

Massachusetts Institute of Technology

16.07 Dynamics

Problem Set 1

Out date: Sep 08, 2004
Due date: Sep 15, 2004

	Time Spent [minutes]
Problem 1	
Problem 2	
Study Time	

Turn in each problem on separate sheets so that grading can be done in parallel

Problem 1 - Vectors Review

Part A

An observer on the ground sees an aircraft flying with velocity ($0 \mathrm{~m} / \mathrm{s}, 100 \mathrm{~m} / \mathrm{s},-10 \mathrm{~m} / \mathrm{s}$) relative to a fixed set of axis $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$. Another observer measures that the same aircraft is flying with velocity $(50 \mathrm{~m} / \mathrm{s}, 86.6 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s})$ using a different, but also fixed, set of axis $\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}, \boldsymbol{k}^{\prime}$.
a) If we know that $\boldsymbol{k}=-\boldsymbol{k}^{\prime}$, determine the components of the unit vectors $\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}, \boldsymbol{k}^{\prime}$, referred to $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$.
b) Calculate the components of the matrix, $[T]$, that transforms $\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}, \boldsymbol{k}^{\prime}$ coordinates, into $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ coordinates. Verify that $[T]^{T}=[T]^{-1}$.
c) If the first observer measures an acceleration of magnitude $3 \mathrm{~m} / \mathrm{s}^{2}$, along the direction of the vector $(-1,1,1)$, calculate what will be the acceleration (magnitude and direction) seen by the second observer.

Part B

The rigid cube $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ whose edges are $1 m$ long is free to rotate about its fixed vertex A. At the instant shown the cube is aligned with the coordinate system $x y z$. What is the velocity $v_{D^{\prime}}$ of vertex D^{\prime} if the velocities of vertices C and B^{\prime} are $v_{C}=(-4 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}, 0 \mathrm{~m} / \mathrm{s})$ and $v_{B^{\prime}}=(2 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s},-2 \mathrm{~m} / \mathrm{s})$?

Part C

Consider the vector in cartesian coordinates $\boldsymbol{r}(t)=\left(e^{t} \cos t^{2}, e^{t} \sin t^{2}, 0\right)$.
1.- Calculate the derivative of this vector with respect to t and give its components in the directions parallel and normal to \boldsymbol{r}.
2.- Calculate the time derivative of the modulus of \boldsymbol{r} with respect to t.
3.- Since the vector $\boldsymbol{r}(t)$ does not have a constant direction, calculate its angular velocity, $\boldsymbol{\Omega}(t)$.
4.- How do you relate the results of sections 2 and 3 to the components of the derivative calculated in section 1 ?

Problem 2-Rectilinear Kinematics

Part A

Car B is travelling a distance d, ahead of car A. Both cars are travelling at the same speed of $70 \mathrm{ft} / \mathrm{s}$, when the driver of B suddenly applies the brakes, causing his car to decelerate at $13 \mathrm{ft} / \mathrm{s}^{2}$. It takes the driver of car $A 0.8 \mathrm{~s}$ to react (this is a normal reaction time for drivers). When he applies his brakes, he decelerates at $16 \mathrm{ft} / \mathrm{s}^{2}$. We want to determine the minimum distance d between the two cars so as to avoid a collision.

Part B

We consider a car of mass $m=1000 \mathrm{~kg}$ travelling with speed $v_{0}=50 \mathrm{~m} / \mathrm{s}$ on a horizontal straight road. The only force on the car is the aerodynamic drag force which is of the form $k_{2} v^{2}$ (this is the usual form of the aerodynamic drag), where $k_{2}=6 \mathrm{~kg} / \mathrm{m}$. Assume that at $t=0, s=0$. Determine,

- how long will it take to reach a distance $s=500 \mathrm{~m}$?
- how long will it take to reach a distance $s=1500 \mathrm{~m}$?

Now, assume that the drag force is of the form $k_{1} v$ instead (this is the from of the drag force at very low speed) where $k_{1}=50 \mathrm{~kg} \mathrm{~s}$. Determine,

- how long will it take to reach a distance $s=500 \mathrm{~m}$?
- how long will it take to reach a distance $s=1500 \mathrm{~m}$?

