All problems are from Meriam and Kraige, Engineering Mechanics Dynamics, 5th Edition. Note that in previous editions the problem numbers are different.

- 2D rigid body motion

6/18, 6/22, 6/60, 6/66, 6/67, 6/68, 6/94, 6/104, 6/106, 6/141, 6/143, $6 / 201,6 / 205,6 / 213,6 / 223$ and $6 / 225$

- 3D rigid body motion
$7 / 5,7 / 20,7 / 27,7 / 49,7 / 55,7 / 70,7 / 71,7 / 83,7 / 85,7 / 88,7 / 90,7 / 93$, $7 / 100,7 / 102,7 / 108,7 / 110,7 / 117,7 / 122,7 / 123,7 / 140$ and $7 / 141$
- Central force motion and variable mass systems
$3 / 283,3 / 284,3 / 285,3 / 288,3 / 289,3 / 294,3 / 297,3 / 301,3 / 304,4 / 71$, $4 / 74,4 / 78$ and $4 / 98$
- Vibrations
$8 / 13,8 / 19,8 / 20,8 / 31,8 / 37,8 / 65,8 / 89,8 / 108,8 / 115,8 / 118,8 / 126$ and $8 / 133$

In addition you should be able to find the natural frequencies of the following two-degree of freedom oscillators:

In the first figure the pendulums consist of solid massless rods and the spring is unstretched when the rods are vertical. The spring is mounted distance x from the top of each rod. In the second figure the two masses are mounted on a massless string with total length $3 l$. The tension in the string is T.

