Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock

Ian D. Leroux, Monika H. Schleier-Smith, and Vlada Vučetić

Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 23 March 2010; published 25 June 2010)

We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

DOI: 10.1103/PhysRevLett.104.250801

PACS numbers: 06.30.Ft, 06.20.–f, 42.50.Dv, 42.50.Lc

Atomic interference provides an exquisitely sensitive tool for measuring gravitation, magnetic fields, acceleration, rotation, and time itself [1,2]. Quantum-mechanical entanglement may enhance the precision of such measurements: maximally entangled states can increase the sensitivity of the interference fringe to the parameter of interest [3], while squeezed spin states can redistribute quantum noise away from it [4,5]. In experiments, both approaches have overcome the standard quantum limit (SQL) of phase sensitivity [6–13]. However, Huelga et al. pointed out early on that entangled states might provide little gain in metrological performance because they are more fragile than uncorrelated states, such that the entanglement-induced increase in phase sensitivity comes at the expense of reduced interrogation time [14]. Nonetheless, analyses with specific noise models [15,16] found regimes where entanglement can improve metrological performance despite decoherence. It is thus interesting, practically as well as fundamentally, to investigate the lifetime of the entangled states relevant to metrology.

In this Letter we present an atomic clock whose precision exceeds the SQL thanks to a phase-squeezed input state, as also recently demonstrated by Louchet-Chauvet et al. [11]. We show the first measurement of such a clock’s Allan deviation spectrum, indicating that the clock reaches a given precision 2.8(3) times faster than the SQL for averaging times up to 50 s. We demonstrate that for a clock in which the dominant environmental perturbation is atomic frequency noise, the entanglement lifetime varies by an order of magnitude depending on whether the squeezed variable is the phase (subject to environmental perturbation) or the (essentially unperturbed) population difference between states. The squeezed states are prepared by cavity feedback squeezing [10,17], a new technique which deterministically produces entangled states of distant atoms using their collective interaction with an optical resonator.

Given any two-level atom we define a (pseudo)spin-1/2 \( S_j \). For an ensemble of such atoms, we introduce the total spin \( S = \sum S_j \) whose \( S_z \) component and azimuthal angle \( \phi \) represent the population difference and relative phase, respectively, between the atomic levels. Preparing all the atoms in the same single-particle quantum state places the ensemble in a coherent spin state (CSS) where the variance of spin components perpendicular to the mean spin is given by \( \langle S \rangle / 2 \) [18]. While decoherence can shorten \( \langle S \rangle \) and reduce this variance, only entanglement between atoms can improve the signal-to-noise ratio in a measurement of the orientation of \( S \) [4,5]. We quantify the signal by a contrast \( C = \langle S \rangle / S_0 \), where \( S_0 \) is the maximum spin length for a system with \( 2S_0 \) total atoms. We also introduce \( C_{in} \), the similarly defined contrast for the uncorrelated state before the squeezing procedure. We can now define a metrological squeezing parameter [4] \( \zeta = 2 \Delta S^2_{\perp} C_{in} / (S_0 C^2) \) which compares the squared signal-to-noise ratio for the best possible measurement on a CSS with the initially available spin length \( C_{in} S_0 \) to that of the actual measurement with transverse variance \( \Delta S^2_{\perp} \) and spin length \( CS_0 \). If \( \zeta < 1 \), the total spin orientation is more precisely determined, in some plane, than would be possible if \( 2CS_0 \) atoms were uncorrelated [19].

If we prepare a CSS in the equatorial plane, we expect that the phase noise will increase at long times due to classical fluctuations in our apparatus of the energy difference between levels [Fig. 1(c), top]. As discussed below, this broadening becomes noticeable in our system within 1 ms. In the number direction, the primary mechanism that increases polar angle uncertainty \( \Delta S_z / \langle |S| \rangle \) is loss of contrast (reduction in the length of the mean spin vector \( \langle |S| \rangle \) ), which occurs on a longer time scale \( t_{coh} = 11(1) \) ms in our apparatus. A phase-squeezed state will therefore suffer much more rapid broadening of its narrow axis [Fig. 1(c), middle] than will a number-squeezed state [Fig. 1(c), bottom]. Intriguingly, a number-squeezed state is less vulnerable to phase noise than an uncorrelated state: an increase in phase variance by several times the width of the original CSS might still be small compared to the anti-squeezed phase variance of the number-squeezed state.

We work with laser-cooled \(^{87}\)Rb and use the canonical magnetic-field-insensitive clock transition between

0031-9007/10/104(25)/250801(4) 250801-1 © 2010 The American Physical Society
probing, is detuned halfway between the \( D_2 \) 5632(1) MHz [Fig. 1(a)]. One resonator mode, used for state in the phase direction (middle bar) or in the shear the CSS into a squeezed state using cavity feedback Ramsey protocol (top bar) consists of optical pumping into the \( S_z \). We can shear the CSS into a squeezed state using cavity feedback (dashed blue arrow), then orient the narrow axis of the squeezed state in the phase direction (middle bar) or in the \( S_z \) direction (bottom bar). (c) Effect of phase noise: The ideal CSS (shown schematically at top left) is perturbed by classical phase fluctuations accrued during the free precession, increasing its variance in one direction (top right). The same fluctuations are detrimental to phase-squeezed states (middle row) but much less noticeable in number-squeezed states (bottom). The broadened distributions are offset vertically and horizontally in the figure to avoid overlap.

\[ |F = 1, m_F = 0 \rangle \text{ and } |F = 2, m_F = 0 \rangle \text{ in the electronic ground state } S^2S_{1/2}. \] The atomic cloud is held by a far-detuned dipole trap inside a Fabry-Pérot resonator with a finesse of 5.6(2) \( \times 10^3 \) and a free spectral range of 5632(1) MHz [Fig. 1(a)]. One resonator mode, used for probing, is detuned halfway between the \( D_2 \) optical transitions for the two clock states. The total spin \( S \) corresponds to a sum over the atomic cloud, weighted by the atoms’ position-dependent coupling to the resonator mode so as to yield an effective uniform-coupling description [8,10]. The atomic index of refraction shifts the cavity resonance frequency by equal and opposite amounts for atoms in each of the two clock states, the net shift being proportional to their population difference \( 2S_z \). In order to read out the atomic state, the resonator is driven by probe light tuned to the slope of the cavity resonance, so that atom-induced shifts of the resonance frequency are revealed as changes in the transmitted fraction of probe light, which we detect on an avalanche photodiode. The probe light is a sideband modulated at 36 GHz onto a laser that is locked to a far-detuned cavity mode [8]. A 2.4 G bias field along the cavity axis combined with circular trap polarization keeps the clock frequency independent of trap power to first order [8], but makes it linearly sensitive to magnetic-field fluctuations with a coefficient of 3.7 kHz/G. These fluctuations are the dominant noise affecting the clock spin. Aside from the choice of lock detuning, bias field, and trap polarization given above, the details of our apparatus are the same as in Refs. [8,10].

Arbitrary rotations of the spin vector are performed using resonant microwave pulses, while squeezing the uncertainty region requires an effective interaction between the atoms which we generate by cavity feedback, exploiting their common coupling to the light field of the resonator [10,17]. As the atomic index of refraction shifts the cavity resonance by an amount proportional to \( S_z \), it changes the intracavity intensity of probe light. The probe imparts a light shift to the atoms, each of which thus acquires a phase shift which depends on the state of all other atoms in the ensemble, thus introducing the correlations necessary for squeezing. The \( S_z \)-dependent phase shift shears the circular uncertainty region of the CSS into an ellipse with its long (antisqueezed) axis oriented at a small and known angle to the equatorial plane [Fig. 1(b), middle bar]. Note that, due to photon shot noise in the probe light, the states thus prepared are actually mixed states with an area much larger than is required by the Heisenberg uncertainty relations [17].

To measure the lifetime of a phase-squeezed state, we load the dipole trap with an ensemble of atoms collected in a magneto-optical trap, prepare a CSS by optically pumping the atoms into the \( |F = 1, m_F = 0 \rangle \) state, and then apply a microwave \( \pi/2 \) pulse to rotate it into the equatorial plane of the Bloch sphere [10]. We typically work with \( 2S_0 = 3 \times 10^4 \) effective atoms and an initial contrast \( C_{in} = 90(2)\% \), yielding a projection-noise-limited phase uncertainty of \( \sim 6 \text{ mrad} \) [4]. Cavity feedback squeezing with a pair of weak probe pulses then drives the atoms into a state with \( \zeta^{-1} \approx 4 \text{ dB} \). A rotation of nearly \( \pi/2 \) converts this into a phase-squeezed state. After allowing the spins to precess for a variable time \( T_R \), the phase information is converted back to a population difference with a final \( \pi/2 \) pulse and read out by observing the transmission of a pair of strong probe pulses. We apply the probe light in paired pulses, separated by a \( \pi \) pulse (spin echo), to suppress inhomogeneous light shifts and technical noise.

This sequence of operations constitutes a Ramsey-type atomic clock with a squeezed input state. We perform 10 sequences of state preparation, precession, and readout for each sample of atoms loaded from the magneto-optical trap, and the entire experimental cycle repeats every 9 seconds. We measure the phase variance of the CSS using the same experimental sequence but without the squeezing probe pulses. To measure the lifetime of a number-squeezed state, we rotate the sheared state slightly to orient its narrow axis along \( S_z \) and then simply hold it for a time \( T_R \) before reading it out [Fig. 1(b), bottom bar]. In all three cases, comparing the normalized variance to the squared contrast for the readout signal yields the metrological squeezing parameter \( \zeta \), which we plot in Fig. 2. The SQL
be squeezed [classical fluctuations. Nevertheless, the state only ceases to
reaches 1, the initial squeezing still
improves the signal-to-noise ratio by \( = 3 \) dB over that of
an initially unsqueezed state, which has also suffered the
same classical broadening.

Matters are very different when we prepare a number-squeezed state and read out its reduced \( S_z \) variance directly
after a hold time \( T_R \) (Fig. 2, open green circles). Instead of
operating a clock, which measures the evolution of the
phase angle, we are now examining the evolution of the
polar angle corresponding to the population difference
between clock states. Frequency noise adds no uncertainty
to this spin component, so \( \zeta \) can remain below unity
(squeezed) for 5 ms, 8 times longer than for the phase-
squeezed state, until dephasing between the atoms, visible
as loss of signal contrast (Fig. 2, inset), creates a mixed
state that is no longer sufficiently entangled to overcome
the SQL. We also measure the phase variance of the
number-squeezed state by applying a \( \pi/2 \) pulse just before
readout and see no change out to 5 ms (not shown); the
classical frequency noise is entirely hidden by the anti-
squeezed initial phase variance.

Since the decay of the phase-squeezed state results from
classical frequency noise, it can be suppressed by standard
techniques. For example, we have operated a “clock”
sequence with a phase-squeezed input state, but with an
additional spin-echo \( \pi \) pulse halfway through the precession
time. The final phase is then insensitive to the atomic
transition frequency, which protects the state from slow
frequency fluctuations but makes it useless for time keep-
ing. The state remains squeezed 2 ms after being prepared
in the otherwise fragile phase-squeezed orientation (Fig. 2,
open blue squares).

As a demonstration, we have operated a fully functional
squeezed clock with a Ramsey interrogation time \( T_R =
200 \) \( \mu s \), short enough that the classical frequency noise in
our system does not destroy the phase squeezing. The
effective atom number was \( 2S_0 = 3.5 \times 10^4 \), the clock
cycle time was \( T_c = 9 \) s, and the signal contrast was \( C =
81\% \). A single Ramsey interrogation was performed for
each magneto-optical trap loading cycle, giving a duty
factor of \( 2 \times 10^{-5} \). The result is the first measurement of
Allan deviation [20] for an atomic clock operating beyond
the SQL, including all noise and slow drifts (Fig. 3, red
solid line). For comparison, we also evaluate a clock
operated with an uncorrelated input state close to a CSS,
100(2)\% signal contrast, and otherwise identical param-
ters (Fig. 3, black circles). An ideal projection-noise-
limited clock with the same atom number, interrogation
time, and duty factor could reach a stability [21]

\[
\sigma_{\text{SQL}}(\tau) = \frac{1}{\omega_0 T_R \sqrt{2 S_0 \tau}} = 1.85 \times 10^{-9} \text{s}^{1/2}/\sqrt{\tau}
\]

(Fig. 3, dashed black line), where \( \omega_0 = 2 \pi \times 6.83 \) GHz is
the clock transition frequency. At short times our squeezed
clock reaches a fractional frequency stability of \( \sigma(\tau) =
1.1 \times 10^{-9} \text{s}^{1/2}/\sqrt{\tau} \), a factor of 2.8(3) in variance below
the SQL. At longer times we reach a noise floor at \( 10^{-10}\)

(\( z = 1 \)) is calculated from independent
absolute atom number measurements based on precisely
measured cavity parameters, and verified experimentally
as in Ref. [8].

We first use the CSS to evaluate the classical phase noise
(Fig. 2, black solid circles). The data are well described by
the model \( \zeta(T_R) = \zeta(0) + 2S_0 C_{\text{in}} \Delta \omega^2 T_R^2 \) (dotted fit),
involving an initial angular uncertainty described by \( \zeta(0) \)
and additional fluctuations of the transition frequency be-
tween measurements with variance \( \Delta \omega^2 \). After a preces-
sion time of 700 \( \mu s \), the effect of the classical noise
\( \Delta \omega = 2\pi \times 1.3 \) Hz exceeds the initial projection noise,
and the phase variance increases quadratically thereafter.
Note that reaching the SQL in an atomic clock requires not
only projection-noise-limited state preparation and read-
out, but also an interrogation time short enough that quan-
tum projection noise remains the dominant uncertainty on
the clock signal.

The same model yields a good description of the behav-
ior of a phase-squeezed state (red solid squares and dashed
line). We initially observe a reduced phase variance \( \zeta(0) <
1 \), as expected. The same frequency noise \( \Delta \omega \) (constrained
in the fit) broadens the phase-squeezed state sooner than
the CSS because there is less quantum noise to mask the
classical fluctuations. Nevertheless, the state only ceases to
be squeezed \( [\zeta(t) = 1] \) at a time \( T_{\text{sq}} = 600 \) \( \mu s \) which
approaches the squeezing-independent bound \( T_{\text{sq}} <
(\sqrt{2S_0 C_{\text{in}} \Delta \omega})^{-1} = 700 \) \( \mu s \) set by the classical broaden-
ing. Even when \( \zeta \) reaches 1, the initial squeezing still

FIG. 2 (color online). Metrological squeezing parameter \( \zeta \)
as a function of time. The phase variance for an initial CSS (black
solid circles, dotted line) or phase-squeezed state (red solid
squares, dashed line) increases due to classical frequency noise.
The number variance of a number-squeezed state (green open
circles) or the phase variance of a phase-squeezed state protected
by a spin echo (blue open squares) can remain below the SQL
(solid black line) substantially longer. Error bars show the
statistical uncertainty of the variance determination. Inset:
Signal contrast \( C \) for the CSS (black solid circles) and squeezed
states (red solid squares).

(\( \zeta = 1 \)) is calculated from independent
absolute atom number measurements based on precisely
measured cavity parameters, and verified experimentally
as in Ref. [8].

We first use the CSS to evaluate the classical phase noise
(Fig. 2, black solid circles). The data are well described by
the model \( \zeta(T_R) = \zeta(0) + 2S_0 C_{\text{in}} \Delta \omega^2 T_R^2 \) (dotted fit),
involving an initial angular uncertainty described by \( \zeta(0) \)
and additional fluctuations of the transition frequency be-
tween measurements with variance \( \Delta \omega^2 \). After a preces-
sion time of 700 \( \mu s \), the effect of the classical noise
\( \Delta \omega = 2\pi \times 1.3 \) Hz exceeds the initial projection noise,
and the phase variance increases quadratically thereafter.
Note that reaching the SQL in an atomic clock requires not
only projection-noise-limited state preparation and read-
out, but also an interrogation time short enough that quan-
tum projection noise remains the dominant uncertainty on
the clock signal.

The same model yields a good description of the behav-
ior of a phase-squeezed state (red solid squares and dashed
line). We initially observe a reduced phase variance \( \zeta(0) <
1 \), as expected. The same frequency noise \( \Delta \omega \) (constrained
in the fit) broadens the phase-squeezed state sooner than
the CSS because there is less quantum noise to mask the
classical fluctuations. Nevertheless, the state only ceases to
be squeezed \( [\zeta(t) = 1] \) at a time \( T_{\text{sq}} = 600 \) \( \mu s \) which
approaches the squeezing-independent bound \( T_{\text{sq}} <
(\sqrt{2S_0 C_{\text{in}} \Delta \omega})^{-1} = 700 \) \( \mu s \) set by the classical broaden-
ing. Even when \( \zeta \) reaches 1, the initial squeezing still

FIG. 2 (color online). Metrological squeezing parameter \( \zeta \)
as a function of time. The phase variance for an initial CSS (black
solid circles, dotted line) or phase-squeezed state (red solid
squares, dashed line) increases due to classical frequency noise.
The number variance of a number-squeezed state (green open
circles) or the phase variance of a phase-squeezed state protected
by a spin echo (blue open squares) can remain below the SQL
(solid black line) substantially longer. Error bars show the
statistical uncertainty of the variance determination. Inset:
Signal contrast \( C \) for the CSS (black solid circles) and squeezed
states (red solid squares).
fractional stability (0.7 Hz absolute stability) due to slow drifts of the magnetic field in our apparatus.

The performance of our clock benefits from squeezing because we impose the constraint of a short Ramsey precession time. For long interrogation times the classical frequency noise dominates the initial phase noise and our clock is projection-noise limited. External constraints on the interrogation time do, however, occur in practice. For instance, the precession time in optical frequency standards is typically limited by dephasing of the local oscillator laser, not atomic decoherence, so that their performance could be improved by the use of squeezed input states [15,16].

The phase noise of our squeezed clock (=3 mrad) is already close to that of state-of-the-art fountain clocks [2], whose SQL is ~1 mrad. Our frequency stability is comparatively poor only because this phase uncertainty is divided by a much shorter Ramsey precession time (200 µs instead of ~1 s). If the classical frequency noise in our clock could be controlled at the level of ~100 µHz, perhaps by replacing the dipole trap with a magnetic trap at the magic bias field of 3.23 G, the squeezed lifetime could be extended sufficiently to allow a Ramsey precession time of 1 s, as demonstrated by Treutlein et al. on an atom chip similar to the one used in the present experiment [22]. Even without improvements to our squeezed-state preparation or 9 s cycle time [23], this could yield a short-term instability of $\sigma(\tau) \approx 2 \times 10^{-9} s^{1/2}/\sqrt{\tau}$, within an order of magnitude of the instability of current fountain clocks [2].

This work was supported in part by the NSF, DARPA, and the NSF Center for Ultracold Atoms. M.H.S. acknowledges support from the Hertz Foundation and NSF. I.D.L. acknowledges support from NSERC.