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Lecture 3:

Choice under Uncertainty (Wrap up)

Simultaneous Action Games



T he Allais Paradox

Problem 1:

p=1x%$300 versus ¢g =0.8x $500+ 0.2 x $0

Problem 2:

p' = 0.5x$300+0.5x%$0 versus ¢ = 0.4x$500+0.6x%$0

Typical choices p = g and ¢ = p’ are inconsistent with
independence:

p=q < p=05xp+05x%$0>05xq+05x%$0=¢.



The Ellsberg Paradox (Single Urn)

An urn contains three balls. One of the balls is RED. The
other two are either GREEN or WHITE.

Problem 1:
f= $100 G VErsus [ %100 R
— | $0 WUR 9= s0 Gquw
Problem 2:
;[ $100 GUW ;[ $100 RUW
= ( $0 J ) versus g = ( $0 G )

Typical choices g = f and f’ = ¢’ are inconsistent with any
subjective probability assessment on {G, W, R}.

The Ambiguity Aversion interpretation.



Machina and Schmeidler (1992)

Same model as Savage.

A function V : P — R satisfies stochastic dominance if
forany z,y € X, p€ P and a € (0, 1):

V(ady + (1 —a)p) > V(a5y + (1 —-a)p) & V() > V(5y)-

A function V: P — R is mixture continuous if for any
p,q,r € P the sets

{a€[0,1] : V(ap+ (1 —a)r) > V(g))}

{a€[0,1] : V(ap+ (1 —a)r) < V(g))}

are closed.



Probabilistic Sophistication

Definition 1 > probabilistically sophisticated if there
exist a probability 4 on S and a mixture continuous and
stochastic dominance satisfying V: P — R s.t.:

f=ge V>V

Axiom 5.2.1. (Strong Comparative Probability) For any
two disjoint events A and B, h,h’ € F and z,y,2',y € X
such that z =y and 2’ = ¢/
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Theorem 4 (M&S, 1992)

>~ satisfies 4.2.1-4.2.4 and 5.2.1 iff there exist a non-
atomic probability measure pu on S and a non-constant
V. P — R s.t. = is probabilistically sophisticated w.r.t. u
and V. Moreover, the probability measure p is unique.

Probabilistic sophistication is consistent with Allais, it is
inconsistent with Ellsberg.



Schmeidler (1989)

v: A — [0, 1] is a capacity (non-additive measure) if v(0) =
0, v(S) =1, and v(A) > v(B) whenever B C A.

Choquet Integral:

Let o: S — R be a simple function

+o0
/Sgodz/ = /OOO[V({S cp(s) > al)—1] doz—|—/o v({s: p(s) > a})da.

Simple Anscombe-Aumann acts:

H={h|h:S— P and |h(S)| < oo} .

Mixtures of Anscombe-Aumann acts:

[ah + (1 — a)K'](s) = ah(s) + (1 — a)h/'(s) seS.



Two acts f,g € H are comonotonic if it is never the case
that f(s) = f(t) and g(s) < g(t) for some s,t € S.

Axiom 5.3.1. (Preference) > is a preference over H.

Axiom 5.3.2. (Non-degeneracy) There exist some h*, hy €
H with h* = hs.

Axiom 5.3.3. (Comonotonic Independence) For any pair-
wise comonotonic acts f,g,h € H and o € (0,1):
f=g=af+ (1 —-a)h>=ag+ (1 —a)h.

Axiom 5.3.4. (vNM-Continuity) For any f,g9,h € H, if
f = g > h then there exist o, 3 € (0,1) such that:

af+ (1 —-a)h>g>=pf+ (1 —-p)h.

Axiom 5.3.5. (Monotonicity) For any f,g € H, if f(s) =
g(s) for all s € S then f > g.



Theorem 5 (Schmeidler, 1989) » satisfies 5.3.1-5.3.5 iff
there is a capacity v: A — [0,1] and a non-constant linear

function U: P — R s.t.:
frrg < /SUodeE/SUong f,ge H

Moreover v is unique and U is unique up to a positive affine
transformation.

Example: (Choquet-EU & Ellsberg) U($100) =1, U($0) =
0, v()) =v(G) =v(W) =0, v(R) =v(RUG) = v(RUW) =
1/3, v(GUW) = 2/3, and v(S) = 1.

/SUof dv =0, /SUog dv = 1/3, /SUof’ dv = 2/3, /SUog’ dv = 1/3.



Uncertainty Aversion

~ exhibits uncertainty aversion if:

fmg = af+ (1 —-a)g =g

Example:

_ (%00 @ _(sw00 W
f‘( $0 WuR) and h‘( $0 GUR)

The 1/2-1/2 mixture of these acts yield:

1, 1 1 1
5f+§h:<2$10?55r2$o GL]J%I/V)}ho.



The core of v:

core(v) = {u|p is a probability measure and u > v}.

v is convex if v(A) +v(B) <v(AUB)+v(ANB).
Theorem 6(Schmeidler, 1989) Let = be, v and U be as
in Theorem 5. Then the following are equivalent:

(i) > exhibits uncertainty aversion,

(ii) v is convex,

(iii) For any simple function ¢: S — R:

dv=min / dp.
/SSO pecore(v) SSO K



T he Maxmin Model

5.3.1-5.3.5 and uncertainty aversion imply:

- & min /Uod> min /Uod
fzg uecore(v) J S / 'u_,uECOfre(z/) S g o

Example: v is convex and

core(v) = {u| u(G) + p(W) = 2/3, & u(R) = 1/3}.
Rank-dependent Model: (Quiggin, 1982) Intersection of
the Choquet-EU model and probabilistic sophistication.

V=770

It is consistent with Allais, inconsistent with Elisberg.



Simultaneous Action Games:

1. Normal Form Games
(no payoff uncertainty)

2. Bayesian Games
(with payoff uncertainty)



Preliminaries

A(X): the set of probability distributions over X.
(Technical: If X is infinite, we will assume that X has a
topology and set A(X) to be the set of all Borel probability
measures)

If X =]Len X;, then for any x € X and 7 € N:

Xi= Il X5 & z_ij=(x))jen (i)
JEN\{3}

An event E is Mutual Knowledge (MK) if everybody
knows E.

E is Common Knowledge (CK) if everybody knows F,
everybody knows that everybody knows E, everybody knows
that everybody knows that everybody knows FE,...



Normal Form Games



Normal Form Games & Strategies

A normal form game is a triplet (N, A = [[;eny Ai,u = (U;)ieN):
e N={1,...,n} is a finite set of players.
e A, is the set of actions (pure strategies) of player i.

e u;: A — R is player i's vNM utility function over action
profiles.

A(A;): mixed strategies of player i. (deliberate random-
ization by 1, j3's belief about i's play, steady state popula-
tion proportions, pure strategies in a perturbed game)

A mixed strategy profile can be independent (¢ = (o7 X
... X op) or correlated (c € A(A).)

Payoffs are extended to mixed strategies by u;(0) = Esu;.

A (normal form) game is finite if A is finite.



Best Reply
The game is common knowledge among players.

Player ¢ is rational if he maximizes his expected payoff
subject to a belief about others’ play.

Let o_;, € A(A_;). af is a pure best reply to o_; if:

1
Va; € A; 0 wui(a;,0_;) > wi(a;,0_;).

o is a mixed best reply of i to o_; if:

1
Vo, € A(A;) 0 wi(o],0-;) > ui(og,0_;).

BY(o_;): i's pure best replies to o_;.
B;(o_;): i's mixed best replies to o_;.
Note: B;(0_;) = A (Bf(a_i)>.



Domination

o, strictly dominates g; if:

N~

Vo_; € A(ALy) 1 wi(og,0-3) > ui(oy,0-4).

~

o, weakly dominates o; if:

~

Vo_; € A (A—z) : uz'(O',E,O'_Z‘) > u;(o;,0_;) and

Jo_; € A(AL) 1 uiof,0-4) > ui(og,0-5).

Note: Alternative definitions where quantifiers are changed
to independently mixed strategy profiles o_;, or to action
profiles a_; are the same.

Theorem: In a finite normal form game, an action a,f IS
never a best reply to any (possibly correlated) conjecture
o_; of 4 iff a7 is strictly dominated to a mixed strategy o;.



A strategy may be strictly dominated to a
Mmixed strategy but not to a pure strategy

Consider the row player’s payoffs in a 2 person game:

O S
Ol Wl
W O3




Allowing Correlated Conjectures is Crucial

Consider the row player’s payoffs in a 3 person game:

L R

=
o~

-t

O <
ol =] ] —
R
R <
-
Ol k=




Separation: Suppose C and D are nonempty, convex, dis-
joint sets in R™, and C is closed. Then, Ir € R™\ {0}:

VeeC,yec(D): r-x>1-1.

Proof of Thm: Suppose that a;f‘ IS not strictly dominated.

m

Let A—’i — {a,]iz | kL = 1, ...,m}, ’U/i<0'i, ) = (ui(aiﬂalii)>k:]_’

C = {ui(a;, ) —ui(o;,-) | 0, € A(A;)}.

Assumptions above are satisfied for C and D = (—oc0,0)™.
So there is r € R™\ {0} as in above.

Verify r > 0. Let o_;(a*,) =ry/ X, 7. For any oy

|
ui(a;,o_;)—ui(o;,0_;) = (Z Tz) r-[u;(a;, ) —u; (04, )] > 0.
=1



