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ABSTRACT

A technique is developed for the numerical analysis
of wave motion in layered media. Semidiscrete particular
solutions satisfying inhomogeneous boundary conditions
are calculated by the finite element method. These solu-
tions are combined with semidiscrete modes of an appropri-
ate eigenvalue problem also obtained by the finite element
method. The boundary conditions corresponding to rigid
and rough footings on a layered stratum are treated in de-
tail. Applications are considered which illustrate the
use of the technique developed in this work.
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CHAPTER 1

INTRODUCTION

The analysis of wave motion in layered media is of
interest to both seismologists and engineers. Applications’
in the area of seismology focus on the study of propagation
of seismic waves in layered media. On the other hand, the
engineer is interested in the dynamic behavior of a struc-
ture built on a layered soil deposit. The structure may be
excited by seismic waves propagating in the layered medium.
Alternatively, the excitation may be due to vibrations (for
example, machine vibrations) within the structure itself. In
fact, this leads to a problem which has been the subject of
intensive investigation in the last two decades, namely, the
analysis of forced vibrations of foundations. The analytical
solutions which have been calculated (for example, [5, 12,
13, 22]) are applicable to highly idealized situations. For
the analysis of problems which arise in practice one must
rely upon numerical methods. However, it must be noted that
analytical solutions apart from being of considerable theo-
retical interest provide the means for checking numerical
solutions.

A numerical method for the analysis of wave motion in
layered media which accounts for the radiation into the far
field was presented by Lysmer and Waas[l16] and Waas[23].
Time~-harmonic waves invplane strain or antiplane shear as

well as axisymmetric waves in a layered stratum were con-



sidered. The method is based on the calculation (by the fi-
nite element method) of semidiscrete solutions (modes) sat-
isfying homogeneous boundary conditions. The solution in the
far field is written as a linear combination of such semi-
discrete modes. It is combined with a fully discrete solu-
tion (obtained using the finite element method) in the‘part
of the region where inhomogeneous boundary conditions are
given. The method was extended by Kausel [6] to nonaxisym-
metric waves in axisymmetric regions of a layered stratum.
We note that in these developments the semidiscrete solu-
tions were used in regions of infinite extent. An extension
to wave motion in a finite region of the stratum with homo-
geneous boundary conditions was presented by Kausel and
Roésset[9]. In this work we consider a further extension. We
develop a technique for the analysis of wave motion in fi-
nite regions of a layered medium with inhomogeneous boundary
conditions. We calculate semidiscrete particular solutions
satisfying the inhomogeneous boundary conditions and then
combine these solutions with semidiscrete modes satisfying
the corresponding homogeneous boundary conditions. We show
that one can find semidiscrete particular solutions for a
variety of inhomogeneous boundary conditions. The resulting
improvements with respect to computational effort are sig-
nificant.

In Chapter 2 we review the previous work. In Chapter 3



we develop in detail some plane elements. We consider the
boundary conditions corresponding to a rigid and rough strip
footing. The development of other plane elements is outlined.
In Chapter 4 we present some axisymmetric elements. We focus
on boundary conditions corresponding to rigid and rough cir-
cular and ring footings. Other axisymmetric elements aie also
considered. In Chapter 5 we discuss some applications which
illustrate the use of the elements developed in this work.
The conclusions of this work as well as some ideas on pos-

sible extensions are summarized in Chapter 6.
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CHAPTER 2 .

REVIEW OF PREVIOUS WORK

The elements to be developed in this study share common
underlying techniques with those described in the works of |
Lysmer [l4], Lysmer and Drake [15], Lysmer and Waas [16],

Waas [23], Rausel [ 6 ];_Kausel, Roesset and Waas [10]; Kausel
and Roesset [91. 1In this chapter, we review rather briefly
those earlier studies. Special attention is given to the
derivation of the eigenvalue problem which is essential to the

development of the elements.

2.1 SOME PRELIMINARIES

The techniques developed in the references cited abdve
are applicable to the analysis of time-harmonic wave motion
in an isotropic linearly viscoelastic layered stratum. In
systems of rectangular Cartesian coordinates (x, y, z), or
cylindrical coordinates (r, 6, z), the stratum is understood
as the region 0 < z < h, i.e., the region between the paral-
lel planes z = 0 and z = h (h denotes the depth of the stra-
tum). The boundaries at z = 0 and z = h will’be referred to
as the surface and the base of the stratum respectively. Each
layer of the stratum is assumed homogeneous. Interfaces of
layers are planes parallel to the surface and the base of the
stratum; If there are M layers in the stratum, layer 7,

1 < j <M, is the region between the planes z = z. and

- J

zZ = Z with

j+1



0 =2) <2y <Zg << Zy <2 <eee< Z = h .

J j+1 M+1

The depth of layer j will be denoted by hj’ It is given by

Layers are assumed to be "bonded" at interfaces, i.e., the
stresses acting on the interfaces as well as all displacement
components are required to be continuous there.

The mass density of layer j will be denoted by pj,.and
the Lamé moduli by Aj and Gj’ Poisson's ratio vy is then |
given by

A
vy T 3T J+c;)
J >‘j i

The Lamé moduli ),G are real for a linearly elastic solid.
However, they must be specified as complex-valued functions
of the frequency w for a linearly viscoelastic solid. Poisson's
ratio v is real if the viscosity of the material is identical
in bulk (volumetric) and shear deformations. It is well
known that the differential equations which must be satisfied
by a time-harmonic displacement field in a linearly visco-
elastic‘solid are formally the same as those in a linearly
elastic material. The moduli appearing in the coefficients

of the equations for the linearly viscoelastic materiél are,
however, complex numbers. The methods of analysis we are con-
sidering here may be applied to both cases with the same ease.

The presence of complex coefficients results, of course, in a

o
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slightly greater number of operations using complex arifh-
" metic. However, the dissipative behavior of a viscoelastic
material excludes resonance and thus computational troubles
are avoided. In this work, dissipative behavior of the hys=
teretic type identical in bulk and shear straining will be

assumed. In this case thé complex Lamé moduli are given by

o4

AS = a(1 + 28i) , G° = G(1 + 2gi)

A and G are the moduli of the corresponding linearly elastic
solid. B (real number) is the fraction of critical damping.
For dissipative behavior B8 must be positive for w > 0 ( all
field quantities varying in time as exp(iwt) ). Alternatively,

the above expressions for the moduli may be rewritten as

AS = A(1 + 28sgn(w)i) , G = G(1 + 28sgn(y)i)

with B > 0 (sgn is the sign function). Since damping is
assumed to be of the hysteretic type, 8 is a constant (it is
independent of the frequency). Some more details are given
by Waas [23] and Kausel [6 ]. The fraction of critical damp-
ing of layer j will be denoted by Bj‘ Since, as already
stated, the equations we shall be dealing with are formally
the same for linearly elastic and linearly viscoelastic mater-
ials, derivations need be given for, say, linearly elastic

solids only. If the corresponding results are desired for a
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linearly viscoelastic material, then, simply, the Lamé moduli

A and G must be replaced by the complex counterparts')xc and G°.

2.2 A STRATUM IN PLANE STRAIN

We consider time-harmonic vibrations of a stratum in
plane strain. The displacement vector, in a system of rec-

tangular Cartesian coordinates (x, y, z) is

u({x,z)
0 exp(iwt) ,

w(x,z) }

i.e., particle motion is in the x-z plane and independent of
the y coordinate. w is the frequency of time-harmonic vibra-
tions. In layer j, 1 < j < M, the governing differential

equations are

(Aj + 2Gj)§§% + Xj gg%% + Gjijzig + ;i?g; + ojwzu =0 (2.1a)
32w 3%y [ 32w 82u~ 2. -
(A5 + 2Gj)-a-—z—2- * A 302t Gj_ 2 + axaz~ *oogwtw =0 (2.1b)
The amplitudes of the stresses are given by
O, = (Aj + 2Gj) %% * 2y %g (2.2a)

ow ou
Txz = ©; [ﬁ_ ¥ 5‘5‘} (2.2b)
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ow - u
= . . ——
o (AJ + ZGJ) A

2 5z ] —3‘}? . (2.20)

The amplitudes u, w, Tpr Tygm must be continuous at the

interfaces of the layers, i.e., at z = 250 2 < j <M. The

conditions on Oyr T may be written as

XZ

aw ou ow au
+ . — + As = = .+ 2G.)— . 2=
(Aj—l 2G3~1)az 2=2" >‘j—lax 2=2" (A] Gj)az 2+ >‘:l AX| _pt
J ]
(2.3a)
ow ou oW u
G. — + — = G.| = + = (2.3b)
J=L19x | = 32, T 3% pugt 82| gt
] ]
Boundary conditions must be given on the surface and the
base of the stratum, i.e., at z = z, = 0 and z = Zyel = h.
If the stratum is understood as an idealization of a soil de-
posit, the surface is assumed free and the base fixed. Then
the boundary conditions are
oW au
(Aq + 2G,) = A = =0 (2.4a)
1 1’ 3z 2=0 1 3x 2=0
oW su
G, | = + 2= = 0 (2.4b)
l[ax z=0 92 z=q}
u(x,h) =0 (2.4c)
w(x,h) = 0 (2.44)

The displacement field in a stratum with homogeneous

boundary conditions such as (2.4a, b, ¢, d) may be written as
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the superposition of modes obtained by separating the vari-
ables x and z ‘and then solving an eigenvalue problem in the
interval 0 < z < h. Let us look for solutions of the govern-

ing differential equations (2.la,b) of the form

u(x,z) U(z)f(x) (2.5a)

w(x,2z) w(z)f(x) . _'(2.5b)

Substituting (2.5a,b) into (2.1la,b), we obtain

2
§_§ + K2f =0 , (2.6)
dx

in which k is a constant. We also find that, in layer j, U

and W must satisfy the equations

2 . aw a2y 2
k26, + 260U + ikO. + 6) W _ . 40 _ 2 u=0 2.7
( 3 J) i (AJ 3) 3z 3 32 wey ( a)
k2w + ikOL + 60 o oL o+ 26 w2 (2.7b)
J j 73 dz J 37 gg2 W Ry : ’

From equation (2.6) it follows that the modes are given

u(x,z) U(z) exp(=-ikx)

wix,z) W(z) exp(-ikx) .

For a mode the conditions (2.3a,b) become

dw _s - _ dw . +
(Aj-l+ 2Gj"l)d2 I lk}\j_lU(zj) = ()\J"‘ ZGJ)EE z=z+—lk)\.jU(Zj)
J
(2.7¢c)
. - du
G, -ikW(z.) + — . + du (2.74)
-1 - = -
J [ ] dz z=zj} Gj 1kW(zj) +t 1 et
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and the boundary conditions (2.4a,b,c,d)

dwi| . _
(Al + 2Gl) Iz . - 1kAlU(O) = 0 (2.7e)
. du
- ikW(0) + =— =0 (2.7£)
dz z=0
U(h) =0 (2.79)
W) =0 . - (2.7h)

The differential equations (2.7a,b), together with the
conditions (2.7¢c, 4, e, £, g, h ) define an eigenvalue prob-
lem in the interval 0 < z < h. The values of k for which non-
trivial solutions U,W (eigenfunctions) exist are the eigen-
values of the problem.

Let us write the amplitudes u, w as

_ 3 _ 3
u—a% gng (2.8a)
w= 29 . 3 (2. 8b)

YA ax :

¢ and Y are potentials satisfying, in layer j

2 2 2
3 ¢ 3 ¢ :
5 + =- =37 (2.9a)
3% 32 (Cy]
2 2 2
_i82+_1.1137=- R IR (2.9b)
X 5z~ [CT]

C% denotes the velocity of transverse (shear, rotational,

equivoluminal) waves in layer j and is given by
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cj = {EiJ 172 .
%

c3J

L denotes the velocity of longitudinal (pressure, irrotation-

al, dilatational) waves in layer j and is given by

. . + 2G. [1/2
oo A 51/

‘We look for solutions of (2.9a,b) of the form

o(x,2) 0(z) exp(-ikx)

P(x,z) = ¥(z) exp(-ikx)

Substituting (2.1l0a,b) into (2.9a,b) we find

2
Q_% + q?@ =0
dz J
2
Q;% + p%w =0
dz J
qj’ pj are givenfby
2
0y + K =~
[CL]
2
p% P 3
] [ca]

Thus we obtain

o(z) = Ai cos(qu) + A% sin (qu)
- aJ 3 g
¥(z) = A3 cos(pjz) + Ay sin (ij)

(2.10a)

(2.10b)

(2.11a)

(2.11Db)

(2.12a)

(2.12b)

(2.13a)

(2.13b)
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From equations (2.8a,b) we f£ind

a¥

U= -ikd - & (2.14a)
_de _ .
W= 3 - iky . (2.14b)

Clearly, from (2.13a,b) and (2.l4a,b), the eigenfunctions U,W

may be expressed in terms of elementary functions. The coef-

3
W(zj), U(zj+l), W(zj+l). Thus the eigenfunctions U,W are

ficients Ai, A%, AJ, AZ may be obtained in terms of U(zj),

completely specified by the 2M values U(zj), W(zj), 1<jsM,
since U(h) = W(h) = 0 by the boundary conditions (2.7g,h).
These must be such that the boundary conditions (2.7e,f) as
well as the conditions (2.7c¢c,d) at interfaces of the layers
be satisfied. Thus we obtain a system of 2M homogeneous
linear equations for the 2M values U(zj),,W(zj), 1 53 <M.
The matrix of coefficients involves transcendental functions.
Nontrivial solutions are possible for those values of k which
render the matrix singular. Thus the frequency equation or
dispersion relation is obtained by equating the determinant
of the matrix to zero. However, k appears in the argument of
transcendental functions. Finding roots of such an equation
is, in general, a formidable task. Search methods are typic-
ally used. The set of eigenvalues (wave numbers) k for a
given frequency u is infinite but countable [ 2,17 ]. vValues
of the frequency for which k=0 is an eigenvalue are usually
referred to as cut-off frequencies or natural frequencies.

The corresponding modes are waves traveling up and down in
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the layers. Calculation of the cut-off frequencies is, in
general, difficult.. If the stratum is homogeneous, i.e.,
there is only one layer (M=1), the cut-off frequencies are

easily found. They are given by

(i) &= (2n-1) L n=1,2,... , (2.15a)
c 2 :
L ‘ .
the modes being longitudinal waves with u(x,z) = 0, and
(i) &= (2n-1) T n=1,2,... (2.15b)
T
the modes being transverse waves with w(x,z) = 0.

The displacement vector for a mode of vibration is

u(z)
0 exp(ipt - ikx) . (2.16)

W(z)

We assume that w/is notr a cut-off frequency. Then k # 0.
Suppose that Im[k] = 0, i.e., the wave number k is real. The
phase of the wave is propagating in the positive x-direction,
if k is positive, or in the negative x-direction, if k is
negative. Waas [23] shows that phase propagation and energy
propagation are not always in the same direction for travel-
ing waves in plane strain. If a region of finite extent is
considered (for example, Xq <x < xz), the mode is admissible.
If the region is of infinite extent (for example x > 0), the

mode is admissible only if it satisfies the radiation condi-
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tion. For example, energy radiation in the region x ilo re-
quires that energy propagation he in the positive x-direction
[23]; Let us now assume that Im[k] # O; 'The mode is then an
evanescent ane: If Re[k] # 0, there is a propagating phase,
while if Rel[k] = 0; the mode is a standing wave. 'Again, the
mode is admissible in a region of finite extent. However, if
the region is of infinite eXtent; the mode is admissiblé'only
if it satisfies the boundedness condition. For eXample; if
the region i i 0 is considered;,the'boundedneSs condition
requires that waves be bounded for arbitrarily large x > 0,
i.e., Im[k] < 0.

Let us consider now the derivation of an algebraic eigen-
value problem for the calculation of approximate wave numbers
k and eigenfunctions U and W; Following Waas [23], we use
the finite element method. Each layer of the stratum is di-
vided into sublayers the depth of which is much smaller than
the minimum wavelength of traveling waves in the layer,

i.e., the wavelength of transverse waves. It is then reason-
able to seek approximate eigenfunc;ions which are linear func-
tions of z in each sublayer. Let us assume that the stratum
is divided into N sublayers. Finite elements are the line
segments [Zj’ zj+l]' 1 <3 S~N,_corresponding to these N sub-
layers. The eigenfunctions U and W are the amplitudes of the
displacements at x = 0. Let §U and §W (functions of z) be
the amplitudes of virtual displacements at x = 0. After mul-

tiplying the left-hand sides of equations (2.7a) and (2.7b)
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by U and W respectively and adding them, we obtain, for

sublayer j:
5 2341 5 2341
k(A + 2G.) J ududz + k°G. j Wewdz
J J 2. J z.
J ]
Z .
j+1 Zi.1
+ ik, f aw . 7L qu
. J zj 3z sudz + lij Jz a7 sWdz
j
Z. 2.
It 3 au I+l 4 aw
- Gj J 35[33 - lkW]sUdz-[z a;[(xj+2Gj)aE - 1kij]6Wdz
j j
5 Z3+1 5 Z3+1
- WP J Uusudz - wp. J WeWdz = 0 . (2.17)
J Zj J Zj

Integrating by parts and rearranging the terms, we find:

) 2541 ) Zi41
k* (A, + 2Gj) J ududz + k Gj j WowWdz

J z z
j j
Z.
. I*lraw 4 '
+ 1kAj Jz Az §U0 - U Iz [SW]|dz
J b -
I*lray d T
+ lij fz EE W - W a; [SU] dz
j - -
z. zZ..
j+1 du a j+1
dw d
+ Gj J 3z az [sU] dz + (xj + 2Gj) J 3z 3z [sWldz
J : j
5 Z5+1 5 Z5+1 '
-w pj J Uusudz - pj f WsWdz =
z.
Z.
J J
4u Zj+1 aw : Zj+l
= G, |==— - ikW|sU + .+ ) == = i .
5 |az i 4}6 . [(AJ 2Gj)dz 1kxjg} W
J z
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U, W, 8U, &W vary linearly in th

Ulz) = U Ng(z) + U

W(z) = Wj Ng(z) + W

&
N
1

j
. N- +
cSUJ j(z)

=
8
I

]
W. N- +
) 3 ](z)

in which N%, N%+l are the shape

nodes j and j+1 respectively:

J,oy _ %3+l
N+ =
j) = 5—
j 2 = Z.
N3, (2) = B,

Ul = U(Zz) r W

GUQ = SU(ZQ) r W

Substituting (2.19a,b) and (2.20

which holds for arbitrary 4&U,SW

k227 + ixed + @3 - 23]

e sublayer:

J
s41 Vg1 (2) (2.19a)
3
541 N3,y (2) (2.19B)
SU... N3..(2) (2.20a)
j+1 T j+1
SW.., N3 .(z) |, (2.20b)
j+1 T j+1

functions corresponding to

(2.21a)

N
IA
N
in
N

j+1

(2.21b)

= W(zz)
L =3, j+1

GW(ZQ) .

a,b) into equatioen (2.18),

we obtain

Uc had .
j T3
W. _G‘
J = J (2.22)
Usel T4l
Wj+1 O5+1



with

u?h“

-22=

69,=-°z
XéO
Z2=Z
. g =3, J+L
T£= sz .
x=0
Z=Zg

M7 are 4 x 4 symmetric matrices:

~

|-
o

(o6 . + 26G. 0 + 2G. 0 |
(5 3) Ay 3
0 2G. 0 G.
j j
A+ 2G. 0 2(h. + 2G. 0
57 4%y (5 5)
0 G. 0 2G.
b ] e
- . " ;-
j 0 G5
0 .+ 2G. 0 (1. + 2G.
A5 33 5)
-G 0 G. 0
j j
0 -(A, + 2G. 0 A, + 2G.
L %y j) g * 265 |
- . .
3 0 3 0
1 1
0 3 0 3
il 1 1
3 0 3 0
1 A 1
0 L 0 i
L 6 6.1

(2.23a)

4

(2.23b)

(2.23c)
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B is a 4 x 4 antisymmetric matrix:

~

0 -(xj - Gj) 0 Ay + Gy ]
gl = L 5 : ERlE O (2.234)
T2 o - (A4 + Gy) 0 Ay - Gy .
-(ay + G3) 0 -y - 6y) o

Since o, and 7 are continuous at z = z., 2 < j < N, we have

- aw _ . =
oy = [(Aj-l + 2Gj_l) iz 1kxj_luﬂz=27 =
J
- aw _ .
= [(Aj + 2Gj) iz lkkjé}z=zf ' (2324a)
J
_ av _ . _ du _ . |
Ty = Gj-l [EE lkﬁ] _ = Gj [dz lkﬁ} e (2.24Db)
2= z=2

Assembling the matrices for the region 0 ¢ z < h and us-

ing the conditions (2.24a,b) we obtain
2 . 2
[k°A + ikB + G - y“M]A = F . _ (2.25)

~

A, B, G, M are (2N+2) x (2N+2) matrices assembled from AJ, B],

GJ, M7 respectively. A, F are (2N+2) =~ vectors:

f25-1 7 7

By =w
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Fl =- T = - sz F2 =-0 =-0,
x=0 x=0
z=0 z=0
Fonel = T+l T Txz P = - ~
x=0 2N+2 = ON+1 ~ 92
z=h x=0
z=h

Thus Fl and F2N+l

at x = 0, on the surface and the base of the stratum, respec-

are the amplitudes of the shear tractions,

tively. Similarly, F, and FoN+2 2re the amplitudes of the
normal tractions, at x = 0, on the surface and the base of
the stratum respectively. For the boundary conditions (2.7e,
f, g, h), i.e., a free surface and a fixed base, the corre-
sponding algebraic eigenvalue problem is obtained by deleting
the last two rows and the last two columns of the matrices

A, B, G, M as well as the last two components of the vectors

A, F, while Fy and F, are set equal to zero:

[K?A + ikB + G = u2M] A =0 . (2.26)

é, ?, g, @, é differ from those appearing in equation (2.25)
by the modifications stated above. 9 denoteé the zero 2N-
vector. The eigenvalues k are roots of a polynomial of de-
gree 4N:

2

det [k?A + ikB + G - 2M] = 0 . (2.27)

~

Waas [23] discusses this problem in considerable detail. For

the purposes of this review, it suffices to note that if k is
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an eigenvalue with eigenvector é;_then -k is another eigen-
value with eigenvector § obtained from A by changing the
sign of all even-numbered components (or, all odd-numbered
components, since-—éis also an eigenvector with eigenvalue
k):

A=Ta4A . (2.28)

T is a diagonal matrix (2N x 2N):

T25-1,25-1 F
1<3j <N (2.29)

Toy,25 = -1

It is convenient to choose those 2N wave nuﬁbers kj; 1 <3«
2N, and the associated 2N linearly independent eigenvectors
éj for which the corresponding modes are such that the ampli-
tudes of the displacements decay for large x > 0 (this applies
to complex wave numbers) or energy propagates in the positive
x-direction (this applies to real wave numbers). Thus we con-

struct the diagonal matrix XK (2N x 2N):

K = diag [k,] , (2.30)

and the modal matrix X (2N x 2N), the columns of which are

the eigenvectors AJ:

1 2
x = 1t 4% .., ANy (2.31)

~

If dissipation is introduced, then all wave numbers are com-

plex. The criterion for choosing the diagonal entries of X

ig, therefore, that Im[kj] < 0, 1 <J < 2N. 1In the absence
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of dissipation, energy propagation must be considered for
modes with real wave numbers. This is discussed in detail by
Waas [23]. |

Let us now calculate consistent nodal forces acting on
the region x > 0, at the section x = 0, for a mode with wave
number k and eigenvector é. We consider sublayer j. The
forces are obtained by integrating the tractions, at x = 0,

multiplied by the shape functions along zj <z < zj+l:

Forces in the x-direction

Z.
. 3 j+l 3 |
(node 3j) Px,j = [z. -Uxix=0 Nj(z)dz , (2.32a)
J
3 "3+ 3
(node j+1) Px,j+l = Jz‘ -gx'x=0 Nj+l(z)dz . (2.32b)
J

Forces in the z-direction

z.
. I+t j
de j .= - . 2.
(node j) PZ,] fz- szlx=0 Nj(z)dz (2.33a)
]
3 5+ j
(node j+1) Pz,j+l = JZ _ TXZ,X=0Nj+l(Z)dZ (2.33b)
(again, the superscript indicates the sublayer number). We
have
o - - aw
X|x=o = -ik(y + 260U + Ay 77 (2.34a)
Txz =G, [-ikw + $Z (2.34b)
!x=0 J dz :

Substituting (2.19a,b) into (2.34a,b) and the resulting ex-
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pressions into (2.32a,b), (2.33a,b), we obtain

- - ~~j
. P- .
U] %l]
. : W. P; .
[ ixad + D] J = 213 (2.35)
Uj+l P;c,j+l
j
Wil P, 5+l
Aj is the same as in (2.22). D) is a 4 x 4 matrix:
0 . 0 -]
AJ J
G 0 -G 0
pJ = % J J (2.36)
~ 0 0 -A
AJ J
G- 0 -G 0
J J

Assembling the matrices for the region 0 < 2 < h, we obtain

P = [ikA + D] A (2.37)

A is the same as in (2.26). D is assembled from DJ. P is

a 2N-vector with components:

_ o1 _ Al
Py =Pg,1 By =P, 1
_ pJi-1 j
PZj-l - PX:J * lej !
- . 2 <3 <N
Py, = pd~l 4 pd
j z,3 z,]J

Let us now obtain the dynamic stiffness matrix for the

region x > 0. Let U pe the displacement vector:

©
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Upg-q = (0,2

U2j = W(Orzj) .

It may be written as a linear combination of the eigenvectors:

U=xr1 . (2.38)

X is the modal matrix given by (2.31). 1 is a 2N-vector of

participation factors. The force vector corresponding to a

mode with wave number kj and eigenvector AJ is according to

(2.37):
pJ = [iij°+ D] A . (2.39)

Thus, we obtain that the force vector corresponding to |] is

~

given by:
2N 3
F = z Tj p- '
~ j=l ~
or, alternatively, by:
F=[1i{AXK+DXIr. (2.40)
K is the diagonal matrix given by (2.30). The vector of

participation factors may be eliminated from (2.40) using

(2.38). We find

F=R U

R is the dynamic stiffness matrix:

~

R=1iAaAXK xl+p . (2.41)

~
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The region x > 0 is understood as an element (see figure 2.1)

with nodes at (O,zj), 1 < j < N, nodal displacements ! and

nodal forces F . The element is known as a consistent transmit-

~

ting boundary. Detéils may be found in the work by Waas [23].

¢_-free surface

_r o X
1761701
A
A G..p.
h t 3775P5
AnrCnr Py

Yz “\—-fixed base

Figure 2.1 -The region x >0 , 0 <z <h , in

plane strain(free surface,fixed base)

The procedure described above may be applied to obtain
the dynamic stiffness matrix of the rectangular region X; <
X < X, This region is, however, of finite extent and there-
fore all modes must be included. Let !l, !ZAbe the vectors
of nodal displacements corresponding to the vertical sections
at the left and the right of the region, i.e., at x = X and

X = X, respectively:
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1 .

UZj—l = ‘u(xl, zj)

1 -

U2j w(xl, z.)

1 <3j<N

2 -

U351 = ulxy z4)

2 -

U2j = w(x,, zj)

ul and uz may be written as linear combinations of the vectors
corresponding to the 4N modes. Let us consider a mode with
wave number k and eigenvector é. For this mode the vector

of displacements at x = Xy is conveniently taken equal to é.
Then, the vector of displacements at x = X, is éexp[-ik(xz-xiy].
Alternatively, if the vector of displacements at x = X, is A,
then the vector of displacements at x = 31 is éexp[ik(xé—xl)].

Thus, we may write

P=xrt+TeEr? (2.42a)
P=xeErt +%r?. (2.42b)

X is a modal matrix obtained from X as

|

= T X ’ (2.43)

T being the diagonal matrix given by (2.29). Thus the col-
umns of X are the eigenvectors corresponding to modes travel-
ing in the negative x-direction or decaying for large x < 0.

E is a diagonal matrix (2N x 2N):

E = diag [exp(-ikj 1 ., (2.44)
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2

with L = Xy = Xy the length of the region. Fl, " are 2N-

vectors of participation factors. Let Fl, F2 be the vectors

~

of nodal forces acting on the left (x = xl) and the right

~

(x = xz) of the region. For Ul, QZ as given by equations

(2.42a,b), using equation (2.37), we obtain

Fl= [i AXK+DXIT! + [-iAKEK+D§E]p2 (2.45a)
F2 =-[iAXEK+DXE]rl-[—iA§K+D§] 1"2 . (2.45b)

The vectors of participation factors Fl, P2 may be elimina-

ted from (2.45a,b) using (2.42a,b). We get

iy
-

ul (2.46)
2 K 2
K is the dynamic stiffness matrix. The region X; <X <X, is
;nderstood as an element (see figure 2.2) with nodes at
(Xl’ zj), (x2, Zj), 1 < j < N, nodal displacements gl, UZ and
nodal forces El, Ez. The computational effort involved in

obtaining the dynamic stiffness matrix is independent of the

length L of the element. Details are given in [9].

2.3 A STRATUM IN ANTIPLANE SHEAR

Let us now consider time-harmonic vibrations of a stra-

tum in antiplane shear. The displacement vector is
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| x2 H
=% I free surface;;7

7" \

v

1617°,

TS
b j" 5795

AnrCGnrPy

fixed base—ﬁx

Figure 2.2 -The region X, < X <X, , 0 <z <h , in

1 2
plane strain(free surface,fixed base)

0
v(x,z)| exp(int) ,

0

i.e., particle motion is perpendicular to the x-z plane and
independent of the y coordinate. We assume that there are M
layers in the stratum. In layer j, the governing differen-
tial equation is

2 2

G, AV, G. 3V, 0. wzv =0 . (2.47)
J 8x2 ] 8z2 ]

The amplitudes of the stresses are:

Ty = G %% (2.48a)
AV
T =g, ¥, (2.48Db)

yX J 9X
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The amplitude v must be continuous at the interfaces of the

layers, i.e., at z = zj , 2 < j < M. Moreover, TYZ must be

continuous there:

v _ v \
, A4 _ =G, & L. (2.49)
j-1 3z 2=, s Y z___zg

If the stratum is understood as an idealization of a soil

deposit, the boundary conditions are:

= 0 , (2.50a)
0

A
32| =
v(x,h) = 0 , (2.50b)

i.e., the surface is free and the base is fixed.
Time-harmonic wave motion of a stratum in antiplane

shear may be obtained as a superposition of modes of the form
v(x,2) = V(z) exp(-ikx) . (2.51)

Substituting (2.51) into (2.47), (2.49) and (2.50a,b), we

find that V must satisfy, in layer j, the equation

k%.v -6, SV -5 Wy =0, (2.52a)
J 43 dZZ J .
at z = Z30 2 < j <M, the condition
dv dv
G113 = %5 3z : (2.52b)
J L dz Z=Z J 2 z:z;-

and, finally, the boundary conditions
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a—i =0 ’ (2.520)

v(h) =0 . (2.524)

Clearly, from equation (2.52a), we obtain that the eigen-

function V, in layer j, may be written as

= ] 3 ot
v(z) = Al cos(pjz) + A2 31n(pjz) , (2.53)
2
with  p° + k2 = L.
] [l

Alternatively, Ai and A% may be expressed in terms of V(zj)
and V(zj+l), using (2.53). Thus the eigenfunction V is com-
pletely specified by the M values V(zj), 1< zj < M, since

V(h) = 0 by the boundary condition (2.52d). These must;be

such that the M-1 conditions (2.52b) as well as the boundary
condition (2.52c) be satisfied. Thus we obtain a system of
M homogeneous linear equations for the M values V(zj),l <z,

J
< M. Nontrivial solutions are possible for those values of

k which render the matrix of coefficients singular. The fre-
‘quency equation is, therefore, obtained by equating the deter-
minant of the matrix to zero. However, k appears, again, in
the argument of transcendental functions. If the stratum is
homogeneous, i.e., there is only one layer (M=1l), the fre-
quency equation for antiplane shear, unlike the corresponding

equation for plane strain, may be solved easily. For a given

frequency w, the wave numbers k are given by .



2 2
[kh]? = [%E] -(2n-1)2 %— (2.54)

n=1, 2, ...

For a multilayered stratum the calculation of roots of the
frequency equation is, in general, difficult. Cut-off fre-

quencies are easily found for a homogeneous stratum. From

(2.54), it is seen that they are given by o
@8- (m-1)T , n=1,2 .. (2.55)
T

Again, it is, in qeneral; difficult to calculate cut-off fre-
quencies for a multilayered stratum;

Let us consider a mode of vibration in antiplane shear.
The displacement vector is

8]
v(z) exp(int - ikx) . (2.56)

0
We assume that y is not a cut-off frequency. Then, k # 0.
Suppose that Im[k] = O; i.e;, the wave number k is real. The
mode is a wave propagating in the positive x-direction, if k
is positive, or, in the negative x-direction, if k is nega-
tive. Waas [23] shows that phase propagation and energy pro-
pagation are always in the same direction for traveling waves
in antiplane shear. If a region of finite extent is consid-
ered (for example, x, < X < X,), the mode is admissible. How-
ever, if the region is of infinite extent (for example, x > 0),

the mode is admissible only if it satisfies the radiation con-



-36-

dition. In particular, radiation in the region x > 0 re-
quires that waves be outgeing, i.e., k > 0. Let us now as-
sume that Im[k] # 0. The mode is an evanescent wave. If
Re[k] # 0, there is a propagatlng phase, while if Relk] = 0,
the mode is a standing wave. Again, the mode is admissible
in a region of finite extent. If the region is of infinite
extent, the mode is admissible only if it satisfies the boun-
dedness condition. For example, if the region x > 0 is con-
sidered, the boundedness condition requires that waves be
bounded for arbitrarily large x > 0, i.e., Im[k] < 0.

Using the finite element method, we derive an algebraic
eigenvalue problem [23] for the calculation of approximate
wave numbers k and eigenfunctions V. Each layer of the stra-
tum is divided into sublayers the depth of which is much
smaller than the wavelength of transverse waves in the layer.
Let N be the number of sublayers into which the stratum is
divided. Finite elements are the line segments [zj, zj+1]'

1l < j < N, corresponding to these N sublayers. The eigen-

function V is the amplitude of the displacement at x = 0. Let
8V (function of z) be the amplitude of a virtual displacement
at x = 0. Multiplying the left-hand side of equation (2.52a)

by 8§V, we obtain, for sublayer j,

5 Z:41 5 2541
k Gj [ vévdz - w pj f vévdz
g gy
- Gj fz I [——]5de =0 . (2.57)

3



-37-

Integrating by parts, we find:

Z.

5 2541 , +1
k™G, J vevdz - wip. J vévdz
J Z. J Z.
3 3
2.
I+l 4y g
+ G] Jz a-z— a—z- [sV]dz
3
_ av . |%5+1
=G5 gz oV
2.
j

Working as in the case of plane strain, we obtain:

Vs TS
[szj + GJ - szJ} = ’
Vj+1 Ty+1
with Vk = V(ZQ) ’
2 =3, j+1
12;= Tyz x=0 .
z=2,

1 11
ad = h.G 3 6
3 3
G. [[1 -1
S .
G = g
3
-1 1

(2.58)

(2.59)

(2.60a)

(2.60Db)
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L1
3 3 6 '
6 3
Since Tyz is continuous at z = zj, 2 ¢ j ¢ N, we have
av dav ‘
o= G. = G, 5— (2.61)
T j=1 dz z=z; j dz z=z;

Assembling the matrices for the region 0 ¢ z ¢ h, we obtain

k% + G- w'Mlg =E . (2.62)

~

A, G, M are (N+1l)x(N+1l) matrices assembled from gj, gj, MJ

respectively. 4 , F are (N+l)-vectors:

Ay =V, , 1< 3 <N+l
F, = =T, = =T r F = =T ’
1 l ¢ 'yz %=0 N+1 N+1 YZ| =g
z=0 z=h
F. =0 r 2 <3 <N .

Thus, Fl and FN+i are the amplitudes of the shear tractions,
at x = 0, on the surface and the base of the stratum respec-
tively. For the eigenvalue problem with boundary conditions
(2.52¢c,d), i.e., free surface and fixed base, the correspond-
ing algebraic eigenvalue problem is obtained by deleting the
last row and the last column of the matrices A, G, M as well
as the last component of the vectors A, F, while the first
component of F is set equal to zero:

x’a + 6 - w®MIA =0 . (2.63)

~
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A, G, M, A differ from those appearing in equation (2.62) by
the changes mentioned above. The wave numbers k are roots

of a polynomial of degree 2N:

det(k’A + G - w®M] = 0 . (2.64)

Details may be found in the work by Waas [23]. If k is an
eigenvalue with eigenvector A, then -k is another eigenvalue
with the same eigenvector. Let us choose those N wave'numbers
kj' 1l <j <N, and the associated.N linearly independent eigen-
vectors éj for which the corresponding modes are waves decay-
ing for large x > 0 or traveling in the positive x-direction,
i.e., Im[kj] < 0, or Re[kj] > 0 and Im[kj] = 0. We form the

diagonal matrix K (NxN):
K = diag [kj] , (2.65)

and the modal matrix X (NxN), the columns of which are the

4

eigenvectors A

x = 1ah, éz’ oo AN (2.66)

Let us now obtain consistent nodal forces acting on the
region x > 0, at the section x = 0, for a mode with wave num-
ber k and eigenvector é. The forces on sublayer j ére calcula-
ted by integrating the traction, at x = 0, multiplied by the

shape functions along z.

< 2 < z
j - =

j+1
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Z . .
I Jzyaz
(node j) Pz = I -T.. Nz (z)dz
3 24 Yxlx=0 3
; zj+l ; (2.67)
(node j+1) Pj+l = fz' - Tyx|x=0 Nj+l(z)dz
]
N%, N%+l are the shape functions given by (2.21a,b). We have
= "'.kG~V °
ryxl Lo T TG (2.68)
Since . .
= J ]
vi(z) = Vij(z) + Vj+l Nj+l(z) (2.69)
with v, = vizg) L =73, j+1 '
we find
V. pJ
. J J
ika = . (2.70)
~ 3 :
Vil Pi+1

Aj is the same as in (2.59). Assembling the matrices for the

~

region 0 < z < h, we obtain:
P = ikA A. (2.71)

A is the same as in (2.63). The components of the N-vector P

are:
- pl
P, =P
- pi-1 '
P. = P+ ] .
5 = P35 +Pj,2<j<N.

The region x > 0 may be understood as an element (see
figure 2.3 ) with nodes at (O,Zj), 1 < j < N. We obtain the
dynamic stiffness matrix of this element:. Let |J be the vector

~

*

of nodal displacements:
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free surface
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G17f1
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h G.,p.
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Figure 2.3 -The region x >0 , 0 <z < h , in

antiplane shear(free surface,fixed base)
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- We have

U=xr , (2.72)

X being the modal matrix given by (2.66) and I a vector of
participation factors. The vector of nodal forces correspond-

ing to ) is

-~

F=1iaAXKT . (2.73)
K is the diagonal matrix given by (2.65). The participation
factors may be eliminated from (2.73) using (2.72). We obtain
F=R1

R is the dynamic stiffness matrix:

~

R=iAXKEZX . (2.74)
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The element is also referred to as a consistent transmitting
boundary. It is described in detail in the works by Lysmer
and Waas [16] and Waas [23].

Another element is the region x; < x < x, with nodes at
(X1 s zj) and (x,, zj), 1l <j < N. Since the region is of fiﬁ—
ite extent, all modes are admissible. Let Ul, U2 be the vec-

tors of nodal displacements at (%4 zj) and (x,, zj), 1 <3j<N,

respectively:
1 _
Uj = v(x;, zj)
U? = v(x2, zj) .
We have
F=xrt+xE D3 (2.75a)
P=xert+xr? . (2.75b)
E is a diagonal matrix (NxN):
E = diag [exp(-ikjL)] ' (2.76)

-~

with L = Xy = Xq, the length of the region. rl, r2 are N-vec-

tors of participation factors. Let Fl, FZ be the vectors of

~

nodal forces. For Ul, U2 as given by equations (2.75a,b) we

find
Fl=iaxkrl-iaxEeRKr? (2.77a)
F2=-1AXEKF1+1AXKI‘2 (2.77b)

Fl, F2 may be eliminated from (2.77a,b) using (2.75a,b). We

~

obtain
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Fl Ul
~ - K ~
E2 N U2 (2.78)

K is the dynamic stiffness matrix. It must be noted that the
computational effort involved in this procedure for determin-
ing the dynamic stiffness matrix is independent of the length
L of the element. Details may be found in the work by Kausel

and Roesset [ 9].

2.4 AXISYMMETRIC ELEMENTS

In this section we consider the axisymmetric elements
developed by Waas [23], Kausel [6 ] and Kausel and Roésset [9].
In a system of cylindrical coordinates (r,6,z), let u, v, w
denote the amplitudes of the radial, tangential and axiai dis-
placements respectively. We assume that there are M layers in

the stratum. In layer j, the governing differential equations

are:
2 u 2 3v 1 J€ w2
Vo0 - — -5 =X 4 - % . u=20 (2.79a)
r2 r2 3 1-2\)j or [C%]Z
vy - ¥, 2 3u 1 .J:§-§-+;9-2—4v=0 (2.79Db)
r2 r2 3 l—Zvj r 36 [C%]Z
2 1 3€ cE
VoW o+ oo 5o t 32 w=20 . (2.79¢c)
j [C3]
V2 is the Laplacian
2 2 2
VZ = 32.4_%3_8]:_4___]’?3_2-4-—@—_— . (2.80)
or r 36 3z
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¢ 1s the dilatation:

3w

+ u) + 3z

u 1l ,5v
Tt (36

The amplitudes of the stresses are given by

re

Tez

TZI‘

= Ajs + 2Gj %%

= Aje + 26, [%‘“%%"e{]
=A.€+2ng—‘2-v-

=, -1+
= Gj [% %% + %%]

= Gj [%% + %¥

(2.81)

(2.82a)

(2.82b)

(2.82c)
(2.824)

(2.82e)

(2.82f)

As in the plane problems considered in the previous sections,

the modes of wave motion are obtained by separation of varia-

bles. They are given by (see the work by Kausel [61]).

u(r,98,z)

wi(r,6,2z)

v(r,9,2z)

and,

cos (ng))
kU(z) Cn(kr) .
sin (ne)‘
cos (n8)
-ikw(z) Cn(kr) r
sin (n@)
~sin(ne)
n
7 U(z) Cn(kr)
cos(ng)

(2.83a)

(2.83b)

(2.83c)
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‘ j cos (no) )
. _n
u(r,8,z) = 7 V(z) Cn(kr) _ (2.84a)
L sin (ng).
w(r,8,z) =0 (2.84Db)
-sin(ng)
v(r,0,z) = kv(z) Cn(kr) (2.84c)
cos (ng) '

For symmetric modes cos(nf) must be used for u and w, while
~sin(ng) must be chosen for v (symmetry of the displacement
field with respect to the plane §=0). For antisymmetric modes
sin(ng), for u and w, and cos(ng), for v, are appropriate.
Cn(g) is any solution of Bessel's equation of order n:
] . ' n2
Cn+gcn+(l-g_2) Cn- 0. (2.85)

The prime denotes differentiation with respect to the argu-

'—l

ment. If we substitute (2.83a,b,c) into the governing differ-
ential equations (2.7%9a,b,c), in layer j, we find that U and

W must satisfy the equations

b 2
2. L aw v 2
kKA. + 2G.)U + ik(A., + G.)5— - G, —= - WP .U = .
(A, ;) ik + 6T - Gy — U =0 (2.86a)
k26w + ik(h, + e - +2G>ﬁ-wzpw=o (2.86b)
] ] jdz j 37§22 ] ' ’

These are identical to equations (2.7a,b) obtained for the
modes of time-harmonic vibrations of the stratum in plane

strain. Similarly, if we substitute (2.84a,b,c ) into (2.79a,
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b,c), we obtain that V must satisfy the equation

2
szjV -6, &Y L, v =0 , (2.87)

J d22 J

which is identical to egquation (2.52a) obtained for the modes
of time-harmonic vibrations of the stratum in antiplane shear.
Opr Togt Typ must be continuous at interfaces of the layers.

For the modes given by (2.83a,b,c) we have, in layer j,

cos{ng)
L aw _ .
o, = -ik [kxj + 26,38 lejU] c_ (kr) (2.88a)
sin(ng)
(=sin(n8) )
. =2q. |9Y _ sxw| ¢ (k) } (2.88b)
0z r j |dz n :
. cos(nd) |
[ cos(né))
1 =k c |99 - ixw| ¢ (ko) » (2.88¢)
zZYr j |dz n : :
| sin(no)

Thus continuity of O,r T T at z = ij, 2 < j <M, requires

6z’ “zr
that
aw : - aw
(2\J 1t 2Gj_l)a-g e 1k>\j_lU(zj) = (Aj + 2Gj)a§- _—
3 j
-ikij(zg) | (2.89a)
du : -
Ci1 |3z I lkw‘zj)] = G, %g —ikw(zH)| . (2.89b)
=z, Jjaz ___+ J
) ] 2725

These are identical to conditions (2.7c¢,d) obtained for time-
harmonic vibrations in plane strain. For the modes given by

(2.84a,b,c) we have, in layer j,
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dz =0 (2.90a)
(-sin(nd) )
o=k ek ! (2.90b)
8z j dz "n :
| cos(né) |
( cos(ng))
_n av
Tor = T Gj I Cn(kr) { r . (2.90c)
| sin(ne);
Continuity of Gpr Tozr Ty at z = Zj’ 2 <3J<M, requlges that
av _ av
3 3

This is identical to the condition (2.52b) obtained for time-
harmonic vibrations in antiplane shear. For a free surface
and a fixed base, the modes given by (2.83a,b,c) must satisfy

the boundary conditions

- dw

(Al + 2Gl) az| - ikAlU(O) =0 (2.92a)
z=0 :
ay . _
az| . ikw(0) =0 (2.92b)
z=0
Uu(h) =0 (2.92¢)
W(h) =0 , (2.924)

while the modes given by (2.84a,b,c) must satisfy

av
E = 0 (2.93a)

z=0

v(h) = 0 . (2.93b)
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Clearly, from (2.86a,b), (2.89a,b), (2.92a,b,c,d), U and W

are eigenfunctions with eigenvalue k of an eigenvalue problem
which is identical to that obtained for time-harmonic vibra-
tions of the stratum (free surface, fixed base) in plane strain.
From (2.87), (2.91), (2.93a,b), it follows that V is an eigeﬁ—
function with eigenvalue k of the eigenvalue problem for time-
harmonic vibrations of the stratum (free surface, fixed base)

in antiplane shear; We note that the eigenvalue problems are
independent of the Fourier number n and the same for symmetric
and antisymmetric modes;

Thus approximate eigenfunctions and eigenvalues are read-
ily obtained by solving the algebraic eigenvalue problems de-
rived for the plane problems thch were discussed in the previ-
ous sections;’ Assuming that the stratum is divided into:N
sublayers; let § be a diagonal matrix (3Nx3N) such that its
first 2N diagonal entries are the eigenvalues of the algebraic
eigenvalue problem for plane strain, chosen as in (2.30), and
its last N diagonal entries are the eigenvalues of the alge-
braic eigenvalue problem for antiplane shear, chosen as in
(2.65). It is convenient to consider the amplitudes u, v, W,

I B _

] ?zr(for a given Fourier number n) defined

r’ %9’ 9z, Trg’ Tz’
by
cos(ne)\
u=a ' (2.94a)
sin(ng)
-sin(ng))
v =v

(2.94Db)
cos(nf)
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p

cos(n@) )
W=w { \ (2.94c)
| sin(n#@) |
[ cos(n#) )
o =70 " - (2.944)
| sin(ng) |
cos(nso) :
0g = 0y _(2.94e)
sin(ng)
f cos(ng)
o, = 0, (2.94f)
{ sin(ng)
(-sin(ng)
Tre = Tro] (2.94q9)
. cos(ng)
(-sin(nd)
Toz = Toz] (2.94h)
| cos(nd)
[ cos(n9)
Tzr = Tyr (2.941)
| sin(n#)

It is easily checked, from (2.82a,b,c,d,e,f), that the rela-

tions between T_, T4, T, Tra, Toz, T, and u, v, w are the
same for symmetric and antisymmetric modes. Let us define
some modal matrices (3N x 3N) at r = r, for a given Fourier
number n. The first 2N columns correspond to the algebraic
eigenvalue problem for plane strain, while the last N columns

correspond to the algebraic eigenvalue problem for antiplane

shear. The matrix ¢ is defined as:



234-2,4 F

<p3j-lIaQ:

%34,0 =

]

<I’3:}-].,52, =

¢3j,z

2
-U.
J

C

n-1

~50-

(

kzr

(o]

.
le Cn(kzro)

0

0

-
J

2=2N

Cn-l(kgro)J

)

%

2N+1 i A i 3N’ 1 < j <

.

(the superscript indicates the particular eigenvector of the

algebraic eigenvalue problem).

The matrix ¥ is taken as

W3j-21Q

Y3544, =

w3j,z
¥39-2,9

¥35-1,¢ °

w3j,z

Finally, the matrix

Fourier number n is

W3j—212
W3j—ll£ -

33,2

L
Uz
J

Cn(k

L

1Wj Ch-1 (kex)

0

gr

o)

L'l < 9 < 2N, 1 < j

A
2

(2.96)

k 2N+1 < 2 < 3N, 1 < § <

¥ of modal amplitudes at r = r, for the

defined by

L

n
7 U
o

2
%
]

J
C

-ik w*

n

Cn(kzro)

(k

lro

[
k Uj Cn(kgro)

)

l <2< 2N, 1< 3j<¢N

(2.97)

N

N,
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2-2N

, - I )

W35-2,9 ° rovj n (kzro)

W33-1,0 = 0 2N+ 1< g <3N, 1<3J <WN,
2=2N '

W3’j,2 = k,Q,Vj Cn (kzrc)

s

Let us consider the cylindrical surface r = ry- At node j
the consistent nodal forces acting on the region r > ro'of

sublayer j are ( node j )

zZ,
p3 I N3 (z)a (2.98a)
. = =X T . (z)dz .98a
trd © Jz, r]'r=r J
j o
5 2341 5
., = - T N . b
PZ,] r, ), Tzr[r=r Vj(z)dz (2.98b)
3 o
. Z. . ,
P% 5 =" I, ["3+1 = N%(z)dz. (2.98c)
JZj relr=ro .

The consistent nodal forces at node j+1 are obtained similar-
ly. For mode &, 1 < & < 3N, after integrating and assembling

for the region 0 < z < h, we find [ 6]

p=r |k2avt +k, 0 -E +nnoe* - (BB 1 4 po)vt
(2.99)
Wg and @2 are the columns of matrices ¥, ¢ corresponding to

2 L 2 : .
mode . P3j-2, Pijl, P3j are the radial, vertical and tan-

tential forces at node j respectively. A, D, E, N, L, Q are
3N x 3N matrices assembled from the sublayer matrices Aj, DJ,

EJ, Nj, LJ, QJ, respectively, which are given by

~
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0

0

0

2G,
J

(2.100a)

(2.100b)

(2.100¢)
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4 0
0 0
0 2
2 0
0 0
0 4
-2 1
0 0
2 -1
-1 2
0 0
1 -2
0 0
-1 -1
0 0
0 0
-1 -1
0 0

(2.1004)

(2.100e)

(2.100f£)
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Let us consider the region r > r_ > 0. For radiation

in this region we take

(2)

Cn(kr) = Hn (kr) .

2) is the Hankel function of the second kind of order n.

g
n
It is bounded in the region 0 < r < r < = and, moreover, its

-]

asymptotic behavior, as r + », is [ 11]:

: . onw o,
e exp(~-ikr + i 7? t7) . (2.101)

_ 1/2
H(Z)(kr) ~ EJQJ
n

Thus a mode for which Im[k] < 0 is an evanescent wave decay-
ing for large r. This agrees with the choice of eigenvalues

k for the matrix K. The region r » r_ > 0 may be understood

(o]

as an element (see figure 2.4) with nodes at r = ror 2 = zj,

1l < j <N. We obtain the dynamic stiffness matrix of this

F?"ro "e4

%/~—free surface

O

1 ? 1:610P
|
ho | 13765103
| .
1 E ‘BN Py
Ve \\——fixed base

Figure 2.4~ The region 0 < r, < r 0 <z <h

( free surface , fixed base )
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element. Let U be the vector of nodal displacements:

U3y-2 = ulrgr 2y4)

U3g-1 = Wirgr 2y l<igN
U3y = vir,, z3)
We have:
U =wr. (2.102)

¥ is the modal matrix given by (2.97). T is a vector of modal

-~

participation factors. We use (2.99) to find the vector of

nodal forces corresponding to lJ:

F = ro{é ¥ KK+ (D-E+ nN) ¢K -,(Ei%ill L + nQ)W] r. (2.103)

~ ~ A ~ ~ o~ ~

We eliminate using (2.102). We find

[

[ \—

E = B l

2

R is the dynamic stiffness matrix of the element:

~

8 = rO{A ¥ KK+ (9 -E+ ng)? K - (Ei%i£)§ + nQ)W}w-l.(2.104)

~ ~ o~ A

The elementis also referred to as the consistent transmitting
boundary (a cylindrical one). We note that the dynamic stiff-
ness matrix is the same for symmetric and antisymmetric dis-
placement fields. Details may be found in [ 6].

Let us consider the region 0 < r < r We obtain the

o.
dynamic stiffness matrix of an element (see figure 2.,5) mod-

eling the region. The nodes are at r = r z =12,, 1 < Jj<N.

o’ 3 -

We take
Cn(kr) = Jn(kr)
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free surface-——\\

Figure 2.5-The region 0 < r < ryos 0 <z<h

( free surface , fixed base )

J, is the Bessel function of order n. It is bounded in the
region 0 < r < r . Its asymptotic behavior, as r » 0, is [ 1]:

)n

kr) (kr

Jn( o0 (2.105)

n!
( solutions of Bessel's equation (2.85) which are nonsingular
_'aEV'EM;WO are multiples of Jn ) . We note [ 1] that
J_(-kr) = (-1)"3 (kr) and J'(—kr) = (-l)n-lJ'(kr) Thus if
n - n n B n ’
the eigenvalue -k is used instead of k, together with the
eigenfunctions U and -W (or -U and W) instead of U and W, the
modes given by (2.83a,b,c) remain the same except for the fac-
tor (—l)n, which affects only the modal participation factors.
Similarly, if the eigenvalue -k is used instead of k, together
with the eigenfunction V, the modes given by (2.84a,b,c) are
)1

left unchanged except, again, for the factor (-1 which in-
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fluences only the participation factors. Clearly, therefore,
the choice of eigenvalues k need only be such that the corre-
sponding modes are linearly independent. The choice of sign
of real k or of the imaginary part of complex k is irrele-

vant. The vector of nodal displacements may be written as
U=wr . (2.106)

w is the modal matrix given by (2.104). The nodal forces are

given by

2

~ ~ ~

F = -ro[A Yy KK+ (D -E+ nN)p K - (Eiﬁill L + nQ)w}r.(2,107)

The minus sign in front of the right-hand side is necessary
since the orientation of the cylindrical surface of this ele-
ment is opposite to that of the element modeling the region

’

r>r, > 0. Eliminating the participation factors, we obtain:

F=RU

R is the dynamic stiffness matrix of the element:

~

n(n+1l)
e

R = -rO[A Yy KK+ (D-E+ nN)p K= ( L + nQ)%]W—l

~|* (2.108)
The computational effort necessary to obtain £he matrix is -
independent of the diameter ZrO of the element. Further de-
tails are given in [ 9].

Finally, let us consider the region 0 < r; < r S r,. The
nodes of the element (see figure 2.6) modeling this region

are at r = ry, 2z = zj and §t r=r,, z =_zj, 1l <3j<N. In
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= Ty =]

e ) —= (;iree surface
T f

| | PGP

|
h A.rGL,0.

| L %37737%5 |

|

| NN 1,
A I N’°N’"N

!

' /

Vz fixed base

Figure 2.6 —The region 0 < ry < r<r,, 0 <z <h

( free surface , fixed base )

this case, all modes must be included. Apart from H(Z) we

n
(1)

n ! i.e., the Hankel function of the first kind of

also use H

order n. Then only the eigenvalues in matrix K and the corre-
1 1.1 2

sponding eigenvectors need be used. Let ¢7, ¥Y7,¥" and o<,
?2, W2 be the modal matrices evaluated at r = ry and r = r,
respectively using Héz). Similarly, let @l, Wl, Wl and @2,
22 52

¥®, W° be the modal matrices evaluated at r = rl and r = r2

(1)

respectively using Hn

The displacement vectors Ul, U2 are

given by

l —
U3j-p = ulryr 29 )

U%j-l =Wy, z) f 1<3<N

1 =
U3j 'V(rl, Zj) J



2 = .
U35-2 = ulzyr 23)
U2 = w(r,, z.) - 1 <3j <N
3j-1 27 %5 J= .
2 —_—
U3j - V(rzl Zj) )
We have:
=ttt e o (2.109a)
12 = 2 L+ 2% . (2.109b)

The nodal forces corresponding to U, U? are (a superscript

indicates that the matrix is evaluated at r = r,)

2
FL = rl[é v’k k + (D-El+nnh)olx - (B plipol #}rl
N rl[é vk x + (D-pl+nnh)o'x - (D Ll+ngl)w§]r2 (2.110a)

-rz[é 92K X + (0-g2+n8°) 0%k - (intl) L%+ Qz)Wj}FZ . (2.110b)
Using (2.109a,b) we eliminate rl, r2 We find
1 1
F U '
~ = K|~ (2.111)
2 ~ 2
F U

K is the dynamic stiffness matrix of the element. We note,
again, that the computational effort required to obtain the
matrix is independent of the thickness r, - ry of the element.

Details may be found in [ 9].
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2.5 SUMMARY

In this chapter, we reviewed the development of the follow-
ing elements:

1) The element modeling the semi-infinite region x > 0 of
a layered stratum in plane strain [23]. The dynamic stiffness
matrix of the eleﬁent is given by (2.41).

2) The element modeliﬁg the rectangular region X £ X <X,
in plane strain [ 9]. The dynamic stiffness matrix is obtained
as in (2.46).

3) The element modeling the semi-infinite region x » 0 of
a layered stratum in antiplane shear [16,23]. The dynamic stiff-
ness matrix of the element is given by (2.74).

4) The element modeling the rectangular region X] ¢ X ¢ %2
in antiplane shear [ 9]. The dynamic stiffness matrix is found
as in (2.78).

5) The element modeling the semi-infinite axisymmetric
region r > ry > 0 of a layered stratum (for any Fourier number
n and symmetric or antisymmetric vibrations [23, 6 ]. The dynam-
ic stiffness matrix is given by (2.104).

6) The element modeling the axisymmetric region 0 < r <

r, [ 91. The dynamic stiffness matrix is given by (2. 107).
7) The element modeling the axisymmetric region ry sr S
r, [9]1. The dynamic stiffness matrix is found as in (2.111).
We note that the computational effort required to obtain
the matrices is independent of the length of the element, for
plane elements (2,4) or its thickness in the radial direction,

for axisymmetric elements (6,7) . The surface of the elements

is free and the base fixed.
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CHAPTER 3

PLANE ELEMENTS

The boundary conditions on the surface and the base of the
plane elements described in Chapter 2 were homogeneous. The>
surface was assumed free and the base fixed. 1In this chapter
we consider inhomogeneous boundary conditions. We develop in
detail elements for the analysis of time-harmonic wave motion
in plane strain or antiplane shear in the rectangular region
- % <X < %, 0 <z < hof a layered stratum. The base of the
elements is taken fixed. However, boundary conditions corre-
sponding to a rigid and rough strip footing are prescribed on
the surface of the elements. Other inhomogeneous boundary con-
ditions are also discussed. Finally, an application is consid-

ered which shows that the method is accurate and efficient.

3.1 PLANE STRAIN

We consider time-harmonic wave motion in plane strain in

the rectangular region - % <X < %, 0 <z < hof a layered stra-

tum. Let us assume that the stratum is divided into N sublayers.

We rewrite the governing differential equations, in sublayer j,

2 2 2 2
3 u 3w 3 u 3w 2 _
(g + 269 =5 + Ay 3537 * G5 [ 7 ¢ axaz}' pygum =0 (3.1a)

82w 32u 82w 82u 2
(}\j + 2Gj) 7 + >\j 3}"{‘5-2- + Gj 5 + axaz + pju) w O . (3.lb)

The amplitudes u, w, o_, T must be continuous at z = z.

z’ "Xz j’
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2<3j <N, - % <x < %. The conditions expressing continuity

ow ou ow Ju
(A, . + 2G,_ )=z + Ai_q7T (A; + 2G.)=x= + A AT
-1 3=178z) 7 318X, .t 378z) ,_,+ 1 K|, _ ¥
J o J
(3.2a)
ow Ju - aw Ju :
®3-1 {%E z=z-.+ dz z=z{}- Gj[%x z=z++ 9z z=z%] 3.2
3 ] J
Boundary conditions corresponding to a rigid and rough strip
footing are prescribed on the surface of the region:
u(x,0) = AX (3.3a)
wix,0) = A, - 6x , (3.3b)
L L
TTi*Igc
Ax’ Az, 6 are the amplitudes of the horizontal displacement,
vertical displacement and rotation of the footing respectively.
The rotation is taken positive in the counterclockwise direc-
tion. The base of the region is fixed:
u(x,h) =0 (3.3¢)
w(x,h) = 0 , (3.34)

L
7 LX<

N

The nodes of the element are (see figure 3.1 ) taken at

(0,0) with degrees of freedom



-63=-

< L =~
~| rigid and rough

1 X strip footing
M/\Fz /—

T = X
T | 1106101

L G..p.
37%5°5

MGy Py

[

1

|

i

|

|

]

|

|

|

|

l \_
wz fixed base

<x < % » 0 <z <h,

of £

Figure 3.1 -The region -

in plane strain.

at (- %, zj), 2 < j < N, with nodal displacements
1 _ 4L
uy = u(= 3, zj)
1
Wj = w(- %‘r Z]) ’
and at (%, zj), 2 < j <N, with nodal displacements
2 _ L
2 _ L&

The forces corresponding to these degrees of freedom are, at
(0,0), the horizontal force FX, the vertical force Fz and the

moment M, at (- %, zj),2 < j £ N, the horizontal force Pi 3
14

and the vertical force Pi 5 and at (%, Zj)’ 2 < j <N, the

14

and the vertical force Pi 3 In some

1

horizontal force Pi
7
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calculations it is convenient to use the nodes at (- %,

0) and

(é, 0) instead of the node at (0,0). The degrees of freedom at

these nodes are

ui = u(- %, 0)
wi = w(- %, 0) ’
and
uwl = u(@, o)
wi = w(%, 0) ’
respectively. The corresponding nodal forces are Pi,l’ P;,l
and Pi,l’ Pi,l' We note that the degrees of freedom at these
nodes are related to Aer b, 8 by
ul = A (3.4a)
ul =4 (3.4b)
wi =4, + % 8 (3.4c)
Wi =4, -2 0. (3.4)
For Fz’ M are related to Pi,l’ Pi,l’ Pi,l’ Pi,l by
Fx = P)]::,l + P>2{,l (3.5a)
F, = P;,l + Pg,l (3.5b)
M=%'~P]z',l—-I-2"-P§,l . (3.5¢c)

We assume that u, w are linear functions of z in each sublayer.

For z. < z <

3 l <j <N, we have

25417



Z. -2 -z
L _ .1 Tj+l 1
u(- 3 z) = uj hj + uiq R
zZ. - 2z -z
L .1 %541 1
wi= 3/ 2) = W h. T Wi41 ThS
J J
L _ 2%441 7 % 2 Z -z
z . - 2 -z
L _ o2 By 2
w( 5 2) = wj hj +Wiq h]

12 2
N+l T OUN+l T WNel

tions (3.3¢c,d). At z

]
]

: 1
Note that uyy;

= 0 by the boundary condi-

0, i.e., at the surface, the amplifudes

u, w are constant and linear functions of x respectively by the

boundary conditions (3.3a,b). We write
1,1 X 2 ,1 X
u(x,0) =uy (5-7) +tu F+7)
1 1 x 2,1 X
w(x,0) = Wy (7 - f) + v (f + f) ’
-Fixs7

The consistent nodal forces are given by

z L
2 Z2,=Z 2
1 - _ 2 _ 1 _x
Pe,1 = J ‘%|._ L |™h dz J Txz| _ (3 - pax
z =- = 1 L z=0
1 2 - =
2
z
Pl = - 21 Zo” % 1 X
z,1 Xz| - LI dz - [ g, (7 - p)dx
b4 2 1 L z2=0
1 - =
2
pA ~ - L
2 2,-2 =
2 _ 2 2 1 X
Py 1 = J ‘%l 1 |™h dz - J Tyz (5 + pdx
z =z L1 -z z=0
1 2
L
z - - =
2 ZA~2 2
2 [ 2 J 1 X
P = T dz - o] (= + Z)dx
z,1 2, Xz <= % hl L Z 2=0 2 L
- -3

(3.6a)

(3.6Db)

(3.6¢)

(3.64)



zZ. - - z. -
j z2-2Z._ j+1 Z.,,=2
Pl . = - c -1 dz - c I+l dz
X,3J X h. X h.
Z: 1 - L| 7j-1 2 =L J
T ) ] ~ (3.6e)
Z. - - zZ. ~
3j Z-2._ j+1 z -z
Pl L = - I T ____J_L dz - J T _Ji_ dz
Z2,] XZ h. X2
Z. L| j-1 z. _ L h.
=L x=- gl = ] x==3 31 (3.68)
z. Z. e
j zZ-Z._ j+1 z -2
p? | = o B ) P o B . P (3.69)
X3 g, Rl | B z. X|_n | Bj
]"l X= 3j =..2_ .4
z. Z. A
j Z=Z._ j+1 2.,.-2
Pz . = T ‘ —Li dz + T -—JL dz (3.6h)
z,] 2 X2z L h._l 2 X2Z hj
-1 |x= 3 J 3 x=5 _
2<3 <N

Let Ul, U2 be the vectors of nodal displacements at (- %, z2.) ,

2 <Jj<N, and (2, Zj), 2 < j < N, respectively:

U5y = o

2s-1 Ustl
3

U = o
2s ws+l

1 <s<N-1, 2=1, 2 .

The vectors of nodal forces at (- %, zj), 2 < Jj <N, and (%,zj),

2 < j < N, are denoted by Fl, F2 respectivelyi

% 3

Fis-1 = Px,s+1
)

FZS - Pz,s+l

1 <s < N-1, ¢ =1, 2

Our objective is to determine the dynamic stiffness matrix
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. . 1 2
K of the element, i.e., the matrix relating For Foo M, E , E

1 2
to Axl AZ ' 0, U ’ U :

~ ~

i ! I 161 12 1
F SR Sl S Gt B
B P AN [
x]1 | | | I x2
Fy K™ 1Kl Kz | Kig! K by
T e e I I b
- 2
FZ - K :KZX: KZZ: KZB: ~K AZ (3 7)
S echeche |
M K :Kex: Kez: Kee: K o
=== T Ts==T=== T-—"=7~—"="—"7"==="7T"="=== ==
| 1 | |
1 ly2x) 221,28 1 22 2
F? SRS S S S
L . | | | I I . L

The boundary conditions (3.3a,b) become

u(x,0) =0 (3.8a)
w(x,0) =0, (3.8b)
L L

T2i*237-

Any displacement amplitudes u, w satisfying the differen-
tial equations (3.la,b), the conditions (3.2a,b) at z = Zj’
2 < j <N, and the boundary conditions (3.3c¢c,d) and (3.8a,b)
may be written, in general, as a superposition of modes of the

form

]

u(x,z) U(z)exp(~-ikx) (3.9a)

wi(x,2z) W(z)exp(-ikx) . (3.90)
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The eigenfunctions U, W and the wave numbers k are obtained
using the procedure given in section 2.2. The difference is

that the conditions

U(0) 0

i

w(o) =0 ,

indicating that the surface is fixed, must be satisfied in-
stead of (2.7e,f), which correspond to a free surface. The

algebraic eigenvalue problem is

(k%A + ikB + G - w°M]A = 0 . (3.10)
A, B, G, M are (2N-2) x (2N-2) matrices obtained from those in
(2.26) by deleting the first two rows and the first two columns.
A is a (2N-2)-vector (the eigenvector corresponding to the eigen-

value k) with components

Bry-1 =

We form the (2N=-2) x (2N-2) diagonal matrix X with entries
the wave numbers kj’ 1 < j < 2N-2, corresponding to modes which

decay for large x > 0 or propagate energy in the positive x-

direction:

K = diag [kj] . (3.11)
The modal matrix X is

x = [t 2%, L., 2T (3.12)
with éj corresponding to kj as chosen in (3.11). g is obtained

as
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]

=Tx (3.13)

T being a diagonal (2N-2) x (2N-2) matrix:

Ta9-1,25-1 = 1
1 <3j<nN-1 . (3.14)
T23,23 !
The diagonal matrix E is
E = diag[.exp(—ikjL)J , . (3.15)
with kj as chosen in (3.11). The dynamic stiffness matrix of

the region with fixed surface and fixed base is obtained using
the procedure given in section 2.2 for the region with free sur-

face and fixed base. We have

Ul = xrl + T E r? (3.16a)
uz =xE®+31? (3.16b)
The nodal forces are given by
Fi . 1 R = 2
T = [1AXK+DXII" +[-i AXEZK+DXE]T (3.17a)
2_ s l ] Py r 2
F = -[1 é § § K+DXEII'"-[-1iAXK+DXII'". (3.17b)
The participation factors Tl, r2 are eliminated using (3.l6a,b).
We find
C 1] 11t 12 7 [, ]
F S U
' ~
m————] = |m————— e It —— . (3.18)
: I
|
2 21 22
E K™ 1 K U2
b - b l i L. -
Kll, Klz, KZl, KZZ are the submatrices we are looking for. After

~ ~

some manipulations [ 9 ] we obtain



- '
= ReRDCI- DTSR (3.19a)
2= hT = -t 4 R'1J (3.19b)
22 = et (3.19¢c) .
( I is the identity matrix )
with -1 .
: R=1AXKX  +0D :
R =TRT
J =XE x~t
J =TI
1
=t
It may be shown that
29T = ¢ 12 ¢ (3.20)

The dynamic stiffness matrix is symmetric. This is shown by
the following argument. Consider a conventional finite element
mesh covering the region - % <X < %, 0 <z < h. The spacing
of the elements in the z-direction is the same as the spacing
of sublayers. The spacing in the x—direction.is taken uniform.
Let n be the number of columns of elements. The width of the

elements is § = L/n. Thus the nodes of the mesh are at (Xz’zj)’

1l <2<n+tl, 1 < j < N+1, with

= -z -1) &
x, = -3+ (=1) T,

and the corresponding nodal degrees of freedom are
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u, . = u(xz, zj)

zZ.) .

W, . = w(xz, 3

The elements are four-node rectangles with linear interpola-
tion functions. Using the principle of virtual work for time-

harmonic motion in plane strain, we obtain

F = [% - wzé} U (3.21)

Both g , the stiffness matrix, and y, the mass matrix, are

symmetric. The components of 7,y and the entries of g, y cor-

~

responding to the nodes at the surface and the base of the

region are deleted since uz,l = Wz,l = = 0,

YeoN+l T o, N+l
1 < & < n+l, by the boundary conditions. The components of F

corresponding to the interior nodes (xz,

2 < j <N, are set equal to zero since no external forces are

zj), 2 < g < n,

applied there. Any solution y of (3.21) may be written as a

superposition of discrete modes of the form

o
i

Uj exp(-ikxz) (3.22a)

b
1]

Wj exp(-ikxz) . (3.22b)

The eigenvalue problem which yields the eigenvalues k and the
discrete eigenfunctions Uj’ Wj’ 2 < j < N may be obtained by
considering the equations in (3.21) corresponding to a column
of interior nodes (these equations are homogeneous since the
corresponding components of g are equal to zero). It is easily

seen that.the frequency equation is of the form
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£(w?, exp(-ik§)) = 0

in which £ is a polynomial of degree 4N-4 in the term exp (-ik§)

and of degree 2N=-2 in w2.

Thus, in general, for a given w,
there are 4N-4 discrete modes. It may be shown [l4] that these
modes approach the modes given by the eigenvalue problem (3.10)
as n+ oo, i.e., § » 0. In fact, eguation (2.18), which_we used
in order to obtain (2.25) and hence the eidenvalue problem
(3.10) is the principle of virtual work for time-harmonic mo-
tion in plane strain (in a rectangular region, X] 2 X < Xy

0 < z < h), specialized further for x-harmonic motion. Thus
our solution is the limit of the discrete solution (bbtained
using the finite element mesh) as the number of columns n + =,
We note that the degrees of freedom at interior nodes may be
condensed out of the matrix K - ng in (3.21), since the forces
at these nodes are equal to zero. The condensed matrix is sym-
metric and relates El, Ez to gl, gz. Thus the dynamic étiff—
ness matrix K inl(3.l8), being the limit of this matrix as

n > o, is symmetric.

Let us now obtain a particular solution of (3.7) for which

Ax=llA=0 ;r 8 =0 .

We denote the loads and displacements corresponding to this

particular solution by

1,1 g2,1 L,1 2,1 1 1
AR S AR | R JuPlS Pl

~ -~

Substituting
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U(z) (3.23a)

u(x,z)

w(x,z) =0 (3.23b)

into the differential equations (3.la,b), the conditions
(3.2a,b) and the boundary conditions (3.3a,b,c,d), we find that

U must satisfy the differential equation, in sublayer j,

2 _
6, &+ o, wPu=0 (3.24a)
J dz J
the conditions at z = zj, 2 < 3 <N,
j=1 dz 2=z jdazj,_,+ (3.24Db)
] J
and the boundary conditions
u(o) =1 ; (3.24c)
Uu(h) =0 . (3.244)

An exact solution of this problem is easily obtained since,

from (3.24a), we have, in sublayer j,

U(z) = Ai cos[ii z] + aJ sin[EL z]
cJ 2 cl
T T

The conditions (3.24b,c,d) give a system of linear equations
for Ai, Aj, 1l < j < N. Let us obtain the corresponding dis-

crete solution. We note that the solution (3.23a,b) is iden-

tical to (3.9a,b) with k 0 and W(z) = 0. Therefore, (2.25)

applies. We obtain

(3.25)

-

(6 - w’mla = F

14

with Ay = 1, Aj = U(zj), 2

A

(W'}

IA
2
~
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du

Fp=-m1=-63;
z=0

G, M are assembled from the sublayer matrices GJ, MJ:

j G, 1 -1
G” = 1 (3.26a)
. h
J
-1 1
-1 17
Jog. n, | 3 6 ) 3
M’ =05 hy (3.26b)
1 1

Equation (3.25) is easily solved since G, M are symmetric tri-

~

diagonal matrices. Let Y be defined by

F)
T25-1 T 8441
1l <3j<N-1
Y, =0 .
We have
Ql’l =y (3.27a)
2l =y . | (3.27b)

The forces Fl’l, Fz'l are found using (2.37) with k = 0:

=D 0 (3.27¢)

==-D|0| . (3.274)
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D is obtained from that in (2.37) by deleting the first two
rows. The structure of D indicates that since in this solution
the vertical displacements are equal to zero, the horizontal

forces in (3.27c, d) are also equal to zero. Calculation of

Fi,Fi,Ml according to (3.5a,b) and (3.6a,b,c,d) gives
FL = F, L (3.27e)
b4 1 :
FL = 0 (3.27£)
M,o=26 (1 -4, . (3.279)
1271 20 <9

Fl is obtained from (3.25). It is the amplitude of the shear
traction on the surface. A, is also found from (3.25).
Working similarly we calculate a particular solution of

(3.7) for which

The loads and displacements corresponding to this particular

solution are denoted by

1,2 p2,2 pl.2 2,2 L2 2
Fors, Fors, Unrs, 0%re, e, Froomy,

~

Substituting

ul(x,z) 0 ' (3.28a)

wi(x,2z) W(z) (3.28Db)

into the differential equations (3.la,b), the conditions
(3.2a,b) and the boundary conditions (3.3a,b,c,d), we obtain
that W must satisfy the differential equation, in sublayer j,

2
ad™w 2
.o+ 26,) SW 4, =0, i
(kj J) > py W T 0 (3.29a)

dz



the conditions at z = 2., 2 < j <N,

J
' aw _ dw
(kj-l + 2Gj-l) | -= (xj + 2Gj) az| o+ (3.29b)
z—zj z=2z
and the boundary conditions
wW(0) =1 (3.29c)
W(h) =0 o (3.294)

Again it is easy to solve this problem exactly. Egquation (3.29a)
gives
W(z) = A cos [% z] + A2 sin [L z]
1 c3d 2 c3d
L L

The conditions (3.29b,c,d) give a system of linear equations
for Ai, A], l < j < N. Let us calculate the corresponding dis-
crete solution. The solution (3.28a,b) is identical to f3.9a,b)

with k = 0 and U(z) = 0. Thus (2.25) applies. We have

6 - w’Mla =F (3.30)
with Al =1, Aj = W(zj), 2 <j<N ,
= - - _ aw _ .

G, M are assembled from the sublayer matrices'gj, MJ:

@
(R
]

(3.31a)

W
ol

=
.
]
e}

~ jhj . (3.31b)

o
W]



-77-

Thus G, M are symmetric tridiagonal matrices. Equation (3.30)

is easily solved. Let Y be defined by

¥29-1 = 0
1 <3j<N-1
Y3 = 441 -
We obtain
1,2 '
] =Y (3.32a)
22=v . (3.32b)
1,2 2,2 . : - n.
The forces F~'%, F are found using (2.37) with k = 0:
[0]
F'2 = p |1 (3.32¢)
v ,
F-O-
F2r2 - _pl1| . (3.324)
Y

D is obtained from that in (2.37) by deleting the first two
rows. Considering the struCtufe of Q, we note that, since in
this solution the horizontal displacements are equal to zero,
the vertical forces in (3.32c¢c,d) are also equal to zero. Cal-
culation of Fi, Fi, M2 according to (3.5a,b) and (3.6a,b,c,d)
gives

=0 (3.32e)
1 b (3.32£)

M2 =0 . (3.32g)
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Fy is obtained from (3.30). It is the amplitude of the normal
traction on the surface.
Let us now obtain a particular solution of equation (3.7)

for which

The loads and displacements are denoted by

2,3 .3 _3
Uer> Fo FoMy o

-~ ~ ~ ~

It is interesting to calculate such a solution as a limit of
solutions already available to us. We consider

u(x,z) = Ul(z) exp (-ikx)

wix,z) = Wl(z) exp(-ikx) ,

satisfying the differential equations (3.la,b), the conditions

(3.2a,b) at z = zj, 2 < j <N, and the boundary conditions

u(x,0) =0 (3.33a)
_ 1 .
w(x,0) = % exp (=ikx) (3.33b)
u(x,h) =0 (3.33¢)
w(x,h) =0 (3.334)
The corresponding discrete solution is calculated using
(%2 + ikB + G - Puipt = L? (3.34)
with Al = U, ( ) lo=w ( j
29-1 = U1(Z341) s 855 = Wy (z5) 1 <3 < N-1
1_1, 1__1.2 P26 102
F] 3 1k(ll + Gl), F,=-%k Glhl + hl + gu)plhl,
1 1
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A, B, G, M are obtained from those in (2.26) by deleting the
first two rows and the first two columns since Ul(O) = 0 and
Wl(O) = % by the boundary conditions (3.33a,b). Equation

(3.34) is rewritten as

[R()IAT = £ FL (3.35)
in which R(k) = k2A + ikB + C ,
. 2
with C =G -y M.

We assume that  is not a cut-off frequency for the stratum
with fixed surface and fixed base, i.e., R(0) = C is nonsingu-
lar. Then for k sufficiently close to zero R(k) is invertible.

We calculate the inverse R-l(k) for small k. The entries of

R ~ are rational functions of k. They are infinitely many
~ ¢
times differentiable at k = 0. Hence a Taylor series exists

1

for R ~ (k) around k = 0:
-1 -1 ar~!
R “(k) = R (0) + k — + oo (3.36)
dk k=0
We have R—l(O) - g—l .
Moreover, since RR"l = I (I being the identity matrix), we find
dRrR _1 ar~t
— R (0) + R(0) —— =0 ,
dk k=0 dk k=0

in which 0 is the null matrix. It is easily seen that

We obtain



Thus from (3.36) we find

Rl =ct-ixcelscls ox?) , k-0, (3.37)

Equation (3.35) gives

1

ol - 1.1

C*'F" - iC™"BCTFT + O(kx) , k - 0. (3.38)

A=

Working similarly the discrete solution corresponding to

u(x,z) Uz(z)exp(ikx)

w(x,z) W2(z)exp(ikx)

with U,(0) = 0, W,(0) = % U,y(h) = W,(h) = 0, is obtained as

2

1.2 1 1.2

F™ + k), k-0, (3.39)

~i-

o

>
¢

+1ic *BCT

1 1 2 2

. . 2 _ _ 2 _ _ - . _
in which Fl = Fl, F2 = F2, F2j-l = sz =0, 2 < j < N-1l. Let

us consider the superposition of the two solutions

-

0 0
X 1 1 . 1 1 .
U™ =37 | 5| exp(-ikx) - 37 | ®| explikx)
1 A2
with U?j-l = u(x, zj)
1 <j<N
;. = wix, z.)
J J

We find that
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0
. ) .
1im U - X (3.40)
k>0 x ¢7lFr - ¢t ¢l - ¢l
with P. = 0, F. = -1 ! +L 2% h,F = F..=0, 2 <j< N-1
1 v 2 Ry 6 Y P11 T23-1 2370 < 2= ’
£ =-L0.+6), £. =0, £ = £..20, 2 <3 < N-1
1 ZiA1Te Iy r tay-1 2579 ¢ £ J <

Considering the structure of the matrices 9, § and the vectors
E' §, it is easily seen that the term -x'C—lF corresponds to
the amplitude w, i.e., the vertical displacements, while

lB C—l 1

-g- B C °F -g— f gives the amplitude of the horizontal displace-
ments. Thus w is a linear function of x and u is independent

of x. Moreover, the semidiscrete solution (3.40) satisfies at

z = 0 the boundary conditions (3.3a,b) with g = 1, Ax = Az = 0,
i.e., unit rotation and zero translation of the footing. Obvi-
ously, the solution (3.40) is admissible only in a finite

region since the ‘amplitude w is not bounded for arbitrarily

large x. Using (3.40) we obtain

P =2ctr -l ctr - 7l (3.41a)
23 = - % clr-clgcle - ¢l | (3.41b)

The loads F'’3, F?/3, 2, Fir M, may be obtained by taking the
limit, as k = 0, of the loads corresponding to the superposi-

tion of the x-harmonic solutions. However, it is more conven-
ient to substitute (3.40) directly into the expressions for the

consistent nodal forces (3.6a,b,c,d,e,f,g,h). * Before giving

the results of this calculation, let us consider an alternative
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method of.deriving the particular solution (3.40). We seek

a priori the solution

u(x,z) U(z) (3.42a)

w(x,z) -xW(z) , (3.42b)

satisfying the differential equations (3.la,b), the conditions

(3.2a,b ) at z = z,, 2 < j < N, and the boundary conditions

J
u(x,0) =0 (3.43a)
w(x,0) = =x (3.43Db)
u(x,h) =0 ' (3.43c)
w(x,h) =0 (3.434)

Substituting (3.42a,b) into (3.1la,b), (3.2a,b), (3.43a,b,c,d),

we find that U,W must satisfy the differential equations in

sublayer j
a2y aw 2
G, —x - .+ GL) =— + . = 0 3.44
d2W 2
.+ 2G, + p0 W =20 3.44
()\J J)‘d-? p]w r ( 44Db)
the conditions at z = zj, 2 <j<N ,
aw dw
(As_q + 2G5 _4)3z (A + 2G.)5— (3.44c¢)
j-1 j-1'dz|,_, 3 dz z=z;
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and the boundary conditions

u() =0 (3.44e)
w(0) =1 (3.44f£)
Uth) =0 (3.449)
W) =0 (3.44h)

An exact solution is easily obtained. Equation (3.44b) gives

. W . B
W(z) = Ad cos |— z| + AJ sin|— 2z .
1 Cj 2 CJ
L ] __L J
Substituting this into equation (3.44a) we find
3 w by e
U(z) = Bl cos ;? 2z + 82 sin Eﬁ z
T LT
Cg . w Ci . W
- —= aJ sin |— z| + — AJ cos |— z
w 1 J w 72 J
L L

The conditions (3.44c,d,e,f,g,h) provide a system of linear
equations for Ai, al, Bi, B, 1 < J < N. Using the finite

element method, we obtain the corresponding discrete solution.
Let dU and W be virtual amplitudes. After multiplying the
left-hand sides of equations (3.44a) and (3.44b) by U and &W
respectively and adding them, we obtain, for sublayer j:

) 2541 5 Zi+1 Zj+ld 4u
w p.J Ududz + w p.f Wéwdz + G.j =—[-W + =—=]48Udz
3 z. i), . i), dz dz

J : J J

Zj+ldw 2541
-A.j ar svdz + (A, + 2G.)J = [22] sWwdz = 0 . (3.45)
i), dz j 3%,

J J

After integrating by parts and rearranging the terms, we find



-84-

Z3 241 2341

2 - 2 d
- p.J Usudz - w p.J wWéwdz - G.J W =—[dU]ldz
J Z. J Z. J Z. dz
J J J
Z. 2. Z .
I+l gy I*lay g Ity g
_A.jz Iz §udz + Gj[z dz EE[SU]dz + (Aj + ZGj)Jz Iz EE[SW]dz
3 J 3
Z. Z.,
= c.|-w + Ylsy e, (A, + 26.) I 5w I (3.46)
3 dz 2 j j’ dz - : "
3 :

Assuming that U, W, dU, 6W are linear functions of z in

each sublayer, equation (3.46) ,which holds for arbitrary 40U,

SW, gives
U. -T
J J
.l WL -J,
sd| 3 = J , (3.47)
Ussl T3+1
Wiv1 9541
with
: du
T, = G. |-W + =—
2 j [ dé]z=z£
_ dw
0'2 = (A + ZGJ) a—z— _
z=z
2
L =3, j+1
u, = U(zg)
WQ = W(zz)

s) is a 4x4 matrix given by

~



Wl W

e

(3.48)
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We note that

Since g, and Ty 2T€ continuous at z =z, 2 < j < N, we have

dw

adw
o, = (As_q + 2G._ )5 _= (A3 + 2G.) 5= (3.49a)
J j=1 j=1°dz — 3 j’dz z=zf
J J
4au du
T. = G, [; W + ——1 = G-[— W + ——] . (3.49Db)
J -1 dz ],z J dzj,_,*
J
We obtain
S A=P . (3.50)
S is assembled from S], A, P are 2N-vectors:
b25-1 = 95
: l<3j<N
= - = - - dau
Pl = Ty Gl [ W + dz] _
z=0
- - = - aw
P2 = Gl - ()\l + 2Gl)dz _
z=0
sz-l = sz =0 , 2 <3j<N

as prescribed by (3.44e,f). The semidiscrete solution UX cor-

~

responding to (3.42a,b) is given by



y } ) .
U2j-l = u(x,zj) = AZj-l

|

Uij = w(x,zj) = -xA,. .

It is easily checked that this solution is identical to the one
given by (3.40). Actually, equation(3.40) shows that the calcula-
tions required to obtain this particular solution are simple. The
matrix g may be split into two symmetric tridiagonal matrices,
one corresponding to horizontal displacements and the other to
vertical displacements. Moreover, matrix B has a simple structure.

Using (3.6e,f,g,h), we obtain

Fl'3 = g~L/2 (3.51a)

>

~

F2,3 _ _yL/2 (3.51b)

>

The matrix HX is obtained by assembling the sublayer matrices

X1 (4x4) given by

~

X X
0 -3 Aj 0 3 Xj

1 1 1 1

- . —Glh' - G’u — h-

2 %5 3 %37 7% % G50y
g%rJ = (3.52)
~ - X X

1 1l 1 1

= G, = G.h. - = G, = G.h

2 73 [ 2 7] 3 GJ J
(g-L/2’ /2 jn (3.51) are obtained from HX evaluated at x =

~

-L/2 and x = L/2, respectively after deleting the first two rows,
since the forces in (3.51) correspond to nodes below the sur-

face). Similarly, using (3.5a,b,c) and (3.6a,b,c,d) we find
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‘_l

3 - -
Fx = PlL + 5 Al(l A4)L (3.53a)
F2 =0 (3.53b)
1 3 1 1 1
Pl' Pz, A3,A4 are obtained from (3.50).

Having found the solutions (3.9a,b) satisfying homogene-
ous boundary conditions, i.e., fixed surface and fixed base,
and particular solutions (3.23a,b), (3.28a,b) and (3.42a,b)
corresponding to unit horizontal translation, vertical trans-

lation and rotation of the footing, let us obtain the dynamic
11 12
K=, K

-~ ~

stiffness matrix K of the element. The submatrices '
KZl, KZZ have already been found. They are given by (3.19a,b,
c). The matrix K in (3.7) is symmetric. This may be seen by
an argument similar to the one used to show that the matrix

in (3.18) is symmetric. We note that the degrees of freedom
uz’l, Wz,l’ 1l < 2 < n+l, at the surface of the region may be
condensed kinematically to the three degrees of freedom, Ayr
Az, 8 by the boundary conditions (3.3a,b). Moreover, the
three particular semidiscrete solutions that we found are the
limits of the corresponding fully discrete solutions (obtained
using the finite element mesh) as the number of columns n > «.
The condensed dynamic stiffness matrix is symmetric. There-
fore, K, being the limit of this matrix as n + », is symmetric.
We have

Kix _ F1,1 _ K11 ;11,1 _ K12 |j2,1

= L (3.54a)

F2,1 _ KZl Ql’l - KZZ Y21 (3.54b)

~

KZX



Klz _ Fl,2 _ Kll Ul,2 _ Klz U2,2 (3.54¢)
P S
Kle - Fl’3 _ .ll Ul'3 _ Klz U2,3 (3.54e)
K20 = F2.3 _ 21 .3 _ 22 2,3 (3. 54£)
Since K is symmetric, we obtain
- [le]T" G G UL (3.55a)
K2 = 1T, K22 = AT, K8 = Pt . (3ussw)
Thus we find
Kix = Fi - Kgl Tl’l = sz Uz'l (3.56a)
Kyy = Fi _ Kzl gl,2 _ K22 g2,2 (3.56b)
Kegg = M3 ~ Kel U1'3 - Kez u2,3 (3.56c)
Ky = F}z{ _ le Ul,z _ sz !42’2 (3.56d)
o = P = K UT7 - 2 (3. 56¢)
Kpg = F) - 'Sl Gl [ (3.56%)
Using the symmetry of K we obtain
Kzx = Kxz’ Kox = Kxe’ Koz = Kzo . (3.57)

It must be pointed out that, since the horizontal translation

and the rotation are uncoupled from the vertical translation,
= | = = =
Kxz = Kax = 0 - Kze Koz o - (3.58)

The derivation of the dynamic stiffness matrix of the element
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is now complete. We note that the computational effort re-
quired to calculate K is independent of the length L of the

element.

3.2 ANTIPLANE SHEAR

Let us now consider time-harmonic wave motion in anti-
plane shear in the rectangular region - % <X < %, 0 5'2 <h
of a layered stratum. We assume that the stratum is divided
into N sublayers. The governing differential equation, in

sublayer j, is

2 2
. 2%+, 2L+ owPv=0 . (3.59)
Ja3x J 3z J

The amplitudes v, Tyz must be continuous at z=zj, 2 <3 <N

- % <X < %. The condition expressing continuity of Tyz is
v
G. — = G. 3V
T3-1 3z __ j = . (3.60)
z zJ 9z Z=Z+

At z=0, i.e., on the surface, the boundary condition corre-

sponding to a rigid and rough strip footing is prescribed:

v(x,0) = A ’ : (3.61la)

N

L
F<x<

Ay is the amplitude of the antiplane horizontal displacement

of the footing. At the base the element is fixed:

v(x,h) =0 , (3.61Db)

[N
doje

< X <
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~

rigid and rough strip footing
F

T

J

. =y
L G17P1
[ ]
|
> ! Jl
|
h o | L G474
1 ‘
! <Q
\ CnrPy
: ?{\\\\__—-
Wz fixed base
. . . L L
Figure 3.2 -The region > <X <35, 0 <z <h,
in antiplane shear.
The no%ss of the element (see figure 3.2 ) are at (x,0),
- % <X < %, with nodal displacement Ay, at (- %, zj),2 < j <N,
and at ( %, zj), 2 < j <N, with nodal displacements
« _L 2 L
""v(jlzj)rvj ('é'rzj)o

The forces corresponding to these degrees of freedom are, at

r Z.
J)

2 < j <N, the antiplane horizontal forces P%, P

Mot

(x,0), the antiplane horizontal force Fy’ and at (-

’
L 2
(71 Zj)l ] re
spectively. We assume that v is a linear function of z in each

sublayer. For z, < z < Z5417 1l < j <N, we have

J —
Z. -z zZ - Z.
v(- E,z) = v% B .2 S + V%
2 J h. j+1 h.
J J
Z. -z zZ - Z,
v, z) =2 -2 3
J hj j+1 hj
L 2 2 L = v2 = 0. The consistent nodal forces

with Vl = Vl = Ayl VN“"l VN+1

are given by (2 < j < N)



_ L z,
%2 z,-2 2 z,-2
F o= - T dz - T dx + T dz
Y f XY |g== L | B [- L yz|,o [ XYlg=D| B
zq =3 L 1 5 z=0 zq 3 1
(3.62a)
zj r- Z:i1 -
1 _ _ z2-Z._ j+ z z
3T [z, Txy!x=___ —1=Llgz - J Ty 1 |——|dz  (3.620)
j-1 _.hj—l 23 x=-3 hj . ~
Z. Z.
J 2=z, _ j+1 z z
p? = T —27Lllaz + T j*l dz . (3.62c)
J Xy|l,- L h. xy|. _L h.
2501 |32 j-1 Z3 x=35 j

Let Ul, Uz'be the vectors

~ ~

2 <j<N, and Z, zj), 2

%
Us
1 <s

The corresponding vectors

respectively:
L

Fs =

l <s

Let us calculate the

)

of nodal displacements at (- %, zJ

< j < N, respectively:

= Vi+l

< N-1, g =1, 2

of nodal forces are denoted by El, E2,
= P§,+1

< N-1, ¢ =1, 2

dynamic stiffness matrix K of the ele-

ment:
el ey
_E; = Kyl g Kyy ; Kyz -;; . (3.63)
igg KZI g sz g Kzz —g;

The submatr;;e;_ﬁ?l, giz, 'Zl, K22 are obtained first. We set

A, = 0.

y

~ ~

The boundary condition (3.6la) becomes



v(x,0) =0 (3.64)

Any displacement amplitude v satisfying the differential equa-
tion (3.59), the condition (3.60) at z = 24 2 < j <N, and the
boundary conditions (3.61b) and (3.64) may be written, in gen-

eral, as a superpositign of modes of the form

v(x,z) = V(z)exp(-ikx) . (3.65)

The procedure given in section 2.3 may be used to obtain the
eigenfunctions V and the wave numbers k. The difference is that
the surface is now fixed by the boundary condition (3.64) while
(2.52c) indicates a free surface. Working as in section 2.3,

we obtain the corresponding algebraic eigenvalue problem:

¥

A+ G- MIA= 0O . (3.66)

[k
A, B, M are (N-1)x(N-1l) matrices obtained from those in (2.63)
by deleting the first row and the first column. A is given by

The (N-1)x(N-1l) diagonal matrix K is formed with entries the
wave rumbers kj' 1l < j < N-1, corresponding to modes which de-
cay for large x > 0, i.e., Im(kj) < 0, or travel in the positive

x-direction, i.e., Re(kj) > 0 and~Im(kj) = 0:

]

K diag [kj] . (3.67)
The modal matrix X is

X = (a7, A% ..., 8, (3.68)
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with a7 corresponding to kj as chosen in (3.67). Finally, we

form the diagonal matrix E:

E = diag [exp(-ikjL)] ’ (3.69)

with kj as in (3.67). The dynamic stiffness matrix for the
region with fixed surface and fixed base is obtained using the
procedure given in section 2.3 for the region with free surface

and fixed base. We write

Ql =X El + X E 22 (2.70a)
[~J2 = X .E fl + X 32 . (3.70Db)
The nodal forces are
Fr-iagxr-iaxsxr’ (3.71a)
Ez=-iz:\}~<§1~<§l+iz})~<151:2. (3.71b)
Eliminating r, Zz(we find
'Fl" rKll i (12 'Ul'
-l = "““‘; """ Ty (3.72)
! ,
15 A S S I T
with Kr=ro+sna-gn7t (3.73a)
2=k - hT=2rs x-307" (3.730)
K22 =Kt (3.73¢)

(I is the identity matrix)
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in which R=1iAXKEX"'
T=xEX?

Clearly, the dynamic stiffness matrix in (3.72) is symmetric.
Let us now obtain a particular solution of (3.63) for which

AY = 1. The forces and displacements corresponding to this so-

lution are denoted by

r F

El,l' Ez,l’ gl,l’ QZ:l l];

Substituting
vix,z) = V(2) , (3.74)

into the differential equation (3.59), the condition (3.60) and
the boundary conditions (3.6la,b), we find that V must satisfy

the differential equation in sublayer j,

2

Gj av g + p.wzv =0 (3.75a)
dz J
the condition at z=zj, 2 <j<N,
av av
G, =— G. == (3.75b)
j=1 dz 2=z j dz z=z7 !
J

and the boundary conditions

vV(0) =1 (3.75¢)

v(h) =0 (3.754)

This problem is the same as the one derived in the case of
plane strain for the particular solution corresponding to hori-
zontal vibrations of the footing. For the corresponding dis-
crete solution we have

2

[G - y'M]pA=TF , (3.76)



with Al =1, A. = V(zj), 2<j<N
= = dv :
F1= =G & P Fy=0,2<3J<N.
z=0

G, M are the same as those (2.63). Eguation (3.76) is easily

solved since G, M are symmetric tridiagonal matrices. We ob-

-~

tain

Ut =y (3.77a)

U2l =y (3.77b)
with Yj = Aj+l, 1 <3 <N-1.

1,1 2,1 . o

The forces F~'~, F are found using (2.71) with k=0:

Flelap2loo . (3.77¢)
Using (3.62a) we find

F_=F.,L . (3.774)

Yy 1
Fq is obtained from (3.76).

The dynamic spiffness matrix K in (3.63) is symmetric. This
may be shown by an argument similar to the one used in the case
of plane strain. Using the submatrices Kll, Klz, 521, %22
given by (3.73a,b,c) and the particular solution (3.77a,b,c,qd)

we find
T
Kly = (KYJ.) = _Kll Ul,l - Klz QZ,l (3.78&)

~ ~ ~

T
K2Y = (Kyz) Y (3.78b)

1,1

i_l

Koo = Fo =2 K7 | (3.78¢)

Yy

13

This completes the derivation of the dynamic stiffness
matrix of the element. Again, the computational effort required

to calculate K is independent of the length L of the element.
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3.3 OTHER ELEMENTS

The techniques discussed in the previous sections may be
used to develop several other elements; We note that the
method consists of two steps; The first step is to find the.
solutions (modes) satisfying appropriate homogeneous boundary
conditions. In this step an algebraic eigenvalue'problem of
the form (2.26) or (2.63) is applicable for all boundary»condi-
tions which involve tractions and displacements; “The second
step is to obtain particular solutions satisfying the inhomo-
geneous boundary conditions. Let us discuss some examples.
First, we assume that boundary conditions corresponding to a
rigid and smooth footing are prescribed on the surface while
the base is kept fixed. We consider rocking vibrations (the

other cases may be handled similarly):

w(x,0) = -gx (3.79a)
sz(xlo) = 0 ’ (3-79b)
-Fax<y -

The corresponding homogeneous boundary conditions require that
w and t, vanish at z=0 while u = w = 0 at z=h. The algebraic
eigenvalue problem is obtained from equation (2.25) by specify-
ing Fl = 0, Ay = 0’-A2N+1 = Aoyt = 0. The solution of this
problem provides the semidiscrete modes. A particular solution

satisfying (3.79%9a,b) is

w(x,z) = - xW(z)

u(x,z) = U(z).
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U and W must satisfy the differential equations (3.44a,b) the

conditions (3.44c,d) and the boundary conditions

[_w + g}ﬂ =0 (3.80a)
z=0

W(0) = g (3.80b)

U(h) = 0 (3.80c)

W(h) =0 . : (3.80d)

This problem is similar to the one for rocking vibrations of a
rigid and rough footing. The discrete solution for U and W is
found from (3.50) with P1 = 0, Az = f. The corresponding semi-
discrete solution for u and w together with the semidiscrete
modes already obtained suffice for the development of the ele-
. ment.
[}
Let us reconsider the element developed in section 3.1.

We assume that x-harmonic displacements are prescribed at the

base of the element:

u(x,h)

ug exp (~-ikx) (3.81a)
w(x,h)

Wy exp(-ikx) . (3.81Db)

The boundary conditions on the surface are given by (3.3a,b).
In this case, apart from the particular solutions that we cal-
culated in section 3.1, we need a solution satisfying (3.8la,b).

Such a solution is

U(z) exp(-ikx)

u(x,z)

wix,z) W(z) exp(=-ikx) ,

©

with U and W satisfying the differential eguations (2.7a,b),
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the conditions (2.7c,d) and the boundary conditions

(3.82a)

U(0) =0

W(0) =0 (3.82b)
U(h) = U, (3.82¢)
W(h) = L (3.824)

The discrete solution for U and W is found from (2.25) with

A, = A, =0, A A w_. Again, the corresponding

17 52 2N+l T Yo’ fun+2 T Yo

semidiscrete solution for u and w together with the solutions
in section 3.1 are sufficient for the development of the ele-
ment.

From the examples given above it is clear that elements
may be developed for a variety of inhomogeneous boundary condi-
tions. It must be noted that the computational effort required
to obtain the semidiscrete solutions involved in the develop-

ment of these elements is always independent of the length of

the elements.



-100-

3.4 A NOTE ON THE MODES OF VIBRATION

When we calculated the dynamic stiffness matrix in
(3.18) for the region with fixed surface and fixed base we
assumed that the displacement field in the finite region may
be written as a linear combination of 4N-4 linearly indepen-
dent modes. It turns out, however, that in the absence of
damping (B = 0), at some frequencies, the set of modes of

the form

u(x,z) U(z) exp(-ikx) (3.83a)

wi(x,2) W(z) exp(-ikx) (3.83b)

is not complete. This means that the algebraic eigenvalue
problem in (3.10) does not yield 2N-2 linearly independent
eigenvectors. The case arises at frequencies Wy for which
the frequency equation has a double root - wave number ko.
Let Wy be one of the cut-off frequencies for the stratum
with fixed surface and fixed base (note that the discussion
which follows holds for other homogeneous boundary conditions
as well) corresponding to transverse waves, i.e.,
SEE
Cr
Then ko = 0 is a wave number. In fact, it is a double root.

= mmr, m=1,2,... ‘ (3.84)

The mode is of the form

U(z) ' (3.85a)

(3.85b)

u(x,z)

il
o

w(x,z)
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If Wy is a cut-off frequency corresponding to both longitu-
dinal and transverse waves, i.e., if in addition to (3.84),

we have

woh
= = nm, n= 1,2,... (3.86)
L )
then there is another mode of the form (3.83a,b), namely,

u(x,z) =0 (3.87a)

w(z) . (3.87b)

w(x,z)

This can happen only in the exceptional cases given by

CL 2 - 2v % P

Lo [______l - 2\)} -2, (3.88)
with p = 2,3,4,...

qg=1,2,...,p~1

If Poisson's ratio v is not such that (3.88) is satisfied
then there is ohly one mode of the form (3.83a,b) at the
cut-off frequency Wy - namely, (3.85a,b). Then the set of
modes of the form (3.83a,b) is not complete. However, at
such frequencies it is possible to find other modes (i.e.,
solutions of the differential equations satisfying the
homogeneous boundary conditions) which are linearly inde-
pendent of the modes of the form (3.83a,b). Let us look for

such a mode in the form

u(x,z) xU(z) (3.89%a)

w(z) , (3.89b)

wi(x,2z)
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in which U is the eigenfunction appearing in (3.85a) and W
is to be determined. Substituting (3.89a,b) into the differ-
ential equations (3.la,b) and the boundary conditions

(3.3¢,d), (3.8a,b) we find that

2
¢ 40 + pwg U =0 (3.90a)
dz ’
2
ad“w 2 _ du
( A+ 2G ) g—z— + pwo W == ()X + G ) a—z- (3.90b)
z
U0y =20 (3.90c)
wW(0) =0 (3.904)
Uuth) =0 (3.90e)
W) =0 . (3.90fF)

Clearly (3.90a,c,e) are satisfied since U is the eigenfunction
corresponding to ko = 0 at frequency Wy - The boundary value
problem given by (3.90b,d,f), although homogeneous, has a

solution. Indeed, we have

W, 2
U(z) = A sin| o 1, (3.91)
T
and from (3.90b), we obtain
W, 2 wy2Z
W(z) = B, cos[ —=—— ] + B, sin[ —=— ]
1 C 2 C
L L
C w_Z
+ L A cos| 7?— 1. (3.92)
Wo T

Imposing the conditions (3.90d,f) we find

C
B =-Ta
o w_h w_h
cos| 2 ] = cos/| 2
2 ) w_h
o . o}
sin| o ]
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Thus we have found a mode of the form (3.8%a,b). Clearly,
this mode is linearly independent of modes of the form (3.83
a,b). In fact, the set of modes (3.83a,b) becomes complete
when augmented by the mode (3.89a;b). Although the calcula-
tions in (3.91), (3.92) were done for a homogeneous stratum,
the results hold for a layered stratum as well. We note that
if Wy is a cut-off frequency for longitudinal waves (i.e.,
(3.86) holds) but not for transverse waves (i.e., (3.88) is not

satisfied), then apart from the mode of the form (3.87a,b)

one has a mode of the form

U(z) (3.93a)

u(x,z)

wi(x,z) xW(z) ' (3.93b)

in which W is the eigenfunction in (3.87b). These additional
modes which exist at cut-off frequencies provided that Pois-
son's ratio does not satisfy (3.88) have also been determined
by Mindlin [l8].l However, one has to look for modes of ano-
ther form at frequencies other than the cut-off frequencies.
We note that the condition which characterizes these frequen-
cies we and the corresponding wave numbers ko,is that %% =0
at (wo’ ko) along any branch of the spectrum passing through
(wo' ko). This condition is slightly more restrictive than

the condition that the frequency equation has a double root

ko at w,- Indeed, let the frequency equation be written as

f((.\)r k) = 0 I} (3.94)
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2

f is an analytic function of w2, k“. We obtain

.

3

Qu
€

o8
Hh

s ak T 5k - o , (3.95)
along any branch of the spectrum defined by (3.94). If %% =0
at (wo,,ko) then, from (3.95), we obtain that %% = 0 at

(wys kg), which means that k_ is a double root of (3.94) at

Wy Note, however, thatat cut-off frequencies §£ = 0 does not

3k
imply that a . 0, since af 0 there (Qﬁ is an even function
dk dw dw

of k). In fact, %% = 0 at the cut-off frequencies if and only
if Poisson's ratio v does not satisfy (3.88) (this is shown in
[211). Apart from cut-off frequencies, points (wo, ko) for
which %% = 0 occur at the intersection of branches of cdmplex
wave numbers with branches of real wave numbers and branches
of imaginary wave numbers. At such points the set of modes

(3.83a,b) is not complete. Let U, W be the eigenfunctions

corresponding to kO at frequency Wq e We will show that

u(x,z) = ~ixU(z)exp(—ikox) + %% exp(-ikox) (3.96a)
wix,z) = -ixW(z)exp(-ikOx) + g% exp(-ikox) (3.96Db)

is another mode at frequency W, - The derivatives with respect

to wave number are taken at (w_, ko) along any branch of the

spectrum through that point. Substituting (3.96a,b) into the
differential equations (3.la,b) and the boundary conditions

(3.3¢,d), (3.8a,b) we obtain
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] 1"
~ix[-k2 (1+26)U - ik _Q+GIW + GU + ul o U]

2 av . aw'. . du . 2 4u
+ ['ko(}\‘FZG) 'd—]-{' - lkO-()\+G)aT(- + G ——"*‘dk + u)op a—}-{-}

- 2k_(A+26)U - iO+G)W = 0 (3.97a)
. 2 . ' " 2
- ix[=k_ GW - ik (A+G)U + (}+2G)W + w_ P W]
(o] (@] (@]
1 [11 N
2 aw . du aw . 2 4w
+ ["koG a-E' - lko‘(l'l‘G)a-E' + (>\+2G)a']'<' + U)O pa—]-c-]
1
- 2k GW - 1(A+G)U = 0 (3.97b)
- ixU(0) + %% =0 (3.97¢)
2=0
- ixw(o) + ¥ =0 (3.97d)
ak|
z=0
. du _ :
ixU(h) + Ix - = 0 (3.97e)
- ixwW(h) + W =0 , (3.97€)
dk Z=h

in which prime indicates differentiation with respect to z.

We note that since U(0) = 0, it follows that g% = 0 and,
z=0

therefore, (3.97c) is satisfied. Similarly (3.97d,e,f) are
satisfied. The first term in (3.97a) is identically zero
since U, W are the eigenfunctions corresponding to kO (see
equations (2.7a,b)). The second two terms in (3.97a) may be

combined as

d 2 . 1 11 2
aIx [-k" (A+2G)U - lk»(}\+G)W + GU + w pU] k=ko
dw _
- 20 G o U = 0. (3.98)

k=ko
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Again the first term in (3.98) is identically zero,
since U, W are the eigenfunctions correspondiﬁg to k (we are
using the same symbols for the eigenfunctions at k and ko).
The second term in (3.98) is zero because of our assumption
that Iw = 0 at (wo, ko)' Thus (3.97a) is satisfied. Using
a similar argument we can show that (3.97b) holds. Thus the
eigenvalue problem is sétisfied,by modes of the form (3.96a,b).

Note that these modes are derivatives of the modes (3.83a,b)

with respect to the wave number along any branch of the spec-

trum through (wo, ko). The modes (3.89a,b), (3.93a,b) which

occur at cut-off frequencies are special cases of (3.96a,b).

In order to obtain the discrete solution for %% ’ %g ’

we differentiate with respect tok in

(k%A + ikB + G - w?M] = 0

~

to obtain a
[2kA + iB - 20 3% M] A

-~ ~

+ [k2A + ikB + G - w’M] é%[A] = 0

Since %% = (0 at (wo, ko) we find

2 Ml 51l =

2 )
[koé + 1k B + G = wy Ml Fx

- [2kOA + iBlA . (3.99)

Note that the matrix

2 .
R—koé+lk0§+§—w

-~

o N

M

is singular at (wo, ko). Nevertheless, the problem (3.99) has
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a rsolution which may be determined by expanding a%[é‘] in the
eigenvectors of R. The solution may contain an arbitrary
multiple of A. This is consistent with the fact that the
eigenvalue problem is satisfied if an arbitrary multiple of
the mode of the form (3.83a,b) is added to the mode of the

form (3.96a,b).
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3.5 AN APPLICATION

In order to verify the developments presented in the previ-
ous sections we consider a simple application, namely, time-
harmonic vibrations of a rigid and rough strip footing on the
surface of a stratum in plane strain. Let 2b be the width of
the footing. The boundary conditions on the surface of the

L]

stratum are

u(X,O) = Ax
x| <
W(XIO) = AZ - 6x
GZ =0
z=0 IXI s b
T = 0
Xz 2=0 9

The base of the stratum is fixed. Let F_,F ,M be the amplitudes
of the horizontal force, vertical force and moment applied on

the footing. We have

AZ FZ
AX = F FX
0 M

F is the dynamic compliance matrix (symmetric):

~

F,, 0 0
F o= 0 Fyy Feg| -
|0 Fex  Tagy
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We assume that the stratum is homogeneous. Then the nondimen-

sional compliances

2
GFZZ, GFXX, Gb FGG' Gbee

are functions of the nondimensional quantities %E (nondimen-
T

sional frequency), %, v, B. For given values of these gquanti-
ties the compliances may be calculated by combining the ele-
ment (modeling the region -b < x < b, 0 < z < h) developed in
section 3.1 with the transmitting boundaries (modeling the
regions x < -b and x > b, 0 < z < h) developed by Waas [23]
and described in section 2.2 (see figure 3.3 ). Results ob-
tained using different schemes have bheen reported by Chang-

Liang [ 3] and Gazetas [4]. Actually, Chang-Liang's scheme

F%—— 2b ——%% rigid and rough

F
X

strip footing
free surface i 7 '
) §; M/\z

P R
JIN DEISRNE [N PRSI S [P
A NI e S I

& \\—~fixed base
z

Figure 3.3 - Scheme for the calculation of the stiffness

of a strip footing on the surface of a layered stratum.
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differs in that the transmitting boundaries are combined with
a conventional finite element mesh modeling the rectangular
region below the footing. As noted in section 3.1 the element
that we are using may be understood as a mesh with an infinite
number of columns of finite elements. Figures 3.4 , 3.5, ‘

3.6 show plots of the nondimensional compliances GFZZ, GF_._ .

XX
szp versus the nondimensional frequency L QE, for h 2,
60 2T CT b

v = 0.30, 8 = 0.05. The stratum was divided into ten sublayers
of equal depth. For each frequency the computations take
approximately 5.0 seconds on IBM 370/165. It must be vointed
out that only fast memory is necessary. Indeed, this is a
great advantage of using the elements developed in this work,
since the storage requirements are very low compared with

those of a conventional finite element mesh having severa% col-
umns of elements for accurate results (the spacing in the z-
direction being the same as the spacing of sublayers in the
element). This is because the number of nodal degrees of free-
dom in the finite element mesh is much larger. Moreover, we
note, again, that the computational effort associated with the
elements considered in this work is independent of their
length. Clearly, this is not the case with a'finite element
mesh (fine enough for accurate results). The agreement of the
results shown in figures 3.4 , 3.5 , 3.6 with those reported
in [ 3, 4] is excellent; in fact, the différence between the

results cannot be resolved within the scale of the drawings.
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Re [GFZZ]
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Figure 3.4 -The nondimesional vertical compliance

(strip footing , v = 0.30 , B = 0.05 , %= 2 ).
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Re[GFXX]
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Figure 3.5-The nondimensional horizontal compliance
h

(strip footing , v = 0.30 , 8 = 0.05 , g = 2 ).
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4

Rec[Gb FGG]
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Figure 3.6 -The nondimensional rocking compliance

(strip footing , v = 0.30 , B = 0.05 , %= 2 ).
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AXISYMMETRIC ELEMENTS

The surface of the axisymmetric elements described in
Chapter 2 was assumed free while the base was taken fixed, i;e.,
the boundary conditions were homogeneous. In this chapter we
turn our attention to inhomogeneous boundary conditions;‘ We

develop in detail elements for the analysis of time-harmonic

0 <z < h,

wave motion in the axisymmetric regions 0 < r < ryr
and ry <r <ry,, 0 <z¢< h of a layered stratum. Boundary con-
ditions corresponding to a rigid and rough footing are pre-
scribed on the surface of the elements while the base is as-
sumed fixed. Other inhomogeneous boundary conditions are also

considered. An application demonstrates the accuracy and ef-

ficiency of the method.

4.1 TORSIONAL VIBRATIONS

We consider time-harmonic antisymmetric vibrations of axi-
symmetric regicns of a layered stratum for the Fourier number
n = 0. Particle motion is perpendicular to vertical planes
through the axis. Moreover, it is independent of the § coordin-
ate. Thus the amplitudes u and w vanish while v is a function
of r and 2z but not of § (we use the same notation as in section
2.4). Let us assume that the stratum is divided into N sub-
layers. The governing differential equation for the amplitude

v, in sublayer j, is obtained from equations (2.?9a,b,c) as



2. 2 2
3 \27 + !‘_ _BX + M,-— —V-i-l-‘ —-—‘.u—-z—- v = 0 . (4.1)
ar Y r‘ [l

o, = 0 (4T2a)
=0 4,.2b
. g (» )
o, = 0 (4.2c)
= v _ v
Trg = Gj ST r] (4.24)
= v
Tez = Gj "z (4.2e)
Top = 0 . (4.2fF)

Continuity of the amplitudes v, o_, T T is required at

gz’ ‘zr

z=zj, 2 < j < N. Thus we obtain the gondition

. (4.3)

Let us first consider the axisymmetric region 0 < r < r_,

o)
0 < z < h. The boundary condition corresponding to a rigid

and rough circular footing is prescribed at z=0, i.e., on the

surface of the region:

vir,0) =r¢ , 0<r<r, . (4.4a)

¢ is the amplitude of the rotation of the footing. It is taken
positive in the counterclockwise direction. The base of the

region is assumed fixed:

v(r,h) = 0, 0

ia
(a3
IA
N

(4.4b)
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As degrees of freedom of the element (see figure 4.1 ),

we take ¢, associated with the footing and, at (ro,zj),z_gjg_N,

‘@ r —-)l

| © rigid and rough
M f i > é(//r—circular footing

|

>

N
| G101
1
|
| T h
G.,0.
T
:
G
1 N’N L_

l’z \\\-fixed base

Figure 4.1 -The region 0 < r < T 0 <z <h

(torsional vibrations).
the nodal displacements

vj = v(ro,zj) .

The loads corresponding to these degrees of freedom are the
moment M and, at (ro,zj), 2 < j <N, the tangential force P,.
We assume that v is a linear function of z in each sublayer.

For z., <z < 25417 1l < j <N, we have

]
z . -z zZ - Z.
v(r _,z) = v, i b2 + v. _1 .
o J h. ]+l hj
J

We note that vy = v(ro,zl) =r,¢ and Vel = 0 by the boundary

conditions (4.4a,b). The consistent nodal forces are given by



r z
o 2 2 zz-z
M= —wa Toz| T dr + 2mry J Trel ) 5 dz (4.5a)
0 z=0 Z =r 1
1 o)
zj zZ - 2,
P. = 27r T —_J=1f 4,
J ro| __ h. 1
. =I5 =
j=1
z.
j+1 Zip1 " 2
+ 27r f Tr —J—h—— dz . , (4.5b)
z r=r j :
j o)
2 <3 <N

We denote the vector of nodal displacements at (ro,zj), 2< j<N,

by QO:

Uz = Veel ' l<s<N-1 .

The vector of nodal forces at (ro,zj), 2 < j <N, is denoted
by Fe.

FO=p

s s+1 ! l<s<N-1

Let us calculate the dynamic stiffness matrix K of the element,

i.e., the matrix relating M, F° to ¢, U°:

~

m N t ¢J 7
! o 1 KT
= ! : (4.6)
1
= (00 E 1/ 00 e
L~ |~ N R

First, we determine the submatrix Koo. We set

-~

o = 0.
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The boundary condition (4.4a) becomes

v(r,0) =0, 0<r<r, . (4.7)

Any displacement amplitude v satisfying the differential equa-
tion (4.1), the condition (4.3) at Z=Z 5, 2 < j <N, and the
boundary conditions (4.4b), (4.7) may be written as a super-

position of modes which, according to (2.84a,b,c) are gi&en by:

v(r,z) = kV(z)JC')(kr) . (4.8)

The Bessel function Js has been used in (4.8) since it is
bounded for 0 < r < ry (it is nonsingular at r=0). As shown in
section 2.4, V is an eigenfunction with eigenvalue k of an
eigenvalue problem which is identical to that obtained for time-
harmonic §ibrations of the stratum in antiplane shear. The dif-

ference is that the condition

v(0) =0 '

indicating that the surface is fixed, must be satisfied instead
of (2.93a), which corresponds to a free surface. This eigen=-
value problem has already been considered in connection with
the plane element developed in section 3.2. We rewrite the

corresponding algebraic eigenvalue problem
[kK"A +G - o™]A =0 . (4.9)

A, G, M, A are the same as in (3.66). Again, the (N-1) x (N-1)

~ ~ ~

diagonal matrix K is conveniently formed with entries the wave

numbers kj, 1l < j < N-1, chosen so that either Im[kj] < 0, or
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Re[kj] > 0 and Im[kj] = 0:

K = diag [kj] . (4.10)

In fact, for the development of the element modeling the region

0 <r<r , 0 <z <h, the wave numbers chosen in (4.10), as

OI
noted in section 2.4, need only correspond to linearly indepen-
dent modes. The dynamic stiffness matrix for the region with
fixed surface and fixed base is obtained using the procedure

given in section 2.4 for the region with free surface and fixed

base. The modal matrix ¢ is now given by
°5,0 ° Vj Iy (kpry) s (4.11)

1 <8 <N-1, 1<3j<N-1,

(the superscript indicates the particular eigenvector of the

algebraic eigenvalue problem). The matrix Y is taken as

’ 2
. = V.
¥ J

3,0 Jo(kzro) ' (4.12)

1 < 2% <N-1, 1 <J<N-1.

Finally, the matrix W is given by

2 ]
5,8 szj Jo(kzro) (4.13)

X
[

1 <8 <N-1, 1 <3j<N-1 .

We have
yo= wr . (4.14)
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Using (2.107) and integrating with respect to 6, the nodal

forces are obtained as

[® = - 2m, 12y

IR

K-EoKITI . (4.15)

A (the same as in (4.9)), E are assembled from the sublayer

matrices AJ, EJ, respectively, which are given by

2 1
. G.h.
~ 1 2
L i
2 1
. G.h.
Ed = 221 . (4.16b)
- 3rO

Note that AJ, EJ are Pbtained from those in (2.100a,c) by de-
leting the rows and columns corresponding to radial and axial

displacements. Eliminating the participation factors I' we ob-

- Lol (v

K°° is the matrix we are looking for. It is given by

tain:

1

g°° = -2rr [AY KK - Eo¢ Ky (4.18)

This expression may be simplified . Let X be the modal matrix
the columns of which are the eigenvectors A7 corresponding to

kj’ 1 < j< N-1, as chosen in (4.10):

x =t 8% v (4.19)
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The eigenvectors of the algebraic eigenvalue problem (4.9) are
orthogonal with respect to the matrix A. Let us assume that

they are normalized so that
xTAax=1 |,

being the identity matrix. Then (4.18) becomes

TH

K = - 2ra X A X* A, (4.20)

~

A being a diagonal matrix given by

~

Jo(k.ro)

.r + 27 .
j o Jl(kjro)

A = diag |-k

It is clearly seen, from (4.20), that KOO is symmetric.

Let us now obtain a particular solution of (4.6) for which
¢=1. We denote the loads and displacements corresponding to
this particular solution by

Eo,% go,{ Ml .
Substituting
v(r,z) = rv(z) (4.21)

into the differential equation (4.1), the condition (4.3) and

the boundary conditions (4.4a,b),we find that V must satisfy

the differential equation, in sublayer j,

6y & + w2V = 0 (4.22a)
dz J

the conditions at Z=Z 4, 2 <j<N,
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av

G. —_— _=:G, —_— (4.22b)
j=1 dz — j dz z=zf
] J
and the boundary conditions
V(o) =1 (4.22c)
v(h) =0 . (4.224)

This problem is the same as the one obtained in section 3.2.

To find the corresponding discrete solution, we solve

(G - w'Ml A= F : (4.23)
with. Ay = 1, Aj = V(zj), 2 <3j<N ,
- ' _ .
S R B i P I

G, M are the same as those in (2.63). The solution of Q4.23)
is easily calculated since G, M are symmetric tridiagonal

matrices. Thus we obtain

U°’l =Y , (4.24a)
From (4.2d) we find that Trg = 0 for this particular solution.
Therefore,
Forl = o (4.24D)
Finally, using (4.5a) we find
M, =T pr? (4.24
172 1% - -24e)

Fl is obtained from (4.23).
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' The dynamic stiffness matrix K in (4.6) is symmetric. Us-
ing the submatrix Koo given by (4.18) and the particular solu-

tion (4.24a,b,c), we find

T
K°® = (K*°1 = - K°° (ot (4.25a)

~ ~

1]

- 9o 10,1
K¢¢ M- KU . '(4.25b)

This completes the derivation of the dynamic stiffness matrix
of the element. The computational effort required to obtain
K is independent of the diameter 2rO of the element.

Let us now consider the axisymmetric region 0 < r, <r<r,,
0 <z < h. The boundary condition corresponding to a rigid and

rough ring footing is prescribed on the surface of the region:

rq)r (4.26a)

v(r,0) =
ry <r<r, .
The base is againltaken fixed:
v(r,h) =0 ‘ (4.26Db)
ry £r<r,

As degrees of freedom of the element (see figure 4.2 ) we
take ¢ , the amplitude of the rotation of the footing and, at

(rl,zj) and (rz,zj),z < j < N, the nodal displacements

v§ = v(rz,zj) , =1, 2

The loads corresponding to these degrees of freedom are the

moment M and, at (rl,zj), 2 < J <N, the tangential forces
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‘ rigid and rough

ring footing

?
| G1°1
|
|
!
{
Vz
N\-fixed base
1
[~ T2 =

Figure 4.2 -The region ry £ r<r,, 0 <z<h

(torsional vibrations).

P? (2=1,2). The amplitude v is assumed to be a linear function

of z in each sublayer. For zj £z < zj+l' l <j <N, we have

) Z:p1 " 2 ) z - 2z, _ :
V(rz,z ) = vj —J—Eg——— + vj+l __H;_l , L =1, 2

9 _ , L - _ .
Note that V] T L0 Vygyp = 0 (g = 1,2) by the boundary condi-

tions (4.26a,b). The consistent nodal forces are given by

r z
2 2 2 (2 2y~
M= -2T f T r'dr - 27r .J T ——| dz
8z | _ 1 ro|__ h
rl 2=0 zl r—rl 1
2 z2 22—2
+ 27r T —1dz (4.27a)
2 ro h
Zp r=ro 1

(4.27Db)
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Z.
zZ. z-z, j+1 Z.,,~2
p2 = 2p J. B o PTG, T 3 ",
3 2 ro|__ h. 2 ro| _ h. ’
r—r2 r-r2

(4.27¢c)
2 <3j<N
Let Ul, U2 denote the vectors of nodal displacements at (rl,zj)

and (rz,zj), 2 <j<N:

The vectors of nodal forces are denoted by Fl, F2:

£L = pl

S T s+l l <s<N-1l, 2=1, 2.

L4

Let us determine the dynamic stiffness matrix K of the

element

Fl Kll i Kl¢ i Klz Ul

. A S .

i 1 '
- 1 { I $2
M K E KM E K 6| . (4.28)

o

2

K21, K22. We set

~ . ~

First, we calculate the submatrices Kll,

¢ = 0. The modes (fixed surface, fixed base) are now of the

"(1)

vir,z) = kV(z)HO

(kr) , (4.29a)

kv(z)H;(z) (kr) . (4.29Db)

v(r,z)

Since we are using both Hankel functions, i.e., of the first

and the second kind, only the eigenvalues chosen in (4.10) need
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be used. Working as for the element modeling the region

0 < z < h, we obtain

0 <r«<r
—_ —_ o’ —_

it = wtel o+ w2 (4.30a)
U2 = w202 + 702 . (4.30b)
: t ) 1
Wl,WZ are obtained as in (4.13) but using HO(Z) instead of JO
and evaluating at r = r, and r = r2‘respeCtively. Wl,W2 are
1
calculated using Ho(l). The forces are given by
Fh=2rr, [Av'RR - EYelkIrT + 20r ) (aV'RK - B3R P2 (4.31a)
F2=-27r, [(av’kk-E%%KITT - 20r, [29%KK - E%5%K1T? (4.31b)

yl, @l, wz, @2 are obtained from vy, ¢, given by (4.12), (4.11),

using Hankel functions of the second kind instead of Bessel

~1 21
Y, o

~ ~

functions and evaluating at r=r; and r=r2're3pectively.

WZ p @2 are calculated using Hankel functions of the first kind.

~ ~

1 2

E”, E” are obtained from E by evaluating at r=r, and r=r, re-

1 2
spectively. The participation factors may be eliminated from

(4.31a,b) using (4.30a,b). We find

El Kll i Klz gl
S A R Ll S (4.32)
l .
|
EZ KZl E gZZ QZ _J

A particular solution of (4.28) for which ¢=1 is obtained
as for the element modeling the region 0 < r < L 0 <z < h.

We have
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Pt o= vt (4.33a)
. L _ : _ _ . .
with Yj = rzAj+l’ 1 <j<N-1, 2=1, 2 (é is the same as in
(4.23)). Similarly, for this particular solution

Fl oo p=1,2 . (4.33b)

~

Using (4.27a) we find
- r4) . (4.33c)

The dynamic stiffness matrix in (4.28) is symmetric. Using

the submatrices Kll, Klz, KZl, K22 in (4.32) and the particular

~

solution (4.33a,b,c) we obtain

Kld} = ”S(bl]T - - Kll Ul’l - Klz gzll (4.34&)
KZd) = [Kd)Z]T - - K2l gl,l _ KZZ Uzll (4,34b)
Koo = My - KOH UM - P32 (4.34c)

The derivation of the matrix is now complete. Note,
again, that the computational effort required is independent

of the thickness r, - r; of the element.

4.2 VERTICAL VIBRATIONS

Let us now consider time-harmonic symmetric vibrations of
axisymmetric regions of a layered stratum for the Fourier num-
ber n=0. In this case, particle motion is in vertical planes
through the axis. Again, it is independent of the g coordinate.

The amplitude v vanishes while u and w are functions of r and z.
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From equations (2.79a,b,c) we obtain the governing differential

equations for the amplitudes u and w, in sublayer j,

2 2
3 u 1 3u u 3 u gw
(kj + ZGj) {;;7 + = T r%] + G, — + (A: + G.) —F

The amplitudes of the stresses are given by

i, 2u u, ow
. (Aj + 2Gj)ar + Aj [r + 5z (4.36a)
= u ou . 9w '
Ue (Aj + 2Gj) = + Xj [ar + az] (4.36b)
o, = (s + 26.)29 4 . B4 3y
2 ] J’'9z j ‘'r or (4.36¢)
Teg = O (4.36d)
Tgg = 0 (4.36e)
- e, (39, 3w
Tzr = Gj [82 + ar] . (4.36£)

The amplitudes u, w, o_,

m ol =z .
2 Tez, Tor ust be continuous at z zj,

2 < j < N. The conditions expressing continuity of Tyt Tgz!

a
TZI’ re

_
AW 4 . Ju _
(Aj_l + ZGj—l)EE + Kj—l (r + 5§{]z=z— =

= aw a . 3u
(Aj + 2Gj)az + AL (r + 8r{}z=z+ (4.37a)
J
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ou ow ou ow
G. = + == = G, |as + = . (4.37b)
J-l[?z 3r}z=zg j[az ar}z=z;

First, we consider the axisymmetric region 0 < r < Ty 0 <z < h.
The boundary conditions corresponding to a rigid and rough circu-
lar footing are prescribed on the surface of the region:

u(r,0) =0 ' (4.38a)

w(r,0) ~ (4.38Db)

I
N
~

0 <Kr<r
- — 70

Az is the amplitude of the vertical translation of the footing.
The base of the region is assumed fixed:

u(r,h) =0 (4.38c)
w(r,h) =0 , (4.384)

0 <rc< L
As degrees of freedom of the element (see figure 4.3) we
take Az , associated with the footing, and, at (ro,zj),2 < 3j <N,
the nodal displacements

uj = u(ro,zj)

wj = w(ro,zj)

The loads corresponding to these degrees of freedom are the ver-

tical force F_ and at (r_,z.),2 < j < N, the radial force P_ .
2z (o] J - - r,]J

and the vertical force P Again, we assume that u and w are

z,j°
linear functions of z in each sublayer. Thus, for zj <z< Zj+l’
l < j <N, we have
Z,, 172 zZ-Z.
u(r_,z) = u, 4=  + u,
o} ] h. Jj+1 h.
J J
Z.,,-2Z
w(r_ ,z) = w, Bt W z-z
0 Jj h +1
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—="x ' rigid and rough
i circular footing
M FZ
£ N
2
| AprCpe0g
: 4
i
: leGjlp' h
| §
!
v |
! AN’GN'QN

--—-—r—-:{
fixed base—J/ \!z °

Figure 4.3 The region 0 < r <r_, 0 <z <h

o]

(vertical, horizontal vibrations, rocking).

Note that u, = 0, Wy = AZ’ Untl = Wyl = 0 by the boundafy con-

ditions (4.38a,b,c,d). The consistent forces are given by

r 2

o) ("2 2, - 2
F_= - 2T [ o rdr + 2Tr J T dz (4.39a)
2 0 Z|z=0 ©Jz FElr=x | M |
o
z.
3 z2 = 2.4
P. . = 2rr J o _1 dz
T3 ° )z, (Fle=r, | Mim1
z ™
j+1 Z. - 2
+ owr J 5 B . I P (4.39b)
. r _ h,
z. r=r j
J oL
.. -
3 z -2z 4
P . = 2rr T — 172 a3z
z,3 2 rz r=r hj_l
j-1 o —_
Zj+l z.+l - Z
+27rrj T J—-—————dZ,’)<j<N
o- rz| __ h. = =
zj r=r 3

o} (4.39¢)
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The vector of displacements at (ro,zj), 2 <3< N, is denoted

by Qo:

(@]
Uzg-1 = Yg41

o
UZS ws+l .

We denote the vector of forces at (ro,zj), 2 < j <N, by FO.

P
Foe-1 = Pr,s+1

o -
FZS B Pz,s+l.

Let us now determine the dynamic stiffness matrix K of the

element, i.e., the matrix relating | Fo, to Az, UO:

~

(4.40)

00 UO

First, we calculate the submatrix Koo. We consider solutions

for which Az = 0, The boundary condition (4.38b) becomes

w(r,0) =0 , (4.41)

0 <r«<r .
- - o0

Any amplitudes u, w satisfying the differential equations

(4.35a,b), the conditions (4.37a,b) at z = Zj'2 < j < N, and

the boundary conditions (4.38a,c,d), (4.41l) may be obtained as
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the superposition of modes which, according to (2.83a,b,c) are

given by

u(r,z) kU(z)J;(kr) (4.42a)

w(r,z) -ikW(z)Jo(kr). (4.42Db)

Again, the Bessel function has been used since it is nonsingu-
lar at r=0. It was shown in section 2.4 that U aﬁd W are eigen-
functions with eigenvalue k of an eigenvalue problem which is
identical to that obtained for time-harmonic vibrations of the

stratum in plane strain. In this case, the conditions
U(0) = wW(0) =0 ’

indicating that the surface is fixed must be satisfied instead
of (2.92a,b), #vhich correspond to a free surface. The eigen-
value problem has been considered in connection with the plane
element developed in section 3.1. The corresponding algebraic

eigenvalue problem is given by

(k%A + ikB + G - w?M]A =0 . (4.43)

A, B, G, M, A are the same as in (3.10). We form the diagonal

matrix K with entries the wave numbers kj’ 1 < j < 2N-2, chosen

as in (3.11):

K = diag (k] . (4.44)

Again, it must be noted that for the element under considera-
tion the wave numbers chosen in (4.44) need only correspond to

linearly independent modes. The modal matrix ¢ is given by
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.2
¢2j-1,2 = Uj Jl(kzro) (4.45a)
_ b

1 <48 <28-2, 1< 3j<N-1

(The superscript indicates the particular eigenvector of the

algebraic eigenvalue problem). The matrix ¥ is taken as

-yt |
_ L :
WZj,Q = le Jl(erO)' (4.46Db)

1 <48 <2N-2, 1< 3j<N-1
Finally, the matrix W is given by

[ :
Wa5-1,1 = kZUon(kzro) (4.47a)

-3 2
W ik W¥J (kzro) ’ (4.47b)

23,4 273 o

1 <2 < 2§N-2, l1<3j<N-1

We write C=wr . (4.48)
The nodal forces are given by

F® = -2rr [A y KK+ (D - E)® KIT .  (4.49)

~

A, D, E are obtained from those in (2.107) by deleting the rows

-~

and columns corresponding to tangential displacements. Using

(4.48) we eliminate the participation factors T:

~

[EO:] ) [Koo} [Uo] . (4.50)
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K°o is given by

~

K°® = -2mr (A ¥R K + (D - E)0 Rt (4.51)

Let us now obtain a particular solution of (4.40) for - |
which Az = 1. The loads and displacements corresponding to
this particular solution are denoted by

L, et el

~ ~

Substituting

u(r, z) 0 (4.52a)

W(z) (4.52b)

w(r,z)

into the differential equations (4.35a,b), the conditions
(4.37a,b) and the boundary conditions (4.38a,b,c,9), we find

that W must satisfy the differential equation, in sublayer j,

2 _
d
(A. + 2G.)——g + wzp.W = 0 . (4.53a)
J sz J

the conditions at 2224, 2 <3 <N,

daw

_ aw
(}\]_l + ZGJ_l)EZ— Z_z_— (AJ + ZGJ)d"‘Z" 4 (4.53b)
=Z . Z2=Z.
J J
and the boundary conditions
W(0) =1 (4.53c)
W(h) =0 (4.534d)

This problem is the same as the one obtained in section 3.1
for the particular solution corresponding to vertical vibrations

of the rigid and rough strip footing. To find the corresponding
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discrete solution we solve

G - w’MIA =F (4.54)
with A =1, Aj = W(zj), 2 <j<N '
- e = - daw = -
Fl = -0, = (Al + 2Gl)dz <0 ’ Fj 0, 2 < 3j<N.

G, M are the same as those in (3.30). Again, equation (4.54)
may be solved easily since G, M are symmetric tridiagonal matri-

ces. We obtain

ot = v (4.55a)
" with Y2j-1 =0, Y2j = Aj+l' 1 <3j<N-1
Using (4.39b,c) we find
0
Pl = -2rr_ D |1 (4.55b)
) Y
The matrix D is the same as in (3.32c,d). Considering the

structure of D or directly from (4.36f) which gives Topr = 0,
it is seen that vertical forces are equal to zero in this par-

ticular solution. Finally, using (4.39a) we obtain

2. (4.55¢c)

Fy is obtained from (4.54).
The dynamic stiffness matrix K in (4.40) is symmetric.
Using the submatrix KOo given by (4.51) and the particular solu-

tion calculated above (4.55a,b,c) we find
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1}

T
[KZO] = fo'l - KOO go,l (4.56a)

Pl - K* Ut (4.56b)

KOZ

Kzz

This completes the calculation of the dynamic stiffness matrix
of the element. ©Note, again, that the computational effort ‘is
independent of the diameter 2rO of the element.

Let us now consider the axisymmetric region 0~<rl;§: < Ty
0 <z <h. On the surface of the region we prescribe the boun-

dary condition corresponding to a rigid and rough ring footing:

0 (4.57a)
rp frsr,

w(r,0) = Az ’ (4.57b)

u(r,0)

As degrees of freedom of the element (see figure 4.4),

we take Az, the amplitude of the vertical translation of the

—_— FX r@gid and.rough
iF ring footing
z
My” N\ <<\\\s
f
| Xl'Gl’pl
l >
!
hoo &
G, P
| [ *57797P5
I
| d
| MGy Py
v

z e
e—1r; —+
—

0 <z <h

fixed base

Figqure 4.4 The region r, 2 r<ry,

(vertical, horizontal vibrations, rocking).
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footing and, at (rl,zj) and (rZ’Zj)’ 2 < j < N, the nodal dis-

placements
u% = ulr,,z.)
J 273
L =1, 2
L _

The loads corresponding to these degrees of freedom are the

vertical force F, and, at “ﬁ/zj)' 2 < j £ N, the radial forces

L , )
'Pr,j and the vertical forces Pz,j

u,w are assumed to be linear functions of z in each sublayer.

(2 = 1,2). The amplitudes

For z., < z < 25417 l < j <N, we have

3
Z. - 2z zZ - Zz.
= . 3+l %
u(rz,zj) = uj . + uj+l "
2. -z zZ - Z.
s %
w(rz,zj) wj . + wj+l e
J J
L 2 2 2

with uy = 0, wy f Ayr Uy = Wyyp =0 (2 = 1,2) by the boun-

dary conditions. The consistent forces are given by

2
F = =27 J g rdr
4 z| _
rl z=0
) [%2-} Z (22—2
-27r J T dz + 27r J T dz
1 rz|_ _ h 2 rz|__ h
z1 r-rl 1 zl r=r, 1
(4.58a)
Z Z .
Jj Z=Z._ j+1 . 1=2
pl | = -27r f o] —a= dz - 27r [ o it dz
Ll 1 z. T|r=r h'—l 1 )z Tlyr=r h,
j-1 1L J 3 1 J

(4.58b)



2 z
j zZ-Z. _ j+1 2,172
Pi =- Zwrl f Trz ———4L—£ dz-Zwrl I Tyy —lﬁi—— dz
! z. _ j-1 z _ 3
j=1 r=r, . 3 r=r;
(4.58c)
5 Z5 2-2._; j+1 2.,1°2
Pr j= 27rr2 J Gr —1= dz+-2wr2 J O, ~lﬁj—— dz
’ 2501 | r=r | O71 %3 r=r ’
J 2 ~ 2
(4.584)
Z ~ ] zZ.
j zZ-2 j+1 .
j-1 j+l
Py, 3= 2T, [z Trz ho ) dz + 2mr, jz Trz ['h. dz
j-1 r=r, | ] _ j r=r J
2 <j <N. ~ (4.58e)

We denote the vectors of nodal displacements at (rl,z .) and
(r,rz5), 2 <3 <N, by U U respectively.
2

UZS-l = Ugl
1l <s<N-1, £ =1,2
Iy > =
U _ .1
2s = Ws+l .

2
The vectors of nodal forces are denoted by F F<:

_ L
FZS' - Prr S+l
l<s<0N-1l, 2 =1, 2
2 _ R
FZs = Py, s+l

Let us calculate the dynamic stiffness matrix of the element

Fl gll ! Klz : KlZ Ul

S T e e
_ z z2

Fo |l = K i Kzz | K Ay | -(4-59)

SN B P I Demoenlo ——-
] |
2
E KZl E KZZ l: KZZ UZ

First, we obtain the submatrices Kll, Klz, KZl, K22. We con-
sider solutions for which Az = 0. The modes (fixed surface,

fixed base) are now of the form
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' (1)

u(r(z) = kU(z)Ho (kr) (4.60a)

w(r,z) =-ikW(z)Hél)(kr) . (4.60b)
and )

u(r,z) = kU(z)Ho(z)(kr) (4.60c)

wir,z) = -iki(2)E Poer) . (4.604)

Note that since we are using both Hankel functions only the

eigenvalues chosen in (4.44) need be used. We write

it = wt o+ o2 (4.61a)
U2 o g2 ol 2 g2

Wl, W2 are obtained as in (4.47a,b) but using Hankel functions

of the second kind (instead of Bessel functions) and evaluat-

ing at r = ry and r = r, respectively. Wl, W2 are calculated

using Hankel functions of the fiyst kind. The forces are

given by
Fl = 2mr, (a vl x + (D - El)®lK}Pl
+ 2rr, (2 ¥R K + (0 - EDolx)r? (4.62a)
F? = -2rr,(a ¥? X K + (D - EH)e?kir!
-2rr, [A ¥2 K R + (D - E2)3%K] T2 (4.62b)

(a superscript & indicates that the matrix is evaluated at

Wl, @l, WZ, @2 are calculated using Hankel functions

/Ql). ~ ~ -~ ~
of the second kind while Wl, @l, Wz, 52

~

r=r
are determined using
Hankel functions of the first kind. Eliminating the partici-

pation factors, we find
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|
]
SR R N T . (4.62)
:
|
|
|

e — . - e o

Kll, Klz, KZl, K22 are the submatrices we are looking for.

~ ~

A particular solution of (4.59) for which A, =1 is ob-

tained as for the element modeling the region 0 < r < r ,

0 £ 2 < h. We have

Ul'l =Y ’ L =1, 2, (4.63a)

~

Y being the same as in (4.55a). The forces are given by

1,1

[y

~

0
27rrl D 1 (4.63Db)
Y

2,1

|

-2y (4.63c)

T

2D

L

~

D being the same as in (4.55b). Finally, we find

F% = nFy (rg - ri) . , (4.634)

The dynamic stiffness matrix in (4.59) is symmetric. Using
the submatrices Kll, Klz, KZl, K22 in (4.62) and the particular

solution above, we obtain

lz = el - Fl'l_ : Kll+ KlZJ Ul'l (4.64a)
(27 - [Kzle _ Fz'l_ : K21+ 122] Ul'l (4.64b)
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z1l z2

Kez = F5 = I+ P21y

~ ~ ~

(4.64c)

The derivation of the dynamic stiffness matrix of the element
is now complete. Again, the number of operations necessary to
calculate the matrix is independent of the thicknessr2 - of

the element.

4.3 HORIZONTAL VIBRATIONS AND ROCKING
We consider time-harmonic symmetric vibrations of axisym-
metric regions of a layered stratum for the Fourier number n=l.

This case involves all three displacements. We have

u(r,g,z) = ulr,z) coss | (4.65a)
w(r,8,z) = w(r,z) coss (4.65Db)
= - v(r,z) sine . (4.65¢c)

v(r,8,z)

The governing differential equations for the amplitudes u, w, v,

in sublayer j,are obtained from equations (2.79%a,b,c) as

2— - = 2= = - 2
3°u 1 3u 2u 3 u 2v 1 d¢e ) -
I BT L R S - .- SO+ = 9t } Q=0 (4.66a)
ar2 r ar rz 822 r2 l-Zvj or {C%]z
2= - 2— - 2
v 1 5v 2v 3V 2u 1 £ W -
v, 1av _ LI AN L e T S (4.66b)
ar2 r 3r r2 822 r2 1 Zvj r [0%12
2— - 2— — 2
A W 1 ow W oW 1 de W =
oW LW _ W + 9, B % = 0. (4.66c)
r ror 2 az2 1_2\):’ 9z [C]]2
T
¢ is the amplitude of the dilatation:
— -8, u_Vv 5w
€ Ftr T e - (4.67)
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The amplitudes of the stresses are given by

g, = 5} cosh = [Aj € + ZGJ 5"] cos8 (4.68a)
Ty = 66 cosf = [Xj € + 2GJ.§ - 2Gj g] cosf (4.§8b)
o, = EZ cosf = [xj € + 2c;J g—_-"z;] cosf (4.68c)
Tog = - ?re sind = - Gy [g—z - g + g] sin® (4.68d)
Tgy = ~ FEZ-sine = —Gj[g + =] siné6 (4.68e)
T,y = T,y COSO = G [g—‘Z‘ + -g-‘i’;] coss . (4.68F)

r T must be continuous at

The amplitudes u, w, Vv, iy 27

Toz
z=zj, 2 < j < N. The conditions expressing continuity of iy

T

oz’ Tzr are:
- oW - W
As . € + 2G, , &= = |A. € + 26, = (4.69a)
[3—1 j-1 az} I {J J 82 pugt
s 3 |
w o v _ W o, 3V
Gj—l {% t 5z s = Gj {; by et (4.69b)
2T , 9w 3T, aw
J l{ia 3T Gj l;z + i ot . (4.69c)
- 3 - j

Let us first consider the axisymmetric region 0 < r < L,
0 < z < h. The boundary conditions corresponding to a rigid
and rough circular footing are prescribed on the surface of

the region:

u(r,0) = A, (4.70a)
w(r,0) = -ro (4.70Db)
v(r,0) =A_, 0<r<r (4.70c)



-143-

AX and ¢ are the amplitudes of the horizontal translation (in
the direction of the x—axis) and the rotation (about the y-
axis) respectively (the system of coordinates (x,y,z) is under-
stood as in the plane regions considered in the previous chap-
ters: the x-z plane is the plane 6§=0). The rotation is taken

positive in the counterclockwise direction. The base of the

region is assumed fixed:

u(r,h) =0 (4.704)
w(r,h) =0 (4.70e)
v(r,h) =0 , 0<rc< ry - (4.70f)

Axﬂband the nodal displacements

uj = u(rq,zj)
Gj = W(ro,zj) 2 <3j <N
vj = v(ro,zj)

are taken as the degrees of freedom of the element (see fig-
ure 4.3 )modeling the region under consideration. The loads
corresponding to these degrees of freedom are the horizontal
force F , the rocking moment M and, at (ro,zj), 2 < j <N, the

radial force the vertical force P_ . and the tangential

P .
r,j’ z,3

force P We assume that u, w, v are linear functions of

6,3
z in each sublayer. For 252 < Zi4yy 1 < j < N, we have

—_— I j4 1 — y
u(rQ,z) uj —lHT__ + uj+l —Hfl (4.71a)
J J
Z., -2 z2-2.
w - _. +l o
w(ry,z) Wy —lﬁg—— + Wj+l hj (4.71Db)
_ _ Z..+l-Z _ Z=-7
v(ro,z) = vj —lE——— + vj+l 'HTl , (4.71c)
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with u; = Vl = AXI wl = "ro(br uN+l = WN+1 = VN+l = 0 by the

boundary conditions (4.70a,b,c,d,e,f). The consistent forces

are given by

r r
(o _ o
F = =T T rdr -« J T rdr
X Jg zr |, _ 0 Az =0
+mr g dz + 7r J T dz (4.72a)
) rl__ h ro| ._ h A
zq r=r_ 1 zq r—rO 1 _
r
O_ 2 2 22 22...
M=o Jo g, Or dr - wro J ?zr " dz (4.72b)
z= =
zq r ré 1
z. Z.
J 2=2._ j+l_ Z.,.=2
Pr J==wro ( o, —H—l—l dz + 7r [ g —1%5—— dz
! z, r=r j-1 zZ. Ele=r 3
=1 o 3 o
(4.72c)
z z. .
J _ z2-z._ j+l Z., "2
P =7r T —1=1az + Y T g+l - dz
z,J °J,. 2T op h._l 2 2r| h.
j-1 oL 3 o J
(4.724)
z' Z .
J Z-zZ._ j+1 Z., -2
P =qr T 3714z 4+ nr T B N
0,3 o) ro| . ._ h, o rg h. !
Z. r=r j-1 z r=r
j-1 o j o J
(4.72e)

2 < j <N,

The vector of displacements at (ro,zj), 2 < j <N, is denoted

by
o —_
U3s-2 = Ygt1
fo)} —
U3s-l = Werl l1<sz<N-1
O .

3s Vs+l
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forces by F°:

o
F3s-2 = Pr.s+l
o
F3s-1 = Pz,s+1 l<s<N-1
o
F3s = Pg,s41

Let us calculate the dynamic stiffness matrix K of the

element, i.e., the matrix relating F_, M, FO to Agr ¢ [Je:

First, we determine the

for which Ay =0, ¢ = 0.

Fx Kxx E Kx¢ i K*° Ay

— .....__.}. _____ {._-_:.._.. ——
i 1 (bo

" Kox | Koot K ¢

- — — - = ——--i ----- L___:__— o hd (4073)
I 1

Fo O% 1 Koo I koo | [yo

~ ~ | I 1 -~ ~

submatrix K°°. We consider solutions

The boundary conditions (4.70a,b,c)

become
u(r,0) =0 (4.74a)
w(r,0) =0 0 <r<rg (4.74Db)
v(r,0) = 0 . (4.74c)

Any displacement amplitudes U, w, v satisfying the differen-

tial equations (4.66a,b,c), the conditions (4.69a,b,c) at
2=z, 2 < j < N, and the boundary conditions (4.704,e,f),

(4.74a,b,c) may be written as the superposition of modes which,

according to (2.83a,b,c) and (2.84a,b,c) are given by
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Qlr,z) = kU(z)Ji(kr) (4.75a)
W(r,z) = -ikW(z)J (ko) (4.75b)
Tir,z) = % U(z) 3, (kr) (4.75¢)
and _ 1
ul(r,z) = = v(z)J, (kr) (4.76a)
r 1
w(r,z) = 0 (4.76b)
T(r,z) = kV(z)Ji(kr) . (4.76¢)

We have used the Bessel function since we are considering the
region 0 < r < r_. It was shown in section 2.4 that U and W
are eigenfunctions with eigenvalue k of an eigenvalue problem
which is identical to that obtained for time-harmonic vibra-
tions in plane strain. Similarly, V is an eigenfunction with
eigenvalue k of the eigenvalue problem obtained for antiplane

shear. The difference is that the boundary conditinns

Uu(0) = wW(0) =0

v(0) =0 '

which indicate that the surface is fixed must be satisfied
instead of (2.92a,b) and (2.93a), which correspond to a free
surface. The eigenvalue problems have been considered in con-
nection with the plane elements developed in Chapter 3. The
algebraic eigenvalue problem corresponding to modes given by
(4.75a,b,c) is

[kzé + ikB + G - wzbiﬂé =0 . (4.77)
A, B, G, M, A are the same as in (3.10). The algebraic eigen-

~ ~ -~

value problem corresponding to modes given by (4.76a,b,c) is
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(K°A + G - w?M]A = 0 . (4.78)

A, G, M, A are those in (3.66). We form the (3N-3)x(3N-3)

~ ~ ~

diagonal matrix K in which the first 2N-2 entries are the wave
numbers kj’ 1 < j < 2N-2, chosen as in (3.11), and the last
N-1 entries are the wave numbers kj, l < j < N-1, chosen as

in (3.67):
K = diag [kj] . (4.79)

.

Again, it must be noted that for the element modeling the

region 0 < r < r_the wave numbers chosen in (4.79) need only

o)
correspond to linearly independent modes. The matrix ¢ is now

~

given by
9. =-vtJ (xr)
33-211 j o %o )

- _ i owh _ . _
®3j—l,2 = i Wj Jl(kzro) } 1 <2 <2N-2, 1< j <N-1
¢3jll =0 ]

934-2,, = 0
®3j-l,2 =0 r 2N-1 < ¢ < 3N-3, 1 < J < N-1

— _A—2N+2

%35, T 7V§ To (KyFo) )

(the superscript indicates the particular eigenvector of the

algebraic eigenvalue problem). The matrix ¥ is taken as
_ L \
= 3wl - i -
W3j—l,£ = 1Wj Jo(kzro) ' 1l <2 <2N-2, 1< 3 <N-1

¥35,, =0 (4.81)



-148-

(@)

35-2,2 =0 )
W3. =0 .
j=1,2 »2N=-1 < 2 < 3N-3, 1 < j < N-1
_ 4=2N+2
W3j,£ = Vj Jl(kzro)J
The matrix ¥ of modal amplitudes at r = r_ is given by

=x, u¥ 3l (k,r)
W3j-2,2 = Ky Uy Jpikers

= -3 2 - : -
W35-1,0 = ik, Wj Jytkyr )+ 1 <2 < 2N-2, 1 < J < N-1
_ 1,2
(4.82)
_ 1 _2-2N+2 )
W34-2,0 = rOVj Ty (kyTo)
W35-1,5 = O [ 2N-1<2<3N-3, 1 < j < N-1 ,
_ g-2N+2 _°
M35, = ®Ys Ty kero) )
We have
C=wr . (4.83)

Using (2.107) with n=1 and integrating with respect to g§ we

find the nodal forces
FO=-rr [AYKK+ (D-E+N) oK - (L + QV¥]T . (4.84)

A, D, E, N, L, Q are obtained from those in (2.107) by delet-

~ ~ ~

ing the first three rows and columns. Using (4.83), we elim-

inate the participation factors. We find

[EO] - [KOOJ . (4.85)

K°° is given by

~
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KOO = - TrrO{A ¥ K + (D - E + N)g K - (L + Q)f]y-l . (4.86)

~

~ ~ o~

Let us now obtain a particular solution of (4.73) for
which A, = l, ¢ = 0. The loads and displacements corresponding

to this particular solution are denoted by

Forl, yerl, vl m

~ X 1
Substituting _ ‘
u(r,z) = U(z) (4.86a)
w(r,z) =0 (4.86Db)
vi(r,z) = U(z) (4.86c)

into differential equations (4.66a,b,c), the conditions (4.69a,
b,c) and the boundary conditions (4.70a,b,c,d,e,f), we find

that U must satisfy the differential equation, in sublayer j,

G. S= + pipU=0 |, (4.87a)

du - du
Gj—l Z| -= Gj dz| __+ (4.87b)
2=z zZ=2
J J
and the boundary conditions
Uu(o) =1 (4.87¢c)
U(h) =0 . (4.874)

This problem is the same as the one obtained in section 3.1
for the particular solution corresponding to horizontal vibra-

tions of the rigid and rough strip footing. To find the corre-
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sponding discrete solution we solve

(G - wM]A =F , (4.88)
with Al =1, Aj = U(zj), 2<3j<N ,
Fp = -1y = -Gl du , F. =0, 2<3j <N
dz 2=0 3 : -~ -

G, M are the same as those in (3.25). We obtain

with Y = A.

33-2 = 84417 Y391 =00 ¥

3j-1

Using (4.72c,d,e) we find

FO,l

~

= -WroD (4.89b)

I - O

The matrix D is obtained from that in (2.107) by deleting the

first three rows and multiplying columns 3j-2, 1 < Jj <N, by -1.
It is easily seen that radial and tangential.forces in (4.89b)
are equal to zero. Finally, using (4.72a,b) we obtain

1 2

FL = mrs F, (4.89¢)
M, = X2 G (1 - a0 (4.89d)
1535 6 2) - .

Fl’ Az are found from (4.88).
Working similarly, we obtain a particular solution of
(4.73) for which A, = 0, ¢ = 1. The loads and displacements

corresponding to this particular solution are denoted by



~ s r Fyr My
Substituting

u(r,z) = U(z)

w(r,z) = -rW(z)

vir,z) = U(z)

(4.90a)
(4.90Db)

(4.90c)

into the differential equations (4.66a,b,c), the conditions

(4.69a,b,c) and the boundary conditions (4.70a,b,c,d,e,f), we

find that U and W must satisfy the differential equations, in

sublayer j,
2
a"u aw 2
G, —= =~ .+ GL)e— + U = 4.
i 2 (Aj Gj)dz W pJU 0 (4.91a)
(A: + 2G )dZW + o= 0 (4.91b)
] 3322 Y P3 :
the conditions at z=zj, 2'5_ j <N
dw dw ,
(Aj_l-PZGj_l)aE L (Xj'*ZGj)EE _ (4.91c)
z=2" zZ=Z
J
; du du
G, _ -W + = =G, |-W + — (4.914d)
-1 [ dz:} z=2" J li dz:] z=z%
] J
and the boundary conditions
u(o) =0 (4.91e)
Ww(o) =1 (4.91f)
U(h) =0 (4.91qg)
W(h) = 0 (4.91h)

This problem is the same as the one obtained in section 3.1

for the particular solution corresponding to rocking of the
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rigid and rough strip footing. To find the corresponding

discrete solution we solve

SA=P , (4.92)

with Al =0, A2 1, AZ] 1 U(zj), Azj = W(zj), 2 <j <N,

Pl = =T = -Gl [}W + %%}z_ol P2 = -0, = (Al+2Gl)§¥ o
Ppjep = Pp3 =0, 223 <N

S is the same as in (3.50). Thus we obtain

y°2=v , (4.93a)
With Y3y 5%8o4417 ¥39-15 Tob2g427 Y33™82941 1 23 S N1
Using (4.72c,d,€¢) we find
r. . .
FOr? = -mx_H 4, (4.93b)
. ] 1 1] .
with A3j-2 = A2j—l' A3j—l = A2j’ A3j =0, 1 <3 <N,

The matrix H' is obtained by assembling the sublayer matrices

gr,] given by
— . ; -
0 5 Kj 0 0 5 Aj 0
1 1 1 1
= G. = G.h. - = G, = G.h.
2 G5 3 Gj 3 0 5 Gj 3 GjhJ 0
. 0 0 0 0 0 0
gt’J = (4.94)
~ r r
0 -3 Aj 0 0 5 kj 0
1 1 1
5 G, = G.h 0 - %G 1
2 6 2 = G.h, 0
j 373 J 3 Gyhy
0 0 0 0 0 EJ
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r

(H © in (4.93) is obtained from Hr evaluated at r = T, after

~

deleting the first three rows, since the forces in (4.93) cor-
respond to nodes below the surface). Finally, using (4.72a,b)

we obtain

2 _ 2 T 2 _
F = Tmrg Py + 51 Al(l a,) (4.95a)
_m 4 1 _1 1 2 '
M2 = Z ]’.'o P2 + (-3- Glhl -2"G1A3 + -é-GlhlA4 )wro . (4.95b)

The dynamic stiffness matrix K in (4.73) is symmetric. Using
the submatrix Koo given by (4.86) and the particular solutions

(4.89a,b,c,d) and (4.93a,b), (4.95a,b) we obtain

KOX = [KXO]T = Eofl - Koo gorl (4.69a)
KO¢ _ [g¢o]T _ EO,2 _ KOO QOIZ | (4.96h4
Ko = Fi - K*° gorl (4.96c)
Koo = M2 = K*° ye-? (4.96d)
Keg = Kox =M1 - Kb et (4.96e)

The calculation of the dynamic stiffness matrix of the ele-
ment is now complete. We note that the computational effort
required to obtain the matrix is independent of the diameter
2rO of the element.

Let us now consider the axisymmetric region.o LTy LT LT,
0 < z < h. The boundary conditions corresponding to a rigid

and rough ring footing are prescribed on the surface of the

region:
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u(r,0) = A (4}97a)

X
w(r,0) = -r¢ r; <rsr, (4.97Db)
v(r,0) =4, . (4.97¢c)

Ax,¢ and the nodal displacements

\

-0 -
u-=ur’z.

§ = Wy,

W;“:W(rz,zj) b 2<3j <N, =1, 2
-4 _ =

vy = v(rg,zj) )

are taken as the degrees of freedom of the element (see figure
4.4 ). The corresponding loads are the horizontal force Fx'
the rocking moment M and, at (rz,zj), 2 < j < N, the radial

forces Pi ., the vertical forces Pz 3 and the tangential for-

IJ 14
ces Pg 3 (¢ =1, 2). The amplitudes u, w, v are assumed to
’
be linear functions of z in each sublayer. For 25 22 < 245400
1l < j < N, we have
z, -z z - z
- - =% i+l =%
ulry,z5) = uy ——p—— *+ vy, —q
J ]
Z. -z z - 2z,
= B N ot =2 ] _
J J
z, -z z -z
- o 3+l =2 ;)
viry,z5) = vy h. V541 TR,
] J
co =L =% _ _ =2 _ =t _ =t _ -
with uy = vy = A, Wy = Lodr Ugyl = Wil = Vel = 0 (2=1,2)

by the boundary conditions. The consistent forces are given

by



2 T2
F =-7r[ T rdr-wf T rdr
X Zr | __ 0z |, _
rl z=0 ry z=0
%2 _ z,-2 %2 _ Z,=
=Ty L o, e, | By dz - Ly Iz Trg hy dz
1 1 1 =
A Y
Z2__ {%2-} %2 _ Z,5"
+ Tr g | dz + mr T dz (4.98a)
2 J r|, - h 2 [ o] _ h :
Zp TirEn, 1 21 r=r,[ 1
r, ~ ,
M= J a, r-dr
r, z=0
z2 _ Z,- 2 z2 _ 22-
+ 7r { 27 5 dz e J dz (4.98Db)
2 r=r 1 2 2r r=r 1
1 1 1 2
z z
j_ 2-2Z._ j+1 z -z
Pl . = =TT o] =1 dz - 7r o 3l - dz
r,j 1 2. Tlp=r h._l 1 z L) - h.
j=1'F7r L j =t1 J
(4.98c)
z Z,
J _ z-z, j+l Z ., =2
Pl ., = =L T —3=1 dz - nr T - dz
z,] 1 2 zr| h._l 1 z 2Ty h.
j-1 1FEEL j R
(4.984)
zZ. zZ.
j _ zZ-2Z, j+1 _ Z.,172
Pl ., = =TT T ——L&dzoﬂ-r T ..ll‘.—dz
9,3 1 z. .T0| hj—l 1 2 ro| h
j-1 1 3 r=ry J
(4.98e)
z Z.
J _ 2=2, j+l Z., =2
Pi 3 = 7r, J 9. [}H—l—%ldz + 7T, [ 0. {F%%L—- dz
, —— '_ — ¥
zj—l r=r, j=-1 zj r=r, 3
(4.98f)
%3 z-z Zi41 z
- -2
p? | = qor T —J" "4z + nr T .
zZ,] 2, 2r| o h. 4 2 ZY | e h
j-1 2| %3 T2 y
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j z-z, zj+l

-1 ( -
dz + 7r T
hj-lJ 2 J,. ro

Z., ,=2

+1

. ‘}dz ’
J

3
(4.98h)

rf

r=r, r=r,

2 < j <N,

The vectors of displacements at (rl,zj), (rz,zj), 2 <3 <N,

are denoted by Ul, U2 respectively:

2 _ =2

U3s—2 = Ustl

2 _ =2

U3s-l T Vst l<s<N-1, 2=1, 2
2 _ =2

U3s = Vgr1 .

2
The vectors of nodal forces are denoted by Fl, F<.

% _ o
F3s-2 - Pr,s+l
Fl - PR

2
F = p?

3s Pe,s+l

Let us determine the dynamic stiffness matrix K of the elements:

_ - _ - - -
| i ] ~
=== = re—=—a=—=--- qm—————— ———
x1 1 1 | x2
Fe | KT K Kepl K bx
————! = --;i-—k----ﬁ ----- ﬁ-----aa- ——==1 .(4.99)
. 71 Kewp Kot K ¢
el I N A A

First, we calculate the submatrices Kll, Klz, K21, K22. We

consider solutions for which A, = 0, 9= 0. The modes (fixed
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surface, fixed base) are obtained from (4.75a,b,c) and (4.76a,
b,c) using Hankel functions instead of Bessel functions. If
both Hankel functions (i.e. of the first and the second kind)
are used, then only the eigenvalues chosen in (4.79) need be

used. We write

gl = ylgl + ;}122 (4.100a)
U2 = w2rt + 72r? (4.100b)

Wl, wz are obtained as in (4.82) but using Hankel functions

of the second kind and evaluating at r=r, and r=r, respective-

ly. Wl, W2 are calculated using Hankel functions of the first

kind. The nodal forces are given by

Fhe iR ks @ -5 v helx - @l s byl

+ “rl[é %lg § + (9 - E:l + §l)§l§ _ (%l + 91)%1122
(4.101a)

FPe-mryla ¥r kv 0 - B2 e whe'k -t s ghvhin

-mrya Bk ke @ - B nhe’k - @l v ot

(4.101b)

(a superscript % indicates that the matrix is evaluated at

1
r=r2). v, gl, WZ, @2 are calculated using Hankel functions

of the second kind, while Wl, @l, ?2, @2 are determined using

~ ~ ~

Hankel functions of the first kind. Eliminating the participa-

tion factors, we obtain
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K2l [y ]

FZ KZl

_______ —_ . (4.102)
(22 12

-— e —

R S

A particular solution of (4.99) for which Ax =1, ¢ =0 is
obtained as for the element modeling the region 0 < r < £y,

0 <z < h. We have
gty =1, 2 - (4.103a)

Y being the same as in (4.89a). The nodal forces are given by

_3._
Flrl o nrp ° (4.103b)
- 12} 1 )
Y
SR ¢
Bl
2,1 0
’ = -
E = Wrz? l r (4.1030)
Y
D being the same as in (4.89b). Finally, we obtain
1 _ 2 _ .2
Fx = n(r2 rl) Fl (4.1034)
M, =L (22 - £2)G. (1 - a,) (4.103e)
1 2 2 1°'71 2 ° °

Fir A, are obtained from (4.88).
Working similarly, we obtain a particular solution for

which Ax =0, ¢ = 1. We have

ISR Al ° (4.104a)
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with Y. . = & B A L

39-2 = Bpy417 Y39-1 T T Tployepr Y34 =4

25+1" 1<j < N-1.

A is the same as in (4.92). The nodal forces are given by

-~ -~

r

Fir2 - Tr, H 1 é' (4.104b)
r

F2’2 = -mr, H 2, - (3.104c¢)

ry r, rg '
H -, H® are obtained as H in (4.93b). A 1is the same as

~ ~

in (4.93b). Finally, we find

2_ 22 T, 2_ 2 )
F o= mlry-r)P; + 5(ry-ry)i(1-4,) (4.1044)
_ m.4 1. l 2

The dynamic stiffness matrix K in (4.99) is symmetric. Us-

ing the submatrices KL, Klz, K?L, K?2 in (4.102) and the par-

ticular solutions (4.103a,b,c,d,e) and (4.104a,b,c,d,e), we

obtain
(= = el T - E1,1 _ gll TR (4.105a)
(2% = ()T - E2,1 - 2 Ul,l _ K22 2 (4.105b)
Lo = (KoL T - El,z - Lll L2 KL2 202 (4.105c)
28 = (P T = F22 - K2 gl,z._ K22 |22 (4.105d)
Kxx = Fi - KXI Ul'l - sz Uz’l (4.105e)
Koo = M2 - K¢l yte? - ko2 y?2 (4.105f)
Keo = Koxe = Mp - KT UT L - @22t (4.105g)
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This completes the derivation of the dynamic stiffness
matrix of the element. The number of operations necessary to
obtain the matrix is independent of the thickness r, - r; of

the element.

4.4 OTHER ELEMENTS

Several other elements may be developed using the proced-
ure described in the previous sections. As in the case of the
plane elements discussed in Chapter 3, the first step is to find
solutions (modes) satisfying appropriate homogeneous boundary
conditions. This step requires the solution of algebraic eigen-
value problems of the form (2.26) or (2.63). The second step
is to calculate particular solutions satisfying the inhomogene—
ous boundary conditions. Let us consider some examples. First,
we assume that boundary conditions corresponding to a rigid
and smooth footing are prescribed on the surface of the region
0 <r<r

o 9 22z < h, while the base is kept fixed. We re-

strict our attention to rocking (the other cases are similar):

T =0 (4.106a)
2r 2=0

T = 0

0z|,_4 (4.106b)
w(r,0) = -1r¢ , (4.106c)

0 <r<r .
— - 70

Note that the Fourier number for rocking is n = 1. The corre-

sponding homogeneous boundary conditions are that w, ?zr’ ?ez



vanish at z = 0, while u =w=v =0 at z = h. The algebraic
eigenvalue problems are obtained from (2.25) by specifying

F, =0, 4, = 0, A = 0 and from (2.62) by specify-

N+l = Dow+2
0. Solving these problems, we obtain the

1l
ing Fl = 0' AN+1 =

semidiscrete modes. Next, we look for a particular solution

satisfying (4.106a,b,c). Such a solution is given by

E(rlz) = U(z)
w(r,z) = -rW(z)
vir,z) = U(z)

U and W must satisfy the differential equations (4.91a,b), the

conditions (4.91c,d) and the boundary conditions

[}w + %g] =0 (4.107a)
z=0

W(0) = ¢ (4.107b)

U(h) =0 (4.107¢)

W(h) = 0 (4.1074)

This problem is similar to the one obtained for rocking of a
rigid and rough footing. The discrete solution for U and V is
found from (4.92) with P = 0, A2 = ¢. The corresponding semi-
discrete solution for u, w, Vv, together with the semidiscrete
modes, are sufficient to develop an element modeling the
region.

Let us now assume that x-harmonic displacements are pre-

scribed at the base of the region 0 < r < r_ , 0 < z < h. Thus
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the amplitudes, at z = h, of the displacements in the x-direc-
tion, y-direction, z-direction are taken as uoexp(—ikx),
voexp(—ikx), woexp(-ikx), respectively. We consider k # 0.

In cylindrical coordinates we have

u(r,9,h) = u,cosb exp (-ikr cosé) -—vosine exp (=-ikr cos6)

' (4.108a)
w(r,6,h) = woexp(—ikr cos8) (4.108b)
v(r,g,h) = ‘uosine exp (-ikr cos8) -vocose exp(-ikrcos6) .

(4.108c)
The boundary conditions corresponding to a rigid and rough cir-
cular footing are prescribed on the surface of the region. In
this case, apart from the particular solutions that we calcu-
lated in the previous sections, we need a solution satisfying

(4.108a,b,c). Such a solution is

ul(r,8,2z) = U(z)cosp exp(-ikr cosg) =V(z)sing exp(-ikrcoss)
(4.109a)

w(r,8,z) = W(z)exp(-ikrcose) (4.109b)

v(r,8,z) = -U(z)sind exp(-ikrcosf) - V(z)cosfexp(-ikrcoss).
(4.109¢)

For this particular solution the surface is taken fixed.
U and W must satisfy the differential equations (2.7a,b), the

conditions (2.7¢,d) at z = z., 2 < j < N, and the boundary

conditions ’
Uu(0) =0 (4.110a)
w(0) =0 (4.110Db)
U(h) = ug (4.110c)
W(h) = w (4.1104)
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The discrete solution for U and W is found from (2.25) with

A, = A2 = 0, A2N+l = Uy, A2N+2 =W, Similarly, V must satis-

£y the differential equation (2.52a), the condition (2.52b)

at z = zj,2 < j < N, and the boundary conditions

v(0) (4.111a)

]
o

vih) = v, . (4.111b)

The discrete solution for V is obtained from (2.62) with Al= 0,
el = Voo Let us calculate the Fourier series expansion of

the particular solution (4.109a,b,c). We have

«© —

u(r,8,z) = a-(r,z) + ) T (r,z)cos(n8)+ T(r,z)sin(ne)| (4.112a)
o nzi| m n
w(r,8,z) = ﬁg(r,2)4- ) ﬁi(r,z)cos(ne)+ Gi(r,z)sin(ne) (4.112b)
n=1
v(r,8,2z) = Gi(r,z)i- ¥ -Vi(r,z)sin(ne%+3i(r,z)cos(n6) (4.112c)
n=1l| N

(the superscripts s, a indicate symmetric and antisymmetric
components respectively.). Using properties of Bessel func-

tions [ 1], we find

@ (r,2) =i U(z)J;(kr) (4.113a)

Gﬁ(r,z) = W(z)J (kr) (4.113b)

—a _ ) 1

vo(r,z) =i V(z)Jo(kr) (4.113¢c)

@ (r,2) = i 1R U(z)J;(kr) (4.114a)

T (r,z) = 2iT™ L 2 y(2)7 (kr) (4.114b)
n ' kr n *
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wo(r,z) = 2i"" W(z)J_(kr) (4.115a)
wo(r,z) =0 (4.115b)
r,2 =20 £ 2 U (ko) (4.116a)
va(r,z) = 211°P V(z)Jl;(kr), n > 1. (4.11610)

we note that the amplitudes above multiplied by cnin-lk‘(co=l,
c,= % for n > 1) are the same as those in (2.83a,b,c) (sym-
metric components) or (2.84a,b,c) (antisymmetric components).
Thus the forces at (ro,zj), 2 < j <N, for a given component
may be obtained using (2.99). The components which contribute

to the loads acting on the footing are

Vi(r,z) (4gll7a)

—s —s
uo(r,z), wo(r,z) (4.117b)

ﬁi(r,z)cose , Wi(r,z)cose , - Gi(r,z)sine. (4.117¢c)

The calculation of the moments and forces for these components

is straightforward. For example, let us consider the compon-

ent
u(r,9,z) =0
w(r,8,2z) =0
v(r,0,z) = $g(r,z) = iV(z)J;(kr)
The torsional moment is given by (4.5a). It is trivial to
calculate the second term in that expression since Tro -
o

is a linear function of z. We rewrite the first term



r
° 2
=27 J Te r-dr .

0 Z|z=0

We have
1
Tog = -1FlJO(kr) ’
z=0
with F, = - G av (F, is found from (2.62) which gives
1 1 dz 2=0 1 *

the discrete solution for V). Thus the integral becomes

amir, | r25 (kr)d

TiF, . r°J,(kr)dr.
This integral may be calculated using properties of Bessel
functions. We obtain

2rO .
Jo(kro)————-Jl(kro) .

W' OHN

r2dr % 2ti F 5
z=0 1

O
-2T J T
o 9z Xk

The displacé&ents and loads corresponding to the particular ‘
solution (4.109a,b,c), together with the results of the previ-
ous sections, are sufficient for the development of the ele-
ment. |

Clearly, the variety of inhomogeneous boundary conditions
for which elements may be developed cannot be exhausted here.
It is important to note, once more, that the computational ef-
fort required to obtain the semidiscrete solutions which are
necessary for the development of the elements is independent

-of the thickness of the elements in the radial direction.
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4.5 AN APPLICATION

As a verification of the developments presented in the
previous sections, let us consider time-harmonic vibrations
of a rigid and rough circular footing on the surface of a stra-
tum. Let R be the radius of the footing. The boundary conéi-

tions on the surface of the stratum are

u(r,s,0) = A, COSg
w(r,8,0) = A, - r¢  cos® f 0 <r <R ,
v(r,q,0) = Lo, - Axsine
o} =0 )
z z=0
T =0 [ r >R
9z z=0 _
T =0
2T 5=0 ’

(¢r,¢t are the amplitudes of the rocking and torsional rota-
tion of the footing respectively). The base of the stratum is
fixed. Let Fx’ Fz, Mr' Mt be the amplitudes of the horizon-
tal force, vertical force, rocking moment and torsional moment

respectively. We write

r 7 - e
Mt ¢t
P A,
p | =% ’
X Ay
_Mr by

X being the dynamic stiffness matrix (symmetric):
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Ktt 0 0 0
0 Kzz 0 0
K =
0 0 KXX er
0 0 er Krr

Let us assume that the.stratum is homogeneous. The nondimen-

sional stiffness

Kee
GR3
is a function of the nondimensional quantities %5 (nondimen-
T
sional frequency), %, B. The nondimensional stiffnesses
Kpz Kyx Kpep Kyr /
—n ! ’ -3 R
GR GR GR3 GR2
are functions of %5 ' % r V; B. In order to calculate the
T

stiffnesses we combine (see figure 4.5) the elements (modeling
the region 0 < r <R, 0 < z < h) developed in the previous
sections with the transmitting boundaries (modeling the region
r >R, 0 < z < h) developed by Waas [23] and Kausel [ 6] (see
section 2.4). Waas [23] and Kausel [ 6] have obtained results
by combining the transmitting boundaries with a conventional
finite element mesh modeling the cylindrical region below the
footing. In fact, the elements tﬁat we are using may be under-
stood as meshes with an infinite number of rings of finite
elements. It is convenient to write the nondimensional stiff-

nesses as



¢ X rigid and rough
F

free surface—--\I 2 circular footing
M . k///_

o =

1
t: " \Lfixed base

Figure 4.5 Scheme for the calculation of the stiffness

h__/‘\_.-\_,.‘\‘__\‘_

of a circular footing on the surface of a stratum.

tt tt ( ., WR ] .
— = —= |k, +1i1=cC (1+21ig)
GR3 GR3 tt CT tt

o

zz _ _22 (kzz + i %5 czz] (1+2ig)

GR GR T
%°

XX _ XX . wR .
GR ~ GR (kxx 1l CT cxx] (1+21g)

£°

rr _ “rr ( . wR ] .
GR3 GR3 rr CT rr

The superscript o indicates the static stiffnesses. k k

tt’ Tzz’

c.., C are referred to as the stiffness

k c
Kex ! ! zz! Txx rr

c
XX rr

tt’

coefficients. We note that the normalization of the stiff-
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nesses may be more effective if

. I:G(l+2i8)j[l/2 ’

c
5 Re[CT] >0 ’

c—
T

is used instead of C, in the above expressions [7 ] (then the

T
stiffness coefficients are rather independent of damping).

The stiffness coefficients as defined above are, however,
those used in [ 6,1l] (results reported in these references
are used here for the purposes of comparison). Figures 4.6,

4.7, 4.8, 4.9 show plots of the stiffness coefficients versus

L R
2m CT !
0.05. The static stiffnesses are

the nondimensional frequency for

Peliey

=2,\)=§-,B=

—s = 5.79

10.37

—= = 6.36

XX = 4.63

The stratum was divided into twelve sublayers of equal depth.
For each frequency the computation of the torsional stiffness
takes approximately 0.8 seéond on IBM 370/165, the computation
of the vertical stiffness 6.0 seconds and the computation of
the swaying and rocking stiffnesses 9.5 seconds. Again, a

great advantage of using the elements developed in this work
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is that the storage requirements are very low compared with
those of a conventional fihite element mesh fine enough for
accurate results. For the application considered here only
fast memory is necessary. Moreover, as already pointed out,
the computational effort associated with the elements consia-
ered in this work is independent of their thickness in the
radial direction. This is not the case with a conventional
finite element mesh. The agreement of the results shown in
figures 4.6, 4.7, 4.8, 4.9 with those reported in [23, 6 , 11]
is excellent. It is not possible to resolve the difference

between the results within the scale of the drawings.
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- CHAPTER 5

SOME APPLICATIONS

In this chapter we illustrate the use of the elements devel-
oped in the present work. We consider the effect of the rigid—
ity of the side-wall on the dynamic stiffness of circular foot-
ings embedded in a layered stratum. In another application we
investigate the behavior of rigid and rough ring footings on a

layered stratum.

5,1 THE EFFECT OF THE RIGID SIDE-WALL ON THE DYNAMIC STIFFNESS
OF EMBEDDED CIRCULAR FOOTINGS '

Let us consider a circular footing of radius R embedded at

depth E in a stratum of depth h (see figure 5.1). The footing

rigid and rough ‘rigid and rough
7 l=— 2R “"*4 circular footing

side-wall
/F_free surface

o

i

0 -

e

B NEN

{
|
/
\

<y ——-~]-—-—

4 VK\\\u——— fixed base

Figure 5.1 - A circular footing, combined with side-wall,

embedded in a layered stratum.
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is taken rigid and rough. Moreover, let us assume that a
rigid and rough (cylindrical) side-wall of height e (radius R)
is combined with the footing. The depth e ranges between 0
(no side-wall) and E (side-wall extending throughout the en-
tire depth to which the circular footing is embedded). We

consider a homogeneous stratum. The boundary conditions are

i) under the footing:
u(r,6,E) = A, cos 8
w(r,8,E) = A, - r$,. cos 8 0 <r <R
v(r,8,E) = r¢, - A, sin o
ii) on the wall:
u(R,9,2) = Ay COS § - (E-z)q,r cos 9§
w(R,8,2) = A, = Ro, cos 8 Eee < z < E
v(R,8,2) = Rpp = Ay sin g+ (E-z)q)r sin 8
o} = 0 )
ri.-
Trz =0 | 0 sz < E-e
r=R
T =
9| p=p = 0 J

iii) on the surface

o} =0 )
2 z=0
Trz ,=g =0 \ rs R
T -
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The base of the stratum is fixed. As in Chapter 4, AX,VAZ,
Opr ¢r are the amplitudes of horizontal vibrations, vertical
vibrations, torsional vibrations and rocking respectively
(rocking is understood to be about a horizontal axis through

the center of the footing, i.e. at depth z=E). The nondimen-

sional torsional stiffness

Lee
GR3
is a function of the nondimensional gquantities %5 (nondimen-
T
sional frequency), %, g, %, B. The nondimensional stiffnesses
Kyz Kyx Ker Kxr
-~ 7 14 -3 -
G GR GR3 GR2

further depend on Poisson's ratio v (we use the notation of
Chapter 4). The static stiffnesses and the dynamic stiffness
coefficients are defined as in Chapter 4. In this application
the dynamic stiffnesses were calculated for two different
depths: % = 2, % = 3. The embedment of the footing was taken
the same for both depths: g

0.05, and seven different side-wall heights were considered:

= 1., In both cases v =1/3, B =

=0, 1/6, 1/3, 1/2, 2/3, 5/6, 1

td| @

For the calculations, the elements (modeling the region
under the footing) developed in Chapter 4 were combined (see
figure 5.2) with the transmitting boundaries developed by
Waas [23] and Kausel [ 6] and described in Section 2.4. The

stratum was divided into twelve and eighteen sublayers of equal
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Figure 5.2 - Scheme for the calculation of the stiffness
of a circular footing, combined with side-wall, embedded
in a layered stratum.

h

depth for b 2 and i 3 respectively. Let us first consider

R
the static stiffnesses. The results are given in TableskS.l,
5.2, 5.3, 5.4 and plotted in figures 5.3, 5.4, 5.5, 5.6. As
one would expect, for increasing height of the rigid side-wall
(increasing %) the static stiffnesses increase. The increase
is most significant in the case of rocking. The rocking stiff-
ness for % = 1 (gide~wall extending throughout the entire

depth E) is approximately 2.7 times the stiffness of the cir-
cular footing with no side-wall. The increasé is quite sig-
nificant for the torsional and horizontal stiffnesses as well.
However, the increase of vertical stiffness for e increasing
from 0 to E is relatively small. This may be understood by

the fact that the additional vertical stiffness provided by

the side-wall is only through shear stresses (Tzr ) and
r=R
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Table 5.1 - The nondimensional torsional static stiffness

(E/R = 1).

Zy
e aR3
E

h/R = 2 h/R = 3

0 9.14 8.82
1/6 12.6 12.1
1/3 15.3 14.7
1/2 17.5 16.8
2/3 19.4 18.7
5/6 20.8 19.9
1 \ 21.2 20.4

Table 5.2 - The nondimensional vertical static stiffness
(E/R =1, Vv=1/3)..

Ky
o “GR
E h/R = 2 h/R = 3
0 18.8 12.5
1/6 20.6 13.6
1/3 21.7 14.3
1/2 22.4 14.8
2/3 23.0 15.3
5/6 23.7 15.7
1 24.4 16.2




Table 5.3 - The nondimensional horizontal static stiffness
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(E/R=1, v=1/3).
_X_R)_(_

e G

h/R = 2 h/R =3
0 10.5 8.84
1/6 12.8 10.6
1/3 14.3 11.8
1/2 15.4 12.6
2/3 16.2 13.3
5/6 16.8 13.7
1 17.0 13.8

Table 5.4 - The nondimensional rocking static stiffness
(E/R =1, v=1/3).

f?tt
e GR3
F h/R = 2 h/R =3
0 7.0 5.94
1/6 8.6 7.23.
1/3 10.2 8.66
1/2 12.1 10.4
2/3 14.4 12.5
5/6 16.9 14.8
1 18.8 16.5
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therefore it is notv"direct." The rocking stiffness increases
at an increasing rate at least up to % = 0.75. This is a
clear indication that the rigid side~wall is most essentially
contributing to the rocking stiffness; Figures 5.7, 5.8, 5.9,
5.10 show the static stiffnesses normalized with respect to
the stiffnesé of the footing with no side-wall versus the non-
dimensional height of the side~-wall. It is clearly seen.in
these figures that the normalized static stiffnesses are
rather independent of the depth to radius % ratio. Finall&,
let us consider the height of the center of stiffness, §, of
the footing combined with the side-wall (horizontal vibrations

and rocking about a horizontal axis through the center of

stiffness are uncoupled). We have

]
» O

r

|

B

o
XX
Of interest here is the relative increase of the height of the
center of stiffness for increasing height of the side-wall.
Figure 5.11 shows the nondimensional increase of the height of
the center of stiffness

§ = §(e = 0)
e

versus the nondimensional height of the side-wall. Clearly,

it varies between rather narrow limits: approximately between

0.5 and 0.4 both for g = 2 and for & = 3.
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Figure 5.11 - Nondimensional increase of the height
of the center of stiffness ( E/R=1, v =1/3).

The stiffness coefficients are plotted versus the nondimen-

sional frequency %; %B in figures 5.12, 5.13, 5.14, 5.15,
T

5.16, 5.17, 5.18, 5.19. The curves are identified by the in-

dex i =1, 2, ... , 7 which indicates the nondimensional

height of the side-wall (for the curve with index i, % = i%i)

From these figures it appears that the height of the side-wall

has little effect on the stiffness coefficients ktt' k

k
zz! Txx’

krr (corresponding to the real part of the dynamic stiffness).

It is noted, however, that the peaks are less sharp for

‘increasing height of the side-wall. This indicates that

resonance Or near-resonance becomes less sharp for a footing

combined with the rigid side-wall. The effect of the ratio

e \ . .
F on the stiffness coefficients Cetr ©327 Cxx’ Crr (correspond-

ing to the imaginary part of the dynamic stiffness) is much

more interesting. These coefficients provide a measure of the



-189-

tt

tt

10

-

o*q

R

o

2

5.

-

o

e

%' 1.20 1.40 1.50 1.80
L wR
27 CT

Figure 5.12 - Torsional stiffness coefficients
(E/R=1, h/R=2, B =0.05).

0.24 0.32 0.40

Q.16

0.08

o£.00
S
OI €

2]




-190-

tt

tt

0.80 0.88 0.96 1.04

0.72

0.40

0.16

0.08

Fp.ﬂ

0.32

0.4

1.20 1.40 1.80 1.80

o]

L wR
2T CT

Figure 5.13 - Torsional stiffness coefficients .
(E/R=1, h/R=3 , B = 0.05 ).

.00

1.20 1.40 1.80 1.80
1l wR
2m C




-191-

2z

Zz2

2

5.

2

s

8

?.

o 1.20 1.40 1.60 1.80
L uR
2m CT

Figure 5.14 - Vertical stiffness coefficients
(E/R=1, h/R=2, v=1/3, B = 0.05 ).

8

il

S

o

2

x

=

hd

3

. 1.20 1.40 1,60 1.80
1 wR
2T Co




-192-

zZz

22

0.40 0.80 1.20 1,60

0.00

2

oroe 0.20 0.40 0.560 0.80 1.00 1.20 1.40 1,60 1.80
L wR
2w CT

Pigure 5.15 - Vertical stiffness coefficients

(E/R=1, h/R=3, v=1/3 , B = 0.05).

q
g
8
s 3
S (3
7

pd

2

°'¢

1

%

O-A

8

%00 0.20 o0.40 0.50 0.80 1.00 1.20 1.40 1.50 1.80
L wR
21 C




-193-

XX

XX

. 1.00 1,60 2.00

0.00

8
'n.00 0.20 ) 0.80 0.80 1.00 1.20 1.4 1.50 1.80
1 wR
2m C
T

Figure 5.16 - Horizontal stiffness coefficients
(E/R=1, h/R=2, 1/3 , B = 0.05).

v =

0.40 0,80

0.20

.00

1.0

i §
ol

+3




-194-

XX

XX

2.00

1,20 1,00

0.80

0,40

o

o

.00 0.20 c.%0 0.60 0.80 1.00 1.20 1.40 1.60 1.80
L wR
2T CT

Figure 5.17 - Horizontal stiffness coefficients
(E/R=1, h/R=3 , v=1/3 , B = 0.05 ).

1.00

0,60 0,80
S »
>
Y ¢
-

0
-
.

0,20

$.00
8

6.20 o.na 0.50 0.80 1.00 1.20 1.00 1.50 1.80




-195-

rr

rr

0.40 0.80 1.20 1,60

0,00

";u.no 0.20 0.0 0.80 0.80 1.00 1.20 1.40 1.850 1.80
L R
2m T

Figure 5.18 - Rocking stiffness coefficients

(E/R=1, h/R =2 ry V=1/3, B =10.05).

o

a

]

o1

% 1.20 1.40 1.60 1.80
L R
271 C




-196-

rr

rr

0.80 1.00 1.20 1.40

.00 0.20 0.8 0.60 0.80 1.00 1.20 1.40 1.50 1.8
1 uR
2m Cop

Figure 5.19 - Rocking stiffness coefficients

(E/R=1, h/R=3 , v=1/3 , B = 0.05 ).

4

o

7

3 ]

ou

]

S

o] ?

e

o

g

.00 0.20 0.4 0.50 0.80 1.00 1.20 1.40 1.60 1.80
L wR
2m C




-197-

damping present in the system. Part of the damping is due to
energy dissipation (8 = 0.05) in the stratum. The rest is due
to energy radiation into the far-field. As would be expected,
the height of the side-wall has little effect on the stiffness

coefficients ¢ This is because, for vertical vibra-

zz’ Crre
tions and rocking, damping is primarily due to energy dissipa-
tion in the region of the stratum surrounding the footing,
since energy gets "trapped" in that region (because of multi-
ple reflections between the footing and the fixed base). How-
ever, the effect of the height of the side-wall on the stiff-
ness coefficients Cit and Cox is significant. It is clearly
seen in figures 5.12, 5.13, 5.16, 5.17 that these stiffness
coefficients increase with increasing g ratio over the entire

frequency range considered (0 < 5?'%5 < 1). This is because

energy radiation into the far-field Es very important for damp-
ing of torsional and horizontal vibrations and it is greatly
enhanced by the attachment of the side-wall on the region of
the stratum above the footing. We note that, as previously
discussed, the static stiffnesses increase with increasing

height of the side-wall and, therefore, the imaginary part of

the dynamic stiffnesses is further increased.

5.2 THE STIFFNESS OF RIGID AND ROUGH RING FOOTINGS ON THE
SURFACE OF A STRATUM

Let us now consider a ring footing of inside radius Rl’

outside radius R, on the surface of a stratum of depth h (see
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figure 5.20). We assume that the footing is rigid and rough.
The stratum is taken homogeneous. We write the boundary con-

ditions

u(r,6,0) = A_ cos 6
w(r,0,0) = Az - r¢r cos © Rl <r < R2
v(r,8,0) = r¢t - AX sin ©

7z z=0 0 ‘

Tzr z2=0 =~ 0 } 0 fr <Ry, Ry <r
Toz 2=0 = 0

’ =— r,—

<R~ .
rigid and rough

free surfajj/;,\\\\\xs %/—_ring footing

r—— T T )

T
]
i
1
I
{
T
I
T
l
|
|
|
i

L]
e —

i R\\—-fixed base

z

Figure 5.20 - A ring footing on a layered stratun.
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The base of the stratum is fixed. Apr Aor bpr b, denote the
amplitudes of horizontal vibrations, vertical vibrations, tor-
sional vibrations and rocking respectively. The nondimensional

torsional stiffness

Ket
GR%
wR
is a function of the nondimensional quantities (nondimen-
R T
sional frequency), él ' ﬁi, 8. The nondimensional stiffnesses
2 2 :
K2z Kyxx Kypy Kyr
7 ’ — 31 Y
GR, CR, GR) GRS

depend, in addition, on Poisson's ratio v. The static stiff-

nesses and the stiffness coefficients are now defined as

o
K X wR
=Tk [T R
GR2 GR2 T —
o ~ -
X K wWR
Z2Z _ 22 . 2 .
GR, - GR, Kpzg © 1 CT €22 (1 + 2ig)
o ~ -
Kyx Kxx . wRZ .
SR, =GR, |Xxx T 1 T Cxx| (1 * 28F)
2 2 T ]
o -~ -
) 4 K wR
—£§ = —£§ Kpp ¥ 1 ?Tz Crp| (1 + 21B)
GR2 GR2 L T -

The dynamic stiffnesses

(él %L = 3) and
2 2
the radii of the footing.

depths 2,

were used.

were calculated for two different

R
several values of the ratio ﬁl of
2
In all cases v = 1/3 and B = 0.05

The elements developed in Chapter 4 (modeling the
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region under the footing) were combined (see figure 5.21) with
the elements developed by Kausel and Roésset [ 9] (modeling

the region 0 < r i Rl) and the transmitting boundaries devel-
oped by Waas [23] and Kausel [ 6] (these elements are described
in Section 2.4). The stratum was divided into twelve sublayérs

of equal depth for él = 2, while for %L = 3 the first six sub-
2 2

layers were of depth §2/6, the next four of depth R2/4 and the

last two of depth R2/2 (the accuracy achieved by this spacing
wR

in the range 0 < = TTE < % is comparable to that obtained
: T
using eighteen sublayers of equal depth). Let us consider the

static stiffnesses. They are given in Tables 5.5, 5.6, 5.7,

5.8 and plotted in figures 5.22, 5.23, 5.24, 5.25. As one
R
would expect, for increasing ﬁi the static stiffnesses decrease.

\\J___,_‘

- ] — —f— ]~ ] —]—- O

Figure 5.21 - Scheme for the calculation of the stiffness

of a ring footing on a layered stratum.
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Table 5.5 - The nondimensional torsional static stiffness
(rina footinag).

Ky
R, GR;
R, h/R, = 2 h/Ry = 3
0 5.79 5.75
0.1 5.79 5.75
0.2 5.79 5.75
0.3 5.79 5.75
0.4 5.78 5.74
0.5 5.77 5.73
0.6 5.75 5.71
0.7 5.68 5.64
0.8 5.55 5.50
0.9 5.25 5.22
0.95 4.98 4.95
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Table 5.6 - The nondimensional vertical static stiffness
(ring footing, v = 1/3).

£,

% &Ry
h/Ry = 2 h/R, = 3
0 10.37 8.78
0.1 ~10.37 8.78
0.2 10.35 8.76
0.3 10.31 8.74
0.4 10.22 3 68
0.5 10.06 8.57
0.6 9.80 8.40
0.7 9.41 8.13
0.8 8.84 7.71
0.9 7.94 7.27
0.95 7.25 6.50
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Table 5.7 - The nondimensional horizontal static stiffness
(ring footing, v = 1/3).

Ko

Ry GR,
%

h/R2 =2 'h/R2 =3
0 6.36 5.88
0.1 6.36 5.88
0.2 6.35 5.87
0.3 6.34 5.86
0.4 6.31 5.84
0.5 6.25 5.79
0.6 6.16 5.72
0.7 6.02 5.60
0.8 5.81 5.42
0.9 5.47 '5.12
0.95 5.22 4.91
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Table 5.8 - The nondimensional rocking static stiffness
(ring footing, v = 1/3).

f;%
Ry R
Ry

h/Ry = 2 h/Ry = 3

0 4.63 4.48
0.1 4.63 4.48
0.2 4.63 4.48
0.3 4.63 4.48
0.4 4.62 4.47
0.5 4.61 4.46
0.6 4.58 4.43
0.7 4.51 4.37
0.8 4.38 4.24
0.9 4.10 3.98
0.95 3.83 3.73
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R ,
In fact, they vanish in the limit ﬁl + 1. The torsional and
: 2
rocking static stiffnesses deviate considerably from the value

corresponding to Rl = 0 (i.e. the circular footing) only for
R.
values of the ratio 1 greater than about 0.75. This is ex-

R
2
plained by the fact that for torsion and rocking the stiffness
is mainly provided by the area near the outside edge of the
footing. However, the vertical and horizontal static stiff-

nesses are more sensitive to the ratio of the radii of the

footing. They deviate considerably from the static stiffness
R
of the circular footing for values of ﬁi greater than about
2
0.60.

The stiffness coefficients for b 2 are plotted versus

R
wRy"2 Ry
the nondimensional frequency 5= T for == 0.5, 0.8, 0.9 in

T 2
figures 5.26, 5.27, 5.28, 5.29. There is little change in the
R .
coefficients for the three values of the ratio ﬁi . Figures
2
5.30, 5.31, 5.32, 5.33 show the stiffness coefficients for
R
b 2, h o 3, and L= 0.9 versus the nondimensional fre-
Ry o) R
quency. The range of values of the stiffness coefficients is

for all practical purposes the same for the two depths. As
would be expected, the peaks and troughs of the curves are
simply shifted.

Finally, we note that the inner region (up to a radius
of, say, 0.60 R2) of a circular footing does not influence sig-

nificantly the dynamic behavior of the footing in the frequency
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range 0 < o ?T_- 5 % + provided that the outer region may
be considered rigid. This is because the static stiffnesses

of the ring footing do not differ considerably from those of
R

the circular footing but for values of ﬁl greater than about
2 .
0.60 and, moreover, the stiffness coefficients in the range

R

R—' .

1 wRZ 1
0 < > T < 5 do not change appreciably with
T 2
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CHAPTER 6

CONCLUSIONS

In this work we presented elements for the numerical anal-
ysis of wave motion in layered media. Plane elements which .
were developed in full detail include those modeling the rec-
tangular region x; < x < X,, 0 < z < h, of a layered stratum
in plane strain or antiplane shear. The boundary conditions
specified at the surface of the region correspond to a rigid
and rough strip footing. Other plane elements for which the
boundary conditions at the base are inhomogeneous (for example,
base motion) were also described (see Chapter 3). Axisymmetric
elements which were considered are those modeling the regions

0<r<ry,, 0<z<h,andry <r <ry,, 0 <z <h, with boun-

o
dary conditions at the surface corresponding to rigid and'rough
circular and ring footings respectively. The development of
other axisymmetric elements was outlined (see Chapter 4).
Applications weré presented which illustrate the use of the ele-
ments. Significant improvements with respect to the computa-
tional effort are the low storage requirements and the fact that
the number of arithmetic operations is independent of the length
of the elements (plane elements) or their thickness in the rad--
ial direction (axisymmetric elements).

The technique developed in this work relies upon the calcu-
lation of semidiscrete solutions. It was demonstrated that

semidiscrete 'particular solutions may be found for a variety

of inhomogeneous boundary conditions. Moreover, semidiscrete
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modes satisfying the correspbnding homogeneous boundary con-
ditions are easily calculated. In previous works([23, 6 ], a
semidiscrete solution (satisfying homogeneous boundary condi-
tions) for part of the region was combined with a fully dis-
crete solution (satisfying inhomogeneous boundary conditioné)
for the rest of the region. It is now possible to obtain a
semidiscrete solution for the entire region. We note that an
advantage of the technique beyond those emphasized previously
is the fact that the displacements, stresses and strains at
any point in the region may be expressed in terms of relati-
vely few parameters, namely, the pa:ticipation factors of the
semidiscrete modes and particular solutions.

The method may be extended to the analysis of wave motion
in regions other than a layered stratum. Consider, for example,
a bar of rectangular cross section. Let the z-direction be
along the longitudinal axis of the bar. Boundary conditions
must be specified on the four sides of the bar. The modes are

of the form

u(x,y,z) U(x,y)exp(-ikz)

V(x,y)exp(-ikz) .

v(x,y,2)
w(x,y,2) = W(x,y)exp(-ikz)
Some analytical results fot the case of traction-free boundar-
ies are given by Mindlin and Fox [19]. Discrete solutions for
the amplitudes U, V, W and approximate wave numbers k may be

obtained using the finite element method. The resulting alge-
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braic eigenvalue problem is of the same form as the ones encoun-
tered in this work (it may be derived as in section 2.2). An
extension of the method to the analysis of wave motion in a cy-

lindrical rod is also possible.The modes are given by

cos (nd) )
un(r,e,z) = Un(r) r exp(=-ikz)
sin(n8)
_ cos (né) )
wn(r,e,z) = Wn(r) exp(-ikz)
sin(nod)
-sin (nb)
vn(r,e,z) = Vn(r) exp (=ikz)
cos (nd)
n=20,1, 2, ...

Details may be found in [ 2]. For a rod of circular cross
section and traction-free boundaries extensive results may be
found in the works of Mindlin and McNiven [20] and Onoe,
McNiven and Mindiin [21]. They treat the case of axially sym-
metric waves (note that the eigenvalue problem which yields

k, Un’ Vn depends upon the value of n). Again, discrete

nl
solutions for the amplitudes Un’ Wn’ Vn and approximate wave
numbers k may be calculated using the finite element method.
The rod may be hollow and material properties may vary with

r (but not with 8 or 2z).
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