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CHAPTER 1

INTRODUCTION

The analysis of wave motion in layered media is of

interest to both seismologists and engineers. Applications-

in the area of seismology focus on the study of propagation

of seismic waves in layered media. On the other hand, the

engineer is interested in the dynamic behavior of a struc-

ture built on a layered soil deposit. The structure may be

excited by seismic waves propagating in the layered medium.

Alternatively, the excitation may be due to vibrations (for

example, machine vibrations) within the structure itself. In

fact, this leads to a problem which has been the subject of

intensive investigation in the last two decades, namely, the

analysis of forced vibrations of foundations. The analytical

solutions which have been calculated (for example, [5, 12,

13, 221) are applicable to highly idealized situations. For

the analysis of problems which arise in practice one must

rely upon numerical methods. However, it must be noted that

analytical solutions apart from being of considerable theo-

retical interest provide the means for checking numerical

solutions.

A numerical method for the analysis of wave motion in

layered media which accounts for the radiation into the far

field was presented by Lysmer and Waas[16] and Waas[23].

Time-harmonic waves in plane strain or antiplane shear as

well as axisymmetric waves in a layered stratum were con-
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sidered. The method is based on the calculation (by the fi-

nite element method) of semidiscrete solutions (modes) sat-

isfying homogeneous boundary conditions. The solution in the

far field is written as a linear combination of such semi-

discrete modes. It is combined with a fully discrete solu-

tion (obtained using the finite element method) in the part

of the region where inhomogeneous boundary conditions are

given. The method was extended by Kausel[6] to nonaxisym-

metric waves in axisymmetric regions of a layered stratum.

We note that in these developments the semidiscrete solu-

tions were used in regions of infinite extent. An extension

to wave motion in a finite region of the stratum with homo-

geneous boundary conditions was presented by Kausel and

Rodsset[9]. In this work we consider a further extension. We

develop a technique for the analysis of wave motion in fi-

nite regions of a layered medium with inhomogeneous boundary

conditions. We calculate semidiscrete particular solutions

satisfying the inhomogeneous boundary conditions and then

combine these solutions with semidiscrete modes satisfying

the corresponding homogeneous boundary conditions. We show

that one can find semidiscrete particular solutions for a

variety of inhomogeneous boundary conditions. The resulting

improvements with respect to computational effort are sig-

nificant.

In Chapter 2 we review the previous work. In Chapter 3
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we develop in detail some plane elements. We consider the

boundary conditions corresponding to a rigid and rough strip

footing. The development of other plane elements is outlined.

In Chapter 4 we present some axisymmetric elements. We focus

on boundary conditions corresponding to rigid and rough cir-

cular and ring footings. Other axisymmetric elements are also

considered. In Chapter 5 we discuss some applications which

illustrate the use of the elements developed in this work.

The conclusions of this work as well as some ideas on pos-

sible extensions are summarized in Chapter 6.
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CHARTER 2

REVIEW OF PREVIOUS WORK

The elements to be developed in this study share common

underlying techniques with those described in the works of

Lysmer [14], Lysmer and Drake [15], Lysmer and Waas 1161,

Waas [23], Kausel [6 ], Kausel, Roesset and Waas [10], Kausel

and Roesset [9 ]. In this chapter, we review rather briefly

those earlier studies. Special attention is given to the

derivation of the eigenvalue problem which is essential to the

development of the elements.

2.1 SOME PRELIMINARIES-

The techniques developed in the references cited above

are applicable to the analysis of time-harmonic wave motion

in an isotropic linearly viscoelastic layered stratum. In

systems of rectangular Cartesian coordinates (x, y, z), or

cylindrical coordinates (r, e, z), the stratum is understood

as the region 0 < z < h, i.e., the region between the paral-

lel planes z = 0 and z = h (h denotes the depth of the stra-

tum). The boundaries at z = 0 and z = h will be referred to

as the surface and the base of the stratum respectively. Each

layer of the stratum is assumed homogeneous. Interfaces of

layers are planes parallel to the surface and the base of the

stratum. If there are M layers in the stratum, layer j,

1 < j < M, is the region between the planes z = z. and
J

z = Zj+ with



0 =z < z2 <z 3 <...<z < z <... M+1 h1 2 3J j+l l

The depth of layer j will be denoted by h.. It is given by
J

h = Zj+l - zj

Layers are assumed to be "bonded" at interfaces, i.e., the

stresses acting on the interfaces as well as all displacement

components are required to be continuous there.

The mass density of layer j will be denoted by p and

the Lame moduli by X. and G.. Poisson's ratio v. is then
J JJ

given by

Vj = 2( X + G )

The Lam6 moduli X,G are real for a linearly elastic solid.

However, they must be specified as complex-valued functions

of the frequency w for a linearly viscoelastic solid. Poisson's

ratio v is real if the viscosity of the material is identical

in bulk (volumetric) and shear deformations. It is well

known that the differential equations which must be satisfied

by a time-harmonic displacement field in a linearly visco-

elastic solid are formally the same as those in a linearly

elastic material. The moduli appearing in the coefficients

of the equations for the linearly viscoelastic material are,

however, complex numbers. The methods of analysis we are con-

sidering here may be applied to both cases with the same ease.

The presence of complex coefficients results, of course, in a
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slightly greater number of operations using complex arith-

metic. However, the dissipative behavior of a viscoelastic

material excludes resonance and thus computational troubles

are avoided. In this work, dissipative behavior of the hys-

teretic type identical in bulk and shear straining will be

assumed. In this case the complex Lamd moduli are given by

c = X(1 + 2$i) , Gc = G(l + 2$i)

X and G are the moduli of the corresponding linearly elastic

solid. S (real number) is the fraction of critical damping.

For dissipative behavior a must be positive for w > 0 ( all

field quantities varying in time as exp(iwt) ). Alternatively,

the above expressions for the moduli may be rewritten as

c= X(1 + 2asgn(U)i) , Gc = G(1 + 2 sgn(w)i)

with 5 > 0 (sgn is the sign function). Since damping is

assumed to be of the hysteretic type, $ is a constant (it is

independent of the frequency). Some more details are given

by Waas [23] and Kausel [6 ]. The fraction of critical damp-

ing of layer j will be denoted by 5.. Since, as already
J

stated, the equations we shall be dealing with are formally

the same for linearly elastic and linearly viscoelastic mater-

ials, derivations need be given for, say, linearly elastic

solids only. If the corresponding results are desired for a
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linearly viscoelastic material, then, simply, the Lame moduli

X and G must be replaced by the complex counterparts Ac and GC.

2.2 A STRATUM IN PLANE STRAIN

We consider time-harmonic vibrations of a stratum in

plane strain. The displacement vector, in a system of rec-

tangular Cartesian coordinates (x, y, z) is

u(x,z)
0 exp(iwt)

w (x, z)

i.e., particle motion is in the x-z plane and independent of

the y coordinate. w is the frequency of time-harmonic vibra-

tions. In layer j, 1 < j : M, the governing differential

equations are

22 ~ 2 2
(A. + 2G ) + X 3 w + G. - + I + p.w u = 0 (2.la)J i w2 3 z 2 3u 3w

(A. + 2G )a + a 32u + G. -w + 2 u + Pw2w = 0 (2.lb)
Sz2 j3x3z 3 ax2  3x0 z

The amplitudes of the stresses are given by

S= (A + 2G) au+ a (2.2a)

Tx = G + (2.2b)
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(2.2c)az =( + 2G) - + u.
z - a z a x

The amplitudes u, w, az' In must be continuous at the

interfaces of the layers, i.e., at z = z., 2 < j < M. The

conditions on z' Txz may be written as

(x + 2G. ) + a 3u - (X.+ 2G )3 + .
j-l 3z - J-13) Zx - J jaz Z=Z 3x z-z

J J J J

(2.3a)

G. + 3u - G. + . (2.3b)
-13x - az -- 3x + Dz +

. J J. L J J

Boundary conditions must be given on the surface and the

base of the stratum, i.e., at z = z1 = 0 and z = zM+1 = h.

If the stratum is understood as an idealization of a soil de-

posit, the surface is assumed free and the base fixed. Then

the boundary conditions are

(X + 2G) 3-w + X 3u Z=1 3z z= 3xz=0

G 3 + 9u - 0
l ax Iz=0 az z=0

u(x,h) = 0

w(x,h) = 0

- 0 (2.4a)

(2.4b)

(2.4c)

(2.4d)

The displacement field in a stratum with homogeneous

boundary conditions such as (2.4a, b, c, d) may be written as
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the superposition of modes obtained by separating the vari-

ables x and z and then solving an eigenvalue problem in the

interval 0 < z < h. Let us look for solutions of the govern-

ing differential equations (2.la,b) of the form

u(x, z) = U (z) f (x)

w(x,z) = W(z)f(x)

(2.5a)

(2.5b)

Substituting (2.5a,b) into (2.la,b), we obtain

d2f 2

dx2
(2.6)

in which k is a constant. We also find that, in layer j, U

and W must satisfy the equations

dW d2U
k 2 (X. + 2G.)U + ik(X. + G -- G. p , =

J J J j dz dz2 3

2 ddW 2
k G.W + ik(X.+G.) d- - (X + 2G.) 2 -W W =

J J d dz 2 J

From equation (2.6) it follows that the modes

by

u(x,z) = U(z) exp(-ikx)

w(x,z) = W(z) exp(-ikx)

For a mode the conditions (2.3a,b) become

0 (2.7a)

0 . (2.7b)

are given

(X3- + 2G z _-ikX. U(z )= (x + 2G )d- z -ikX.U(z )
2GJ-1Jdz dz

1 3

Gj-1 r-ikW(z ) + z - = G -+ +
Lz . ikW(z) + --ZZj d z=z .3- Z= J.

(2.7c)

(2.7d)
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and the boundary conditions (2.4a,b,c,d)

(X + 2G ) dW
z=0

- ikX1 U(0) = 0

- ikW (0) + dUz Z
dz z=0

U(h) = 0

= 0

(2.7e)

(2.7f)

(2.7g)

W(h) = 0 . (2.7h)

The differential equations (2.7a,b), together with the

conditions (2.7c, d, e, f, g, h ) define an eigenvalue prob-

lem in the interval 0 < z < h. The values of k for which non-

trivial solutions U,W (eigenfunctions) exist are the eigen-

values of the problem.

Let us write the amplitudes u, w as

ax a z

az ax

(2.8a)

(12. 8b)

$ and $ are potentials satisfying, in layer j

2 2 2
L+ =- I 4

ax z2 [CJ]
L

2 2 2

2 2 2ax 3z [CT]

(2.9a)

(2.9b)

C3 denotes the velocity of transverse (shear, rotational,T

equivoluminal) waves in layer j and is given by
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I G. ,1/2
C3 = l

. T

CDL denotes the velocity of longitudinal (pressure, irrotation-

al, dilatational) waves in layer j and is given by

. ~ . + 2G. 1/2
C3 = _j

L pi

-We look for solutions of (2.9a,b) of the form

$(x,z) = Nz) exp(-ikx) (2.10a)

$(x,z) = '(z) exp(-ikx) . (2.10b)

Substituting (2.10a,b) into (2.9a,b) we find

d20-- 2 + q 2 = 0 (2.lla)
dz 2

2+ p = 0 . (2.1lb)
dz 2

qg, pj are given by

q2 + k2 2 (2.12a)
[Cj]2

2 2 2
p + k2 W (2.12b)

[Cj]2

Thus we obtain

D(z) = Aj cos(q.z) + A sin (qz) (2.13a)1 A 2 (2.13b)

14(z) = Ai cos(pjz) + Ai sin (pjz) .(2.13b)

3 J4J
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From equations (2.8a,b) we find

U = -ikO - (2.14a)

d4)
W = - - ikV . (2.14b)

Clearly, from (2.13a,b) and (2.14a,b) , the eigenfunctions U,W

may be expressed in terms of elementary functions. The coef-

ficients A ' A , A A4 may be obtained in terms of U(z),

W(z ), U(zj+ 1 ), W(zj+1). Thus the eigenfunctions U,W are

completely specified by the 2M values U(z ), W(z ), 1 < j 4 M,

since U(h) = W(h) = 0 by the boundary conditions (2.7g,h).

These must be such that the boundary conditions (2.7e,f) as

well as the conditions (2.7c,d) at interfaces of the layers

be satisfied. Thus we obtain a system of 2M homogeneous

linear equations for the 2M values U(z.), W(z), 1 j . M.

The matrix of coefficients involves transcendental functions.

Nontrivial solutions are possible for those values of k which

render the matrix singular. Thus the frequency equation or

dispersion relation is obtained by equating the determinant

of the matrix to zero. However, k appears in the argument of

transcendental functions. Finding roots of such an equation

is, in general, a formidable task. Search methods are typic-

ally used. The set of eigenvalues (wave numbers) k for a

given frequency w is infinite but countable [ 2,17 ]. Values

of the frequency for which k=0 is an eigenvalue are usually

referred to as cut-off frequencies or natural frequencies.

The corresponding modes are waves traveling up and down in
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the layers. Calculation of the cut-off frequengies is, in

general, difficult.. If the stratum is homogeneous, i.e.,

there is only one layer (M=1), the cut-off frequencies are

easily found. They are given by

(i) h (2n-1) n = 1,2,... , (2.15a)
CL2

the modes being longitudinal waves with u(x,z) = 0, and

(ii) = (2n-1) n = 1,2,... , (2.15b)CT

the modes being transverse waves with w(x,z) = 0.

The displacement vector for a mode of vibration is

U(z)

0 exp(iwt - ikx) . (2.16)
-W(z)

We assume that w is not a cut-off frequency. Then k # 0.

Suppose that Im[k] = 0, i.e., the wave number k is real. The

phase of the wave is propagating in the positive x-direction,

if k is positive, or in the negative x-direction, if k is

negative. Waas [23] shows that phase propagation and energy

propagation are not always in the same direction for travel-

ing waves in plane strain. If a region of finite extent is

considered (for example, x1 < x < x2)' the mode is admissible.

If the region is of infinite extent (for example x > 0), the

mode is admissible only if it satisfies the radiation condi-
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tion. For example, energy radiation in the region x > 0 re-

quires that energy propagation be in the positive x-direction

[23]. Let us now ass-ume that Im[k] .0. The mode is then an

evanescent wave. If Relk] 0, there is a propagating phase,

while if Re[k] = 0, the mode is a standing wave. Again, the

mode is admissible in a region of finite extent. However, if

the region is of infinite extent, the mode is admissible only

if it satisfies the boundedness condition. For example, if

the region x > 0 is considered, the boundedness condition

requires that waves be bounded for arbitrarily large x > 0,

i.e., Im[k] < 0.

Let us consider now the derivation of an algebraic eigen-

value problem for the calculation of approximate wave numbers

k and eigenfunctions U and W. Following Waas [23], we use

the finite element method. Each layer of the stratum is di-

vided into sublayers the depth of which is much smaller than

the minimum wavelength of traveling waves in the layer,

i.e., the wavelength of transverse waves. It is then reason-

able to seek approximate eigenfunctions which are linear func-

tions of z in each sublayer. Let us assume that the stratum

is divided into N sublayers. Finite elements are the line

segments [z., zj 1, 1 < j < N, corresponding to these N sub-

layers. The eigenfunctions U and W are the amplitudes of the

displacements at x = 0. Let 6U and 6W (functions of z) be

the amplitudes of virtual displacements at x 0. After mul-

tiplying the left-hand sides of equations (2.7a) and (2.7b)
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by 6U and SW respectively and adding them, we obtain, for

sublayer j:

2 z j+1 2 z j+1
k (X. + 2G.) U6Udz + k G. WSWdz

J J z J z.

+ ikX. 5tWdz + ikG : f+ dU
z. .Wdz

J Z.

z j+1

- fz .
J

2 
z j

J z

z
d dU C
-I- - ikW] SUdz -

USUdz - 2 p W
z.

J

dW+2G ) - ikxU] SWdz

6Wdz = 0 (2.17)

Integrating by parts and rearranging the terms, we find:

2  z j+1 . z j+1
k (X + 2G.) f U6Udz + k2G. fWWdz

3 3 z.3zJ J

z+1 dW d+ ikA 6U - U d [6W]jdz
z.

+ ikGj SW - W d [6U]jdz

z dUd
+ G.j d dz [GUI dz + (x + 2G.)

z J

z .j+1 dW d
dz z dz [6W]dz

z.
J

2 j+1 2 z+1

- pi USUdz - W p W6Wdz =
z Z.

J
I- z .

dU . J+1 d z j+1=G. L ikW 6U + (x + 2G . - ikXj SWj d z Z.. 3d z
3 z.J

(2.18)
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U, W, 6U, 6W vary linearly in the sublayer:

U(z) = U. Ni (z) + U N (z)
J J J+l 3+1

W(z) = W. NZ (z) + W NI (z)
J J j+l j+l

6U(z) = 6U N (z) +

6W(z) = SW. N (z) +
J J

6Uj+1 N (z)

6WNY (z)j+1 N+1

in which N., N
j j+l are the shape functions corresponding to

nodes j and j+1 respectively:

N (z) z - z.

j3 h.z - Z.
N (z) h,

3+1 hJ

(the superscript indicates the

(2.21a)

z < z < zj+1

(2.2lb)

sublayer number), and

U = U(z )

61U = 6U(z )

W = W(z )

,6W = 6W(z )

z = j, j+1

Substituting (2.19a,b) and (2.20a,b) into equation (2.18),

which holds for arbitrary 6U,6W we obtain

[k2Ai + ikBj + G- W2Mj

U.

U j+l

W j+1_

-- r j

(2.22)

(2.19a)

(2.19b)

(2.20a)

(2.20b)
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a JZaz
x=O
Z=Z k

T x

x=O
Z=Z

Ai, Gi, Mi are 4 x 4 symmetric

A =1 h.6 D

2(X j + 2G.)
J

0

x.+ 2G.
JJ

0

matr.ices:

+ 2G.

2G.
J

0 2(A. + 2G.)
J J

G. 0

. + 2G.

0

-(X. + 2G.)
J J

-G.J

0

G.
J

0

0

1

0

1

0

+ 2G.)

0

A. + 2G.
JJ -

with

, Ii+

0

G.J

2G

(2.23a)

G.

0

-G
J 0

.2

(2. 23b)~ 1
'" -

Mi = p.h.
JJ

(2. 23c)
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Bi is a 4 x 4 antisymmetric

0

X.- G.
J J

0

-( . + G.)
J J

-G.

J J

0

-(x. + G)
J J

0

X.+ G.
J J

0

-(X. - Gj)
J J

Since a and are continuous at z = z., 2 < j < N, we havez xzJ - -

dW ~
_1 + 2GJ 1) U z - ikX -lu z~ J

= ( 2G) dW - ik.L J dz 2G. -Jj +
3

FdU FdU
T. = G - d- ikW] =G. -- ikW .J J-1 Ldz j_- J Ldz +

J j

(2. 24a)

(2.24b)

Assembling the matrices for the region 0 < z < h and us-

ing the conditions (2.24a,b) we obtain

[k 2A + ikB + G - w 2MIA = F (2.25)

A, B, G, M are (2N+2) x (2N+2) matrices assembled from Aj, Bi,

Gi, MI respectively. A, F are (2N+2) - vectors:

2j-1 =U

1 < j < N+ 1

=W.
J

matrix:

- 1

I. + G .

A. - G.
J J

0

(2.23d)
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xz 2 1 z
x=0 x= 0
z=0 z=0

F2N+1 N+l xz
x=0 F2N+2 = N+l z
z=h x=0

z=h

F2j-l F2j = 0 2 N .

Thus F and F 2N+ are the amplitudes of the shear tractions,

at x = 0, on the surface and the base of the stratum,.respec-

tively. Similarly, F2 and F2N+2 are the amplitudes of the

normal tractions, at x = 0, on the surface and the base of

the stratum respectively. For the boundary conditions (2.7e,

f, g, h), i.e., a free surface and a fixed base, the corre-

sponding algebraic eigenvalue problem is obtained by deleting

the last two rows and the last two columns of the matrices

A, B, G, M as well as the last two components of the vectors

A, F, while F and F2 are set equal to zero:

1 22

[k 2A + ikB + G - w M A = 0 . (2.26)

A, B, G, M, A differ from those appearing in equation (2.25)

by the modifications stated above. 0 denotes the zero 2N-

vector. The eigenvalues k are roots of a polynomial of de-

gree 4N:

det [k 2A + ikB + G - W, M] = 0 . (2.27)

Waas [23] discusses this problem in considerable detail. For

the purposes of this review, it suffices to note that if k is
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an eigenvalue with eigenvector A, then -k is another eigen-

value with eigenvector A obtained from A by changing the

sign of all even-numbered components (or, all odd-numbered

components, since - A is also an eigenvector with eigenvalue

k):

A= T A . (2.28)

T is a diagonal matrix (2N x 2N):

2j-1,2j-1= 1
1 < j < N (2.29)

T2j,2j -

It is convenient to choose those 2N wave numbers k., 1 < j <

2N, and the associated 2N linearly independent eigenvectors

for which the corresponding modes are such that the ampli-

tudes of the displacements decay for large x > 0 (this applies

to complex wave numbers) or energy propagates in the positive

x-direction (this applies to real wave numbers). Thus we con-

struct the diagonal matrix K (2N x 2N):

K = diag [k.] , (2.30)
J

and the modal matrix X (2N x 2N), the columns of which are

the eigenvectors 9j:

X = [A 1, A2 AN . (2.31)

If dissipation is introduced, then all wave numbers are com-

plex. The criterion for choosing the diagonal entries of K

id, therefore, that Im[k.] < 0, 1 < j < 2N. In the absence
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of dissipation, energy propagation must be considered for

modes with real wave numbers. This is discussed in detail by

Waas [23].

Let us now calculate consistent nodal forces acting on

the region x > 0, at the section x = 0, for a mode with wave

number k and eigenvector A. We consider sublayer j. The

forces are obtained by integrating the tractions, at x = 0,

multiplied by the shape functions along z. < z < zj
F+1:

Forces, in the x-direction

(node j)

(node j+l)

Pj z j+1

J

z

PC, j+1 =
z.

N (z)dz
x=0 3

(2.32a)

-a N +1 (z)dz . (2.32b)
x =0 +

Forces in the z-direction

(node j)

(node j+l)

P .z,J

z j+1
= - Txz N(z)dzz xx=0

zj+1
P ,j+1 = z

z.

(2.33a)

- Txzjx=ON+l(z)dz (2.33b)
x=

(again, the superscript indicates the sublayer number). We

have

x = -ik(X. + 2G )U + x dW

xzx=0 = G [-ikW + dU]

(2. 34a)

(2.34b)

Substituting (2.19a,b) into (2.34a,b) and the resulting ex-
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pressions into (2.32a,b), (2.33a,b), we obtain

ikAj + Dj]

U.

W

u+1
W j+

iP
x, j

P3
x,j+1

PI
z , j+l

Ai is the same as in

D = 2

(2.22).

J

Di is

0

-G.

0

-G.
J

a 4 x 4 matrix:

-X.
J

0

-x.
J

0

Assembling the matrices for the region 0 < t < h, we obtain

P = [ikA + D] A (2.37)

A is the same as in (2.26). D is assembled from Di. P is

a 2N-vector with components:

P Pj-l-
P .= P .

P z2j z 0j

P -P 1
2 z,1

+ P.
x,J

+ Pi
z,J

2 < j < N

Let us now obtain the dynamic stiffness matrix for the

region x > 0. Let U be the displacement vector:

(2.35)

(2.36)
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2j-l = u(0,z )

1 <j < N

U2. = w(0,zj.)

It may be written as a linear combination of the eigenvectors:

U = x r . (2.38)

X is the modal matrix given by (2.31). r is a 2N-vector of

participation factors. The force vector corresponding to a

mode with wave number k . and eigenvector Ai is according to
3

(2.37):

P$ = [ik.A + D] A . (2.39)

Thus, we obtain that the force vector corresponding to U is

given by:

2N

F =I r. P3
j=l

or, alternatively, by:

F = [i A X K + D X] r. (2.40)

K is the diagonal matrix given by (2.30). The vector of

participation factors may be eliminated from (2.40) using

(2.38). We find

R U

R is the dynamic stiffness matrix:

R = i A X K X + D . (2.41)
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The region x > 0 is understood as an element (see figure 2.1)

with nodes at (0, z.), 1 < j < N, nodal displacements U and
J_

nodal forces F The element is known as a consistent transmit-

ting boundary. Details may be found in the work by Waas [23].

free surface

\V N rG ,1p

I XNGN' ON
z \-fixed base

Figure 2.1- The region x > 0 , 0 < z < h , in

plane strain(free surface,fixed base)

The procedure described above may be applied to obtain

the dynamic stiffness matrix of the rectangular region xi <

x < x2. This region is, however, of finite extent and there-

fore all modes must be included. Let U1, U2 be the vectors

of nodal displacements corresponding to the vertical sections

at the left and the right of the region, i.e., at x = x1 and

x = x2 ' respectively:
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02j-1 = l'(X z.)

= W(x2 , z.)

l < j <N

02j = U(x2 ' z.)

2j

1 2
U and U may be written as linear combinations of the vectors

corresponding to the 4N modes. Let us consider a mode with

wave number k and eigenvector A. For this mode the vector

of displacements at x = x is conveniently taken equal to A.

Then, the vector of displacements at x = x is Aexp[-ik(x2 -x1']

Alternatively, if the vector of displacements at x = x is A,

then the vector of displacements at x = x is Aexp[ik(x2 x1  '

Thus, we may write

U = x r1 +X E r2 (2.42a)

2, 1 -2U - X E r +xr . (2.42b)

X is a modal matrix obtained from X as

X= T X , (2.43)

T being the diagonal matrix given by (2.29). Thus the col-

umns of X are the eigenvectors corresponding to modes travel-

ing in the negative x-direction or decaying for large x < 0.

E is a diagonal matrix (2N x 2N):

E = diag [exp(-ik. L)] ,
J

(2.44)
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1 2
with L = x2 ~ x1 the length of the region. F , 1' are 2N-

vectors of participation factors. Let F', F2 be the vectors

of nodal forces acting on the left (x = x1 ) and the right

(x = x2 ) of the region. For u', U2 as given by equations

(2.42a,b), using equation (2.37), we obtain

F= [i A X K + D Xirl + [-i A E K + D E]r (2.45a)

=-[iAXEK+ D X E]r-[-i A K + D ]p . (2.45b)

The vectors of participation factors r1, r2 may be elimina-

ted from (2.45a,b) using (2.42a,b). We get

F U[ (2.46)
F U

K is the dynamic stiffness matrix. The region x 1 < x < x2 is

understood as an element (see figure 2.2 ) with nodes at

(x1 , z.), (x2, z.), 1 < j < N, nodal displacements , 2 and

nodal forces F', F2. The computational effort involved in

obtaining the dynamic stiffness matrix is independent of the

length L of the element. Details are given in [9 ].

2.3 A STRATUM IN ANTIPLANE SHEAR

Let us now consider time-harmonic vibrations of a stra-

tum in antiplane shear. The displacement vector is
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F-

h

z

free surface
i7 x

A1G1 ,p1

X. ,G. , p

xN,GN'PN

fixed base

Figure 2.2 -The region x < x < x 2  0 < z < h , in

plane strain(free surface,fixed base)

0

v(x,z) exp(iwt)
- 0

i.e., particle motion is perpendicular to the x-z plane and

independent of the y coordinate. We assume that there are M

layers in the stratum. In layer j, the governing differen-

tial equation is

2 2
G + G. + p 2V = 0
j 2 3 2 (2.47)

The amplitudes of the stresses are:

yz j 3z

yx j 3x

(2.48a)

(2. 48b)

i x 2

--.%.i
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The amplitude v must be continuous at the interfaces of the

layers, i.e., at z = z , 2 < j < M. Moreover, T must be

continuous there:

G. - G, A (2.49)
j- az 3 az z-

If the stratum is understood as an idealization of a soil

deposit, the boundary conditions are:

= 0 , (2.50a)

v(x,h) = 0 , (2.50b)

i.e., the surface is free and the base is fixed.

Time-harmonic wave motion of a stratum in antiplane

shear may be obtained as a superposition of modes of the form

v(x,z) = V(z) exp(-ikx) . (2.51)

Substituting (2.51) into (2.47), (2.49) and (2.50a,b), we

find that V must satisfy, in layer j, the equation

k2 G.V- dV - p 2 0 (2.52a)

J dz2 J '

at z = z , 2 < j < M, the condition

G. dV dV
G -d -= Gj + '(2.52b)j1 z =z1 . z=z .

J J

and, finally, the boundary conditions
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dv 0 , (2.52c)
z=0

V(h) = 0 . (2.52d)

Clearly, from equation (2.52a), we obtain that the eigen-

function V, in layer j, may be written as

V(z) = A3 cos(p z) + A3 sin(p.z) , (2.53)
1 2

with p + k2 _

T

Alternatively, A1 and A32 may be expressed in terms of V(z.)

and V(zj+1 )' using (2.53). Thus the eigenfunction V is com-

pletely specified by the M values V(z), 1 < z < M, since

V(h) = 0 by the boundary condition (2.52d). These must be

such that the M-1 conditions (2.52b) as well as the boundary

condition (2.52c) be satisfied. Thus we obtain a system of

M homogeneous linear equations for the M values V(z ),l < z

< M. Nontrivial solutions are possible for those values of

k which render the matrix of coefficients singular. The fre-

quency equation is, therefore, obtained by equating the deter-

minant of the matrix to zero. However, k appears, again, in

the argument of transcendental functions. If the stratum is

homogeneous, i.e., there is only one layer (M=l), the fre-

quency equation for antiplane shear, unlike the corresponding

equation for plane strain, may be solved easily. For a given

frequency w, the wave numbers k are given by
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2 ~oh .2 2 -r2.
[kh] = -- (2n-1) - (2.54)

CT 4

n = 1, 2,

For a multilayered stratum the calculation of roots of the

frequency equation is, in general, difficult. Cut-off fre-

quencies are easily found for a homogeneous stratum. From

(2.54), it is seen that they are given by

h (2n-1) I n = 1, 2, ... (2.55)
C T2T

Again, it is, in general, difficult to calculate cut-off fre-

quencies for a multilayered stratum.

Let us consider a mode of vibration in antiplane shear.

The displacement vector is

V(z) exp(iwt - ikx) . (2.56)

0

We assume that w is not a cut-off frequency. Then, k # 0.

Suppose that Im[k] = 0, i.e., the wave number k is real. The

mode is a wave propagating in the positive x-direction, if k

is positive, or, in the negative x-direction, if k is nega-

tive. Waas [23] shows that phase propagation and energy pro-

pagation are always in the same direction for traveling waves

in antiplane shear. If a region of finite extent is consid-

ered (for example, x, < x x2), the mode is admissible. How-

ever, if the region is of infinite extent (for example, x > 0),

the mode is admissible only if it satisfies the radiation con-
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dition. In particular, radiation in the region x > 0 re-

quires that waves be outgoing, i.e., k > 0. Let us now as-

sume that Im[k] /: 0. The mode is an evanescent wave. If

Re[k] # 0, there is a propagating phase, while if Re[k] = 0,

the mode is a standing wave. Again, the mode is admissible

in a region of finite extent. If the region is of infinite

extent, the mode is admissible only if it satisfies the boun-

dedness condition. For example, if the region x > 0 is con-

sidered, the boundedness condition requires that waves be

bounded for arbitrarily large x > 0, i.e., Im[k] < 0.

Using the finite element method, we derive an algebraic

eigenvalue problem [23] for the calculation of approximate

wave numbers k and eigenfunctions V. Each layer of the stra-

tum is divided into sublayers the depth of which is much

smaller than the wavelength of transverse waves in the layer.

Let N be the number of sublayers into which the stratum is

divided. Finite elements are the line segments [z., zj+1 '

1 < j < N, corresponding to these N sublayers. The eigen-

function V is the amplitude of the displacement at x = 0. Let

SV (function of z) be the amplitude of a virtual displacement

at x = 0. Multiplying the left-hand side of equation (2.52a)

by 6V, we obtain, for sublayer j,

k 2G- VVdz - 2 p f V6Vdz
z z

z j+1 d
-G [d ]6Vdz = 0 . (2. 57)

J dz ]Vd
J
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Integrating by parts, we find:

z j

3 z.
J

z j+1
V6Vdz - w p

j

z'+
3+

+ G.

z

dV d
[6V]dz

GdV vz j+1=- 6V .
z.
J

Working as in the case of plane strain, we obtain:

[k2Ai + Gi - 2 Mi = , ]-
j+1 T j+1

with V= V(z )

, = j, j+l

yz x=09
z=z

Ai, Gi, Mi are 2 x 2 symmetric matrices:

h 6
6 3

r -l1
Kl 1i

V6Vdz

(2.58)

(2.59)

(2. 60a)

.i G.

G3 =
(2.60b)
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M = .h (2.60c)
63

Since y is continuous at z = z., 2 < j < N, we have

dV dV
.j = G. . =- + (2.61)

z=z. z=z.
J J

Assembling the matrices for the region 0 < z < h, we obtain

[k2A + G - w2 = F . (2.62)

A, G, M are (N+l)x(N+l) matrices assembled from A , G3, M3

respectively. A , F are (N+1)-vectors:

A.=V. , < j < N+l
J J

F = -T 1 =-T , F = T =T
11 *yz '.. N+l N+1 yz '

Iz=O z=h

F. 0 ,2 < j < N

Thus, F1 and FN+l are the amplitudes of the shear tractions,

at x = 0, on the surface and the base of the stratum respec-

tively. For the eigenvalue problem with boundary conditions

(2.52cd), i.e., free surface and fixed base, the correspond-

ing algebraic eigenvalue problem is obtained by deleting the

last row and the last column of the matrices A, G, M as well

as the last component of the vectors A, F, while the first

component of F is set equal to zero:

[k2A + G - w2M]A =0. (2.63)
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A, G, M, A differ from those appearing in equation (2.62) by

the changes mentioned above. The wave numbers k are roots

of a polynomial of degree 2N:

det[k 2A + G - w2M] = 0 (2.64)

Details may be found in the work by Waas [23]. If k is an

eigenvalue with eigenvector A, then -k is another eigenvalue

with the same eigenvector. Let us choose those N wave numbers

k., 1 < j < N, and the associated N linearly independent eigen-

vectors Ai for which the corresponding modes are waves decay-

ing for large x > 0 or traveling in the positive x-direction,

i.e., Im[k.] < 0, or Re[k.] > 0 and Im[k] = 0. We form the

diagonal matrix K (NxN):

K = diag [k.] , (2.65)
- J

and the modal matrix X (NxN), the columns of which are the

eigenvectors Ai:

X = [A A. A2 A N (2.66)

Let us now obtain consistent nodal forces acting on the

region x > 0, at the section x = 0, for a mode with wave num-

ber k and eigenvector A. The forces on sublayer j are calcula-

ted by integrating the traction, at x = 0, multiplied by the

shape functions along z < Z < zj+1 :
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(node j)

(node j+1)

N , N+ are the
J J

zj+

P -T
J z. x=0

J

Ni Cz)dz
J

z
P = - N (z)dz

z. x+=

shape functions given by (2.21a,b). We have

T x=0 = -ikG. V

Sin ce

V(z) = V.N (z) + V. N[ .(z)
J J J+1 J+1

with V = V(z ) z = j, j+l

V. P 1
ikA L =

V j+3+

Ai is the same as in (2.59). Assembling the matrices for the

region 0 < z < h, we obtain:

P = ikA a.

A is the same as in (2.63). The components of the N-vector P

are:

P = P

P j- + P , 2 < j < N
J

The region x > 0 may be understood as an element (see

figure 2.3 ) with nodes at (0,z ), 1 < j < N. We obtain the

dynamic stiffness matrix of this element. Let 1J be the vector

of nodal displacements:

(2.67)

(2.68)

we find

(2.69)

(2.70)

(2.71)
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free surface 7x

h G. ,p.

G N'PN

z fixed base\

Figure 2.3 -The region x > 0 , 0 < z < h 'in

antiplane shear(free surface,fixed base)

U. = v(0,z.)J J , 1 < j < N

X r

X being the modal matrix given by (2.66) and r a vector of

participation factors. The vector of nodal forces correspond-

ing to U is

A X K r (2.73)

K is the diagonal matrix given by (2.65). The participation

factors may be eliminated from (2.73) using (2.72). We obtain

FaR U -

R is the dynamic stiffness matrix:

R = i A X K X71)

We have
(2.72)

(2.74)
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The element is also referred to as a consistent transmitting

boundary. It is described in detail in the works by Lysmer

and Waas [16] and Waas (23].

Another element is the region x 1< x < x2 with nodes at

(x1, z ) and (x2 ' z ), 1 < j < N. Since the region is of fin-

ite extent, all modes are admissible. Let 1 U2 be the vec-

tors of nodal displacements at (x1 , z ) and (x2 ' z ) 1 1< j < N,

respectively:

= v(xl, z )

2 = v(x2 z ).

We have

[] = X F + X E r2  (2.75a)

lj2 = X E r + X r2 (2.75b)

E is a diagonal matrix (NxN):

E = diag [exp(-ik.L)] , (2.76)
J

1 2
with L = x2 ~ x1 , the length of the region. r , r are N-vec-

tors of participation factors. Let Fl, F2 be the vectors of

nodal forces. For U1, U2 as given by equations (2.75a,b) we

find

F = i A X K r1 - i A X E K r (2.77a)

2 12
F = - i A X E K r + i A X K r (2.77b)

r1, P2 may be eliminated from (2.77a,b) using (2.75a,b). We

obtain
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F U
=K~L][: . (2.78)

K is the dynamic stiffness matrix. It must be noted that the

computational effort involved in this procedure for determin-

ing the dynamic stiffness matrix is independent of the length

L of the element. Details may be found in the work by Kausel

and Roesset [ 9].

2.4 AXISYMMETRIC ELEMENTS

In this section we consider the axisymmetric elements

developed by Waas [2 3] , Kausel [ 6 1 and Kausel and Ros sset [9].

In a system of cylindrical coordinates (r,e,z), let u, v, w

denote the amplitudes of the radial, tangential and axial dis-

placements respectively. We assume that there are M layers in

the stratum. In layer j, the governing differential equations

are:

V2 u _ _ 2 jv 1 + (2.79a)
2 2 3e 1-2v. r [Cij 2 u=O

2
2v - + + 1 1 C] + v = 0 (2.79b)2 2 De 1-2vj r ae2

r r [C TI

22 1 DE: 2
V2w + -3- + . W = 0 (2.79c)

1-2v. az [C~i ]2 =T

72 is the Laplacian

2 2 1 2  2
V2 a 2  + 2 + . (2.80)

2r r 2 2 z2
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is the dilatation:

S= +r + u) +
az

The amplitudes of the stresses are given by

ar = XjE + 2G Du

r jar

a = Xjc + 2G. [ + ]
a r r 3e

az = XjE + 2G
j Dz

Tre =G [ - F

T z = G l w

Tzr = G

+ ]

v]

[ + ]a z 3r

As in the plane problems considered in the previous

the modes of wave motion are obtained by separation

sections,

of varia-

bles. They are given by

u (r, e, z)

w(r, 6, z)

(see the work by Kausel

cos
= kU(z) C n(kr)

sin

= -ikW(z)

cos

Cn (kr)

sin

(ne)1

(no) {
(ne)

(ne)

v (r, e, z) = ! U(z)r Cn (kr)
-sin(ne)1

cos (ne)

(2.81)

(2.82a)

(2.82b)

(2.82c)

(2.8 2d)

(2.82e)

(2.82f)

[ 6 ]).

(2.83a)

(2.83b)

and,

(2. 83c)
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cos (no)
u(r,6,z) = n- V(z) C (kr) (2.84a)r n sin (ne).}

w(r, e, z) = 0 (2.84b)

-sin (ne)
v(r,e,z) = kV(z) C n(kr) (2.84c)

cos(ne)

n = 0, 1, 2, ...

For symmetric modes cos(ne) must be used for u and w, while

-sin(ne) must be chosen for v (symmetry of the displacement

field with respect to the plane e=0). For antisymmetric modes

sin(ne), for u and w, and cos(ne), for v, are appropriate.

Cn(g) is any solution of Bessel's equation of order n:

C + C + (1 - _) C = 0 . (2.85)

The prime denotes differentiation with respect to the argu-

ment. If we substitute (2.83a,b,c) into the governing differ-

ential equations (2.79a,b,c), in layer j, we find that U and

W must satisfy the equations

2 )- 2k2(X. + 2G )U + ik(*. + G. ) - GdU - W PU = 0 (2.86a)
J J Jdz J dz2  J

k2G.W + ik(A. + G ) - (p. + 2G,) d w2p.W = 0 (2.86b)
J J dz J dz2 J

These are identical to equations (2.7ab) obtained for the

modes of time-harmonic vibrations of the stratum in plane

strain. Similarly, if we substitute (2.84a,b,c ) into (2.79a,
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b,c), we obtain that V must satisfy the equation

k2 G .d2V =0k G.v - G. -pJ2 V = 0,
J J d z2 J

(2.87)

which is identical to equation (2.52a) obtained for the modes

of time-harmonic vibrations of the stratum in antiplane shear.

az Tez' Tzr must be continuous at interfaces of the layers.

For the modes given by (2.83a,b,c) we have, in layer j,

0' cos (n e)
a ik + 2G )A - ikX.U Cn(kr) (2.88a)

Z sin(ne)

T = G.
ez r j

T = k G.zr J

(2. 88b)[du- ikW C (kr) - sin (ne)
cos (ne)J

{ cos (nO)
- -_ ikWs C( (kr)dz n

Ssin (n e)

Thus continuity of az' tez' Tzr at z =

that

(2.88c)

z., 2 < j < M, requires

(Xj. + 2G . dW -ikX .dU(zW) = (. + 2G.)
J-1 dz dz +

J~ J=

-ikA.U(zt)
J J

(2.89a)

G dU
G z=z

- ikW(z-) = G [U
z =z.

L J

These are identical to conditions (2.7c,d) obtained for time-

harmonic vibrations in plane strain. For the modes given by

(2.84a,b,c) we have, in layer j,

-ikW(zt) . (2.89b)
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o* = 0
z

Te =k G. C' (kr)
Oz j dz n

= G. C (kr)zr r dz n

Continuity of a' ITez' Tzr at z

-sin (ne)

cos (ne)
cos (n)

sin(nO))

=z., 2 < j

(2.90a)

(2 .90b)

(2.90c)

< M, requires that

G dV

J

(2.91)= G. dV
j dz z=Z+

J

This is identical to the condition (2.52b) obtained for time-

harmonic vibrations in antiplane shear. For a free surface

and a fixed base, the modes given by (2.83a,b,c) must satisfy

the boundary conditions

+ 2G )( 1  1 dz Iz=Q

dU
dz z=0

U(h

- ik 1 U(0) = 0

ikW(0) = 0

= 0

W(h) = 0 ,

while the modes given by (2.84a,b,c) must satisfy

dVz
dz =0

= 0

V(h) = 0 .

(2.92a)

(2.92b)

(2.92c)

(2. 92d)

(2. 93a)

(2.93b)
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Clearly, from (2.86a,b), (2.89a,b), (2.92a,b,c,d), U and W

are eigenfunctions with eigenvalue k of an eigenvalue problem

which is identical to that obtained for time-harmonic vibra-

tions of the stratum (free surface, fixed base) in plane strain.

From (2.87), (2.91), (2.93a,b), it follows that V is an eigen-

function with eigenvalue k of the eigenvalue problem for time-

harmonic vibrations of the stratum (free surface, fixed base)

in antiplane shear. We note that the eigenvalue problems are

independent of the Fourier number n and the same for symmetric

and antisymmetric modes.

Thus approximate eigenfunctions and eigenvalues are read-

ily obtained by solving the algebraic eigenvalue problems de-

rived for the plane problems which were discussed in the previ-

ous sections. Assuming that the stratum is divided into N

sublayers, let K be a diagonal matrix (3Nx3N) such that its

first 2N diagonal entries are the eigenvalues of the algebraic

eigenvalue problem for plane strain, chosen as in (2.30), and

its last N diagonal entries are the eigenvalues of the alge-

braic eigenvalue problem for antiplane shear, chosen as in

(2.65). It is convenient to consider the amplitudes u, V, W,

r' ' zT r r' ez' Tzr (for a given Fourier number n) defined

by

cos(ne)
u = u (2.94a)

sin(ne)

-sin(ne)

v = v (2.94b)
cos(ne)
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cos (no)
w = w (2.94c)

sin (no)

cos (no)

a s i (n W (2.94d)
sin (no)

cos (no)
a0 = (2.94e)

sin(no)

cos(no)

az z (2.94f)

sin (no) J
-sin(ne)

Tr= re (2.94g)

cos(ne)

-sin(nfl)

Tez rz" (.2.94h)

cos (nO)

cos(n e)
Tzr = Tzr, (2.94i)

sin(nO)J

It is easily checked, from (2.82a,b,c,d,e,f), that the rela-

tions between ~ar' I 'f z' re, Tz, zr and u, v, w are the

same for symmetric and antisymmetric modes. Let us define

some modal matrices (3N x 3N) at r = r for a given Fourier

number n. The first 2N columns correspond to the algebraic

eigenvalue problem for plane strain, while the last N columns

correspond to the algebraic eigenvalue problem for antiplane

shear. The matrix @ is defined as:
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= -U. C 1 (k r )

= -iW' C (kz r )

=0

=0-- 2

=-V. 2 N C (k r0)
3 n-1 t o

3j-2, 9,

3j-11 9,

3j-2, 9,

3j-l, Z

93,

(the superscript indicates the particular eigenvector of the

algebraic eigenvalue problem).

The matrix T is taken as

Sj-2,, = Uj Cn (k r 0 )

T3j-., A= iW. Cn-l (k rj i (ko

- 0

3j-2, = 0

3j-l,9 = 0

1 < 9 < 2N, 1 < j N

(2.96)

2N+l < t < 3N, 1 < j < N.

SV.2N C (k r0)3 n k 0

Finally, the matrix W of modal amplitudes at r = r for the

Fourier number n is defined by

w - = k U C (k r )3j-2,, 9, j n 9, o

=-ik W C k zr0)

= . U9  C (k rr 0j n Z,0

} 1 < Z < 2N, 1 < j < N

(2.97)

1 < 9, < 2N, 1 < j < N

(2.95)

2N+l < Z < 3N, 1 < j < N

T , 9

W3'j-1,1

w3j IZ
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- V.-2N C (k r)
W33-2., r 0 n z 0

3j-l,= 
0

Z-2N'. =-k V. C (k3j,Z 2 3 n 2 0

2N+l< _ < 3N, l < j < N.

Let us consider the cylindrical surface r = r0 . At node j

the consistent nodal forces acting on the region r > r of

sublayer j are ( node j )

zj+1

= - r

o fz.
J -

zj+1

= - r~ {Z
o 0 fz .

3

=-r j+1
0 f

C~ N (z)dz

Tzrtr.. (zr J
r=r 3

N (z)dz.
r r=r 0 3

The

ly.

for

consistent nodal forces at node j+l are obtained similar-

For mode 2, 1 < k < 3N, after integrating and assembling

the region 0 < z < h, we find [ 6]

2 z z n(n+l) +
P = r ok A T + k (D - E + nN) -( L + nQ)i

(2.99)

T1z and 0 are the columns of matrices T, (D corresponding to

mode Z.P3j-l' P3 j are the radial, vertical and tan-

tential forces at node j respectively. A, D, E, N, L, Q are

3N x 3N matrices assembled from the sublayer matrices A3, D ,

Ej, N, Li2, Qj, respectively, which are given by

jP .
r,j

P .
z,3

P
6,3

(2 .98a)

(2.98b)

(2.98c)
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2( .+2G.
3 J3

0

X.+2G .
3 3

0 0 A.+2G.
J J

2G. 0 0

0 2G. 0

0 0 2 (x.+2G.)
J J

0 0~

G. 0
3

0 G.

0 0

h.

6

2G. 0
3

0 2Gj
3

0 -x.J

-x. U

0 0

0 o 0

0 0

0 0

0 1

o 0

0 0

0 20 1 0

G. 0J i

0 G.
I (2. 10Oa)

0

-G.

0

0

-G.
J
0

D = 1
2

G.h.

3r

(2.10Ob)

(2. 100c)
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4 0 0 2

0 0 1

0 2

2 0

0 0

0 4

0 0
0 4

2 0

0 0

G.h.

3 2

. G.
QJ _

- 2ro

2

0

-2

1

0

-l

0 -2 1

0 0 0

0 -1

0 0

0 2 -1 0 1

0 -1 2 0 -2

0 0 0 0 0

0 1 -2 0

0 0 0 0 0 0

1 0 -1 -1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 -1 -1 0 1

0 0 0 0 0 0

G.h.

6ro

0 0

0 2

4 0

0 0

0 1

2 0 (2.100d)

(2.10Oe)

(2.100f)



-54-

Let us consider the region r > r > 0. For radiation

in this region we take

C (kr) = H ()(kr).n n

H ( is the Hankel function of the second kind of order n.n

It is bounded in the region 0 < r0 < r < w and, moreover, its
S

asymptotic behavior, as r + o, is [ 1 ]:

'2) F 2  1/2 .nmr 7T
H (kr) ~- l/ 2exp(-ikr + i - + ) . (2.101)

Thus a mode for which Im[k] < 0 is an evanescent wave decay-

ing for large r. This agrees with the choice of eigenvalues

k for the matrix K. The region r > r0 > 0 may be understood

as an element (see figure 2.4) with nodes at r = r , z =Z

1 < j < N. We obtain the dynamic stiffness matrix of this

r 

s

free surface

h
z fixed base

Figure 2.4- The region 0 < r0 < r , 0 < z < h

( free surface , fixed base ) .
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element. Let U be the vector of nodal displacements:

U3j-2 = u(r , z.)

U3j-1 = w(r z) 1 < j <N

U3 . = v(r , z.)

We have:

U = w r. (2.102)

W is the modal matrix given by (2.97). r is a vector of modal

participation factors. We use (2.99) to find the vector of

nodal forces corresponding to Ii:

F = ro [A K K + (D - E + nN)DK -( (n(n+1) L + nQ)j r. (2.103)

We eliminate r using (2.102). We find

F = R U

R is the dynamic stiffness matrix of the element:

R=r A T K K + (D - E + nN)) K - (n(n+) L + nQ) Wj 1. (2.104)

The element is also referred to as the consistent transmitting

boundary (a cylindrical one). We note that the dynamic stiff-

ness matrix is the same for symmetric and antisymmetric dis-

placement fields. Details may be found in ( 6].

Let us consider the region 0 < r < r . We obtain the

dynamic stiffness matrix of an element (see figure 2.5 ) mod-

eling the region. The nodes are at r = ro, z = z , 1 < j < N.

We take
C (kr) = n(kr)
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ro-_

free surface ~

'X fjf ,G

1 G.,P-

z \ fixed base

Figure 2.5-The region 0 < r < r0 , 0 < z < h

( free surface , fixed base )

J is the Bessel function of order n. It is bounded in the

nnregion 0 < r < r . Its asymptotic behavior, as r +* 0, is [ 1]:

J (kr) ~(kr)n (2.105)
n 2n n!

C solutions of Bessel's equation (2.85) which are nonsingular

at ( = 0 are multiples of Jn ) . We note [1] that

J (-kr) = (-l)nJ kr) and J (-kr) = (-1)n-1 ' (kr). Thus ifn n n n

the eigenvalue -k is used instead of k, together with the

eigenfunctions U and -W (or -U and W) instead of U and W, the

modes given by (2.83a,b,c) remain the same except for the fac-

tor (-1)n, which affects only the modal participation factors.

Similarly, if the eigenvalue -k is used instead of k, together

with the eigenfunction V, the modes given by (2.84a,b,c) are

left unchanged except, again, for the factor (-1)n which in-
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fluences only the participation factors. Clearly, therefore,

the choice of eigenvalues k need only be such that the corre-

sponding modes are linearly independent. The choice of sign

of real k or of the imaginary part of complex k is irrele-

vant. The vector of nodal displacements may be written as

U=r . (2.106)

W is the modal matrix given by (2.104). The nodal forces are

given by

F = -ro A K K + (D - E + nN)+ K - (n(+1) L + nQ)} r.(2.107)

The minus sign in front of the right-hand side is necessary

since the orientation of the cylindrical surface of this ele-

ment is opposite to that of the element modeling the region

r > r0 > 0. Eliminating the participation factors, we obtain:

F = R U-

R is the dynamic stiffness matrix of the element:

R = -ro[A T K K +.(D - E + nN)# K - (n(n+l) L + nQ) T .o ~ ~ ~ ~ ~ ~ ~ ~2 (2.108)

The computational effort necessary to obtain the matrix is

independent of the diameter 2r of the element. Further de-

tails are given in [ 9].

Finally, let us consider the region 0 < r < r < r2. The

nodes of the element (see figure 2.6 ) modeling this region

are at r = r1 , z = z and at r = r2 ' z = z., l< j <N. In
3 0 2J _
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h

- r 2
r.- r -:. ree sur

A.,G.,p.

J JJ

N'GN' N

z fixed ba

Figure 2.6 -The region 0 < r < r < r2 0 < < h

( free surface , fixed base )

this case, all modes must be included. Apart from H wen

also use H , i.e., the Hankel function of the first kind ofn

order n. Then only the eigenvalues in matrix K and the corre-

sponding eigenvectors need be used. Let 1,l 1 1W1 and (D 2

2 2
S2 , W be the modal matrices evaluated at r =r and r =r

(2) 1 1^1 ^2
respectively using H Similarly, let (D , T W and (D

n
^2 A2
T , W be the modal matrices evaluated at r = r and r =r 2

respectively using H). The displacement vectors Ul, U2 aren

given by

1 -
u3j-2 = u(r ,

03j-1 = w(r ,

UO = v(r , f

z.)

z.)

z.)

1 < j < N
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= U(r2'

= w(r2,

z )

z .)

U2
3 j-2

U 2
3~j- 1

3j

1 < j < N

We have:

j2= w r1 + ^2

The nodal forces corresponding to Ilj,U2 are (a superscript Z

indicates that the matrix is evaluated at r = r )

1 = rA lY, K + (D-El+nN 1  - (n(n+l) l+ 1 )T lr1

+ rK + (D-E1 +nN1 ) K - n(n+1) L +nQl) p2
1 ~12"2 22~n~n~l~ 2~

F -r T2A (D"-E 2+nN 2)4)2 (n L 2 + 2 2T D" nN) nnl ) 2r
2- 2nQJ

A ̂ 2 + +n 2 22 n(n+1) 2 +nQ2  2

Using (2.109a,b) we eliminate r , 2 We find

F U
F 2 ~ U2

(2.ll a)

S(2.110b)

(2.111)

K is the dynamic stiffness matrix of the element. We note,

again, that the computational effort required to obtain the

matrix is independent of the thickness r2 - r1 of the element.

Details may be found in [ 91.

= v(r2 ' z.)

(2.109a)

(2.109b)
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2.5 SUMMARY

In this chapter, we reviewed the development of the follow-

ing elements:

1) The element modeling the semi-infinite region x > 0 of

a layered stratum in plane strain [231. The dynamic stiffness

matrix of the element is given by (2.41).

2) The element modeling the rectangular region x < x < x2

in plane strain [ 91. The dynamic stiffness matrix is obtained

as in (2.46).

3) The element modeling the semi-infinite region x > 0 of

a layered stratum in antiplane shear [16,23]. The dynamic stiff-

ness matrix of the element is given by (2.74).

4) The element modeling the rectangular region x, < x < x2

in antiplane shear [ 9]. The dynamic stiffness matrix is found

as in (2.78).

5) The element modeling the semi-infinite axisymmetric

region r > r0 > 0 of a layered stratum (for any Fourier number

n and symmetric or antisymmetric vibrations [23, 6]. The dynam-

ic stiffness matrix is given by (2.104).

6) The element modeling the axisymmetric region 0 < r <

r 0[ 9 1. The dynamic stiffness matrix is given by (2. 107).

7) The element modeling the axisymmetric region r 1 r

r2 [9 1. The dynamic stiffness matrix is found as in (2.111).

We note that the computational effort required to obtain

the matrices is independent of the length of the element, for

plane elements (2,4) or its thickness in the radial direction,

for axisymmetric elements (-6,7). The surface of the elements

is free and the base fixed.
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CHAPTER 3

PLANE ELEMENTS

The boundary conditions on the surface and the base of the

plane elements described in Chapter 2 were homogeneous. The

surface was assumed free and the base fixed. In this chapter

we consider inhomogeneous boundary conditions. We develop in

detail elements for the analysis of time-harmonic wave motion

in plane strain or antiplane shear in the rectangular region

L L
- <x < , 0 < z < h of a layered stratum. The base of the

elements is taken fixed. However, boundary conditions corre-

sponding to a rigid and rough strip footing are prescribed on

the surface of the elements. Other inhomogeneous boundary con-

ditions are also discussed. Finally, an application is consid-

ered which shows that the method is accurate and efficient.

3.1 PLANE STRAIN

We consider time-harmonic wave motion in plane strain in

the rectangular region- < x < 1, 0 < z < h of a layered stra-

tum. Let us assume that the stratum is divided into N sublayers.

We rewrite the governing differential equations, in sublayer j,

(x. + 2G.) u + . a W + G. a u+ 2w ]+ pw 2u = 0 (3.la)
J 2 3axaz 77az 3x~z j

2 w23 ua3 21 a 2

The amplitudes u, w, y , -rT must be continuous at z =z,
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L L2 < j < N, - L < x < . The conditions expressing continuity

of a , T are

(A + 2G. )) + D =(X + 2G ) + Xj +
Iz=z. Z=z. z=z.z .~J z~J J J

(3.2a)

G W + - = Gj a + . (3.2b)j-1L a =7a =Zjj Gi[ =+ z =
- - + jz=z. z~z z=z.j ~ z

Boundary conditions corresponding to a rigid and rough strip

footing are prescribed on the surface of the region:

u(x,O) = A (3.3a)

w(x,O) = Az - ex , (3.3b)

- j< x < .

A , 6 are the amplitudes of the horizontal displacement,

vertical displacement and rotation of the footing respectively.

The rotation is taken positive in the counterclockwise direc-

tion. The base of the region is fixed:

u(x,h) = 0 (3.3c)

w(x,h) = 0 , (3.3d)

- < x <

The nodes of the element are (see figure 3.1 ) taken at

(0,0) with degrees of freedom

AXA .,
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-T
h

I

L
I C L F x

x
M \z

rigid and rough
strip footing

-. T---~x

z fixed base

Figure 3.1 -The region -L < x < L , 0 < z < h

in plane strain.

L
at (- -, z.), 2 < j < N, with nodal displacements

1 L
u. = u(- -, z.)

J 2 j

w= w( L, z.),

and at (!, z ), 2 < j < N, with nodal displacements

22

2 L
U U( 2~ z)

w2= w( , z )

The forces corresponding to these degrees of freedom are, at

(0,0), the horizontal force F , the vertical force F and the

moment M, at (- z )2 < j < N, the horizontal force P

1 an tL_
and the vertical force P and at (!, z.), 2 < j < N, the

2 2
horizontal force P . and the vertical force P In some

x,3 z,3
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LLcalculations it is convenient to use the nodes at (- L, 0) and

0) instead of the node at (0,0). The degrees of freedom at

these nodes are

u= u(- 0)

1 L
w= w(- L, 0)

and
2 L

u = u(7, 0)
2 L

w = w(-, 0)

1 1
respectively. The corresponding nodal forces are P , Pzl

2 2
and P 2, P . We note that the degrees of freedom at these

x, z,

nodes are related to A , AZ , by

u1 = A (3.4a)
1 x

u2 = A (3.4b)
1  x

w = A + (3.4c)
w LA
1 z 2

w2 = Az ~ e . (3.4d)1 z 2

F, F, M are related to P 1  P1,l' P2 l' z l byx z xl ~zl x~l ~z~b

F = P + P (3.5a)x x,1 x,1

F = P + P (3.5b)

M = P -- P (3.5c)
2 za 2 zl is.

We assume that u., w are linear functions of z in each sublayer.

For z < z < Zj+1, 1 < j < N, we have
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Z) =u 1 j+1 lz
Sh. j+l

J

Z) z-+1 -z
j h. j+l

J

z - z.

h.
J

z - z.

h.
J

L

Lw(-

L
U( L

L 1

w ( ,!
2 - z 2

Z) j h. j+
J

z - z.

h.
J

' 1 1
Note that uN+1 = wN+l

2 2
UN+1 N+1 = 0 by the boundary condi-

tions (3.3c,d). At z = 0, i.e., at the surface, the amplitudes

u, w are constant and linear functions of x respectively by the

boundary conditions (3.3a,b). We write

u(x,0) = u ( - + u2 ( + )

1 1 x 2l1 x
w (x, 0) =w (2 L + w 2(1 + X

-L < x < .

The consistent nodal forces are given by

1 z 2 ~2 z2.ZP -, fzCx I=_L hl dz
z x= 2 _ 1

L

- 2 (2L
L z=0(f Ed

2

z2 -L
z, J' f xz L h dz - az

z 2 1 _L Zz=0

2

P2 z 2 a
P l fax L

z 1 2

L

[dzz2] - Z
-L z=02w

l x
7 )dx

1 +x
( + S)dx

L

1lx
a z =0 + )dx

_L z =0)
2

(3.6a)

(3.6b)

(3.6c)

(3.6d)

2 zj - z 2 Z-Z
Z) = Uj h. + uj+l h.

J J

2 T z2 dz -Pz ,1 z Ixzlx L h dz -
z 2 1_
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1

x,3

z. Z.

a [rza-1 dz - j+l
xh.z. L h3-1 f

j-1 x =- z.
2 J

- -

ari~ dzx h
2 I L h
2 (3. 6e)

z z z j + i 1

z. T xz L hj-1 dz z. xz L h.XZ z
3-1 x= -_ 3 x=- 3- (3.6f)

= h dz + [a FJlldz (3.6g)z.* L hj-1 z. L hji
j-l x= 2 -x

Z. Z
= T x= dz + T zi+] dz (3.6h)

z. xz L hj-1 2z. xz L h
j-1 Ix= 2 - - 3 x=T ..

2- < j < N.

1 2Let J , |J be the vectors of nodal

2 < j < N, and (L, z), 2 < j < N,
2

Ldisplacements at (- , z.)

respectively:

2. = sU2s-l ~

21U25
s+l

1 < s < N-1, 9 = 1, 2

The vectors of nodal forces at (- , z.), 2 < j < N, and ( ,z
2 J23

2 < j < N, are denoted by F 1  F2 respectively:

F -= P
2s -l x, s+1

2s z s+1

1 < s < N-1, 2 = 1, 2

Our objective is to determine the dynamic stiffness matrix

Pz,j

2
P.
x,

2Pz
z~j
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K of the element, i.e., the matrix relating F , F , M F1, F 2x z
1 2

to IA ,6, I , U :

1 11 ' lx' lz' 16'e 12 1

F K IK I K IK e KA(37

FI Ix K IK~ x

~ Xxi zi 1 6 1  ~

2 21 1 2x- 2z' 2e 1 22
F K I I K I I K U

I I

.. . . I J L J

12 21 22Let us obtain the submatrices ( 1 , K1 , K2 , K . We set

AX = A = 0 e =0.

The boundary conditions (3.3a,b) become

u(x,0) = 0 (3.8a)

w(x,0) = 0 , (3.8b)

L < X< L
2 L

Any displacement amplitudes u, w satisfying the differen-

tial equations (3.la,b), the conditions (3.2a,b) at z = z.,
J

2 < j < N, and the boundary conditions (3.3c,d) and (3.8a,b)

may be written, in general, as a superposition of modes of the

form
u(x,z) = U(z)exp(-ikx) (3.9a)

w(x,z) = W(z)exp(-ikx) . (3.9b)
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The eigenfunctions U, W and the wave numbers k are obtained

using the procedure given in section 2.2. The difference is

that the conditions

U (0) = 0

W(0) = 0

indicating that the surface is fixed, must be satisfied in-

stead of (2.7e,f), which correspond to a free surface. The

algebraic eigenvalue problem is

[k2A + ikB + G - w M]A = 0 . (3.10)

A, B, G, M are (2N-2) x (2N-2) matrices obtained from those in

(2.26) by deleting the first two rows and the first two columns.

A is a (2N-2)-vector (the eigenvector corresponding to the eigen-

value k) with components

2j-1 = U(zj+1

1 < j < N-l .
=23 =W(z 1)

We form the (2N-2) x (2N-2) diagonal matrix K with entries

the wave numbers k , 1 < j < 2N-2, corresponding to modes which

decay for large x > 0 or propagate energy in the positive x-

direction:

K = diag [k.] . (3.11)
J

The modal matrix X is

X = [Al, A2 A 2N-2] , (3.12)

with A9 corresponding to k. as chosen in (3.11). is obtained
J

as
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X=T X

T being a diagonal (2N-2) x (2N-2) matrix:

T.=

T . = -
2J,2J

l < j < N-1

The diagonal matrix E is

E =diag exp(-ik.L) IJ

(3.14)

(3.15)

with k. as chosen in (3.11). The dynamic stiffness matrix of
J

the region with fixed surface and fixed base is obtained using

the procedure given in section 2.2 for the region with free sur-

face and fixed base. We have

1 - 2=Xr + X E (6(3.16a)

(3.16b)U2 =E + r 2

The nodal forces are given by

F1 A X K + D X]r 1 +[-i A R E K + D E]r 2

F = -[iA X E K + D X E]I

The participation factors F1 r2 are

We find

(3.17a)

- [-i A X K + D ]F2. (3.17b)

eliminated using (3.16a,b).

11 I 12

21K K22

----
(3.18)

11 12 21 22K , K , K , K are the submatrices we are looking for. After

some manipulations [9 ] we obtain

(3.13)

l

Q

C2
F
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K"1 = (R + R') ( - tJ)~ - R' (3.19a)

K12 = K T _ l + K Ij (3.19b)

K22 =[ I (3.19c)

( I is the identity matrix )

with

R =T R T

= X E X~ 1

J T J T

[K 11] T K T

It may be shown that

12 T 12 (3.20)
(K T KTj T

The dynamic stiffness matrix is symmetric. This is shown by

the following argument. Consider a conventional finite element

L Lmesh covering the region- < x 0 < z < h. The spacing

of the elements in the z-direction is the same as the spacing

of sublayers. The spacing in the x-direction is taken uniform.

Let n be the number of columns of elements. The width of the

elements is 6 = L/n. Thus the nodes of the mesh are at x , z.),

1 < 1 < n+l, 1 < j < N+l, with

x = - L + (z-1) -
9, 2 n

and the corresponding nodal degrees of freedom are
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w . = w (x , z. .

The elements are four-node rectangles with linear interpola-

tion functions. Using the principle of virtual work for time-

harmonic motion in plane strain, we obtain

F K - W 2M U. (3.21)

Both K , the stiffness matrix, and M, the mass matrix, are

symmetric. The components of F,U and the entries of K, M cor-

responding to the nodes at the surface and the base of the

region are deleted since u9 1 = w = uZN+l = w ,N+l = 0,

1 < Z < n+l, by the boundary conditions. The components of F

corresponding to the interior nodes (x,, z.), 2 < 9 < n,

2 < j < N, are set equal to zero since no external forces are

applied there. Any solution U of (3.21) may be written as a

superposition of discrete modes of the form

u = U. exp(-ikx ) (3.22a)

w . = W. exp(-ikx ) . (3.22b)

The eigenvalue problem which yields the eigenvalues k and the

discrete eigenfunctions U., Wi, 2 < j _ N may be obtained by

considering the equations in (3.21) corresponding to a column

of interior nodes (these equations are homogeneous since the

corresponding components of F are equal to zero). It is easily

seen that the frequency equation is of the form

-71-
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f(W 2exp(-ik6)) = 0

in which f is a polynomial of degree 4N-4 in the term exp (-ik6)

2and of degree 2N-2 in w . Thus, in general, for a given w,

there are 4N-4 discrete modes. It may be shown (14] that these

modes approach the modes given by the eigenvalue problem (3.10)

as n +, i.e., 6 + 0. In fact, equation (2.18), which we used

in order to obtain (2.25) and hence the eigenvalue problem

(3.10) is the principle of virtual work for time-harmonic mo-

tion in plane strain (in a rectangular region, x 1 < x < x2'

0 < z < h), specialized further for x-harmonic motion. Thus

our solution is the limit of the discrete solution (obtained

using the finite element mesh) as the number of columns n -+ o.

We note that the degrees of freedom at interior nodes may be

2.condensed out of the matrix K - w M in (3.21), since the forces

at these nodes are equal to zero. The condensed matrix is sym-

metric and relates Fl, F2 to Ul, U2. Thus the dynamic stiff-

ness matrix K in (3.18), being the limit of this matrix as

n + o, is symmetric.

Let us now obtain a particular solution of (3.7) for which

Ax =1 A = 0 e = 0

We denote the loads and displacements corresponding to this

particular solution by

F1'1 , F2 ', Ul"' 1 , U2, , F1 , F1 , Mx z 1

Substituting
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u(x,z) = U(z) (3.23a)

w(x,z) = 0 (3.23b)

into the differential equations (3.la,b), the conditions

(3.2a,b) and the boundary conditions (3.3a,b,c,d), we find that

U must satisfy the differential equation, in.sublayer j,

d2U 2
G d + p U = 0 , (3.24a)

the conditions at z = z.., 2 < j < N,
J- -

G dU G dU
G- d =z. j dz , (3.24b)

J J

and the boundary conditions

U(0) = 1 (3.24c)

U(h) = 0 . (3.24d)

An exact solution of this problem is easily obtained since,

from (3.24a), we'have, in sublayer j,

U(z) = A cos[-w z] + Aj sin[P) z]1 CJ 2 C3
T T

The conditions (3.24b,c,d) give a system of linear equations

for A , A, 1 < j < N. Let us obtain the corresponding dis-

crete solution. We note that the solution (3.23a,b) is iden-

tical to (3.9a,b) with k = 0 and W(z) 0. Therefore, (2.25)

applies. We obtain

2[G -oM]A = F , (3.25)

with A1 = 1, A. = U(z ), 2 < j < N ,
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F = - G , F. = 0, 2 < j <N.
1 1JzZ=

G, M are assembled from the sublayer matrices G , MO :

G. [1 -11
G = -- (3. 26a)

,h.

j 1 1
M = p- h. I3 (3.26b)

6 3

Equation (3.25) is easily solved since G, M are symmetric tri-

diagonal matrices. Let Y be defined by

Y2j-1 =Aj+1

1 < j < N-1

2j

We have

U1'1  Y (3.27a)

u2,1 Y . (3.27b)

11
The forces F 'l, F2'1 are found using (2.37) with k = 0:

F ' 1 =D 0 (3.27c)

F2 '1 =-D 0 . (3.27d)

Y
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D is obtained from that in (2.37) by deleting the first two

rows. The structure of D indicates that since in this solution

the vertical displacements are equal to zero, the horizontal

forces in (3.27c, d) are also equal to zero. Calculation of

11F , F ,M according to (3.5a,b) and (3.6a,b,c,d) gives
x z 1

F = F L (3.27e)x 1

F = 0 (3.27f)z

L
M = G ( - 2) . (3.27g)

F is obtained from (3.25). It is the amplitude of the shear

traction on the surface. A2 is also found from (3.25).

Working similarly we calculate a particular solution of

(3.7) for which

A = 0, AZ =1 = 0

The loads and displacements corresponding to this particular

solution are denoted by

F1'2, F22, 1 2, j2, 2, F, F, M.x z 2

Substituting

u(x,z) = 0 (3.28a)

w(x,z) = W(z) (3.28b)

into the differential equations (3.la,b), the conditions

(3.2a,b) and the boundary conditions (3.3a,b,c,d), we obtain

that W must satisfy the differential equation, in sublayer j,

d2W 2(X + 2G.) dz2 + p 2 W = 0 , (3.29a)
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the conditions at z = z., 2 < j < N,
- J

(ar_+ 2G ) 

and the boundary conditions

W(0) = 1

W(h) = 0

= (. A + 2G ) +'
z=z.

J

(3. 29b)

(3. 29c)

. (3.29d)

Again it is easy to solve this problem exactly.

gives

Equation (3.29a)

jW
W(z) =A cos [- zI + A2 sin [- w z]

C3 2 3
L L

The conditions (3.29b,c,d) give a system of linear equations

for A , A, 1 < j < N. Let us calculate the corresponding dis-

crete solution. The solution (3.28a,b) is identical to (3.9a,b)

with k = 0 and U(z) 2 0. Thus (2.25) applies. We have

[G - w2M]A = F (3.30)

with A1 = 1, A. = W(z-), 2 < j < N ,
1 3 J

dWF = - a1 = x1 + 2G ) , F = 0, 2 < j < N
z=0

G, M are assembled from the sublayer matrices G3, MiS:

X. + 2G. Fl
G J J 

h.
j-l

M = p h.
~ J J

~l]

lj

(3.31a)

(3. 31b)

L 6
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Thus G, M are symmetric tridiagonal matrices. Equation (3.30)

is easily solved. Let Y be defined by

2j-l = 0

1 < j < N-1

2j = Aj+1

We obtain

Ul 2 = Y (3.32a)

02,2 = Y .(3.32b)

The forces F1'2, F2, 2 are found using (2.37) with k = 0:

Fl, 2 = D 1 (3.32c)
Y

0

F2 ,2  -D 1 (3.32d)
Y

D is obtained from that in (2.37) by deleting the first two

rows. Considering the structure of D, we note that, since in

this solution the horizontal displacements are equal to zero,

the vertical forces in (3.32c,d) are also equal to zero. Cal-

2 2culation of F 2, Fz M2 according to (3.5a,b) and (3.6a,b,c,d)

gives

2 0 (3.32e)
F(

F2 = F L (3.32f)z 1

M 2 =0 .(3. 32g)
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F is obtained from (3.30). It is the amplitude of the normal

traction on the surface.

Let us now obtain a particular solution of equation (3.7)

for which

AX = AZ =0 , e=1

The loads and displacements are denoted by

, 2 3 2, 3 F , F3 3 3Fl' 3  F' U1' F I F fMj

It is interesting to calculate such a solution as a limit of

solutions already available to us. We consider

u(x,z) = UI(z) exp(-ikx)

w(x,z) = W1 (z) exp(-ikx)

satisfying the differential equations (3.la,b), the conditions

(3.2a,b) at z = z , 2 < j < N, and the boundary conditions

u(x,0) = 0 (3.33a)

w(x,0) = exp (-ikx) (3.33b)

u(x,h) = 0 (3.33c)

w(x,h) = 0 . (3.33d)

The corresponding discrete solution is calculated using

[k2A + ikB + G - W2 11 3.34)

with A -1 U (zj+ 1)' j = W (z ) 1 < j < N-1
2j-l~ 1 2G 2

1 1 1 '2 < j < N-1 1

1 2 ik( 2j-1) 2 =-h+ h
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A, B, G, M are obtained from those in (2.26) by deleting the

first two rows and the first two columns since U (0) = 0 and

W1 (0) = by the boundary conditions (3.33a,b). Equation

(3.34) is rewritten as

1 1 1
[R(k)]A 1= - Fl , (3.35)k ~

in which R(k) = k A + ikB + C ,

with C = G -W 2M.

We assume that w is not a cut-off frequency for the stratum

with fixed surface and fixed base, i.e., R(0) = C is nonsingu-

lar. Then for k sufficiently close to zero R(k) is invertible.

We calculate the inverse R 1 (k) for small k. The entries of

R- are rational functions of k. They are infinitely many

times differentiable at k = 0. Hence a Taylor series exists

for R 1 (k) around k = 0:

-1 -1 dR 1
R (k) = R7 (0) + k ~ + --- (3.36)

dk k-0

We have (0) =

Moreover, since RR = I (I being the identity matrix), we find

dR dR~
~ 1 (0) + R()= 0

dk k=0 dk k=0

in which 0 is the null matrix. It is easily seen that

dR
= iB

dk k=0

We obtain
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dR~~ R7
dk k=

. -1 -1=-- iC B C

Thus from (3.36) we find

R (k) = C 1 - ik C 1 B C 1 + O(k 2 ) , k -+ 0. (3.37)

Equation (3.35) gives

= CF 1 - C 1 B C 1 F + O(k) , k +>0. (3.38)

Working similarly the discrete solution corresponding to

u(xz) = U2 (z)exp(ikx)

w(x,z) = W2 (z)exp(ikx)

with U2 (0) = 0, W2 (0) = , U2 (h) = W 2 (h) = 0, is obtained as

2 1 -1F2 + iC- 1 BC-1 2 + 0
2 1C 2 1 2 B2 Ok, k - 0 , (3.39)

in which F = -F1 , F2 = F2, F2j- = F 2j = 0, 2 < j < N-l. Let

us consider the superposition of the two solutions

F 1 1 F 1
= k 'exp (-ikx) -xp (ikx)

L'J L42J
U2j-l u(x, z )

1 < j <N
= w(x, z .)ux02j

We find that

with
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0
X -x (3.40)

lim U =
k+0 ~ L-x C F - C~1B C~1F - C f

S + 2Gl 1 2
with F = 0, F2 " h + 6 Plh1 , F2j-1 = F2 j=0' 2 <j< N-1,

f - -(x1+G 1), f= 0, f . = f =0, 2 < j < N-l.1 2 11 2 2j-1 2j= -

Considering the structure of the matrices C, B and the vectors

F, f, it is easily seen that the term -x -C 1F corresponds to

the amplitude w, i.e., the vertical displacements, while

-C~1 B C~1F -C~ f gives the amplitude of the horizontal displace-

ments. Thus w is a linear function of x and u is independent

of x. Moreover, the semidiscrete solution (3.40) satisfies at

z = 0 the boundary coniditions (3.3a,b) with e = 1, A = Az = 0,

i.e., unit rotation and zero translation of the footing. Obvi-

ously, the solution (3.40) is admissible only in a finite

region since the 'amplitude w is not bounded for arbitrarily

large x. Using (3.40) we obtain

113 L -1 -1 -1 -l
SC F -C B C F - C f (3.41a)

23~ LC 1-C -l -l -l
2 BC F-C f (3.41b)

The loads Fl' 3, 2,3, F , F3 M3 may be obtained by taking thex z,

limit, as k -* 0, of the loads corresponding to the superposi-

tion of the x-harmonic solutions. However, it is more conven-

ient to substitute (3.40) directly into the expressions for the

consistent nodal forces (3.6a,b,c,d,e,f,g,h).* Before giving

the results of this calculation, let us consider an alternative
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method of.deriving the particular solution (3.40). We seek

a priori the solution

u(x,z) = U(z)

w(x,z) = -xW(z)

(3.42a)

(3.42b)

satisfying the differential equations (3.la,b), the conditions

(3.2a,b ) at z = z., 2 < j < N, and the boundary conditions

u(x,0) = 0

w(x,0)

u(x,h) = 0

w(x,h) = 0

Substituting (3.42a,b) into (3.la,b), (3.2a,b), (3.43a,b,c,d),

we find that U,W must satisfy the differential equations in

sublayer j

Gd2U + dW 2 0G - ( U + G )W + p 2 U = 0

2d2W 2
(X + 2G ) dz+ p o W =0 ,

the conditions at z = z., 2 < j N

(X. + 2G dW - (X + 2G )dWjldz z~z 2G) - = +z=z. z=z.
J J

(3.44a)

(3.44b)

(3. 44c)

G -W + dU
3-1- d z=z

J

=G. -W + dU z
-z - J

= -x

(3.43a)

(3.43b)

(3.43c)

(3. 4 3d)

(3. 44d)
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and the boundary conditions

U(O) = 0 (3.44e)

W(0) = 1 (3.44f)

U(h) = 0 (3.44g)

W(h) = 0 . (3.44h)

An exact solution is easily obtained. Equation (3.44b) gives

WWz)
W (z) = A cos -- rpz + A3 sin -. z

1 C3 2 C3
-L L

Substituting this into equation (3.44a) we find

U(z) =B cos z + B3 sin-, z

T CT

C3 Ci . W
L ALsi- A sin z + -A3 cos z

L L

The conditions (3.44c,d,e,f,g,h) provide a system of linear

equations for A3, A3, B1, B, 1 < j _< N. Using the finite1' 2' 1' 2' - j .Uigtefnt

element method, we obtain the corresponding discrete solution.

Let 6U and SW be virtual amplitudes. After multiplying the

left-hand sides of equations (3.44a) and (3.44b) by 6U and 6W

respectively and adding them, we obtain, for sublayer j:

2 zj+1 2 zj3+1 zj+1 d dUSpW U6Udz + w p W6Wdz + G.[-W + ]6SUdz
fz. fz. -. Z z. d

J J

-( +fUdz +X( + 2G d[ ] 6Wdz = 0 (3.45)
Z. z. by pg

J J

After integrating by parts and rearranging the terms, we find
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-W2 pj zj+1

z.
J

U6Udz - 2 p W6Wdz - G . WifJ

-J
i+ldW

dz

z +

6Udz + G if

dU zj+1
= G. -W + -- 6U

dz Z.

Assuming that U,

ldU d 
+[6d d +

+ (A .
J

(A
z j+1ldW

+ 2G . dz

3

dW 6Wzj+1
dz z.

+ 2G.)
J

W, 6U, 6W are linear functions

d
d-[6W)dz

(3.46)

of z in

each sublayer, equation (3.46) ,which holds for arbitrary

SW, gives

j+1

" j+1

-a

j+1

j+1

with

T = G. -W + --
dz z=z

a z = (A + 2G )
dz=z

= F, j~l

U z = UJ(zk )

= W(zz )

Si is a 4x4 matrix given by

d
--z[6U]dz

(3.47)

SU,



G. G. 1 2
2p.h.

I. 3 j
- ( A.- G. )

2 3 3J

G.
- 2p. h.

h. 6 J
J

( .+ G )

X. + 2 G.
1 1 2 h

- + -w p.h.
h 33

X. + 2 G.
h + 1 2 p h.
h-i ~ 6J

G.j 1 2
w p.h.

h 6s I I
- ( x.+ G )

2 3 3

G.j ~12
-w p. h.

h. 3 3 I
J

A. + 2 G
3 3 + o2p. h.

h. I I
I

A. + 2 G.
- 3 + 12 p. h.
h. 3 I I

3

(3.48)

Si =

- ( .- G.)
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We note that

z=z.
J

Txz

= - Xa.

= T.
J

Since az and Tx are continuous at z = z. 2 < j < N,
z xz I

we have

aj (X. + dW
j = :-1 2G 1 )- -

z=z.
J

+ 2G +dW

z=z.
J

T. G. -W + -U G. - W + -- .+L- + - =z.[- W+ - zz.
J J

We obtain

S A =P

S is assembled from SU. A, P are 2N-vectors:

2-1 U3j

1< j <N

P =- = G W +

= (X + dW z=0

P 2j-1 2j =0 , 2 < j < N

For the particular solution that we are considering, we have

A, = 0 A2 =

as prescribed by (3.44e,f). The semidiscrete solution Ux cor-

responding to (3.42a,b) is given by

(3.49a)

(3. 49b)

(3.50)
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Ux = u(x,z.) = Au2j-1 j 2j-1

1 < j < N

|Jx = w(x,z.) = -xA
2j 2 j

It is easily checked that this solution is identical to the one

given by (3.40). Actually, equation(3.40) shows that the calcula-

tions required to obtain this particular solution are simple. The

matrix C may be split into two symmetric tridiagonal matrices,

one corresponding to horizontal displacements and the other to

vertical displacements. Moreover, matrix B has a simple structure.

Using (3.6e,f,g,h), we obtain

F 13 = H-L/2 (3.51a)

F2,3 = -H L/2A . (3.51b)

The matrix HX is obtained by assembling the sublayer matrices

H' (4x4) given by

0 -x. 0
2 3 2 3

1 1 1 1-G. -Gh. - 1 G. -G.h.
2 3 3 J 3 6 3 3

H =j - (3.52)
0 -~j0

2 323

1 1 1 1-G. - G.h. - 1 G. - G.h.
2 j 6 J J 2 j 3 3 3

-L/2 L2.x
(H , H in (3.51) are obtained from H evaluated at x =

-L/2 and x = L/2, respectively after deleting the first two rows,

since the forces in (3.51) correspond to nodes below the sur-

face). Similarly, using (3.5a,b,c) and (3.6a,b,c,d) we find
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F 3 = P L + ( )L (3.53a)

F3 = 0 (3.53b)
z

M3  2L + ( G h G A3 + 1 G h Ag)L . (3.53c)

Pi, P2 ' A3 ' A4 are obtained from (3.50).

Having found the solutions (3.9a,b) satisfying homogene-

ous boundary conditions, i.e., fixed surface and fixed base,

and particular solutions (3.23a,b), (3.28a,b) and (3.42a,b)

corresponding to unit horizontal translation, vertical trans-

lation and rotation of the footing, let us obtain the dynamic

stiffness matrix K of the element. The submatrices K,11  K1 2

K21, K2 2 have already been found. They are given by (3.19a,b,

c). The matrix K in (3.7) is symmetric. This may be seen by

an argument similar to the one used to show that the matrix

in (3.18) is symmetric. We note that the degrees of freedom

uk 1 , w', 1 < 9, < n+l, at the surface of the region may be

condensed kinematically to the three degrees of freedom, A ,

Az' 6 by the boundary conditions (3.3a,b). Moreover, the

three particular semidiscrete solutions that we found are the

limits of the corresponding fully discrete solutions (obtained

using the finite element mesh) as the number of columns n

The condensed dynamic stiffness matrix is symmetric. There-

fore, K, being the limit of this matrix as n + o, is symmetric.

We have

Klx - Fl,l - Kli Jl,1 - Kl2 U2,1 (3.54a)

2x= F2, 1 - K21 Ui, 1 - K22 U2 , 1 (3.54b)
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Klz Fl, 2

K2 z = F2,2

K2e = F2,3

SK" U"2

_ K2  U " 2

- K2' U"'3

- K'2 U2 ,2

- 22 U2,2

12 ,3

-K22 U2,3

Since K is symmetric, we obtain

T'
Kxl = [Klx]

Kx2 = K2x T,

Kzl lz T , K1_= [K1 ]T

S2 2zT e2 _ [!2e T

Thus we find

K F' - Kx '

F =F - zl 1 2

13
K. = M -K 'UK-6 3 K 1U1 3

K = F 2 K ~xl1 r
2

Kxe F l, 3

ze z1

- x2 2,1l

_ z2 2,2

62 2,3

_ x2 u2 ,2

_x2 2,3

_z2 23

Using the symmetry of K we obtain

Kzx =Kxz Kxz = Kx0' Kz

It must be pointed out that, since the horizontal translation

and the rotation are uncoupled from the vertical translation,

Kxz = Kzx = 0 , Kze = Kez = 0 .

The derivation of the dynamic stiffness matrix of the element

(3.54c)

(3.54d)

(3.54e)

(3. 54f)

(3. 55a)

. (3.55b)

(3.56a)

(3.56b)

(3. 56c)

(3. 56d)

(3. 56e)

(3.56f)

(3.57)

(3.58)

=Kze .
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is now complete. We note that the computational effort re-

quired to calculate K is independent of the length L of the

element.

3.2 ANTIPLANE SHEAR

Let us now consider time-harmonic wave motion in anti-

L Lplane shear in the rectangular region - L < x < L, 0 < z < h

of a layered stratum. We assume that the stratum is divided

into N sublayers. The governing differential equation, in

sublayer j, is

2 2
G. -g + j 2+ p v =0 . (3.59)

The amplitudes v, T must be continuous at z=z., 2 < j < N
yzJ

- < x < L. The condition expressing continuity of T is

G._ 2v =Gj av
G- = G . (3.60)

J z=z.
J

At z=O, i.e., on the surface, the boundary condition corre-

sponding to a rigid and rough strip footing is prescribed:

v(x,0) = A , (3.61a)

L L

A is the amplitude of the antiplane horizontal displacement

of the footing. At the base the element is fixed:

v(x,h) = 0 , (3.61b)

L L
~ 2 <
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L

rigid and rough strip footing

G.,p.

z fixed base

L L

Figure 3.2 -The region -- < x <-,O<z<h

in antiplane shear.

The nodes of the element (see figure 3.2 ) are at (x,0) ,

-L < L L .,2 N
-<x < -. , with nodal displacement A , at (-2 -,z)2<j<N

yx

and at ( g, z ) , 2 < j < N, with nodal displacements

1 L 2 L
v= v(g, ,v.=v v(7 , z ).

The forces corresponding to these degrees of freedom are, at

L
(x,0), the antiplane horizontal force F and at (- -. , z.),

y 2 3
L1 2

, 2 < j < N , the antiplane horizontal forces P., p. re-

2 j 2

spectively. We assume that v is a linear function of z in each

sublayer. For z z < z j+1' 1 < < N, we have

L z - z z -z

v(- ,z) = vj h. + j+1 h.
J J

L 2 zj+1 2
v(,z) = v h. +vj. h

J J

with v= v = Aas, vN 1 = v =0. The consistent nodal forces1g 1 y2 <j N

are given by (2 < j < N)



-92-

z L z2
2 z2-z 2 z2-z

y Txy L h i - { L z + xy L h 
z1 zu 2 - - 2 1 = 1 2- 1-

P

2
P.

J

z.d

L T Lijdl z j+l zji+1-zJ y z. =-L - dz - f T xy L dz
j-1 2 h.1 z. x=- h.

Z . -- Z. - -
J z- ._i3+1 Z .+1-

= T Z 3 - dz + T I dz .
fz.j x = L h j-1 fz. x =L h

J 1 2 _ _ 3 2

(3.62a)

(3.62b)

(3.62c)

Let 1 , 2 L
(- 2,be the vectors of nodal displacements at

2 < j < N, and (-, z.), 2 < j < N, respectively:- - 2 - -

zus 9l
=~

1 < s < N-l, k = 1, 2

The corresponding vectors of nodal forces are denoted by F , F2,

respectively:

k = pzFSs +1

1 < s < N-1, k = 1, 2.

Let us calculate the dynamic stiffness matrix K of the ele-

ment:

Fl

Fy

F2

Kil Kly Ki2
yl y2

K K K~ y ~yy

K2  K2y K22K K I

Ui

y

u2

(3.63)

The submatrices K11, Kl2 1 21 22 are obtained first. We set

AY = 0. The boundary condition (3.61a) becomes

z j) ,
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v(x,0) = 0 (3.64)

L L
-< x 2

Any displacement amplitude v satisfying the differential equa-

tion (3.59), the condition (3.60) at z = z , 2 < j < N, and the

boundary conditions (3.61b) and (3.64) may be written, in gen-

eral, as a superpositign of modes of the form

v(x,z) = V(z)exp(-ikx) . (3.65)

The procedure given in section 2.3 may be used to obtain the

eigenfunctions V and the wave numbers k. The difference is that

the surface is now fixed by the boundary condition (3.64) while

(2.52c) indicates a free surface. Working as in section 2.3,

we obtain the corresponding algebraic eigenvalue problem:

10

2 2[k A + G - M]A= . (3.66)

A, B, M are (N-l)x(N-l) matrices obtained from those in (2.63)

by deleting the first row and the first column. A is given by

A = V(zj+) l < j< N-1

The (N-l)x(N-l) diagonal matrix K is formed with entries the

wave numbers k., 1 < j < N-1, corresponding to modes which de-

cay for large x > 0, i.e., Im(k ) < 0, or travel in the positive

x-direction, i.e., Re(k ) > 0 and Im(k.) = 0:

K = diag [k.] . (3.67)
J

The modal matrix X is

X = [A , A 2 N-l] (3.68)
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with A9 corresponding to k. as chosen in (3.67). Finally, we
J

form the diagonal matrix E:

E = diag [exp(-ik.L)] , (3.69)
J

with k. as in (3.67). The dynamic stiffness matrix for the
J

region with fixed surface and fixed base is obtained using the

procedure given in section 2.3 for the region with free surface

and fixed base. We write

Ul - X r1 + X E r2 (2.70a)

2 1 2(37b
U - X. EP + X r2 3.70b)

The nodal forces are

F1 = A X K r1 - i A X E K r (3.71a)

2 1 2
- i A X E K r + i A X K r. (3.71b)

Eliminating r1, 12 we find

FK" Ki12 U1

- -, (3.72)

2 21 122 2F

with K = R(I + J J) (I - J J) 1  (3.73a)

K1 2  K21 _ (K 2 l)T = -2 R J - J J) - (3.73b)

K22 = K" , (3.73c)

(I is the identity matrix)
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in which R= i A X K X

-1J =X E X

Clearly, the dynamic stiffness matrix in (3.72) is symmetric.

Let us now obtain a particular solution of (3.63) for which

Ay = 1. The forces and displacements corresponding to this so-

lution are denoted by

Fl", F2,1, U1'1, U2", F1

- y

Substituting
v(x,z) = V(z) (3.74)

into the differential equation (3.59), the condition (3.60) and

the boundary conditions (3.61a,b), we find that V must satisfy

the differential equation in sublayer j,

d2V
G V + p 2 V = 0 (3.75a)

dz

the condition at z=z., 2 < j < N,

dV dV
G dV= Gj . + ' (3.75b)3-1 dz j=. dzZZz=zj. z=zj.

and the boundary conditions

V(0) = 1 (3.75c)

V(h) = 0 . (3.75d)

This problem is the same as the one derived in the case of

plane strain for the particular solution corresponding to hori-

zontal vibrations of the footing. For the corresponding dis-

crete solution we have

[G - W2M]A = F , (3.76)
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with A = 1, A = V(z), 2 < j < N

dv
F -G N 0 2 j N.

1 dz=O

G, M are the same as those (2.63). Equation (3.76) is easily

solved since G, M are symmetric tridiagonal matrices. We ob-

tain

Ul'l = Y (3.77a)

u2 ,1 - Y , (3.77b)

with Y = Aj+1, 1 < j < N-1

The forces Fl", F2,1 are found using (2.71) with k=O:

1,1 = 2, 0 . (3.77c)

Using (3.62a) we find

F y F L (3.77d)

F is obtained from (3.76).

The dynamic stiffness matrix K in (3.63) is symmetric. This

may be shown by an argument similar to the one used in the case

of plane strain. Using the submatrices K", K'2, K21, K22

given by (3.73a,b,c) and the particular solution (3.77a,b,c,d)

we find

-ly _ yl 1 1,1 12 2,l (3.78a)

K (2y y2 ly (3.78b)
1 yl 1,1

Ky = F -2 ' (3.78c)
yy y

This completes the derivation of the dynamic stiffness

matrix of the element. Again, the computational effort required

to calculate K is independent of the length L of the element.
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3.3 OTHER ELEMENTS

The techniques discussed in the previous sections may be

used to develop several other elements. We note that the

method consists of two steps. The first step is to find the.

solutions (modes) satisfying appropriate homogeneous boundary

conditions. In this step an algebraic eigenvalue problem of

the form (2.26) or (2.63) is applicable for all boundary condi-

tions which involve tractions and displacements. The second

step is to obtain particular solutions satisfying the inhomo-

geneous boundary conditions. Let us discuss some examples.

First, we assume that boundary conditions corresponding to a

rigid and smooth footing are prescribed on the surface while

the base is kept fixed. We consider rocking vibrations (the

other cases may be handled similarly):

w(x,0) = -ex (3.79a)

xz (x,0) = 0 , (3.79b)

L L

The corresponding homogeneous boundary conditions require that

w and T vanish at z=0 while u = w = 0 at z=h. The algebraic

eigenvalue problem is obtained from equation (2.25) by specify-

ing F1 = 0, A2 = O, A2N+l = A2N+2 = 0. The solution of this

problem provides the semidiscrete modes. A particular solution

satisfying (3.79a,b) is

w(x,z) = - xW(z)

u(x,z) = U(z).
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U and W must satisfy the differential equations (3.44a,b) the

conditions (3.44c,d) and the boundary conditions

dU]-W + d-.z .z=0
= 0

W(0) = e

U (h) = 0

W(h) = 0

(3.80a)

(3. 80b)

(3.80c)

(3.80d)

This problem is similar to the one for

rigid and rough footing. The discrete

found from (3.50) with P1 = 0, A2 =

discrete solution for u and w together'

modes already obtained suffice for the

.ment.

rocking vibrations of a

solution for U and W is

The corresponding semi-

with the semidiscrete

development of the ele-

Let us reconsider the element developed in section 3.1.

We assume that x-harmonic disolacements are prescribed at the

base of the element:

u(x,h) = u0 exp(-ikx)

w(x,h) = w0 exp(-ikx)

(3.81a)

(3.81b)

The boundary conditions on the surface are given by (3.3a,b).

In this case, apart from the particular solutions that we cal-

culated in section 3.1, we need a solution satisfying (3.81a,b).

Such a solution is

u(x,z) = U(z) exp(-ikx)

w(x,z) = W(z) exp(-ikx)

with U and W satisfying the differential equations (2.7a,b),
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the conditions (2.7c,d) and the boundary conditions

U(0) = 0 (3.82a)

W(0) = 0 (3.82b)

U (h) = u0  (3.82c)

W(h) = w . (3.82d)

The discrete solution for U and W is found from (2.25) with

A1 = A2 = 0, A2N+l = uo, A2N+2 = wo. Again, the corresponding

semidiscrete solution for u and w together with the solutions

in section 3.1 are sufficient for the development of the ele-

ment..

From the examples given above 'it is clear that elements

may be developed for a variety of inhomogeneous boundary condi-

tions. It must be noted that the computational effort required

to obtain the semidiscrete solutions involved in the develop-

ment of these elements is always independent of the length of

the elements.
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3.4 A NOTE ON THE MODES OF VIBRATION

When we calculated the dynamic stiffness matrix in

(3.18) for the region with fixed surface and fixed base we

assumed that the displacement field in the finite region may

be written as a linear combination of 4N-4 linearly indepen-

dent modes. It turns out, however, that in the absence of

damping (B = 0), at some frequencies, the set of modes of

the form

u(x,z) = U(z) exp(-ikx) (3.83a)

w(x,z) = W(z) exp(-ikx) (3.83b)

is not complete. This means that. the algebraic eigenvalue

problem in (3.10) does not yield 2N-2 linearly independent

eigenvectors. The case arises at frequencies w for which

the frequency equation has a double root - wave number k .

Let w be one of the cut-off frequencies for the stratum

with fixed surface and fixed base (note that the discussion

which follows holds for other homogeneous boundary conditions

as well) corresponding to transverse waves, i.e.,

wh
= mTr , m = 1,2,... (3.84)T

Then k = 0 is a wave number. In fact, it is a double root.

The mode is of the form

u(x,z) = U(z) (3.85a)

w(x,z) = 0 .( (3. 85b)



If w is a cut-off frequency corresponding to both longitu-

dinal and transverse waves, i.e., if in addition to (3.84),

we have

w h
= nT , n = 1,2,... (3.86)

L

then there is another mode of the form (3.83a,b), namely,

u(x,z) = 0 (3.87a)

w(x,z) = W(z) . (3.87b)

This can happen only in the exceptional cases given by

C 1
= 2 - 2v[ j (3.88)

C T l-1 2v_ q

with p = 2,3,4,...

q = 1,2,...,p-1

If Poisson's ratio v is not such that (3.88) is satisfied

then there is only one mode of the form (3.83a,b) at the

cut-off frequency w , namely, (3.85a,b). Then the set of

modes of the form (3.83a,b) is not complete. However, at

such frequencies it is possible to find other modes (i.e.,

solutions of the differential equations satisfying the

homogeneous boundary conditions) which are linearly inde-

pendent of the modes of the form (3.83a,b). Let us look for

such a mode in the form

u(x,z) = xU(z) (3.89a)

w(x,z) = W(z) ,( (3. 89b)
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in which U is the eigenfunction appearing in (3.85a) and W

is to be determined. Substituting (3.89a,b) into the differ-

ential equations (3.la,b) and the boundary conditions

(3.3c,d), (3.8a,b) we find that

G d2U

dz

X + 2G ) dW
dz

2
+ po U

+ pW W
0

U(0)

W(0)

U(h)

W (h)

=0

= - ( X + G ) dU

=0

=0

=0

=0.

Clearly (3.90a,c,e) are satisfied since U is the eigenfunction

corresponding to k0 = 0 at frequency w 0 . The boundary value

problem given by (3.90b,d,f), although homogeneous, has a

solution. Indeed, we have

W Z
U(z) = A sin[ ] ,

T

and from (3.90b), we obtain

oz
W(z) = B cos[ ]o- I + B 2 sin[ ]

L L

+ TA cos[ ]r.
Wo CT

Imposing the conditions (3.90d,f) we find

CT
By =-- Ao w h w h

cos[ 0 - cos[ 0
CT L T

B2 - h
sin [ I

L

(3.91)

(3.92)

A .

(3.90a)

(3.90b)

(3.90c)

(3.90d)

(3.90e)

(3.90f)
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Thus we have found a mode of the form (3.89a,b). Clearly,

this mode is linearly independent of modes of the form (3.83

a,b). In fact, the set of modes (3.83a,b) becomes complete

when augmented by the mode (3.89a,b). Although the calcula-

tions in (3.91), (3.92) were done for a homogeneous stratum,

the results hold for a layered stratum as well. We note that

if o 0 is a cut-off frequency for longitudinal waves (i.e.,

(3.86) holds) but not for transverse waves (i.e., (3.88) is not

satisfied), then apart from the mode of the form (3.87a,b)

one has a mode of the form

u(x,z) = U(z) (3.93a)

w(x,z) = xW(z) , (3.93b)

in which W is the eigenfunction in (3.87b). These additional

modes which exist at cut-off frequencies provided that Pois-

son's ratio does not satisfy (3.88) have also been determined

by Mindlin [18]. However, one has to look for modes of ano-

ther form at frequencies other than the cut-off frequencies.

We note that the condition which characterizes these frequen-

cies w and the corresponding wave numbers k0 is that d = 0o dk

at ( o, k ) along any branch of the spectrum passing through

(W0, k . This condition is slightly more restrictive than

the condition that the frequency equation has a double root

k at w0 . Indeed, let the frequency equation be written as

f(w, k) = 0 (3.94)
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f is an analytic function of w 2 k We obtain

9 f dw'+ = 0 , (3.95)Twdk ak

along any branch of the spectrum defined by (3.94). If $= 0dk

at (w , k0 ) then, from (3.95), we obtain that 0 = at

(o, k 0), which means that k 0 is a double root of (3.94) at

af_
W . Note, however, thatat cut-off frequencies af = 0 does not

imply that do = 0, since =f - 0 there is an even function
dk Bo ao

of k). In fact, = 0 at the cut-off frequencies if and only

if Poisson's ratio v does not satisfy (3.88) (this is shown in

[21]). Apart from cut-off frequencies, points (w0, k0) for

which gL = 0 occur at the intersection of branches of complex

wave numbers with branches of real wave numbers and branches

of imaginary wave numbers. At such points the set of modes

(3.83a,b) is not complete. Let U, W be the eigenfunctions

corresponding to k0 at frequency w . We will show that

dU
u(x,z) = -ixU(z)exp(-ik0x) + dU exp(-ikox) (3.96a)

dW
w(x,z) = -ixW(z)exp(-ik x) + dW (-ik (3.96b)

0 dk exp(1ikx) 39b

is another mode at frequency w. The derivatives with respect

to wave number are taken at (w, k0 ) along any branch of the

spectrum through that point. Substituting (3.96a,b) into the

differential equations (3.la,b) and the boundary conditions

(3.3c,d), (3.8a,b) we obtain
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2 2
-ixl-k (X+2G)U - ik (x+G)W + GU + W2 p U]

+ 0[ 0

+ (k (+2G) dU ik (X+G)dW + G dU + W 2 d

- 2k (X+2G)U - i(X+G)W =

- ix[-k GW - ik (X+G)U +

+ [-k 2G - ik (X+G)- +o dk G- i( dk

-2k 0GW - i(X+G)U=

- ixU(0) +
dk z=0

- ixW(0) + dWz

- ixU(h) + dUdk z=h

- ixW(h) + ddk z=h

( +2G)W + A2 P W]
0

of

dW 2 dW)(X+2G)3 + Wo P

0

=0

=0

- 0

=0

in which prime indicates differentiation with respect to z.

We note that since U(0) = 0, it follows that d = 0 and,
Z=0

therefore, (3.97c) is satisfied. Similarly (3.97d,e,f) are

satisfied. The first term in (3.97a) is identically zero

since U, W are the eigenfunctions corresponding to k0 (see

equations (2.7a,b)). The second two terms in (3.97a) may be

combined as

d [ 2(X2G 2
[-k 2(+2G)U - ik(X+G)W + GU + w pU k=k

dl Ik~k0

- 2W p U = 0.o dk k=k
0

(3.98)

(3. 97a)

(3.97b)

(3.97c)

(3. 97d)

(3. 97e)

(3.97f)
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Again the first term in (3.98) is identically zero,

since U, W are the eigenfunctions corresponding to k (we are

using the same symbols for the eigenfunctions at k and k ).

The second term in (3.98) is zero because of our assumption

that dw = 0 at (w , k0 ). Thus (3.97a) is satisfied. Using

a similar argument we can show that (3.97b) holds. Thus the

eigenvalue problem is satisfied ,by modes of the form (3.96a,b).

Note that these modes are derivatives of the modes (3.83a,b)

with respect to the wave number along any branch of the spec-

trum through (w , k ). The modes (3.89a,b), (3.93a,b) which
o o

occur at cut-off frequencies are special cases of (3.96a,b).

dU dW
In order to obtain the discrete solution for -U ,g

we differentiate with respect tok in

[k2A + ikB + G - w2M] =0

to obtain
[2kA + iB - 2w ~M]A

2 2

+ [k 2A + ikB + G - w2M] d(A] 0

Since d= 0 at (w, k ) we find

[k 2A + ik B + G - 2 M] -- ] =
o~ o ~ o~ dk

- [2k A + iB]A . (3.99)

Note that the matrix

2 2
R = k A + ik B + G - 2 M
~ o~ o~ ~

is singular at (w0, k0). Nevertheless, the problem (3.99) has
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da solution which may be determined by expanding d[A] in the

eigenvectors of R. The solution may contain an arbitrary

multiple of A. This is consistent with the fact that the

eigenvalue problem is satisfied if an arbitrary multiple of

the mode of the form (3.83a,b) is added to the mode of the

form (3.96a,b).
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3.5 AN APPLICATION

In order to verify the developments presented in the previ-

ous sections we consider a simple application, namely, time-

harmonic vibrations of a rigid and rough strip footing on the

surface of a stratum in plane strain. Let 2b be the width of

the footing. The boundary conditions on the surface of the

stratum are

u(x,0) = x

w(x,O) = Az - ex

az

z=0

Txz z0

= 0

lxj < b

lxi > b

= 0

The base of the stratum is fixed. Let F ,F ,,M be the amplitudes

of the horizontal force, vertical force and moment applied on

the footing. We have

z FA[ F F 
F is the dynamic compliance matrix

F =

(symmetric):

0 0Fzz

0

0

Fxx Fxe

F00e
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We assume that the stratum is homogeneous. Then the nondimen-

sional compliances

GFzzI GP , Gb2 Fee GbFxe

are functions of the nondimensional quantities - (nondimen-
h CT

sional frequency), , v, S. For given values of these quanti-

ties the compliances may be calculated by combining the ele-

ment (modeling the region -b < x < b, 0 < z < h) developed in

section 3.1 with the transmitting boundaries (modeling th.e

regions x < -b and x > b, 0 < z < h) developed by Waas [23]

and described in section 2.2 (see figure 3.3 ). Results ob-

tained using different schemes have been reported by Chang-

Liang [ 3 1 and Gazetas [4 1. Actually, Chang-Liang's scheme

2b rigid and rough
F strip footing

free surface FM z
h

z\,fixed 
base

Figure 3.3 - Scheme for the calculation of the stiffness

of a strip footing on the surface of a layered stratum.
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differs in that the transmitting boundaries are combined with

a conventional finite element mesh modeling the rectangular

region below the footing. As noted in section 3.1 the element

that we are using may be understood as a mesh with an infinite

number of columns of finite elements. Figures 3.4 , 3.5 ,

3.6 show plots of the nondimensional compliances GFzz GF .

2 1 w fo h -2
Gb Fee versus the nondimensional frequency 1 w- for b 2,

v = 0.30, 6 = 0.05. The stratum was divided into ten sublayers

of equal depth. For each frequency the computations take

approximately 5.0 seconds on IBM 370/165. It must be pointed

out that only fast memory is necessary. Indeed, this is a

great advantage of using the elements developed in this work,

since the storage requirements are very low compared with

those of a conventional finite element mesh having severag col-

umns of elements for accurate results (the spacing in the z-

direction being the same as the spacing of sublayers in the

element). This is because the number of nodal degrees of free-

dom in the finite element mesh is much larger. Moreover, we

note, again, that the computational effort associated with the

elements considered in this work is independent of their

length. Clearly, this is not the case with a finite element

mesh (fine enough for accurate results). The agreement of the

results shown in figures 3.4 , 3.5 , 3.6 with those reported

in [ 3, 4 ] is excellent; in fact, the difference between the

results cannot be resolved within the scale of the drawings.
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Re [GF ]
a
fu6

1 wh
21r CT

Figure 3.4 -The nondimesional vertical compliance
h

(strip footing , v = 0.30 , = 0.05 , = 2 ).b

-Im[GF ]
3

1 wh
2Tr CT
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Re [GF ]
, x

1 wh

T

Figure 3.5-The nondimensional horizontal compliance

(strip footing , v = 0.30 , S = 0.05 , = 2 ).

-Im[GF ]
, x

1 wh

T
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Re [Gb 2Fe I

1 wh
27 C~TT

Figure 3.6 -The nondimensional rocking compliance

(strip footing, v = 0.30 , = 0.05 , h = 2 ).

-Im[Gb2F ]a e a

1 wh
27r CT
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CHAPTER 4

AXISYMMETRIC ELEMENTS

The surface of the axisymmetric elements described in

Chapter 2 was assumed free while the base was taken fixed, i.e.,

the boundary conditions were homogeneous. In this chapter we

turn our attention to inhomogeneous boundary conditions. We

develop in detail elements for the analysis of time-harmonic

wave motion in the axisymmetric regions 0 < r < r , 0 < z < h,

and r1 < r < r 2, 0 < z < h of a layered stratum. Boundary con-

ditions corresponding to a rigid and rough footing are pre-

scribed on the surface of the elements while the base is as-

sumed fixed. Other inhomogeneous boundary conditions are also

considered. An application demonstrates the accuracy and ef-

ficiency of the method.

4.1 TORSIONAL VIBRATIONS

We consider time-harmonic antisymmetric vibrations of axi-

symmetric regions of a layered stratum for the Fourier number

n = 0. Particle motion is perpendicular to vertical planes

through the axis. Moreover, it is independent of the e coordin-

ate. Thus the amplitudes u and w vanish while v is a function

of r and z but not of e (we use the same notation as in section

2.4). Let us assume that the stratum is divided into N sub-

layers. The governing differential equation for the amplitude

v, in sublayer j, is obtained from equations (2.79a,b,c) as
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2 2 2
; v + a+ - - - - = 0.

a2 r ar 3z2 r2 Cj2rrarz r 2
T

The amplitudes of the stresses are given by

a = 0

,e
az =0

T =G.re J
av V]
3r r

Tz =G.Jz az

Tzr = 0

Continuity of the

z=z., 2 < j < N.

amplitudes v, az' TOz' Tzr is required at

Thus we obtain the fondition

G.
j-1 3z -Z

J

= G. av
j az ,=+

3

(4.3)

Let us first consider the axisymmetric region 0 < r < ro,

0 < z < h. The boundary condition corresponding to a rigid

and rough circular footing is prescribed at z=0, i.e., on the

surface of the region:

v(r,0) = r$ , 0 < r < r . (4.4a)

+ is the amplitude of the rotation of the footing. It is taken

positive in the counterclockwise direction. The base of the

region is assumed fixed:

v(r,h) = 0, 0 < r < r. (

(4. 1)

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.2f)

(4. 4b)
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As degrees of freedom of the element (see figure 4.1 ),

we take $, associated with the footing and, at (r 0 z.),2 < j< N,

~o 3r---

rigid and rough
M circular footing

G ,p h

GN'PN

z fixed base

Figure 4.1 -The region 0 < r < r , 0 < z < h

(torsional vibrations).

the nodal displacements

v. = v(r ,z.)
J 0

The loads corresponding to these degrees of freedom are the

moment M and, at (r z z), 2 < j < N, the tangential force P .

We assume that v is a linear function of z in each sublayer.

For z < z < z , 1 < j < N, we have

z. - z z - Z.
v(r ,z) = v h + vj+1 h

We note that v1 = v(r, z1 ) = r $ and vN+1 = 0 by the boundary

conditions (4.4a,b). The consistent nodal forces are given by
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r z-
2 2 z_ -z

M = -27r T r 2dr + 21Tr2 T 2 dz0 ez z 0 0 { z2 r6  r= ro _ h jfo~~~ dr += 2ir1r0 rr -

P. = 27rr
J o

z.
T z dz

re r=rL h ±1
z o

+ 27rr1 T dz .+ ,r r h
of z . re Ir=r h

3 0 -

2 < j < N.

We denote the vector of nodal

by U0:

uo = v s+l

(4. 5b)

displacements at (r, z ) < j<_N,

1 < s < N-1 .

The vector of nodal forces at (r, ,z), 2 < j < N, is denoted

by F0:

F0 = Ps s+l
1 < s < N-1

Let us calculate the dynamic stiffness matrix K of the element,

i.e., the matrix relating M, F0 to e, U0:

K : K0

K0* Ko0 U

(4.6)

First, we determine the submatrix K0 . We set

4 = 0.

(4.5a)

M

F0
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The boundary condition (4.4a) becomes

v(r,O) = 0 , 0 < r < r0  . (4.7)

Any displacement amplitude v satisfying the differential equa-

tion (4.1), the condition (4.3) at z=z , 2 < j < N, and the

boundary conditions (4.4b), (4.7) may be written as a super-

position of modes which, according to (2.84a,b,c) are given by:

v(r,z) = kV(z)J (kr) . (4.8)

The Bessel function J has been used in (4.8) since it is

bounded for 0 < r < r0 (it is nonsingular at r=O). As shown in

section 2.4, V is an eigenfunction.with eigenvalue k of an

eigenvalue problem which is identical to that obtained for time-

harmonic vibrations of the stratum in antiplane shear. The dif-

ference is that the condition

V(0) = 0

indicating that the surface is fixed, must be satisfied instead

of (2.93a), which corresponds to a free surface. This eigen-

value problem has already been considered in connection with

the plane element developed in section 3.2. We rewrite the

corresponding algebraic eigenvalue problem

[k2A + G - M]A = . (4.9)

A, G, M, A are the same as in (3.66). Again, the (N-l) x (N-l)

diagonal matrix K is conveniently formed with entries the wave

numbers k., 1 < j < N-1, chosen so that either Im[k.] < 0, or
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Re[k.] > 0 and Im[k.] = 0:

K = diag [k.] . (4.10)
J

In fact, for the development of the element modeling the region

0 < r < r0 , 0 < z < h, the wave numbers chosen in (4.10), as

noted in section 2.4, need only correspond to linearly indepen-

dent modes. The dynamic stiffness matrix for the region with

fixed surface and fixed base is obtained using the procedure

given in section 2.4 for the region with free surface and fixed

base. The modal matrix @ is now given by

j,2 t 1 (k kr )411

1 < k < N-l, 1 < j < N-1

(the superscript indicates the particular eigenvector of the

algebraic eigenvalue problem). The matrix T is taken as

T V J0(k r0) , (4.12)

1 < k < N-i, 1 < j < N-1

Finally, the matrix W is given by

W. k V J, (k r) (4.13)

1 < Z < N-i, 1 < j < N-1

We have

wO i (4.14(4.14)
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Using (2.107) and integrating with respect to e, the nodal

forces are obtained as

F=- 27rr [A T K K - E DK]r . (4.15)
- 0

A (the same as in (4.9)), E are assembled from the sublayer

matrices A3, E3, respectively, which are given by

2 1
SG.h.

A = 3 3 (4.16a)
~6 1 2

2 1
. G.h.

Ei 3 3 . 4.16b)
~3r

0o 1 2

Note that Ai, Ei are obtained from those in (2.100a,c) by de-

leting the rows and columns corresponding to radial and axial

displacements. Eliminating the participation factors P we ob-

tain:

[F 0] Koo U . (4.17)

K0 is the matrix we are looking for. It is given by

Koo = -27rr[A T K K - E K]I . (4.18)

This expression may be simplified . Let X be the modal matrix

the columns of which are the eigenvectors A3 corresponding to

ki, 1 < j < N-1, as chosen in (4.10):

X = [A A 2 A N-1 (4.19)
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The eigenvectors of the algebraic eigenvalue problem (4.9) are

orthogonal with respect to the matrix A. Let us assume that

they are normalized so that

XT A X=I

I being the identity matrix. Then (4.18) becomes

K 0 =- 2A XAX A , (4.20)

A being a diagonal matrix given by

J (k.r)
A = diag -k r 3 0 + 2]

3o J 1(k r 0)

It is clearly seen, from (4.20), that Koo is symmetric.

Let us now obtain a particular solution of (4.6) for which

$=1. We denote the loads and displacements corresponding to

this particular solution by

ol Uo,, M.

Substituting

v(r,z) = rV(z) (4.21)

into the differential equation (4.1), the condition (4.3) and

the boundary conditions (4.4a,b),we find that V must satisfy

the differential equation, in sublayer j,

d2V
G d -V + w p.V = 0 (4.22a)

] dz2 3

the conditions at z=z., 2 < j < N,
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dV

z=zj.
d V

= j z +z=z .
J

(4.22b)

and the boundary conditions

V(0) = 1

V(h) = 0

(4.22c)

(4.22d)

This problem is the same as the one obtained in section 3.2.

To find the corresponding discrete solution, we solve

[G - w2M] A= F (4.23)

A. = V(z ) 2 < j < N ,

F - T = - G dV F 0 , 2 < < N
z=O

G, M are the same as thos'e in (2.63). The solution of (,4.23)

is easily calculated since G, M are symmetric tridiagonal

matrices. Thus we obtain

(4. 24a)

with Y = r A+ 1 l < j < N-1

From (4.2d) we find that Tre = 0 for this particular solution.

Therefore,

FO,1 = 0 (4.24b)

Finally, using (4.5a) we find

M7= F r 44 (4.24c)

F1 is obtained from (4.23).

with, A = 1,
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The dynamic stiffness matrix K in (4.6) is symmetric. Us-

ing the submatrix Ko given by (4.18) and the particular solu-

tion (4.24a,b,c), we find

T
Ko = [K]= Koo U0 "' (4.25a)

K4 = M Ko Uo1 (4.25b)

This completes the derivation of the dynamic stiffness matrix

of the element. The computational effort required to obtain

K is independent of the diameter 2r0 of the element.

Let us now consider the axisymmetric region 0 < r < r < r2'

0 < z < h. The boundary condition corresponding to a rigid and

rough ring footing is prescribed on the surface of the region:

v(r,0) = r , (4.26a)

r1 < r < r2 '

The base is again taken fixed:

v(r,h) = 0 , (4.26b)

r 1 < r < r2

As degrees of freedom of the element (see figure 4.2 ) we

take $ , the amplitude of the rotation of the footing and, at

(r1,z ) and (r2 'z ,2 < j < N, the nodal displacements

v = v(r ,z.) , .= 1, 2J z J

The loads corresponding to these degrees of freedom are the

moment M and, at (r ,z), 2 < j < N, the tangential forces



M

-- tz

Figure 4.2 -The region r <r < r2, 0 < z < h

(torsional vibrations).

P, (=1,2). The amplitude v is assumed to be a linear function
J

of z in each sublayer. For z. z z , < j < N, we have

z z j+l -zVi(r ,z ) =vj h. + vj+l
J

z - z.

h.
J

Z=1, 2 .

Note that vk = r, VN+ 0 1,2) by the boundary condi-

tions (4.26a,b). The consistent nodal forces are given by

r z

M - 27 r 2dr - 27rr 2 dz
Jr 1 z z=0 z Tr r=r LhJ

+ 27rr2
z

r- r- Tre Irr2 h dz

z z
P= -2rrl Jz. Tre 1 hj . dz - 2rr J~ Tre .+1 dz

r=r -z .r=r

(4. 27b)

-124-

rigid and rough
ring footing

GN bN

fixed base

(4.27a)

ri
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- - z
2z z -z.- j+1 z. -1 z

P= 2Trr Tr h 3 * dz + 7r2 {:i Tra dz
Z2 r=r 2  z r=r 2 Lj-

(4.27c)

2 < j < N

Let UlJ, U2 denote the vectors of nodal displacements at (r z )

and (r2 'zj), 2 < j < N:

s s+l 'l < s < N-1, Z = 1, 2.

The vectors of nodal forces are denoted by F1 , F2

Fk = P)
s 3+1 , 1 < s < N-1, 2 = 1, 2.

Let us determine the dynamic stiffness matrix K of the

element

Fl

M

F2

K~l K

K 21 K 22

U1

0(4.28)

First, we calculate the submatrices K11, K12, K 21 K22. We set

$ = 0. The modes (fixed surface, fixed base) are now of the

form
'(1)v(r,z) = kV(z)H (kr)
0

v (r, z) = kV (z) H ()(kr)
0

(4 .29a)

(4.29b)

Since we are using both Hankel functions, i.e., of the first

and the second kind, only the eigenvalues chosen in (4.10) need

and

2#
U 2
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be used. Working as for the element modeling the region

0 < r < ro, 0 < z < h, we obtain

1 = w r + 2 (4.30a)

U2 2 2 + ^2r2 (4.30b)

1 2 are obtained as in (4.13) but using H( 2 ) instead of J
0 0

l ^2and evaluating at r = r1 and r = r2 respectively. W , are

calculated using H (1). The forces are given by
0

1 1 1 1 1 ^1 11 2
F 2Trr1 [A KK - E K]r +2rr(l - r (4.31a)

2 =2r 2A 2KK -E2 2 K 1  2fr [A^2KK- 2 2̂K 2 . (4.31b)

1 1 2 2
y , 1 , T , 2 are obtained from y, 1, given by (4.12), (4.11),

using Hankel functions of the second kind instead of Bessel
^1 Al

functions and evaluating at r=r1 and r=r2 respectively. ' ,

^2 ^2
T ,D are calculated using Hankel functions of the first kind.

E1, E2 are obtained from E by evaluating at r=r and r=r2 re-

spectively. The participation factors may be eliminated from

(4.31a,b) using (4.30a,b). We find

Fl K1' K' U
---- (4.32)

F2  K21  K22  u2

A particular solution of (4.28) for which =1 is obtained

as for the element modeling the region 0 < r < r , 0 < z < h.

We have
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V , -=Y , (4.33a)

with Y = r Aj+, 1 < j < N-1, = 1, 2 ( A is the same as in

(4.23)). Similarly, for this particular solution

Ft" 0 2Z = 1, 2 . (4.33b)

Using (4.27a) we find

M =r F (r4 - r1 ) . (4.33c)

The dynamic stiffness matrix in (4.28) is symmetric. Using

11 12121 2
the submatrices K K12  2 K22 in (4.32) and the particular

solution (4.33a,b,c) we obtain

Kl - [K1]T = - 11 ill - K1 2 92,l (4.34a)

2 = - 21 1,1 - 22 2,l (4.34b)

K = M - - K4292, . (4.34c)

The derivation of the matrix is now complete. Note,

again, that the computational effort required is independent

of the thickness r2 - r1 of the element.

4.2 VERTICAL VIBRATIONS

Let us now consider time-harmonic symmetric vibrations of

axisymmetric regions of a layered stratum for the Fourier num-

ber n=0. In this case, particle motion is in vertical planes

through the axis. Again, it is independent of the e coordinate.

The amplitude v vanishes while u and w are functions of r and z.
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From equations (2.79a,b,c) we obtain the governing differential

equations for the amplitudes u and w, in sublayer j,

(X + 2G) 2+ - + G 2 u + (X + G

-3r r az

+ p .u = 0.
J

2 2  ~ - ~ 2(X + 2 G. 2 + G. + 1 aw + (X. G L 3ru + 1
J 2 3 7r2 r 3r J araz r

(4. 35a)

au
az

+ 2
+p p.w =

J
0 . (4.35b)

The amplitudes of the stresses are given by

a = (X. + 2G )- +r j3r

a0 = (. + 2G.) u+j + r

J J 3z

[ + -]
j r az

A.[ + ]J 3r 3z

A. [U + u
+ 3

(4.36a)

(4.36b)

(4.36c)

(4. 36d)

(4.36e)

(4.36f)

=0

Te =U

T =G. [ + -]zr a 3z ar

The amplitudes u, w, az I zr must be continuous at z=z

2 < j < N. The conditions expressing continuity of a' 6z'

Tzr are

(X + 2G w + + _ =j-1 J- 3z j1zrz.

= (A . +2G.)-+X. (U + )
J JG 33 3- r r z-+F= u]L 3

Tre

(4 .37a)
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fBu 3w ru 3wlG + W = G 3I + z@z7 . (4.37b)j-l LaZ r ~rZ=z7 JL DrjZ=Z

First, we consider the axisymmetric region 0 < r < r 0 , 0 < z < h.

The boundary conditions corresponding to a rigid and rough circu-

lar footing are prescribed on the surface of the region:

u(r,0) = 0 (4.38a)

w(r,0) = Az ' (4.38b)

0 < r < r .-0

Az is the amplitude of the vertical translation of the footing.

The base of the region is assumed fixed:

u(r,h) = 0 (4.38c)

w(r,h) = 0 , (4.38d)

0 < r < r.
- - 0

As degrees of freedom of the element (see figure 4.3) we

take A , associated with the footing, and, at (r0 ,z.),2 < j < N,

the nodal displacements

u. = u(r 0 z.)
J oJ

w. w(r 0 ,z.)
J oJ

The loads corresponding to these degrees of freedom are the ver-

tical force F and at (r ,z.),2 < j < N, the radial force P .z o0 r,3

and the vertical force P Again, we assume that u and w arez,3

linear functions of z in each sublayer. Thus, for z. '< z < z ,

< j < N, we have
z. -z z-z.

u(r0 ,z) = u. +1 + u. h
o h . j+l h.

J J

w(r 0 ,z) = wZ h. + wj+1 3*

j h.
J
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F
M z

rigid and rough
circular footing

XG .,ph

~XG

N' GN'PN

fixed base.0
z

Figure 4.3 The region 0 < r < r , 0 < z < h
- -0o

(vertical, horizontal vibrations, rocking).

Note that u1 ='0 , w = Az, uN+1 = wN+l= 0 by the boundary con-

ditions (4.38a,b,c,d).

r

F = 27f a z1I=0rdr

P . = 27Trr,j o0

The consistent forces are given by

+ 27rr 0Z.T 2r=r 2h dz
1 o0 .. ..

z.
z ~Z - Z._d

fz.a r=r h j1 d
3-1 0

+ 27rrz + a z+1 j dz
o0. r r=r h

P . = 27rz,3 0

z.
3 z - Z.

T rz3 dz
z rz r=r h 1
- =

zj+1
+ 2Trr

z.J
Tz + jdz , 2 < J < N.

rz r=r 3o(

(4.39a)

(4.39b)

4. 39c)



-131-

The vector of displacements at (r ,z ), 2 < j < N, is denoted

by U0 :

0U2s-1 = us+

1 < S < N-1

0U2s = ws+1

We denote the vector of forces at (r,z.) 2 < j < N, by F:

F 3-1 Pr.s+i

1 < s < N-1

2s z, s+1.

Let us now determine the dynamic stiffness matrix K of the

element, i.e., the matrix relating Fz, F, to A UO:F r

F K K4z zz
Fo Koz Koo Uo

(4.40)

First, we calculate the submatrix Koo. We consider solutions

for which Az = 0. The boundary condition (4.38b) becomes

w(r,0) = 0 , (4.41)

0 < r < r .

Any amplitudes u, w satisfying the differential equations

(4.35a,b), the conditions (4.37a,b) at z = z ,2 < j < N, and

the boundary conditions (4.38a,c,d),(4.41) may be obtained as
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the superposition of modes which, according to (2.83a,b,c) are

given by

u(r,z) = kU(z)J (kr) (4.42a)

w(r,z) = -ikW(z)J (kr). (4.42b)

Again, the Bessel function has been used since it is nonsingu-

lar at r=0. It was shown in section 2.4 that U and W are eigen-

functions with eigenvalue k of an eigenvalue problem which is

identical to that obtained for time-harmonic vibrations of the

stratum in plane strain. In this case, the conditions

U(0) = W(0) = 0

indicating that the surface is fixed must be satisfied instead

of (2.92a,b),Odhich correspond to a free surface. The eigen-

value problem has been considered in connection with the plane

element developed in section 3.1. The corresponding algebraic

eigenvalue problem is given by

[k2A + ikB + G - w2M]A =0. (4.43)

A, B, G, M, A are the same as in (3.10). We form the diagonal

matrix K with entries the wave numbers k., 1 < j < 2N-2, chosen

as in (3.11):

K = diag (k.] . (4.44)

Again, it must be noted that for the element under considera-

tion the wave numbers chosen in (4.44) need only correspond to

linearly independent modes. The modal matrix <D is given by
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D2j-l, = U J1 (kz r0 )

D2j, .Z = -iW J (k r)

(4.45a)

(4.45b)

1 < Z < 2N-2, 1 < j < N-1

(The superscript indicates the particular eigenvector of the

algebraic eigenvalue problem). The matrix T is taken as

V2j-1,z = U J(k r ) (4.46

2j,Z 1(k zr ), (4.46b)

1 < Z < 2N-2, 1 < j < N-1

Finally, the matrix W is given by

Wj-1, = k U J' (k r)

ik zWJ (k kr )
3 0

1 < Z < 2N-2,

We write

1 < j < N-1

0, = W r (4.48)

The nodal forces are given by

F* = -27r9[A K K + (D - E)# K]r (4.49)

A, D, E are obtained from those in (2.107) by deleting the rows

and columns corresponding to tangential displacements. Using

(4.48) we eliminate the participation factors 1:

0 K 0 (4.50)

w 2j,

(4.47a)

(4.47b)

a)



-134-

K0 is given by

Ko = -27rr [A T K K + (D - E) D K] . (4.51)

Let us now obtain a particular solution of (4.40) for

which Az = 1. The loads and displacements corresponding to

this particular solution gre denoted by

1 U0 1 F1
~ z

Substituting

u(r,z) = 0 (4.52a)

w(r,z) = W(z) (4.52b)

into the differential equations (4.35a,b), the conditions

(4.37a,b) and the boundary conditions (4.38a,b,c,d), we find

that W must satisfy the differential equation, in sublayer j,

(X + 2G d2  2 = 0 (4.53a)

the conditions at z=z , 2 < j < N,

(Ag-i + 2G )d!L ( + 2G )d (4.53b)

JJ

and the boundary conditions

W(0) = 1 (4.53c)

W(h) = 0 - (4.53d)

This problem is the same as the one obtained in section 3.1

for the particular solution corresponding to vertical vibrations

of the rigid and rough strip footing. To find the corresponding
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discrete solution we solve

(G - W2M]A = F , (4.54)

with A = 1, A. = W(z .), 2 < j < N ,

F = - (X + 2G )--- , F. = 0, 2 < j < N.1 dz z=0 3

G, M are the same as those in (3.30). Again, equation (4.54)

may be solved easily since G, M are symmetric tridiagonal matri-

ces. We obtain

'= Y (4.55a)

with Y . =0, Y 2  =A. , 1 < j < N-1.

Using (4.39b,c) we find

0

F ol K-2r D l (4.55b)

The matrix D is the same as in (3.32c,d). Considering the

structure of D or directly from (4.36f) which gives Tzr ='

it is seen that vertical forces are equal to zero in this par-

ticular solution. Finally, using (4.39a) we obtain

F1  2 T
F = F r . (4.55c)z 1 0

F1 is obtained from (4.54).

The dynamic stiffness matrix K in (4.40) is symmetric.

Using the submatrix Koo given by (4.51) and the particular solu-

tion calculated above (4.55a,b,c) we find



-136-

= I:KzoT = Fol

= F 1 - K"o Uo,l
z ~

- Koo U0 1

This completes the calculation of the dynamic stiffness matrix

of the element. Note, again, that the computational effort -is

independent of the diameter 2r of the element.

Let us now consider the axisymmetric region 0 <r _r < r

0 < z < h. On the surface of the region we prescribe the boun-

dary condition corresponding to a rigid and rough ring footing:

u(r,0) = 0

w(r,0) = z '
r < r < r
l1- - 2

As degrees of freedom of the element (see figure 4.4),

we take Az, the amplitude of the vertical translation of the

h

F
IF

M

Vz

rigid and rough
,,ring footing

-fixed base

L r2

Figure 4.4 The region r < r < r 2 , < z < h

(vertical, horizontal vibrations, rocking).

Koz

K zz

(4.56a)

(4. 56b)

(4.57a)

(4.57b)
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footing and, at (r ,z.) and (r 2 z.), 2 < j < N, the nodal dis-

placements

u. = u(r ,z.)

w. = w(r ,z.).

The loads corresponding to these degrees of freedom are the

vertical force Fz and, at (r , z ) , 2 < j < N, the radial forces

P and the vertical forces Pz (Z = 1,2). The amplitudesr,j z,j
u,w are assumed to be linear functions of z in each sublayer.

For z < z < z , 1 < j < N, we have

z - z z - z.
u(r z) =u9  j1 - + u,

, ) = j h. uj+ 1  h.
3 3 =1,2

w(r , = z Zj+l ~.z + W - z

wj h. +j+1 h.
J J

with u = 0,w = Az' uN+1= wN+l = 0 ( =1,2) by the boun-

dary conditions. The consistent forces are given by

r 2
F = -27 1 az rdr

r z=

1 z2 Z2- z - z ~z -z
-2rr Trz dz + 27rr 2  

T rz H dz
z 1r r=r 1-h1 1 z r=r2_ l

(4.58a)

1 2rr {z -z-z.ijdz ~ 27rr j +1 z. -z
P r,3 j = -27tr r h.~ dz-2r ar h. dzz r- r 1 3-l )z. r=r 3

(4.58b)
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P . -21Tr T Z j1dz - 21Tr D1T z - dzzP 1 f 1rz r=r h. d r 1 {z'rz r=rLh
z. 3- z.-

(4. 58c)
z.

P .= 2Trr ar Jj dz + 2rr f ar dz

- r=r 2 _ _ T r=r 2

( 4 .58d)

P. =2r 2  Tr LI3 ldz+ 2r {T~Z L~~ dz

zj-1 rr - -zj rr2

2 < j < N . (4.58e)

We denote the vectors of nodal displacements at (r,z.) and

(r ,z., 2 < j < N, by U', U2 respectively.
2'J

= us+l

1 < s < N-1, Z = 1,2

2s =w_,

The vectors of nodal forces are denoted by F , F
= Pr, s+1

1 < s < N-1, k = 1, 2

F z = Pz2s Z' s+1

Let us calculate the dynamic stiffness matrix of the element

F1 K" Klz K'2  U'
~ F

F = Kzl z2 A .(4.59)
z I zz I z

F2  K K' 22 2FKK z~ K 2 2

First, we obtain the submatrices K", K 2 K21 K 22. We con-

sider solutions for which Az = 0. The modes (fixed surface,

fixed base) are now of the form

F z2s-1
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u(r,z) = kU(z)H (kr) (4.60a)
0

w(r,z) =-ikW(z)H (kr) . (4.60b)
0

and
u(r,z) = kU(z)H (2) (kr) (4.60c)

0

w(r,z) = -ikW(z)H(2)(kr) . (4.60d)
0

Note that since we are using both Hankel functions only the

eigenvalues chosen in (4.44) need be used. We write

U1 - w r' + W' r 2  (4.61a)

2 2 1+ ^2 2U =w r~ +w 1

W, W2 are obtained as in (4.47a,b) but using Hankel functions

of the second kind (instead of Bessel functions) and evaluat-

ing at r = r1 and r = r2 respectively. W, w are calculated

using Hankel functions of the fi;st kind. The forces are

given by

F= 27rr [AT1 + (D - ) l'rl

1 1 1 2+ 27rr [A l K K + (D - E )l K]2 (4.62a)

2 = -2r2 2 + ( - 2 2 KI

2 2 2 2 2
-2r 2[A T K K + (D - E ) KIr . (4.62b)

(a superscript t indicates that the matrix is evaluated at
1 1 2 2

r=r ). T , 0, , are calculated using Hankel functions

A1 Al ^2 ^2
of the second kind while T , , , ' are determined using

Hankel functions of the first kind. Eliminating the partici-

pation factors, we find
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F1

F 2

11 l K12

21 1 22
K 21 Lw2

(4.62)

K l, K K 21 K22 are the submatrices we are looking for.

A particular solution of (4.59) for which Az = 1 is ob-

tained as for the element modeling the region 0 < r < ro,

O < z < h. We have

J.Z = Y k = 1, 2 , (4. 63a)

Y being the same as in (4.55a). The forces are given by

0

- 27rrr1 D 1

LY

0
2 1 -2Tr 2 D 1

Y

D being the same as in (4.55b). Finally,

(4.63b)

(4. 63c)

we find

1 2 2
z F1 (r2 - r1)

(4.63d)

The dynamic stiffness matrix in (4.59) is symmetric. Using

the submatrices Kl, K 2, ,K21  K22 in (4.62) and the particular

solution above, we obtain

Klz = [Kz] T =F

2z _ z2 -

1,1

2,1

11 12 1,1
- [K + K I U

21 22
- [K + ] I

1,1

(4. 64a)

(4. 64b)
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Kz = F1 - Z + z (4.64c)

The derivation of the dynamic stiffness matrix of the element

is now complete. Again, the number of operations necessary to

calculate the matrix is independent of the thickness r - r1 of

the element.

4.3 HORIZONTAL VIBRATIONS AND ROCKING

We consider time-harmonic symmetric vibrations of axisym-

metric regions of a layered stratum for the Fourier number n=l.

This case involves all three displacements. We have

u(r,e,z) = I(r,z) cose (4.65a)

w(r, e,z) = w (r,z) cosE (4.65b)

v(rGz) = - v(r,z) sine . (4.65c)

The governing differential equations for the amplitudes u, w, v,

in sublayer j,are obtained from equations (2.79a,b,c) as

2--- - 2- - 2

2+ r - + 2 + -2v 3r + 2 u = 0 (4.66a)
3rr Bz r j [cj]

2- 2-
+ 1 - + + 1 + v = 0 (4.66b)2 r ar 2 +32 + 2 l2v r

3r r 3z r T [C ]

2- - - 2- - 2
+w 1 -w + +w 1 = 0. (4.66c)

2 r3 r2 +z 2 [+

s is the amplitude of the dilatation:

- =-3u + - - + + w(4.0)
9r r r 9z
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The amplitudes of the stresses are given by

a = r cos6 = [X. F + 2G. ] cose (4.68a)
r r Jj 3r

a = a cos6 = [X. F + 2G. - 2G. ] cosO (4.68b)6 3Jr 3 r

a = a cose = [X. e + 2G . ]cose (4.68c)
z z 3 j 3z

T = - - sine = - G. [3v v _ -] sine .(4.68d)re r6 3 r r r

T = - T -sine = -G. + -] sine (4.68e)jr 3z
T = T cos6 = G. [- + ] cose . (4.68f)
zr zr j 3z 3r

The amplitudes u, w, v, az' -r0 iz I zr must be continuous at

z=z., 2 < j < N. The conditions expressing continuity of az'
J-

T z' Tzr are:

F . + 2G. = + 2G.2 (4.69a)2-1 3-1 az -= j z Z=+(46a

G w + 3 G. + _v (4.69b)
J-1 r 3z -.. J r 3z +=Z

G= a + aw G q + aw (4.69c)
j-1 3z 3r z=z- J 3z Dr +=Z

J j

Let us first consider the axisymmetric region 0 < r < r

0 < z < h. The boundary conditions corresponding to a rigid

and rough circular footing are prescribed on the surface of

the region:

u(r,0) = A (4.70a)

w(r,0) = -r$ (4.70b)

(4.70c)v(r,0) = A , 0 < r < r .
x - -0
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A and $ are the amplitudes of the horizontal translation (in

the direction of the x-axis) and the rotation (about the y-

axis) respectively (the system of coordinates (x,y,z) is under-

stood as in the plane regions considered in the previous chap-

ters: the x-z plane is the plane e=O). The rotation is taken

positive in the counterclockwise direction. The base of the

region is assumed fixed:

u(r,h) = 0 (4.70d)

w(r,h) = 0 (4.70e)

v(r,h) = 0 , 0 < r < ro . (4.70f)

AX,$and the nodal displacements

u = u(roz

w 3= w(re, z ) 2 < j < N

v = v(r , z)

are taken as the degrees of freedom of the element (see fig-

ure 4.3)modeling the region under consideration. The loads

corresponding to these degrees of freedom are the horizontal

force F,, the rocking moment M and, at (r ,z.), 2 < j < N, the

radial force P ., the vertical force P . and the tangential

force P0 .. We assume that u, w, v are linear functions of

z in each sublayer. For z. < z < z 1 < j < N, we have
J zj+l1

zi+1-z z-z.
u(r0 Iz) = u h. + uj+l h. (4.71a)

J J

z +1-z z-z.
w(roz) = w -h. + wj+l h. (4.71b)

J J
z'j+1-z _z-z.

v(r = v- hj + v j+1h ' (4.71c)
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with ul - 1 = Y , = -r9 $, uN+1 = WN+l = VN+1
= 0 by the

boundary conditions (4.70a,b,c,d,e,f). The consistent forces

are given by

r

F = -Tr fo T z I =

r

r dr - 7Tr Tez
0z=0

z2_ z2- z 2 _ z2-z+7rr Cr h dz + 7rr Tr h dz
z r=r 1 0 z rr=r 11 0 - 1 0 -

r

M = 7T az r2dr - Trr2
0 z=0

P j = Trrr ,j 0

. = Trr

P . = Trr,j o

z2

f -
z2 z

z 1zr r=r h
0

(4.72b)

z.-- z -riz-z.j+1 Fz.,-zl
Er hL l~jdz + Trr r hLdzz. r=r 0 -1 z. r=r J

(4. 72c)

z.

Tz .J-1
Tzr

r=r

Fz -- z._-z-z .- f +l_ z .+1-z
* dz + Trr 0Tzr r=r[h]dz
h dz r ~

o - 3

(4. 72d)

z. z

z . re r=r h +r j z . re r=r h' J-1 0- J 0 _

(4. 72e)
2 < j < N.

The vector of displacements at (r , z.), 2 < j < N, is denoted

by

3s-2 Us+1

< s < N-1Uo -
3s-1 = s+1

J = V
3s s+1.

rdr

(4.72a)
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We denote the vector of forces by F0:

F = P3s-2 r,s+1

3s-l z,s+l

3s

1 < s < N-1

= POfs+l

Let us calculate the dynamic stiffness matrix K of the

element, i.e., the matrix relating F , M, F0 to A ,' UO:

Fx

M

F0

First, we determine

for which A = 0,

become

K i K KXO
xx x

Ke x K $$
= . (4.73)

KX x Ko Koo U0
C I I C

the submatrix K00 . We consider solutions

= 0. The boundary conditions (4.70a,b,c)

u(r,0) = 0

w~(r,0) = 0

v(r,0) = 0

0 < r < r 0

(4. 74a)

(4.74b)

(4. 74c)

Any displacement amplitudes u, w, v satisfying the differen-

tial equations (4.66a,b,c), the conditions (4.69a,b,c) at

z=z , 2 < j < N, and the boundary conditions (4.70d,e,f),

(4.74a,b,c) may be written as the superposition of modes which,

according to (2.83a,b,c) and (2.84a,b,c) are given by
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u(r,z) = kU(z)Jj(kr) (4.75a)

w(r,z) = -ikW(z)J1 (kr) (4.75b)

v(r,z) = U(z)J (kr) (4.75c)

and 1
u(r,z) = - V(z)J (kr) (4.76a)

w(r,z) = 0 (4.76b)

v(r,z) = kV(z)J (kr) . (4.76c)

We have used the Bessel function since we are considering the

region 0 < r < r0 . It was shown in section 2.4 that U and W

are eigenfunctions with eigenvalue k of an eigenvalue problem

which is identical to that obtained for time-harmonic vibra-

tions in plane strain. Similarly, V is an eigenfunction with

eigenvalue k of the eigenvalue problem obtained for antiplane

shear. The difference is that the boundary conditions

U(0) = W(0) = 0

V(0) = 0

which indicate that the surface is fixed must be satisfied

instead of (2.92a,b) and (2.93a), which correspond to a free

surface. The eigenvalue problems have been considered in con-

nection with the plane elements developed in Chapter 3. The

algebraic eigenvalue problem corresponding to modes given by

(4.75a,b,c) is

[k2A + ikB + G - w M]A = 0 . (4.77)

A, B, G, M, A are the same as in (3.10). The algebraic eigen-

value problem corresponding to modes given by (4.76a,b,c) is
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[k2A + G - w2MIA = 0 . (4.78)

A, G, M, A are those in (3.66). We form the (3N-3)x(3N-3)

diagonal matrix K in which the first 2N-2 entries are the wave

numbers k., 1 < j < 2N-2, chosen as in (3.11), and the last

N-1 entries are the wave numbers k., 1 < j < N-l, chosen as
J -.-

in (3.67):

K = diag [k.]
J

(-4.79)

Again, it must be noted that for the element modeling the

region 0 < r < r0 the wave numbers chosen in (4.79) need only

correspond to linearly independent modes. The matrix @ is now

given by -

= -US J (k r ) ,

= - i W J (k r
= £0

=0

1 < 9 < 2N-2, 1 < j < N-1

(4.80)

=0

= 0 } 2N-l < Z < 3N-3, 1 < j < N-l

= -V 2 N+ 2 J (k r)
3 o 91 0

(the superscript indicates the

algebraic eigenvalue problem).

particular eigenvector of the

The matrix T is taken as

S3j-2, = U J (k r )

= iW% J (k r
J 90

1 < Z < 2N-2, 1 < j < N-1

(4.81)

D3j-2, k

33j- 1,2 9
D3j-,

t3j-2.,L

D3j-l,

., z

3j-l, ,

3j, 9
= 0



-148-

3j-2, = 0

'3j-1, Z = 0

T 3 .

-2N-l < k < 3N-3, 1 < j < N-1
9-2N+2V. J z oJ J1 (kro

The matrix W of modal amplitudes at r = r is given by

W 3j-2, Z

w3j-, Z

W .j z

= k U , J (k r )

=-ik W J (k zr )0 -

12,
=- U. J (k r )r 03 1 z o0

1 -2N+2 '
3j-2 ~ r j (kr)

W3ji-l, = 0

3 = k V J2N+2 (k rW~j2, i1 20

We have

1 < Z < 2N-2, 1 < j < N-l

(4.82)

2N-1 <,< 3N-3, 1 < j < N-1 .

0' = w r (4.83)

Using (2.107) with n=l and integrating with respect to e we

find the nodal forces

F = -7rr [A TK K + (D - E + N) K - (L + Q) ]. (4.84)

A, D, E, N, L, Q are obtained from those in (2.107) by delet-

ing the first three rows and columns. Using (4.83), we elim-

inate the participation factors. We find

FO] = K U01 [90] (4.85)

Ko0 is given by



-149-

Koo = - 7 [rA T K K + (D - E + N) K - (L + Q)]W~1 . (4.86)o - 4 '

Let us now obtain a particular solution of (4.73) for

which A = 1, $ = 0. The loads and displacements corresponding

to this particular solution are denoted by

,0~l UO, F1, M .

Substituting
u(r,z) = U(z) (4.86a)-

w(r,z) = 0 (4.86b)

v(r,z) = U(z) (4.86c)

into differential equations (4.66a,b,c), the conditions (4.69a,

b,c) and the boundary conditions (4.70a,b,c,d,e,f), we find

that U must satisfy the differential equation, in sublayer j,

d2U
G d2U + 2 2 U = 0 , (4.87a)
Gi dz 2 3

the condition at z=z., 2 < j < N,

dU dU
G j-l diz G j dz + (4 .87b)

z=z. z=z.
J J

and the boundary conditions

U(0) = 1 (4.87c)

U(h) = 0 . (4.87d)

This problem is the same as the one obtained in section 3.1

for the particular solution corresponding to horizontal vibra-

tions of the rigid and rough strip footing. To find the corre-



-150-

sponding discrete solution we solve

[G - 2 M]A = F

A1 = 1, A. = U(Z.)
J 3J

F = =-G dU

dz z=0

2 < j < N

, F. = 0, 2 < j < N

G, M are the same as those in (3.25). We obtain

0,1= Y

with Y3 j-2 = Aj+ 1 ' 3j- 1 = 0, Y =3j Aj+ 1, 1 <j < N-l.

Using (4.72c,d,e) we find

0

oil = -7rrrD 1 . (4.89b)

Y

The matrix D is obtained from that in (2.107) by deleting the

first three rows and multiplying columns 3j-2, 1 < j < N, by -1.
It is easily seen that radial and tangential forces in

are equal to zero. Finally, using (4.72a,b) we obtain

1 2
F = rr Fx o-

1 2 o G1( - 2)

(4.89b)

(4.89c)

(4. 89d)

F1 , A2 are found from (4.88).

Working similarly, we obtain a particular solution of

(4.73) for which A = 0, 4 = 1. The loads and displacements

corresponding to this particular solution are denoted by

with

(4.88)

(4. 89a)
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Fo, 2FU 2
P2rxM

' ~x' ~2'

Substituting

u(r,z) = U(z)

w(r,z) = -rW(z)

v(r,z) = U(z)

(4.90a)

(4.90b)

(4.90c)

into the differential equations (4.66a,bc), the conditions

(4.69a,b,c) and the boundary conditions (4.70a,b,c,d,e,f), we

find that U and W must satisfy the differential equations, in

sublayer j,

Gd2U (X + G dW 2G. --- - (A. + G )-- + w p .13 0
J dz 2  J J dz J

d2W
( + 2G ) + 2 p W 0

the conditions at z=z, 2 < j < N

(4.91a)

(4.91b)

(X . + 2G . ) dW
1 J-1 dz z-

J

- (. + 2G) z
J j Z dz

J

G. - + dU -G. -W + dI
j-1 dz dz- L-z=Z - JJ

and the boundary conditions

U (0)

W (0)

U (h)

W(h)

=0

= 1

=0

=0

This problem is the same as

for the particular solution

the one obtained in section 3.1

corresponding to rocking of the

(4.. 91c)

(4.91d)

(4.91e)

(4.91f)

(4. 91g)

(4. 91h)
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rigid and rough strip footing. To find the corresponding

discrete solution we solve

S A = P (4.92)

with A1 = 0, A2 = 1, A2j 1 = U(z.), A2 . = W(z.), 2 < j < N,
1 2 23- 3 23

l = -G -W + d T
I z=0

P 2j- = P 2j = 0

P2  =G - 1  
dW

, 2 1 1 )zI

2 < j < N.

S is the same as in (3.50). Thus we obtain

u o,2 = Y (4.93a)

with Y3j-2=2j+l' 3j-l~ o 2j+2' Y3j=A2j+1  1 < j < N-1

Using (4.72c,d,e) we find

F '2= -rrr H A , (4. 9 3b)

with A 3 2 = A2 , A 3 1 = A2 , A . = 0, 1 < j < N.33-2 231 3 -1j 3

The matrix Hr is obtained by

Hr,j given by

assembling the sublayer matrices

0 E A.
2 3

1 G 1-G.- G.h.

0 0

2j

1 G G h

0 0

0 1G
2 j

0 0

10 - G.2j3

0 0 0

Hr,] -

E A.
2 3

1.
G 3h6 3 j

0 0

E .j
2 3

G. h.
3 3i

(4.94)

0 0
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r
(H 0 in (4.93) is obtained from H evaluated at r = r after

deleting the first three rows, since the forces in (4.93) cor-

respond to nodes below the surface). Finally, using (4.72a,b)

we obtain

F 2= r P + r X (1-A ) (4.95a)
x 01 2 o1 4

M ~r 4  1 1 12
M2 4 r P2+ (S Gh - G A3 + G hg )rr . (4.95b)

The dynamic stiffness matrix K in (4.73) is symmetric. Using

the submatrix Koo given by (4.36) and the particular solutions

(4.89a,b,c,d) and (4.93a,b), (4.95a,b) we obtain

Kox = [Kxo T = F o'l - K  U (4.69a)

-- [0]T = Fo 2 - K00 U0' 2  (4.964

= F1 - KXO U0" (4.96c)

K = M2 -Ko Uo 2  (4.96d)

K = = - Kg"0 Uo'1  (4.96e)

The calculation of the dynamic stiffness matrix of the ele-

ment is now complete. We note that the computational effort

required to obtain the matrix is independent of the diameter

2r0 of the element.

Let us now consider the axisymmetric region 0 < r1 < r < r2

0 < z < h. The boundary conditions corresponding to a rigid

and rough ring footing are prescribed on the surface of the

region:
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u(r, 0) = Ax

W(r,O) = -r$ r < r < r2

v(r,O) = A .

A , $ and the nodal displacements

U. = u(r ,z.)

-Z -
w. w (r. z)

v= v(r ,z.)
J 2 J

2 < j < N, Z, = 1, 2

are taken as the degrees of freedom of the element (see figure

4.4 ). The corresponding loads are the horizontal force F ,

the rocking moment M and, at (r , z) 2 < j < N, the radial

forces P , the vertical forces P and the tangential for-
r,j zj3

ces P (Z = 1, 2). The amplitudes u, w, v are assumed. to

be linear functions of z in each sublayer. For z < z < zj+1'

1 < j < N, we have

u(r, ,z )

w(r ,z.)

v(r ,z.)

Z z .~l -z -Z
h. j+1

z. -z

w h. + wj+l

z + - z
j h. j+l

J3

z - z.

h.
J

z - z.

h.

z - z.

h.
J

Z = 1, 2

with u =v = A r u = 0 (=1, 2)1 1 x 1 Z uN+l = WN+l = vN+l 1 Zl2

by the boundary conditions. The consistent forces are given

by

(4. 97a)

(4. 97b)

(4.97c)



,r2
= -

r
Tzr Z=O rdr - 7 oez z=Ordr

z 1r~12 ~r 1 z -Zz-
- f r1 dzrr z rIr=r L h1 J

- wr z 2
z r- z

Tre dz
r--rl 1J

z 2
+ Tr2 1z1ar r~

dz + r2h 1

z2  z

z 1 r=r2 -

r2

MrJfr 
z z=O

+ Tr2 f1z

r,J = -Trr

r dr

zr r=r

lJ*

z.

a r
zij-1

z .

= -7r{ zr
J-1

P 16p,

2p

= - Trr

z.
Tr6

z re

2L dzh - rr~ f- r2
2z

SIi dz - irr
r=r hi- 1

-h . - dz - rr

r=r J-1

dz - Trr
r=r -l

= 'r % rLh dz +
z r=r2 hJ-- -

7Tr 2

T r

zr

cj1
r=r

2

~ z-z
2[ dz
-

(4. 98b)

a+ h. dz
r r=rl

(4.98c)

z j+1 ~ - z

z r=r Jj
(4. 98d)

z .
I

zj+ 1

z.
J

~z .- z~

r=r h d

(4. 98e)

r h+1 dz
r=r 2

(4.98f)

,j 7 r 2
z i r=r 2

-z .z-z. z+7rr +1

h .- 2 dz + r2
3-1 z

_
zr

Sdz
r=r2 h

(4. 98g)
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Fx

(4.98a)

2z

I 
"
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Z' Z-z. - zj+1 z -z~z. -1z.
=Pr 2 7re Z~..ldz + 7r2  jJ.Tzj+l Zjz

-1 r=r r=r 2

( 4. 98h)

2 < j < N.

The vectors of displacements at (r, z ), (r2 , z ), 2 < j < N,

are denoted by Ul, U2 respectively:

2,
US-2

-+U U5+J

3 s-l = ws+1

U3s

1 < s < N-1, Z = 1, 2

s+1

The vectors of nodal forces are denoted by F', F2

= P
r, s+1

z, s+1 1 < s < N-1, , = 1, 2

S,
= Is+1

Let us determine the dynamic stiffness matrix K of the elements:

F1

F
x

M

F2

11 i lx 1 l$ 1 1

Kxl 11Kx1 Kx I Kx

K : K ox K 2

K2 2x 1~ 20 22
I I I

2xi 22
K2' K : K(2 2

I ~ I ~ I ~

U1

U2

. (4.99)

First, we calculate the submatrices K11, K 2 , K21  K22  We

consider solutions for which A = 0, $ = 0. The modes (fixed

, 3s-1
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surface, fixed base) are obtained from (4.75a,b,c) and (4.76a,

b,c) using Hankel functions instead of Bessel functions. If

both Hankel functions (i.e. of the first and the second kind)

are used, then only the eigenvalues chosen in (4.79) need be,

used. We write

U1 = wlrl + Sr2 (4. 100a)

u2 = W2 r 1 + 22 (4.100b)

w1 2 are obtained as in (4.82) but using Hankel functions

of the second kind and evaluating at r=r1 and r=r2 respective-

ly. w , w are calculated using Hankel functions of the first

kind. The nodal forces are given by

1ll 1 1 1 11
F = 7r [A TK K + (D - E + N )# K - (L + Q )y ]F

+ Trr [A K K + (D - E + N )D K - (L + Q )T I
(4.101a)

S2 2 2 2 + 2 2
-Trr 2 (A T2 K K ( - E2 + N ) 4)K - (L + ~ Q TIr

(4.101b)

(a superscript k indicates that the matrix is evaluated at

l 1 2 f2 are calculated using Hankel functions
r=r ). ? , , , arcacltduigHnefntos

1 ^1 ^2 ^2
of the second kind, while T , , , @ are determined using

Hankel functions of the first kind. Eliminating the participa-

tion factors, we obtain
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F K .K2F Ul

K21  K22 u2K K
(4.102)

A particular solution of (4.99) for which A = 1, $ = 0 is

obtained as for the element modeling the region 0 < r < ro,

0 < z < h. We have

U ' = Y- k = 1, 2 (4.103a)

Y being the same as in (4.89a). The nodal forces are given by

F1 , 1 = D

F2 ,1 =-Tr2 D

0

1

y

Y

(4.103b)

(4.103c)

D being the same as in (4.89b). Finally, we obtain

12 2
F = 7(r - r ) F1x 2 1

M = (r2 - r )G(1 - A2 )

(4.103d)

(4.103e)

F1 , A2 are obtained from (4.88).

Working similarly, we obtain a particular solution for

which A = 0, $ = 1. We have

= Y'z (4.104a)
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with Y = =-r A Y. )=- l< j <N-1.
Y3j-2  A 2j+1 ' 3j-1 = - 2j+2' 3j = _2j+1<

A is the same as in (4.92). The nodal forces are given by

F1, 2 = Hr r ,

F2,2 = - Tr2 H 2 A

(4. 104b)

(3.104c)

r r2  r0
H , H are obtained as H in (4.93b). A' is the same as

in (4.93b) . Finally, we find

2 2 2 r )r 2 r 1 (4.104d)

M2 (r - r )P + ( G h - G A + G h 4) Tr(r 2 - r ) .(4.104c)

The dynamic stiffness matrix K in (4.99) is symmetric. Us-

ing the submatrices K", Kl2  K21  K22 in (4.102) and the par-

ticular solutions (4.103a,b,c,d,e) and (4.104a,b,c,d,e), we

obtain

lx Kxl T _ F1 _ 11

2x x2 T 2,1 21

- 10Ol]T = F"2 - K"

K24 _ $2 ]T = F2 ,2

F - xl 1,1

= M2 ~1 1 U 2

U _ 12 U2 ,1

U1 1  _ 22  <2 ,1

1,2 - K(12 u2,2

- K2  U"2 - K22

x2 2,1

- 0 2 U2,2

U2, 2

(4.105a)

(4.105b)

(4.105c)

(4.105d)

(4.105e)

(4.105f)

(4.105g)M - K4' U1 ' - K 2 U2 "K = x
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This completes the derivation of the dynamic stiffness

matrix of the element. The number of operations necessary to

obtain the matrix is independent of the thickness r2 - r1 of

the element.

4.4 OTHER ELEMENTS

Several other elements may be developed using the proced-

ure described in the previous sections. As in the case of the

plane elements discussed in Chapter 3, the first step is to find

solutions (modes) satisfying appropriate homogeneous boundary

conditions. This step requires the solution of algebraic eigen-

value problems of the form (2.26) or (2.63). The second step

is to calculate particular solutions satisfying the inhomogene-

ous boundary conditions. Let us consider some examples. First,

we assume that boundary conditions corresponding to a rigid

and smooth footing are prescribed on the surface of the region

0 < r < r 0 , 0 < z < h, while the base is kept fixed. We re-

strict our attention to rocking (the other cases are similar):

Tzr z=0 =0 (4.106a)

Tz z= 0 (4.106b)

w(r,0) = - r$ , (4.106c)

0 < r < r .- -0o

Note that the Fourier number for rocking is n = 1. The corre-

sponding homogeneous boundary conditions are that w, Tzr' Tez
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vanish at z = 0, while u = W = v = 0 at z = h. The algebraic

eigenvalue problems are obtained from (2.25) by specifying

F1 = 0, A2 = 0' A2N+l = A 2N+ 2 = 0 and from (2.62) by specify-

ing F = 0, AN+l = 0. Solving these problems, we obtain the

semidiscrete modes. Next, we look for a particular solution

satisfying (4.106a,b,c). Such a solution is given by

u(r,z) = U(z)

W(r,z) = -rW(z)

v(r,z) = U(z)

U and W must satisfy the differential equations (4.91a,b), the

conditions (4.91c,d) and the boundary conditions

[W + ] = 0 (4 .107a)

W(0) = (4.107b)

U(h) = 0 (4.107c)

W(h) = 0 . (4.107d)

This problem is similar to the one obtained for rocking of a

rigid and rough footing. The discrete solution for U and V is

found from (4.92) with Pi = 0, = . The corresponding semi-

discrete solution for u, w, v, together with the semidiscrete

modes, are sufficient to develop an element modeling the

region.

Let us now assume that x-harmonic displacements are pre-

scribed at the base of the region 0 < r < r0 , 0 < z < h. Thus
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the amplitudes, at z = h, of the displacements in the x-direc-

tion, y-direction, z-direction are taken as u exp(-ikx),

v exp(-ikx), w0exp(-ikx), respectively. We consider k 3 0.

In cylindrical coordinates we have

u(r,e,h) = u0cosG exp(-ikr cose) -v sin exp(-ikr cose)

(4.108a)

w(r,e,h) = w0 exp(-ikr cosO) (4.108b)

v(r,e,h) = -u sine exp(-ikr cose) -vocose exp(-ikrcos8).

(4.108c)

The boundary conditions corresponding to a rigid and rough cir-

cular footing are prescribed on the surface of the region. In

this case, apart from the particular solutions that we calcu-

lated in the previous sections, we need a solution satisfying

(4.108a,b,c). Such a solution is

u(r,e,z) = U(z)cose exp(-ikr cose) -V(z)sine exp(-ikrcose)

(4.109a)

w(r,e,z) = W(z)exp(-ikrcose) (4.109b)

v(r,e,z) = -U(z)sine exp(-ikrcose) - V(z)coseexp(-ikrcose).

(4.109c)

For this particular solution the surface is taken fixed.

U and W must satisfy the differential equations (2.7a,b), the

conditions (2.7c,d) at z = z., 2 < j < N, and the boundary

conditions

U(0) = 0

W(0) = 0

U(h) =uo

W(h) =wo

(4.ll0a)

(4.110b)

(4. 11Oc)

(4. llOd)
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The discrete solution for U and W is found from (2.25) with

A1 = A2 = 0, A2N+l = u , A 2N+2 = w. Similarly, V must satis-

fy the differential equation (2.52a), the condition (2.52b)

at z = z.,2 < j < N, and the boundary conditions
J

V(0) = 0 (4.llla)

(4. lllb)V(h) = v .

The discrete solution for V is obtained from (2.62) with A1 = 0,

AN+1 = vo. Let us calculate the Fourier series expansion of

the particular solution (4.109a,b,c). We have

u(r,e,z) = u (r,z)

w(r,e,z) = w (r,z)

v (r, 6, z) = va (r, z)

C-a
+ ILus(rz)cos(ne)+ Ua(r,z)sin(nG)j
n=l rn, n

+ I Sw(r,z) cos(ne)+ Wn (r,z) sin (ne)
n=lLrn - r

+ -Vs (r, z) sin (ne )+ Va (r , z) cos (n6)
n=l I-n n

(4.112a)

(4.112b)

(4.112c)

(the superscripts s, a indicate symmetric and antisymmetric

components respectively.). Using properties of Bessel func-

tions [ 1], we find

-s

u0 (r,z)

a(r,z)
-a

v0 (r,z)

Va (r, z)
un (,z

-au n (r, z)

= i U(z)J 0 (kr)

= W(z)J0 (kr)

= i V(z)J (kr)

= 2il-n U(z)J (kr)n

= 2il-n 1 n V(z)J (kr)k r n

(4.113a)

(4.113b)

(4.113c)

(4.114a)

(4.114b)
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ws (r,z) = 2i-n W(Z)J (kr) (4.115a)
n n

wa (r,z) = 0 (4.115b)
n

Vs (r,z) = 2il-n 1 n U(z)J (kr) (4.116a)
n k r n

va(r,z) = 2il-n V(z)J (kr), n > 1. (4.116b)
nn-

we note that the amplitudes above multiplied by cn i k (c=1,

C = Afor n > 1) are the same as those in (2.83a,b,c) (sym-
n 2

metric comyonents) or (2.84a,b,c) (antisymmetric components).

Thus the forces at (r ,z ), 2 < j < N, for a given component

may be obtained using (2.99). The components which contribute

to the loads acting on the footing are

-av (r, z) (4.117a)

u (r,z), w (r,z) (4.ll7b)

is(r,z)cos e , s (r,z)cose , - v (r,z)sine. (4.117c)

The calculation of the moments and forces for these components

is straightforward. For example, let us consider the compon-

ent

u(r,e,z) = 0

w(r,e,z) = 0

v(r,6,z) = v0 (r,z) = iV(z)J 0 (kr)

The torsional moment is given by (4.5a). It is trivial to

calculate the second term in that expression since Trr r=r0

is a linear function of z. We rewrite the first term 0
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r
ro 2

-27r Te r dr
0 z=0

We have

T z z=0 = -iF1J (kr)

with F1 = - G z=0 (Fl is found from (2.62) which gives

the discrete solution for V). Thus the integral becomes

r

27riF ;o r2J (kr)dr.

This integral may be calculated using properties of Bessel

functions. We obtain

ro2 r 2 2r
-27 T r 2dr 27i F K J (kr)- J (kr)j

The displacements and loads corresponding to the particular

solution (4.109a,b,c), together with the results of the previ-

ous sections, are sufficient for the development of the ele-

ment.

Clearly, the variety of inhomogeneous boundary conditions

for which elements may be developed cannot be exhausted here.

It is important to note, once more, that the computational ef-

fort required to obtain the semidiscrete solutions which are

necessary for the development of the elements is independent

-of the thickness of the elements in the radial direction.
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4.5 AN APPLICATION

As a verification of the developments presented in the

previous sections, let us consider time-harmonic vibrations

of a rigid and rough circular footing on the surface of a stra-

tum. Let R be the radius of the footing. The boundary condi-

tions on the surface of the stratum are

u(r, e,0)

w(r, e, 0)

v(r,e,0)

Tz z=0

ez z=0

Tzr z=0

= AX cose

= Az - r pr cose

= r ~ Axsine

=0

=0

=0

0 < r < R ,

r >R

r 't are the amplitudes of the rocking and torsional rota-

tion of the footing respectively). The base of the stratum is

fixed. Let F , Fz Mr Mt be the amplitudes of the horizon-

tal force, vertical force, rocking moment and torsional moment

respectively. We write

Mt

F
z

F

Mr

Az

x

K being the dynamic stiffness matrix (symmetric):
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Ktt 0 0 0

o K 0 0Kzz

K= K =0 0 K K
0 0 xx '1xr

0 0 Krx Krr

Let us assume that theestratum is homogeneous. The nondimen-

sional stiffness

Ktt

GR

wRis a function of the nondimensional quantities ,- (nondimen-
T

sional frequency), , S. The nondimensional stiffnesses

K Kxx K rr K xr

GR GR

are functions of wR v, 5. In order to calculate theCT' R

stiffnesses we combine (see figure 4.5) the elements (modeling

the region 0 < r < R, 0 < z < h) developed in the previous

sections with the transmitting boundaries (modeling the region

r > R, 0 < z < h) developed by Waas [23] and Kausel [ 6] (see

section 2.4). Waas [23] and Kausel [ 61 have obtained results

by combining the transmitting boundaries with a conventional

finite element mesh modeling the cylindrical region below the

footing. In fact, the elements that we are using may be under-

stood as meshes with an infinite number of rings of finite

elements. It is convenient to write the nondimensional stiff-

nesses as
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free surface

Mt
F

M Fz

rigid and rough
circular footing T

h

R
z -fixed base

Figure 4.5 Scheme for the calculation of the stiffness

of a circular footing on the surface of a stratum.

= K wR

GR 3 GR T

Kzz

Krr

GR

K0
z z

GR

K0
xx

0
rr

GR3

kzz wR
C zz IZ

k + i Rcxx C Txxi

k + i c rr CT rrj

(l+2ig)

(l+2i$)

(l+2iS).

The superscript o indicates the static stiffnesses. ktt, k ,

k , krr, ctt' cz, cx, crr are referred to as the stiffness

coefficients. We note that the normalization of the stiff-
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nesses may be more effective if

Cc _G(l+2i)- l/2, Re[Cc] > 0
T - p T

is used instead of CT in the above expressions [7 1 (then the

stiffness coefficients are rather independent of damping).

The stiffness coefficients as defined above are, however,

those used in [ 6,11] (results reported in these references

are used here for the purposes of comparison). Figures 4.6,

4.7, 4.8, 4.9 show plots of the stiffness coefficients versus

the nondimensional frequency 1 forh = 2, v =1 =

T R
0.05. The static stiffnesses are

0
Ktt
3= 5.79

GR

0

= 10.37

K0

G = 6.36

Krr 16
-= 4.63.

GR3

The stratum was divided into twelve sublayers of equal depth.

For each frequency the computation of the torsional stiffness

takes approximately 0.8 second on IBM 370/165, the computation

of the vertical stiffness 6.0 seconds and the computation of

the swaying and rocking stiffnesses 9.5 seconds. Again, a

great advantage of using the elements developed in this work
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is that the storage requirements are very low compared with

those of a conventional finite element mesh fine enough for

accurate results. For the application considered here only

fast memory is necessary. Moreover, as already pointed out,

the computational effort associated with the elements consid-

ered in this work is independent of their thickness in the

radial direction. This is not the case with a conventional

finite element mesh. The agreement of the results shown in

figures 4.6, 4.7, 4.8, 4.9 with those reported in [23, 6 , 111

is excellent. It is not possible to resolve the difference

between the results within the scale of the drawings.
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k i
tt

J,

a

00 0.2M 0.40 0. 60 0.860 1. 00 1. 20 1.4%0 1. 80 -7.80

l wR
27r CT

Figure 4.6 -Torsional stiffness coefficients

(circular footing, a = 0.05, h = 2).
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N.

tt al

1 wR
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k *z

kk

0.00 0'.20 a'.o 0'.w 0'.w 1'.O0 1.20 1'. w 1.60

l wR

T

Figure 4.7- Vertical stiffness cofficients

(circular footing,v = 1/3,a = 0.05, = 2 ).R

c zz

1 wR

T
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k 2
xx

0

.

'0.00 0.20 0.0 0.0 0 W 1.00 1. 20 1.W 1.80 1. 0

l wR
2T CTT

Figure 4.8- Horizontal stiffness coefficients

(circular footingv = 1/3,6 = 0.05, = 2 ).
R

c
xxa

a
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aT
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k arr

27r

10

0T

a

'4. 0 G O20 0. W 0!8 90 0. 1'. 0 1. 20 1~.IW 1. 6

1lwR

Figure 4.9- Rocking stiffness coefficients

h
(circular footing,v = 1/3,8 = 0.05, 1 = 2 ).

c r
rr =

1 -wR
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CHAPTER 5

SOME APPLICATIONS

In this chapter we illustrate the use of the elements devel-

oped in the present work. We consider the effect of the rigid-

ity of the side-wall on the dynamic stiffness of circular foot-

ings embedded in a layered stratum. In another application we

investigate the behavior of rigid and rough ring footings on a

layered stratum.

5.1 THE EFFECT OF THE RIGID SIDE-WALL ON THE DYNAMIC STIFFNESS

OF EMBEDDED CIRCULAR FOOTINGS

Let us consider a circular footing of radius R embedded at

depth E in a stratum of depth h (see figure 5.1). The footing

rigid and rough rigid and rough
side-wall 2R - circular footing

free surface

ET E I Ie

h

z fixed base

Figure 5.1 - A circular footing, combined with side-wall,

embedded in a layered stratum.
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is taken rigid and rough. Moreover, let us assume that a

rigid and rough (cylindrical) side-wall of height e (radius R)

is combined with the footing. The depth e ranges between 0

(no side-wall) and E (side-wall extending throughout the en-

tire depth to which the circular footing is embedded). We

consider a homogeneous stratum. The boundary conditions are

i) under the footing:

u(r, 0,E)

w(r, 8,E)

v(r, 6,E)

= AX cos e

= AZ - rer cos e

= ret Ax sin e

0 < r < R

ii) on the wall:

u (R, a, z)

w(R e,, z)
v(R, e, z)

= Ax cos e - (E-z) r cos

= Az - R4r cos e

= Rt Ax sin a+ (E-z)4rp

} E-e < z E
sin J

0 < z < E-e

iii) on the surface

ar r=R

Trz r=R

re r=R

= 0

= 0

= 0

z z=0

rz z=0

ez z=0

=0

=0

=0

r > R .
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The base of the stratum is fixed. As in Chapter 4, A , AZ'

$t' r are the amplitudes of horizontal vibrations, vertical

vibrations, torsional vibrations and rocking respectively

(rocking is understood to be about a horizontal axis through

the center of the footing, i.e. at depth z=E). The nondimen-

sional torsional stiffness

Ktt-

GR3

is a function of the nondimensional quantities (nondimen-
T

sional frequency),, , f, S. The nondimensional stiffnesses

Kzz Kxx K rr Kxr
GR ' G 'GR 3 ' 2GGR GR

further depend on Poisson's ratio v (we use the notation of

Chapter 4). The static stiffnesses and the dynamic stiffness

coefficients are defined as in Chapter 4. In this application

the dynamic stiffnesses were calculated for two different

h h
depths: T = 2, = 3. The embedment of the footing was taken

E
the same for both depths: E = 1. In both cases v = 1/3, S =

0.05, and seven different side-wall heiqhts were considered:

= 0 1/6, 1/3, 1/2, 2/3, 5/6, 1

For the calculations,the elements (modeling the region

under the footing) developed in Chapter 4 were combined (see

figure 5.2) with the transmitting boundaries developed by

Waas [231 and Kausel [ 6] and described in Section 2.4. The

stratum was divided into twelve and eighteen sublayers of equal
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M t

F
E

h

z

Figure 5.2 - Scheme for the calculation of the stiffness

of a circular footing, combined with side-wall, embedded

in a layered stratum.

hh
depth for h = 2 and h = 3 respectively. Let us first consider

R R

the static stiffnesses. The results are given in Tables 5.1,

5.2, 5.3, 5.4 and plotted in figures 5.3, 5.4, 5.5, 5.6. As

one would expect, for increasing height of the rigid side-wall

(increasing -.) the static stiffnesses increase. The increase

is most significant in the case of rocking. The rocking stiff-

ness for e = 1 (side-wall extending throughout the entireE

depth E) is approximately 2.7 times the stiffness of the cir-

cular footing with no side-wall. The increase is quite sig-

nificant for the torsional and horizontal stiffnesses as well.

However, the increase of vertical stiffness for e increasing

from 0 to E is relatively small. This may be understood by

the fact that the additional vertical stiffness provided by

the side-wall is only through shear stresses (Tzr r=R) and
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Table 5.1 - The nondimensional torsional static stiffness

(E/R = 1).

Table 5.2 - The nondimensi

(E/R = 1,

onal
v= 1

vertical

/3)..

static stiffness

-4t

e GR3

E

h/R = 2 h/R = 3

0 9.14 8.82

1/6 12.6 12.1

1/3 15.3 14.7

1/2 17.5 16.8

2/3 19.4 18.7

5/6 20.8 19.9

1 21.2 20.4

K0Kzz

e
E h/R = 2 h/R = 3

0 18.8 12.5

1/6 20.6 13.6

1/3 21.7 14.3

1/2 22.4 14.8

2/3 23.0 15.3

5/6 23.7 15.7

1 24.4 16.2
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Table 5.3 - The nondimensional horizontal

(E/R = 1,

static stiffness

v = 1/3).

Table 5.4 - The nondimensional rocking static stiffness

(E/R = 1, v = 1/3).

K 0

rr

e GR 3

h/R = 2 h/R = 3

0 7.0 5.94

1/6 8.6 7.23

1/3 10.2 8.66

1/2 12.1 10.4

2/3 14.4 12.5

5/6 16.9 14.8

1 18.8 16.5
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Figure 5.3 -The nondimensional torsional static stiffness -

(E/R =1)
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Figure 5.4 - The nondimensional vertical static stiffness

(E/R = 1 ,v=1/3 )
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Figure 5.5 - The nondimensional horizontal static stiffness

E/R = 1 , v = 1/3 ).
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Figure 5.6 - The nondimensional rocking static stiffness

E/R = 1 , v = 1/3 ).
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therefore it is not "direct." The rocking stiffness increases

e
at an increasing rate at least up to 0.75. This is a

clear indication that the rigid side-wall is most essentially

contributing to the rocking stiffness. Figures 5.7, 5.8, 5.9,

5.10 show the static stiffnesses normalized with respect.to

the stiffness of the footing with no side-wall versus the non-

dimensional height of the side-wall. It is clearly seen in

these figures that the normalized static stiffnesses are

hrather independent of the depth to radius R ratio. Finally,

let us consider the height of the center of stiffness, 6, of

the footing combined with the side-wall (horizontal vibrations

and rocking about a horizontal axis through the center of

stiffness are uncoupled). We have

0
Kxr

K0'xx

Of interest here is the relative increase of the height of the

center of stiffness for increasing height of the side-wall.

Figure 5.11 shows the nondimensional increase of the height of

the center of stiffness

6 - 6(e = 0)
e

versus the nondimensional height of the side-wall. Clearly,

it varies between rather narrow limits: approximately between

h h
0.5 and 0.4 both for = 2 and for 1 = 3.
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Figure 5.7 - Normalized torsional static stiffness

E/R = 1 ).

K 0
zz
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Kzz (e=O)

K 0
0 tt

K] (e=O)

h/R = 3
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00.0o .0 a '.m 's a's. '.o E

Figure 5.8 - Normalized vertical static stiffness

( E/R = 1 , v = 1/3 ).
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K0
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Figure 5.10 - Normalized rocking static stiffness

( E/R = 1 , v = 1/3 ).
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3 C-h/R = 3

gh/R = 2

e
,oo 0'20 oW oe oso o a

Figure 5.11 - Nondimensional increase of the height

of the center of stiffness ( E/R = 1 , v = 1/3).

The stiffness coefficients are plotted versus the nondimen-

sional frequency 1 w- in figures 5.12, 5.13, 5.14, 5.15,
T

5.16, 5.17, 5.18, 5.19. The curves are identified by the in-

dex i = 1, 2, ... , 7 which indicates the nondimensional

height of the side-wall (for the curve with index i, e = ii

From these figures it appears that the height of the side-wall

has little effect on the stiffness coefficients ktt, k , k ,

k rr (corresponding to the real part of the dynamic stiffness).

It is noted, however, that the peaks are less sharp for

increasing height of the side-wall. This indicates that

resonance or near-resonance becomes less sharp for a footing

combined with the rigid side-wall. The effect of the ratio

on the stiffness coefficients c c , c , c (correspond-
ft zz xx rr

ing to the imaginary part of the dynamic stiffness) is much

more interesting. These coefficients provide a measure of the
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k tt
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Figure 5.12 - Torsional stiffness coefficients

( E/R = 1 , h/R = 2 ,S=0.05 )
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Figure 5.13 - Torsional stiffness coefficients

E/R = 1 , h/R = 3 , B = 0.05 ).
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Figure 5.14 -Vertical stiffness coefficients

(E/R =1 ,h/R =2 ,v> 1/3 ,6=0.05 )
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Figure 5.15 - Vertical stiffness coefficients

(E/R = 1 , h/R = 3 , v = 1/3 , S = 0.05 ).
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Figure 5.16 - Horizontal stiffness coefficients

(E/R =1 ,h/R =2 ,v=1/3 ,S=0.05 )
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Figure 5.17 - Horizontal stiffness coefficients

E/R = 1 , h/R = 3 , v = 1/3 , B = 0.05 ).

xx -1/

1 wR
2T CT



-195-

k
rr

7-

a4

JV

P;6 5

a

10'.0 1'2 'r 'so o.e t.o .20 I'm 1'.so

1 wR
27r CT

aT

Figure 5.18 -PRocking stiffness coefficients

( E/R =1 , h/R = 2 ,v = 1/3 ,S=0.05 )
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Figure 5.19 - Rocking stiffness coefficients

E/R = 1 , h/R = 3 , v.= 1/3 , S = 0.05 ).
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damping present in the system. Part of the damping is due to

energy dissipation (a = 0.05) in the stratum. The rest is due

to energy radiation into the far-field. As would be expected,

the height of the side-wall has little effect on the stiffness

coefficients c zz crr* This is because, for vertical vibra-

tions and rocking, damping is primarily due to energy dissipa-

tion in the region of the stratum surrounding the footing,

since energy gets "trapped" in that region (because of multi-

ple reflections between the footing and the fixed base). How-

ever, the effect of the height of the side-wall on the stiff-

ness coefficients ctt and cxx is significant. It is clearly

seen in figures 5.12, 5.13, 5.16, 5.17 that these stiffness

coefficients increase with increasing e ratio over the entire

1 wR
frequency range considered (0 < 2l m < 1). This is because27T CT
energy radiation into the far-field is very important for damp-

ing of torsional and horizontal vibrations and it is greatly

enhanced by the attachment of the side-wall on the region of

the stratum above the footing. We note that, as previously

discussed, the static stiffnesses increase with increasing

height of the side-wall and, therefore, the imaginary part of

the dynamic stiffnesses is further increased.

5.2 THE STIFFNESS OF RIGID AND ROUGH RING FOOTINGS ON THE

SURFACE OF A STRATUM

Let us now consider a ring footing of inside radius R1 ,

outside radius R2 on the surface of a stratum of depth h (see
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figure 5.20). We assume that the footing is rigid and rough.

The stratum is taken homogeneous. We write the boundary con-

ditions

u(r,e,0)

w(r, e,0)

v(r,e,0)

z z=0

Tzr z=Q

Tez=0

= A cos 0
x

= A - r$ cos 0z r

= rt Ax sin e

=0

=0

=0

R < r < R
1-- 2

0 < r < R , R2 < r .

- 2

free surface
rigid and rough
ring footing

Figure 5.20 - A ring footing on a layered stratum.
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The base of the stratum is fixed. A , Az' t' r denote the

amplitudes of horizontal vibrations, vertical vibrations, tor-

sional vibrations and rocking respectively. The nondimensional

torsional stiffness

Ktt

GR2
2R

is a function of the nondimensional quantities T. (nondimen-

h R1 T
sional frequency), -, , $. The nondimensional stiffnesses

2 2

Kzz
R2

K

GR'2

Krr

R '
G2

Kxr

GR2

depend, in

nesses and

addition, on Poisson's ratio v. The static stiff-

the stiffness coefficients are now defined as

_t Ktt

GR GR
2 2

0
K K

2 2

0
Kxx _Kxx

GR GR 2

0
Krr _Krr

GR GR3
2 2

ktt +

kZ +

k

krr

The dynamic stiffnesses

h =h
depths R 2, h = 3) and

2 2
the radii of the footing.

CT
CT

WR2

WR2

+ CT

WR2
+ iC

ctt (1 + 2iS)

c z(1 + 2ia)

c (1 + 2ia)

crr (1 + 2i )

were calculated for two different
R

several values of the ratio _ of
n 2

In all cases v = 1/3 and =0.05

were used. The elements developed in Chapter 4 (modeling the
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region under the footing) were combined (see figure 5.21) with

the elements. developed by Kausel and Roisset [ 9] (modeling

the region 0.< r < R ) and the transmitting boundaries devel-

oped by Waas [23] and Kausel [ 6] (these elements are described

in Section 2.4). The stratum was divided into twelve sublayers

of equal depth for = 2, while for = 3 the first six sub-2 R2
layers were of depth A2/6, the next four of depth R2/4 and the

last two of depth R2/2 (the accuracy achieved by this spacing

1 2 1
in the range 0 <2 C 21 is comparable to that obtained

T
using eighteen sublayers of equal depth). Let us consider the

static stiffnesses. They are given in Tables 5.5, 5.6, 5.7,

5.8 and plotted in figures 5.22, 5.23, 5.24, 5.25. As one
Ry

would expect, for increasing R the static stiffnesses decrease.
2

R-

Mt
Fz

Mr

h

z

Figure 5.21 - Scheme for the calculation of the stiffness

of a ring footing on a layered stratum.
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Table 5.5 - The nondimensional torsional static stiffness

(rinq footinq).

tt

GR3

R2 h/R2 = 2 h/R2 = 3

0 5.79 5.75

0.1 5.79 5.75

0.2 5.79 5.75

0.3 5.79 5.75

0.4 5.78 5.74

0.5 5.77 5.73

0.6 5.75 5.71

0.7 5.68 5.64

0.8 5.55 5.50

0.9 5.25 5.22

0.95 4.98 4.95
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Table 5.6 - The nondimensional vertical static stiffness

(ring footing, v = 1/3).

K0
zz

R G,

2
h/R2 = 2 h/R2 = 3

0 10.37 8.78

0.1 10.37 8.78

0.2 10.35 8.76

0.3 10.31 8.74

0.4 10.22 8 68

0.5 10.06 8.57

0.6 q.80 8.40

0.7 9.41 8.13

0.8' 8.84 7.71

0.9 7.94 7.27

0.95 7.25 6.50
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Table 5.7 - The nondimensional horizontal static stiffness

(ring footing, v = 1/3).

K0

xx
R3 GR2
R2

h/R2 = 2 h/R2 = 3

0 6.36 5.88

0.1 6.36 5.88

0.2 6.35 5.87

0.3 6.34 5.86

0.4 6.31 5.84

0.5 6.25 5.79

0.6 6.16 5.72

0.7 6.02 5.60

0.9 5.81 5.42

0.9 5.47 5.12

0.95 5.22 4.91
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Table 5.8 - The nondimensional rocking static stiffness

(ring footing, v = 1/3).

K0

rr

RGR
2

2 h/R2 = 2 h/R2 = 3

0 4.63 4.48

0.1 4.63 4.48

0.2 4.63 4.48

0.3 4.63 4.48

0.4 4.62 4.47

0.5 4.61 4.46

0.6 4.58 4.43

0.7 4.51 4.37

0.8 4.38 4.24

0.9 4.10 3.98

0.95 3.83 3.73
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tt

GR

h/R 2 = 2

h/R 2 = 3

Figure 5.22 - The nondimensional torsional static stiffness
( ring footing ).
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Figure 5.23 - The nondimensional vertical static stiffness
( ring footing , v = 1/3 ).
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Figure 5.24 - The nondimensional

( ring footing , v

horizontal static stiffness

= 1/3 ).
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Figure 5.25 - The nondimensional

( ring footing , v

o'-o o.a -.a ,-, R /R2

rocking static stiffness

= 1/3 ).

a



-209-

R
In fact, they vanish in the limit - + 1. The torsional and

rocking static stiffnesses deviate considerably from the value

corresponding to R = 0 (i.e. the circular footing) only for

values of the ratio g- greater than about 0.75. This is ex-
2

plained by the fact that for torsion and rocking the stiffness

is mainly provided by the area near the outside edge of the

footing. However, the vertical and horizontal static stiff-

nesses are more sensitive to the ratio of the radii of the

footing. They deviate considerably from the static stiffness

of the circular footing for values of - greater than about
'2

0.60.

The stiffness coefficients for = 2 are plotted versus

1R R2 R
the nondimensional frequency - C-T for -2= 0.5, 0.8, 0.9 in

T 2
figures 5.26, 5.27, 5.28, 5.29. There is little change in the

R

coefficients for the three values of the ratio - . Figures
"2

5.30, 5.31, 5.32, 5.33 show the stiffness coefficients for

h h 1= 2, g- = 3, and R = 0.9 versus the nondimensional fre-
2 2 2

quency. The range of values of the stiffness coefficients is

for all practical purposes the same for the two depths. As

would be expected, the peaks and troughs of the curves are

simply shifted.

Finally, we note that the inner region (up to a radius

of, say, 0.60 R2) of a circular footing does not influence sig-

nificantly the dynamic behavior of the footing in the frequency
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tt iR /R = 0.5

2 R 2 = 0.8
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Figure 5.26 - Torsional stiffness coefficients

( ring footing , h/R 2 = 2 , S = 0.05 ).
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k 1 R /R = 0.5

2 R /R = 0.8
l 2

3 R /R2= 0.9

2

3

'41 1
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Figure 5.27 - Vertical stiffness coefficients

( ring footing , h/R 2 = 2 , = 1/3 , S = 0.05 ).
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1 R1/R2 = 0.5

2 R1/R 2 = 0.8

3 R 1/R2 = 0.9

1 2
2r T

Figure 5.28 - Horizontal stiffness coefficients

( ring footing , h/R 2 = 2 , v = 1/3 , 8 = 0.05 ).
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Figure 5.29 -Rocking stiffness coefficients

(ring footing ,h/R 2 = )=1/3 ,S=0.05 )
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Figure 5.30 -Torsional stiffness coefficients

(ring footing ,R 1/R 2 =0.9 ,8=0.05).
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Figure 5.32 - Horizontal stiffness coefficients

( ring footing , R1/R2 = 0.9 , o = 1/3 , 6 = 0.05
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1 2 '1range 0 2r C T ' provided that the outer region may
T

be considered rigid. This is because the static stiffnesses

of the ring footing do not differ considerably from those of
R

the circular footing but for values of - greater than about
2

0.60 and, moreover, the stiffness coefficients in the range

1 w. 2 1R10 < 2 C T 1 do not change appreciably with -

-r CT 2
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CHAPTER 6

CONCLUSIONS

In this work we presented elements for the numerical anal-

ysis of wave motion in layered media. Plane elements which .

were developed in full detail include those modeling the rec-

tangular region x < x < x2 , 0 < z < h, of a layered stratum

in plane strain or antiplane shear. The boundary conditions

specified at the surface of the region correspond to a rigid

and rough strip footing. Other plane elements for which the

boundary conditions at the base are inhomogeneous (for example,

base motion) were also described (see Chapter 3). Axisymmetric

elements which were considered are those modeling the regions

0 < r < r0 , 0 < z < h, and r1 < r < r2 ' 0 < z < h, with boun-

dary conditions at the surface corresponding to rigid andf rough

circular and ring footings respectively. The development of

other axisymmetric elements was outlined (see Chapter 4).

Applications were presented which illustrate the use of the ele-

ments. Significant improvements with respect to the computa-

tional effort are the low storage requirements and the fact that

the number of arithmetic operations is independent of the length

of the elements (plane elements) or their thickness in the rad-

ial direction (axisymmetric elements).

The technique developed in this work relies upon the calcu-

lation of semidiscrete solutions. It was demonstrated that

semidiscrete particular solutions may be found for a variety

of inhomogeneous boundary conditions. Moreover, semidiscrete
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modes satisfying the corresponding homogeneous boundary con-

ditions are easily calculated. In previous works[23, 6 1, a

semidiscrete solution (satisfying homogeneous boundary condi-

tions) for part of the region was combined with a fully dis-

crete solution (satisfying inhomogeneous boundary conditions)

for the rest of the region. It is now possible to obtain a

semidiscrete solution for the entire region. We note that an

advantage of the technique beyond those emphasized previously

is the fact that the displacements, stresses and strains at

any point in the region may be expressed in terms of relati-

vely few parameters, namely, the participation factors of the

semidiscrete modes and particular solutions.

The method may be extended to the analysis of wave motion

in regions other than a layered stratum. Consider, for example,

a bar of rectangular cross section. Let the z-direction be

along the longitudinal axis of the bar. Boundary conditions

must be specified on the four sides of the bar. The modes are

of the form

u(x,y,z) = U(x,y)exp(-ikz)

v(x,y,z) = V(x,y)exp(-ikz)

w(x,y,z) = W(x,y)exp(-ikz)

Some analytical results fot the case of traction-free boundar-

ies are given by Mindlin and Fox [19]. Discrete solutions for

the amplitudes U, V, W and approximate wave numbers k may be

obtained using the finite element method. The resulting alge-
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braic eigenvalue problem is of the same form as the ones encoun-

tered in this work (it may be derived as in section 2.2). An

extension of the method to the analysis of wave motion in a cy-

lindrical rod is also possible.The modes are given by

Scos(ne)
un (rez) = ur) { } exp(-ikz)

sin(ne))

cos(ne)

wn (r,e,z) = Cn(r) exp(-ikz)

sin(ne)

-sin(ne)

vn (r,8,z) = vn(r) exp(-ikz)

cos (ne )f

n = 0, 1, 2, ...

Details may be found in [ 2 ]. For a rod of circular cross

section and traction-free boundaries extensive results may be

found in the works of Mindlin and McNiven [20] and Onoe,

McNiven and Mindlin [21]. They treat the case of axially sym-

metric waves (note that the eigenvalue problem which yields

k, Un' Wn' Vn depends upon the value of n). Again, discrete

solutions for the amplitudes Un' Wn Vn and approximate wave

numbers k may be calculated using the finite element method.

The rod may be hollow and material properties may vary with

r (but not with e or z).
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