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APPLIANCE PURCHASE AND USAGE ADAPTATION

TO A PERMANENT TIME OF DAY ELECTRICITY RATE SCHEDULE

Section I: Introduction

To date, about 15 times of day (TOD) electricity pricing experiments or

'demonstrations have been conducted.1 Three of the experiments are still on-

going; the rest were of typically limited duration of 1-3 years. All social

and economic experiments suffer from problems of limited duration in the

interpretation of their results. For instance, Hausman (1982) discusses

potential duration effects in the negative income tax experiments. In the

Seattle-Denver NIT experiment where-duration effects can be measured, he

finds a significant difference in response according to the known duration of

the experiments for different groups. In the TOD electricity rate

experiments a further problem occurs beyond pure duration effects. Since

almost all electricity use takes place in conjunction with durable

appliance use, a short run experiment is unlikely to induce a significant

change in household durable holdings. Thus, at best the experiments are

valuable in estimation of the Marshallian short run response where the

capital stock is.held fixed. In Connecticut where the designers recognized

this problem and offered a buy-back provision for durables, no household

response in terms of appliance purchases was forthcoming. Given the

transitory nature of experiments, this outcome is not surprising. Also we

would not expect appliance stores and electrical contractors to respond to

lRecent summaries of the results are contained in Aigner (1981), Hill et. al.

(1979) and Miedema and White (1980).
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a shift among a small segment of the population where the shift is known to

be transitory.

Other problems which also occur with the TOD rate experiments are their

-l^'unt=ry nature or their use of innentives systems which attempt to cause

the net effect of TOD prices to be revenue neutral. Aigner (1981) discusses

these issues for the TOD experiments. Aigner-Hausman (1980) find that the

estimated price elasticities can change significantly when the incentive

schemes are accounted for. Since under the provisions of the National Energy

Act utilities must produce a framework for TOD price schedules, a public

interest in TOD rate schedules seems likely to continue.

In this paper we investigate the effects of a permanent TOD rate

schedule. At the Central Vermont Public Service Corporation (CVPSC),

optional TOD rates have been offered since January 1976. The TOD rate

schedule is not an experiment, but it is expected to continue indefinitely by

the utility and presumably by its customers. The CVPSC customers face one of

three price schedules for electricity. The details are given in Table 1.

The standard rate schedule is an inverted block structure. It consists of a

fixed monthly charge of $6.91 with an initial block price of 3.104 per kwh.

Beyond 200 kwh per month the price increases to 7.921 per kwh. The major

alternative for the household is to choose TOD rates. The TOD rate schedule

consists of a fixed charge of $9.02 per month and two prices for peak and

off-peak usage. Peak prices are charged for two periods during the day which

total 7 hours and for which the price is 14.636 per kwh. The off-peak price

is 2.649 per kwh. The winter months are the peak season with TOD prices in

effect from January 1 to April 30. During the non-winter months, the TOD
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rate structure reverts to that of the conventional rate although the price

charged is lower. An initial fee of $25 is made for the signalling

equipment. The other major alternative is the all electric rate which

continues a fixed charge of $13.83 per month with a rate of 5.570$ per kwh.

The all electric rate is no longer offered to new customers.
1

Table 1. CVPSC Residential Electricity Rates

Winter Rates

Customer Fixed Change Peak Off-Peak Summer Rates

Conventional $6.91 - 3.104, 7.92J 3.10, 3.52

TOD $9.02 14.636 2.649, 2.649

All Electric $13.83 - 5.570 2.667

As of 1980 approximately 900 or 1% of all CVPSC residential accounts had

chosen TOD rates. About 70% of the total are formerly all electric

customers. The savings among TOD customers are significant. Basic-use TOD

customers average annual expenditure is about 43% less than conventional rate-

households. The total electric TOD customers paid an average of 66% less per

kwh than did conventional rate customers. Annual savings of $300-500 are not

ITwo other rate schedules combine the conventional rate with special rates
for electric water heaters and electric storage heat. We account for these
schedules in our demand estimations in Section 4.
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uncommon. In 1980 a survey was made of a sample of CVPSC customers. Sample

design considerations are given by Hausman and Trimble (1980). A stratified

random sample was made for non-TOD customers together with a suvery of all

TOD customers. The survey information was combined with usage data for the

years 1979-1980. In this paper, we analyze part of the data from the survey

along with the usage data.

While a study of permanent TOD electricity usage has many advantages

over a TOD experiment, certain shortcomings should be recognized. First, the

ability to transfer our results to other areas is severely limited by the

fact that Vermont has a winter peak while the great majority of areas have a

summer peak. Household response is expected to be quite different since non-

electric alternatives to electric heat during the winter, e.g., wood heat,

are probably greater than alternatives to air conditioners. On the other

hand, the ability to adapt to temperature fluctuations is less in the winter

than in the summer. Second, since the choice of TOD is voluntary, our

estimates must adjust for the self-selection aspect of 'the data. We adjust

for self-selection in our estimation. Lastly, cross price elasticities for

peak and off-peak usage cannot be estimated since all TOD users face the same

rates. In some of the experiments the rates were varied across households to

permit estimation of these cross price effects. Still, the main advantage of

permanent TOD data is evident here. We find a significant response of

households to TOD rates through appliance purchases. For instance, about 60%

of our sample have purchased a timer to control hot water use and about 50%

have purchased a timing device for household heating. We also find that

these devices have a significant effect on both peak and off-peak usage
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shares and also total electricity consumption. Thus, the potential long term

effects of TOD rate schedules are found. Furthermore, if a significant

proportion of U.S. households were on TOD rate schedules the response might

be expected to increase since appliance manufacturers would offer a broader

range of durables to take advantage of the differential TOD rates.

The plan of the paper is as follows. In Section 2 we estimate a model

of appliance purchase behavior by TOD rate customers. We focus on three

appliances, all of which are timers that allow households to take direct

advantage of the large differential in TOD rates. In Section 3 we develop a

model of choice of TOD and electricity usage. In Section 4 we estimate the

choice and usage model for both TOD and non TOD households. In all three

sections we find that the availability of permanent TOD rate schedules has an

important influence on household behavior.
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II. Appliance Choice with Time of Day Pricesl

rurrPnTly wled Pconometrit models of appliance choice consider the

tradeoff between the initial cost of an appliance and its operating cost

which depends on the electricity price faced by the household. Intended

utilization which may depend on socioeconomic factors and weather conditions

as well as the cost per unit of output of the appliance enters the choice

process, and it is affected by both the appliance -characteristics and the

price of electricity. Thus, in his model of air conditioner choice, Hausman

(1979) used the size and efficiency (EER) of the air conditioner model, the

initial cost of the air conditioner, the marginal price of electricity, and

the number of cooling degree days faced by the consumer.2 He found that

utilization is affected by cost per unit of output and by weather. In turn,

the appliance choice depended on utilization and the initial cost of the

appliance. Hausman also found that consumers used a relatively high implicit

1 The analysis here is based on Hausman (1980b) in which a complete model of
the process is discussed. However, data limitations precluded the use of the
model in the current situation. Therefore, we outline the main
considerations and then fit a less elaborate econometric specification.
2Even with non time of day prices for electricity a problem arises in
defining the appropriate price of electricity due to the existence of
declining block rate price schedules. Hausman, et. al. (1979) derive
appropriate procedures for this problem. However, it is not clear that
consumers may react to the average price rather than the marginal price of
electricity. Dubin (1980) attempts to distinguish between the response to
marginal or average prices for electricity by-households.
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discount rate in making the tradeoff between initial purchase price and the

operating costs of the different air conditioner models. Recently, Dubin and

McFadden (1983) have analyzed the choice of appliance for a model of space

boat and water heat appliance choice along with the utilization of these

appliances. They consider the choice between electricity and natural gas

appliances and estimate a logit model on a subset of households who use one

of the two fuels exclusively. Their results indicate that the tradeoff

between operating costs and initial capital cost is the primary factor in

household choice. Furthermore, they also find evidence of a high implicit

.discount rate with a similar range to Hausman's findings for the choice of

air conditioners.

We would now like to consider how econometric models of appliance choice

might differ with time of day (TOD) electricity prices. The important change

is that a single price of electricity no longer exists. The operating cost

of the appliance will depend on the time of day that utilization occurs.

Substantial changes in appliance choice may. result from introduction of time

of day prices. Consider the case of air conditioner purchase' under a 2-price

TOD system.

Suppose that the peak rate is charged from 8am-8pm during the summer

months with off peak prices charged during the remainder of the day. Also

suppose that the ratio of peak to off-peak price is large since the ratio has

varied from about 5 to 16 in the TOD experiments which have been conducted.

With utilization held constant the immediate effect of TOD prices on

appliance choice would be to cause a shift to much more energy efficient air

conditioners. Currently available home air conditioning systems do not

permit storage of cooling capacity, so that during utilization the

_ _ (lj



electricity price faced by the household would rise substantially. The

higher price results from the fact that air conditioners (which cause the

summer peak) are used primarily during the hours of the day when peak prices

nonur. A crude utilization weighted average price of electricity would

probably be about 4 times higher than the current marginal electricity price

so that the tradeoff toward more efficient air conditioners, e.g., those air

conditioners with higher EER, would be more favorable despite their higher

initial purchase price.

But when utilization is permitted to change an effect occurs in the

opposite direction. Suppose because of the higher TOD peak prices during the

hottest part of the day that the consumers raise the thermostat setting by

five degrees. Then the utilization of the air conditioner will fall by a

factor of about one-fourth. The optimal consumer choice would then be a less

energy efficient air conditioner than he would have otherwise have chosen

with utilization held constant. In fact, if intended utilization falls by a

sufficient amount it is possible that the consumer would choose a less energy

efficient appliance under TOD prices than under constant electricity prices.

The sum total of these two opposite effects can only be determined using

empirical estimates of consumer demand. On a priori grounds it is impossible

to say which effect will dominate. Thus, it is important to recognize that

while the consumer faces a higher simple average price of electricity, it is

not necessarily the case that he will choose a more energy efficient

appliance. It is safe to assume that the consumer will utilize his appliance

less during peak electricity periods, but the type of appliance he buys

depends both on the initial capital cost and a utilization weighted average
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cost of electricity. We need to know how utilization of the appliance will

change with the introduction of TOD prices to analyze how appliance choice

will be affected.

In the survey of permanent TOD customers in Vermont, we focus on three

appliances which are purchased primarily because of the large differences in

electricity prices between peak and off-peak periods. These appliances are:

(1) timers for heaters (2) timers for water heaters and (3) timers for

refrigerators. The timers can be bought separately or can be installed

together as part of a control panel which costs approximately $300. They

also can either be of the set-back type for heat or of the type which

completely turns off an appliance such as the water heater or the

refrigerator. TOD prices are used in Vermont only during the winter and

consist of a three-hour period in the morning which occurs between 7a.m. and

12 noon and a four-hour period between 4p.m. and 0l.m.1 The ratio of peak

to off-peak price is about 6.25 to 1.

Thus, some household choose to heat by an alternative source during peak

hours (mainly wood) or to turn off the electricity to the appliance

altogether during peak hours and presumably limit use as with refrigerators.

It is interesting to note that it may well be 'energy inefficient' in terms

of kWh's consumed to turn off a regrigerator for a seven hour period each

day. But from a household's point of view and from the electric utility's

cost point of view, this outcome may be the correct response to the economic

incentives which arise from TOD electricity prices.

1The periods are staggered across households.
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We now estimate a multivariate probit model to determine household

characteristics of TOD customers who purchase these timers. The estimated

probabilities are also required for the usage equations which we estimate in

later sections. Given the diversity in the types of timers and the lack of

knowledge of operating cost since individual appliances are not metered as

with the data set that Hausman (1979) used in his non-TOD study, we do

not estimate a model of the tradeoff between purchase price and operating

cost. Instead, we focus on household characteristics to see how adaptation

to TOD -prices has occurred. The probit model takes the form

(2.1) u..i j j + 8 for i=l, N household and j=1,3 appliances.

The latent 'utility' variable u.. is assumed to be positive if household i

purchases appliance j and negative otherwise. The joint density of the ..is

assumed independent across households with a trivariate normal density of

mean zero and correlation matrix

(2.2) v ( ) 12 1(i2 = P12 I
Ei3 P 13 P23

We would expect to observe positive correlations given the technology of

control panels. For household i define yi =  (Yil' Yi2 Yi3) where each yij

1 indicates timer j is owned and ..ij = -1 indicates that it is not owned.

The joint probability of ownership is then

(2.3) pr(Yi Xil'Xi2,Xi3 ) = pr(uijYil > 0, ui2Yi2 > 0, i3yi3 > 0)



12 ) f 1(71f u,u2,u ;(Yiyi2) 12)
il(ii 1 i2(i 2 i(i 3)

(yiy!)P!1' (yiy3)P ) du du2du,

where t is the standardized trivariate normal density. Maximum likelihood is

used to estimate the unknown ~j's and p..ij's with the trivariate normal

distribution evaluated by means of an algorithm of Daley (1975).

We estimated the probit model on a sample of 151 TOD households for whom

we also had TOD usage data and who were year-round Vermont residents.1

Of these 151 households 59 had purchased timers for electric heat, 89

households had purchased timers for water heaters, and 16 had purchased

timers for their refrigerators. Table 2 gives the 3x3 table of appliance

holdings and a clear pattern of non-independence is present

In Table 3 we present estimates of the multivariate probit model. As

expected, the most important factor in purchasing a timer is the use of the

appliance as either a primary heat source or as a water heater. Income does

not seem an important determinant of purchase behavior except for the case of

the refrigerator timer where the coefficient is both large and precisely

1We eliminated vacation homes from the analysis since clear indications exist
that both their appliance choice behavior and usage patterns differ
significantly from year-round residents.
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Table

Hot Water

2

Refrigerator

Heat

Hot Water

Refrigerator

estimated. Households who rent are less likely to purchase the timers

although we do not measure the effect very precisely. Years on TOD rates

does not seem an important factor in purchase behavior. Also, households

which heat primarily with wood are much more likely to purchase a hot water

timer presumably since they have an alternative source of hot water during

peak hours. We also find very significant correlation among the stochastic

Heat All Total

6 46 1 6 59

.040 .305 .007 .040 .391

46 30 7 6 89

.305 .199 .046 .040 .589

1 7 2 6 16

.007 .046 .013 .040 .106



terms with p12, for example, estimated to equal .736. Thus households may

well organize their living patterns to take advantage of the cost savings

that the timers permit. Lastly, note that the X2 test against only a

co etart ir ePAh of the 3 equations is found to be very significant.

In this section we have discussed how appliance purchases can be altered

by the introduction of TOD electricity rates. Our data indicate in Vermont

where a permanent TOD rate schedule has existed for 5 years that a

significant proportion of the population have altered their appliance

holdings to take advantage of the TOD rates. This finding is in contrast to

the many TOD experiments where little or no change in appliance holdings is

observed even when financial incentives were offered to counteract the short

term aspect of the experiment. We now use our estimated probit model of

appliance holdings to investigate how electricity usage is altered, both by

the existence of TOD rates and by purchases of the timers. Given the

permanent character of Vermont TOD rates, we hope to find the long run

response which might occur is permanent TOD rates were adopted more widely.

^.^_ _ .___ IN



Table 3: Multivariate Probit Estimates (with asymptotic standard errors)

Variqhle

1. Constant

2. Log income (1000's)

3. Electric Heat
Primary

4. Northern Vt.

5. Electric Water
Heater

6. Rents

7. Years on TOD rates

8. Number of adults

9. Wood heat primary

HeR t Water Heat

-1.18
(.781)

.131
(.178)

-1.04
(.945)

-.161
(.207)

1.07
(.330)

.257
(.427)

.248
(.438)

-.246
(.927)

.058
(.106)

Refrigerator

-4.68
(1.43)

.593
(.287)

-.285
(.415)

.804
(.384)

-.468
(.401)

-.046
(.103)

.203
(.150)

.452
(.226)

.038
(.303)

.099
(.159)

.637
(.358)

-12 = 736
(.094)

OBS = 151

p 13= .321
(l282)

log LF = -210.0

P = 416
23 (219)

2 = 73.6
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III. Peak Usage and Prices for TOD and Non-TOD Customers

How well do the TOD households adjust to the large difference in peak

and off-peak prices? As the rate schedules in Table 1 indicate, TOD

households pay 2.649 per off-peak kwh and 14.636 per peak kwh. The

conventional rate is 7.92$ per kwh beyond 200 kwh per month. Significant

expenditure savings are possible if the household alters its behavior to take

advantage of the off-peak TOD rate; in fact, large savings are made by the

TOD households. Here we would like to estimate a model of peak and off-peak

usage by TOD households to find how their adaptation depends on household

characteristics, income, and appliance holdings.

In this section we construct an integrated model which has three

characteristics with respect to household electricity consumption:

(1) choice of TOD or non-TOD rates, (2) household expenditure for electricity

consumption, (3) household consumption of peak and offpeak electricity. As

we explained before, Vermont is unique in the sense of a permanent TOD rate

schedule for the past 5 years. Heuristically, households will choose the TOD

rate schedule if they are better off under such a plan. But this decision

depends on their expenditure pattern and prevailing TOD and non TOD

electricity -prices. Our model is a 'two level' model of electricity

consumption. The lower level estimates a conditional demand function to

determine peak and off peak electricity consumption as a function of TOD



electricity prices and total electricity expenditure. But in contrast to

previous research on TOD experiments, our conditional demand functions are

not assumed to be homothetically separable. Atkinson (1979), Hausman et al.

(1979), and Caves and Christensen (1980) among others have previously

estimated conditional homothetic demand functions for peak and offpeak

consumption. However, the homotheticity assumption seems unduly restrictive

so we specify instead a generalized Gorman polar form (GGPF) at the lower

level which dispenses with the homotheticity assumption.1 Instead we test

for homotheticity given our empirical estimates.

Two stage budgeting then requires an additively separable utility

function at the upper level of the utility model. We use the Stone-Geary LES

system which for a two good upper level, consisting of a composite good and

electricity expenditure, is not unduly restrictive., One price index which

arises from the lower level determines electricity expenditure at the upper

level. This index along with a second price index which arises from the GGPF

determine the household choice of TOD or non TOD rate schedules. Since the

three levels of the model, TOD choice, electricity expenditure, and peak and

off-peak consumption, are derived together we pay especially close attention

to the stochastic specification of the model. Rather than including additive

error terms in each equation as is the custom of most demand analysis, we

include the stochastic terms in the original utility specification.

1 Kohler (1983) has recently claimed that the choice of homothetic separable
function forms has led to spurious results in the TOD experiments. Parks
(1983) demonstrates the mistake in Kohler's results. Nevertheless, the
homotheticity assumption can be removed.



The stochastic disturbances then enter the model in a natural way with

important implications for both interpretation and estimation. Since we

estimate the model by maximum likelihood, the stochastic disturbances have an

import"t rolz both in model aecifi + * anA es+4imation.

In the analysis of electricity .consumption, a separability assumption is

usually required by the data. Since customers in a given service area face

identical prices for other goods, we cannot estimate the effect of other

prices on electricity consumption in a given cross section of data. Even

with panel data over a few years, it is unlikely that sufficient price

variation will exist to permit estimation of nonelectricity price effects.

Beyond this form of separability, it is convenient to impose two stage

budgeting as a further assumption. It has been the empirical finding of

researchers in the field that significantly better results arise from

estimation of conditional demand functions for peak and offpeak consumption

than from unconditional demand functions.

The form of the utility function for our model is

(3.1) u = f(xl,f 2 (x 2))

where peak and of fpeak electricity consumption enter the vector x2 and are

separable from the composite commodity xI. For two stage budgeting we

consider the conditional expenditure function for budget stage 21

(3.2) e(P 2 ,u2) =  in { 2x2 1f2(x2) > u}
x212

1 This topic is discussed by Gorman (1971), Blackorby, et al. (1978), and
Deaton and Muellbauer (1980).
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where p2 are prices in budget stage 2. The overall expenditure function

takes the form

(3-3) e(pl,p 2,u) = in (P1X + e 2 (P2 ,u 2 )jf(x,u 2 ) ~ u)

so that 'quantity' of utility chosen in sector 2

(3.4) u2 ='u 2 (1'P 2 ,u)

is a function of all prices. In the special case of homothetic separability

the conditional expenditure function of equation (3.2) takes the form

e2(p2 ,u2) = u~ 2( 2 ) so that the overall expenditure function of equation

(3.3) specializes to e(p 1,r12 (P2 ),u) where 12() serves as a price index for

budget stage two prices. The quantity index which corresponds to the

homothetically separable form of equation (3.4) is derived by the use of

Sheppard's lemma

be(p I 'n2(2),u)
(3.5) u2 =

2

We then have price and quantity indices in the sense that expenditure on

group 2, y2 
= I 2 ( 2 )u 2 

= 1 2(P2)f2 (x2 ). This derivation which is close to

Hausman, et al. (1979) leads to a very convenient econometric specification,

but it has the unacceptable implication that the conditional expenditure

elasticity of all quantities in x2 is unity. We now relax this assumption by

moving to a generalized Gorman polar form (GGPF) for the lower level utility

function.

We drop the use of homothetic separability but maintain the separability

assumption of equation (3.1). Instead of assuming homothetic separability we



substitute equation (3.4) into the conditional expenditure function of

equation (3.2) to determine total expenditure on electricity to be

(3.6) y2 = p2x2 = e2 (P2 ,u 2 ) =(P 1lP 2 9u)

where u2 is the maximum level of utility for budget level 2. -Equation (3.6)

demonstrates that without a further assumption the upper level budget

decision will depend upon all prices. However, the existence of a price

index for budget level 2 would permit equation (3.6) to take the special

form

(3-7) Y2 =  2g(P 2(P2 ) ' y )

so that electricity expenditure would now depend on overall family income y

and the price index for electricity expenditure. Therefore, we drop the

requirement of a quantity index and instead use the Gorman conditions to

write the utility function of equation (3.1) in additively separable form

(3.8) f(x=,x2) 1= (f, ( 1 ) + f2 (x 2 ))

where the conditional indirect utility function takes the Gorman generalized

polar form

(3.9) v2(P2,y2) v 2 (y2 /1 2 (P 2)) +A 2(p 2 )

and where the function v2(.) is 'quasi-homothetic' only because of the fixed

cost, or committed expenditure term A2(P 2). The utility maximization problem

then becomes

.

11 
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n n
(3.10) max u =( v ±(yA1i(Pi)) + E Ai(Pi)) s.t. i yi= y

i=1 i=1 i=1

for the general case of n sectors. Note that the I Ai(Pi) drops out of the

maximization but it role is iLUoriaii c o it allow fr linc i

group expenditure elasticities because of its role as a fixed cost. While

the additivity assumption is certainly strong in the n sector case, c.f.

Deaton and Muellbauer (1980), in the 2 sector case its implications are much

weaker, especially when sector one is comprised of a Hicksian composite

commodity. We now apply the Gorman solution to the TOD electricity demand

situation.1

For the lower level GGPF specification of conditional demand of equation

(3.8) we choose a GGPF with price indices which are close to the indices of

the AIDS specification of Deaton and Muellbauer (1980). Note we only observe

the lower level demands for TOD households. Let p21 denote the peak price

P22 denote offpeak price and p23 denote the non-TOD price. The overall price

index for committed electricity expenditure is A(p2) + P21 + p22e2where the

deterministic part takes the second order flexible functional form

(3.11) logA(p 2 ) o + alogp21 + (-a) logp22 + (log P )22
22

The second price index for uncommitted electricity expenditure is

1Anderson (1979) has applied the GGPF to a 16 good demand system on aggregate
data with 4 groups using an 'additive perfect price aggregation' (APPAM)
model. Poirier and Melino (1982) have proposed application of the APPAM
model to TOD data. Our model is more general than APPAM since it is second
order flexible while th APPAM model is first order flexible. Our treatment
of the stochastic disturbances is also somewhat more rigorous than the APPAM
approach.
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(3.12) logB(p 2 ) = 1logp2 1 + (1-P)1ogp 2 2 
+  (log -)

P22

a
Note that £ur iicn-TOD houzehcld_ B(p) = n.2. and A(D,) = e op, where a

determines committed demands. Given the stochastic specification and choice

of price indices peak period electricity expenditure takes the non-linear in

parameters form

(3.13) p2 1 x 2 1 = A(P2)(c + ylog - + (y2- A(p2)

221
- p 2 1 1+ p2 2 2)( + e1og 2-) + 21 1

P22

which depends on total electricity expenditure y2 and prices p2, but not on

the composite commodity price pl or total household income y. Note that

equation (3.13) is not homothetic because the first term represents committed

expenditure while the second term represents uncommitted expenditure. The

stochastic term eI arises in committed peak period demand while e2 arises

from committed offpeak period demand. Given peak period expenditure in

equation (3.12), offpeak period consumption follows from the adding up

restriction P2 1 x21 + P2 2 x 2 2 
= Y2 '

We now move up to the top level to determine electricity expenditure.

Because of the additive separability assumption required for the two-level

budgeting in equations (3.8) and (3.10), we are severely limited in

appropriate functional forms. We choose the Stone-Geary LES which is second

order flexible given the existence of 2 sectors for the composite commodity

and electricity expenditure. For non TOD households electricity expenditure

is determined by

- Iliii I'lo



(3.14) y2  6(y - C) + (1 -6) (A(p2) + p2 3 ( 1 + 2))

where C is committed nonelectricity expenditures and p23 is the non TOD price

which varies across households. The first term of equation (3.14)

corresponds to uncommitted expenditure while the second term corresponds to

committed electricity expenditure. Note how the sum of the stochastic terms

enters the total expenditure equation as would be expected. For TOD

households total electricity expenditures has an additional term which arises

from fixed costs, F, which include timer purchases and 'habit changes'. The

equation for total electricity expenditure for TOD households is

(3.15) 2 
= 6( y - C - (F + cF)) + (I - 6)(A(P 2 ) + P2 1 1 + P222 )

where fixed costs are allowed to vary in the population according to the

stochastic term e .

From our specification of the two levels of electricity demand and

expenditure we derive the indirect utility function where we normalize the

price of the composite commodity to be unity. Let q denote a dummy variable

for choice of TOD and the indirect utility function is

(3.16) v(p2 ,y) = y - C -(A(P 2 ) + P2 1s 1 + P2 2 C2 ) - q(F + EF)/B (2)

where A(p2) + P21C 1 + P22 2 is the price index for committed expenditures and

B(P2) is the price index for uncommitted expenditures. Note that equation

(3.16) has the LES form. The expenditure equations follow fron application

of Roy's identity to equation (3.16). The choice equation for TOD is then

calculated to be
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(3.17) pr(TOD) = pIy - C -(A(p) + p2 222) - q(F + EF))/B6 (p )

(y - -(A(p) + 23(c c2)/ (pN)]

where Ip an yN tad foi TOD p-ices acd cn TCD prices res-ect- rvel- - -T+e

that instead of a 'reduced form' probit choice equation, the choice model of

equation (3.17) is fully integrated with the demand models. The choice model

may be further considered for 6 very small so that u(pT)  p6 (N) 1 the

utility comparison becomes

(3.18) A(PT) + P 2 1c 1 * P2 2c2 - F - CF < A(PN) + P2 3 (e1+ C2)

so the choice depends essentially on the price index for committed

expenditure and fixed costs. Therefore the price index from the lower level

of the two stage budgeting procedure has an important role to play.

Furthermore, it simplifies the model because it provides the connection

between cost minimization and utility maximization in our model of TOD choice

and electricity demand.



IV. Choice of Service and Usage for TOD and Non-TOD Households

In this section we examine choice of TOD, total usage patterns by both

TOD ind ,no-TOD households. The data consists of 132 TOD households and 206

non-TOD households, and peak demand by TOD households. The usage data are

one reading for each household during the period January-April 1980 when the

winter TOD rate schedule is in use. Since most households are in a two month

billing cycle, their readings will be for either January-February or

February-March. We attempt to adjust for the difference in months by

including heating degree days in our usage equations. Two types of

exceptional readings exist. A small number of households are.on a 30 day

billing cycle. We adjusted these household readings to reflect a 60 day

bill. Another small group of households had missed a reading and so the

reading was for greater than sixty days. We again adjusted the readings for

a 60 day bill. Thus, all our estimated coefficients should be interpreted on

a two month reading basis.

TOD households use substantially more electricity than do non-TOD

households. Average .bimonthly TOD usage in our sample is 4224.9 kwh which

with the average TOD price of 4.56 per kwh comes to $192.85. When the $9.02

per month fixed charge is included, the mean bimonthly bill is $210.89.1

Average bimonthly non-TOD use is 1165.9 kwh in the sample. At the mean price

of 6.274 per kwh plus the fixed charge of $6.91 per month the average

bimonthly bill in the sample is $86.92.2 Note that in a crude sense that

higher

1 This rather high amount reflects the fact that about 76% of TOD households
use electric heat.
2 Actually, the all electric rate needs to be accounted for here also. We do
so in our estimation, but here attempt to keep the example straightforward by
only considering the two primary rate schedules.
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usage goes with a lower price. But since households choose to go on the TOD

rate schedule, it seems incorrect to combine both sets of households onto a

single rate schedule. Some households probably choose TOD rates, and the

p..i~l L y cf Cubstantially lower pirne, hecaui~) they are larpp users with

electric heat. Therefore in estimating the demand functions and associated

price indices we must account for underlying differences in households,

especially with respect to electric heat.

To estimate the model we first derive the likelihood function which

corresponds to equations (3.11)-(3.17). The model consists of three basic

equations which we repeat here. First, the household chooses TOD prices from

the choice equation if

(4.1) y - C -(A(pT) + p2 1c 1+ P22 E2 ) -q(F + EF)/B (p ) >

(y - C -(A(p 1 ) + P23(E1+ 2) /B N

where A(PT) corresponds to the first price index for time of day prices and

A(pN) is for non-TOD prices. This index corresponds to committed expenditure

while the second price index B(C ) corresponds to uncommitted expenditure.

The variables F stands for fixed costs while q is an indicator variable for

TOD. The next equation is expenditure on electricity and differs for the TOD

and non-TOD households:

(4.2.a) y2= 6(y - C - (F + :F)) + (1 - 6)(A(PT) + P2 1c 1 + P22e2 )

(4.2.b) y 2 = 6(y - C) + (1 - 6)(A(pN) + P23 (l '2 ) )
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The first equation correspo.uds to overall electricity expenditure by TOD

households while the second equation corresponds to non-TOD households who

have no fixed costs and face a constant price over the day. The last

equation of t h mojl. which ip exrpnditure during the peak period nertains

only to the TOD households since we have no data for the non-TOD households.

The expenditure equation is

(4.3) 2121 = A(PT)(a + ylog P21) + (y 2 - A(PT)

- P 2 1' 1 + p22 2)( + 8 log P) + 211
22

Note that both price indices enter the peak period expenditure equation since

the B(PT) index arises in the uncommitted expenditure segment. The

likelihood function now follows from a specification of the stochastic terms

E1,E2, F . We choose them to be multivariate normal I' ~ N(O,). Thus, the

first equation corresponds to a nonlinear probit choice equation for TOD.

The other two equations correspond to nonlinear demand equations. Since the

stochastic disturbances enter all the equations of the model, the appropriate

estimator is (full information) maximum likelihood.

To construct the likelihood function denote an indicator variable u.= I1

if the household chooses TOD and zero otherwise. The observable vector of

dependent variables for TOD households is then (ui. = 1. y2ii) and for the

non-TOD households it is (ui= 0,yi ) where we integrate out the peak period

expenditure. For TOD households the likelihood contribution is



1 0 ( 1 21 1 12 i
(4.4) f(ui)yi2i) _ _19

33 33 22 22 11

where the first term arises from the peak period expenditure equation. Its

density is univariate normal where the 'residual' - 3 i =  1(p21-P21b) + ' 2 P2 2

P21
where b + Olog 22 and w is the standard deviation which corresponds

P2 2

to this combination of c's. Likewise, the second term arises from the total

electricity expenditure equation, where we condition its residual on the

first residual. The last term is the probit equation where we condition on

both previous residuals. For the non-TOD households the likelihood

contribution has two terms

(4.5) (u,2 1 - -

22 22 11-

Here the residual in the expenditure equation is T2i = (1 - 6)P 2 3 (c + 2)'

The second term is again the probit equation for choice of TOD where we

condition on T2i. The log likelihood which we maximized with the BHIHH

algorithm then has the form'

S 2 i 1i

(4.6) L - C + lo233 -33 ogA 22  2 + log
ieTOD 33 22

T2 Z
+ -logr2 2  2i + log1 - ( i).

icNTOD 22 r 11

While the likelihood function is reasonably nonlinear we did not encounter

too much difficulty in finding the maximum.

1The Jacobian of the LF is unity.
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A possible problem exists with the likelihood function of equation

(4.6). Our sample is not random; we oversampled TOD households. Hausman

and Trimble (1981) give the sampling plan. Since the sample is based on the

choice equation outcome an adjustment zccdZ to be made to the likelihood

function. Manski and McFadden (1981) discuss estimators in the discrete

choice case. Our problem is more complicated here since we have two

equations .in addition to the choice equation. However, it can be

demonstrated that only the component of the likelihood function which

corresponds to the choice model needs to be adjusted. In that case if the

first equation were a logit equation rather than a probit equation the

estimates would still be consistent so long as the denominators of equation

(4.1) are close to unity or are equal, both of which they turn out to be in

estimation. The difference between a probit specification and a logit

specification of the choice model is very unlikely to cause any problem.

Nevertheless, to guard against any problem we also estimated the model using

the weighted ML approach of Manski and Lerman (1977). The likelihood

function of equation (4.6) is changed to have weights w. in front of both1

probit terms. We found this likelihood function extremely slow to converge.

Furthermore, the results were very similar to the nonweighted likelihood

function. Therefore, most of the results which we present arise from the

unweighted likelihood function. Whether some alternative estimator proposed

by Manski and McFadden (1981) for the choice based case would be easier to

work with remains a topic for further research.

Before we turn to the results two other econometric complications need

to be mentioned. First, in the model formulation the existence of timers is
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used as a right hand side variable. To avoid potential endogeneity we use

the predicted probabilities from the appliance choice model as instrumental

variables. The other econometric problem is that non-TOD households do not

fce _ constan+. eletricity pine berause of the existence of a lifeline

rate in Vermont.

We need to construct a price index for non-TOD households since they

face a non-constant marginal price schedule.

Y1

O 200 KWH

FIGURE 1

In Figure 1 we draw the inverted rate schedule faced by non-TOD

customers. The first block of 200 kwh has a marginal price of 3.10$ per kwh.

Beyond that point the price.rises to 7.924 per kwh. Since the price schedule

is convex, which is different from the usual declining block rate schedule

which is non-convex, we used a relative straightforward technque. We

estimated a reduced form probit equation for households to be above or below
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200 kwh. The average price is then estimated as p = .0310 ul + .0792 %2

where the .'s are the estimated probit probabilities of being in each block.

The estimated price is then used as an instrument in the non-TOD household

iage aquation. Household income could also be adjusted from y, using a

weighted probability average of y1 and y1, see Hausman et. al. (1979) and

Taylor (1976). But since yl - yl equals $9.64 and average yl exceeds $20,000

the adjustment will not affect the estimates.

Since 200 kwh is supposed to only be a 'lifeline' amount, we expect most

household's usage to exceed it. The mean price is predicted to be 7.47 per

kwh which corresponds to an estimate of n 2 of .907 which is very close to

the actual value in our sample of .904. The 10th percentile is still 6.87

per kwh which again indicates that predicted non-TOD price is fairly close to

the value in the upper block. We use the predicted marginal price as an

instrument in the non-TOD choice and electricity expenditure

equations.

The estimated coefficients and asymptotic standard errors are presented

for our model in Table 4.1. The left hand column gives the unweighted

estimates while the right hand column gives the weighted estimates for a

somewhat simpler specification. We first discuss the components of the price

index

P21l
(4.7) log A(pT) = ao + a log P2 1 + (1-a)log p2 2 + ( log -2

22



TABLE 4.1

TOD Choice and Expenditure Equations

Unweighted Weighted
Variable Estimates Estimates

ao Components

1. Constant

2. Electric Heat Primary*HHD

3. Electric Heat Secondary*HHD

4. Electric Water Heater

5. Children

6. Adults

7. Adults at Home in Day

a Components

8. Constant

9. EH Primary*Prob. of Timer

10. EH Secondary*Prob. of Timer

11. Elec. Hot Water*Prob. of Timer

12. Prob. of Refrigerator Timer

, 13. Yrs. on TOD

14. y-Committed Second order term

1.101
(.338)

.736
(.137)

.065
(.110)

.293
(.211)

-. 128
(.120)

.009
(.084)-

.064
(.112)

.448
(.478)

.837
(.114)

.125
(.142)

.642
(.304)

-. 347
(.201)

.237
(.144)

.380
(.191)

.988
(.096)

-. 594
(.118)

-.324
(.132)

-.114
(.065)

-. 006
(.007)

-. 124
(.128)

-. 040
(.006)

.862
(.181)

-. 656
(.337)

-. 425
(.324)
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TABLE 4.1
(Continued)

Unweighted Weighted
Variable Estimates Estimates

15. P

16. 0-Uncommitted Second order term

17. 6-Uncommitted exp. term

.690
(.235)

-.298
(.155)

.007
(.003)

.537
(.101)

.009
(.003)

Fixed Cost Components

18. Constant

19. Electric Heat

20. Rents

TOD=.033,NTOD-EH=.711,
NTOD-NEH=1.71

.322 .265

.147 2.60 .247 2.67

-.006 .018 .005 -.007 .037 .007

.031
(.022)

.006
(.018)

.026
(.011)

.081
(.117)

.019
(.116)

.043
(.153)

WTS

Obs 338
LF = 407.3

338 LF
LF = 505.2



The first seven coefficients correspond to the constant ao and lead to a

percentage shift upwards corresponding to their coefficients. Note that

electric heat has large effect on the price index. Secondary electric heat

.nd an ?lectrie water heater have smller but important effects. The

demographic characteristics of the family have a smaller effect which we

could not estimate very precisely. The next seven coefficients correspond to

the coefficient a which multiplies the peak electricity price in the price

index. Note the importance of the presence of timers in decreasing the price

index. The timers for electric heating are very important while the timers

for water heating and for refrigerators have a smaller effect. The variable

for years on the TOD plan has a small effect on the price index, but we could

not estimate it at all precisely. The second order term coefficient y is

estimated relative precisely and has the correct curvature for the price

index.

We now turn to the uncommitted expenditure and its price index. The

coefficient of uncommitted expenditure 6 is estimated to be quite small as

one might expect. Because of the unimportance of uncommitted expenditure we

estimated only two coefficients for the price index B(pE). Note that peak

price is the major explanation of the uncommitted price index since

(4.8) log B(pE) = logp21 + (1)1ogp 2 2 + P2ogo)2p

- -- - "~ - Mill
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Lastly, we turn to the coefficients for fixed costs. The presence of

electric heat or renting status both raise fixed costs for the households.

Fixed costs are estimated to vary between 30 and 300 dollars which seems i

re~asP? 1  An~ iR remarkably in line with the estimated cost of the timers.

We now examine how these estimated parameters affect our three equations

(4.1)-(4.3) which determine choice of TOD and electricity expenditure.

Examination of the choice equation (4.1) indicates that we deleted the cost

component C from the model since it was practically not identified with

uncommitted electricity expenditure so close to zero. Since 6 = .007 the

denominators of the two choice functions are virtually identical--the

denominators are within .001 of each other. The choice of TOD thus becomes a

comparison of the price indices A(PT) for TOD and A(PN) for non-TOD together

with the fixed costs as we indicated in equation (3.18). For primary

electric heat customers the average estimated price index on TOD prices is

.23 while for non-TOD price the average estimated index is .25. On average

the indirect utility for these customers if they choose TOD is 4.40 while if

they choose non-TOD it is 4.34. Significant variation exists'across

individual households, but the conclusion is that the average electric heat

customer will prefer to shift to TOD rates. In fact, over half of all TOD

households have primary electric heat.

However, if we examine non-electric heat customers we find that TOD

prices are not nearly so favorable. The price index for TOD prices is .16

while the average index for non-TOD prices it is .11. These indices lead to

a prediction of a much smaller proportion of nonelectric heat households on

TOD which is what we observe in the data.
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For the electricity expenditure equation we find almost all electricity

expenditure to be committed given our very small estimate of 6. This

indicates the extreme nonhomotheticity of overall electricity demand. In

fact, olir estimated income elasticities range between .13 and .25 for the

different groups depending on whether they have electric heat. These

estimates are similar to previous estimates of income elasticitiesfrom non-

TOD samples. For TOD households uncommitted expenditure is about 14% of

total expenditure while for non-TOD households it is about 18%. Our

estimated price elasticities from the expenditure equations are .16 for TOD

households and .19 for non-TOD households. Households with electric heat

have higher estimated elasticities as expected. These price expenditures are

lower than are commonly estimated on non-TOD monthly bill data and reflect

the relative importance of committed expenditure. Also, we have carefully

treated the potential endogeneity of electric prices in this study which can

lead to upward biased elasticity estimates if it is not correctly treated.

The last equation we consider is the peak period expenditure equation

for the TOD households. We find extremely strong evidence against the

assumption of homothetic separability in TOD electricity consumption. Our

estimated elasticity of peak period expenditure with respect to total

electric expenditure at the mean of the data is estimated to be .346 with a

standard error of .314. Since almost all models of TOD electricity

consumption have made the homotheticitiy assumption, our results cast

MINIM ANINIM11111MINIMMYICNYII- --



considerable doubt on this specification. Our estimated income elasticity of

.35 is well below the unitary value assumed in most previous studies.

Furthermore, it is significantly less than unity at a .05 test level.
1

1 However, the income elasticity from the weighted estimate is not
significantly less than unity. Our finding of nonhomothenticity should also

be considered with the voluntary nature of the TOD plan in mind. Households

which consume relatively more electricity off peak are more likely to choose

the TOD plan.
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V. Conclusions and Policy Recommendations

Considerable interest exists in TOD electricity pricing in the U.S. We

have estimated a model which considers choice of TOD as well as electricity

expenditure. Since Vermont offers almost the only data from a permanent

voluntary TOD program we can consider the advisability of a shift to TOD

prices. We do not do a complete cost-benefit calculation since we would need

marginal electricity production costs as well planned expenditures on new

capacity for the forseeable future to make the appropriate calculation.

Instead, we consider the more narrow question of whether consumers would be

made better off by a shift to TOD prices. Presumably, households which have

chosen TOD prices did so because they were made better off. The question we

consider is whether aggregate consumers surplus would increase if a mandatory

TOD plan were adopted, rather than a voluntary program.

To make the calculation we take the indirect utility function of

equation (3.16) and the estimated parameters and calculate average consumers

surplus across various household groups. We estimate that a vbluntary TOD

program has an average consumers surplus of $19S per year for electric heat

customers (in 1980 dollars). If the program were changed to mandatory TOD

prices, consumers surplus drops on average to $180 per year. Therefore,

aggregate consumers surplus among electric heat households would increase

although some households are made worse off under a mandatory plan. When we

consider non-electric heat households under the current voluntary plan we

find average consumers surplus is less than $10 per year since so few

households choose TOD if they do not have electric heat. Under a mandatory

TOD program the average non-electric heat households is made worse off by

1 i ililAl l0l li
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$174 per year. When we average across all households we find a voluntary TOD

program increases consumers surplus by $72 per year per household. However,

a mandatory TOD program decreases consumers surplus by $42 dollars per year.

Firm policy conclusions cannot be based on these estimates because

future electricity prices may change. We would expect significant changes if

generating capacity is increased and most of the capital expenditure is

included in the TOD peak prices. But given our results, we find that a

voluntary TOD program has much to recommend it so long as TOD households do

not cross-subsidize non-TOD households. A mandatory TOD program is not

nearly so favorable in terms of households perceived welfare.



DATA APPENDIX

The initial combined 1979 and 1980 weather and usage data set received

from Central Vermont Public Service Corp. (CVPSL) and processed to include

weather data includes 10,993 records describing 684 accounts. Each record

contains:

CID
TYPE
DATE
RCODE
KWH
NDAYS
HDD

10 digit account ID. (See below).
1-month or 2-month reading cycle
Date of scheduled meter reading. Not actual read date.
Rate code (See table 2).
KWH for that rate code (Blank for 1979 read dates)
Number of days in scheduled cycle
Number of Heating Degree Days in scheduled cycle

The initial file had rate codes as shown in Table 1.

TABLE I

RATE CODES AND DISTRIBUTION IN INITIAL FILE

Rate Code

Blank
01
03
07
08
10

11
11A
11B
46
60
61

Before Transformation
Type Frequency Percent

Unspecified 2049 18.6
Residential 1015 9.2
Off-Peak Water Heating 1287 11.7
Security Lighting 55 .5
All-Electric 192 1.7
Cable TV or
Commercial Resale 23 .2

Time of Day (TOD) 20 .2
TOD - Peak 2238 20.4
TOD - Off-Peak 3940 35.8
Storage Heating 62 .6
Storage Heating 59 .5
Storage Heating 53 .5

After Transformation
Freouency Percent

166 15.2
118 10.8
119 10.9

12 1.1

3 .3
334 30.5
334 30.5

9 .8

Table 1 also defines the various rate codes. These customer accounts match

the survey responses from the survey instrument described in Hausman-Trimble

(1981).



We first selected one read date from each account. There were two

requirements for inclusion. First, there had to be at least one non-zero KWH

reading for that read date. Second, the reading had to be in February,

MArch. or early April (1-3). If there was more than one read date during

that period, the first date was selected. Using this procedure, 649 accounts

were selected. They were distributed as follows:

FEB' MARCH APRIL SUBTOTAL MISSING TOTAL

295 338 16 649 35 584

On inspection, the data was determined to include accounts which had

neither time-of-day (TOD) readings, nor residential service readings. These

accounts were excluded. In particular, any reading for rate codes 07, 10, 60

and 61 were eliminated. This procedure left 336 customers with TOD

readings. (However, only 333 customers had both a peak and off-peak

reading.) The resulting file, which still combined TOD and non-TOD

customers, had a distribution of rate codes as shown in the two right-hand

columns in Table 1.
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Two extracts were made from this dataset, one with only TOD customers

and the second with only non-TOD customers. Both datasets were produced

merging the 1980 usage data with the datasets which had been used in the

early stage of this research and contained both survey data and 1979 usage

data. The resulting datasets were as follows:

NUMBER OF OBSERVATIONS
TOD NON-TOD TOTAL

1979 data 151 249 409
1980 data 132 206 338

A number of assumptions were made in creating the dataset. All 1979

account ID's were 10-digits. Over 100 of the 1980 ID's were only 9-digits.

After multiplying these ID's by 10, many of them matched 1979 accounts. It

was assumed that a mistake had been made either with the 1979 or the 1980

data. Accordingly, ID's were multiplied by 10 when.appropriate.

A second major assumption had to do with rate codes. Most of the non-

TOD individuals had blank rate codes. These accounts were assigned rate

codes according to their 1979 rates. Several of the TOD accounts also had

Blank rate codes. They were assigned to peak and off-peak usage as

appropriate.

These files were reformatted to have only one record per customer.

Accounts with storage heating (rate code 46) were eliminated entirely. This

accounted for the loss of four TOD customers and one non-TOD customer.

In order to use the data in the regression programs, one further change

was made. For the TOD accounts, usage on special off-peak water heaters was

- 0001111111h,
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added to the total off-peak usage. A dummy variable was used to indicate

that the individual had the special water heater rate. For the non-TOD

accounts, the water heater usage was added to the regular usage and a dummy

variable was used to indicate +be iq+~rnP nof the speciR] electric heating

rate.
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