]

\[
\gamma = \rho_k C_v
\]

\[
q = \mu - V_v
\]

\[
V_r = V_v - V_k
\]

In order for Eq (4.31) to have real and distinct
characteristics, the following must be satisfied;

\[b^2 - 4ac = [\gamma^2 (\lambda^2 + 4(1-\lambda)\alpha_\lambda^2) + 4\gamma (1-\lambda)\alpha_v\alpha_\lambda^2 (\rho_\lambda - \rho_v) \]
\[-4\alpha_v\alpha_\lambda^3 \rho_v \rho_\lambda] \gamma^2 > 0 \]

(4.32)

Now, let us consider special cases;

i) There is no virtual mass; \(C_v = 0 \) and hence \(\gamma = 0 \)

Then,

\[b^2 - 4ac = -4\alpha_v\alpha_\lambda^3 \rho_v \rho_\lambda \]

Therefore, the system with no virtual mass always has two complex characteristics except in the single phase region \((\alpha_v = 0 \text{ or } \alpha_\lambda = 0) \).

ii) If \(\alpha_v \neq 0 \), then \(b^2 - 4ac = \gamma^2 (\lambda-2)^2 \).

Therefore, if \(C_v \neq 0 \) and \(\lambda \neq 2 \), then

\[\lim_{\alpha_v \to 0} (b^2 - 4ac) > 0 \]

iii) If \(\alpha_\lambda \neq 0 \), then \(b^2 - 4ac = \gamma^2 \lambda^2 \).

Therefore, if \(C_v \neq 0 \) and \(\lambda \neq 0 \), then

\[\lim_{\alpha_\lambda \to 0} (b^2 - 4ac) > 0 \]

iv) If \(\lambda = 1 \), then \(b^2 - 4ac = \gamma^2 - 4 \alpha_v\alpha_\lambda^3 \rho_v \rho_\lambda \).

Therefore,

\[\text{if } C_v > \sqrt[4]{\frac{4\alpha_v\alpha_\lambda^3 \rho_v}{\rho_\lambda}}, \text{ then } b^2 - 4ac > 0 \]
If $0 \leq \lambda < 1$, then

$$C_v \left[\lambda^2 + 4(1-\lambda)\alpha_\lambda \right] + 4\alpha_v \alpha_\lambda^2 \gamma(1-\lambda)(1 - \frac{\rho_v}{\rho_\lambda})$$

$$> 4 \alpha_v \alpha_\lambda^3 \frac{\rho_v}{\rho_\lambda}. \quad (4.33)$$

Therefore, if $(C_v \lambda) > \sqrt{4\alpha_v \alpha_\lambda^3 \frac{\rho_v}{\rho_\lambda}}$, then $b^2 - 4ac > 0$.

This relationship is drawn in Fig. 4.2.

If $1 < \lambda < 2$, then

$$C_v^2(\lambda-2)^2 - 4\alpha_v \alpha_\lambda^2 C_v > 4\alpha_v \alpha_\lambda^3 \frac{\rho_v}{\rho_\lambda}.$$

Therefore, if $[C_v(\lambda-2)]^2 > 4\alpha_v \alpha_\lambda^2 \left[C_v + \alpha_\lambda \frac{\rho_v}{\rho_\lambda} \right]$
Fig. 4.2: Characteristics Map with Real Characteristics for Given Values of λ.

\[C_v^\lambda = \sqrt[4]{\frac{\rho_l}{\rho_v} \cdot \frac{3\rho_v}{\alpha_l}} \]

Real Characteristic Region

\[\frac{\rho_l}{\rho_v} = 2000 \]
The effect of virtual mass on stability can be simply illustrated by using the characteristics analysis. If the mass exchange rate, standard drag force, wall friction, and the energy equations are neglected in order to clearly know the effect of virtual mass on stability, D in Eq (4.14) reduced to zero.

As shown in Section 4.3, if $D = 0$, the characteristics μ in Eq (4.9) become equal to w/k in Eq (4.14)

$$w = k \mu$$

(4.34)

Then, when the conditions for all real characteristics are satisfied, we have all real values, w. As all real values, w satisfy the stability condition, $\text{Im}(w) < 0$ for all values w, the stability condition is equivalent to the condition for real and distinctive characteristics, Eq (4.32).

4.5 Numerical Stability

Here we examine the numerical stability of the equation system including virtual mass. We form the difference scheme in a similar way to the THERMIT (17). For the same reason as in the stability analysis, the mass exchange rate, standard drag force, and wall friction are neglected. Also the energy equations are dropped because they only represent convective properties as we found in the preceding characteristic analysis.
vapor mass

\[
\frac{(\alpha_v \rho_v)^{n+1}_j - (\alpha_v \rho_v)^n_j}{\Delta t} + \frac{1}{\Delta z} \left[(\alpha_v \rho_v \frac{V^{n+1}_v}{V_v})_{j+1/2} - (\alpha_v \rho_v \frac{V^n_v}{V_v})_{j-1/2} \right] = 0
\]
(4.35)

liquid mass

\[
\frac{(\alpha_L \rho_L)^{n+1}_j - (\alpha_L \rho_L)^n_j}{\Delta t} + \frac{1}{\Delta z} \left[(\alpha_L \rho_L \frac{V^{n+1}_L}{V_L})_{j+1/2} - (\alpha_L \rho_L \frac{V^n_L}{V_L})_{j-1/2} \right] = 0
\]
(4.36)

momentum equations

\[
(\alpha_v \rho_v)^n \frac{(V^{n+1}_v - V^n_v)}{\Delta t} + (\alpha_L \rho_L)^n \frac{(V^{n+1}_L - V^n_L)}{\Delta t} + (\alpha_v \rho_v \frac{\Delta V_v}{\Delta z})^n_j + \frac{(P^{n+1}_j - P^n_j)_{j+1}}{\Delta z} = 0
\]
(4.37)

\[
\alpha^n_v [\alpha_L \rho_v + \rho_L C_v]^n \frac{(V^{n+1}_v - V^n_v)}{\Delta t} - \alpha^n_v [\alpha_L \rho_v + \rho_L C_v]^n \frac{(V^{n+1}_L - V^n_L)}{\Delta t} + \{\alpha_L \alpha_v \rho_v v + \alpha_v \rho_L C_v (\lambda - 1)\} v - \alpha_v \rho_L C_v (\lambda - 2) v L \frac{\Delta V_v}{\Delta z}
\]

\[
- \{\alpha_L \alpha_v \rho_v v + \alpha_v \rho_L C_v (1 - \lambda)\} v + \alpha_v \rho_L C_v \lambda v \frac{\Delta V_L}{\Delta z} \}^n_{j+1/2} = 0
\]
(4.38)
The above numerical scheme can be modified as follows:

vapor mass

\[
\begin{align*}
\rho_{vj}^{n+1} & \ (\alpha_v^{n+1} - \alpha_v^n) + \alpha_v^n (\rho_v^n - \rho_v^n) + \frac{\Delta t}{\Delta z} \left[\rho_v^n \nabla v^{n+1} \right] \\
(\alpha_v^n - \alpha_v^{n-1}) + \alpha_v^{n-1} & \ n^{n+1} (\rho_v^n - \rho_v^n) \\
+ \alpha_v^{n-1} & \rho_v^{n-1} (v_{vj+1/2}^{n+1} - v_{vj-1/2}^{n+1}) = 0
\end{align*}
\] (4.39)

liquid mass

Same as Eq. (4.39) with \(\alpha_v \) replaced by \(\alpha_l \), subscript \(v \) by \(l \).

(4.40)

momentum equations

\[
\begin{align*}
(\alpha_v \rho_v^n) & \ (v_v^{n+1} - v_v^n) + (\alpha_l \rho_l^n) (v_l^n - v_l^n) \\
& + \frac{\Delta t}{\Delta z} \left[(\alpha_v \rho_v v_v^n) (v_v^n - v_v^{n-1}) + (\alpha_l \rho_l v_l^n) (v_l^n - v_l^{n-1}) \\
& + (P_{j+1/2} - P_{j-1/2})^{n+1} \right] = 0
\end{align*}
\] (4.41)

\[
\begin{align*}
[\alpha_l \rho_v^n + \rho_l c_v^n] & \ (v_v^{n+1} - v_v^n) - [\alpha_l \rho_l^n + \rho_l c_v^n] (v_l^n - v_l^n) \\
& + \left\{ \left[[\alpha_l \rho_v + \rho_l c_v (\lambda-1)] v_v - \rho_l c_v (\lambda-2) v_l \right] \frac{\Delta t}{\Delta z} (v_v^n - v_{vj-1}) \\
& - \left[[\alpha_l \rho_l + \rho_l c_v (\lambda-1)] v_l + \rho_l c_v \lambda v_v \right] \frac{\Delta t}{\Delta z} (v_l^n - v_{lj-1}) \right\}^{n} \\
& = 0
\end{align*}
\] (4.42)
Treating the coefficients as constants and using Von Neumann local stability analysis, \(u_j^n = \zeta^n \exp(ik\Delta z) \), we obtain the determinant form for a nontrivial solution.

\[
\begin{bmatrix}
\rho_v(\zeta-1+\tilde{V}_v) & a_v^{-2}\alpha_v(\zeta-1+\tilde{V}_v) & \alpha_v \rho_v \zeta q & 0 \\
-p_2(\zeta-1+\tilde{V}_2) & a_2^{-2}\alpha_2(\zeta-1+\tilde{V}_2) & 0 & \alpha_2 \rho_2 \zeta q \\
0 & \zeta q & \alpha_v \rho_v (\zeta-1+\tilde{V}_v) & \alpha_2 \rho_2 (\zeta-1+\tilde{V}_2) \\
0 & 0 & (\alpha_2 \rho_v + \alpha_2 C_v) (\zeta-1) & -(\alpha_2 \rho_v + \alpha_2 C_v) (\zeta-1) \\
& & & +[[\alpha_2 \rho_v + \alpha_2 C_v (\zeta-1)] \tilde{V}_v & -[(\alpha_2 \rho_v + \alpha_2 C_v (1-\lambda)] \tilde{V}_2 \\
& & & -p_2 C_v (\lambda-2) \tilde{V}_2 \{ & +p_2 C_v \lambda \tilde{V}_2 \\
& & & & (4.43)
\end{bmatrix} = 0
\]

where \(\tilde{V}_v = \frac{\Delta t}{\Delta z} V_v (1-\exp(-ik\Delta z)) \)

\(\tilde{V}_2 = \frac{\Delta t}{\Delta z} V_2 (1-\exp(-ik\Delta z)) \)

\(q = 2i \frac{\Delta t}{\Delta z} \sin \left(\frac{k\Delta z}{2} \right) \)

\(k = \frac{\pi}{n\Delta z} : n=1 \cdots J : J: \) the number of axial mesh

For simplicity we assume in the same way as in the previous analysis that \(a_v \gg V_v, a_2 \gg V_2 \)

Then the determinant reduces to the \(3 \times 3 \) determinant

\[
\begin{bmatrix}
\rho_v(\zeta-1+\tilde{V}_v) & \alpha_v \rho_v \zeta q & 0 \\
-p_2(\zeta-1+\tilde{V}_2) & 0 & \alpha_2 \rho_2 \zeta q \\
0 & (\alpha_2 \rho_v + \alpha_2 C_v) (\zeta-1+\tilde{V}_v) & -(\alpha_2 \rho_v + \alpha_2 C_v) (\zeta-1+\tilde{V}_2) \\
& & +p_2 C_v (\lambda-2) (\tilde{V}_v-\tilde{V}_2) & -p_2 C_v \lambda (\tilde{V}_v-\tilde{V}_2) \\
& & & (4.44)
\end{bmatrix} = 0
\]
As we notice that \(\xi \) appears as a common coefficient, resolving the determinant we obtain the modified determinant

\[
\begin{vmatrix}
\rho_v(\mu - \tilde{V}_v) & -\alpha_v\rho_v & 0 \\
-\rho_2(\mu - \tilde{V}_2) & 0 & -\alpha_2\rho_2 \\
0 & (\alpha_2\rho_v + \rho_2\xi)(\mu - \tilde{V}_v) & -((\alpha_2\rho_2 + \rho_2\xi)(\mu - \tilde{V}_2) \\
-\rho_2\xi(\lambda - 2)(\tilde{V}_v - \tilde{V}_2) & +\rho_2\xi(\tilde{V}_v - \tilde{V}_2) & \end{vmatrix} = 0
\] (4.45)

where \(\mu = -\xi - 1 \)

The above determinant, Eq (4.45) is in the exact same form as Eq (4.30). Therefore we can use Eq (4.31) as follows:

\[
aq^2 + b\tilde{V}_r q + c\tilde{V}_r^2 = 0 ,
\] (4.46)

where
\[
a = \alpha_2^2 \rho_v + \alpha_v \alpha_2 \rho_2 + \rho_2 \xi \\
b = \rho_2 \xi (2 - \lambda) + 2\alpha_2 \alpha_2 \rho_2 \\
c = \alpha_v \alpha_2 \rho_2 + \alpha_v \rho_2 \xi (1 - \lambda) \\
q = \mu - \tilde{V}_v \\
\tilde{V}_r = \tilde{V}_r - \tilde{V}_2
For the numerical stability the absolute value of the growth factor, \(|\zeta|\), must be less than 1. From Eq (4.46)

\[q = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

(4.47)

From Eq(4.47) and the relationship \(\mu = -(\zeta - 1) \), we have

\[\zeta - 1 = -\left[1 + \frac{(-b \pm \sqrt{b^2 - 4ac}) (\nu_v - \nu_l)}{2a} \right] \]

(4.48)

where \(\zeta - 1 = -\mu = -(\nu_v + q) \)

(4.49)

Assuming that \(\lambda = 1 \) and \(C_v^2 >> 4 \alpha_v \alpha_L^3 \rho_v / \rho_l \), each root in Eq (4.48) can be simplified separately as follows:

i) For the root with \(+ \sqrt{b^2 - 4ac} \) in Eq (4.48), we have

\[0 < (\alpha_L^2 \rho_v + \rho_L C_v) \frac{\Delta t}{\Delta z} \nu_v + (\alpha_v \alpha_L \rho_l) \frac{\Delta t}{\Delta z} \nu_l \]

\[< (\alpha_L^2 \rho_v + \rho_L C_v + \alpha_v \alpha_L \rho_l) \]

\[= -p + p \exp(-ik\Delta z) \]

(4.50)

where \(p = \frac{(\alpha_L^2 \rho_v + \rho_L C_v) \frac{\Delta t}{\Delta z} \nu_v + (\alpha_v \alpha_L \rho_l) \frac{\Delta t}{\Delta z} \nu_l}{\alpha_L^2 \rho_v + \alpha_v \alpha_L \rho_l + \rho_L C_v} \)

Fig (4.3) shows the stability region derived from Eq (4.50). For the numerical stability \(p \) in Eq (4.50) must satisfy the condition, \(0 < p < 1 \). From the above stability condition we have

\[\zeta - 1 = -\frac{-(\alpha_L^2 \rho_v + \rho_L C_v) \nu_v + (\alpha_v \alpha_L \rho_l) \nu_l}{\alpha_L^2 \rho_v + \alpha_v \alpha_L \rho_l + \rho_L C_v} \]

(4.51)
Fig. 4.3: Stability Diagram of Eq. (4.50)
If $\frac{\Delta t}{\Delta z} v_v < 1$ and $\frac{\Delta t}{\Delta z} v_l < 1$, the above condition is always met. ii) For the root with $-\sqrt{b^2 - 4ac}$ in Eq (4.48), we have

$$\zeta - 1 = -\left[\frac{(a^2 \rho_v) \frac{\Delta t}{\Delta z} v_v + (\rho_l c_v + \alpha_v \alpha_l \rho_l) \frac{\Delta t}{\Delta z} v_l}{a^2 \rho_v + \rho_l c_v + \alpha_v \alpha_l \rho_l} \right]$$

$$= -r + r \exp(-ik\Delta z),$$

where $r = \frac{(a^2 \rho_v) \frac{\Delta t}{\Delta z} v_v + (\rho_l c_v + \alpha_v \alpha_l \rho_l) \frac{\Delta t}{\Delta z} v_l}{a^2 \rho_v + \rho_l c_v + \alpha_v \alpha_l \rho_l}$

For the numerical stability, r in Eq (4.52) must satisfy the condition, $0 < r < 1$. The above condition is equivalent to the following inequality:

$$0 < (a^2 \rho_v) \frac{\Delta t}{\Delta z} v_v + (\rho_l c_v + \alpha_v \alpha_l \rho_l) \frac{\Delta t}{\Delta z} v_l$$

$$< (a^2 \rho_v + \rho_l c_v + \alpha_v \alpha_l \rho_l)$$

(4.53)

Also, if $\frac{\Delta t}{\Delta z} v_v < 1$ and $\frac{\Delta t}{\Delta z} v_l < 1$, the above inequality is always met.

Therefore, it can be concluded that, if $\lambda = 1$ and $c_v > \sqrt{4a_v \alpha_l^3 \rho_v / \rho_l}$, the finite difference scheme is restricted only by the convective stability conditions.

4.6 Application of the Second Law of Thermodynamics to Drew's Virtual Mass
Drew et al. (38) derived a constitutive equation for virtual mass by applying the general principles such as coordinate invariance and objectivity to the two-phase flow situation. It was found that their virtual mass model is consistent with any combination of material acceleration first order derivative terms. However, it was found that their neglect of the Second Law of Thermodynamics may lead to violation of this important and universal law. Although Drew and Lahey (39) tried a general approach to give a meaningful quantitative result for the second law implications, complexities involved in the problem made it impossible. Here, a simple procedure is suggested to obtain a quantitative range of the viable form of the virtual mass term.

Ishii (18) has shown that the average rate of production of entropy at the interface is given by,

\[
\Delta S = \Gamma \left[T_v \left(\frac{h_{vi}}{T_v} - \frac{1}{T_i} \right) - \left(\frac{g_v}{T_v} - \frac{g_{vi}}{T_i} \right) \right]
- T_\ell \left[h_{\ell i} \left(\frac{1}{T_\ell} - \frac{1}{T_i} \right) - \left(\frac{g_\ell}{T_\ell} - \frac{g_{\ell i}}{T_i} \right) \right]
+ \sum_{k=1}^{2} \frac{q_{ki}^w}{\mathcal{L}_a} (1 - \frac{T_k}{T_i})
+ F_i \cdot [V_v - V_\ell + (V_{vi} - V_{\ell i})]
\]

(4.54)

where \(\Delta S \) is the volumetric rate of production of entropy at the interface, \(\Gamma \) is the volumetric vapor generation rate, \(T_k \) is the average temperature, \(h_{ki} \) is the
interfacial enthalpy of phase-\(k \), \(g_k \) is the Gibbs free energy of phase-\(k \), \(q_{ki} \) is the interfacial heat flux to phase-\(k \), \(\frac{1}{L_a} \) is the interfacial area density, \(V_k \) is the average velocity of phase-\(k \), and \(F_i \) is the volumetric interfacial drag force on the liquid phase. For the purpose of this thesis isothermal flow without phase change and a no slip condition at the interface are assumed. Then, we obtain the result that the volumetric interfacial mechanical dissipation rate is non-negative:

\[
\Delta S = F_i \cdot (V_v - V_l) \geq 0
\]

(4.55)

The physical meaning of Eq(4.54) is that, if \(V_v > V_l \), the interfacial drag force should be transferred from vapor to liquid in order to satisfy the condition of non-negative entropy production. Taking the standard drag force and Drew's virtual mass force for volumetric interfacial drag force, we obtain

\[
F_i = F_s + F_v
\]

(4.56)

Refer to Eqs (4.18) and (4.19) for \(F_s \) and \(F_v \). Here \(C_v \) is the coefficient of virtual mass, and \(\lambda \) is the arbitrary coefficient but must be given in order to satisfy Eq (4.55). \(F_i \) is always positive, that is, a dissipation term.

For simplicity we assume steady state, one-dimensional and incompressible two-phase flow.
Continuity equation

\[\frac{\partial V}{\partial z} = -\frac{V}{\alpha} \frac{\partial \alpha}{\partial z} \quad (4.57) \]

\[\frac{\partial V}{\partial z} = -\frac{\rho}{\alpha} \frac{\partial \rho}{\partial z} \quad (4.58) \]

Momentum equation

\[\alpha \rho V \frac{\partial V}{\partial z} = -\alpha \frac{\partial P}{\partial z} - F_i - \alpha \rho g \quad (4.59) \]

\[\alpha \rho V \frac{\partial V}{\partial z} = -\alpha \frac{\partial P}{\partial z} + F_i - \alpha \rho g - F_{wl} \quad (4.60) \]

Multiplying Eq (4.59) by \(\alpha \) and Eq (4.60) by \(\alpha V \), and then subtracting each other, we get the equation

\[F_i = \alpha \left(\rho \frac{\alpha V^2}{\alpha V} - \rho \frac{\alpha V^2}{\alpha V} \right) + \alpha \alpha \left(\rho \frac{\alpha V^2}{\alpha V} - \rho \frac{\alpha V^2}{\alpha V} \right) + \alpha \alpha \left(\rho \frac{\alpha V^2}{\alpha V} - \rho \frac{\alpha V^2}{\alpha V} \right) + \alpha F_{wl} \quad (4.61) \]

Using the continuity equations we obtain

\[F_i = \alpha \left(\frac{\rho V^2}{\alpha V} + \frac{\rho V^2}{\alpha V} \right) \frac{\partial \alpha}{\partial z} + \alpha \alpha \left(\rho \frac{\alpha V^2}{\alpha V} - \rho \frac{\alpha V^2}{\alpha V} \right) + \alpha F_{wl} \quad (4.62) \]

First we take the case, \(V > V_l > 0 \)

i) If \(\frac{\partial \alpha}{\partial z} > 0 \),

\(F_i \) always satisfies the Second Law because \(\frac{\rho V^2}{\alpha V} + \frac{\rho V^2}{\alpha V} > 0 \)

ii) If \(\frac{\partial \alpha}{\partial z} < 0 \), it is not clear whether \(F_i \) is non-negative or negative. Therefore, we have to assure that \(F_i > 0 \) in the case of \(V > V_l > 0 \) and \(\frac{\partial \alpha}{\partial z} > 0 \). Being used Eq (4.59) and (4.60), Eq (4.66) becomes the equation

\[F_i = K(V - V_l) - \frac{\rho C_V}{\alpha} \left[V \rho V_l (\alpha V + \alpha V) + (\lambda - 1) (V - V_l) \right. \]

\[+ \left. (\alpha V + \alpha V) \right] \frac{\partial \alpha}{\partial z} > 0 \quad (4.63) \]
In order to satisfy the inequality, Eq (4.63) in case of $V_v > V_\ell > 0$, $C_v > 0$ and $\frac{\Delta S}{\Delta z} < 0$, we simply obtain the inequality,

$$V_v V_\ell (\alpha_v + \alpha_\ell) + (\lambda - 1) (V_v - V_\ell) (\alpha_\ell V_v + \alpha_v V_\ell) > 0 \quad (4.64)$$

Notice that we obtain the same result as Eq (4.63) in case of $V_\ell > V_v > 0$ and $C_v > 0$.

If $V_v = V_\ell$, then $V_v^2 (\alpha_v + \alpha_\ell) > 0$.

If $\alpha_v \rightarrow 0$, $\lambda > 1 - \frac{V_\ell}{V_v}$.

If $\alpha_v \rightarrow 1$, $\lambda > \frac{V_\ell}{V_v}$.

In a general case

$$\lambda > 1 - \frac{s}{(s-1)(\alpha_\ell s + \alpha_v)} \quad (4.65)$$

where s is a slip ratio, $\frac{V_v}{V_\ell}$.

Fig 4.4 shows that the range of λ based on Eq (4.65) to satisfy $\Delta S \geq 0$. Conservatively, λ is set as 1 in the THERMIT-6S. In conclusion, in order to satisfy the Second Law, γ must be specified within the range of the inequality, Eq (4.65).

4.7 Numerical Results and Discussion
Fig. 4.4: Restriction on λ to Insure that $\Delta S > 0$ for Interfacial Momentum Exchange

$$\Delta S > 0$$

$$\lambda = 1 - \frac{s}{(s-1)(\alpha_s s + \alpha_v)}$$
An one-dimensional numerical simulation is performed by the THERMIT-6S code containing the stated virtual mass model. For the numerical simulation the geometry of the THORS test (40) and the same axial mesh size, 4" are used in order to see the effects of virtual mass on the numerical stability in the real geometry. No mass exchange and no heat transfer, but wall friction and interfacial friction are included in the computation.

Initially, a constant pressure difference between the inlet and outlet is applied to the stagnant two-phase mixture of sodium with constant void fraction along the channel. Physically, it may be expected that vapor velocities are nearly linearly accelerated with time as Hancox et al.'s results (41) showed.

Their studies involved the acceleration from rest of a stratified steam-water mixture with a constant pressure difference between the inlet and outlet. Their simulation was done with wall heat and momentum transfer, and interfacial mass, heat, and momentum transfer set to zero. The steam velocities were obtained with 8, 16, 32, 64, and 128 equal mesh sizes. The steam velocity transients showed no indication of solution instability but linearly accelerated vapor velocities with time. However, when 128 space increments were used, the oscillation of rapidly increasing amplitude developed.

The present analysis illustrates that in some cases vapor velocities are initially in growing modes but they are...
damped soon as shown in Figs 4.5 and 4.6. The reason for this behavior of vapor velocities can be explained as follows: while the initial small interfacial friction force can not stabilize a growing instability, later the interfacial friction force, which increases with time, becomes enough to damp growing oscillations. These results are consistent with Stewart's conclusion (42) that for a given mesh size, a minimum interfacial force is required to stabilize growing modes.

Bryce (28) noticed the same type of damping oscillations when the LOCA code RELAP-UK was used for the numerical simulation of Edward's simple blowdown experiment. Note that, as interfacial momentum transfer in Hancox et al.'s studies was set to zero, steam velocities did not damp but grew with time unlike the present results, in which interfacial momentum is allowed to be transferred between vapor and liquid.

Even though the present stability criterion was derived for negligible compressibility, it is noted in Figs 4.5 and 4.6 that the derived criterion predicts well the cut-off stability limits. Ardon (43) revealed the same result, that the boundary of the unstable region is virtually unaltered by compressibility.

With the much lower coefficient of interfacial force, the same simulation is performed. In this simulation oscillations do not occur but higher acceleration of both vapor and liquid with lower slip ratios is noticed. Considering that vapor reaches sonic velocities, this
Fig. 4.5: Vapor Velocity Transients with $\alpha = 0.8$

\[
\alpha = 0.8
\]

- $C_v = 0$
- $C_v = 10^{-3}$
- $C_v = 5 \times 10^{-3}$
- $C_v = 7 \times 10^{-3}$

\[
C_{vc} = (4\alpha_v^3 \frac{\rho_v}{\rho_l})^{1/4}
\approx 5 \times 10^{-3}
\]
\[\alpha = 0.9 \]

- \(C_v = 0 \)
- \(C_v = 10^{-3} \)
- \(C_v = 2 \times 10^{-3} \)
- \(C_v = 5 \times 10^{-3} \)

\[C_{vc} = \left(4\alpha \frac{\alpha V}{\rho V} \right) \frac{\lambda}{\rho} \]

\[\approx 2 \times 10^{-3} \]

Fig. 4.6: Vapor Velocity Transients with \(\alpha = 0.9 \)
phenomena may be explained by the following argument. At subsonic flows the instability is a long wavelength Kelvin-Helmholtz instability, which is driven by pressure reduction at a wave crest caused by the constriction of the vapor flow. However, at supersonic velocities, area reduction causes a recovery in vapor pressure which opposes wave growth. Therefore, with the zero virtual mass coefficient, the flow can be stabilized.

Fig 4.5 and Fig 4.6 show that vapor velocities depend on virtual mass coefficient; higher C_v produces lower vapor velocities, as expected. That indicates that virtual mass has a considerable physical effect in the sodium flow due to the high acceleration of the flow resulting from the high density ratio of liquid to vapor. Including virtual mass in the prediction of critical flow for the annular flow with wavy interfaces or with droplets, Henry (44) found a considerable physical effect for virtual mass on the critical flow. His models generally described the data well for the high void fraction flow regime.

4.8 Conclusions

The results from this Chapter can be summarized as follows;

1. If $C_v > \sqrt{4\alpha \alpha_c^3 \rho_v/\rho_l}$, the semi-implicit finite difference scheme is only restricted by the convective stability conditions.

2. Numerical simulation showed that the above stated
inequality for numerical stability predicts well the onset of instability. A growing instability may be possible, if interfacial friction is not enough to stabilize growing modes. This growing instability was always damped with time due to an increase in interfacial friction. At supersonic velocities of vapor, all of wave modes can be stabilized by a recovery in vapor pressure from the constriction of the vapor flow.

3. It is noticed that virtual mass has a considerable physical effect in the sodium flow due to high acceleration resulting from high density ratio.

4. It is recommended that virtual mass be included in the two-fluid model because it functions as a stabilizer with real physical effects, and we can not assure that sufficient interfacial force for stability always exists. Moreover, including virtual mass in THERMIT-6S neither changes the numerical scheme nor requires large coding and computational effort. Future effort must be focussed on the evaluation of C_v and to recommend specific values in terms of flow parameters.

5. For the second law of thermodynamics to be satisfied, λ must be specified within the range of the inequality,

$$\lambda \geq \lambda_{\text{min}} \geq 1 - \frac{s}{(s-1)(\alpha_s + \alpha_v)}$$
Chapter 5 CONSTITUTIVE RELATIONS

While the two fluid model provides more applicability and flexibility in the analysis of two-phase flow than other models do, its accuracy strongly depends on its constitutive equations. As shown in Table 5.1, the constitutive equations of THERMIT-6S can be subdivided into seven categories: mass exchange, energy exchange, momentum exchange, and wall friction and wall heat transfer, for each phase.

5.1 Constitutive Relations in Single Phase Region

The THERMIT-6S code requires two kinds of constitutive equations in the single phase region: wall friction factor and wall heat transfer coefficient. (Refer to Table 5.1) The wall friction factor can be subdivided into the axial wall friction factor and transverse wall friction factor. The models adopted here are those of Wilson and Kazimi (45). The transverse friction factor holds for bare rod geometry only while that of the axial wall friction is for wire-wrapped rod bundles.

5.1.1 Wall Friction in Single Phase Region

5.1.1.1 Axial Wall Friction in Liquid Region

In order to solve the momentum equation for the axial direction of fluid flow it is necessary to calculate the pressure drop due to friction. This change in pressure is defined in terms of the friction factor, \(f \) as:

\[
\Delta p_z = f \frac{\Delta z}{D_e} \frac{\rho \frac{V_z}{2} |V_z|}{\text{ }}
\]

(5.1.1-1)
TABLE 5.1
Constitutive Relations of THERMIT-6S

<table>
<thead>
<tr>
<th></th>
<th>Single Phase Liquid Region</th>
<th>Pre-Dryout Region (0<α<0.957)</th>
<th>Post-Dryout Region (0.957<α<1)</th>
<th>Single Phase Vapor Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Friction Force F_W</td>
<td>X</td>
<td>◊</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Wall Heat Transfer Q_W</td>
<td>X</td>
<td>◊</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Interfacial Mass Exchange Γ</td>
<td>◊</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfacial Energy Exchange Q_i</td>
<td>◊</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfacial Momentum Exchange F_i</td>
<td>◊</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X: previous work
0: simple extension of present work
◊: present work
where $\Delta p_z =$ pressure drop in the axial direction
$\Delta z =$ node length in the axial direction
$D_e =$ equivalent diameter for the flow
$V_z =$ velocity in the axial direction

Then, the rate of wall momentum transfer per unit volume, F_w is expressed as

$$F_w = \frac{\Delta p_z}{\Delta z} \quad (5.1.1-2)$$

For the axial wall friction factor, f in the single phase liquid region, THERMIT-6S uses a combination of the laminar correlation of Markely and Engel (46) and simplified Novendstern's turbulent correlation (47). In laminar flow, Markley et al. suggested the following correlation.

$$f_L = \frac{32}{\sqrt{H}} \left(\frac{P}{D} \right)^{1.5} \frac{1}{Re}, \text{ for } Re \leq 400 \quad (5.1.1-3)$$

where $H =$ wire wrap lead length
$P/D =$ pitch to diameter ratio

In turbulent flow, Novendstern's correlation simplified by Wilson (45) is used in THERMIT-6S:

$$f_T = \frac{0.316 M}{Re^{0.25}}, \text{ for } 2600 \leq Re \leq 200,000 \quad (5.1.1-4)$$

where

$$M = \left[\frac{1.034}{(P/D)^{0.124}} + \frac{29.7 (P/D)^{6.94} Re^{0.086}}{(H/D)^{2.239}} \right]^{0.885} \quad (5.1.1-5)$$

In the transition region, the following relationship is
employed without any verification:

$$f_{T_t} = f_T \sqrt{\psi} + f_L \sqrt{1-\psi}, \text{ for } 400 < Re < 2600$$ \hspace{1cm} (5.1.1-6)

where \(\psi = \frac{Re - 400}{2200} \)

5.1.1.2 Axial Wall Friction in Vapor Region

The Markley-Novendstern correlation described above is implemented with vapor properties being substituted for the liquid properties.

5.1.1.3 Transverse Wall Friction in Liquid Region

The momentum equations in the x and y directions also require a friction pressure drop term. In this case, the geometry is different from the axial direction: instead of flow along rods, we have flow across rods. The single phase friction factor in the transverse direction is defined by:

$$\Delta p_t = f \frac{\Delta t}{D_v} \frac{\rho v_{\text{max}} |v_{\text{max}}|}{2}$$ \hspace{1cm} (5.1.1-7)

where

- \(\Delta p_t \) = frictional pressure drop in the transverse direction
- \(\Delta t \) = length in the transverse direction
- \(v_{\text{max}} \) = transverse velocity at the point of maximum flow constriction between rods
- \(D_v \) = volumetrically defined, transverse hydraulic diameter

\[= \frac{4 \times \text{volume of fluid in tube bank}}{\text{Exposed surface area of tubes}}\]
The correlation employed in THERMIT-6S was developed by Gunter and Shaw (48), for the transverse wall friction factor in the single phase liquid region. Gunter and Shaw define both a laminar and a turbulent correlation for the friction factor, f with the transition occurring at a Reynolds number of 202.5. Thus,

$$f = \begin{cases}
180/\text{Re} & , \text{ for } \text{Re} \leq 202.5 \\
1.92/\text{Re}^{0.145} & , \text{ for } \text{Re} > 202.5
\end{cases}$$

(5.1.1-8)

where

$$\text{Re} = \frac{\rho |v_{\text{max}}| D_v}{\mu}$$

Note that this correlation was obtained, based on bare-rod data.

5.1.1.4 Transverse Wall Friction in Vapor Region

The Gunter and Shaw correlation described above is used with vapor properties being substituted for the liquid properties.

5.1.2 Wall Heat Transfer in Single Phase Region

In order to solve the energy equation, we need to specify the heat flux from the wall to the fluid. The wall heat flux is defined as:

$$q_w'' = h(T_w - T_s)$$

(5.1.2-1)
Then, the rate of wall heat transfer per unit volume, Q_w is expressed as

$$Q_w = q_w / L_w$$ \hspace{1cm} (5.1.2-2)$$

where $\frac{1}{L_w}$ is the wall area density defined as the ratio of the wall surface area to the fluid volume.

The wall heat transfer coefficient, h can be obtained by an empirical formulation.

5.1.2.1 Wall Heat Transfer in Liquid Region

The wall heat transfer coefficient in the single phase liquid region is based on Kazimi and Carelli's recommendation (49). These correlations are selected as reasonably conservative in the range specified. Recommended correlations for bare-rod bundle heat transfer are:

\begin{enumerate}
 \item For $1.15 \leq \frac{P}{D} \leq 1.3$; $10 \leq Pe \leq 5000$,
 \[Nu = 4.0 + 0.33 \left(\frac{P}{D} \right)^{3.8} \left(\frac{Pe}{100} \right)^{0.86} + 0.16 \left(\frac{P}{D} \right)^{5.0} \] \hspace{1cm} (5.1.2-3) \\
 \item For $1.05 \leq \frac{P}{D} \leq 1.15$; $150 \leq Pe \leq 1000$,
 \[Nu = Pe^{0.3} \left[-16.15 + 24.96 \left(\frac{P}{D} \right) - 8.55 \left(\frac{P}{D} \right)^2 \right] \] \hspace{1cm} (5.1.2-4) \\
 \item For $Pe \leq 150$,
 \[Nu = 4.50 \left[-16.15 + 24.96 \left(\frac{P}{D} \right) - 8.55 \left(\frac{P}{D} \right)^2 \right] \] \hspace{1cm} (5.1.2-5) \\
\end{enumerate}
5.1.2.2 Wall Heat Transfer in Vapor Region

As the liquid metal in the single phase region loses its high thermal conductivity and low Nusselt number, the single phase liquid correlation cannot be used. The Dittus-Boelter correlation is recommended:

\[
\text{Nu} = 0.023 \text{Re}_v^{0.8} \text{Pr}_v^{0.4} \quad (5.1.2-6)
\]

Note that this correlation was obtained, based on circular-tube data.
5.2 Constitutive Relations in Two-Phase Pre-Dryout Region

The fundamental nature of the internal structures of two-phase flow, i.e., flow regimes, makes the analysis of two-phase flow more complicated from numerical and physical points of view.

Here we shall use a simplified flow regime based on the following assumptions:

1. The exchange mechanism is dominantly controlled by local phenomena.
2. While vapor appears in the form of a large bubble within a subassembly, liquid films remain on the cladding and hence an annular flow is dominant on the scale of a subchannel.

Numerically, use of a simple flow regime is very important. If several flow regimes are implemented in the code, abrupt change of flow properties due to different constitutive equations often makes it difficult to obtain convergence with reasonable time step sizes.

The greatest obstacle to obtaining constitutive equations lies in the limited experimental data available for two-phase flow of sodium. Moreover, there exist discrepancies between data of different authors. Here the main reasons of these discrepancies will be clarified and constitutive relations for two-phase flow of sodium will be derived within our present capabilities, based on the above assumptions.
5.2.1 Axial Pressure Drop Coefficient in Two-Phase Flow

By reviewing several publications on frictional pressure drop in the two-phase flow of liquid metals, discrepancies between data of different authors become evident. It is also found that acceleration loss by droplets has a considerable effect on the hydraulic models, due to the high density ratio of the two fluids and the high-slip ratio. The objective of the following investigation of the friction pressure drop multiplier is to identify the primary reasons of these discrepancies.

5.2.1.1 Literature Review

The important questions in the area of two-phase pressure drop characteristics of liquid metals have often been stated as

1. Can the two-phase pressure drop of liquid metals be satisfactorily predicted by the correlations now in use for ordinary fluids?
2. If not, what modified or new correlations are required?
3. How well can friction pressure drop correlations for adiabatic two-phase flow be used to predict the two-phase pressure drop for heated channels?

To answer the above question, the Lockhart-Martinelli
correlation. (50) is chosen to represent non-metalic fluids. Several experiments on liquid-metal, two-phase pressure drop are cited in Table 5.2.

The low-quality pressure drop of sodium was investigated by Lurie (51). A comparison between these sodium data and the potassium data obtained at the University of Michigan showed excellent agreement. Over the range of flow rates and pressure covered in the experiment, no additional parametric dependencies could be discerned when the pressure drop ratio was plotted as a function of the Lockhart-Martinelli parameter, X_{tt}. It was also concluded that the high scatter in the low-quality and high X_{tt} region, as seen in Fig 5.1, is due to experimental variations and errors. However, most of the data fall between the Lockhart-Martinelli predictions for viscous-viscous and turbulent-turbulent flow.

The pressure drop data of Fauske and Grolmes (52) were obtained for forced convection flashing sodium flow in a tube under both the subsonic and sonic flow conditions. Friction factor data reduced from experiments under subsonic conditions are displayed in Fig 5.1. The data fall slightly below the Lockhart-Martinelli correlation for turbulent-turbulent flow.

Russian data (53) with low-mass flux of potassium under adiabatic conditions are shown in Fig 5.1. Results are in good agreement with the Lockhart-Martinelli correlation in the high-quality region.
TABLE 5.2
Main Parameters of Sodium Boiling Experiments

<table>
<thead>
<tr>
<th>Classification</th>
<th>Author</th>
<th>Fluid</th>
<th>Geometry*</th>
<th>Condition**</th>
<th>Pressure Bar</th>
<th>Mass Flux kg/m²·sec</th>
<th>Quality %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lurie, 1965 [51]</td>
<td>Na</td>
<td>S</td>
<td>A</td>
<td>0.1~0.7</td>
<td>160~950</td>
<td>~14</td>
</tr>
<tr>
<td></td>
<td>Fauske, 1970 [52]</td>
<td>Na</td>
<td>S</td>
<td>F</td>
<td>0.35~0.55</td>
<td>640~1815</td>
<td>0.92~2.5</td>
</tr>
<tr>
<td></td>
<td>Alad'yev, 1969 [53]</td>
<td>K</td>
<td>S</td>
<td>A</td>
<td>1~1.5</td>
<td>105~277</td>
<td>1.5~88</td>
</tr>
<tr>
<td></td>
<td>Smith, 1966 [54]</td>
<td>K</td>
<td>S</td>
<td>A</td>
<td>0.037~1.075</td>
<td>110~763</td>
<td>~37.84</td>
</tr>
<tr>
<td></td>
<td>Baroczy, 1968 [55]</td>
<td>K</td>
<td>S</td>
<td>A</td>
<td>0.95~1.16</td>
<td>165~608</td>
<td>1~9.4</td>
</tr>
<tr>
<td></td>
<td>Zeigarnick, 1980 [57]</td>
<td>Na</td>
<td>S</td>
<td>D</td>
<td>1~2</td>
<td>150~400</td>
<td>~45</td>
</tr>
<tr>
<td></td>
<td>Chen, 1970 [58]</td>
<td>K</td>
<td>S</td>
<td>A</td>
<td>0.6~2.9</td>
<td>200~1330</td>
<td>1~31</td>
</tr>
<tr>
<td></td>
<td>Kaiser, 1974 [59]</td>
<td>Na</td>
<td>S</td>
<td>A</td>
<td>0.5~1.7</td>
<td>74~3345</td>
<td>~86</td>
</tr>
</tbody>
</table>

*S = Single tube
7B = 7 pin bundle

**A - Adiabatic condition
D - Diabatic condition
F - Flashing condition
Fig. 5.1: Experimental Two-Phase Friction Pressure Drop with Low Mass Flux or Low Quality Flow
Smith et al. (54) measured the pressure drop in the horizontal two-phase flow of potassium. They estimated that acceleration losses never exceed 3%. This evaluation demonstrated that the experimental potassium pressure drops in a horizontal duct were essentially frictional. The Lockhart-Martinelli correlation predicts substantially greater potassium pressure gradients than shown by the data. If their results are evaluated in terms of the Lockhart-Martinelli multiplier, ϕ^2_L, and parameter X_{tt}, we obtain an approximate relationship for Smith's multiplier, ϕ^2_s:

$$\phi^2_s = \phi^2_L \times 1.58 \left(\frac{1}{1+43.5\ X_{tt}^{1.1}} \right)^{0.444}$$

In Fig 5.1 this relationship shows that the deviation between the Smith correlation and the Lockhart-Martinelli correlation in the high-quality region is small. But, as quality decreases, the deviation becomes larger and larger. As expected, the decreasing influence of heat loss calibration accuracy with increasing quality results in closed correspondence between the data and the Lockhart-Martinelli correlation at high quality.

Pressure drop data for two-phase potassium flowing through a straight horizontal tube were presented by Baroczy (55). Ref. 55 demonstrated that his data were better predicted by the Lockhart-Martinelli correlation than that by the Baroczy correlation (56). As Fig 5.1 shows, the data are typically lower than the Lockhart-Martinelli correlation.
As the two-phase multiplier, ϕ_{lo}^2 in Ref 55, was evaluated for total flow, the two-phase multiplier, ϕ_{lo}^2 for liquid flow was obtained by dividing ϕ_{lo}^2 by $(1-x)^{1.8}$, implying a Blasius-type single-phase friction factor $(f=c/Re^{0.2})$ was assumed. We next discuss diabatic data in the literature.

Most recently Zeigarnick and Litvinov (57) presented data on the pressure drop in sodium with heat addition. They showed that the pressure drop associated with the acceleration of entrained droplets can be neglected in the range investigated. In Fig 5.2 a comparison of their experimental data with the Lockhart-Martinelli correlation for adiabatic and non-metallic flow showed that the experimental data lie significantly below the correlation. The average discrepancy is about -35%. They explained that this is associated with a "push aside" effect of the vapor flow from the interface and the change of liquid film characteristics.

Chen and Kalish (58) reported quite different results from an experimental investigation of two-phase pressure drop for potassium without vaporization. Their data lie fairly above the Lockhart-Martinelli correlation (Fig 5.3). Although they reported that all data from their study corresponded to the annular-dispersed flow regime, they neglected the momentum-acceleration effect of the droplets in the vapor core.

Kaiser et al. (59) investigated the pressure drop in tube flow under adiabatic conditions, as well as the type of
Fig. 5.2: Experimental Two-Phase Friction Pressure Drop under the Diabatic Condition
Fig. 5.3: Experimental Two-Phase Friction Pressure Drop with High Mass Flux and High Quality Flow
flow and critical heat flux of boiling sodium. They reported that the flow patterns of pure annular flow and annular-dispersed flow were dominating. Most of the data in Fig 5.3 lie fairly above even Chen's results.

Kaiser and Peppler (60) evaluated the two-phase pressure drop of sodium in seven-pin bundle geometries under adiabatic conditions. Experiments were done over two ranges of conditions, as given in Table 5.2. In Fig 5.4 data of the pin bundle experiment is seen to fall slightly below the Lockhart-Martinelli correlation. However, comparison with the results from the single tube experiments shows a displacement by a factor of 0.6 toward lower values. Although an attempt was made to explain these differences by investigating the influence of void fractions and of resistance coefficients for the single-phase flow, no explanation was found for deviations in the experiments. A systematic failure seems unlikely as the same measurement principles were employed in both sets.

5.2.1.2 Effect of Entrainment on Pressure Drop

The above review indicates that data are divided into two groups. Each group may be characterized by the flow pattern: "pure annular" flow or "annular-dispersed" flow. While the data which fall below the Lockhart-Martinelli correlation, were taken in annular flow without or with a small number of droplets, the data which fall fairly above the Lockhart-Martinelli correlation, were taken in
Fig. 5.4: Experimental Two-Phase Friction Pressure Drop in Seven-Pin Bundle
annular-dispersed flow. Therefore, it can be argued that the difference between the two groups is caused by the acceleration pressure drop of droplets in the gas core, which was neglected in the evaluation of the pressure drop in annular-dispersed flow.

Entrainment effects on pressure drop can be included in the following equation:

\[
\frac{dP_{2\phi}}{dP_{2\phi f}} = d\left(\frac{2}{\rho_l} U_{lf}^2 + \frac{2}{\rho_{ld}} U_{ld}^2 + \frac{2}{\rho_g} U_g^2\right) + \left(\alpha_l \rho_l + \alpha_g \rho_g\right) g \, dz
\]

\[d\left(\frac{2}{\rho_l} U_{lf}^2 + \frac{2}{\rho_{ld}} U_{ld}^2 + \frac{2}{\rho_g} U_g^2\right) + \left(\alpha_l \rho_l + \alpha_g \rho_g\right) g \, dz \] (5.2.1-1)

where

- \(dP_{2\phi}\) = total pressure drop
- \(dP_{2\phi f}\) = frictional pressure drop
- \(\alpha_{lf}, \alpha_{ld}, \alpha_g\) = volumetric fraction of liquid film, liquid droplets, and gas in the flow channel, respectively
- \(U_{lf}\) = liquid film velocity
- \(U_{ld}\) = liquid droplet velocity
- \(U_l\) = total liquid average velocity
- \(U_g\) = gas average velocity

Obviously, \(\alpha_l + \alpha_g = 1\)

and \(\alpha_{ld} + \alpha_{lf} = \alpha_l\)

Given values for G, x, and \(\alpha_{lf}\), the velocities \(U_l\), \(U_{lf}\)
124

, and \(U_g \) can be evaluated by the following equations:

\[
U_l = G(1-x)/(\rho_l \alpha_l) \tag{5.2.1-2}
\]

\[
U_{lf} = (1-E) G(1-x)/(\rho_l \alpha_{lf}) \tag{5.2.1-3}
\]

\[
U_g = G x/(\alpha_g \rho_g), \tag{5.2.1-4}
\]

where \(E = (\alpha_{ld} \rho_l U_{ld})/(\alpha_l \rho_l U_l) \) \(\tag{5.2.1-5} \)

From the definition of entrainment fraction, \(E \), we obtain a core liquid fraction, \(\alpha_{ld} \), in terms of \(\alpha_{lf} \) and \(E \) as

\[
\alpha_{ld} = \alpha_{lf} \frac{EU_l}{U_{ld} - EU_l} \tag{5.2.1-6}
\]

We assume flow conditions within the gas such that the velocities of the gas and of the droplets are equal, i.e., \(U_{ld} = U_g \). As both \(U_g \) and \(U_l \) are functions of \(\alpha_{ld} \), \(G \), and \(x \), then \(\alpha_{ld} \) can be expressed in terms of \(\alpha_{lf} \), \(G \), and \(x \) and solved by iteration if we know the entrainment fraction, \(E \). Also the two-phase multiplier, \(\phi_l \), can be expressed in terms of \(\alpha_{lf} \) and \(E \).

By definition

\[
\phi_l^2 = \frac{\tau_W}{\tau_l} \tag{5.2.1-7}
\]

where \(\tau_W = \frac{\rho_l U_{lf}^2}{2} \) \(\tag{5.2.1-8} \)

\[
\tau_l = f_l \frac{\rho_l j_l^2}{2} \tag{5.2.1-9}
\]

\[
j_l = U_l \alpha_l \tag{5.2.1-10}
\]

and where \(\tau_l \) is the wall shear stress when the total liquid flows along the channel.
Substituting Eqs (5.2.1-8) and (5.2.1-9) into Eq (5.2.1-7), we obtain

\[\phi^2 = \left(\frac{f_{lf}}{f_l} \right) \left(\frac{U_{lf}}{U_l \alpha_{lf}} \right)^2 \]

(5.2.1-11)

Using the definition of the Reynolds number and assuming the same Blausius-type relation for \(f_{lf} \) and \(f_l \), we obtain

\[\frac{f_{lf}}{f_l} = \left(\frac{\alpha_l \cdot U_l}{\alpha_{lf} U_{lf}} \right)^{0.2} \]

(5.2.1-12)

Substituting Eq (5.2.1-12) into Eq (5.2.1-11) and using the definition of the entrainment fraction, \(E \), we obtain the final form of \(\phi^2_l \):

\[\phi^2 = \frac{1}{\alpha_{lf}^2} (1 - E)^{1.8} \]

(5.2.1-13)

A detailed derivation of Eq (5.2.3-33) is described in Appendix C. Equation (5.2.1-13) shows that the two-phase multiplier, \(\phi^2 \), in annular flow with droplets is lower than in annular flow with no droplets for the same void fraction. If the single-phase pressure drop for the total liquid flow, \(\tau_\ell \) in Eq (5.2.1-7), is replaced by that for the liquid film flow, \(f_{lf} \) is equal to \(f_\ell \) from Eq (5.2.1-12). Therefore, we obtain the relationship suggested by Turner and Wallis (61):

\[\phi^2 = \frac{1}{\alpha_{lf}^2} \]

(5.2.1-14)

Note that for no entrainment, \(\phi^2_\ell \) in Eq (5.2.1-13) is equal to \(\phi^2_{lf} \) in Eq (5.2.1-14).

So far the only unknown variable is the entrainment
fraction, E. For Reynolds numbers between 200 and 3000, the amount of entrainment is a function of both vapor and liquid flow rate. Steen and Wallis (62) showed that in fully turbulent flow above a film Reynolds number of 3000, the amount of entrainment and the conditions for the onset of entrainment are largely independent of the liquid film flow rate and depend primarily on the vapor velocity. Unfortunately, this approach fails to take into account a general increase in the fraction of liquid entrained as the channel diameter increases. As there are no data available for liquid metals, the Steen-Wallis relationship can be taken to represent the entrainment fraction, E, here and to provide a rough estimation of acceleration loss by droplets. If we apply this approach to the data of Ref 63, the entrainment fraction from Steen and Wallis leads to a negative friction pressure drop for most of the experiments. This implies that the relationship from Steen and Wallis overpredicts the entrainment fraction, and the acceleration pressure drop by the droplets. Conversely, the entrainment fraction can be calculated when the friction pressure drop is known. If the Lockhart-Martinelli correlation is used to predict the friction pressure drop, the results imply, for most of the experiments, a smaller entrainment fraction than predicted by Steen and Wallis.

The large acceleration effect of droplets in liquid metals is primarily due to the high ratio of liquid-to-vapor densities and the high-slip ratio. Assuming complete
homogenization, a gas void fraction of 0.9, a core liquid fraction of 0.001, and a density ratio of 3000 the acceleration loss by droplets is about three times that by vapor. In conclusion, acceleration loss by droplets should not be neglected in the evaluation of frictional pressure drop in the annular-dispersed flow.

5.2.2 Transverse Pressure Drop Coefficient in Two-Phase Flow

As there are few data for transverse pressure drop coefficients in two-phase flows, the following correlations recommended by Wilson and Kazimi (45) are adopted in the present version.

For transverse two-phase flow with both liquid and vapor Reynolds number in the laminar regime, the Gunter and Shaw correlation (48) for single phase flow is transformed as follows:

\[\Delta p_L = f \frac{\Delta t}{D_v} \frac{\rho_l v_{l,max}^2}{2} \text{ for } Re_L < 202.5 \]

(5.2.2-1)

where

\[f = \frac{180}{Re_L} \]

\[Re_L = \frac{\alpha_{\ell} \rho_L D_v}{\mu_L} |v_{l,max}| \]

If either liquid or vapor is in the turbulent regime, the Ishihara correlation (64) is applied to the friction
pressure drop to yield the following equation:

\[\Delta p_T = f \frac{\Delta t}{D_v} \frac{G^2}{2 \rho_l} \phi_{lo}^2 \]

(5.2.2-2)

where \(G = G_l + G_v \)

\[= \alpha_l \rho_l v_{lmax} + \alpha_v \rho_v v_{vmax} \]

\[f = \frac{1.92}{Re} \frac{0.145}{\mu} \]

\[Re = \frac{G D_v}{\mu} \]

\[\phi_{lo}^2 = 1 + \frac{8}{X_{tt}} + \frac{1}{X_{tt}^2} \]

\[\frac{1}{X_{tt}^2} = \left(\frac{x}{1-x} \right)^{1.855} \left(\frac{\rho_l}{\rho_v} \right) \left(\frac{\mu_v}{\mu_l} \right)^{0.145} \]
5.2.3 Wall Heat Transfer Coefficient in Two-Phase Flow

5.2.3.1 Literature Review

Analogies between heat and momentum transport processes have been used successfully for single-phase flow analysis since Reynolds (65) remarked on the similarity between the two processes. While Reynolds assumed the entire flow field to be highly turbulent, Prandtl (66) and Taylor (67) developed analogies based on two zones—a laminar zone near the wall and a highly turbulent core. Von Karman (68) extended the universal velocity profile to three zones—a laminar sublayer, a buffer zone, and a turbulent core. Martinelli (69) successfully applied this approach for predicting single-phase heat transfer in liquid metals. More recent adaptations of the analogy concept have concentrated on incorporating improved expressions for momentum and energy eddy diffusivities in the well-known equations for momentum flux and heat flux:

\[
\tau = - (v + \varepsilon_m) \rho \frac{dv}{dy} \quad (5.2.3-1)
\]

\[
 q'' = - (\alpha + \varepsilon_h) \rho C_p \frac{dT}{dy} \quad (5.2.3-2)
\]

In his falling film analysis, Dukler (70) used the velocity form of Deissler for both laminar and buffer zones and the form of von Karman for a turbulent core. Assuming that the ratio of the eddy thermal diffusivity to the eddy viscosity is unity and the molecular conductivity is
negligible, a temperature profile was constructed. The above assumption results in an overestimated heat transfer coefficient at low values of the Prandtl number. Traviss et al. (71) modified the Dukler film analysis to include the effect of total pressure drop. Their prediction method for condensation heat transfer has been verified for data with Freon-12 and -22. As their derivation is quite general, it can be extended to liquid metals. Applying the Traviss et al.'s analytical method to annular flow evaporation without nucleation, Bjorge (72) obtained a correlation that appeared to be in better agreement with water data than the Chen correlation (73).

There are few correlations for flow boiling heat transfer for liquid metals. A first attempt was made by Chen (74) following the same approach as his method for non-metallic flows. He postulated that two mechanisms contribute to total wall heat transfer—the macro- and micro-convection mechanisms. He used the suppression function, S, and the measure of the effectiveness of two-phase momentum transfer, F, which were obtained from data with water and organic fluids. He proposed the following modified form of the Lyon-Martinelli equation for the evaluation of the macro-convective contribution to total wall heat transfer:

\[h_{mac} = [\delta + 0.024 (F \text{ Re}_{l}^{0.8} (\beta \text{ Pr}_{l})^{0.5} \frac{\gamma k_{l}}{D_{h}} (5.2.3-3) \right] }
For the two-phase flow, he recommended the values 7, 1, 1, and 0.8 for δ, β, γ, and α, respectively. The NATOF code (16) used a modified Chen correlation:

$$h_{mac} = F^{0.375} h_l,$$

where h_l is the single-phase liquid heat transfer coefficient at the same inlet mass flow.

During the last two decades, several experimental investigations of heat transfer and pressure drop for sodium boiling and condensation have been made. As experimental data were accumulated, discrepancies emerged among the results obtained by different authors. Recently Zeigarnick and Litvinov (57) provided data that give better insight into the mechanisms determining the heat transfer and friction pressure loss characteristics. The accuracy and reliability of the two-phase alkali-metal heat transfer data depend on the accuracy of the determination of the saturation temperature and the flow stability. Previously, investigators measured the saturation temperature with thermocouples. Zeigarnick and Litvinov observed that saturation temperature measurements in alkali-metal, two-phase flow with thermocouples are inherently associated with uncertainties caused by significant local pressure drops around the thermocouple location. To overcome this problem they measured the saturation pressure directly, thus determining more accurately the saturation temperature. For alkali-metal flow, the occurrence of a significant wall
superheat is known to be probable. In their experiments, flow boiling stabilization over a sufficiently long period was achieved either by drilling artificial double-reentrant, angle-type cavities in the heating surface or by injection of a small amount of inert gas at the test tube entrance. It was also found that the phase change in sodium occurs by evaporation from the vapor-liquid interface without bubble generation at the wall. This suggested that the macroscopic contribution to the wall heat transfer in forced two-phase convection in sodium is highly dominant over nucleate boiling. In the present work, a macroscopic heat transfer correlation will be developed on the basis of the above-stated observation.

5.2.3.2 Model Development

With the aid of Fig 5.5, an approximate distribution of shear stress in the liquid film can be obtained from the steady-state differential momentum equation in the liquid film, assuming negligible radial velocity and incompressible liquid flow:

$$\frac{1}{r} \frac{\partial}{\partial r} (r \tau_{rz}) = \frac{\partial P}{\partial z} + \rho_l g$$

(5.2.3-5)

As the right-hand side is a function of z alone, it is taken to be constant in the r direction. Integrating Eq (5.2.3-5) from the wall, R, to r in the liquid film and using the boundary conditions, \(\tau_w = \tau_{rz} \bigg|_R \) and \(\tau_i = \tau_{rz} \bigg|_{R-\delta} \), we
Fig. 5.5: Ideal Liquid Film in the Tube
obtain the equation

\[\tau_{rz} = \frac{R}{r} \tau_w \left(\frac{R^2 - r^2}{2r} \right) \left[\frac{R^2 - (R - \delta)^2}{2(R - \delta)} \right] \left(\tau_i - \frac{R}{R - \delta} \tau_w \right) \] (5.2.3-6)

Assuming a thin film, \(R >> \delta \), we get the distribution of shear stress in the thin liquid film:

\[\tau_{rz} = \tau_w \left(1 - \frac{y^+}{\delta^+} M \right), \] (5.2.3-7)

where \(M = 1 - \tau_i/\tau_w \)

\[y^+ = y \frac{U_T}{\nu_l} \]

\[\delta^+ = \delta \frac{U_T}{\nu_l} \]

\[U_T = \left(g_o \frac{\tau_w}{\rho_l} \right)^{1/2} \]

Traviss et al. (71) assumed a linear shear stress distribution in the thin liquid film and then obtained the same expression as Eq (5.2.3-7).

Assuming that the von Karman momentum-heat transfer analogy is applicable to the liquid layer, the shear stress and heat flux are written as

\[\tau = -\frac{\rho_l}{g_o} (\nu_l + \epsilon_m) \frac{dv_z}{dy} \] (5.2.3-8)

\[q^* = -\rho_l C_{pl} (\alpha_l + \epsilon_n) \frac{dT}{dy} \] (5.2.3-9)
Rearranging Eq (5.2.3-8) and solving for ε_m, we obtain

$$
\varepsilon_m = \left[\frac{\tau g_0}{g} \frac{1}{U^2 \tau} \left(\frac{1}{\frac{dV^+}{dy^+}} \right) - 1 \right] v_L',
$$

where $v^+_z = V_z / U_{\tau}$.

The von Karman universal velocity distributions for the laminar and the buffer zones are assumed to be

$$
0 < y^+ < 5; \quad v^+_z = y^+ \quad (5.2.3-11)
$$

$$
5 < y^+ < 30; \quad v^+_z = -3.05 + 5 \ln y^+ \quad (5.2.3-12)
$$

For the turbulent zone, the von Karman universal distribution, which was obtained from single-phase flow data, is not directly applicable to the liquid film in the two-phase flow. Therefore, the applicability of a logarithmic law is assumed as

$$
y^+ > 30; \quad v^+_z = a + b \ln y^+ \quad (5.2.3-13)
$$

The value of a is determined by the requirement of continuity between the buffer and the turbulent zones, which yields

$$
a = -3.05 + (5 - b) \ln 30 \quad (5.2.3-14)
$$

The only empirically determined coefficient, b, is obtained by applying the suggested correlation to a subset of the Zeigarnick and Litvinov data, namely the data at $q^" = 1.0$.

The results are $b=6$ and $a=-6.45$.

Now let us obtain an expression of ϵ_m for each zone.

For the laminar zone, we obtain

$$0 < y^+ < 5; \quad \epsilon_m = 0$$

(5.2.3-15a)

For the buffer zone, the eddy viscosity is of the same order of magnitude as the kinematic viscosity and $\tau_{rz}/\tau_w \sim 1$. Therefore,

$$5 < y^+ < 30; \quad \epsilon_m = \nu_l \left(\frac{y^+}{5} - 1 \right)$$

(5.2.3-15b)

For the turbulent zone, assuming $\epsilon_m/\nu_l >> 1$ and using Eq (5.2.3-7),

$$y^+ > 30; \quad \epsilon_m = \frac{\nu_l}{6} y^+ \left[1 - M \left(\frac{y^+}{\delta^+} \right) \right]$$

(5.2.3-15c)

Since $(q/A) \sim (q/A)_w$, Eq (5.2.3-9) can be integrated from the wall to the interface in the liquid layer to yield

$$\frac{1}{h} = \frac{T_w - T_\delta}{q''}$$

$$= \int_0^{\delta^+} \frac{\nu_l}{\rho_l C_p l (\alpha_l + E \epsilon_m) U_\tau} dy^+, \quad (5.2.3-16)$$

where T_w and T_δ are the wall temperature and the interfacial liquid temperature, respectively, and $E = \epsilon_h/\epsilon_m$.

Substituting Eq (5.2.3-15) into Eq (5.2.3-16) and completing
the integration we obtain

$$\text{Nu} = \frac{hD_h}{k_L} = \frac{\rho_L \cdot C_p \cdot U_T \cdot D_h}{k_L \cdot F_2} \quad (5.2.3-17)$$

where $\delta^+ > 30; \quad F_2 = 5 \cdot Pr_L + \frac{5}{E} \ln (1 + 5 \cdot E \cdot Pr_L) +$

$$\frac{6}{EY} \ln \left[\frac{2M + \gamma - 1}{1 + \gamma - 2M} \times \frac{\gamma + 1 - 60M/\delta^+}{\gamma - 1 + 60M/\delta^+} \right]$$

$0 < \delta^+ < 5; \quad F_2 = \delta^+ \cdot Pr_L$

$5 < \delta^+ < 30; \quad F_2 = 5 \cdot Pr_L + \frac{5}{E} \ln \left[1 + E \cdot Pr_L \left(\frac{\delta^+}{5} - 1 \right) \right]$}

where $\gamma = \sqrt{1 + \frac{10M}{E \delta^+ \cdot Pr_L}}$

Using the continuity of mass in the film and approximating, with an error of $<4\%$, we can obtain δ^+ as an explicit function of Re_L:

$0 < Re_L < 50; \quad \delta^+ = 0.7071 \cdot Re_L^{0.5} \quad (5.2.3-18a)$

$50 < Re_L < 1125; \quad \delta^+ = 0.4818 \cdot Re_L^{0.585} \quad (5.2.3-18b)$

$Re_L > 1125; \quad \delta^+ = 0.133 \cdot Re_L^{0.7614} \quad (5.2.3-18c)$

For the value of E in Eq (5.2.3-17) the following simplified
Rohsenow and Cohen correlation (75) is used

\[E = 27.73 \text{Pr}_l \] \hspace{1cm} (5.2.3-19)

(More recent correlations, while available, do not alter the results significantly.)

To approximate \(\tau_i / \tau_w \) in Eq (5.2.3-7), the approach of Wallis (62) can be applied in the following manner.

The momentum of both phases is governed by

\[\frac{dp}{dz} + \frac{4}{D} \tau_w = 0 \] \hspace{1cm} (5.2.3-20)

the momentum of the vapor phase is governed by

\[\alpha \frac{dp}{dz} + \frac{4 \sqrt{\alpha}}{D} \tau_i = 0 \] \hspace{1cm} (5.2.3-21)

from Eqs (5.2.3-20) and (5.2.3-21) we obtain

\[\frac{\tau_i}{\tau_w} = \sqrt{\alpha} \] \hspace{1cm} (5.2.3-22)

For computational purposes, it is necessary to derive the relationship between the bulk liquid temperature, \(T_m \), and the interfacial liquid temperature, \(T_6 \). From the definition of the bulk liquid temperature, we have

\[T_w - T_m = \frac{\int_{A_L} (T - T_w) V_z \, dA_L}{\int_{A_L} V_z \, dA_L} \] \hspace{1cm} (5.2.3-23)

where \(A_L \) and \(dA_L \) are the area and the differential area to be occupied by liquid, respectively.

For simplicity a linear temperature distribution is assumed along the radial direction in the liquid layer. This is an excellent approximation for liquid metals because of their
high thermal conductivity. Therefore,

\[T_w - T_m = \frac{T_w - T_\delta}{\delta^+} \int_0^{\delta^+} v_z^+ y^+ dy^+ \int_0^{\delta^+} v_z^+ dy^+ \] \hspace{1cm} (5.2.3-24)

Thus, in the laminar zone we obtain

\[0 < \delta^+ < 5; \quad v_z^+ = y^+ \]

\[T_w - T_m = \frac{2}{3} (T_w - T_\delta) \] \hspace{1cm} (5.2.3-25a)

In the buffer zone we obtain

\[5 < \delta^+ < 30; \quad v_z^+ = -3.05 + 5 \ln y^+ \]

\[T_w - T_m = \frac{T_w - T_\delta}{\delta^+} \frac{10.45 - 2.775 \delta^+ + 2.5 \delta^+ \ln \delta^+}{12.31 - 8.05 \delta^+ + 5 \delta^+ \ln \delta^+} \]

In the case of \(\delta^+ = 30 \), \(T_w - T_m = 0.613(T_w - T_\delta) \); in the case of \(\delta^+ = 5 \), \(T_w - T_m = 0.66(T_w - T_\delta) \). From the above result, \((T_w - T_m) \) is approximated in this zone as

\[T_w - T_m \approx 0.64(T_w - T_\delta) \] \hspace{1cm} (5.2.3-25b)

In the turbulent zone, we obtain

\[\delta^+ > 30; \quad v_z^+ = -6.45 + 6 \ln y^+ \]

\[T_w - T_m = \frac{T_w - T_\delta}{\delta^+} \frac{234.9 - 4.725 \delta^+ + 3 \delta^+ \ln \delta^+}{42.27 - 12.45 \delta^+ + 6 \delta^+ \ln \delta^+} \]

In the case of \(\delta^+ \to \infty \), \(T_w - T_m = 0.5(T_w - T_\delta) \); in the case of \(\delta^+ \to 30 \), \(T_w - T_m = 0.613(T_w - T_\delta) \). From the above
result, \((T_w - T_m)\) is approximated in this zone as

\[T_w - T_m \approx 0.55(T_w - T_o) \quad (5.2.3-25c) \]

From Eq (5.2.3-17), and relating \(\tau_w\) to the two-phase friction pressure drop, we obtain

\[h = \frac{1}{F_2} \rho_l C_{p_l} \left(\frac{g_c}{\rho_l} \right)^{1/2} \left[\frac{D_h}{4} \phi_v \left(\frac{dP}{dz} \right)^2 \right]^{1/2} \quad (5.2.3-26) \]

Using the Blausius-type correlation for \([-dP/dz]_f\) it can be easily recognized that for turbulent flow

\[\left(\frac{dP}{dz} \right)_f = 0.092 \left(\frac{\mu_v}{g_o \rho_v D_h^{1.2}} \right) \quad (5.2.3-27) \]

Substituting Eq (5.2.3-27) into Eq (5.2.3-26) and rearranging the result, we derive the final form of the Nusselt number correlation as

\[Nu = \frac{0.152}{F_2} Pr _l Re _l \frac{0.9 \phi_v}{x_{tt}} \]

\[= \frac{0.152}{F_2} Pr _l Re _l \frac{0.9 \phi_v}{x_{tt}} \quad (5.2.3-28) \]

where

\[Pr _l = \frac{C_{p_l} \mu_l / k_l}{Pr} \]

\[Re _l = \frac{G(1-x)D_h/\mu_l}{Re} \]

\[x_{tt} = \frac{\phi_v}{\phi_l} = \left(\frac{1-x}{x} \right) \left(\frac{\rho_v}{\rho_v} \right)^{0.5} \left(\frac{\mu_l}{\mu_v} \right)^{0.1} \]
by the Lockhart and Martinelli definition.

Considering the definition of the Nusselt number in terms of the bulk liquid temperature, we obtain

\[
\frac{\text{Nu}_b}{\frac{q''_w}{T_w - T_m}} = \frac{D_h}{k_L} = \text{Nu} \cdot \frac{T_w - T}{T_w - T_m}
\]

\[
\text{Nu}_b = \text{Nu} \cdot F_1
\]

Therefore, we get the final form of the new correlation:

\[
\text{Nu}_b = 0.152 \left(\frac{F_1}{F_2} \right) \Pr_L \text{Re}_L^{0.9} \phi_L
\]

where

i) \(\text{Re}_L < 50; \ F_1 = 1.5 \)

\[
F_2 = 0.7071 \text{Re}_L^{0.5} \Pr_L
\]

ii) \(50 < \text{Re}_L < 1125; \)

\[
F_1 = 1.563
\]

\[
F_2 = 5 \Pr_L + \frac{5}{E} \ln [1 + E \Pr_L (\delta^+ - 1)],
\]

where \(E = 0.00375 \text{Pe}_L [1 - \exp(-0.00375 \text{Pe}_L)] \)

\[
\delta^+ = 0.4818 \text{Re}_L^{0.585}
\]
iii) $Re_2 > 1125$;

$$F_1 = 1.818.$$

$$F_2 = 5 \text{Pr}_2 + \frac{5}{E} (1 + 5 \text{EPr}_2) +$$

$$\frac{6}{Ey} \ln \left[\frac{2M + \gamma - 1}{1 + \gamma - 2M} \times \frac{1 + \gamma - \beta}{\beta + \gamma - 1} \right],$$

where $\beta = 60 \frac{M}{\delta^+}$

$$\gamma = \sqrt{1 + \frac{10M}{E \delta^+ \text{Pr}_2}}$$

$\delta^+ = 0.133 \ Re_2^{0.7614}$

$$M = 1 - \sqrt{\alpha}$$
The parameter ϕ_ℓ in Eqs (5.2.3-28) is taken from the empirical relation between the Zeigarnick and Litvinov work and the Lockhart and Martinelli correlation. Zeigarnick and Litvinov found that frictional pressure losses in an alkali-metal, two-phase flow with heat input are less than in an adiabatic flow. They explained this by a "push-aside" effect of the vapor flow from the interface on the main stream and the change of liquid film characteristics. The empirical relationship between their results and the Lockhart and Martinelli correlation is

$$\phi_\ell = \phi_{\text{ltt}}^{0.88},$$

where

$$\phi_{\text{ltt}} = \sqrt{1 + \frac{20}{x_{\text{ltt}}} + \frac{1}{x_{\text{ltt}}^2}}$$

5.2.3.3 Comparison to Experiments

Several correlations are now to be compared with the Zeigarnick and Litvinov data and the data from Ref 76. The former experiments were made in the following range of parameters: heat flux at the wall up to 1.1 MW/m·s, mass flow rate 150 to 400 kg/m·s, flow quality up to 0.45, and operating pressure 0.1 to 0.2 MPa. They reported a much higher forced convection boiling sodium heat transfer coefficient than the previous results as shown in Fig 5.6. According to several experiments (e.g., Ref 77), the heat transfer correlations for alkali metals in forced convection
Fig. 5.6: Comparison between Data and Correlations
boiling and in pool boiling coincide. It seems that the previous results were subject to unstable boiling and uncertainties in saturation-temperature measurement. Also the results from several correlations over the whole range in the Zeigarnick and Litvinov experiments are shown in Fig 5.6. While the suggested correlation is in excellent agreement with the data over the whole range, the Chen and NATOF correlations predict a lower heat transfer coefficient.

Comparison of several correlations with the data of Ref 76 is given in Fig 5.7 where the parameters $h_{2\phi}$ and $h_{1\phi}$ are the heat transfer coefficient with boiling and without boiling at the same inlet mass flow. While the Chen correlation included both macroscopic and microscopic contributions to the wall heat transfer, the suggested correlation and the NATOF correlation included only the macroscopic contribution. The heat transfer coefficient in this experiment is lower than the Zeigarnick and Litvinov results. Furthermore, some data are seen to drop below the single-phase heat transfer coefficient. The Hoffman and Krakoviak (78) potassium data also showed that the heat transfer coefficient in unstable boiling is much lower than that in stable boiling and could be equal to the single-phase heat transfer coefficient, as are most of the data in Fig 5.7. Therefore, it can be concluded that most of the data of Ref 76 were obtained in the unstable boiling regime. While the NATOF correlation is generally in good
Fig. 5.7: Comparison of Correlations with GE Data
agreement with Ref. 76, the suggested correlation is in good agreement with the high heat transfer coefficient of some of the latter.

To evaluate the suggested correlation, the correlation for E and the Wallis method for \(\tau_i / \tau_w \) were used. Sensitivity analysis showed that the effect of these parameters on the heat transfer coefficient is small. The change in the coefficient was within 10% when E and \(\tau_i / \tau_w \) were separately changed over the possible range of 0.0001 to 1.0 and 0.001 to 1, respectively.
5.2.4 Interfacial Mass and Energy Exchange

The exchange of mass, energy, and momentum across liquid-vapor interfaces must be explicitly given in the two-fluid model. As the interfacial exchange controls non-equilibrium phenomena, slip ratio, and mass transfer, accurate and reasonable physical models are very important in analysis of LMFBR transients.

A survey of the literature on models of mass and energy exchange is given. It is found that most of models, which have been developed for the analysis of non-metallic flows, must be modified for application to metallic flows. Here, it is assumed that mass and energy exchange at the interface is controlled either by the rate at which the latent heat for mass exchange is transported away from or into the interface, or by the rate at which vapor is supplied to the interface, whichever is smaller. The latter mechanism is described by a simple kinetic theory. The turbulent flux model is taken as the basis for description of the former mechanism, because of its easy generalization. The concept of modified mixing theory, which accounts for the energy loss of eddies, is introduced to generalize the turbulent flux model.

The proposed model is verified by two methods: one is the comparison of the predicted bulk liquid temperature to analytical results, and the other is the comparison of the void volume in the bundle estimated from experimental results with that according to the suggested model.
5.2.4.1 Literature Review

Among the models proposed to provide a basis for the mass exchange rate, the best known are the stagnant film model, the penetration model, the Reynolds analogy, and the turbulent flux model.

The main limitation of the stagnant film theory (79) lies in the assumed simple spatial dependence of parameters; the pressure, velocity, temperature, and composition depend only on the distance from the wall, and become constant when the distance exceeds the corresponding film thickness.

The penetration model, which was suggested by Higbie (80) in 1935, presents a picture of small fluid elements contacting the phase interface for brief periods during which the transient transport processes occur. Then, the fluid elements are replaced by fresh fluid from the reservoir. The penetration model leads us to the conclusion that the transport flux of properties should be proportional to the square root of the diffusivity of the material involved. This has been found to be approximately true in non-metallic flow systems.

The Reynolds analogy, based on Reynolds’ postulate (65), was suggested by von Karmann (68) and established by Chilton and Colburn (81). It is well known that Reynolds' postulate breaks down for metallic flows.

The turbulent flux model developed by Spalding (82) adopted a simple visualization of the Prandtl mixing-length theory for turbulent motion in the neighborhood of an
interface. An eddy is visualized, which originates around the interface, travels transversely at a constant temperature over a distance of one mixing-length, and then is mixed with the fluid there. However, in sodium, it is expected that there are considerable energy losses from the eddies due to the high conductivity of sodium. Nevertheless, we shall use this model as the basis for a generalized model, because of its easy application and flexibility.

5.2.4.2 Model Development

The turbulent flux model assumes that mass exchange is determined by the effectiveness of energy transfer by eddies. This model uses a simple approach to describe the movement of an eddy around the vapor-liquid interface, as shown in Fig. 5.8. In Fig. 5.8, the solid lines, I.G. and I.L. represent the gas side interface and the liquid side interface. It is assumed that each eddy with bulk properties enters each region across the B.G. or B.L. lines, which are located at a distance of one mixing length in each phase, l_g or l_l, from I.G. or I.L. Denote: h_{bg} and h_{bl} are the bulk specific enthalpy in the gas and liquid regions, respectively. T_g and T_l are the bulk temperatures of the vapor and liquid regions, respectively. h_{mg} and h_{ml} are the specific enthalpy transported by eddies originated near the interface as they cross B.G. or B.L., respectively.
Fig. 5.8: Simple Representation of Mass and Heat Transfer around the Vapor-Liquid Interface
q_{bg} and q_{bl}, and q_{ig} and q_{il}, are the heat flux through B.G and B.L, and through I.G and I.L, respectively.

g_g and g_l are the turbulent mass flux of each region, and g_m is the mass flux transferred from one phase to the other across the interface.

First, let us establish the relationship between the interface heat flux, q_{il} and q_{ig}, and the mass flux, g_m, by considering the steady state energy balance equation in the region surrounded by I.G and I.L.

\[
g_m h_{il} + q_{il}^* = g_m h_{ig} + q_{ig}^* \quad (5.2.4-1)
\]

Assuming the saturation state at the interface and rearranging Eq (5.2.4-1), we obtain the relationship

\[
g_m = \frac{(q_{il}^* - q_{ig}^*)}{h_{fg}} \quad (5.2.4-2)
\]

where h_{fg} is the latent heat of vaporization.

As the interfacial heat flux in the gas phase, q_{ig}^*, is usually much smaller than q_{il}^*, a simplified expression of Eq (5.2.4-2) may be obtained by neglecting q_{ig}^*.

\[
g_m = \frac{q_{il}^*}{h_{fg}} \quad (5.2.4-3)
\]

This simplified equation enables us to focus on the evaluation of q_{il}^*.

The steady state liquid energy balance equation in the L region leads to the equation:

\[
q_{il}^* = q_{bl} + g_l (h_{bl} - h_{ml}) + g_m (h_{ml} - h_{sl}) \quad (5.2.4-4)
\]
where h_{sl} is the specific liquid enthalpy corresponding to the saturation temperature of the above system, T_s.

Assuming a linear temperature distribution in the mixing length, i_q, q_{bl} can be expressed in terms of T, and T_s.

$$q_{bl} = k(T - T_s)/l$$ \hspace{1cm} (5.2.4-5)

where k is the molecular conductivity of liquid.

For non-metallic flows, there are negligible heat losses from eddies while they travel the distance l. Therefore, h_{ml} is equal to h_{sl}. Then we get a simple relationship of $q_i \bar{l}$ for non-metallic flows by substituting Eq (5.2.4-5) in Eq (5.2.4-4):

$$q_i = H_{i\bar{l}}(T - T_s) \hspace{1cm} (5.2.4-6)$$

where

$$H_{i\bar{l}} = k_{i\bar{l}}/l + q_{i\bar{l}}C_{pl} \hspace{1cm} (5.2.4-7)$$

and C_{pl} is the specific heat of liquid.

However, for metallic flows such as sodium, heat losses from eddies require a modification of the above treatment. Deissler's modified mixing-length theory (83) is taken to account for heat losses from eddies.

Fig 5.9 illustrates an eddy movement. An eddy of fluid originates at the surface 1, where its temperature is T_1. It travels at the velocity v', with the temperature T', to the surface 2, a distance $l_\bar{\ell}$ away, where T_2' and T_2 are
Fig. 5.9: Movement of an Eddy in a Fluid
the temperature of the eddy and of the fluid. Then the eddy breaks up and mixes with the fluid. As heat is conducted out of the eddy between the surfaces 1 and 2, \(T'_2 \) is different from \(T_1 \). Based on the above picture, Deissler expressed the effectiveness of energy transfer by an eddy as

\[
E = \frac{T'_2 - T_2}{T_1 - T_2}
\]

(5.2.4-8)

For the value of \(E \) the following simplified Rohsenow and Cohen correlation (75) is used.

\[
E = 27.73 \Pr
\]

(5.2.4-9)

where \(\Pr \) is the Prandtl number.

Now \(E \) can be expressed in terms of parameters defined in Fig 5.8.

\[
h_{bi} - h_{mi} = E(h_{bi} - h_{ii})
\]

(5.2.4-10)

Combining Eq (5.2.4-10) with Eq (5.2.4-4), \(q_{il}^r \) can be expressed as follows:

\[
q_{il}^r = k_{il} \frac{T_{il} - T_s}{T_{il}^2} + C_{pl} [g_{E}E + g_{m}(1-E)](T_{il} - T_s)
\]

(5.2.4-11)

Replacing Eq (5.2.4-3) with Eq (5.2.4-11) and rearranging the results, we get the equation.

\[
g_m = \frac{(k_{il}/T_{il}^2 + C_{pl}g_{E})(T_{il} - T_s)}{h_{fg} - C_{pl}(1-E)(T_{il} - T_s)}
\]

(5.2.4-12)
Since h_{fg} is much greater than the value, $C_{pl} (1-E)(T_c - T_s)$, for all practical purposes, Eq (5.2.4-12) can be simplified:

$$g_m = H_i (T_c - T_s)/h_{fg},$$

(5.2.4-13)

where $H_i = k_i/\ell_k + C_{pl} g_i E$

(5.2.4-14)

Let us compare Eqs (5.2.4-6) and (5.2.4-7) with Eqs (5.2.4-13) and (5.2.4-14). We notice that the mass flux obtained by Eqs (5.2.4-13) and (5.2.4-14) is always less than that obtained by Eqs (5.2.4-6) and (5.2.4-7), because E is always less than 1. Physically this implies that energy loss from an eddy lessens the effectiveness of energy transfer by the eddy.

The unknown variables in Eq (5.2.4-14), g_ℓ and ℓ_ℓ, are defined by the Prandtl momentum transfer theory. The rate of momentum transfer by eddies per unit area, τ_t, and turbulent mass flux, g_ℓ, are expressed as follows:

$$\tau_t = \rho_\ell l_\ell \left(\frac{dv_z}{dy} \right)^2$$

(5.2.4-15)

$$g_\ell = \rho_\ell \sqrt{\tau_t} = \rho_\ell l_\ell \left(\frac{dv_z}{dy} \right)$$

(5.2.4-16)

where ρ_ℓ and v_z are the liquid density and time averaged axial flow velocity, and $\sqrt{\tau_t}$ is the intensity of turbulence when it is divided by v_z. From Eq (5.2.4-15) and (5.2.4-16), g_ℓ can be expressed in terms of τ_t:

$$g_\ell = \sqrt{\rho_\ell \tau_t}$$

(5.2.4-17)
\[\tau_t \] can be approximated by the interfacial stress, \(\tau_i \). For an annular flow of sodium, the correlation of Eq. (5.2.5-19) can be used:

\[\tau_i = C_{fi} \frac{\rho_v v^2}{2} \]

(5.2.4-18)

where \(C_{fi} = 0.005(1 + 234.3(1 - \sqrt{\alpha})^{1.15}) \)

\[v = V_v - V_L \]

and \(\alpha \) and \(\rho_v \) are the volumetric fraction of vapor and the vapor density.

The simplest relationship for \(\xi_L \) suggested by Prandtl (66) would be one of direct proportionality to the distance from the solid wall, \(y \):

\[\xi_L = \xi y \]

(5.2.4-19)

where \(\xi \) is a constant value.

In a turbulent pipe flow, he suggested 0.4 for \(\xi \).

In summary the interfacial heat flux, \(q_{\text{if}} \) and the mass
flux, \(g_m \), can be calculated as follows:

\[
q_{il}^* = H_i (T_l - T_s).
\]

\[
g_m = \frac{q_{il}^*}{h_{fg}} \tag{5.2.4-20}
\]

where

\[
H_i = k_l / \ell_L + C_p \rho_l g_L E
\]

\[
E = 27.73 \text{ Pr}
\]

\[
\ell_L = 0.4\delta
\]

\[
g_L = \sqrt{\rho_L \tau_i}
\]

\[
\tau_i = C_{fi} \frac{\rho_v v^2}{2}
\]

\[
C_{fi} = 0.005(1 + 234.3(1 - \sqrt{\alpha})^{1.15})
\]

Kowalchuk and Sonin (84) reasoned that mass exchange in the interface is controlled either by the rate at which the latent heat for mass exchange is transported away from the interface, or by the rate at which the vapor is supplied to the interface, whichever is smaller. These two mechanisms are in competition with each other; when the amount of supplied vapor exceeds the capability to transport latent heat required for phase transformation into the bulk fluid, mass exchange is controlled by the former mechanism. These mechanisms are referred to as the latent heat transport
control mechanism and vapor supply control mechanism, respectively.

The vapor supply control mechanism can be viewed as the net effusive molecular flow between two quantities—
a rate of arrival of molecules from the vapor space toward the
interface and a rate of departure of molecules from the
surface of liquid into the vapor space. While the turbulent
flux model represents the latent heat transport mechanism,
the vapor supply control mechanism can be described by a
kinetic theory.

From a simple kinetic theory it can be shown that, in a
stationary container of molecules, the mass rate of flow of
calculating passing through an interface is given by

\[j = (\frac{M}{2\pi R})^{\frac{1}{2}} \frac{P}{T^{\frac{3}{2}}} \]

(5.2.4-21)

where

- \(j \): efflux of molecules moving in one direction
- \(M \): molecular weight
- \(R \): universal gas constant
- \(P \) and \(T \): pressure and temperature

The net molecular flux through the interface of liquid-vapor is
difference between the fluxes in the either direction

\[q_m = (\frac{M}{2\pi R})^{\frac{1}{2}} \left(\frac{P_l}{T_l^{\frac{3}{2}}} - \frac{P_v}{T_v^{\frac{3}{2}}} \right) \]

(5.2.4-22)

where \(v \) and \(l \) denote vapor and liquid.

Following Schrage (85) who introduced \(\gamma \) to account for
the net motion of the vapor towards the surface which is superimposed on the assumed Maxwellian distribution, Eq (5.2.4-22) is rewritten in the form

\[g_m = \left(\frac{M}{2\pi R} \right)^{\frac{1}{2}} \left(\sigma e \frac{P_l}{T_l} - \gamma \sigma_c \frac{P_v}{T_v} \right) \] (5.2.4-23)

where \(\sigma_e \) and \(\sigma_c \) are evaporation and condensation coefficients which are usually taken to be the same and are written generally as \(\sigma \). \(\gamma \) is defined as that fraction of the molecules striking the surface which actually do condense. For a very small ratio of overall speed to a characteristic molecular velocity Silver and Simpson (86) suggested a simplified form of Eq (5.2.4-23).

\[g_m = \frac{\sigma}{2 - \sigma} \left(\frac{M}{2\pi R} \right)^{\frac{1}{2}} \left(\frac{P_l}{T_l} - \frac{P_v}{T_v} \right) \] (5.2.4-24)

Assuming small differences in pressure and temperature and using the Clausius-Clapeyron relationship, we can arrive at a final form for a heat transfer coefficient, \(H_{il} \) for the vapor supply control mechanism

\[H_{il} = \frac{\sigma}{2 - \sigma} \left(\frac{M}{2\pi R} \right)^{\frac{1}{2}} \frac{\rho_v^2 h_{fg}^2}{\rho \sqrt{T_s}} \] (5.2.4-25)

Experiments with potassium and sodium vapor indicate a considerable reduction in the value of the condensation coefficient from near unity at low pressure to below 0.1 near atmospheric pressure. Wilcox and Rohsenow (87) have
considered the precision with which measurements of the condensation coefficient can be made. They conclude that the value should be unity and the reduction in the condensation coefficient with pressure is the result of increasing random errors with pressure. We adopt this here.

5.2.4.3 Model Validation

Two methods are designed for the validation of the suggested model. Numerical results for the methods are obtained by a 2-D numerical simulation of the P3A test (88) for which THERMIT-6S with the suggested model is used.

Indirect methods must be developed to verify the suggested model because of the lack of experimental data concerning the mass exchange of sodium. One of them is to compare the bulk liquid temperature from the suggested model with the values determined analytically. The analytical bulk liquid temperature can be predicted by using the definition of the bulk liquid temperature in the same way derived in Section 5.2.3. From Eq (5.2.3-25) we may approximate \((T_w - T_\ell)\) for the turbulent zone in terms of \((T_w - T_\delta)\) as follows:

\[
T_w - T_\ell = 0.55(T_w - T_\delta)
\] (5.2.4-26)

Fig 5.10 shows results, calculated from Eq (5.2.4-26), from THERMIT-6S with the suggested model, and according to the assumption of thermal equilibrium. In the equilibrium state, liquid temperature is forced to be equal to
Fig. 5.10: Comparison between Analytic Solution and Results Calculated According to the Suggested Model
saturation temperature, if vapor temperature is assumed to be in the saturation state. As, in the equilibrium state, no vapor can exist in the subcooled region, that is, the region with the negative \((T_w - T_s)\), the dashed line to represent the equilibrium state appears only in the evaporation region with positive \((T_w - T_s)\) in Fig 5.10. In both the evaporation and subcooled regions, most results predicted by the suggested model fall between results from the equilibrium state and analytical results.

The second method to verify the suggested model is to compare the void volume in the bundle as a function of time after boiling. A comparison of inlet and outlet bundle flowmeter readings led to prediction of void volume production rates before the voids reached the exit flowmeter and upset further readings. To account for the bundle outlet flowmeter FE 2-1 reading 4% lower than the bundle inlet flowmeter FE 1-1 at the start of the P3A LOF transient, two normalization methods were used to obtain the void volume. (Ref 88) In method A, the two flowmeter readings were made to coincide at the 8.8 second boiling inception time by adjusting FE 2-1 gain to zero. In method B, the flowmeter zeros and flowmeter amplitudes at steady state were made to agree. These two methods should span the uncertainty in determination of the void volume, which is proportional to the enclosed area between the two flowmeter curves.

Fig 5.11 shows the void volumes in the bundle as a
Estimated experimental results

Results calculated from suggested model

Fig. 5.11: Comparison of Void Volume in the Fuel Bundle between Estimated Experimental Results and Results from the Suggested Model
function of time after boiling, which are estimated from experimental and calculational results, respectively. The experimental estimation was given in Ref 88. Some of the void volume was undoubtedly sodium vapor, but an indeterminate amount was also fission gas released from rupturing of fuel pins. The void volume from the calculational results is less than that by method A, but greater than that by method B, up to 1.75 seconds, when failure of fuel pin clad and release of fission gas into the sodium vapor occurred.

At 1.1 seconds just before flow reversal takes place in the computation, as the test section is completely voided in the radial direction, a high rate of vapor generation is noted. As a result, pressure built up in the bundle causes the inlet flow to be reversed. These physical processes result in the rapid propagation of the void in the bundle in both the downward and upward directions until the void reaches the upper plenum. Afterwards, the void volume calculated by the present code is almost flattened.
5.2.5 Interfacial Momentum Exchange

Interfacial momentum exchange controls the slip ratio, which is one of the most important factors in the analysis of two-phase flow. Autruffe (89) derived a correlation for the vapor-liquid drag coefficient of sodium by using data from Ref 63. As his work included the effects of both liquid film and droplets for the evaluation of interfacial drag coefficient, his correlation predicts a much higher interfacial drag coefficient than other correlations. Here, methods to calculate momentum transfer by droplets will be presented so that the interfacial drag coefficient for liquid film can be derived. The results are compared to experimental data and correlations, for non-metallic flows.

5.2.5.1 Analytical Models

A one-dimensional, steady-state flow model is now to be developed for vertical upward adiabatic flow. For annular-dispersed flow, the vapor momentum balance equation should account for a momentum exchange between vapor and droplets, and can be stated as:

\[
\frac{d}{dz} \left(\alpha g \rho g U^2 \right) + \alpha g \frac{dP}{dz} = -F_{fi} - F_{di} - \alpha g \rho g, \quad (5.2.5-1)
\]

where \(F_{fi} \) and \(F_{di} \) are the momentum exchange rates, per unit volume, from vapor to liquid film and to droplets, respectively.

Assuming uniform dispersion of spherical droplets of the same diameter, \(D_d \), \(F_{di} \) is expressed in an empirical form
as

\[F_{di} = A_i C_d \frac{\rho g}{2} (U_g - U_{ld})^2, \tag{5.2.5-2} \]

where \(A_i \) is the interfacial area of droplets per unit volume, and \(C_d \) is the drag coefficient.

The quantity \(A_i \) can be expressed in terms of the droplet fraction, \(\alpha_{ld} \) as

\[A_i = 6 \alpha_{ld}/D_d \tag{5.2.5-3} \]

An expression obtained by Carofano and McManus (90), who correlated the drag coefficient for falling droplets undergoing distortion of shape, is used for \(C_d \):

\[C_d = 0.271 \, \text{Re}_d^{0.217}, \quad 400 \leq \text{Re}_d \leq 10,000 \tag{5.2.5-4} \]

where \(\text{Re}_d \) is the Reynolds number for a droplet.

\[\text{Re}_d = \frac{\rho_g U_{ld} D_d}{\mu_g} \]

As an appropriate description of the entrained droplet velocity and diameter as a function of the flow condition is not available, \(U_{ld} \) is assumed to be one-half of \(U_g \), and \(D_d \) is determined by the work of Smith (91) as

\[D_d = 0.0122 \, \text{cm} \tag{5.2.5-5} \]

The criterion used to establish a change in the droplet area is that used by Rabin et al. (92). Droplet break-up is considered to occur when the following expression is
satisfied:
\[
\frac{We}{Re_d^{0.5}} > 1.0 \tag{5.2.5-6}
\]
where We is the Weber number.

It is also assumed that once droplet shatter occurs, the original droplet diameter will be reduced to one-third of the initial value, as Martindale and Smith suggested (93).

The liquid film momentum balance equation can be written as
\[
d \left(\alpha_f \rho_f U_f^2 \right) + \alpha_f \frac{dP}{dz} = F_{f1} - F_{wl} - \alpha_f \rho_f g, \tag{5.2.5-7}
\]
where \(F_{wl} \) is the liquid wall friction force per unit volume.

Equation (5.2.1-3) is used to calculate \(U_f \) for given \(G, x, \) and \(\alpha_f \), and \(F_{di} \) is obtained by adding Eq (5.2.5-1) to Eq (5.2.5-7):
\[
F_{di} = \frac{d}{dz} \left(\alpha_f \rho_f U_f^2 \right) - \frac{d}{dz} \left(\alpha_f \rho_f U_f^2 \right) - \frac{dP}{dz} (\alpha_f \rho_f + \rho_g g) g - F_{wl} \tag{5.2.5-8}
\]
where \(F_{wl} = \phi^2 \frac{2 \rho_f}{f_w l} \tag{5.2.5-9} \)
\[
F_{wl} = f_\ell \left(\frac{D \alpha_f U_f}{\mu_f} \right)^2 \tag{5.2.5-10}
\]
\[
f_\ell = 0.184/Re_\ell^{0.2} \tag{5.2.5-11}
\]
\[
Re_\ell = \frac{D \alpha_f U_f}{\mu_f} \tag{5.2.5-12}
\]
\(D: \) tube diameter
Using the definition of the liquid entrainment fraction, E, and the following relation for G', we obtain

$$G'=(1-E)(1-x)G$$ \hspace{1cm} (5.2.5-13)

Eqs (5.2.5-10) and (5.2.5-12) can be rewritten in terms of G' as

$$F_{wl} = f_\ell \frac{G'^2}{2D\rho_\ell}$$ \hspace{1cm} (5.2.5-14)

$$Re_\ell = \frac{DG'}{\mu_\ell}$$ \hspace{1cm} (5.2.5-15)

The two-phase multiplier, ϕ^2_ℓ, was evaluated by the Lockhart-Martinelli correlation.

As, the liquid entrainment fraction, E, which is needed to calculate the acceleration loss of both vapor and liquid, and the wall friction loss, are functions of $\alpha_{\ell d}$ in Eq (5.2.1-6), $\alpha_{\ell d}$ is iterated until F_{di} in Eq (5.2.5-2) matches F_{di} in Eq (5.2.5-8). For given G, x, and $\alpha_{\ell f}$, F_{fi} can be calculated by the following procedure:

1. Guess $\alpha_{\ell d}$.
2. Calculate acceleration loss by both liquid and vapor and pressure loss by gravity and wall friction loss.
3. Calculate F_{di} from Eq (5.2.5-8).
4. Calculate $\alpha_{\ell d}$ from Eqs (5.2.5-2) and (5.2.5-3).
5. Reiterate the procedure until the change in $\alpha_{\ell d}$ is sufficiently small.
6. Calculate F_{fi} from Eq (5.2.5-7).
5.2.5.2 Model Validation

The above procedure is now applied to determine F_{fi} from the sodium boiling experiments of Kaiser et al. (63). The term F_{fi} in Eq (5.2.5-1) is related to the interfacial friction, τ_i, per unit area as

$$F_{fi} = \frac{4\sqrt{\alpha}}{D} \tau_i,$$ \hspace{1cm} (5.2.5-16)

where

$$\tau_i = C_{fi} \frac{1}{2} \rho g (U_g - U_{lf})^2.$$ \hspace{1cm} (5.2.5-17)

In Fig 5.12, data for C_{fi} in Eq (5.2.5-17) obtained from our analysis of Kaiser et al. (63) are compared to those for C_{fi} of Wallis (62) and of Moeck (94), which were derived from air-water experiments. Moeck obtained the air-water data in Fig 5.12 by using his film flow model and droplet interchange model to analyze three sets of data (95-97). He calculated C_{fi} by subtracting droplet drag, acceleration of net entrainment, vapor acceleration, and vapor static head from the overall vapor pressure drop. The important result that we note is that the data cluster into a single band, regardless of

1. vapor Reynolds number
2. tube diameter
3. total liquid flow rate.

Earlier work by Autruffe included the effects of both liquid film and droplets for the evaluation of C_{fi}:

$$F_i = F_{fi} + F_{di}.$$ \hspace{1cm} (5.2.5-18)
Wallis correlation \[C_W = 0.005 \left(1 + 300 \frac{\delta}{D} \right) \]
Moeck correlation \[C_M = 0.005 \left(1 + 1458 \left(\frac{\delta}{D} \right)^{1.42} \right) \]
Suggested correlation \[C_S = 0.005 \left(1 + 520 \left(\frac{\delta}{D} \right)^{1.15} \right) \]
Autruffe correlation \[C_A = 4.36 \left(\frac{\delta}{D} \right)^{0.95} \left(\frac{1 - 2\delta}{D} \right) \]

Air-Water Flow Data
- ○ 31.75 mm tube (Ref. (95))
- • 9.53 mm tube (Ref. (96))
- △ 12.7 mm tube (Ref. (97))

Sodium Data
- × 9mm tube (Ref. (63))

Fig. 5.12: Interface Drag Coefficient to Dimensionless Film Thickness
where F_i is total momentum exchange between liquid and vapor.

As a result, his correlation predicts a much higher interfacial drag coefficient than other correlations.

Several problems can be raised when Autruffe's correlation is applied. First, as his correlation is derived for annular-dispersed, two-phase flow of sodium, it may not be appropriate for the early stage of boiling transients, especially low-flow/low-power LMFBR accidents where pure annular flow is dominant. Second, since his correlation predicts an average liquid velocity that is much higher than the real liquid film velocity, the wall heat transfer coefficient, which is a function of the liquid film velocity, will be mispredicted.

As the sodium data lead to values of C_{fi} that have an upper bound represented by the Wallis correlation and a lower bound represented by the Moeck correlation, an intermediate correlation is recommended for C_{fi} of sodium:

$$C_{fi} = (0.005(1 + 520 \delta D)^{1.15})$$ \hspace{1cm} (5.2.5-19)
5.3 Constitutive Relations in Post-Dryout Region

After flow reversal the subcooled inlet is prevented from entering channels. Then, the liquid film remaining on the hot wall is rapidly evaporated and eventually dryout will occur. Especially, in the low flow/high power transients, the region and period of dryout are extensive and long enough to have considerable effects on system behavior. Unfortunately, few studies have been done on the post-dryout region. Therefore, a simple dryout criterion and post-dryout models are implemented in the present code.

The experiments analyzed by Autruffe (89) indicated that vapor did not come into contact with the wall until the void fraction exceeded 0.957. This value of void fraction 0.957 is used for a dryout criterion. It is assumed that for a void fraction below 0.957 the entire surface of the rod is coated with liquid. As the void fraction increases from 0.957 to 1.0, the liquid contact fraction decreases linearly from 1.0 to 0.0, while the vapor contact fraction goes from 0.0 to 1.0. Therefore, the wall contact areas of liquid and vapor after dryout are estimated in terms of the void fraction and the criterion of dryout 0.957.

\[
C_{f_l} = 1.0, \quad C_{f_v} = 0.0, \quad \text{for} \quad 0 \leq \alpha \leq 0.957 \quad (5.3.1)
\]

\[
C_{f_l} = \frac{1.0 - \alpha}{0.043}, \quad C_{f_v} = \frac{\alpha - 0.957}{0.043}, \quad \text{for} \quad 1.0 \geq \alpha \geq 0.957 \quad (5.3.2)
\]

where \(C_{f_l} \) and \(C_{f_v} \) are the fractions of the wall contact area of liquid and vapor, respectively.
These contact area fractions multiplied by the total wall area \(A_w \) in a cell become the liquid contact area \(A_{wl} \) and vapor contact area \(A_{wv} \). If these contact areas are divided by the fluid volume, we obtain the wall contact area density \(\frac{1}{L_w} \) for the LMFBR geometry.

\[
\frac{1}{L_{wl}} = \frac{A_{wl}}{V_f} = C_{fL} \frac{1}{L_w} \quad (5.2.3)
\]

\[
\frac{1}{L_{wv}} = \frac{A_{wv}}{V_f} = C_{fV} \frac{1}{L_w} \quad (5.2.4)
\]

where

\[
\frac{1}{L_w} = \frac{A_w}{V_f} = \frac{4}{D_e} = \frac{4}{D[2\sqrt{3}(P/D)^2 - \pi]} \quad (5.2.5)
\]

The total heat flow \(Q_{wt} \) through the fuel surface area \(A_w \) per unit volume is contributed by the heat transferred to or from liquid and vapor, \(Q_{wl} \) and \(Q_{wv} \).

\[
Q_{wt} = Q_{wl} + Q_{wv} \quad (5.2.6)
\]

Using Eqs (5.2.3) and (5.2.4) each component can be expressed as follows:

\[
Q_{wl} = \frac{1}{L_{wl}} q''_{wl} \quad (5.2.7)
\]

\[
Q_{wv} = \frac{1}{L_{wv}} q''_{wv} \quad (5.2.8)
\]

The heat transfer coefficient for the liquid film in two-phase flow, which is described in Sections 5.2.3.2, is used for \(q''_{wl} \). For \(q''_{wv} \) the Dittus-Boelter correlation
is used.

\[\dot{q}''_{WL} = \text{Nu}_\ell \frac{k_\ell}{D_e} (T_w - T_\ell) \quad (5.3-9) \]

\[\dot{q}''_{WV} = \text{Nu}_V \frac{k_V}{D_e} (T_w - T_V) \quad (5.3-10) \]

where

\[\text{Nu}_\ell = 0.152 \frac{F_2}{F_1} \frac{\text{Pr}}{\text{Re}_\ell} \text{Re}_\ell^{0.9} \phi_\ell \quad (5.3-11) \]

\[\text{Nu}_V = 0.023 \text{Re}_V^{0.8} \text{Pr}_V^{0.4} \quad (5.3-12) \]

\[\text{Re}_\ell = G(1-x)D_e/\mu_\ell \]

\[\text{Re}_V = GxD_e/\mu_V \]

Refer to Eqs (5.2.3-30) and (5.2.3-31) for \(F_1, F_2, \) and \(\phi_\ell \).

For the axial wall liquid friction in the post-dryout region, the correlation of the wall friction factor for annular flow is assumed to hold true. Accounting for the reduced contact area, we have

\[F_{Wzid} = C_{f_\ell} F_{Wzla} \quad (5.3-13) \]

where \(F_{Wzid} \) and \(F_{Wzla} \): liquid axial wall friction force per unit volume for post-dryout and annular flow,
respectively.

\[F_{wzla} = \phi_2 f_2 \frac{\rho_2 j_2^2}{2D_e} \]

(5.3-14)

where \(\phi_2 = (1 + \frac{20}{X_{tt}} + \frac{1}{X_{tt}^2})^{0.88} \)

\[j_2 = \alpha_2 v_2 \]

In Eq (5.3.14) \(f_2 \) is calculated by using correlations described in Section 5.1.1, but \(\text{Re}_2 \) is defined as

\[\text{Re}_2 = \frac{\rho_2 D_e j_2}{u_2} \]

In the post-dryout region, we can consider the region in which vapor contacts the wall as a single-phase region. Therefore, for this contacting area, we have

\[F_{wzvd} = C_{fv} F_{wzv} \]

(5.3-15)

where \(F_{wzvd} \) is vapor axial wall friction force per unit volume for post-dryout, and \(F_{wzv} \) is the single phase vapor flow friction force given by

\[F_{wzv} = f_v \frac{\rho_v u_v^2}{2D_e} \]

(5.3-16)

Here, \(f_v \) is calculated by the same correlation in Section 5.2.2, but \(\text{Re}_v \) is defined as

\[\text{Re} = \frac{\rho_v D_e u_v}{\mu_v} \]
For the transverse friction factor in post-dryout flows with both liquid and vapor Reynolds numbers in the laminar regime, Eq (5.2.2-1) is multiplied by the wall contact areas, respectively.

\[
\Delta P_l = C_f \cdot f \cdot \frac{\Delta t}{D_v} \frac{\rho_l U_{l,\text{max}}^2}{2}
\]

\[
\Delta P_v = C_f \cdot f \cdot \frac{\Delta t}{D_v} \frac{\rho_v U_{v,\text{max}}^2}{2}
\]

where

\[f_l = \frac{180}{Re_l}, \quad Re_l = \alpha_l \rho_l |U_{l,\text{max}}| \frac{D_v}{\mu_l}\]

\[f_v = \frac{180}{Re_v}, \quad Re_v = \alpha_v \rho_v |U_{v,\text{max}}| \frac{D_v}{\mu_v}\]

If either liquid or vapor is in the turbulent flow regime, the Ishihara correlation (64) is used, which was described in Section 5.2.2.

\[
F_{\text{wthm}} = f \frac{1}{D_v} \frac{G^2}{2 \rho_l} \phi^2 \mu_l \phi_{\text{lo}}
\]

where \(G\) and \(f\) are the total mass flow rate and friction factor, respectively.

For the transverse friction factor in post-dryout flows Eq (5.3.19) is split into two components in such a way that the proper limits are maintained as the void fraction
approaches zero or one. Thus we have

\[F_{\text{wtvd}} = \frac{1}{D_v} \frac{G^2}{2 \rho_l} \left(1 + \frac{8}{X_{tt}} \right) \]

(5.3-20)

\[F_{\text{wtvd}} = \frac{1}{D_v} \frac{G^2}{2 \rho_l} \frac{1}{X_{tt}} \]

(5.3-21)

In the same manner, the interfacial area can be corrected by the fraction of \(C_{f_l} \), if we assume that a very thin and smooth liquid film after dryout remains on the wall.

\[A_i = A_{it} C_{f_l} \]

(5.3-22)

where \(A_i \) and \(A_{it} \) are corrected interfacial area, and interfacial area for a given void fraction when the wall is totally covered by liquid.

The complexity of the interfacial structure makes it difficult to determine the interfacial area, \(A_{it} \). Therefore, a simple slug model of the interfacial area is implemented in THERMIT-6S. In the slug model void is assumed to be in the shape of cylinder which fills up a channel. By this assumption the void fraction can be the functions of axial length of the control volume \(\Delta z \) and the axial length filled up with vapor, \(\Delta z_v \).

\[\alpha = \frac{V_v}{V_f} = \frac{A_f}{A_f} \frac{\Delta z_v}{\Delta z} = \frac{\Delta z_v}{\Delta z} \]

(5.3-23)
where \(V_v \) and \(V_f \) : vapor and total flow volume

\(A_f \) : total flow area

Then, the area density \(\frac{1}{L_a} \) can be expressed in terms of geometry and void fraction.

\[
\frac{1}{L_a} = \frac{A_{it}}{V_f} = \frac{0.5 \pi D}{A_f} \alpha,
\]

(5.3-24)

where \(A_f = \frac{D^2}{8} [2\sqrt{3} \left(\frac{D}{D} \right)^2 - \pi] \)

(5.3-25)

The area density of post-dryout \(\frac{1}{L_{ap}} \) is expressed in terms of the contact area fraction, \(C_{f\ell} \):

\[
\frac{1}{L_{ap}} = \frac{1}{L_a} C_{f\ell}
\]

(5.3-26)

This area density \(\frac{1}{L_{ap}} \) will be multiplied by interfacial mass and energy flux to get the rates of interfacial mass and energy exchange per unit volume, respectively. After dryout, most of liquid is in the form of droplets which are almost homogenized with vapor. In order to implement this condition, momentum exchange after dryout is not accounted for by the interfacial area fraction. For complete equations refer to Table 5.3 and 5.4. Note that most physical models for post-dryout are based on the liquid film models which are developed for pre-dryout. However, when the wall is hot enough, there is little liquid left on the wall and the droplets play an important role in transferring mass and energy. As, presently, effects of droplets are not
considered in most of models for the present code, future work for them is recommended.
Table 5.3

<table>
<thead>
<tr>
<th>Wall Contact Friction and Heat Transfer Models</th>
<th>Vapor</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Phase Region (Dry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Dryout Region (0.9 < φ < 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Dryout Region (0.957 < φ < 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Phase Region (φ < 0.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Axial Wall Flow

<table>
<thead>
<tr>
<th>Condition</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re < 400</td>
<td>(x_t = \left(1 + \frac{10.0}{Re} \right)^{0.1})</td>
</tr>
<tr>
<td>Re > 400</td>
<td>(x_t = \left(1 - \frac{10.0}{Re} \right)^{0.1})</td>
</tr>
</tbody>
</table>

Wall Contact Area Density

<table>
<thead>
<tr>
<th>Region</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Dryout</td>
<td>(C_f = \frac{1}{1 + \phi})</td>
</tr>
<tr>
<td>Post-Dryout</td>
<td>(C_f = \frac{1}{1 - \phi})</td>
</tr>
</tbody>
</table>

Single Phase Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Dryout</td>
<td>(C_f = \frac{1}{\phi})</td>
</tr>
<tr>
<td>Post-Dryout</td>
<td>(C_f = \frac{1}{1 - \phi})</td>
</tr>
</tbody>
</table>

Table 5.3

<table>
<thead>
<tr>
<th>Single Phase Region (Dry)</th>
<th>Vapor</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Dryout Region (0.9 < φ < 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Dryout Region (0.957 < φ < 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Phase Region (φ < 0.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transverse Wall Friction Force per unit volume</td>
<td>F_{wt1} = f_{t1} \frac{v_{\text{max}}}{2D_v}</td>
<td>F_{wt2}</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Liquid</td>
<td>F_{wtv1} = 0</td>
<td>F_{wtv2} = 0</td>
</tr>
<tr>
<td>Vapor</td>
<td>F_{wtv1} = 0</td>
<td>F_{wtv2} = 0</td>
</tr>
<tr>
<td>i) For Re_{t} \leq 202.5 & f_{t1} = f_{tL} = \frac{180}{Re_t} & f_{t2} = f_{tL} & f_{wv3} = C_f v_v F_{wtv4} & \text{Re}_t + \text{Re}_v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii) For Re_{t} > 202.5 & f_{t1} = f_{tL} = \frac{1.92}{Re_t} & f_{t2} = f_{tL} & f_{wv3} = C_f v_v F_{wtv4} & \text{Re}_v > 202.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) For Re_{t} \leq 202.5 & \rho_t v_v^2 & f_{wv2} = f_{tL} & f_{wv3} = C_f v_v F_{wtv4} & \text{Re}_v > 202.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii) For Re_{t} > 202.5 & f_{wv2} = f_{tL} & f_{wv3} = C_f v_v F_{wtv4} & \text{Re}_v > 202.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\begin{align*}
\text{Re}_t & = \frac{v_{\text{max}}}{\nu_t} \\
\text{Re}_v & = \frac{v_{\text{max}}}{\nu_v} \\
\text{G} & = \alpha_t v_{t_{\text{max}}} + \alpha_v v_{v_{\text{max}}} \\
\frac{x}{x_{tt}} & = 1 - \frac{\theta}{x_{tt}} \\
\frac{1}{x_{tt}} & = \left(\frac{x}{1-x} \right)^{1.855} \frac{0.145}{\nu_t} \\
f_{t2} & = f_{tL} \\
f_{wv2} & = f_{tL} \\
f_{wv3} & = C_f v_v F_{wtv4} \\
f_{wv4} & = f_{tL} \\
\end{align*}
<table>
<thead>
<tr>
<th>Liquid</th>
<th>$Q_{w1} = q_{w1} / L_w$</th>
<th>$Q_{w2} = q_{w2} / L_w$</th>
<th>$Q_{w3} = q_{w3} / L_w$</th>
<th>$Q_{w4} = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor</td>
<td>$Q_{v1} = 0$</td>
<td>$Q_{v2} = 0$</td>
<td>$Q_{v3} = 0$</td>
<td>$Q_{v4} = 0$</td>
</tr>
</tbody>
</table>

Rate of Wall Heat Transfer per unit volume

$Q_w = q_w / L_w$

1) For $R_0 < 50$

$F_1 = 1.5$

$F_2 = 0.7071 \cdot \frac{R_0^{0.5} \cdot Pr_l}{Pr_t}$

2) For $50 < R_0 < 1125$

$F_1 = 1.563$

$F_2 = 5Pr_t + \frac{5}{E} \ln(1 + E \cdot Pr_t)$

$E = 27.73 \cdot Pr_t$

$\Lambda^+ = 0.4818 \cdot \frac{Re_e}{Re_t}$

3) For $R_0 > 1125$

$F_1 = 1.818$

$F_2 = 5Pr_t + \frac{5}{E} \ln(2M_{g(t)} - 1 + M_{g(t)}^3)$

$E = 60 \frac{M_{g(t)}}{M_{g(t)} - 1}$

$\Lambda^+ = 0.133 \cdot Re_t^{0.7614}$

$\phi_e = (1 + 0.65 \cdot \frac{1}{Re_t})^{0.88}$

$X_{tt} X_{tt}$

Nu $= 0.023 \cdot \frac{x}{Re_e}$
TABLE 5.4
THERMIT-6S Interfacial Exchange Models

<table>
<thead>
<tr>
<th>Interfacial Area Density ((\frac{1}{L_a}))</th>
<th>Pre-Dryout Regime ((0 < \alpha < 0.957))</th>
<th>Post-Dryout Regime ((1 > \alpha > 0.967))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{1}{L_a} = \frac{4}{D} \frac{e^{\alpha}}{(2\alpha^2 - 1)} = \frac{4}{D_e})</td>
<td>(\frac{1}{L_{a2}} = \frac{1}{L_{a1}} \frac{(1.0 - \alpha)}{[(1.0-0.957)]})</td>
</tr>
</tbody>
</table>

Interfacial Mass Flux

\[
q_m = \frac{H_t}{h_{fg}} (T_i - T_a)
\]

Rate of Mass Exchange per unit volume

\[
\Gamma = \frac{1}{L_a} q_m
\]

\[
H_{1t} = k_t \frac{t}{L_a} + C_{fg} g_t E
\]

\[
l_t = \frac{E}{P} (1 - \alpha)
\]

\[
E = 27.73 \text{ Pr}_t
\]

\[
g_t = \sqrt{\text{Pr}_t}
\]

\[
C_{fg} = 0.005 (1 + 234.3) (1 - \alpha)^{1.15}
\]

\[
H_{1t} = \frac{h_{fg}}{2 \pi \alpha} \left(\frac{f_v h_{fg}}{P_g} \right)^2
\]

If \(H_{1t} > H_{at}\), \(H_{1t1} = H_{at}\)

If \(H_{at} > H_{1t}\), \(H_{1t1} = H_{1t}\)

\[
q_m = \frac{H_{1t1}}{h_{fg}} (T_i - T_a)
\]

\[
\Gamma = \frac{1}{L_{a1}} q_m
\]
<table>
<thead>
<tr>
<th>Interfacial Heat Flux</th>
<th>$q_{i}^* = h_{i} I (T_i - T_v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of Interfacial Energy Exchange per unit volume</td>
<td>$Q_{11} = \frac{1}{h_{1a}} \frac{h}{h_{fg}} q_{i1}^*$</td>
</tr>
<tr>
<td>Rate of Interfacial Momentum Exchange per unit volume</td>
<td></td>
</tr>
<tr>
<td>$F_i = F_s + F_v$</td>
<td></td>
</tr>
</tbody>
</table>
| Standard Drag Force | $F_s = K |v_v - v_f|$
| $= \frac{1}{E_a} \tau_i$ |
| $\tau_i = C_{f1} \frac{1}{2} \rho_v (v_v - v_f)^2$ |
| $C_{f1} = 0.005 (1 + 23.3 (1 - \sqrt{a}))^{1.15}$ |
| $K = \frac{1}{E_a} C_{f1} \frac{1}{2} \rho_v |v_v - v_f| |
| $F_{s1} = K (v_v - v_f)$ |
| Virtual Mass Force | F_v |
| $F_{v1} = - \rho C_v \left(\frac{\partial v}{\partial t} - \frac{\partial v_f}{\partial t} + v \cdot \nabla (v_v - v_f) \right)$ |
| $+ (v_v - v_f) \cdot \{(1 - 2) \nabla v + (1 - 1) \nabla v_f \}$ |
| $F_{v2} = F_{v1}$ |
Chapter 6. CODE ASSESSMENT

The code assessment is defined as the task of ascertaining how well the code can simulate the physical processes measured in experiments, quantifying the error within which the code is capable of predicting certain key parameters, and determining the code's limitations.

In LMFBR analysis, the important physical processes are temperature transients, incipient boiling, vapor propagation in the axial and radial directions, flow coastdown, flow reversal, flow oscillation, and dryout. The key parameters to affect reactor behavior are therefore the times of incipient boiling, of flow reversal, and of initial dryout, wall and fluid temperature distribution, and inlet and outlet flow rate.

The capability of the code is restricted by the validation range of the constitutive equations implemented in THERMIT-6S. Most of the constitutive equations were derived for forced convection flow, based on an assumption of the predominance of the cocurrent annular flow regime. Although it is questionable whether these constitutive equations can be applied to natural convection flow, it is expected that the differences in the local processes between two-phase flow under natural convection and forced convection may be much smaller than those in single phase flow. Also, the code can only be applied to predictions of phenomena before fuel melting occurs. The code was
originally designed to be applicable to a component system but it can be extended to the analysis of a whole loop system in the future in order to account for the effect of loop system and to obtain accurate boundary conditions (98).

Additionally, an assessment of 1-D vs 2-D model predictions of sodium boiling in LMFBR subassemblies in relation to experimental results will be given. This was motivated by the need to determine whether two-dimensional voiding behavior and temperature distribution in large pin bundles are important. This work includes comparison with predictions by SAS (7 and 8) and NATOF (16 and 99). SAS is considered to be one of the best 1-D codes developed so far. Comparison between the present code and SAS will give some insight into 2-D effects and future development needs. Also, comparison with NATOF-2D, which uses the same solution scheme but different physical models, will illustrate the effect of improvement in the physical models of the present code. A brief description of experiments selected for assessment is shown in Table 6.1.

6.1 W-1 Experiments

The Sodium Loop Safety Facility (SLSF) W-1 Experiments (100) were 19-pin bundle in-pile tests performed by Hanford Engineering Development Laboratory and coordinated with the Argonne National Laboratory P series. The W-1 Experiments utilized SLSF as a packaged testing facility in the Engineering Test Reactor (ETR).
TABLE 6.1

Experiments and Codes Selected for THERMIT-6S Code Assessment and Comparison

<table>
<thead>
<tr>
<th># of Pins in Assembly</th>
<th>19</th>
<th>37</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Flow/High Power (LOF)</td>
<td>W-1 (W-7b')</td>
<td>P3A</td>
<td>OPERA -15 Pin</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>**</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>NATOF-2D</td>
<td>NATOF-2D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAS-3D</td>
<td>SAS-3A</td>
<td>(Pre-test)</td>
</tr>
<tr>
<td>Low Flow/Low Power (LOPI)</td>
<td>THORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAS-3A</td>
<td></td>
</tr>
</tbody>
</table>

*: 1-D Analysis by THERMIT-6S

**: 2-D Analysis by THERMIT-6S

NATOF-2D: 2-D Code

SAS-3D and SAS-3A: 1-D Codes
The W-1 Experiments consisted of many individual tests to provide experimental data on sodium boiling and boiling stability in a fuel pin bundle during flow transients in the LMFBR. The W-1 tests were also designed to provide fundamental information: the rate at which sodium boiling develops, the time required to establish dryout in local coolant channels, the time fuel pins can sustain without cladding failure, the operating conditions (fuel pin power and flow) which produce stable boiling in a pin array.

The tests were divided into two parts. The first was the protected LMFBR Loss-Of-Piping Integrity (LOPI) accident simulation to determine the heat transfer characteristics from fuel pins to coolant and boiling behavior. The second phase was the Boiling Window Tests (BWT) to establish flow-power combinations which will produce incipient and stable boiling zones in the bundle for a given inlet temperature. The BWT tests were subdivided into three phases: approach to boiling, incipient boiling, and dryout with fuel pin failure.

6.1.1 Test Apparatus and Procedures

The test train includes the test subassembly, bypass flow channel, flow divider, and test instrumentation. Downward coolant flow in the loop is outside the test train flow divider, which is insulated over much of its length to minimize radial heat transfer. Upward flow in the lower portion of the test train occurs in parallel through the
test assembly and the bypass channel. Test subassembly coolant flow is metered at both the test subassembly inlet and outlet. The two parallel coolant streams mix above the test subassembly outlet flowmeter and upward flow continues through two loop flowmeters prior to reaching the heat exchanger inlet.

The BWT tests were initiated at a steady state flow of 1.95 Kg/sec. The flow was linearly reduced to its low flow value in 0.5 seconds, where it was held for a specific time, and then linearly returned to its initial state in 0.5 seconds. Among the BWT tests, BWT-7b' (simply called as W-7b') is selected for numerical simulation. The W-7b' is the most interesting and demanding test to be run by the code, because flow reversal, 2.0 seconds of flow oscillation, and dryout occurred in this test. Boiling occurred at a pin power of 14.4 Kw/ft before clad dryout. The test section had 38% of full flow for a period of 3.0 seconds. This test simulates a high power/low flow sodium boiling accident. The thermal and hydraulic operating conditions in W-7b' are shown in Fig 6.1.

6.1.2 Numerical Simulation of W-7b'

6.1.2.1 2-D Analysis of W-7b'

To save computer time and probe the two-dimensional nature of sodium boiling, a 2-D analysis instead of a 3-D analysis is done by considering one-sixth of the test fuel
Fig. 6.1: SLSF Loop Steady-State Hydraulics at 145 MW ETR Power and 4.29 lb/sec Test Section Sodium Flow (Fuel Pin Peak Linear Power of 14.4 kW/ft)
bundle. Since the present code uses a x-y-z coordinate, the assumption adopted for the 2-D analysis is that there are no net mass, energy, or momentum exchange in the y direction, which can be achieved by assigning a zero flow area in the y direction. Then the x-z coordinate will be transformed into the r-z coordinate. As a result, uniform power in the θ direction is assumed and swirl flow is not considered. As shown in Fig 6.2, the fuel bundle consists of three meshes in the radial direction. Seventeen meshes in the axial direction are considered: one in the lower blanket (each 8"), nine in the fuel (each 4"), two in the upper blanket (each 6"), and five in the gas plenum (each 8"

Up to 1.5 seconds into transients, the measured inlet flow is used for the inlet boundary condition. After boiling starts, the pressure-pressure boundary condition is needed in order to predict flow coastdown and flow oscillation. Unfortunately, as there are no data for the inlet and outlet pressures of the test section, an estimation of the pressures is inevitable. The positions of the inlet and outlet boundary are shown in Fig 6.1. The reason for selecting these positions as the inlet and outlet boundary positions is that, while the mass flow rate in the test section is varied substantially with time after boiling, change in the total mass flow rate in the loop is relatively small. Therefore, the variation of pressures with time at the positions selected for the boundary conditions is relatively small. The cover gas region is not
Fig. 6.2: Radial Meshes of the Fuel Bundle for the 2-D Numerical Simulation of W-7b'
selected as the outlet boundary because the pressure drop between the outlet of the test section and the cover gas region requires information on the total mass flow rate in the loop which cannot be predicted in the present code. To account for pressure drops between the inlet boundary and outlet of the test section, and between the outlet boundary and outlet of test section, a valve model is designed and described in Appendix D. The importance of the boundary positions will be discussed in detail in Section 6.5.3. As the velocity-pressure boundary condition is used before boiling, it is not necessary to know the exact inlet and outlet pressures. However, use of the pressure-pressure boundary condition after boiling requires information on the values of inlet and outlet pressures. Therefore, the inlet pressure is estimated so as to give the saturation temperature in the last cell of the heated section at boiling inception, which can be estimated by experimental data. Note that the fluid temperature ultimately reaches a saturation temperature which is fairly constant over a time span. Then the outlet pressure is determined so as to give the experimental inlet flow at 1.5 seconds. Figure 6.3 shows the forcing function used for the boundary conditions; the solid line represents the pressure-pressure boundary condition and the velocity-pressure boundary condition is used in the time period of the dashed line, 1.5 seconds.

In order to obtain the correct inlet and outlet pressures, it is inevitable to use some iteration.
Fig. 6.3: Forcing Function for W-7b' Numerical Simulation (Dashed line represents the period when the inlet velocity boundary condition was used)
Therefore, loop simulation is recommended for future work to eliminate the uncertainties in estimating the inlet and outlet pressures.

Uniform power distribution in the radial direction is used for the numerical simulation during transients. The constant Nusselt number for liquid thermal conduction during transients is taken to equal 22 as recommended by Zielinski (99). Various types of fuel rods for the W-1 tests were used to obtain uniform radial power. To account for the different radial geometries, a generalized normalization of heat source is needed. (See Appendix E) The importance of this normalization of heat source will be discussed in Section 6.5.4.

6.1.2.2 Results

The numerical results for the W-7b' are shown in Fig 6.4-6.10. In the computation, incipient boiling starts at 1.55 seconds and inlet flow reversal occurs at 2.65 seconds. Dryout occurs within 0.15 seconds after flow reversal.

All temperature predictions (Figs 6.4-6.6) by the present code are higher than experimental data. Especially, it is observed that temperature differences between data and predictions are very large at the midplane of the heated section. (See Fig 6.6) One of the plausible explanations of these large temperature differences is geometry distortion due to high power. Also there is a time delay between the actual events and measurement of events by thermocouples,
Fig. 6.4: Comparison between Temperature Data, and 1-D and 2-D Predictions by THERMIT-6S at 33.7" (from the bottom of the fuel) in the Innermost Channel for the W-7b' Test.
Fig. 6.5: Comparison between Temperature Data of Hex-Can Innerface, and 1-D and 2-D Predictions by THERMIT-6S at 33.9" (from the bottom of the fuel) for the W-7b' Test
Fig. 6.6: Comparison between Temperature Data and 2-D Predictions by THERMIT-6S at the Midplane of Heated Section in the Intermediate Channel for the W-7b' Test
which is not mentioned in Ref 100.

After boiling inception, rapid vapor production in the saturated region occurs due to the high density ratio of liquid to vapor, and vapor is transferred radially and axially from the saturated region to the subcooled region surrounding the saturated region. This transferred vapor is condensed in the subcooled region. Some of the vapor produced is trapped in that cell for a short time due to the interfacial drag force between liquid and vapor. The trapped vapor increases void fraction and pressure in that cell. This causes rapid inlet flow coastdown and strong radial fluid transfer from the center channel to the outer channel. Rapid inlet flow coastdown increases power-flow mismatch and in turn fluid temperature in the subcooled region. The large radial velocity escalates energy transfer due to vapor transferred from the inner channel to the outer channel.

If the homogenous model, which assumes that an infinite interfacial drag force exists, is used, more vapor produced in the saturation region is trapped in that region. This more trapped vapor results in more rapid increase in void fraction and pressure. This is the main reason that the homogeneous model often brings about failure of convergence of the Newton iteration. The reduction of the time step size to achieve the convergence of the Newton iteration requires much larger CPU time. Even though it is assumed that the computation may be successful, much more rapid
inlet flow coastdown and earlier flow reversal is expected. For details refer to Section 6.5.2.

At 1.0 seconds after boiling inception, the fluid in the last mesh of the heated section in the outmost channel reaches saturation temperature and vapor production in that cell occurs instead of vapor condensation. As a result, the rate of vapor generation and pressure build-up around the end of the heated section increase. Flow coastdown accelerated by this sharp increase in pressure and vapor generation can be seen in Fig 6.7. As shown in Fig 6.7, the rate of inlet flow coastdown is more rapid than that in the experiment. This can be explained by the following reasons:

1. While the constant pressure boundary condition is used in the computation, rapid inlet flow coastdown, in reality, may cause an increase in the inlet pressure due to the hydraulic resistance of the loop.

2. The condensation rate may be higher in the experiment due to shattered droplets around interfaces produced by Kelvin-Helmholtz instability and Taylor instability. Slower flow coastdown can be predicted if a model to account for this effect is implemented in the present code.

As a result, flow reversal occurs 0.2 seconds ahead of that in the experiment.

Voiding of the rest of the bundle proceeds rapidly from this time on, with the whole bundle indicating a single channel response. As the gas plenum region of the bundle is
Fig. 6.7: Comparison between Inlet Flow Data and Predictions by THERMIT-6S, SAS-3D, and NATOF-2D for the W-7b' Test
mildly subcooled due to a lower heat capacity than those in the heated section and blanket region, more rapid vapor propagation in the gas plenum occurs until vapor reaches the end of pin at around 2.8 seconds. Within 0.15 seconds after flow reversal, dryout occurs. It seems that the incidence of flow reversal may be the most important single factor in the occurrence of dryout in low flow/high power accidents.

After flow reversal the liquid film remaining on the hot wall is rapidly evaporated due to high power and little liquid supply from subcooled liquid and eventually dryout occurs. Dryout dramatically reduces the heat transfer coefficient and as a result, sharp rise in the cladding temperature takes place. The temperature data in the experiment were obtained from wire-wrap thermocouples. After dryout, temperature measured by the wire-wrap thermocouples may be closer to wall temperature than to vapor temperature due to the low heat transfer coefficient. Thus, predictions before and after boiling in Figs 6.4-6.6 represent fluid and wall temperature, respectively. After dryout, vapor is rapidly accelerated due to high void fraction and this high vapor velocity dramatically reduces the time step size, and in turn increases CPU time. For this reason development of an advanced numerical scheme is recommended as future work.

Liquid reentry occurs at 0.2 seconds after flow reversal, followed by inlet flow oscillation. Figures 6.8-6.9 show voiding oscillation at the lower boundary of
Fig. 6.8: Profile of Voided Region in the Innermost Channel for the W-7b' Test (2-D Simulation)
Fig. 6.9: Profile of Voided Region in the Outermost Channel for the W-7b' Test (2-D Simulation)
void by liquid reentry. The frequency of the flow oscillation is 5 cycles/sec, compared to 3 cycles/sec in the experiment and the amplitude is much larger than that in the experiment. It is hard to identify the reasons for these results, but several reasons can be considered.

1. Here again, changes in the inlet and outlet pressures are expected during flow oscillation, in contrast with the constant boundary condition in the computation.
2. The constitutive relations after dryout are highly questionable. In our model, effects of droplets are neglected. However, the region and duration of post-dryout are large enough to affect the flow behavior as shown in Figs 6.8 and 6.9.
3. Large radial velocities have a multi-dimensional effect on the control of the time step size for numerical stability. This may cause some error accumulation.

Scram and flow recovery are simulated at 3.5 seconds. Due to lack of information on the scram, it is assumed that the scram causes a negative reactivity of -0.13 corresponding to about twenty dollars worth of negative reactivity which gives a prompt drop of power:

\[q(t) = 0.054 \times q(t_{scram}) \]

After this prompt drop in power, the test section goes on power decay with a period with 80 seconds. With rapid flow recovery, vapor condensation takes place starting from the
lower cells into which subcooled liquid is directly transported. Then the hot walls are rewetted by liquid and the dryout region is rapidly reduced as shown in Figs 6.4-6.6.

At about 4.6 seconds vapor in the innermost channel disappears and 0.13 seconds later is quenched in the outmost channel. This delay results from heat transfer from the hex can to fluid in the outmost channel. The wall temperature drop does not occur immediately after the scram. The cladding temperature continuously increase up to 0.25 seconds after the scram and then is sharply lessened. This delayed time can be a measure of how fast the cladding temperature will respond to the scram.

Fig 6.7 shows predictions by SAS-3D, NATOF-2D, and THERMIT-6S as well as the experimental inlet flow transient. Results by SAS are characterized by early flow reversal (1.7 seconds) and large flow oscillation. The NATOF code, which has the same numerical logic but different physical models, predicts that cladding dryout at 1.76 seconds and early flow reversal (1.95 seconds) occurs. Note that NATOF-2D predicts the occurrence of dryout before flow reversal unlike the experimental results and present predictions. This was primarily caused by use of the Autruffe correlation for the interfacial drag coefficient which predicts much higher interfacial force than the present model does. As a result, more vapor is trapped in the cell and then rapid increase in void fraction takes place. NATOF-2D calculation stopped at
2.2 seconds due to failure of convergence of the Newton iteration.

Comparison between 1-D and 2-D predictions is an interesting subject. Both predictions were done by the present code. 1-D analysis predicts 0.28 second delay of incipient boiling. (Fig 6.10) This can be understandable because fluid temperature in the 1-D calculation is averaged over the x-y plane. Therefore, at the same axial position, temperature predicted in 1-D analysis is lower in the innermost cell but higher in the outmost cell than predictions in 2-D analysis. As boiling is initiated in the innermost cell, time delay of incipient boiling in the 1-D calculation is quite natural. In the numerical simulation of experiments with steep radial temperature gradients, incipents boiling in the 1-D analysis can be substantially delayed. As radial temperature gradients in transients will be much steeper than at steady states, caution is required when 1-D simulation is performed. Initial dryout in the 1-D analysis occurs at 1.78 seconds after boiling, compared to 1.55 seconds in the 2-D analysis. In the 1-D analysis there is no room to condense vapor transferred in the the r direction. However, in the 2-D analysis strong cross flow caused by an increase in pressure in inner cells reduces pressure build-up. The frequency and amplitude of inlet flow oscillation in the 1-D analysis are higher than in the 2-D case; the frequency in the 1-D is about 6 cycles/sec, compared to 5 cycles/sec in the 2-D.
Fig. 6.10: Comparison between Inlet Flow Data and 1-D Predictions by THERMIT-6S for the W-7b' Test
6.2 P3A Experiment

The Sodium Loop Safety Facility (SLSF) P3A experiment (88) was an in-pile test performed by Argonne National Laboratory in 1977. Coolant boiling was detected by test section flowmeters and acoustic sensors at 0.8 seconds. Inlet flow reversal occurred at 10 seconds, followed by inlet flow oscillation. Gas passing through the bundle exit flowmeter at 10.8 seconds, was indicative of clad failure. Extensive clad melting and motion occurred at 12 seconds. ETR scram occurred at 12.9 seconds, as planned.

6.2.1 Test Apparatus and Procedures

SLSF test apparatus has already been described in Section 6.1.1.

The P3A experiment was designed to operate at coolant flow rates of 9.2 lb/sec in the test subassembly and 19.3 lb/sec in the loop while removing 1240 Kw of test assembly power at bundle inlet and exit temperatures of 720 F and 1216 F, respectively. These operating conditions simulate the design, center subassembly, beginning-of-life operating conditions in the FFTF core. A temperature gradient in the radial direction was observed which did not agree with the predicted values. This discrepancy was attributed to a non-uniform radial power distribution in the bundle. An estimated radial power profile is as follows:

<table>
<thead>
<tr>
<th>Fuel Pins</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>center pin</td>
<td>0.9</td>
</tr>
</tbody>
</table>
The unprotected pump trip caused to start flow coastdown at \(t = 0 \) second, while the reactor power was maintained at the initial full power, 1240 Kw. The inlet mass flow rate reached 42\% of the initial value at 8.8 seconds when boiling started. Without boiling the flow decay curve in the condition was designed to follow the projected ETR LOF curve up to 13 seconds. Afterwards, the flow was held constant at 2.76 lb/sec corresponding to 30\% of the initial value.

6.2.2 Numerical Simulation of P3A

6.2.2.1 2-D Analysis of P3A

In the 2-D analysis of the P3A test, the central two subchannel rings are agglomerated into one mesh. This can be justified by Fig 6.11 which shows very uniform radial temperature gradients in the central two rings. As shown in Fig 6.12, the fuel bundle consists of three mesh zones in the radial direction. Seventeen mesh zones in the axial direction are considered: one in the lower blanket (each 8\"), nine in the fuel (each 4\"), two in the upper blanket (each 6\"), and five in the gas plenum (each 8\"). In effect, the upper blanket in the W-1 test is replaced by the gas plenum in the P3A test. Up to 8.8 seconds into the
Fig. 6.11: Radial Temperature Gradients at the Last Cell of Heated Section Predicted by THERMIT-6S for the W-7b', P3A, and OPERA-15 Pin
Fig. 6.12: Radial Meshes of the Fuel Bundle for the 2-D Numerical Simulation of P3A
transients when boiling started, the measured inlet flow is used for the inlet boundary condition. Similar to the W-7b', the inlet and outlet boundaries are positioned as shown in Fig 6.1. The inlet and outlet pressures are estimated so as to give the same inlet mass flow rate and saturation temperature as those measured at the end of the heated section at 8.8 seconds. After 8.8 seconds the constant pressure drop between the boundaries is used to observe flow coastdown and flow oscillation. The estimated nonuniform power distribution and constant Nusselt number for liquid thermal conduction, Nu=22, are used for the numerical simulation during transients.

6.2.2.2 Results

Numerical results for the P3A are shown in Figs 6.13-6.15. Incipient boiling starts at 9.4 seconds and inlet flow reversal occurs at 10.6 seconds. Dryout occurs within 0.2 seconds after flow reversal. Figs 6.13-6.14 show temperature transients predicted by THERMIT-6S and COBRA-3M (12) as well as data at various positions with time. The COBRA-3M predictions were obtained by using uniform power distribution. The predictions by THERMIT-6S are in closer agreement with experimental results, partly because of use of uniform power distribution for COBRA-3M analysis.

Incipient boiling starts in the last cell of the heated section of the central channel, delayed 0.6 seconds in comparison with experimental incipient boiling time. In the
Temperature data at 35.7" (from the bottom of the fuel) at 35.7" in the innermost channel

- 2-D predictions by THERMIT-6S
- COBRA-3M predictions

Fig. 6.13: Comparison among Temperature Data, COBRA-3M Predictions, and 2-D Predictions by THERMIT-6S at 35.7" (from the bottom of the fuel) in the Innermost Channel for the P3A Test
Fig. 6.14: Comparison among Temperature Data, COBRA-3M Predictions by THERMIT-6S at 21.7" (from the bottom of the fuel) in the Outermost Channel for the P3A Test.
initial stage of boiling, THERMIT-6S predicts a higher inlet flow rate than the experiment because, while pump power was preset to decrease slowly up to 13 seconds, a constant pressure drop boundary condition is used in the numerical simulation. As shown in Fig 6.15, the rate of inlet flow coastdown in the computation after 0.8 seconds is more rapid than that in the experiment. This can be explained by the reasons described in Section 6.1.2.2.

As initial slower flow coastdown is followed by more rapid flow coastdown than the data, flow reversal occurs almost at the same time as that in the experiment. Within 0.2 seconds after flow reversal, dryout occurs. This confirms the conclusion from the W-7b' simulation that the incidence of flow reversal is the most important single factor in the occurrence of dryout in low flow/high power accidents. After dryout, vapor is rapidly accelerated due to high void fraction and this high vapor velocity dramatically reduces the time step size.

Liquid reentry occurs at 0.2 seconds after flow reversal, followed by inlet flow oscillation. The frequency of flow oscillation is 6 cycles/sec, compared to 3 cycles/sec in the experiment and the amplitude is much larger than that in the experiment due to the plausible reasons described in Section 6.1.2.2.

Fig 6.15 shows predictions by the NATOF-2D code (Ref 16) and the present code as well as the experimental inlet flow rates. The predictions by NATOF-2D are highly
Fig. 6.15: Comparison between Inlet Flow and Predictions by NATOF-2D and THERMIT-6S for the P3A Test
irregular and terminated at around 1.6 seconds. In Ref 88 the predictions by SAS-3A were reported to be in good agreement with data.

6.3 OPERA 15-Pin Experiment

OPERA is an Out-of-Pile expulsion and Reentry Apparatus at ANL. OPERA 15-Pin (101) is a sodium experiment which simulates the initiating phase of a pump coastdown without the scram of a LMFBR, specifically, the FFTF. The objective of the OPERA 15-Pin pump-coastdown test is to investigate sodium boiling initiation and the subsequent two-dimensional nature of sodium voiding in large pin bundles approaching the size of current LMFBR subassemblies. In a large pin bundle the steep radial coolant temperature profile will affect the behavior of vapor generation, vapor condensation, onset of flow reversal, radial voiding, clad dryout, and the axial void oscillations.

This experiment utilized 15 electric fuel pin simulators in a triangular thin walled duct to represent a high powered sub-assembly in which each pin produces 33 Kw. The 15-Pin triangular test bundle was fabricated to simulate the one-sixth sector of a 61-pin hexagonal bundle.

6.3.1 Test Apparatus and Procedures

The OPERA facility is a once-through sodium system. Steady-state coolant flow with the inlet temperature 588 K through the test section is generated by first pressurizing
the blowdown vessel with argon gas, opening the sodium control valves at the inlet to the test section, and at the same time venting the receiver vessel to atmosphere. The pump-coastdown flow transient is generated by depressurizing the blowdown vessel through a valve and two nozzles, which can be preset by calibration procedures, to give the desired flow decay.

The pin power is maintained at 33 Kw until 3 heater pins fail or their power output varies 10% from the full 33 Kw at which time all pin power is terminated.

Full size wire wraps (0.0142cm O.D.) are on the interior pins and the pins on the one side of the bundle where the outside wall conditions are to be simulated. Small wire wraps (0.079 cm O.D.) and fillers (0.158 cm O.D.) are used on the pins and walls at the other two sides of the bundle where the interior part of the 61-pin bundle is to be simulated. This arrangement ensures that the power to flow ratio of each subchannel is the same as the corresponding subchannel in a 61-Pin hexagonal bundle. The thermal capacitance of the wall is minimized by using a thin wall of 0.5 mm thickness.

6.3.2 Numerical Simulation of OPERA-15 Pin

6.3.2.1 2-D Analysis of OPERA-15 Pin

A 2-D analysis is performed for the OPERA-15 Pin numerical simulation. As shown in Fig 6.16, the test section consists of five mesh zones in the radial direction.
Fig. 6.16: Geometry of OPERA-15 Pin Bundle
Twenty nine mesh zones in the axial direction are considered: 18 in the heated section (each 2") and 11 in the unheated section (each 2" for low 3 mesh zones and each 6" for the next 8 mesh zones).

Inlet and outlet boundaries are positioned at the outlet of the blowdown vessel and inlet of the receiver vessel, respectively. As the receiver vessel is connected to the atmosphere, the outlet pressure is set to be equal to one atmosphere over the transients. The inlet velocities measured in the experiment are used for the inlet boundary condition up to 9 seconds into the OPERA-15 Pin flow transients when boiling starts in the numerical simulation. After boiling the outlet pressure estimated by the figure of blowdown vessel depressurization given in Ref 101 is used for the outlet boundary condition. Uniform radial and axial power distributions, and constant Nusselt number for liquid heat conduction, Nu=22, are used.

6.3.2.2 Results

The results by the present code were obtained by using the pretest information package for the OPERA-15 Pin, which contains only experiment apparatus, test section description, and operating procedures. Therefore, it is interesting to compare predictions by the present code to experimental data (102) which were published later.

Boiling first starts at 9 seconds into transients in the hottest channel, compared to 9.4 seconds in the test.
Fig 6.17 illustrates one of the primary reasons for the prediction of this earlier boiling: temperature predicted by the present code is higher than data over transients.

Up to 2 seconds after boiling starts, flow coastdown is very slow. Figs 6.18 and 6.19 reveal the reason of this slow flow coastdown: it takes about 1.8 seconds for vapor to reach the outermost channel due to the large bundle size, large inlet hydraulic resistance, and large radial temperature gradients shown in Fig 6.11. In the test it was estimated that the sodium void progresses from the innermost channel to the outermost channel in about 1.5 seconds.

Rapid flow coastdown follows and flow reversal at the inlet occurs at 3.1 seconds from incipient boiling, compared to 2.6 seconds in the experiment. (See Fig 20) This delay of flow reversal is attributed to larger temperature drop laterally across the bundle in the computation which is 144 K at boiling inception, compared to 109 K in the experiment. Note that for all three experiments simulating the low flow/high power accidents, the W-7b', P3A, and OPERA-15 Pin, rapid flow coastdown occurred when the outmost channel reaches around saturation temperature and vapor production in some cells of the outmost channel takes place instead of vapor condensation.

The outlet flow is almost constant up to 3.2 seconds when vapor reaches the end of the test section. Afterwards, the outlet flow rapidly drops due to high void fraction at the end of the test section, but never becomes the negative
Fig. 6.17: Comparison of Temperature Transients of OPERA-15 Pin with Pretest Predictions by THERMIT-6S at 35.5" (above fuel bottom) in Innermost and Outermost Channels
Fig. 6.18: Axial Void Profile in Innermost Channel Predicted by THERMIT-6S for the OPERA-15 Pin Test
Fig. 6.19: Axial Void Profile in Outermost Channel Predicted by THERMIT-6S for the OPERA-15 Pin Test
Fig. 6.20: Comparison of Flow Transients of OPERA-15 Pin with Pretest Predictions by THERMIT-6S

- $X-X$ Inlet flows by THERMIT-6S
- $O-O$ Outlet flows by THERMIT-6S
- $-$ Data of inlet flow

Incipient boiling time in the test
Predicted incipient boiling time

Time into transients (sec)
flow because the interfacial force by high vapor velocities drags the liquid along.

Within 0.05 seconds after flow reversal, dryout is predicted. However, the occurrence of dryout in the experiment was substantially delayed; elapsed time from inlet flow reversal to dryout is around 2 seconds. In the computation liquid reentry occurs at 0.14 seconds after flow reversal and is followed by inlet flow oscillation of which the frequency is 3.5 cycles/sec, compared to 2 cycles/sec in the experiment.

6.4 THORS

During certain postulated loss-of-pipe-integrity transients in a loop-type liquid-metal fast breeder reactor (LMFBR), the flow-power mismatch, even with reactor scram, may be conducive to boiling conditions of several seconds duration in the reactor core. Experimental and analytical studies of sodium boiling in an electrically heated 19-pin simulated fuel assembly have been made at the Oak Ridge National Laboratory (ORNL) to investigate the extent of boiling stability at the low flow/low power transient condition.

6.4.1 Test Apparatus and Procedures

The THORS Bundle 6A experiments (40) were performed in 1978 at ORNL. The test section used was a full-length simulated LMFBR fuel assembly. It consists of 19
electrically heated pins. The bundle hexcan is a 0.02" thick 316 stainless steel backed by 1" of Marimet insulation contained in a stainless steel jacket.

Early in the test program, a comparison of experimental duct-wall temperatures with analytical predictions indicated higher values for hexcan thermal inertia than anticipated, and it was suggested that some sodium leakage into the insulation may have occurred. Posttest examination revealed that sodium had indeed penetrated the entire region.

The heated length of Bundle 6A is 36" with variable pitch heater windings to produce a 1.3 axial peak-to-mean chopped-cosine power distribution. The core inside the winding and the insulation between the winding and the type 316 stainless steel sheath is of compacted boron nitride. Downstream of the heated length, a nickel reflector and a simulated fission-gas plenum have the same length and thermal inertia as a FFTF fuel assembly.

The test-section inlet value was set to simulate the nominal-flow pressure drop of the reactor inlet configuration. The test-section sodium inlet temperature was set at 730 F. For each run, at a specified constant bundle power, a sodium flow was established to give a test-section bulk outlet temperature of 1300 F.

The test 72B, run 101 is selected for the numerical simulation because predictions by SAS-3A for this test are available in Ref 40. This test was a dryout run with the power 10.0 kw/pin. Before flow reduction began at 3
seconds, the flow was about 9.3 gpm (0.58 l/s) and the flow was reduced up to 3.7 gpm (0.23 l/s). Incipient boiling occurred at 12 seconds and afterwards, stable boiling lasted until 22 seconds, when a period of dryout and rewet began. At 30 seconds, permanent dryout began and power was cut at 31.5 seconds.

6.4.2 Numerical Simulation of the test 72B, run 101

6.4.2.1 2-D Analysis of the test 72B, run 101

A 2-D analysis of THORS was performed, with the test section divided in the same way as the W-7b' analysis. Inlet and outlet boundaries are positioned at the inlet and outlet of the test section because the inlet and outlet pressures of the test section were measured and kept constant after boiling. Up to 12 seconds into transients, when boiling started, the velocity-pressure boundary condition is used. After boiling the pressure-pressure boundary condition is used and the inlet and outlet pressures are kept at a constant value which gives the same mass flow rate as the experimental value at 12 seconds. The 1.3 axial peak-to-mean chopped-cosine power distribution, uniform radial power distribution, and constant Nusselt number for liquid heat conduction, Nu=22, are used. The properties of Marimet insulation degraded by leakage of sodium, which were estimated in Ref 40 by assuming that all the void space was full of sodium, are used. (Refer to Appendix B)
6.4.2.2 Results

Strong radial temperature gradients in the test are evident in Fig 6.21. The temperature difference between the centerline and periphery of the bundle is almost 160 K just before boiling. On the other hand, milder radial temperature gradients are predicted by the present code as shown in Fig 6.21. One of the plausible explanation on this discrepancy is the use of a high Nusselt number for the liquid conduction model. The Nusselt number 22 was obtained by comparison to a steady state experiment with high liquid velocity (99). As the test 72 B, run 101 is a low flow transient, it is expected that turbulent contribution on the effective liquid conduction will be reduced. In Fig 6.22, the predictions are in good agreement with the data inspite of the strong radial temperature gradients, because the temperature difference between the predictions and the data in the intermediate channel is relatively small, compared to that in the outermost and innermost channels.

This mild predicted radial temperature gradient can be one of the reasons for the 1.5 second delay of incipient boiling. Strong radial temperature gradients highly influence the prediction of incipient boiling time for 1-D simulation as explained in Section 6.1.2.2. Actually SAS-3A, with 100% of structure heat capacities which implies that all the void space in the Marimet insulation was filled with liquid sodium, predicted that boiling and dryout inceptions were delayed 11 seconds and 24-26 seconds,
Fig. 6.21: Temperature vs. Radius with Time as a Parameter at $Z = 33''$ (test 72B, run 101 of THORS)
Comparison between Predictions by THERMIT-6S and Temperature Data at 11" (from the bottom of the fuel) in the Intermediate Channel for the test 72B, run 101 of THORPS.
respectively. With 0% of structure heat capacities SAS-3A was satisfactory in predicting boiling inception.

In the initial stage of boiling, large inlet flow oscillation in the test takes place due to large superheat and low inlet hydraulic resistance. Unlike in-pile experiments which have a source such as fuel to provide enough non-condensible gas for nucleation of boiling, out-of-pile experiments such as THORS are likely to have little non-condensible gas and as a result, large superheat is possible in out-of-pile experiments. As no superheat for incipient boiling in the present analysis is assumed, Fig 6.23 shows the small amplitude of inlet flow oscillation in the initial stage of boiling. Figs 6.23 and 6.24 present approximate boundaries of the inlet mass flow rate in the experiment because of a difficulty in reading data. The SAS-3A predicted much larger oscillation than the present code does.

While dryout in low flow/high power accidents such as the W-7b', P3A, and OPERA-15 Pin occurred immediately after flow reversal, dryout in the test 72 B, run 101 occurred after 3 seconds from flow reversal. (see Fig 6.25) Another distinctive characteristic of the test 72 B, run 101 is the periodical occurrence of dryout and rewet over the whole bundle. (See Figs 6.21, 6.25, and 6.26) In low flow/high power accidents this phenomenon did not occur or lasted for a very short time.
Fig. 6.23: Comparison between Inlet Flow Data and Predictions by THERMIT-6S for the Test 72B, Run 101 of THORS
Fig. 6.24: Comparison between Inlet Flow Data and Predictions by SAS-3A for the Test 72B, Run 101 of THORS
Fig. 6.25: Axial Void Profile in the Innermost Channel Predicted by THERMIT-6S for the Test 72B, Run 101 of THORS
Fig. 6.26: Axial Void Profile in the Outermost Channel Predicted by THERMIT-6S for the Test 72B, Run 101 of THORS
6.5 Sensitivity Analysis

The sensitivity analysis reported here is done for the W-7b' simulation.

6.5.1 Interfacial Mass and Energy Exchange Models

For comparison with the present mass exchange model, described in Section 5.2.4, the equilibrium model and kinetic model are considered. The kinetic model is the model adopted in NATOF-2D based on a simple kinetic theory with the condensation coefficient set to unity.

The equilibrium model assumes that there is no temperature difference between vapor and liquid. With an infinite heat transfer coefficient assumed in THERMIT (17), both vapor and liquid are forced to have the saturation temperature. While the liquid film at a saturated boiling zone is in reality at a superheated state, in the equilibrium model it is always at a saturated state. Therefore, the superheat energy contained in the liquid film has to be transferred to vapor by mass exchange to achieve the saturation state. Note that mass exchange is driven by the difference between liquid and saturation temperatures. Then in the heated section with high heat flux, or high temperature gradient in the liquid film, the equilibrium model predicts higher mass exchange rates. Also all vapor transferred from the saturated region to the subcooled region will be condensed. The kinetic model produces almost the same results as the equilibrium model.
As a result, the equilibrium model and kinetic model predict higher condensation and evaporation rates than the present model, which allows a nonequilibrium state between vapor and liquid. (See Fig 5.10) These larger condensation and evaporation rates induce greater pressure fluctuation which may cause failure of convergence of the Newton iteration. As expected, severe numerical difficulties are encountered; calculation with both the homogeneous and kinetic models stopped within 0.1 seconds after incipient boiling due to failure of convergence of the Newton iteration.

6.5.2 Interfacial Momentum Exchange Models

The present model described in Section 5.2.4 is compared with the homogeneous model and the Autruffe model which was implemented in the old version of THERMIT. In the homogeneous model vapor and liquid velocities are forced to be equal by an infinite momentum exchange. The Autruffe model was developed with data obtained in annular flow with large amount of droplets and this included the interfacial momentum exchange by both the liquid film and droplets. As a result, his model predicts much larger drag coefficients than the present model does.

The larger interfacial drag force, the more vapor will be trapped in the cells. Therefore, the homogeneous model predicts the largest void fraction as seen in Fig 6.27. Notice that the homogeneous and Autruffe models predict the
Fig. 6.27: Comparison of Void Fraction in the Last Cell of Heated Section Predicted with Various Interfacial Momentum Exchange Models
occurrence of dryout before flow reversal. Also this more trapped vapor causes larger pressure build-up in channels, and in turn more rapid flow coastdown and earlier flow reversal. This large void fraction drives vapor and liquid to have large velocities. (See 6.28) Also the large velocities dramatically reduce time step sizes and increase CPU time as illustrated in Fig 6.29. The computation with the homogeneous model stopped at around 0.7 seconds due to failure of convergence of the Newton iteration.

6.5.3 Boundary Positions

Let us investigate the importance of selecting boundary positions by comparing inlet flow rates of W-7b' predicted with two choices of boundary positions: the inlet and outlet of the test section (called A boundary) and the boundary positions shown in Fig 6.1 (called B boundary). In both cases the pressure drops between the inlet and outlet boundaries are set to give the same inlet mass flow rate as the experimental value at 1.5 seconds and kept constant up to 3.5 seconds. In the B boundary case the hydraulic resistances between the inlet boundary and inlet of the test section, and between the outlet of the test section and outlet boundary are estimated by the valve model described in Appendix D.

In the B boundary case flow coastdown decreases pressure drops between the inlet boundary and inlet of the test section and between the outlet of the test section and
Fig. 6.28: Comparison of Vapor and Liquid Velocities Predicted at the Last Cell of the Heated Section with Various Interfacial Momentum Exchange Relations

- Homogeneous Model
- △-△: Vapor Velocities by Autruffe Correlation
- Δ-Δ: Liquid Velocities by Autruffe Correlation
- ---: Vapor Velocities by the Present Model
- o-o: Liquid Velocities by the Present Model
Fig. 6.29: Comparison of CPU Time for the W-7b' Test Using the MULTICS Computer
outlet boundary. As a result, flow reduction increases pressure at the inlet of the heated section but decreases pressure at the outlet of the heated section, while the inlet and outlet pressures in the A boundary case are kept constant. This increase in the pressure drop between the inlet and outlet of the test section substantially retards flow reversal as shown in Fig 6.30.

6.5.4 Normalization of Heat Source

In order to partition the total power $Q(t)$ into each mesh in the fuel rods, the volumetric heat generation rate q'' in THERMIT is obtained by using the following equation

$$q'''(i, j, k) = Q(t) \frac{q_z(j) q_t(i) q_r(k)}{N_z N_t N_r}$$ (6.1)

where q_z, q_t, and q_r: axial and transverse power distribution in the reactor, and radial power distribution within a fuel rod

N_z, N_t and N_r: normalization factors

$$N_z = \sum_j q_z(j) \ dz(j + 1)$$
$$N_t = \sum_i q_t(i) \ rn(i)$$ (6.2)
$$N_r = \sum_k q_r(k) \ a(k)$$

$dz, rn, and a$ in Eq (6.2) are mesh spacing of j+1' th cell in the z direction, number of fuel rods in the i’th channel,
Fig. 6.30: Comparison between Inlet Flow Data and Predictions for A Boundary and B Boundary
and horizontal plane cross-sectional area of the k'th mesh cell in the fuel rod, respectively.

The assumption involved in Eq (6.1) is that all fuels at the same positions have the same geometry, that is, the same thickness of cladding, gap distance and radius of the center fuel void region. The actual geometry of fuels is different. Therefore, the general normalization of heat source described in Appendix E is needed.

Let us investigate the importance of this general normalization by comparing it (called as Case A) with Eq (6.1) (called as Case B). The W-7b' test, in which several gap distances were used, is selected for comparison between Case A and Case B. In the real geometry of the W-7b' test, gap distances and radii of center fuel void were 0.05588 mm and 0.8763 mm for the center fuel, and 0.07974 mm and 0.0 mm for seven fuels in the second ring, respectively. In Case B, 0.07974 mm for the uniform gap distance and 0.0 mm for the uniform radius of center fuel void are used for all channels. On the other hand, we can take different gap distances and radii of center fuel void for different channels in Case A; 0.05588 mm and 0.8763 mm in the innermost channel, and 0.07974 mm and 0.0 mm in the intermediate channel. Then the wall heat flux for both cases at the same positions are different due to the different volumes of fuel. Fig 6.31 verifies the above explanation; Case B has the larger amount of fuel and higher heat flux than Case A does.
Fig. 6.31: Comparison of Temperature and the Rate of Wall Heat Transfer in the Last Cell of the Innermost Channel for Case A and Case B of Power Normalization
Also as expected, the centerline fuel temperature with the larger gap distance is higher by about 400 K than that with the smaller gap distance. (Fig 6.32) The wall heat flux of the last cell of the heated section in the innermost channel for Case B is higher than that for Case A. As a result, Case B predicts higher fluid temperature and earlier boiling inception.
Fig. 6.32: Comparison between Centerline Fuel Temperature Data in the Last Cell of Innermost Channel and Predictions for Case A and Case B of Power Normalization
Chapter 7 SUMMARY AND RECOMMENDATIONS

7.1 Summary

Review of previous work reveals the limitations of models involved in several codes which were designed for the analysis of sodium boiling in the LMFBR. These limitations can be attributed to the characteristics of sodium itself such as the high density ratio of liquid to vapor, and of the LMFBR such as the existence of the highly subcooled region, flow reversal, and sharp radial temperature gradients.

The high density ratio induces high slip between liquid and vapor and, as a result, eliminates the possibility of use of the homogeneous model which assumes no slip. The existence of highly subcooled region in the bundle of the LMFBR, where vapor is condensed, causes numerical difficulties due to large pressure fluctuations. Use of the equilibrium approach, in which vapor must be completely condensed in the subcooled region, enlarges pressure fluctuations and in turn numerical difficulties. Therefore, the non-equilibrium approach instead of the equilibrium approach is needed to represent the physical conditions. As correlations for slip in annular or reversed flow are not readily available, the slip model is difficult to apply.

Sharp radial temperature gradients and multi-dimensional voiding behavior lead us to favor the multi-dimensional model. The 3-D representation is chosen
because a 3-D model can be used to simulate 1-D or 2-D geometries.

According to the above brief review, the two-fluid 3-D model is more suitable for the analysis of sodium boiling in the LMFBR. The THERMIT code (17) is taken as the basic tool for the development of the two-fluid 3-D code due to its following features:

1. It is based on a two-fluid 3-D geometry
2. It has an advanced numerical scheme
3. It allows flexible boundary conditions

Although cylindrical \((r, \theta, z)\) coordinates are better fitted for the geometry of the hexagonal bundle of the LMFBR, rectangular \((x, y, z)\) coordinates are used for the present code due to the easy adoption of the original THERMIT code.

To investigate the main assumptions involved in the differential equations of THERMIT-6S, mathematically rigorous derivations of time-volume averaged conservation equations for the two-fluid model were done by starting from the integral general balance equation. It was found that THERMIT-6S includes all terms to dominantly contribute to the analysis of sodium boiling.

The THERMIT-6S differential equations were then discretized in the same way as THERMIT to obtain difference equations. Spatial discretization is characterized by a first-order spatial scheme, donor cell method, and staggered mesh layout. For time discretization, a first-order semi-implicit scheme treats implicitly sonic terms and terms
related to local phenomena, and treats explicitly convective terms. Therefore, the time step size in THERMIT-6S is limited by the convective limit:

$$\Delta t \leq \frac{\Delta z}{|v_z|_{\text{max}}}$$

The most important characteristic of the present difference equations lies in the treatment of coupling terms. Coupling between mesh cells at the new time level is through the pressure variable. Hence, we need only to solve the reduced pressure equations which form a $N \times N$ matrix (N is the total number of fluid cells) in 3-D, compared to a $10N \times 10N$ matrix of equations obtained by the ordinary implicit method. A crucial property of the reduced pressure problem is its diagonal dominance.

It is known that the typical two-fluid model such as THERMIT possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit and constitutes an ill-posed problem. To overcome these difficulties, a virtual mass term was studied here because the virtual mass represents real physical effects to accomplish dissipation for numerical stability. It was found that the virtual mass has a profound effect on the mathematical characteristic and numerical stability as well as a real physical effect. Quantitative bounds on the coefficients of the virtual mass terms in a model proposed by Drew et al. (33) were suggested for mathematical
hyperbolicity, numerical stability, and satisfaction of the thermodynamics second law.

For the closure of the conservation equations, the functions, which represent the transfer of mass, energy, or momentum at solid-fluid and vapor-liquid interfaces, must be explicitly expressed in terms of primary variables and properties. While the two-fluid model provides wider applicability and flexibility in the analysis of two-phase flow than other models do, its accuracy strongly depends on these constitutive equations.

The constitutive relations for pre-dryout were derived, based on two assumptions:

1. The exchange mechanism is dominantly controlled by local phenomena.
2. The cocurrent annular flow regime in two-phase flow of sodium is dominant on the scale of the subchannel.

These two assumptions lead to a simplified flow regime which facilitates not only developing physical models but also obtaining convergence of the Newton iteration. Significant obstacles to obtaining constitutive equations lie in discrepancies between data of different authors as well as limited experimental data available for two-phase flow of sodium. Here, the main reasons of these discrepancies were clarified and physical models were derived within the present capabilities, based on the above two assumptions.

By reviewing several publications on frictional pressure drop in the two-phase flow of liquid metals, it was found
that discrepancies between data of different authors become evident. The review indicates that the data can be divided into two groups, which are characterized by the flow pattern: pure annular or annular-dispersed flow. It is argued that the difference between the two groups is caused by the acceleration pressure drop of droplets, which was commonly neglected in the evaluation of the frictional pressure drop in annular-dispersed flow. While most of data for adiabatic annular flow fall between the Lockhart-Martinelli correlations for viscous-viscous and turbulent-turbulent flow, data for diabatic annular flow fall much below the Lockhart-Martinelli correlation for turbulent-turbulent flow.

Discrepancies between data of different authors have been reported due to boiling instability. Recently Zeigarnick and Litvinov provided data for wall heat transfer which were obtained with complete boiling stability. Their data were used to validate wall heat transfer coefficients for both boiling and condensation in the forced convective flow of sodium. The wall heat transfer coefficient in two-phase flow was derived by using momentum-heat transfer analogy and logarithmic law for velocity distribution in the liquid film. Only one constant in the logarithmic form needs to be empirically determined. The results from the suggested correlation were found to be in good agreement with their data over a broad range of parameters. The proposed correlation predicts higher heat transfer
coefficients than previous correlations do.

Two control mechanisms, "vapor supply" and "latent heat transport", were proposed for the models of mass and energy exchange. The rate of exchange was assumed to be controlled by whichever mechanism yields smaller values. The former mechanism is described by a simple kinectic theory approach. The turbulent flux model is taken as the basis for a model of the latter mechanism. A modified mixing theory is introduced to account for the energy losses of eddies. When the bulk liquid temperature calculated according to the proposed model was compared with analytically predicted values, they were found to be in close agreement. In a comparison of the void volume in a 19 pin bundle as a function of time, calculational results fall around experimental results until release of fission gas into the sodium vapor from the pins occurred in the test.

A one-dimensional steady-state model was developed for vertical upward annular-dispersed flow to account for momentum transfer by droplets. It was shown that results obtained from the suggested model fall near the Wallis correlation and the Moeck correlation which were derived from air-water data.

Pre-dryout predictions by the present code were generally in good agreement with data. Discrepancies between data and predictions emerge after dryout. The higher frequency and larger amplitude of flow oscillation than data were predicted. Actually, the present physical models for
post-dryout are highly questionable because they have been derived by a simple extension of liquid film models for pre-dryout. Therefore, development of physical models for post-dryout is recommended.

A code assessment was performed to determine how well the code can simulate the physical process measured in experiments and to assess the code's capability. The capability of the present code is restricted by the followings:

1. The validation range of constitutive equations implemented in the code -- Most of the constitutive equations for two-phase flow are derived, based on the forced convective annular flow. Though it is questionable whether these constitutive equations can be applied to natural convection flow, it is expected that the differences in the local processes between two-phase flow under natural convection and forced convection may be much smaller than those in single phase flow.

2. No fuel melting model -- The code can be applied to predictions of phenomena before fuel melting.

3. A component code -- However, a loop simulation is possible, if the code is slightly modified.

The W-7b' (in-pile 19 pin bundle), P3A (in-pile 37 pin bundle), and OPERA-15 Pin (out-of-pile simulator of 61 bundle) were chosen for the numerical simulation of low flow/high power accidents. These three numerical simulations present a series of following physical
phenomena:

1. After incipient boiling rapid vapor production in the saturated region occurs due to high power and the high density ratio, and vapor is transferred radially and axially from the saturated region to the subcooled region. Strong cross flow caused by rise in pressure in inner cells reduces pressure build-up. As a result, mild flow coastdown in the initial stage of boiling occurs.

2. When fluid in the outermost channel reaches saturation temperature, vapor expulsion and rapid pressure build-up take place. Flow coastdown is accelerated by these sharp increases in vapor generation and pressure.

3. Rapid flow coastdown leads to flow reversal. From this time on voiding of the rest of the bundle proceeds rapidly, with the whole bundle indicating a single channel response.

4. In a short time after flow reversal, dryout occurs. It turns out that the incidence of flow reversal is the most important single factor in the occurrence of dryout in the low flow/high power accidents. Dryout dramatically reduces wall heat transfer coefficients and sharp rise in the cladding temperature takes place. Then, vapor is rapidly accelerated due to high void fraction, and this high vapor velocity reduces time step sizes and in turn increases CPU time.

5. Liquid reentry occurs in a short time after flow
reversal, followed by inlet flow oscillation. The higher frequency and larger amplitude of the flow oscillation than data are predicted.

For the numerical simulation of low flow/low power accidents, the test 72B, run 101 of THORS was chosen. The distinctive characteristics of this type accidents are as follows:

1. While dryout in the low flow/high power accidents was predicted to occur immediately after flow reversal, dryout in THORS was significantly delayed.

2. The periodical dryout and rewet over the whole bundle occurred for a long time until a sustained dryout began.

Comparison between 1-D and 2-D analysis performed by the present code reveals the following facts:

1. Incipient boiling in 1-D analysis can be substantially delayed when experiments with steep radial temperature gradients are simulated.

2. 1-D analysis predicts more rapid flow coastdown than 2-D analysis does. While in 1-D analysis, there is no room to condense vapor transferred in the r direction, strong cross flow caused by rise in pressure in inner cells in 2-D analysis reduces pressure build-up.

Sensitivity analysis confirms the review of the limitations of the models described at the beginning of this chapter. Severe numerical difficulties in the equilibrium model were encountered; calculation stopped within 0.1 seconds after incipient boiling due to failure of convergence of the
Newton iteration. The homogeneous model predicts higher void fraction and larger pressure build-up, and as a result, earlier dryout and flow reversal than the present model does.

7.2 Recommendations

Based on the present experience, the following recommendations for future work are made:

1. The development of a loop simulation capability is recommended to account for the effect of a loop system and to obtain accurate boundary conditions. As shown in Section 6.5.3, boundary conditions have great effects on flow transients. As the code is originally designed to be applicable to a component system, boundary values have to be provided by data or estimation. Since few experiments measured the inlet and outlet pressures of the test section, rough estimation by iteration was usually needed, which leaves uncertainties in the boundary values. To eliminate these uncertainties, a simple loop model is needed to account for the loop hydraulic resistance, including a simple pump model for pump trip.

2. Development of an advanced numerical scheme is recommended to reduce CPU time. After dryout vapor is rapidly accelerated due to high void fraction. As time step sizes are limited by the convective stability condition, this high vapor velocity (more than 100 m/sec)
dramatically reduces time step sizes (often less than 10^{-3} seconds) and in turn increases CPU time. Moreover, if we consider a multidimensional effect on the control of time step sizes for numerical stability, time step sizes will be reduced up to 10^{-4} seconds, which is totally unacceptable. Therefore, unless an advanced numerical scheme is developed, the capability of the present code is limited to a few second predictions after dryout. Studies of the two-step method or fully implicit method are suggested.

3. The present physical models for post-dryout are highly questionable. They are based on the liquid film models which were developed for pre-dryout. However, when the wall is hot enough, there is little liquid left on the wall. Then, droplets would play an important role in transferring mass, momentum, and energy. Moreover, the region and duration of post-dryout are large enough to affect flow behavior. Therefore, development of physical models for post-dryout is recommended. Because there are little data for post-dryout, it is inevitable that physical model for the LWR would be used, based on analogy of dryout mechanisms between water and sodium.

4. The liquid conduction model is important in predicting accurate radial temperature gradients, incipient boiling time, and flow reversal time. A constant Nusselt number, which was obtained from a high flow test, was used for liquid radial conduction. In the numerical simulation of
THORS, which are low flow experiments, milder radial temperature gradients than the data were predicted due to use of the high Nusselt number. Therefore, a study of an improved liquid conduction model is recommended to account for effects of various flow variables on liquid conduction.
References

of Standards, Boulder, Colorado (1965)

34. H. Lamb, Hydrodynamics, Dover, New York (1945)

Annual Meeting of ASME, Chicago, Illinois (Nov. 1980)

66. L.Z. Prandtl, Physik, , 1072 (1910)

68. TH. von Karmann, Trans. ASME, 61, p. 705 (1939)

Thermophysical Properties, Nauka, Moscow (1968)

Scotland (1961).

109. R.S. Brokaw, "Alignment Charts for Transport Properties, Viscosity, Thermal Conductivity, and Diffusion Coefficients for Nonpolar Gases and Gas Mixtures at Low

Appendix A CONDUCTION MODELS

A.1 Fuel Conduction Model

The fuel conduction model in THERMIT-6S is based on the water version THERMIT (17). Only radial heat conduction is considered:

\[\rho C_p \frac{\partial T}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = q'''' \]
(A.1)

The fuel and clad are divided into mesh cells and one cell is assumed for the gap. Fuel temperatures are located at the boundaries of mesh cells, designated by the subscript \(k \). Fuel pin properties are evaluated in the center of mesh cells denoted by the subscript \(k + \frac{1}{2} \). The spatial differencing of Eq. (A.1) is obtained by integrating the equation between the centers of two adjacent mesh cells:

\[\int_{r_k^{-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} \left[\rho C_p \frac{\partial T}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \right] dr = \int_{r_k^{-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} q'''' r dr \]
(A.2)

The terms in Eq (A.2) can be approximated as follows:

\[\int_{r_k^{-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} \rho C_p \frac{\partial T}{\partial t} dr = \left[\frac{r_k^2 - r_k^{-\frac{1}{2}}}{2} \langle \rho C_p \rangle_{k^{-\frac{1}{2}}} + \frac{r_{k+\frac{1}{2}}^2 - r_k^2}{2} \langle \rho C_p \rangle_{k+\frac{1}{2}} \right] \frac{\partial T_k}{\partial t} \]
(A.3)

\[\int_{r_k^{-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) dr = (rk)_{k+\frac{1}{2}} \frac{T_{k+1} - T_k}{r_{k+1} - r_k} - (rk)_{k^{-\frac{1}{2}}} \frac{T_k - T_{k-1}}{r_k - r_{k-1}} \]
(A.4)

\[\int_{r_k^{-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} q'''' dr = \frac{r_k^2 - r_k^{-\frac{1}{2}}}{2} \langle q'''' \rangle_{k^{-\frac{1}{2}}} + \frac{r_{k+\frac{1}{2}}^2 - r_k^2}{2} \langle q'''' \rangle_{k+\frac{1}{2}} \]
(A.5)
There are four positions to require boundary conditions. For the center of the fuel pin, Eq (A.2) is integrated from $r=r_k =0$ to $r=r_l$ and the resulting equation is:

$$<\rho C_p>_{l_{1}} \frac{r_{1}^{2}}{8} \frac{r_{l}^{2}}{2} \frac{T_{n+1}^{l} - T_{l}^{n}}{\Delta t} - \frac{k_{l_{1}}^{2}}{2} \frac{r_{l}^{2}}{2} (T_{n+1}^{l} - T_{l}^{n}) = q_{l_{1}}^{n} \frac{r_{l}^{2}}{8} (A.6)$$

For the aroundner and outer surface around the gap, the term k is related to the gap heat transfer coefficient h_{gap} as follows:

$$k_{k-k} = h_{gap} \cdot d_{gap} \quad (A.7)$$

$$k_{k+k} = h_{gap} \cdot d_{gap} \quad (A.8)$$

where d_{gap} is the gap width.

For the clad outer surface node, Eq (A.2) is integrated from $r=r_{N-k}$ to $r=r_{N}$ =outside fuel pin radius, and introducing the clad surface heat flux q_{w} we obtain the equation

$$<\rho C_p>_{N-k} \frac{r_{2}^{2}-r_{N-k}^{2}}{2} \frac{(T_{n+1}^{N} - T_{N}^{n})}{\Delta t} + \frac{r_{N}^{N}}{r_{N}^{N} - r_{N-k}^{N}} \frac{r_{N}^{2}}{2} (T_{n+1}^{N} - T_{N}^{n})$$

$$+ q_{w}^{n} r_{N} = q_{w}^{n} \frac{r_{2}^{2}-r_{N-k}^{2}}{2} (A.9)$$

where

$$q_{w}^{n} = h_{l}^{n} (T_{n+1}^{l} - T_{l}^{n+1}) + h_{v}^{n} (T_{n+1}^{v} - T_{v}^{n+1}) \quad (A.10)$$

T_{l} and T_{v}: liquid and vapor temperature

h_{l} and h_{v}: liquid and vapor heat transfer coefficient
The fully implicit difference scheme used for the fuel conduction model was proven to be unconditionally stable. In this way we ensure that a time step determined by the convective stability condition will not cause any stability problem for the fuel conduction solutions. As in the fuel conduction equations the temperature at a cell k is coupled with its neighbors $k+1$ and $k-1$, the fuel conduction equations must be solved simultaneously or iteratively. Both T_w and T_f in Eq (A.10) are treated implicitly in order to overcome the plausible large oscillation of fluid temperature. Since solving for T_f^{n+1} in the fluid equations requires information about wall heat flux, the fluid equations are coupled with the fuel conduction equations. The overall solution procedure for T_w and T_f is as follows:

1. Calculate h^n using wall and fluid properties at the previous time.

2. With the assumption $T_f^{n+1} = T_f^n$, find a first guess $T_w^{n+1,0}$ for T_w^{n+1} and the variation of $\frac{\partial T_w^{n+1}}{\partial T_f^n}$ by the forward elimination of the rod conduction problem.

3. Solve the fluid equations using

$$q_w^n = h^n (T_w^{n+1,0} - T_f^n) + h^n \left(\frac{\partial T_w^{n+1}}{\partial T_f^n} \right) (T_f^{n+1} - T_f^n) \quad (A.11)$$

and find T_f^{n+1}
4. Set

\[T_{n+1} = T_{n+1,0} + \frac{\partial T_{n+1}}{\partial T_f} (T_f^n - T_f) \] (A.12)

and compute the backward substitution of the rod conduction problem to get the remaining new rod temperatures.

As we obtain Eq (A.10) by putting Eqs (A.11) and (A.12) together, this procedure does not contain any approximation. For a detailed description of this procedure refer to Ref. 17.

A.2 Structural Conduction Model

Unlike PWR systems the radial heat loss to the structure surrounding the system in the LMFBR may be significant. The primary reasons for this difference lie in the larger thermal conductivity of sodium, steeper radial temperature profile, and presence of a can in the LMFBR. The model employed for structural conduction is based on the fuel conduction model, but geometrical transformation is needed to keep the same volume. Figure A.1 shows the transformed structure from Fig. A.2. The hex can is transformed into an annulus, and sodium in the fluid channels contacting the hex can is formed to an imaginary annulus. The inner radius of the sodium annulus is determined by setting the cross-sectional area of the annulus equal to the sum of the cross-sectional area of
Fig. A.1: THERMIT Model of Hex Can with Associated Structure
Fig. A.2: Hex Can with Associated Structure
sodium in each of the fluid cells adjacent to the structure.

The heat flux on the outer boundary, q''_{out}, will be

$$q''_{out} = h_{out} (T_{\infty} - T_{w out}) \quad (A.13)$$

where T_{∞}: constant temperature outside the structure

$T_{w out}$: temperature at the outer boundary of the structure

If an adiabatic condition at the outer wall is desired, h_{out} is set as the zero value. For the inner boundary condition, the Dwyer correlation (103), which was developed for liquid sodium flowing in an annulus, is used.

$$Nu = A + C \Psi Pe^\beta, \quad (A.14)$$

where

$A = 5.54 + 0.023 r_{12}$

$C = 0.0189 + 0.00316 r_{12} + 0.0000867 r_{12}^2$

$\beta = 0.758 \Psi^{-0.0204}$

$r_{12} = r_2/r_1$

r_1 and r_2: inner and outer radius of sodium annulus

Ψ is assumed to be 1.0.

The heat flux on the inner boundary of the structure can be calculated as follows:

$$q''_{in} = Nu \frac{k}{D_e} (T_{sodium} - T_{w in}) \quad (A.15)$$
where D_e: equivalent diameter of sodium annulus
T_{sodium} and T_{win}: temperature in the sodium annulus
and temperature at the inner boundary of the structure

This completes the list of boundary conditions necessary to
solve the radial heat conduction equation which is described
in the fuel conduction model.

The original model (45) assumes that there is no heat
transfer between the structure and fluid, if vapor exists in
cells contacting the structure. However, as it takes
considerable time for the cells contacting the structure to
reach dryout after vapor appears in the cells, the
significant amount of energy can be transferred to the
structure. After dryout little energy exchange between the
structure and fluid may occur. Therefore, Eq (A.14) is used
in the single phase region. As Eq (A.14) is valid only in
the single phase region, the correlation for the wall heat
transfer coefficient in two-phase flows, which is described
in Section 5.2.3, is used to account for the effect of
two-phase flow. In the post-dryout region ($\alpha > 0.957$), it
is assumed that there is no heat transfer between the
structure and fluid. The primary reason of this assumption
comes from the experience that there is an instability of
liquid temperature. This instability of liquid temperature
induces the instabilities of structure heat flux and vapor
temperature and at last significant pressure oscillation,
which result in numerical problems. These instabilities are
cased by the small heat capacity of fluid after dryout and
use of fluid temperature at the old time for the evaluation of the heat flux on the inner boundary of the structure. Moreover, for liquid metal, as the heat transfer coefficient is so large, these instabilities are understandable. Also as an attempt to include the T_{sodium} term implicitly would couple the fluid cells to each other through temperatures, the above assumption is adopted.

A.3 Fluid Conduction Model

In a bundle of LMFBR, a non-flat radial temperature profile exists in steady state conditions and the gradient of radial temperature profile sharply increases with time in flow transients. This steep radial temperature profile will affect the initiating time of boiling, two-dimensional voiding behavior, flow reversal, and dryout. This radial temperature profile is primarily controlled by energy exchange between channels. Especially for liquid sodium, where its thermal conductivity is two orders of magnitude greater than that of water, conduction effects cannot be ignored. The conduction effects can be represented by the term $\nabla \cdot \alpha_k <\overline{q}_k + \overline{q}_k^t>$ in Eq (2.73). This term includes energy exchange by both molecular and turbulent conductions. Two options have been developed in THERMIT-6S for the inclusion of heat conduction between adjacent fluid channels: fully explicit formulation and partially implicit formulation. Three assumptions made for these two options are as follows:
1. The conduction effects between vapor and vapor, or liquid and vapor are negligible. This is justified, because the thermal conductivity of vapor sodium is three orders of magnitude lower than that of liquid sodium.

2. Only radial conduction is incorporated in the code now, though the model permits the inclusion of axial conduction if desired. Only in case of extremely low flow will axial conduction become significant. For the Clinch River Breeder Reactor the velocity in the core should be reduced by at least three orders of magnitude before axial conduction effects become as large as 2% of the amount of energy transferred by convection (104).

3. The effective Nusselt number for conduction is constant throughout transients. In order to obtain a practical value for the effective Nusselt number for radial heat conduction, the Westinghouse Blanket Heat Transfer Test Program (105) was numerically simulated with NATOF-2D by Zielinske (99). The heat transfer test section is a mockup of a LMFBR blanket assembly containing 61 rods in a hexagonal duct. From this experiment, the recommended value for the effective Nusselt number is 22.

A.3.1 Fully Explicit Formulation

The net rate of heat flow into a given fluid cell is expressed as the sum of the heat flows from each of the four
sides. For the configuration of Fig A.3.

\[q_{T}^{n+1} = q_{1-0}^{n+1} + q_{2-0}^{n+1} + q_{3-0}^{n+1} + q_{4-0}^{n+1} \]
(A.16)

where \[q_{1-0}^{n+1} = A_{1-0}^n h_{1-0}^n (T_{L1}^n - T_{L0}^n) \]
(A.17)

\(q_T \): total heat flow into channel 0
\(q_{1-0} \): heat flow from channel 1 to channel 0
\(A_{1-0} \): heat flow area between channel 1 and 0
\(h_{1-0} \): effective conduction heat transfer coefficient between channels 1 and 0
\(T_{L1} \) and \(T_{L0} \): liquid temperature in channels 1 and 0, respectively.

As heat flow entirely depends on quantities evaluated at the previous time \(n \), this method is called the fully explicit formulation.

After boiling the liquid contact area between channels will be reduced. To account for it in a simple way, \(A_{1-0} \) is multiplied by the average void fraction of channels 0 and 1. This satisfies the energy conservation (i.e. \(q_{1-0}^{n+1} = -q_{0-1}^{n+1} \)). Wilson's model (45) assumes that there is no conduction after boiling. This assumption results in a sudden reduction of energy transfer between channels after boiling, even though large liquid contact areas due to large mesh sizes and low void fraction exist in the initial stage of boiling.

In Eq (A.17) \(h_{1-0} \) can be expressed in terms of heat transfer coefficients within each channel, \(h_1 \) and \(h_0 \). By
Fig. A.3: Top View of Fluid Channels
the boundary condition

\[q_{i-0}^h = h_0(T_i - T_0) \]
\[= h_1(T_{i1} - T_i) \] (A.18)

where \(T_i \): interface temperature between two channels
To define \(h_0 \) and \(h_1 \), the constant Nusselt Number approximation is used

\[h_0 = \frac{Nu}{k_0/De_0} \]
\[h_1 = \frac{Nu}{k_1/De_1} \] (A.19)

where \(k \): thermal conductivity of sodium
\(D_e \): equivalent diameter

Combining Eqs (A.16) and (A.18) and rearranging the resulting, we have

\[h_{1-0}^h = \frac{h_1 h_0}{h_1 + h_0} \] (A.20)

These steps are repeated for each face of the channel.

The major advantages of the explicit method are shorter computer time and strict conservation of energy. However, this method introduces a stability limit on the time step
size.

\[\Delta t < \frac{(Ax)^2}{4\alpha} \quad (A.21) \]

where \(\alpha = k/\rho C_p \)

\[\Delta x = \text{radial mesh size} \]

The minimal radial mesh size can be the radial channel size. With typical values for \(k, \rho, \) and \(C_p \) (\(\Delta x = 6.3 \times 10^{-3} \) m, \(k = 67 \text{w/m} \cdot \text{K}, \) \(C_p = 1260 \text{J/kg} \cdot \text{K}, \) \(\rho = 800 \text{kg/m}^3 \)), \(\Delta t \) must be less than 0.6 seconds. In the W-1 Experiment this corresponds to 2.8% of the steady-state velocity. Surely boiling will occur at 2.8% of the steady-state velocity and in turn the time step size will be reduced due to the high velocity of vapor. Therefore, in most of cases we can use the fully explicit formulation without more reduction of the time step size.

A.3.2 Partially Implicit Formulation

The partially implicit formulation was developed at MIT by Andrei Schor (15) in order to overcome the stability problem introduced by the explicit method. Eq (A.17) can be modified as follows:

\[q_{1-0}^{n+1} = A_{1-0}^{n+1} h_{1-0}^{n} (T_{x1}^{n} - T_{x0}^{n+1}) \quad (A.22) \]
The primary reason to introduce this method instead of the fully implicit method is to avoid coupling of temperature of adjacent cells, which requires a new solution scheme and enormously increased computer time. When temperature in adjacent cells at the previous time is used like Eq (A.22), the decoupling of temperature can be achieved. It was proved that this method will not introduce the limitation of the time step size. The main drawback of this method is the lack of energy conservation, which can be serious in some conditions. Therefore, if a user assures that the time step size limited by convection is small enough than that by conduction throughout transients, use of the fully explicit formulation is recommended.
Appendix B PROPERTIES

B.1 Sodium Properties

The present version uses least squares polynomial fits derived from sodium properties correlations in ANL-RDP-72, ANL-RDP-74, and HEDL-TME-77-27, and the correlations presented in ANL-7323 (106) for liquid enthalpy, vapor conductivity and surface tension. All properties were converted in S.I. Units. These properties include the following approximation.

1. A perfect gas behavior for the vapor phase was assumed.

2. A constant sonic speed, 2100 m/sec was taken for the estimation of liquid compressibility.

3. The subcooled effect of liquid was neglected.

These approximations can be examined as follows. The equation of state for a real gas can be expressed in the following form:

\[
\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \ldots
\]

(B.1)

Stone et. al. fitted Eq (B.1) to their P-v-T data and obtained the following expressions for the coefficients with their average derivation of the equations from their
data, ± 0.26%.

\[B = -4.44734 \times 10^{-5} T \exp(15554.65/T) \text{ ft}^3/\text{mole} \]

\[C = 0.243388 \exp(2495.8/T) \]

\[D = -0.811895 \exp(31175/T) \]

With typical values in the accident analysis of the LMFBR the deviation of an ideal gas behavior from Eq (B.1) is less than \(10^{-3}\). In the same condition the percentage error introduced by the second approximation is less than \(10^{-4}\). The first and second assumptions produce tolerable errors which are less than average deviations of the equations from data.

In order to analyze the effect of the third assumption on liquid enthalpy, we use Maxwellian relationship.

\[
\text{dh}(T,P) = \left(\frac{\partial h}{\partial T} \right)_P dT + \left(\frac{\partial h}{\partial P} \right)_T dP
\]

\[
= C_p(T,P)dT + [v - T\left(\frac{\partial v}{\partial T} \right)_P]dP \quad (B.2)
\]

Integrating Eq (B.2) from the system pressure \(P\) to the saturation pressure \(P_{sat}\) corresponding the system temperature \(T\) and assuming that \([v - T\left(\frac{\partial v}{\partial T} \right)_P]\) is constant, we obtain the expression of the enthalpy of subcooled
liquid.

\[h(T,P) = h(T,P_{\text{sat}}) + \left[v-T \left(\frac{\partial v}{\partial T} \right)_P \right] (P-P_{\text{sat}}) \]

At \(T=661 \text{ K} \) and \(P=1.5 \text{ bar} \)

\[h(T,P) - h(T,P_{\text{sat}}) = 180 \text{ J/m}^3 \]

The percentage error introduced by the third assumption is less than \(10^{-3} \% \), which is much lower error than one standard deviation of data. It can be conclude that properties used in the present version represent well real properties.

Saturation Temperature

\[T_{\text{sat}} = \frac{683538}{-11484.6 + \sqrt{142665998.6 - 1.367076P}} \]

for \(0.73 < P < 2.2 \times 10^6 \)

Liquid Density

Among all correlations we have viewed for the liquid density, none shows a pressure dependence due to the negligible compressibility for the liquid phase. However, as described in Section 3.3, the diagonal dominance of the present numerical scheme in the single phase liquid region is provided by the compressibility of liquid. Therefore, a
term to represent the compressibility of liquid must be included in the correlation of the liquid density. In the present version a simple expression is used due to the inaccuracy of the estimation of liquid compressibility.

\[
\frac{\partial \rho}{\partial P} = \frac{1}{a^2}
\]

where \(a\) is the speed of sound which is taken, equal to 2,100 m/sea at 900 C.

Then we have the liquid density

\[
\rho_l = 1004.23 - 0.2139 \, T_l - 1.1046 \times 10^{-5} \, T_l^2 \\
+ 2.26 \times 10^{-7} \, P
\]

for \(550 < T_l < 1644.4\)

Vapor Density

For the vapor density the expression which gives the density in saturation conditions is used and a perfect gas behavior in the superheated zone is assumed.

\[
\rho_v = P \left(\frac{4144.4}{T_v} - 7.4461 + 1.3738 \times 10^{-2} \, T_v - 1.0834 \times 10^{-5} \, T_v^2 + 3.8903 \times 10^{-9} \, T_v^3 - 4.922 \times 10^{-13} \, T_v^4 \right)
\]

for \(T_v > 550\)

Internal Energies
The source of sodium properties gives only the expressions for the enthalpies. The internal energies can be calculated by the following equation

\[e = h - P / \rho \]

For the liquid enthalpy

\[h_\text{l} = -67507.5 + 1630.4 \ T_\text{l} - 0.41672 \ T_\text{l}^2 + 0.15427 \times 10^{-3} \ T_\text{l}^3 \]

for \(550 < T_\text{l} < 1644.4\)

For vapor enthalpy

\[h_\text{v} = h_\text{l} + 5.3139 \times 10^6 - 2.0296 \times 10^3 \ T_\text{v} + 1.0625 \ T_\text{v}^2 + 3.3163 \times 10^{-4} \ T_\text{v}^3 \]

for \(T_\text{v} > 550\)

Liquid Thermal Conductivity

\[k_\text{l} = 110.45 - 6.5112 \times 10^{-2} \ T_\text{l} + 1.543 \times 10^{-5} \ T_\text{l}^2 - 2.4617 \times 10^{-9} \ T_\text{l}^3 \]

for \(550 < T_\text{l} < 1250\)

Vapor Thermal Conductivity
\[k_v = 2.83662 \times 10^{-3} + T_a (6.88299 \times 10^{-5} - 1.67826 \times 10^{-8} T_a) \]

for \(360 < T_v < 1644 \),

where \(T_a = 1.8 T_v - 459.67 \)

Liquid Viscosity

\[\mu_l = 3.6522 \times 10^{-5} + \frac{2.8733 \times 10^4 - 45.6877 T_l + 0.16626 T_l^2}{T_l^4} \]

for \(550 < T_l < 1250 \)

Vapor Viscosity

\[\mu_v = 1.261 \times 10^{-5} + 6.085 \times 10^{-9} T_v \]

for \(360 < T_v < 1644 \)

Surface Tension

\[\sigma = 0.2067 \times 10^{-4} T_l + 0.027314 T_l^2 \]

for \(550 < T_l < 1644 \)

Liquid Specific Heat
\[C_{pl} = 1.6301 \times 10^3 - 0.83344 T_l + 4.6281 \times 10^{-4} T_l^2 \]

for \(373 < T_l < 1773\)

Vapor Specific Heat

\[C_{pv} = 0.5871 \times 10^3 - 0.83344 T_v + 4.6281 \times 10^{-4} T_v^2 \]

for \(873 < T_v < 1473\)

B.2 Properties of Fuel and Structure

1) \(\text{UO}_2 \) Fuel

The properties of \(\text{UO}_2 \) fuel based on Ref. (107) have been approximated by polynomial fits whose maximum errors are within one standard deviation in experimental data.

\[\rho C_p = F \left(1.78 \times 10^{-6} + 3.62 \times 10^3 T - 2.61 T^2 + 6.59 \times 10^{-4} T^3 \right) \]

\[k = P_f \left(10.8 - 8.84 \times 10^{-3} T + 2.25 \times 10^{-6} T^2 \right) \]

where \(P_f = 1 - (2.74 - 5.8 \times 10^{-4} T) (1 - F) \)

\(P \): porosity

\(F \): fraction of theoretical density

\(\rho, C_p, \) and \(k \): fuel density, capacity and conductivity

2) Mixed Oxide Fuel (\(\text{UO}_2\text{PuO}_2 \))
The following expressions come from Tang et. al.'s recommendation (108).

\[\rho = F (10.96 \times 10^3 F_{\text{uo}_2} + 11.45 \times 10^3 F_{\text{puo}_2}) \]

\[C_p = 196.6 + 0.2666 T - 1.834 \times 10^{-4} T^2 + 4.814 \times 10^{-8} T^3 \]

\[k = 113.3 \left(\frac{1-P_f}{0.78 + 0.02935T} \right) + 6.6 \times 10^{-13} T^3 \left(\frac{1-P_f}{1+P_f+10P_f^2} \right) \]

where \(F_{\text{uo}_2} \) and \(F_{\text{puo}_2} \) : mass fraction of \(\text{UO}_2 \) and \(\text{PuO}_2 \) in the fuel

3) Gap (Ref. 107)

The gap heat transfer coefficient is divided in three parts:

a) Open gap component, based on the conductivity of a mixture of four noble gases
b) Radiation component
c) Closed gap
d) Contribution from partial fuel-clad contact

The thermal conductivity equations of the individual gases are calculated as follows:

He : \(k_1 = 3.366 \times 10^{-3} T^{0.668} \)

Ar : \(k_2 = 3.421 \times 10^{-3} T^{0.701} \)

Zr : \(k_3 = 4.029 \times 10^{-5} T^{0.872} \)

Kr : \(k_4 = 4.726 \times 10^{-5} T^{0.923} \)
where T is the gas temperature.

The relationship for calculation the thermal conductivity of a monatomic gas mixture is based on the work of Brokaw (109).

$$k_{mix} = \frac{n}{1 + \sum_{j=1}^{n} \psi_{ij} \frac{x_j}{x_i}}$$

where

$$\psi_{ij} = \phi_{ij} \left[1 + 2.41 \frac{(x_i - x_j)(x_i - 0.142x_j)}{(x_i + x_j)^2} \right]$$

$$\phi_{ij} = \frac{\left[1 + \left(\frac{k_i}{k_j} \right)^{1/2} \left(\frac{x_i}{x_j} \right)^{1/4} \right]^2}{2^{3/2} (1 + x_i/x_j)^{1/2}}$$

n: number of components in mixture

M: Molecular weight

x: mole fraction

The thermal conductivity of the gas mixture plays an important role in determining so-called contact gap conductance as well as open gap conductance in a fuel rod when the ratio of the mean fuel path of the gas molecules to the characteristic dimension (gap) of the body exceeds about 0.01. Heat transfer from a solid to a gas in this knudsen domain is then dependent on an accommodation coefficient which is defined as the ratio of the actual energy
interchange to the maximum possible energy interchange between a surface and a gas. Generally, the accommodation coefficient of a heavy gas such as argon or xenon is near unity and this effect can be neglected. But the effect cannot be neglected for the light gas such as helium. The following factor should be divided when temperature drops are calculated in the Knudsen domain.

\[f = 1 + C \frac{kT^{1/2}}{P \zeta} \]

where \(P \): gas pressure

\(\zeta \): characteristic dimension

\(C \): empirical constant

The characteristic dimension, \(\zeta \), is essentially equal to the gap dimension and during pellet-to-cladding contact should be equal to the root mean square of the surface roughness, approximately \(4.389 \times 10^{-6} \) meters in most commercial fuel rods. \(0.2103 \text{ N} \sqrt{\text{K}} / \text{W} \) for \(C \) suggested in Ref. (107).

If a nominal open hot gap is calculated, a fraction of the fuel pellet is assumed to be in contact with the cladding at zero contact pressure and an effective fuel-to-cladding gap conductance is calculated as follows:

\[h_{\text{gap}} = (1-F) h_o + F h_c \]

where \(h_{\text{gap}} \): net gap conductance

\(h_o \): nominal open gap conductance

\(h_c \): contact gap conductance (zero contact pressure)
F: fraction of pellet circumference in contact with the cladding.

The nominal open gap conductance is determined from

\[h_0 = \frac{k_{mix}}{(dr + \delta)} \]

where \(dr \): nominal hot radial gap width
\(\delta \): root mean square of the fuel and the cladding surfaces roughness.

The fraction of pellet circumference in high contact with the cladding, \(F \), is assumed to be an inverse power law function of the ratio of the nominal hot radial gap and the hot pellet radius as follows:

\[F = \frac{1}{a_1 + \left(\frac{100}{R_f}\right)^{a_2}} + 0.3 + 1.429 \]

where \(R \): hot radius of the fuel pellet
\(a_1 \) and \(a_2 \): empirical constants

The relationships for \(a_1 \) and \(a_2 \) as a function of burnup is greater than 600 Mwd/Mtu are described by the following equations, respectively:

\[a_1 = 100 - 98 F' \]
\[a_2 = 4 - 0.5 F' \]

where
\[F' = 1 - \frac{1}{\left(\frac{x-600}{1000}\right)^4 + 1} \]

\(x \): burnup in Mwd/Mtu
When the burnup is less than or equal to 600 Mwd/ Mtu, then \(a_1 = 100 \) and \(a_2 = 4 \).

When the fuel and cladding are in contact, the contact gap conductance can be calculated

\[
h_c = C_1 P^n + \frac{k_{\text{mix}}}{\delta}
\]

where \(P \) is the pellet-cladding contact pressure in N/m² and is zero when \(P \) is less than one, the constant \(C_1 \) is estimated to be \(4 \times 10^{-4} \) for stainless steel-uranium dioxide pairs.

The value of the pressure exponent, \(n \), is governed by the behavior of the fuel and cladding at the interface of the contact points. The following values are recommended in Ref. 107.

- \(n = 1 \) for \(0 > P > 1000 \) psi
- \(n = 2 \) for \(P > 1000 \) psi

The radiation heat transfer contribution on the gap heat transfer coefficient is accounted for as follows:

\[
h_{\text{gap}} = h_{\text{gap}, o} + h_{\text{gap}, r}
\]

where

- \(h_{\text{gap}, o} \): the gap heat transfer coefficient without the radiation heat transfer
- \(h_{\text{gap}, r} \): the gap heat transfer coefficient contributed
by the radiation heat transfer

\[h_{\text{gap},r} = 5.279 \times 10^{-8} \left(T_{fs} + T_{cs} \right) \left(T_{fs}^2 + T_{cs}^2 \right) / F_r \]

\[F_r = \max (1.1485, \min (2.451, -0.154 + 0.0013025 T_{fs}) + 0.33 R_{fs} / R_{cs} \]

\(T_{fs} \) and \(T_{cs} \) : fuel and clad surface temperature
\(R_{fs} \) and \(R_{cs} \) : fuel and clad surface radii.

Niobium (110)

\[\rho C_p = 1.808 \times 10^6 + 826.7 T \]

\[k = 41 + 0.01455 T \]

Boron Nitride (108)

\[\rho C_p = 2.84 \times 10^6 + 6.68 \times 10^2 T \]

\[k = 13.85 \]

Copper (110)

\[\rho C_p = 3.151 \times 10^6 + 1.0286 \times 10^3 T \]

\[k = 429.7 - 0.0962 T \]

316 Stainless Steel (111)

\[\rho = 8084.2 - 0.42086 T - 3.8942 \times 10^{-5} T^2 \]

\[C_p = 4.187 \times 10^3 (0.1097 + 3.17 \times 10^{-5} T) \]

\[k = 9.248 + 1.571 \times 10^{-2} T \]
Zircaloy (108)

\[1096 > T > 843 : \rho C_p = 1.892 \times 10^6 + 570 \ T \]
\[1230 > T > 1096 : \rho C_p = 2.3322 \times 10^6 \]
\[T > 1230 : \rho C_p = 4.4941 \times 10^6 \]

\[k = 9.724 + 0.00917 \ T \]

304 Stainless Steel (111)

\[\rho = 7984.1 - 0.26506 \ T - 1.158 \times 10^{-4} \ T^2 \]
\[C_p = 4.187 \times 10^3 \left(0.1122 + 3.222 \times 10^{-5} \ T \right) \]
\[k = 8.116 + 1.618 \times 10^{-2} \ T \]

Marimet Insulation (40)

Degraded marimet insulation was used in the THORS experiments. Sodium leakage into the insulation occurred. Assuming that all void space was full of sodium, Ref. 40 estimated the effective conductivity and heat capacity.

\[\rho C_p = 1.32 \times 10^6 \]
\[k = 26.1 \]
Appendix C DERIVATION OF Eq (5.2.1-13)

The derivation of Eq (5.2.1-13) is primarily based on analogy between shear stress in single-phase flow and that in two-phase flow.

In single-phase flow shear stress can be expressed as follows:

\[\tau_w = f \frac{\rho_l U_l^2}{2} , \]

(C.1)

where \[f = \frac{c}{Re^n} \]
\[Re = \frac{\rho_l U_l D_e}{u_l} \]
\[D_e = D \text{ for a tube} \]
\[U_l = \text{average liquid velocity} \]

According to analogy, shear stress in two-phase flow can be obtained as follows:

\[\tau_{w2\phi} = f_{2\phi} \frac{\rho_l U_{lf}^2}{2} \]

(C.2)

where \[f_{2\phi} = \frac{c}{Re_{2\phi}^n} \]
\[Re_{2\phi} = \frac{\rho_l U_{lf} D_e^t}{u_l} \]
\[D_e^t = 4 \frac{A_{lf}}{p_{lf}} = 4\delta \]
\[A_{lf} = \text{flow area of liquid film} \]
\[p_{lf} = \text{perimeter of liquid film} \]
\[\delta = \text{liquid film thickness} \]
\[U_{lf} = \text{liquid film velocity} \]

The two-phase flow multiplier, \(\phi \), is defined by the following equation:
\[
\phi_l^2 = \frac{\tau_{w2\phi}}{\tau_{wl}} \quad (C.3)
\]

where \(\tau_{wl}\) is the single-phase shear stress at the same liquid mass flow rate as that in two-phase flow.

\[
\tau_{wl} = f_{l\phi} \frac{\rho_l j_l^2}{2} \quad (C.4)
\]

where \(f_{l\phi} = c / Re_{l\phi}^{n}\)

\[
Re_{l\phi} = \frac{\rho_l j_l D_e}{\nu_l}
\]

\[
j_l = a_l U_l
\]

\[
a_l = a_{lf} + a_{ld}
\]

Substituting Eqs (C.2) and (C.4) and into Eq (C.3), then we have

\[
\phi_l^2 = \left(\frac{f_{2\phi}}{f_{l\phi}} \right) \left(\frac{U_{lf}}{j_l} \right)^2 \quad (C.5)
\]

\[
= \left(\frac{D}{4\delta} \right)^n \left(\frac{U_{lf}}{j_l} \right)^{2-n} \quad (C.6)
\]

Equation (C.6) can be expressed in terms of liquid film volumetric fraction, \(a_{lf}\), and entrainment fraction, \(E\).

\[
\phi_l^2 = \left(\frac{1}{a_{lf}} \right)^2 (1-E)^{2-n},
\]

where \(n=0.2\) for turbulent flow

\(n=1\) for laminar flow
Appendix D VALVE MODEL

A simplified valve model is needed to account for pressure drops between the inlet boundary and inlet of test section, and between the outlet of the test section and outlet boundary. (See Fig 6.1) From the definition of pressure drop, we have

$$\frac{\Delta p}{\Delta z} = \frac{W^2}{2D_e \rho A^2}$$

(D.1)

Considering the constant inlet temperature except in the case of flow reversal and assuming that the Blausius relationship, \((f = c/Re^{0.2})\), is applicable, we obtain a simplified equation:

$$\frac{\Delta p}{\Delta z} = C_1 W^{1.8}$$

(D.2)

where \(C_1 = 0.5 \mu^{0.2} \rho^{-1} D_e^{-1.2} A^{-1.8}\)

As \(C_1\) is a function of geometry and properties, \(C_1\) is set to be constant throughout transients. \(C_1\) can be calculated for a given pressure drop by using Eq (D.2).

In the code Eq (D.2) is written as follows:

$$\frac{\Delta p}{\Delta z} = fwl * v^{n+1}$$

(D.3)

where \(fwl = spd * (tarea * rol)^{**1.8} * v^{** 0.8}\), and \(spd\), \(tarea\), and \(rol\) correspond to \(C_1\), \(A\), and \(\rho\), respectively.
Note that v in Eq (D.3) is a numerically predicted velocity in a channel. When one-sixth of the fuel bundle is taken for 2-D analysis, then A and W are set to be one-sixth of the bundle area and of the bundle mass flow rate, respectively.

For example, let us calculate C_1 for the restricted area of the P3A test positioned between the inlet boundary and inlet of the test section by using Eq (D.2). In Ref. 88 the test mass flow rate and pressure drop at that position, at steady state and boiling inception, are 9.46 lb/sec and 11.3 psi, and 3.87 lb/sec and 2 psi, respectively. Using the axial mesh length of the fictitious inlet mesh, $\Delta z=8''$, one-sixth of the test mass flow rate for W in 2-D analysis, and S.I. units, we obtain the values of C_1 at steady state and boiling inception: 7.1×10^5 and 6.4×10^5. The ratio of both cases is 1.11, which confirms the assumption of the constant value, C_1.
Appendix E GENERALIZED NORMALIZATION OF HEAT SOURCE

The total power in the subassembly, \(Q_t \), can be expressed as follows:

\[
Q_t = \sum_{i} \sum_{j} \sum_{k} q'''(i,j,k) \Delta V (i,j,k) \tag{E.1}
\]

where \(q''' = \) volumetric heat generation rate in a cell

\(\Delta V = \) volume of a cell

\(i,j,k = \) indicators of positions of a cell

Multiplying Eq (E.1) by a normalization factor, \(N_f \), we have

\[
\sum_{i} \sum_{j} \sum_{k} Q_t q_z(j) q_t(i) q_r(k) \Delta V (i,j,k) = \sum_{i} \sum_{j} \sum_{k} \left\{ q'''(i,j,k) \right\} \tag{E.2}
\]

where \(N_f = \sum_{i} \sum_{j} \sum_{k} q_z(j) q_t(i) q_r(k) \Delta V (i,j,k) \),

and \(q_z \), \(q_t \), and \(q_r \) represent the axial power distribution, transverse power shape in the subassembly, and radial power distribution within a fuel rod.

From Eq (E.2) we can obtain the following relationship:

\[
Q_t q_z(j) q_t(i) q_r(k) = q'''(i,j,k) N_f \tag{E.3}
\]

Therefore, the normalized volumetric heat generation rate can be expressed as follows:

\[
q''''(i,j,k) = \frac{Q_t q_z(j) q_t(i) q_r(k)}{N_f} \tag{E.4}
\]
Appendix F INPUT INFORMATION

F.1 Added or Modified Input Description

The description of input, which is added to or modified from the previous version (45), is as follows:

\- nrzf (narf,nc)
 = number of radial zones in each axial region of fuel

\- nrmzf (nrzfmx,narf,nc)
 = number of radial meshes per zones in the fuel

\- mnrzf (nrzfmx,narf,nc)
 = material in each radial zone of the fuel
 (1/2/3/4/5/6/7/8/9/10/11/12 : fuel/gap/316 stainless steel/304 stainless steel/liquid sodium/degraded Marimet insulation/air or void/zircaloy/niobium/tungsten/boron nitride/copper)

\- drzf (nrzfmx,narf,nc)
 = thickness of each radial zone in the fuel (m)

\- cv
 = virtual mass coefficient

\- alpdry
 = void fraction when dryout occurs

\- pin
 = inlet pressure at steady state (Pa)

\- pout
 = outlet pressure at steady state (Pa)

\- vin
 = inlet velocity at steady state (m/sec)

\- vout
 = outlet velocity at steady state (m/sec)

\- spd1
 = spatial pressure drop coefficient at inlet

\- spd2
 = spatial pressure drop coefficient at outlet

\- tarea
 = total axial flow area
F.2 Input

Input for 2-D Analysis of the W-7b' Test at Steady State

2d17w

Stidat
ntc=3
$end
SLSF Bundle (19 pin), W1 Test, Run 7b',
Steady state, 17 Channels
Heat Loss
Sintdat
nc=3
nz=17
nr=1
nitmax=2
iiitmax=30
narf=4
nx=1
itam=1
iht=33
ihtpr=1
ishpr=1100
itb=0
ibb=1
iwft=1
nrzs=1
$end
$readat
epsn=1.e-5
epsi=1.e-5
rnuss=22.
pin=8.6e5
pout=1.4952e5
vin=6.
vout=6.
hdt=3.258e-3
pdr=1.2435
velx=1.98
tdelay=80.
radf=2.921e-3
hdr=52.23
spdl=130.75e5
spd2=0.
tarea=64.162e-6
$end
$roddat
qO=1.103e5
ftd=0.9357
fpuo2=0.25
pgas=1.e5
gmix(1)=1.
$end
3
$ncr
Input for 1-D Analysis for the W-7b' at steady state

1d17w

Stidat
ntc=3
Send
SLSF Bundle (19 pin), W1 Test, Run 7b',
Steady state, 17 Channels
Heat Loss
Sintdat
nc=1
nz=17
nr=1
nitmax=2
itmax=1
nrf=4
nx=1
itam=0
iht=33
ihptr=1
ishptr=1100
itb=0
ibb=1
iwft=0
nrzs=1
Send
Sreadat
epsnl=1.e-5
eps=p=1.e-5
rnuss=0
hdt=3.258e-3
pdr=1.2435
velx=1.98
vely=5.78
tdelay=80.
radf=2.921e-3
hdr=52.174
pin=8.6e5
pout=1.4952e5
vin=6.
vout=6.
spd1=130.75e5
spd2=1.734e4
tarea=64.162e-6
Send
$roddat
qO=1.103e5
ftd=0.937
fpuo2=0.25
pgas=1.7e5
hgap=0.285
gmix(1)=1.
Send
1 $ncr
0 $indent
1 2 11 13 $ifcar
4 4 4 $nrzf
4(1 6 1 3) $nrzf
7 7 7 3 2(1 1 2 3) 7 7 7 3 $mnrzf
1 $inx
3 $mnrzs
4 $nrms
17(0.0) $arx
17(0.0) $ary
18(6.162e-6) $arz
13.058e-6 9(6.529e-6) 2(8.161e-6) 5(13.058e-6) $vol
4.39e-3 $hedz
3.37e-3 $wedz
16.e-3 $dx
18.82e-3 $dy
2(0.2032) 9(0.1016) 2(0.127) 6(0.2032) $dz
(4.6e5 17(4.e5) 1.4952e5) $p
19(0.0) $alp
(2(662.) 17(800.)) $tv
18(6.) $vvz
(1(662.) 16(800.)) $twf
0.7475 1.05 1.26 1.39 1.415 1.35 1.2 0.94 0.6
7(0.) $sz
(4(1.0)) $qt
12(0.) 6(1.0) 26(0.) $qr
4(3.16667) $sn
4(0.889e-3 1.659e-3 0.0823e-3 0.38e-3) $drzf
18.82e-3 $pcx
1.016e-3 $drzs
662. 16(780.) $tws
$timdat
tend=2.
dtmin=1.e-4
dtmax=1.e+1
dtlp=2.
dtsp=10.
$end
Input for Analysis of the W-7b' Test in Transients (0-1.5 sec)

2dw

$tidat
ntc=-2
$end
$restart
nitmax=6
cv=1.e-2
iss=0
iitmax=40
t0=0.4
itb=0
ibb=1
ihtpr=1
ishpr=1100
epsn=1.e-4
epsi=1.e-5
tdelay=2.
rnuss=-22.
ntabs=2
itbt=2
ibbt=1
nntc=1
$end
 continue W-7b' transient, v-p bc
2
0. 1. 0.5 0.38 $vin
2
0. 1. 4. 1. Spout
$stimdat
tend=3.5
dtmin=1.e-4
dtmax=5.e-1
dtlp=0.5
dtsp= 30.
$end
Input for Analysis of the W-7b' Test in Transients (1.5-3.5 sec)

2dw1

$tidat
ntc=-2
$end
$restart
nitmax=-10
iss=0
iitmax=40
t0=0.4
itb=0
ibb=0
ihtrpr=0
ishpr=1100
epsn=1.e-4
epsi=1.e-5
alpr=0.957
tdelay=2.
rnuss=-22.
spd2=1.743e4
tarea=6.46e-5
ntables=2
itbt=2
ibbt=1
ntac=1
$end
 continue W-7b' transient, p-p bc
2
0. 1. 1.5 0.64 $pin
2
0. 1. 1.5 1. $pout
$stimdat
tend=4.7
dtmin=1.e-4
dtmax=5.e-1
dtlp=0.1
dtsp= 0.02
$end
Input for Analysis of the W-7b' Test in Transients (3.5-8 sec)

2dw2

$tidat
ntc=-2
q0=0.05956e5
$end

$restart
nitmax=-10
iss=0
ittmax=40
t0=0.4
itb=0
ibb=0
ihtrp=0
ishpr=1100
epsn=1.e-4
epsi=1.e-5
alpdry=0.957
tdely=2.
rnuss=-22.
spd2=1.743e4
tarea=6.46e-5
ntabs=2
itbt=2
ibbt=1
natc=1
$end

continue W-7b' transient, p-p bc
2
0. 1. 3.5 0.64 4.0 1. $spin
2
0. 1. 1.5 1. $pout

$timdat
tend=10.
dtmin=1.e-4
dtmax=5.e-1
dt1p=0.1
dtsp=0.02
$end
Input for 2-D Analysis of the P3A Test at Steady State

p3a17

$stdin
ntc=3
$end
SLSF In-Reactor Experiment P3A (37 pin)
Steady state, 2-D, 17 axial cells
Heat Loss & Gain
$intdat
nc=3
nz=17
nr=1
ntmax=1
itmax=10
narf=3
nx=1
itam=1
iht=33
ihtpr=1
ishpr=100
itb=0
ibb=1
iwft=1
nrzs=1
$end
$readat
epsn=1.e-5
eps1=1.e-5
rnuss=-22.
alpdry=0.957
pin=5.78e+5
pout=2.776e+5
vin=6.755
hdt=3.609e-3
dr=1.2435
velx=2.014
vely=5.78
tdelay=80.
radf=2.92085e-3
hdr=52.23
spd1=7.1e5
spd2=0.
tarea=120.914e-6
$end
$roddat
q0=206.67e3
ftd=0.9357
fpuo2=0.25
pgas=1.e5
gmix(1)=1.
$end
3
$ncr
0 $indent
1 2 11 $ifcar
3(3 3 3) $nrzf
3(3(10 1 3)) $rmzf
3(7 7 3 1(1 2 3) 7 7 3) $mnrzf.
1 $inx
9 $mnrzs
4 $rmrzs
17(0.0) 1.7672e-3 9(0.8836e-3) 2(1.1045e-3) 5(1.7672e-3)
1.1438e-3 9(0.572e-3) 2(0.715e-3) 5(1.1438e-3) $arx
51(0.0) $ary
18(4.438e-6) 18(44.86e-6) 18(34.616e-6) $arz
8.42e-6 9(4.21e-6) 2(5.2625e-6) 5(8.42e-6)
9.12e-6 9(4.558e-6) 2(5.6975e-6) 5(9.12e-6)
7.034e-6 9(3.517e-6) 2(4.396e-6) 5(7.034e-6) $vol
5.419e-3 3.911e-3 3.772e-3 $hedz
2.749e-3 3.32e-3 3.034e-3 $wedz
3.632e-3 6.2912e-3 12.5824e-3 $dx
3(25.99e-3) $dy
2(0.2032) 9(0.1016) 2(0.127) 6(0.2032) $dz
3(5.78e5 17(4.e5) 2.776e5) $p
57(0.0) $alp
3(2(695.) 17(800.)) $tv
54(6.755) $vvz
3(1(695.) 16(800.)) $vzf
0. 0.7475 1.05 1.26 1.39 1.415 1.35 1.2 0.94 0.6 7(0.0) $sqz
3(1.156) 3(1.07) 3(0.95) $sq
3(14(0.0) 10(1.0) 18(0.0)) $sr
3(1.6667) 3(2.5) 3(2.) $srn
3(3(2.47e-3 0.06985e-3 0.381e-3)) $drzf
25.99e-3 $pcx
3.048e-3 $drzs
695. 16(780.) $tws
$timdat
tend=2.
dtmin=1.e-4
dtmax=1.e+1
dtlip=2.
dtsp=2.
clm=0.95
$end
Input for Analysis of the P3A Test in Transients (0-8.8 sec)

```
$tidat
ntc=-2
$end
$restart
nitmax=2
iss=0
iitmax=20
itb=0
ibb=1
ihtpr=0
epsn=1.e-4
cpumax=10000.
 epsi=1.e-4
tdelay=2.
rnuss=-22.
ntabl=2
itbt=2
ibbt=1
natc=1
$end
    continue P3A transient, v-p bc
10
0 1 1 0.883 2 0.777 3 0.69 4 0.622 5 0.553
6 0.51 7 0.468 8 0.425 8.8 0.42 $vin
2
0 1.8 8 8.8 0.5126 $pout
$stimdat
tend=10.8
dtmin=1.e-4
dtmax=5.e-1
clim=0.95
dtlp=2.
dtsp=10.
$end
```
Input for Analysis of the P3A Test in Transients (8.8-30 sec)

```
2dp1

$tidat
ntc=-2
Send
$restart
nitmax=-5
cv=1.e-2
iss=0
alpdry=0.957
iitmax=40
ishpr=0100
itb=0
ibb=0
ihtrpr=0
epsn=1.e-4
epsi=1.e-4
spd2=1.734e4
tdelay=2.
rnuss=-22.
ntabs=2
itbt=2
ibbt=1
natc=1
Send
    continue P3A transient, p-p bc
2
0. 1. 8.8 0.455 Spin
4
0. 1. 8.8 0.5131 10.2 0.5131 11.6 0.5131 $pout
$stimdat
tend= 30.
dtmin=1.e-4
dtmax=5.e-1
clm=0.95
dt1p=0.2
dtsp= 0.02
$end
```
Input for 2-D Analysis of the OPERA 15-Pin at Steady State

\texttt{opera}

\texttt{!
\texttt{stidat}
ntc=3
\texttt{send}
OPERA out of Pile 15-Pin
Steady state, 2-D, 30 axial cells
Heat Loss & Gain
$\texttt{!intdat}$
c=5
nz=29
nr=1
nmax=2
iss=1
iitmax=10
narf=4
nx=5
i=1
ht=33
htpr=1
ishpr=1100
itb=0
ib=1
iw=1
nrw=1
$\texttt{!send}$
$\texttt{!readat}$
epsnl=1.e-5
epsim=1.e-5
rnuss=-22.
alpdr=0.957
pin=6.2885e+5
pout=1.013e+5
vin=4.3
hdt=3.98e-3
pdr=1.2435
v=2.161
vely=5.78
tdelay=80.
radf=2.92085e-3
hdr=52.23
spd1=11.206e5
spd2=7.09e5
tarea=320.24e-6
$\texttt{!send}$
$\texttt{!roddat}$
q0=495.e3
$\texttt{!send}$
5
$\texttt{!ncr}$
0
$\texttt{!indent}$
1 2 20 23
$\texttt{!ifcar}$
5(4 4 4 4)
$\texttt{!nrzf}$
Input for Analysis of the OPERA 15-Pin in Transients (0-9 sec)

2dop

$Stidat
ntc=-2
$end
$restart
nitmax=4.
cv=1.e-2
iss=0
witmax=30
pout=1.013e5
itb=0
ibb=1
ihtrpr=0
istrpr=0
epsn=1.e-4
eps=1.e-4
tdelay=2.
rnuss=-22.
ntabls=2
itbt=2
ibbt=1
natc=1
$end
continue OPERA transient, v=p bc
7
0. 1. 0.86 0.93 2.86 0.78 3.86 0.719
5.86 0.59 10.86 0.48 15.86 0.349 $vin
2
0. 1. 20. 1. $pout
$Stimdat
tend=11.1
dtmin=1.e-4
dtmax=5.e-1
clm=0.95
dtlp=2.
dtsp= 10.
$end
Input for Analysis of the OPERA 15-Pin in Transients (9-20 sec)

2dop1

$tidat
ntc=-2
Send
$restart
nitmax=-5
iss=0
alpdry=0.957
iitmax=30
cpumax=10000.
ishpr=0110
itb=0
ibb=0
ihtpr=0
epsn=1.e-4
epsi=1.e-4
tdelay=2.
rnuss=-22.
ntabls=2
itbt=2
ibbt=1
natc=1
Send
 continue OPERA transient, p-p bc
5
0. 1. 5.86 0.5083 9.51 0.44 10.86 0.424 15.86 0.35 $pin
2
0. 1. 20. 1. $pout
$stimdat
tend= 20.
dtmin=1.e-5
dtmax=5.e-1
clm=0.95
dtlp=0.2
dtsp= 0.05
$end
Input for 2-D Analysis of the test 71B, run 101 at Steady State

2din1

$tidat
ntc=3
/end

Thors Bundle 6A (19 pin), Test 72B, Run 101,
Steady state, Heat losses to Sodium Soaked
Insulation, Gas Plenum Represented, 17 Channels

$intdat
nc=3
nz=17
nr=1
nitmax=2
iitmax=30
iflash=1
narf=3
nx=1
itam=1
ihl=33
ibb=0
iwft=1
nrzs=5
/end

$readat
epsn=1.e-5
epsi=1.e-5
rnuss=22.
pin=2.137e5
pout=1.617e5
vin=1.572
vout=1.572
spd1=0.
spd2=0.
hdt=3.2e-3
pdr=1.2435
velx=2.76
vely=5.78
tdelay=80.
radf=2.921e-3
hdr=52.174
/end

$roddat
q0=0.316667e5
/end

3 $ncr
0 $sindent
1 11 12 $ifcar
3(4 4 4) $snrzf
3(3(1 2 1 3)) $snrzf
3(3(7 3 2 3)) $smrzf
1 $inx
Input for Analysis of the test 72B, run 101 in Transients (0-9 sec)

2dpp1

$stidat
ntc=-2
$end
$restart
nitmax=5
iss=0
iiitmax=40
iflash=0
itb=0
ibb=1
ihptr=0
istrpr=1
epsn=1.e-4
epsi=1.e-4
tdelay=8.
tables=2
itbt=2
ibbt=1
atc=1
$end
continue 72B, 101 transient, v-p bc
2
0. 1. 5.3 0.4 $vin
2
0. 1. 5.4 0.9 $spout
$stimdat
tend=17.
dtmin=1.e-6
dtmax=5.e+2
clm=0.9
dtlp=2.
dtsp= 0.2
$end
Input for Analysis of the test 72B, run 101 in Transients (9-40 sec)

2dpp2

S$tidat
ntc=-2
Send
S$restart
nitmax=-5
iss=0
iiitmax=40
iflash=0
itb=0
ibb=0
ihtpr=0
epsn=1.e-4
epsi=1.e-4
alpdry=0.957
tdelay=8.
tables=2
itbt=2
ibbt=1
natc=1
Send
continue 72B, 101 transient, p-p bc
2
0.1.4.3 0.8243 Spin
2
0.1.4.3 0.9 $pout
S$timdat
tend=40.
dtmin=1.e-6
dtmax=5.e+2
clm=0.9
dtlp=0.5
dtsp= 0.025
Send