14.126 Game Theory

Haluk Ergin \& Muhamet Yildiz

Lecture 3:

Choice under Uncertainty (Wrap up)

Simultaneous Action Games

The Allais Paradox

Problem 1:

$$
p=1 \times \$ 300 \quad \text { versus } \quad q=0.8 \times \$ 500+0.2 \times \$ 0
$$

Problem 2:
$p^{\prime}=0.5 \times \$ 300+0.5 \times \$ 0 \quad$ versus $q^{\prime}=0.4 \times \$ 500+0.6 \times \$ 0$

Typical choices $p \succ q$ and $q^{\prime} \succ p^{\prime}$ are inconsistent with independence:
$p \succ q \quad \Leftrightarrow \quad p^{\prime}=0.5 \times p+0.5 \times \$ 0 \succ 0.5 \times q+0.5 \times \$ 0=q^{\prime}$.

The Ellsberg Paradox (Single Urn)

An urn contains three balls. One of the balls is RED. The other two are either GREEN or WHITE.

Problem 1:

$$
f=\left(\begin{array}{cc}
\$ 100 & G \\
\$ 0 & W \cup R
\end{array}\right) \quad \text { versus } \quad g=\left(\begin{array}{cc}
\$ 100 & R \\
\$ 0 & G \cup W
\end{array}\right)
$$

Problem 2:

$$
f^{\prime}=\left(\begin{array}{cc}
\$ 100 & G \cup W \\
\$ 0 & R
\end{array}\right) \quad \text { versus } \quad g^{\prime}=\left(\begin{array}{cc}
\$ 100 & R \cup W \\
\$ 0 & G
\end{array}\right)
$$

Typical choices $g \succ f$ and $f^{\prime} \succ g^{\prime}$ are inconsistent with any subjective probability assessment on $\{G, W, R\}$.

The Ambiguity Aversion interpretation.

Machina and Schmeidler (1992)

Same model as Savage.

A function $V: P \rightarrow \mathbb{R}$ satisfies stochastic dominance if for any $x, y \in X, p \in P$ and $\alpha \in(0,1)$:
$V\left(\alpha \delta_{x}+(1-\alpha) p\right) \geq V\left(\alpha \delta_{y}+(1-\alpha) p\right) \Leftrightarrow V\left(\delta_{x}\right) \geq V\left(\delta_{y}\right)$.

A function $V: P \rightarrow \mathbb{R}$ is mixture continuous if for any $p, q, r \in P$ the sets

$$
\begin{aligned}
& \{\alpha \in[0,1]: V(\alpha p+(1-\alpha) r) \geq V(q))\} \\
& \{\alpha \in[0,1]: V(\alpha p+(1-\alpha) r) \leq V(q))\}
\end{aligned}
$$

are closed.

Probabilistic Sophistication

Definition $1 \succeq$ probabilistically sophisticated if there exist a probability μ on S and a mixture continuous and stochastic dominance satisfying $V: P \rightarrow \mathbb{R}$ s.t.:

$$
f \succeq g \Leftrightarrow V\left(p_{f}^{\mu}\right) \geq V\left(p_{g}^{\mu}\right) .
$$

Axiom 5.2.1. (Strong Comparative Probability) For any two disjoint events A and $B, h, h^{\prime} \in F$ and $x, y, x^{\prime}, y^{\prime} \in X$ such that $x \succ y$ and $x^{\prime} \succ y^{\prime}$:

$$
\begin{aligned}
&\left(\begin{array}{ll}
x & A \\
y & B \\
h & (A \cup B)^{c}
\end{array}\right) \succeq\left(\begin{array}{ll}
x & B \\
y & A \\
h & (A \cup B)^{c}
\end{array}\right) \\
& \Leftrightarrow\left(\begin{array}{ll}
x^{\prime} & A \\
y^{\prime} & B \\
h^{\prime} & (A \cup B)^{c}
\end{array}\right) \succeq\left(\begin{array}{ll}
x^{\prime} & B \\
y^{\prime} & A \\
h^{\prime} & (A \cup B)^{c}
\end{array}\right) .
\end{aligned}
$$

Theorem 4 (M\&S, 1992)

\succeq satisfies 4.2.1-4.2.4 and 5.2.1 iff there exist a nonatomic probability measure μ on S and a non-constant $V: P \rightarrow \mathbb{R}$ s.t. \succeq is probabilistically sophisticated w.r.t. μ and V. Moreover, the probability measure μ is unique.

Probabilistic sophistication is consistent with Allais, it is inconsistent with Ellsberg.

Schmeidler (1989)

$\nu: \mathcal{A} \rightarrow[0,1]$ is a capacity (non-additive measure) if $\nu(\emptyset)=$
$0, \nu(S)=1$, and $\nu(A) \geq \nu(B)$ whenever $B \subset A$.
Choquet Integral:
Let $\varphi: S \rightarrow \mathbb{R}$ be a simple function
$\int_{S} \varphi d \nu=\int_{-\infty}^{0}[\nu(\{s: \varphi(s) \geq \alpha\})-1] d \alpha+\int_{0}^{+\infty} \nu(\{s: \varphi(s) \geq \alpha\}) d \alpha$.
Simple Anscombe-Aumann acts:

$$
H=\{h \mid h: S \rightarrow P \text { and }|h(S)|<\infty\} .
$$

Mixtures of Anscombe-Aumann acts:

$$
\left[\alpha h+(1-\alpha) h^{\prime}\right](s)=\alpha h(s)+(1-\alpha) h^{\prime}(s) \quad s \in S .
$$

Two acts $f, g \in H$ are comonotonic if it is never the case that $f(s) \succ f(t)$ and $g(s) \prec g(t)$ for some $s, t \in S$.

Axiom 5.3.1. (Preference) \succeq is a preference over H.
Axiom 5.3.2. (Non-degeneracy) There exist some $h^{*}, h_{*} \in$ H with $h^{*} \succ h_{*}$.

Axiom 5.3.3. (Comonotonic Independence) For any pairwise comonotonic acts $f, g, h \in H$ and $\alpha \in(0,1)$:

$$
f \succ g \Rightarrow \alpha f+(1-\alpha) h \succ \alpha g+(1-\alpha) h .
$$

Axiom 5.3.4. (vNM-Continuity) For any $f, g, h \in H$, if $f \succ g \succ h$ then there exist $\alpha, \beta \in(0,1)$ such that:

$$
\alpha f+(1-\alpha) h \succ g \succ \beta f+(1-\beta) h .
$$

Axiom 5.3.5. (Monotonicity) For any $f, g \in H$, if $f(s) \succeq$ $g(s)$ for all $s \in S$ then $f \succeq g$.

Theorem 5 (Schmeidler, 1989) \succeq satisfies 5.3.1-5.3.5 iff there is a capacity $\nu: \mathcal{A} \rightarrow[0,1]$ and a non-constant linear function $U: P \rightarrow \mathbb{R}$ s.t.:

$$
f \succeq g \quad \Leftrightarrow \quad \int_{S} U \circ f d \nu \geq \int_{S} U \circ g d \nu \quad f, g \in H
$$

Moreover ν is unique and U is unique up to a positive affine transformation.

Example: (Choquet-EU \& Ellsberg) $U(\$ 100)=1, U(\$ 0)=$ $0, \nu(\emptyset)=\nu(G)=\nu(W)=0, \nu(R)=\nu(R \cup G)=\nu(R \cup W)=$ $1 / 3, \nu(G \cup W)=2 / 3$, and $\nu(S)=1$.
$\int_{S} U \circ f d \nu=0, \int_{S} U \circ g d \nu=1 / 3, \int_{S} U \circ f^{\prime} d \nu=2 / 3, \int_{S} U \circ g^{\prime} d \nu=1 / 3$.

Uncertainty Aversion

\succeq exhibits uncertainty aversion if:

$$
f \succeq g \quad \Rightarrow \quad \alpha f+(1-\alpha) g \succeq g .
$$

Example:

$$
f=\left(\begin{array}{cc}
\$ 100 & G \\
\$ 0 & W \cup R
\end{array}\right) \quad \text { and } \quad h=\left(\begin{array}{cc}
\$ 100 & W \\
\$ 0 & G \cup R
\end{array}\right)
$$

The 1/2-1/2 mixture of these acts yield:

$$
\frac{1}{2} f+\frac{1}{2} h=\left(\begin{array}{cc}
\frac{1}{2} \$ 100+\frac{1}{2} \$ 0 & G \cup W \\
\$ 0 & R
\end{array}\right) \succ f \sim h .
$$

The core of ν :

$$
\operatorname{core}(\nu)=\{\mu \mid \mu \text { is a probability measure and } \mu \geq \nu\} .
$$

ν is convex if $\nu(A)+\nu(B) \leq v(A \cup B)+\nu(A \cap B)$.

Theorem 6(Schmeidler, 1989) Let $\succeq b e, \nu$ and U be as in Theorem 5. Then the following are equivalent:
(i) \succeq exhibits uncertainty aversion,
(ii) ν is convex,
(iii) For any simple function $\varphi: S \rightarrow \mathbb{R}$:

$$
\int_{S} \varphi d \nu=\min _{\mu \in \operatorname{core}(\nu)} \int_{S} \varphi d \mu
$$

The Maxmin Model

5.3.1-5.3.5 and uncertainty aversion imply:

$$
f \succeq g \quad \Leftrightarrow \quad \min _{\mu \in \operatorname{core}(\nu)} \int_{S} U \circ f d \mu \geq \min _{\mu \in \operatorname{core}(\nu)} \int_{S} U \circ g d \mu
$$

Example: ν is convex and

$$
\operatorname{core}(\nu)=\{\mu \mid \mu(G)+\mu(W)=2 / 3, \& \mu(R)=1 / 3\}
$$

Rank-dependent Model: (Quiggin, 1982) Intersection of the Choquet-EU model and probabilistic sophistication.

$$
\nu=\gamma \circ \mu
$$

It is consistent with Allais, inconsistent with Ellsberg.

Simultaneous Action Games:

\author{

1. Normal Form Games
 (no payoff uncertainty)
}

2. Bayesian Games (with payoff uncertainty)

Preliminaries

$\Delta(X)$: the set of probability distributions over X.
(Technical: If X is infinite, we will assume that X has a topology and set $\Delta(X)$ to be the set of all Borel probability measures)

If $X=\prod_{i \in N} X_{i}$, then for any $x \in X$ and $i \in N$:

$$
X_{-i}=\prod_{j \in N \backslash\{i\}} X_{j} \quad \& \quad x_{-i}=\left(x_{j}\right)_{j \in N \backslash\{i\}} .
$$

An event E is Mutual Knowledge (MK) if everybody knows E.
E is Common Knowledge (CK) if everybody knows E, everybody knows that everybody knows E, everybody knows that everybody knows that everybody knows E, \ldots

Normal Form Games

Normal Form Games \& Strategies

A normal form game is a triplet $\left(N, A=\prod_{i \in N} A_{i}, u=\left(u_{i}\right)_{i \in N}\right)$:

- $N=\{1, \ldots, n\}$ is a finite set of players.
- A_{i} is the set of actions (pure strategies) of player i.
- $u_{i}: A \rightarrow \mathbb{R}$ is player i 's $v N M$ utility function over action profiles.
$\Delta\left(A_{i}\right)$: mixed strategies of player i. (deliberate randomization by i, j 's belief about i 's play, steady state population proportions, pure strategies in a perturbed game)

A mixed strategy profile can be independent ($\sigma=\left(\sigma_{1} \times\right.$ $\ldots \times \sigma_{n}$) or correlated ($\sigma \in \Delta(A)$.)

Payoffs are extended to mixed strategies by $u_{i}(\sigma)=\mathbb{E}_{\sigma} u_{i}$.
A (normal form) game is finite if A is finite.

Best Reply

The game is common knowledge among players.

Player i is rational if he maximizes his expected payoff subject to a belief about others' play.

Let $\sigma_{-i} \in \Delta\left(A_{-i}\right) . a_{i}^{*}$ is a pure best reply to σ_{-i} if:

$$
\forall a_{i} \in A_{i}: \quad u_{i}\left(a_{i}^{*}, \sigma_{-i}\right) \geq u_{i}\left(a_{i}, \sigma_{-i}\right)
$$

σ_{i}^{*} is a mixed best reply of i to σ_{-i} if:

$$
\forall \sigma_{i} \in \Delta\left(A_{i}\right): \quad u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right)
$$

$B_{i}^{p}\left(\sigma_{-i}\right): i$'s pure best replies to σ_{-i}.
$B_{i}\left(\sigma_{-i}\right): i$'s mixed best replies to σ_{-i}.
Note: $B_{i}\left(\sigma_{-i}\right)=\Delta\left(B_{i}^{p}\left(\sigma_{-i}\right)\right)$.

Domination

σ_{i}^{\prime} strictly dominates σ_{i} if:

$$
\forall \sigma_{-i} \in \Delta\left(A_{-i}\right): \quad u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)>u_{i}\left(\sigma_{i}, \sigma_{-i}\right)
$$

σ_{i}^{\prime} weakly dominates σ_{i} if:

$$
\begin{array}{cc}
\forall \sigma_{-i} \in \Delta\left(A_{-i}\right): & u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right) \text { and } \\
\exists \sigma_{-i} \in \Delta\left(A_{-i}\right): & u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)>u_{i}\left(\sigma_{i}, \sigma_{-i}\right) .
\end{array}
$$

Note: Alternative definitions where quantifiers are changed to independently mixed strategy profiles σ_{-i}, or to action profiles a_{-i} are the same.

Theorem: In a finite normal form game, an action a_{i}^{*} is never a best reply to any (possibly correlated) conjecture σ_{-i} of i iff a_{i}^{*} is strictly dominated to a mixed strategy σ_{i}.

A strategy may be strictly dominated to a mixed strategy but not to a pure strategy

Consider the row player's payoffs in a 2 person game:

	L	R
	3	0
M	0	3
D	0	1
	1	1

Allowing Correlated Conjectures is Crucial

Consider the row player's payoffs in a 3 person game:

Separation: Suppose C and D are nonempty, convex, disjoint sets in \mathbb{R}^{m}, and C is closed. Then, $\exists r \in \mathbb{R}^{m} \backslash\{0\}$:

$$
\forall x \in C, y \in \operatorname{cl}(D): \quad r \cdot x \geq r \cdot y
$$

Proof of Thm: Suppose that a_{i}^{*} is not strictly dominated.
Let $A_{-i}=\left\{a_{-i}^{k} \mid k=1, \ldots, m\right\}, u_{i}\left(\sigma_{i}, \cdot\right)=\left(u_{i}\left(\sigma_{i}, a_{-i}^{k}\right)\right)_{k=1}^{m}$,

$$
C=\left\{u_{i}\left(a_{i}^{*}, \cdot\right)-u_{i}\left(\sigma_{i}, \cdot\right) \mid \sigma_{i} \in \Delta\left(A_{i}\right)\right\}
$$

Assumptions above are satisfied for C and $D=(-\infty, 0)^{m}$. So there is $r \in \mathbb{R}^{m} \backslash\{0\}$ as in above.

Verify $r \geq 0$. Let $\sigma_{-i}\left(a_{-i}^{k}\right)=r_{k} / \sum_{l=1}^{m} r_{l}$. For any σ_{i} :
$u_{i}\left(a_{i}^{*}, \sigma_{-i}\right)-u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\left(\sum_{l=1}^{m} r_{l}\right)^{-1} r \cdot\left[u_{i}\left(a_{i}^{*}, \cdot\right)-u_{i}\left(\sigma_{i}, \cdot\right)\right] \geq 0$.

