STRESSES AND FLEXIBILITIES FOR

 PRESSURE VESSEL ATTACHMENTSby
FRANK MICHAEL GERARD WONG
//
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREES OF
BACHELOR OF SCIENCE IN NUCLEAR ENGINEERING
and
MASTER OF SCIENCE IN NUCLEAR ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1984
(C) Frank Michael Gerard Wong, 1984

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.

Signature of Author \qquad
May 11, 1984

Accepted by

Departmental Graduate Committee
ARCHIVES Department of Nuclear Engineering

by
FRANK MICHAEL GERARD WONG

Abstract

Submitted to the Department of Nuclear Engineering on May 11, 1984 in partial fulfillment of the requirements for the Degrees of Bachelor of Science in Nuclear Engineering and Master of Science in Nuclear Engineering

ABSTRACT

The Fourier analysis method, developed primarily by Bijlaard, modelled pressure vessels as continuous simply-connected surfaces with central patch loads. Through the use of superposition, my work has extended the technique to include solutions for loads placed at any position along the cylinder. The technique allows placement of tractions with combinations of radial, shear, and axial components. In addition, the stiffness and enhanced load carrying capacity that internal pressure gives to thin vessels can be simulated. Numerical convergence problems encountered in this method are reduced by an improved displacement-load algorithm, and by using load sites that allow the circular functions to be compactly grouped.

Using this approach, a variety of loading distributions are analyzed including large and small nozzles near and away from centerlines. Both rectangular and circular attachments are simulated. When large attachments are involved, local lateral loads are modelled as a combination of tractions along the intersecting boundaries. Stiff attachments are simulated through a set of loads along the vessel/attachment intersection determined by colocation. These loads are chosen so that a rigid body displacement field is produced within that boundary. Through this same technique, multiple attachments with their own loads may be examined. The attachments to the vessel may be either rigid or soft.

In comparison with experimental results, the calculated values are in generally good agreement. Variations between experimental and calculated results are primarily caused by assuming a simply-supported base in the calculation, whereas in the experimental test, the base is more nearly fixed. The stiffening effect of the welds on an attachment was also shown to cause discrepancies between experimental and calculated values.

Thesis Supervisor: Dr. John E. Meyer

Title: Professor of Nuclear Engineering

DEDICATION

This work is dedicated to my mother, Shirley. Without her years of generous care, faith, and understanding, none of this would have been possible.

ACKINOWLEDGEMENTS

This thesis was performed at Stone \& Webster Engineering Corporation as part of the M.I.T. Engineering Internship Program. I would like to properly acknowledge the help and assistance of a few individuals.

I am very grateful to Professor John E. Meyer for his invaluable insight, guidance, and encouragement as my thesis advisor, as well as my advisor during my undergraduate years.

My sincere thanks are due to Dr. William J. Craft for his indispensable advice, patience, and support. His contributions in creating some of the early source code are greatly appreciated.

I would also like to thank Dr. George H. East, Jr. for his help and direction during my work assignments at Stone \& Webster.

The assistance of George Bushnell, my supervisor at Stone \& Webster, is gratefully appreciated.

Page

Abstract ii
Dedication iii
Acknowledgements vi
Table of Contents v
List of Figures vii
List of Tables viii

1. Introduction
1.1 Scope 1
1.2 Background
1.2.1 Bijlaard's Work 2
1.2.2 Welding Research Council Bulletin 107 3
2. Solution Fundamentals
2.1 Geometry 5
2.2 Element Model of Attachment 8
3. Loads and Moments
3.1 Radial Loads 13
3.2 Bending Moments 13
3.3 Multiple Attachments 14
4. Fourier Analysis
4.1 Even and Odd Solutions 18
4.2 Fourier Coefficients
4.2.1 Fourier Coefficients for Loading Functions of Rectangular Areas 19
4.2.2 Fourier Coefficients for Loading Functions of Triangular Areas 21
4.3 Displacement Solution 24
4.4 Stress Solution 28
4.5 Internal Pressure 29
4.6 Summary 31
5. The Method of Colocation
5.1 Basic Theory 32
5.2 Uniform Displacements 34
5.3 An Example of Colocation 36
6. Discussion of Results
6.1 Comparison with Bijlaard's Work 38
6.2 Comparison with an API-650 Nozzle on a Storage Tank 42
6.3 Comparison with the Pressure Vessel Attachments of Welding Research Council Bulletin No. 60 47
6.3.1 Bending and Membrane Stresses 51
6.3.2 Deflections 56
7. Conclusions and Recommendations for Future Improvements
7.1 Summary and Conclusions 59
7.2 Recommendations for Future Improvements 60
Appendix A: Nomenclature 62
Appendix B: Mathematical Details 64
Appendix C: Attachment No. 5 of Welding Research Council Bulletin 60 66
Appendix D: Computer Program Listings 70
Appendix E: References 135

Figure No.	Description	Page
2.1	Cylindrical Geometry and Coordinate Definition	
2.2	Rectangular and Triangular Elements for the Area of Intersection Between Attachment and Cylindrical Shell	6
	Patch Area Partition of a General Rectangular Tube	

Table	Description	Page
A	Radial Loading with $t=1 / 15$ and $\beta=1 / 4$	39
B	Radial Loading with $t=0.01$ and $\beta=1 / 8$	39
c	Radial Loading with $t=0.003$ and $\beta=1 / 16$	40
D	External Moment Loading with $t=0.01$ and $B=1 / 8$	41
E	Shell Deflections (in.) Near an API-650 Nozzle Due to Various External Loads	44
F	Comparison of Stiffness Coefficients	45
G	Shell Deflections Due to Hydrostatic Pressure	46
H	Summary of Attachment Dimensions (in.)	48
I	Attachment No. 1, Radial Load, Bending and Membrane Stress per Unit Force (psi./lbs.), $P=16,600 \mathrm{lbs}$.	52
J	Attachment No. 3, Radial Load, Bending and Membrane Stress per Unit Force (psi./lbs.), $P=19,500$ lbs.	52
K	Longitudinal Couple, Bending and Membrane Stress per Unit Couple (psi./in-lbs)	54
L	Circumferential Couple, Bending and Membrane Stress per Unit Couple (psi./in-lbs)	55
M	Attachment No. 5, Radial Load, Bending and Membrane Stress per Unit Force (psi./lbs.), $P=10,300 \mathrm{lbs}$.	67
N	Attachment 5, Longitundinal and Circumferential Couples, Bending and Membrane Stress per Unit Couple (psi./in-lbs)	68

1. INTRODUCTION

1.1 SCOPE

This thesis describes a method to calculate vessel stresses and flexibilities for attachments on cylindrical vessels. Determining deformations, stresses, and flexibilities in vessels due to external loadings has not been an easy task. In some cases, finite element analysis may be used, but it is neither convenient nor economical. It has primarily been used for geometries beyond the scope of the Welding Research Council method (Ref. 1), which is the most commonly used approach.

The method presented here extends and advances Bijlaard's technique (Ref. 2 and 3) for determining stresses at attachment-shell junctions through double-sum Fourier analysis. These Fourier series are constructed so that they fulfill the boundary conditions of simple support and the equilibrium equations of thin-shell theory. The major features include:

- Ability to place attachments anywhere on the cylindrical shell, even near the end;
- Interaction between multiple attachments;
- Incorporation of any combination of external forces and moments, as well as internal pressure;
- Incorporation of rectangular and circular attachments, both solid and tubular;
- Designation of large or small attachments, as well as rigid or soft ones; and
- Evaluation of stress at more than the four cardinal points on intersection provided by finite element analysis and the Welding Research Council method.

The method employs the following assumptions:

- Vessel is a right circular cylinder of constant thickness;
- Cylindrical surface is simply-connected (i.e. there is a continuous shell at all attachments);
- Vessel circumference is simply supported at each end (i.e. zero radial and circumferential deflection, zero shell axial moment and axial normal force); and
- No thermal expansions are considered

Abstract

By specifying shell dimensions and loading conditions, the method is able to compute deflections and stresses in the cylindrical shell.

1.2 BACKGROUND

1.2.1 BIJLAARD'S WORK

Two of Bijlaard's papers (Ref. 2 and 3) were used extensively to develop the background theory for this project. "Stresses Fom Local Loadings in Cylindrical Pressure Vessels" presents the basic theory for analyzing stresses at attachment-shell intersections through Fourier analysis. By starting with the partial differential equations of thin-shell theory, which govern the displacements in the $X, Y(\varnothing)$, and Z directions for a given pad load P, Bijlaard reduces this system of three partial differential equations into a single eigth-order equation. This single eighth-order differential equation is known as Donnell's equation. However, in deriving Donnell's equation, Bijlaard neglected terms that contained $t^{2} / 12 a^{2}$, because in considering terms of t / a (thickness-to-radius) smaller than 0.1 , these $t^{2} / 12 a^{2}$ terms are less than 0.001. As a result of this approximation, Bijlaard says that results may be up to 25 per cent too small. Greater discrepancies occur for shells with larger thickness-to-radius ratios.

Bijlaard now proceeds to express the displacements and loads as double-sum Fourier series that are functions of the axial coordinate, x, and the circumferential coordinate, \emptyset. Having employed this solution technique, Bijlaard solves the equation for several loading conditions which include external radial forces and longitudinal and circumferential moments.

Abstract

In his second paper, "Stresses From Radial Load and External Moments In Cylindrical Pressure Vessels," Bijlaard presents some numerical data for his solution for many load cases due to radial loads and external moments, including the effects of internal pressure.

There are two essential shortcomings in Bijlaard work: the omission of higher order terms in the governing differential equation and the restricted positions of load application. As mentioned earlier, the omission of higher order terms in the differential equation will lead to discrepancies in results, unless shells are sufficiently thin. Bijlaard's solution was also restrictod to locations that were far removed from the ends of the cylinder. As a result, large discrepancies will occur as one moves the location of the attachment toward the end of a finite cylinder. The thesis work includes provisions to eliminate these inaccuracies.

1.2.2 WELDING RESEARCH COUNCIL BULLETIN 107

To solve attachment-shell problems, industry presently employs a technique that is based on Welding Research Council Bulletin 107, "Local Stresses in Spherical and Cylindrical Shells due to External Loadings," by Wichman, Hopper, and Mershon (Ref. 1). This bulletin contains a rlookup graph" method for calculating these stresses due to external loadings. It contains Bijlaard's curves for these stresses, which have been plotted with a given set of dimensionless parameters.

In short, the method that Bulletin 107 presents is quite straightforward. Given an initial set of parameters of a shell problem with external loadings, one can look up the values for the bending and membrane forces, M and N respectively. One also needs to look up the values of two stress concentration factors, $K n$ and $K b$, which are a function of the attachment dimensions. Once these values are known, the stresses are calculated through

```
\sigma = Kn(N/T) \pm Kb(6M/T
```

The procedure in the WRC Bulletin 107 contains the same shortcomings
as Bijlaard's original work. In addition, no provision is made for obtaining
deflections. As a result, one cannot use this method for calculating
stiffnesses. It also has no capability to analyze interaction between
multiple attachments. Because the curves in this bulletin have been plotted
for only a given set of initial parameters, any data which does not lie on
these curves must be interpolated or extrapolated to the nearest curve.
The thesis addresses the pitfalls in Bulletin 107 . Since the thesis
work does calculate deflections, stiffnesses as well as stresses are
obtained. In addition, because the thesis uses a closed-form solution,
interpolation and extrapolation is not necessary.

2. SOLUTION FUNDAMENTALS

2.1 GEOMETRY

Coordinate System

The vessel is modeled as a right-circular-cylindrical shell (See
Figure 2.1). A conventional orthogonal coordinate system is used to define the cylindrical geometry (cylinder has radius a, thickness t, and length L):

- Coordinates:

```
x = axial coordinate 0 \leq x < L
\emptyset= circumferential coordinate 0\leq\emptyset\leq 2\pi
```

- Displacements:

```
u = axial displacement
v = circumferential displacement
w = radial displacement (positive in the
    negative r-direction)
```

- Surface loadings (force per unit area): $P_{x}=$ axial loading (shear) $P_{\phi}=$ circumferential loading (shear)

```
Pr}=\mathrm{ radial loading (positive radially inward)
```

Boundary Conditions

The cylinder is assumed to be simply-supported. The boundary conditions for simple support are:

$$
\text { At } x=0 \text { and } L: \quad \begin{aligned}
& w=0 \\
& v=0 \\
& \\
& \text { Moment } M_{x}=0 \\
& \\
& \text { Membrane force } N_{x}=0
\end{aligned}
$$

Figure 2.1 Cylindrical Geometry and Coordinate Definition

Equilibrium Equations

The governing equations for the displacements in thin-walled circular cylindrical shells under general loading are (Ref. 4):

$$
\left.\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{1-v}{2 a^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{1+v}{2 a} \frac{\partial^{2} v}{\partial x}-\frac{v}{a \phi} \frac{\partial w}{\partial x}=-P_{x} \frac{\left(1-v^{2}\right)}{E t} \\
\frac{1+v}{2 a} \frac{\partial^{2} u}{\partial x \partial \phi}+\frac{1-v}{2} \frac{\partial^{2} v}{\partial x^{2}}+\frac{1}{a^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}-\frac{1}{a^{2}} \frac{\partial w}{\partial \phi}+\frac{t^{2}}{12 a^{2}}\left[\frac{\partial^{3} w}{\partial x^{2} \partial \phi}\right. \\
\left.+\frac{1}{a^{2}} \frac{\partial^{3} w}{\partial \phi^{3}}\right]+\frac{t^{2}}{12 a^{2}}\left[(1-v) \frac{\partial^{2} v}{\partial x^{2}}+\frac{1}{a^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}\right]=-P_{\phi}\left(1-v^{2}\right) \\
E t
\end{array}\right] \begin{aligned}
& \frac{\nu}{a} \frac{\partial u}{\partial x}+\frac{1}{a^{2}} \frac{\partial v}{\partial \phi}-\frac{w}{a^{2}}-\frac{t^{2}}{12}\left[\frac{\partial^{4} w}{\partial x^{4}}+\frac{2}{a^{2}} \frac{\partial^{4} w}{\partial x^{2} \partial \phi^{2}}+\frac{1}{\left.a^{4} \frac{\partial^{4} w}{\partial \phi^{4}}\right]}\right. \\
& -\frac{t^{2}}{12 a^{2}}\left[\frac{\partial^{3} v}{\partial x^{2} \partial \phi}+\frac{1}{a^{2}} \frac{\partial^{3} v}{\partial \phi^{3}}\right]=-P_{r} \frac{\left(1-v^{2}\right)}{E t} \tag{2.1c}
\end{aligned}
$$

Attachment Geometry

The area of intersection between the attachment and the cylindrical shell is modeled as an area partitioned into rectangular and triangular elements.

Figure 2.2 Rectangular and Triangular Elements for the Area of Intersection Between Attachment and Cylindrical Shell

Through a combination of rectangular elements, a solid or hollow rectangular attachment may be modeled. Through a combination of rectangular and triangular elements, a circular pipe or solid may be simulated.

2.2 ELEMENT PARTITIONING OF ATTACHMENT

Rectangular Attachments

For rectangular attachments, the area of intersection between the attachment and cylindrical shell is split into four regions. The partitioning of the this area is determined by the initial dimensions of the attachment.

Figure 2.3 Patch Area Partition of a General Rectangular Tube.

A solid rectangular attachment may be modelled when $T_{\phi}=L_{\phi} / 2$ and $T_{x}=L_{x} / 4$. This partition is shown in figure 2.4.

Figure 2.4 Partition of a Solid Rectangular Attachment

These four patch areas are further divided into elements. The maximum subdivision of elements is a 4×4 partition in each region, and the minimum partition is 1×1. Figure 2.5 illustrates the element subdivision for a $3 \times$ 3 partition. The surface loadings are applied on these individual elements to simulate a uniform radial force, longitudinal and circumferential moments, and a rigid plug displacement.

(1,1)			$(1,2)$		$(1,3)$	
(2,1)			$(2,2)$		$(2,3)$	
$(3,1)$			$(3,2)$		$(3,3)$	
(1,1)	$(1,2)$	$(1,3)$		(1, 1)	$(1,2)$	$(1,3)$
(2,1)	$(2,2)$	$(2,3)$		(2,1)	$(2,2)$	$(2,3)$
(3,1)	$(3,2)$	$(3,3)$		(3,1)	$(3,2)$	$(3,3)$
(1,1)			(1,2)		$(1,3)$	
(2,1)			$(2,2)$		$(2,3)$	
(3,1)			$(3,2)$		$(3,3)$	

Figure 2.53×3 Element Partitioning of a Hollow Rectangular Attachment

Circular Attachments

Abstract

For circular attachments, the area of intersection between the attachment and cylindrical shell is split into four quadrants. Each quadrant is then split into rectangles and triangles to approximate one quarter of a circle (See Figures 2.6 and 2.7). Each circular solid is split into 12 elements, and each circular tube is split into 28 elements.

FIGURE 2.6 ELEMENT PARTITION OF CIRCULAR SOLID

FIGURE 2.7 ELEMENT PARTITION OF CIRCULAR TUBE

3. LOADS AND MOMENTS

3.1 RADIAL LOADS

Abstract

A radial load is simulated so that all elements of force are parallel to the centerline of the attachment. The user-specified force on the attachment is divided by the attachment area to give a pressure; this pressure is then applied uniformly over all elements in the attachment-shell intersection. This loading is decomposed into Fourier harmonics. The analysis unrolls the cylindrical surface, and then applies the P_{r} and P_{ϕ} everywhere inside the individual elements.

If the attachment-shell intersecting area is large compared to the total circumference of the cylinder, then shear loads are added to ensure that the applied loads are parallel to the attachment centerline.

Since all the loads are represented as Fourier series, superposing loads only requires adding the specified series together before the displacement solution is found.

3.2 EXTERNAL BENDING MOMENTS

Abstract

A bending moment is represented as a series of radial loads distributed over the patch area. The magnitude of these loads varies as a linear function of their distance from the neutral axis. The magnitude of the loads is zero at the neutral axis, and increases linearly farther from the neutral axis. A longitudinal moment acts along the axis of the attachment and varies linearly in the x-direction of the shell. A circumferential moment also acts along the axis of the attachment, but varies linearly in the σ-direction of the shell.

For a longitudinal moment, the pressure loads assume the function

$$
\sigma=\frac{M x^{\prime}}{I_{x}}
$$

```
Where, }\mp@subsup{x}{}{\prime}=\mathrm{ Axial distance of an element to
    the neutral axis
    I
        about the ф-axis
    M = Externally applied longitudinal moment
For a circumferential moment, the pressure loads assume the function
    \sigma= M\varnothing'
Where, }\mp@subsup{\sigma}{}{\prime}=\mathrm{ Circumferential distance of an element
        to the neutral axis. Since this distance
        must be projected onto a flat surface,
        it reads as a function of the angle as
        \phi' = Rsin(angular distance from neutral axis)
    I\phi}=\mathrm{ Moment of inertia of the actual attachment
        about the x-axis
    M = Externally applied circumferential moment
```

Figures $3.2 A$ and $3.2 B$ illustrate the interpretation of a moment.

3.3 MULTIPLE ATTACHMENTS

Multiple attachment can be easily simulated with Fourier analysis. Since the displacements over the entire cylinder may be determined from any given loading condition, multiple attachments involve superposing a given number of loading conditions. The Fourier series for each independent loading condition is developed. Then, these individual fourier series are superposed on one another. Since the origins of these Fourier series are the same, superposing these series only involves adding the series together term by term. This produces a new Fourier series that contains multiple loading conditions. It is this new Fourier series that is used in determining the displacements over the cylindrical surface. The displacements that result will reflect the

FIGURE 3.2A EXTERNAL LONGITUDINAL MOMENT

FIGURE 3.2B EXTERNAL CIRCUMFERENTIAL MOMENT

```
original multiple loading conditions. This approach allows one to construct the
multiple loading conditions, and then designate the flexibility of the
attachment.
```


4. FOURIER ANALYSIS

4.1 EVEN AND ODD FOURIER SOLUTIONS

A double-sum Fourier series is constructed that satifies both the boundary conditions of simple-support and the equilibrium equations (2.1a 2.1c). If one constructs the double-sum Fourier series for the radial displacement first, then the double-sum Fourier series for the shear and axial displacements are also determined. The total Fourier solution will be the sum of an even and an odd series in \varnothing. A solution is said to be even if it corresponds to the even solution in $\phi, \cos (m \phi)$, of the radial displacement. A solution is said to be odd if it corresponds to the odd solution in \varnothing, sin(mø), of the radial displacement. The even and odd series in the axial direction are embedded in the terms $\sin (n \pi x / L)$ and $\cos (n \pi \times / L)$, which each contain both even and odd solutions. The loading functions in the general equilibrium equations, P_{Y}, P_{ϕ}, and P_{r} are also represented by double-sum Fourier series to be consistent with the displacement solutions. The double-sum Fourier series for the radial displacement which satisfies the boundary conditions and the equations of equilibrium is:

$$
w=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[w_{m, n}^{e} \cos (m \phi)+w_{m, n}^{0} \sin (m \phi)\right] \sin (n \pi x / L) \quad \text { (4.1a) }
$$

Having designated the radial displacement solution, the v and u displacement solutions must be:

$$
\begin{align*}
& v=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[v_{m, n}^{e} \sin (m \phi)+v_{m, n}^{o} \cos (m \phi)\right] \sin (n \pi x / L) \tag{4.1b}\\
& u=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[u_{m, n}^{e} \cos (m \phi)+u_{m, n}^{\circ} \sin (m \phi)\right] \cos (n \pi \times / L) \tag{4.1c}
\end{align*}
$$

where the superscript e denotes an even term and 0 , an odd term.

Having determined the Fourier series of the displacement solutions, the loading functions which would allow the equilibrium equations to be solved by Fourier analysis are:

$$
\begin{align*}
& P_{r}=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[P_{r_{m}, n}^{e} \cos (m \phi)+P_{r_{m, n}}^{\circ} \sin (m \phi)\right] \sin (n \pi x / L) \quad \text { (4.1d) } \\
& P_{\phi}=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[P_{\phi}^{e}{ }_{m, n} \sin (m \phi)+P_{\phi, n}^{\circ} \cos (m \phi)\right] \sin (n \pi x / L) \quad \text { (4.1e) } \\
& P_{x}=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[P_{x}^{e} \cos (m \phi)+P_{x, n}^{\circ} \sin (m \phi)\right] \cos (n \pi \times / L) \tag{4.1f}
\end{align*}
$$

4.2 FOURIER COEFFICIENTS

4.2.1 FOURIER COEFFICIENTS FOR LOADING FUNCTIONS OF rectangular areas

To determine the Fourier coefficients of the loading functions P_{x}, P_{ϕ}, and P_{r}, these functions are separated into even and odd solutions.

$$
\begin{aligned}
& \text { EVEN ODD } \\
& P_{r}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{r}^{e}{ }_{m, n} \cos (m \phi) \sin (n \pi \times / L) \quad P_{r}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{r}{ }_{m, n}^{o} \sin (m \phi) \sin (n \pi \times / L) \\
& P_{\phi}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{\phi, n}^{e} \sin (m \phi) \sin (n \pi x L) \quad P_{\phi}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{\phi, n}^{0} \cos (m \phi) \sin (n \pi \times / L) \\
& P_{x}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{x}{ }^{e}{ }_{m, n} \cos (m \phi) \cos (n \pi x / L) \quad P_{x}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{x}{ }_{x n, n}^{o} \sin (m \phi) \cos (n \pi x / L)
\end{aligned}
$$

Through the use of orthogonality, expressions for the Fourier coefficients $P_{x_{m, n}} P_{m, n}$, and $P_{r m, n}$ can found. This analysis is shown for P_{r} as an example. Multiplying by cos(m' \quad)sin(n' $\pi \times / L)$ and integrating,
$\sum \sum \int_{0}^{2 \pi} \int_{0}^{L} P_{r}^{e}, n \cos (m \phi) \cos \left(m^{\prime} \phi\right) \sin (n \pi x / L) \sin \left(n^{\prime} \pi x / L\right) d x d \phi$

$$
=\int_{0}^{2 \pi} \int_{0}^{L} P_{r}^{e}(x, \phi) \cos \left(m^{\prime} \phi\right) \sin \left(n^{\prime} \pi x / L\right) d x d \phi
$$

Using orthogonality (Appendix B),

$$
P_{m, n}^{e} \pi\left(1+\delta_{m,} 0^{L / 2}=\int_{0}^{2 \pi} \int_{0}^{L} P_{r}^{e}(x, \phi) \cos \left(m^{\prime} \phi\right) \sin \left(n^{\prime} \pi x / L\right) d x d \phi\right.
$$

Let

$$
\begin{aligned}
P_{r}(x, \phi) & =P_{r} \text { for } x_{0}-b \leq x \leq x_{0}+b \text { and } \phi_{0}-\beta \leq \varnothing \leq \phi_{0}+\beta \\
& =0 \text { otherwise }
\end{aligned}
$$

Now integrate over attachment area (Figure 2.2) using integral formulas in Appendix B,

$$
\begin{aligned}
& P_{r, n}^{e}=\frac{2 P_{r}}{\pi L(1}+\delta_{m, 0} \int_{\phi_{O}-\beta}^{\phi_{O}+\beta_{\cos \left(m^{\prime} \phi\right)} d \phi \int_{x_{O}-b}^{x_{0}+b_{0}} \sin \left(n^{\prime} \pi x / L\right) d x} \\
& \text { Let } m=m^{\prime} \text { and } n=n^{\prime} \\
& P_{r_{m, n}}^{e}=\frac{8 P_{r}}{\pi^{2} L\left(1+\delta_{m, 0}\right) m n} \cos (m \phi) \sin (m \beta) \sin (n \pi x / L) \sin (n \pi b / L)
\end{aligned}
$$

This solution must be doubled to account for the mirror value of $-\phi$; that is, to account for the integral with limits $x_{0}-b \leq x \leq x_{0}+b$ and $-\varnothing_{0}-\beta \leq \varnothing \leq-\varnothing_{0}+\beta$.

Then finally,

$$
P_{r, n}^{e}=\frac{16 P_{r}^{e}}{m n \pi^{2} L(1}+\delta_{m, 0^{2}}^{e} \cos (m \phi) \sin (m \beta) \sin (n \pi \times / L) \sin (n \pi b / L)
$$

A similar analysis is followed for all even and odd loading functions.
The following fourier loading coefficients result:
EVEN

$$
\begin{aligned}
& P_{r_{m, n}}^{e}=\frac{16 P_{r}^{e}}{m n \pi^{2} L\left(1+\delta_{m, 0}\right)} \cos (m \phi) \sin (m \beta) \sin (n \pi x / L) \sin (n \pi b / L) \\
& P_{\phi, n}^{e}=\frac{16 P_{\phi}^{e}-\sin (m \phi) \sin (m \beta) \sin (n \pi \times / L) \sin (n \pi b / L)}{m n \pi^{2}} \\
& P_{x}^{e}=\frac{16 P_{x, n}^{e}}{m n \pi^{2}\left(1+\delta_{m, 0}\right)\left(1+\delta_{n, 0^{2}}^{e}\right.} \cos (m \phi) \sin (m \beta) \cos (n \pi \times / L) \sin (n \pi b / L)
\end{aligned}
$$

ODD

$$
\begin{aligned}
& P_{r}^{\circ}{ }_{m, n}=\frac{16 P_{r}^{O}}{m n \pi^{2}} \sin (m \phi) \sin (m \beta) \sin (n \pi x / L) \sin (n \pi b / L) \\
& P_{\phi, n}^{O}=\frac{16 P_{\phi}^{O}}{m n \pi^{2} L\left(1+\frac{\delta_{m, 0}}{O}\right.} \cos (m \phi) \sin (m \beta) \sin (n \pi x / L) \sin (n \pi b / L) \\
& P_{x, n}^{O}=\frac{16 P_{x}^{O}}{m n \pi^{2} L\left(1+\delta_{n, 0}\right)} \sin (m \phi) \sin (m \beta) \cos (n \pi \times / L) \sin (n \pi b / L)
\end{aligned}
$$

4.2.2. FOURIER COEFFICIENTS FOR LDADING FUNCTIONS OF TRIANGULAR AREAS

The Fourier coefficients that correspond to loading functions in triangular areas are determined through a procedure similar to the coefficients in rectangular areas. It is after the use of orthogonality that the procedures differ. For example, in determining the Fourier loading coefficient P_{r}, one must now evaluate this integral over a triangular element (Figure 2.2):

$$
P_{r, n}^{e}=\frac{2 P_{\pi L(1} r^{e}}{\left.\phi_{n, 0}\right)} \int_{\phi_{a}}^{\phi_{b}} \int_{x}^{A \phi+B_{a}} \cos (m \phi) \sin (n \pi x / L) d x d \phi
$$

where,

$$
A=\frac{x_{b}-x_{a}}{\phi_{b}-\phi_{a}} \quad \text { and } \quad B=\frac{x_{a} \phi_{b}-x_{b} \phi_{a}}{\phi_{b}-\phi_{a}}
$$

Now, integrating with respect to \times first,

$$
\begin{aligned}
& \int_{\phi_{a}}^{\phi_{b}} \int_{a}^{A \phi+B} \cos (m \phi) \sin (n \pi x / L) d x d \phi= \\
& \frac{L}{n \pi} \int_{\phi_{a}}^{\phi_{b} \cos (m \phi)}\left[\cos \left(n \pi x_{a} / L\right)-\cos (n \pi(A \phi+B) / L)\right] d \phi
\end{aligned}
$$

Using the identity for $\cos (X+Y)$ in Appendix B,
$=\frac{L}{n \pi} \int_{\phi_{a}}^{\phi_{b}} \cos (m \phi)\left[\cos \left(n \pi x_{a} / L\right)-\cos (n \pi A \phi / L) \cos (n \pi B / L)+\sin (n \pi A \phi / L) \sin (n \pi B / L)\right] d \phi$
Integrating with respect to ϕ, setting $k=n \pi A / L$, and using trignometric integrals in Appendix B,

$$
\begin{aligned}
& \int_{\phi_{\mathrm{a}}}^{\phi_{\mathrm{b}}} \cos (m \phi) d \phi=1 /\left.m \sin (m \phi)\right|_{\phi_{\mathrm{a}}} ^{\phi_{\mathrm{b}}} \\
& \int_{\phi_{\mathrm{a}}}^{\phi_{\mathrm{b}}} \cos (m \phi) \cos (k \phi) d \phi=\frac{1}{2}\left[\frac{\sin (m+k) \phi}{m+k}+\frac{\sin (m-k) \phi}{m-k}\right]_{\phi_{a}}^{\phi_{b}} \\
& \int_{\phi}^{\phi_{\mathrm{b}}} \cos (m \phi) \sin (k \phi) d \phi=\frac{1}{2}\left[\frac{\cos (m+k) \phi}{m+k}+\frac{\cos (m-k) \phi}{m-k}\right]_{\phi_{a}}^{\phi_{b}}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
P_{r m, n}^{e}= & \frac{4 P_{r}^{e}}{n \pi^{2}(1}+\delta_{m, 0^{3}}^{e}\left[\cos \left(n \pi x_{a} / L\right) \frac{1}{m} \sin (m \phi)-\frac{1}{2} \cos (n \pi B / L)\left[\frac{\sin (m+k) \phi}{m+k}\right.\right. \\
& \left.\left.+\frac{\sin (m-k) \phi}{m-k}\right]+\frac{1}{2} \sin (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}+\frac{\cos (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi}
\end{aligned}
$$

A similar process is followed for all even and odd loading functions.
The following Fourier coefficients for loadings in triangular areas result:

EVEN

$$
\begin{aligned}
& P_{r}{ }_{m, n}=\frac{4 P_{r}}{n \pi^{2}(1} \frac{e}{+\delta_{m, 0^{3}}}\left[\cos \left(n \pi x_{a} / L\right) \frac{1}{m} \sin (m \phi)-\frac{1}{2} \cos (n \pi B / L)\left[\frac{\sin (m+k) \phi}{m+k}\right.\right. \\
& \left.\left.+\frac{\sin (m-k) \phi}{m-k}\right]+\frac{1}{2} \sin (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}+\frac{\cos (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi_{b}} \\
& P_{\phi, n}^{e}=\frac{4 P_{\phi}^{e}}{n \pi^{2}}\left[-\cos \left(n \pi x_{a} / L\right) \frac{1}{m} \cos (m \phi)-\frac{1}{2} \cos (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}\right.\right. \\
& \left.\left.-\frac{\cos (m-k) \phi}{m-k}\right]+\frac{1}{2} \sin (n \pi B / L)\left[-\frac{\sin (m+k) \phi}{m+k}+\frac{\sin (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi_{0}} \\
& P_{x, n}^{e}=\frac{4 P_{x}}{n \pi^{2}\left(1+\delta_{m}, 0^{2\left(1+\delta_{n, \sigma^{2}}\right.}\right.}\left[-\sin \left(n \pi x_{a} / L\right) \frac{1}{m} \sin (m \phi)\right. \\
& +\frac{1}{2} \cos (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}+\frac{\cos (m-k) \phi}{m-k}\right] \\
& \left.+\frac{1}{2} \sin (n \pi B / L)\left[\frac{\sin (m+k) \phi}{m+k}+\frac{\sin (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi_{a}}
\end{aligned}
$$

ODD

$$
\begin{aligned}
& P_{r_{m, n}}^{\circ}=\frac{4 P_{r}}{n \pi^{2}}\left[-\cos \left(n \pi x_{a} / L\right) \frac{1}{m} \cos (m \phi)-\frac{1}{2} \cos (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}\right.\right. \\
& \left.\left.-\frac{\cos (m-k) \phi}{m-k}\right]+\frac{1}{2} \sin (n \pi B / L)\left[-\frac{\sin (m+k) \phi}{m+k}+\frac{\sin (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi} \\
& P_{\phi, n}^{\circ}=\frac{4 P_{\phi}^{\circ}}{n \pi^{2}\left(1+\delta_{m, 0}\right)}\left[\cos \left(n \pi x_{a} / L\right) \frac{1}{m} \sin (m \phi)-\frac{1}{2} \cos (n \pi B / L)\left[\frac{\sin (m+k) \phi}{m+k}\right.\right. \\
& \left.\left.+\frac{\sin (m-k) \phi}{m-k}\right]+\frac{1}{2} \sin (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}+\frac{\cos (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi_{b}} \\
& P_{x, n}^{\circ}=\frac{4 P_{x}^{\circ}}{n \pi^{2}\left(1+\delta_{n}, 0^{2}\right.}\left[\sin \left(n \pi x_{a} / L\right) \frac{1}{m} \cos (m \phi)-\frac{1}{2} \cos (n \pi B / L)\left[-\frac{\sin (m+k) \phi}{m+k}\right.\right. \\
& \left.\left.+\frac{\sin (m-k) \phi}{m-k}\right]+\frac{1}{2} \sin (n \pi B / L)\left[-\frac{\cos (m+k) \phi}{m+k}-\frac{\cos (m-k) \phi}{m-k}\right]\right]_{\phi_{a}}^{\phi}
\end{aligned}
$$

4.3 DISPLACEMENT SOLUTION

To obtain the displacement solutions, one first separates the double-sum Fourier series for both displacements and loads into even and odd components. The even solutions are then substituted into equations 2.1a -
2.1c. A matrix equation results that gives the Fourier displacement coefficients $u_{m, n} v_{m, n}, w_{m, n}$ in terms of the Fourier loading coefficients $P_{x_{m}, n}$, $P_{\phi_{m, n}}$, and $P_{r_{m, n}}$. The procedure is repeated for the odd coefficients, which will produce a matrix that determines the odd Fourier displacement coefficients. This procedure is shown for the even solutions as an example.

One begins with the even displacement solutions:

$$
\begin{aligned}
& \mathbf{u}^{e}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} u_{m, n}^{e} \cos (m \varnothing) \cos (n \pi \times / L) \\
& \mathbf{v}^{e}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} v_{m, n}^{e} \sin (m \phi) \sin (n \pi \times / L) \\
& w^{e}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} w_{m, n}^{e} \cos (m \varnothing) \sin (n \pi \times / L)
\end{aligned}
$$

Now these solutions are substituted into the equilibrium equation (2.1a):

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =-\frac{n^{2} \pi^{2}}{L^{2}} \sum \sum u_{m, n}^{e} \cos (m \phi) \cos (n \pi x / L) \\
\frac{(1-v)}{2 a^{2}} \frac{\partial^{2} u}{\partial \phi^{2}} & =-\frac{m^{2}(1-v)}{2 a^{2}} \sum \sum u_{m, n}^{e} \cos (m \phi) \cos (n \pi \times / L) \\
\frac{(1+v)}{2 a} \frac{\partial^{2} y}{\partial x \partial \phi} & =\frac{(1+v)}{2 a} \frac{m n \pi}{L} \sum \sum v_{m, n}^{e} \cos (m \phi) \cos (n \pi \times / L) \\
\frac{\nu}{a} \frac{\partial w}{\partial x} & =-\frac{v}{a} \frac{n \pi}{L} \sum \sum w_{m, n}^{e} \cos (m \phi) \cos (n \pi x / L)
\end{aligned}
$$

Assume that the external loading can be represented by a Fourier series,

$$
P_{x}^{e}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{x, n}^{e} \cos (m \phi) \cos (n \pi \times / L)
$$

Collecting terms,

$$
-\left[\frac{n^{2} \pi^{2}}{L^{2}}+\frac{m^{2}(1-v)}{2 a^{2}}\right] u_{m, n}^{e}+\left[\frac{(1+v)}{2 a L}, m n \pi\right] v_{m, n}^{e}-\left[\frac{v n \pi}{a L}\right] \underset{m, n}{e}=-\frac{1-v^{2}}{E t} p_{x}^{e} e, n
$$

Similarly, the even solutions of $u_{m, n^{\prime}}^{e} v_{m, n}^{e}$, and $w_{m, n}^{e}$ are substituted into the equations for P_{ϕ} and P_{r}. The result is a system of three equations which may be written in matrix form.

$$
\left[\begin{array}{ccc}
c^{e}(1,1) & c^{e}(1,2) & c^{e}(1,3) \\
c^{e}(2,1) & c^{e}(2,2) & c^{e}(2,3) \\
c^{e}(3,1) & c^{e}(3,2) & c^{e}(3,3)
\end{array}\right]\left[\begin{array}{c}
e \\
u_{m, n} \\
v_{m, n}^{e} \\
w_{m, n}^{e}
\end{array}\right]=\left[\begin{array}{c}
D^{e}(1) \\
D^{e}(2) \\
D^{e}(3)
\end{array}\right]
$$

Where,

$$
\begin{aligned}
& c^{e}(1,1)=-\left[\frac{n^{2} \pi^{2}}{L^{2}}+\frac{m^{2}(1-v)}{2 a^{2}}\right] \\
& c^{e}(1,2)=\frac{(1+v) m n \pi}{2 a L} \\
& c^{e}(1,3)=-\frac{v n \pi}{a L} \\
& c^{e}(2,1)=\frac{(1+v) m n \pi}{2 a L} \\
& c^{e}(2,2)=-\left[\frac{(1-v) n^{2} \pi^{2}}{2 L^{2}}+\frac{m^{2}}{a^{2}}+\frac{t^{2}(1-v) n^{2} \pi^{2}}{12 a^{2} L^{2}}+\frac{t^{2} m^{2}}{12 a^{4}}\right] \\
& c^{e}(2,3)=\left[\frac{t^{2} m^{3}}{12 a^{4}}+\frac{m n^{2} \pi^{2} t^{2}}{12 a^{2} L^{2}}+\frac{m}{a^{2}}\right] \\
& c^{e}(3,1)=-\frac{n \pi v}{a L} \\
& c^{e}(3,3)=-\left[\frac{1}{a^{2}}+\frac{t^{2} n^{4} \pi^{4}}{12 L^{4}}+\frac{2 t^{2} m^{2} n^{2} \pi^{2}}{12 a^{2} L^{2}}+\frac{t^{2} m^{4}}{12 a^{4}}\right] \\
& c^{e}(3,2)=\left[\frac{t^{2} m^{3}}{12 a^{4}}+\frac{t^{2} m n^{2} \pi^{2}}{12 a^{2} L^{2}}+\frac{m}{a^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& D^{e}(1)=-\frac{\left(1-v^{2}\right)}{E t} P_{x}^{e} \\
& D^{e}(2)=-\frac{\left(1-v^{2}\right)}{E t} P_{\phi}^{e} \\
& D_{m, n}^{e}(3)=-\frac{\left(1-v^{2}\right)}{E t} P_{r_{m, n}^{e}}^{e}
\end{aligned}
$$

A similar set of matrix equations are also calculated by using the following

$$
\begin{aligned}
u^{o} & =\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} u_{m, n}^{o} \sin (m \phi) \cos (n \pi x / L) \\
v^{0} & =\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} v_{m, n}^{o} \cos (m \phi) \sin (n \pi x / L) \\
w^{o} & =\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} w_{m, n}^{o} \sin (m \phi) \sin (n \pi x / L)
\end{aligned}
$$

FOURIER COEFFICIENTS FOR DISPLACEMENT SOLUTIONS

Through the use of fourier analysis, two sets of 3×3 matrix equations result, one for even and one for odd solutions. These matrices may now be solved individually for the even and odd Fourier displacement coefficients. Once these coefficients have been determined, the total displacement, u, v, and w, may be computed from equations 2.1d - 2.1f.

A conventional row-manipulation technique is employed to solved for Fourier displacement coefficients. For example, consider the even matrix equation:

$$
\left[\begin{array}{lll}
c^{e}(1,1) & c^{e}(1,2) & c^{e}(1,3) \\
c^{e}(2,1) & c^{e}(2,2) & c^{e}(2,3) \\
c^{e}(3,1) & c^{e}(3,2) & c^{e}(3,3)
\end{array}\right]\left[\begin{array}{c}
u_{m, n}^{e} \\
v^{e} \\
m, n \\
w^{e} \\
m, n
\end{array}\right]=\left[\begin{array}{l}
v^{e}(1) \\
D^{e}(2) \\
d^{e}(3)
\end{array}\right]
$$

To solve for the even displacement coefficients, $u_{m, n}^{e}, v_{m, n^{\prime}}^{e}$ and $w \frac{e}{m, n}$, the coefficient matrix is converted into an upper-triangular matrix.

$$
\left[\begin{array}{ccc}
c^{\prime}(1,1) & c^{\prime}(1,2) & c^{\prime}(1,3) \\
0 & c^{\prime}(2,2) & c^{\prime}(2,3) \\
0 & 0 & c^{\prime}(3,3)
\end{array}\right]\left[\begin{array}{c}
u^{e} \\
m, n \\
v^{e} \\
m, n \\
w_{m, n}^{e}
\end{array}\right]=\left[\begin{array}{c}
D^{\prime}(1) \\
D^{\prime}(2) \\
D^{\prime}(3)
\end{array}\right]
$$

The displacement coefficients may then computed for by simply "back subistituting."

4.4 STRESS SOLUTION

Once the displacements of the shell have been determined, the bending and membrane forces, M and N, can be computed. The stress-resultant displacement relations are:

$$
\begin{align*}
& N_{x}=\frac{E t}{1-v^{2}}\left[\frac{\partial u}{\partial x}+v\left[\frac{1}{a} \frac{\partial v}{\partial \phi}-\frac{w}{a}\right]\right] \tag{4.4a}\\
& N_{\phi}=\frac{E t}{1-v^{2}}\left[\frac{1}{a} \frac{\partial v}{\partial \phi}-\frac{w}{a}+\frac{v \partial u}{\partial x}\right] \\
& N_{x \phi}=\frac{E t}{2(1+v)}\left[\frac{\partial v}{\partial x}+\frac{1}{a} \frac{\partial u}{\partial \phi}\right] \tag{4.4c}\\
& M_{x}=-D\left[\frac{\partial^{2} w}{\partial x^{2}}+\frac{v}{a^{2}}\left[\frac{\partial v}{\partial \phi}+\frac{\partial^{2} w}{\partial \phi^{2}}\right]\right] \\
& M_{\phi}=-D\left[\frac{1}{a^{2}}\left[\frac{\partial v}{\partial \phi}+\frac{\partial^{2} w}{\partial \phi^{2}}\right]+\frac{v \partial^{2} w}{\partial x^{2}}\right] \tag{4.4e}\\
& D=\frac{E t^{3}}{\text { (4.4b) }} \tag{4.4f}\\
& M_{x \phi}=-D(1-v) \frac{1}{a}\left[\frac{\partial v}{\partial x}+\frac{\partial^{2} w}{\partial x x^{2}}\right] \\
& \text { (4.4.4d) } \\
& \text { (4.4f) } \\
& \text { (4.4e) } \\
& \hline 12(1+v)
\end{align*}
$$

The compound stresses in the shell may be calculated next:

$$
\begin{array}{ll}
\sigma_{x}=\frac{N_{x}}{t}+\frac{12 M_{x} z}{t^{3}} & \sigma_{\phi}=\frac{N_{\phi}}{t}+\frac{12 M_{\phi} z}{t^{3}} \\
\tau_{x \phi}=\frac{N_{x \phi}}{t}+\frac{12 M_{x \phi} z}{t^{3}} & -\frac{t}{2} \leq z \leq \frac{t}{2}
\end{array}
$$

4.5 INTERNAL PRESSURE

To solve for the Fourier series that represents internal pressure,
which contains no axial component, one starts with the original radial loading series. Beginning with the even series,

$$
P_{r}^{e}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{r}^{e}{ }_{m, n}^{\cos (m \phi) \sin (n \pi x / L)}
$$

Using orthogonality,

$$
P_{r}^{e}{ }_{m}^{e} \pi\left(1+\delta_{m, 0}\right)^{L L}=\int_{0}^{2 \pi} \int_{0}^{L} P_{r}(x, \phi) \cos \left(m^{\prime} \phi\right) \sin \left(n^{\prime} \pi x / L\right) d x d \phi(4.5 a)
$$

Now let

$$
\begin{array}{ll}
P_{r}(x, \phi)=P_{r} \quad \text { for } \quad 0 \leq x \leq L \\
& 0 \leq \phi \leq 2 \pi
\end{array}
$$

Evaluating the double integral for $m=0$,

$$
\begin{aligned}
P_{r} e_{m, n} & =\frac{4 P_{r}}{n \pi}[1-\cos (n \pi)] \\
& =\frac{4 P_{r}\left[1-(-1)^{n}\right]}{n_{1}} \\
\text { for } m & =0 \text { and } n>0
\end{aligned}
$$

$$
P_{r}^{\circ}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P_{r}^{\circ} \circ \sin (m \phi) \sin (n \pi \times / L)
$$

Evaluating the double integral over the same limits produces,

$$
\begin{aligned}
P_{r}^{\circ} & =\frac{2 P_{r}}{\pi^{2} n}[1-\cos (n \pi)][1-\cos (2 m \pi)] \\
& =0 \text { for all } m \text { and } n
\end{aligned}
$$

Thus, in general,

$$
P_{r}=\frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty}\left[P_{r}^{e} \cos (m \phi)+P_{r}^{0} \sin (m \phi)\right] \sin (n \pi x / L)
$$

Since $P_{r}{ }_{\mathrm{m}, \mathrm{n}}^{\mathrm{O}}$ is 0 for all m, n,

$$
\begin{equation*}
P_{r}=\frac{1}{2} \sum_{n=1}^{\infty} P_{r} e_{m, n}^{\sin (n \pi x / L) \quad \text { for } m=0} \tag{4.5b}
\end{equation*}
$$

Finally,

$$
\left.P_{r}=\sum_{n=1}^{\infty} \frac{2 P(}{n \pi} 1-(-1)^{n}\right] \sin (n \pi \times / L)
$$

This Fourier series represents a uniform radially outward pressure over the entire surface of the cylinder. In order to account for the effect of internal pressure, this outward radial pressure is superposed on the external forces and moments. Mathematically, this is accomplished by merely adding the above Fourier series to the Fourier series representing the external loads.

Hydrostatic Pressure

To account for hydrostatic pressure, in a tank with the x-direction vertically upward, one integrates equation 4.5a, but does not assume that $P_{r}(x, \phi)$ is constant for x from 0 to L. Instead, the following expression is used:

$$
\begin{array}{ll}
P_{r}(x, \phi)=\rho g\left(x_{0}-x\right) & \text { for } 0<x \leq x_{0} \\
P_{r}(x, \phi)=0 & \text { for } x_{0}<x \leq L
\end{array}
$$

where $x_{0}=$ Fluid fill level from vessel bottom $\rho=$ Fluid density

Now, evaluating equation $4.5 a$ for $m=0$,

$$
P_{r_{m, n}}^{e}=\frac{4 \rho g}{L}\left[\frac{x_{0} L}{n \pi}\left[1-\cos \left(f x_{0}\right)\right]-\left[\frac{1}{f^{2}} \sin \left(f x_{0}\right)-\frac{x_{0} \cos \left(f x_{0}\right)}{f}\right]\right]
$$

where,

$$
f=\frac{n \pi x}{L}
$$

Like the uniform, radial outward pressure, the odd terms of this series are also zero. Thus, substituting this new expression for P_{r}^{e} into equation 4.5b, the Fourier series becomes:

$$
P_{r}=\sum_{n=1}^{\infty} \frac{2 \rho g}{L}\left[\frac{x_{0} L}{n \pi}\left[1-\cos \left(f x_{O}\right)\right]-\left[\frac{1}{f^{2}} \sin \left(f x_{O}\right)-\frac{x_{0}}{f} \cos \left(f x_{0}\right)\right]\right] \sin (n \pi x / L)
$$

4.6 SUMMARY

In this chapter, the loading Fourier coefficients, $P_{x_{m}, n}, P_{\phi_{m, n}}$, and $P_{r_{m, n}} n^{\prime}$ for both even and odd solutions have been determined by orthgonality. Once these coefficients have been found, equations 4.1d - 4.1f may be used to determine the loads, P_{X}, P_{ϕ}, and P_{r} at any location on the cylindrical surface. Using equations 4.1a - 4.1c, the displacements u, v, and w can also be expressed as Fourier series. The Fourier series for the displacements and the loadings may now be substituted into the general equilibrium equations 2.1a 2.1c. Equations 2.1a - 2.1c may now be written as two matrix equations, one for even solutions and one for odd solutions. These matrix equations are then used to obtain the displacement Fourier coefficients $u_{m, r} v_{m, n}$, and $w_{m, n}$. Once the displacement Fourier coefficients have been computed, the displacement solutions, equations 4.1a - 4.1c, may be used to determine the deflection of the shell at any location on the cylinder. Using these displacement solutions, the bending and membrane forces may be calculated from equations 4.4a - 4.4f. The compound and shear stresses may then be computed.

Section 4.5 developed the Fourier loading series that would simulate internal and hydrostatic pressure. To account for internal or hydrostatic pressure, these series would be added to the existing Fourier series which represent the external loads.

Since the Fourier series for displacements and loadings were developed so that they fulfill the boundary conditions of simple-support, we now have a solution to the equilibrium equations for a simply-supported cylindrical shell.

5. THE METHOD OF COLOCATION

5.1 BASIC THEORY

The method of colocation is a technique that is used to solve for forces that produce a specified displacement field for a designated patch area. To accomplish this, a two step process is involved. First, using the previously mentioned Fourier analysis with unit loadings, one can obtain displacements. These displacements are effectively the elements of a flexibility matrix. Consider an $n \times n$ subdivision of elements, the displacements are found to be:

```
    W(1)=C(1,1)P(1) +C(1,2)P(2) +C(1,3)P(3)+\ldots+C(1,4\mp@subsup{n}{}{2})P(4\mp@subsup{n}{}{2})
```

 \(W(2)=C(2,1) P(1)+C(2,2) P(2)+C(2,3) P(3)+\ldots+C\left(2,4 n^{2}\right) P\left(4 n^{2}\right)\)
 \(W(3)=C(3,1) P(1)+C(3,2) P(2)+C(3,3) P(3)+\ldots+C\left(3,4 n^{2}\right) P\left(4 n^{2}\right)\)
 \(w\left(4 n^{2}\right)=C\left(4 n^{2}, 13 P(1)+C\left(4 n^{2}, 23 P(2)+C\left(4 n^{2}, 3\right) P(3)+\ldots+C\left(4 n^{2}, 4 n^{2}\right) P\left(4 n^{2}\right)\right.\right.\)
 To obtain the values of the coefficient (or flexibility) matrix, a unit loading is applied for $P(1)$ and all other loadings are zero. Thus,

```
        w(1) = C(1,1)P(1)
        w(2) = C(2,1)P(1)
        w(3)=C(3,1)P(1)
        .
        •
        W(4n')=C(4n',1)P(1)
```

But, since $P(1)$ is a unit loading, the coefficients are just equal to the displacements.

```
C(1,1)=w(1)
C(2,1)=w(2)
c(3,1) =w(3)
    •
    •
C(4n2,1)=w(4\mp@subsup{n}{}{2})
```

To obtain the next set of coefficents, $P(2)$ becomes a unit loading and all other loadings are zero. This process is repeated iteratively for all loadings in all directions. Thus, the final matrix is comprised of four types of coefficients: from radial displacements due to radial loadings, radial displacements due to shear loadings, shear displacements due to radial loadings, and shear displacements due to shear loadings.

The final matrix equation for colocation takes the form of

$$
\left[\begin{array}{c}
w(1) \\
\cdot \\
\cdot \\
\cdot \\
w\left(4 n^{2}\right) \\
v(1) \\
\cdot \\
\cdot \\
\cdot \\
v\left(4 n^{2}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
w_{r}(1,1) & \ldots & w_{r}\left(1,4 n^{2}\right) & w_{\phi}(1,1) & \ldots \\
\cdot & & w_{\phi}\left(1,4 n^{2}\right) \\
\cdot & & \cdot & \cdot & \\
\cdot & \cdot & & \cdot \\
w_{r}\left(4 n^{2}, 1\right) & \ldots & w_{r}\left(4 n^{2}, 4 n^{2}\right) & w_{\phi}\left(4 n^{2}, 1\right) & \ldots \\
v_{r}(1,1) & \ldots & w_{\phi}\left(4 n^{2}, 4 n^{2}\right) \\
\cdot & & \cdot & \left.v^{2}\right) & v_{\phi}(1,1) \\
\cdot & \ldots & v_{\phi}\left(1,4 n^{2}\right) \\
\cdot & & \cdot & \cdot & \\
v_{r}\left(4 n^{2}, 1\right) & \ldots & v_{r}\left(4 n^{2}, 4 n^{2}\right) & v_{\phi}\left(4 n^{2}, 1\right) & \ldots \\
\cdot & v_{\phi}\left(4 n^{2}, 4 n^{2}\right)
\end{array}\right]\left[\begin{array}{c}
P_{r}(1) \\
\cdot \\
\cdot \\
\cdot \\
P_{r}\left(4 n^{2}\right) \\
P_{\phi}(1) \\
\cdot \\
\cdot \\
\cdot \\
P_{\phi}\left(4 n^{2}\right)
\end{array}\right]
$$

Where, the elements of the flexibility matrix are:

$$
\begin{aligned}
w_{r}(n, n)= & \text { The coefficients of a radial displacement due to } \\
& \text { a radial loading. } \\
w_{\phi}(n, n)= & \text { The coefficients of a radial displacement due to } \\
& \text { a shear loading. } \\
v_{r}(n, n)= & \text { The coefficients of a shear displacement due to } \\
& \text { a radial loading. } \\
v_{\phi}(n, n)= & \text { The coefficients of a shear displacement due to } \\
& \text { a shear loading. }
\end{aligned}
$$

If the displacements are specified on the left-hand side of this matrix equation, the coefficient matrix can be inverted to obtain a stiffness matrix, and the loadings that will produce the specified displacment field may be solved.

5.2 UNIFORM DISPLACEMENTS

In order to allow the plug to move uniformly as a rigid body, w(n) and $v(n)$ must be determined to ensure this motion. From Figure 5.1, one can see that a uniform unit lateral displacement, parallel to $\phi=0$, is guaranteed if $w(n)$ and $v(n)$ satisfy the following:

```
w(n)\operatorname{sin}\phi=v(n)\operatorname{cos}\phi
w(n)cos\phi +v(n)\operatorname{sin}\varnothing=1
```

Solving for $w(n)$ and $v(n)$:

$$
\begin{aligned}
& w(n)=\cos \phi \\
& v(n)=\sin \phi
\end{aligned}
$$

These expressions for $w(n)$ and $v(n)$ are substituted into the general matrix equation 5.1, and then this equation is solved for the corresponding loadings that will produce a uniform, rigid body displacement. Having solved for the required forces from a known set of displacements, the stiffness may be computed.

Figure 5.1 Conditions For Uniform Displacement

5.3 AN EXAMPLE OF COLOCATION

```
As an example, the colocation method was used to calculate the required forces necessary for a unit radially inward displacement of a rectangular attachment. The cylinder used in this example had the following parameters:
```

```
Radius = 1.0 in.
```

Radius = 1.0 in.
Length = 8.0 in.
Length = 8.0 in.
Thickness = 0.01 in.
Thickness = 0.01 in.
E = 1.0 psi.
E = 1.0 psi.
v = 0 . 3

```
v = 0 . 3
```

The rectangular attachment had the following dimensions:

$$
\begin{aligned}
& L_{x}=0.5 \mathrm{in} . \\
& L_{\phi}=0.5 \mathrm{in} . \\
& T_{x}=0.125 \mathrm{in} . \\
& T_{\phi}=0.25 \mathrm{in} .
\end{aligned}
$$

The attachment was placed two inches from the bottom of the cylinder.

The calculated radial and shear forces that were required to produce a unit radially inward displacement of the rectangular attachment are shown in Figure 5.2. It is interesting to note that very large shear forces (twice as large as radial forces) are necessary in regions 1 and 3 to obtain a unit displacement. These large shear forces are expected, because in simulating the uniform displacement of a rigid attachment, the curvature of the shell-attachment intersection must be maintained. This is not true for a soft attachment in which the curvature of the shell-attachment intersection would tend to flatten. Since the attachment is located near the bottom of the cylinder, the radial force is inward in region 4 and outward in region 2. This combination of forces was expected because it would ensure a uniform displacement for an attachment near the bottom of a simply-supported cylinder, since the shell becomes stiffer near the ends.

By loading each the four regions with the corresponding radial and shear forces in Figure 5.2, one may calculate the membrane and bending stresses for this rigid attachment in the usual manner.

Figure 5.2 Calculated Radial And Shear Forces That Produce A Unit Radially Inward Displacement Of The Rectangular Attachment (10^{-4} lbs.)

6. DISCUSSION OF RESULTS

6.1 COMPARISON WITH BIJLAARD'S WORK

Abstract

In his paper "Stresses From Radial Loads And External Moments In Cylindrical Pressure Vessels" (Ref. 3), Bijlaard includes tabulated results of calculations. As a first comparison, the method presented here is used to calculate the same problems examined by Bijlaard. The geometry and properties of the cylinder are chosen to aid in non-dimensionalizing the resuits, since all of Bijlaard's tables are non-dimensionalized. The parameters of the cylinder are:

$$
\begin{aligned}
\text { Radius } & =1.0 \\
\text { Length } & =8.0 \\
v & =0.3
\end{aligned}
$$

The tables included the following values:

$$
\begin{aligned}
& M \times N=\text { Number of terms in the Fourier series } \\
& t= \text { Thickness of shell } \\
& W= \text { Radial displacement } \\
& M_{\phi}=\text { Circumferential bending moment per unit length } \\
& M_{X}=\text { Longitudinal bending moment per unit length } \\
&-N_{\phi}=\text { Circumferential membrane force per unit length } \\
&-N_{X}=\text { Longitudinal membrane force per unit length } \\
& P= \text { Surface loading } \\
& B= \text { One-half the length of the attachment- } \\
& \text { cylinder intersecting area in the } \times \text { and } \\
& \emptyset \text { directions }
\end{aligned}
$$

All attachments were of square geometry. Bijlaard usually used a 41×61 term Fourier series. However, as the shell became thinner, his value of N exceeded 100.

Radial Loads

Tables A, B, and C reference Table 9 in Bijlaard's paper. The three tables display the non-dimensionalized deflections, membrane forces per unit length, and bending moments per unit length using a varying number of terms in the Fourier series.

TABLE A - Radial Loading with $t=1 / 15$ and $B=1 / 4$

$M \times N$	t	β	$W / P / E A)$	M_{ϕ} / P	M_{x} / P	$-N_{\phi} /(P / A)$	$-N_{x} /(P / A)$
Bijlaard	$1 / 15$	$1 / 4$	423	0.077	0.0485	1.820	2.23
10×10	$1 / 15$	$1 / 4$	437	0.072	0.0324	0.993	2.09
25×25	$1 / 15$	$1 / 4$	457	0.084	0.0530	1.754	2.30
50×50	$1 / 15$	$1 / 4$	457	0.084	0.0517	1.749	2.30
75×75	$1 / 15$	$1 / 4$	457	0.084	0.0511	1.746	2.30
100×100	$1 / 15$	$1 / 4$	457	0.084	0.0515	1.746	2.30

TABLE B - Radial Loading with $t=0.01$ and $\beta=1 / 8$

$M \times N$	t	B	$W /(P / E A)$	M_{ϕ} / P	M_{x} / P	$-N_{\phi} /(P / A)$	$-N_{x} /(P / A)$
$B i j 1$ aard	.01	$1 / 8$	30,136	0.0716	0.0394	9.792	14.192
10×10	.01	$1 / 8$	26,675	0.0391	0.0138	2.006	9.791
25×25	.01	$1 / 8$	29,396	0.0675	0.0291	6.380	13.372
50×50	.01	$1 / 8$	29,889	0.0707	0.0379	9.478	14.141
75×75	.01	$1 / 8$	29,913	0.0718	0.0389	9.640	14.163
100×100	.01	$1 / 8$	29,896	0.0709	0.0370	9.485	14.155

TABLE C - Radial Loading with $t=0.003$ and $B=1 / 16$

$M \times N$	t	R	$W / P / E A)$	M_{ϕ} / P	M_{x} / P	$-N_{\phi} /(P / A)$	$-N_{x} /(P / A)$
$B i j l a a r d$	0.003	$1 / 16$	370,000	0.095	0.0455	34.5	47.0
10×10	0.003	$1 / 16$	296,550	0.023	0.0076	2.7	21.8
25×25	0.003	$1 / 16$	354,310	0.059	0.0217	10.6	36.4
50×50	0.003	$1 / 16$	367,760	0.079	0.0348	22.3	43.3
75×75	0.003	$1 / 16$	371,670	0.083	0.0429	30.1	45.3
100×100	0.003	$1 / 16$	372,730	0.084	0.0469	32.7	45.7

One can see that our results are in good agreement with Bijlaard's. As expected, more terms in the Fourier series are needed for convergence when t and β become small. In this situation, about 75×75 terms are required for good convergence. For larger values of t and β, approximately 50×50 terms are required for good convergence. Since Bijlaard truncated the governing equilibrium equation, our results are not expected to match Bijlaard's exactly.

External Moments

Table D references Tables 2 and 5 in Bijlaard's paper. The geometry and properties of the cylinder were the same as for the radial loadings. The thickness was $t=0.01$. Our number of patch divisions varied to allow greater refinement within the patch area.

TABLE D - External Moment Loading with
$t=0.01$ and $B=1 / 8$

TYPE	$M \times N$	PATCH DIVISION	M_{6}	M_{x}	$-N_{\phi}$	$-N_{x}$
Longitudinal						
	Bijlaard		0.199	0.270	85.28	32.8
	50×50	1×1	0.157	0.205	67.18	27.1
	75×75	1×1	0.177	0.219	70.18	27.4
	75×75	3×3	0.198	0.258	82.54	32.1
Circumferential						
	Bijlaard		0.629	0.306	32.72	60.08
	50×50	1×1	0.255	0.146	16.60	25.97
	75×75	3×3	0.611	0.314	31.55	56.29

In regard to moment loadings, our results are in good agreement with Bijlaard's. It is quite evident that as more elements in the attachmentcylinder intersection are used, the agreement becomes better. When more elements are used, there are more elements on either side of the neutral axis.

As a result, the moment that is applied may be simulated more accurately. Since t and β are small, approximately 75×75 terms are needed for good convergence.

6.2 COMPARISON WITH AN AFI-650 "LOW TYPE" NOZZLE ON A STORAGE TANK

```
    Ref. 5 contains results that were obtained by applying separate
external moments and radial forces on an API-650 "Low Type" 24-in.-dia nozzle.
The applied loads were:
    Longitudinal Moment = 1800 < 10 3 in-lbs.
    Circumferential Moment = 2724 < 103 in-lbs.
    Radial Thrust = 40.8 < 103 lbs.
To simulate the presence of a reinforcing pad on the tank, the loads were
distributed over a reinforcing pad which had dimensions:
    Inner Radius = 12.0 in.
    Outer Radius = 27.0 in.
The locations of the dial gauges are shown in Figure 6.1. The shell
deflections due to various loadings are shown in Table E. The calculations
used 50 x 50 Fourier series, except where indicated. The parameters that were
used to calculate shell deflections and stiffnesses were:
    Radius = 2070 in. (172.5 ft.)
    Height = 576 in. (48 ft.)
    Tank Thickness = 1.345 in.
    E = 30 < i0' psi.
    v = 0 . 3
```


Figure 6.1 Location of Dial Gauges on Reinforcing Pad (From Reference 5)

TABLE E - Shell Deflections (in.) near an API-650 Nozzle Due to Various External Loads

LOAD	NO. 2	NO. 3	NO. 4	ND. 5	NO. 7	NO. 8	NO. 10	NO. 11
Longitudinal Moment								
Experiment	0.020	0.099	0.409	0.471	0.246	0.222	0.223	0.231
Calculated	0.033	0.128	0.432	0.504	0.278	0.267	0.278	0.267
Circumfer . Moment								
Experiment	0.012	0.028	0.041	0.033	0.170	0.210	-0.093	-0.137
Calculated	0.0	0.0	0.0	0.0	0.068	0.141	-0.068	-0.141
Calculated	0.0	0.0	0.0	0.0	0.153	0.249	-0.153	-0.249
Radial Thrust								
Experiment	0.078	0.152	0.350	0.380	0.250	0.222	0.235	0.229
Calculated	0.086	0.246	0.427	0.432	0.359	0.345	0.363	0.351

The calculations for the shell deflections are larger than the experimental values, because the cylindrical model is simply-supported, and the actual tank is fixed at the base.

The Fourier series of 50×50 terms provided good convergence for the calculated values. However, when a circumferential moment was applied, a series of 75×75 terms was necessary to ensure good convergence.

```
Using the above data, stiffness coefficients may be determined (Ref.5). A comparison of calculated and experimental values is shown in Table \(F\).
```


TABLE F - Comparison of Stiffness Coefficients

Stiffness Coefficient	Experimental	Calculated
K (ingitibs/rad.)	163×10^{6}	166×10^{6}
K Circumferential (in-lbs/rad.) K Radial (lbs/in)	290×10^{6}	249×10^{6}

Abstract

The calculated stiffness coefficients are in good agreement with the experimental values. Since the calculated shell deflections are generally larger that the experimentally measured values, this discrepancy will cause smaller values for stiffness coefficients.

Hydrostatic Pressure

Ref. 5 also contains measured deflections due to hydrostatic pressure. A comparison of calculated and experimental values is shown in Table G.

TABLE G - Shell Deflections Due to Hydrostatic Pressure

Tank Water Level	No. 3	No. 4	No. 5
24'-0"			
Measured (in.)	0.178	0.385	0.480
Calculated (in.)	0.417	0.781	0.860
44'-0"			
Measured	0.498	1.151	1.380
Calculated	0.824	1.583	1.791

The calculated deflections are larger by a factor of two, when the tank is only half full. However, the calculated values are in better agreement with the measured deflections when the tank is filled to near capacity. Two reasons account for this discrepancy. First, calculations are based on the assumption that the shell-to-bottom junction is free to rotate. In reality, the bottom of the tank is fixed. As a result, calculated values can be expected to differ reatly from measured deflections near the bottom of the tank. Second, when the tank is nearly full, the hydrostatic load becomes predominant over the rigidity of the bottom-to-shell junction. This is not the case when the filling level in the tank is low. Thus, better calculated deflections can be expected when the filling level is high and the attachment is near the bottom.

6.3 COMPARISON WITH THE PRESSURE VESSEL ATTACHMENTS OF WELDING RESEARCH COUNCIL BULLETIN ND. 60

Abstract

In Welding Research Council Bulletin No. 60 (Ref. 6), Cranch presents experimental data that was obtained by independently loading five attachments on a pressure vessel. Only two of the five attachments were used for this comparison (Difficulties were encountered in accurately simulating a third attachment, see Appendix E). Due to the many ambiguities of the Bulletin's presentation of the experiment, it should be kept in mind that this comparison should not treated as numerically exact one. Rather, it should reflect the general trend of the solution presented in this thesis.

In attempting to accurately simulate the Bulletin's experiments on the attachments, some major ambiguities of and inconsistencies in the tests are causes for discrepancies between experimental and calculated values. The Bulletin does not describe the method in which the vessel is supported. As seen in the last comparison, the boundary conditions at the ends of the cylinder are very important. The welds that connect the attachments to the vessel are inconsistent, because the width of the weld changes as one moves around the circumference of the attachment. The treatment in the Bulletin of deflections is incomplete, because one cannot tell what deflections were measured with respect to. Taken together, these factors are most likely to affect the agreement between calculated and experimental values.

The Bulletin also presents a theoretical value for every experimental value. These theoretical values were based on Bijlaard's original method for determining stresses at attachment-shell intersections. However, the Bulletin does not explain how circular attachments were simulated, since Bijlaard's method only accounted for rectangular attachment-shell intersections.

The parameters of the pressure vessel used in simulating the
experiments were (See Figure 6.2):

```
Radius \(=24.0 \mathrm{in}\).
Length \(=104.0 \mathrm{in}\).
Vessel thickness \(=0.625 \mathrm{in}\).
\(E=29.5 \times 10^{6} \mathrm{psi}\).
\(v=0.3\)
```

The dimensions used to simulate the attachments were (See Figures 6.3 and 6.4):

TABLE H - Summary of Attachment Dimensions (in.)

Attachment	Inner Radius	Outer Radius	Weld Thickness
No. 1	3.033	3.844	$17 / 32$
No. 3	3.033	5.810	$9 / 16$

To be consistent with the methods in the Bulletin, the loading area on the cylinder included the thickness of the welds. For Attachment 3, the load was applied over the reinforcing pad and its welds. The bending and membrane stresses were then calculated at the edge of each attachment. For Attachment 3, the stresses were calculated at the edge of the reinforcing pad. The experimental values in the Bulletin were obtained by extrapolating the experimentally determined stresses to the edge of the attachments. As in the Bulletin, values along the meridian were those along the circumferential axis, and values along the generator were those along the longitudinal axis.

Figure 6.2 Pressure Vessel Geometry
(From Reference 6)

Figure 6.3 Attachment 1 Geometry, ins. (From Reference 6)

Section A-A

Figure 6.4 Actachment 3 Geometry, ins.
(From Reference 6)
6.3.1 BENDING AND MEMBRANE STRESSES

Tables I and J contain bending and membrane stress per unit force for a radial load. My calculated values are shown along with the Bulletin's experimental and theoretical values. For Attachment 1 , the calculated values are in good agreement with the Bulletin's theoretical results. This agreement is expected since the theoretical values are based on Bijlaard's method for determining stresses in cylindrical shells. The agreement between experimental and calculated stresses is consistent and within the same order of magnitude. Since Attachment 3 involves a configuration for which no detailed theory exists, the theoretical values in the Bulletin were determined from certain recommendations that $B i j l a a r d m a d e ~ u s i n g ~ s p h e r i c a l ~ s h e l l ~ t h e o r y . ~ A s ~ a ~ r e s u l t, ~$ my calculated values, which were based on cylindrical shell theory, will tend to disagree with the theoretical values. However, the calculated values are consistent in many respects to the experimental values, and the stresses are within the correct order of magnitude.

TABLE I - Attachment No. 1, Radial Load, Bending and Membrane Stress per Unit Force (psi./lbs.), $P=16,600$ lbs.

Method	$\mathrm{N}_{\mathrm{x}} / \mathrm{Pt}$	$6 \mathrm{M}_{\mathrm{x}} / \mathrm{Pt}^{2}$	$\mathrm{~N}_{\phi} / \mathrm{Pt}$	$6 \mathrm{M}_{\phi} / \mathrm{Pt}^{2}$
Meridian:				
Experiment	-0.21	-0.81	-0.43	-1.80
Calculated	-0.42	-0.67	-0.33	-1.26
Theoretical	-0.38	-1.01	-0.33	-1.49
Generator:	-0.27	-0.71	-0.07	-0.49
Experiment	-0.45	-0.85	-0.27	-1.34
Calculated	-0.38	-1.01	-0.33	-1.49
Theoretical				

TABLE J - Attachment No. 3, Radial Load, Bending and Membrane Stress per Unit Force (psi./lbs.), $P=19,500$ lbs.

Method	$\mathrm{N}_{\mathrm{x}} / \mathrm{Pt}$	$6 \mathrm{M}_{\mathrm{x}} / \mathrm{Pt}^{2}$	$\mathrm{~N}_{6} / \mathrm{Pt}$	$6 \mathrm{M}_{\phi} / \mathrm{Pt}^{2}$
Meridian:				
Experiment	-0.19	-0.47	-0.30	-1.20
Calculated Theoretical	-0.23	-0.25	-0.17	-0.45
Generator:	-0.30	-0.53	-0.23	-0.96
Experiment	-0.23	-0.59	+0.01	-0.39
Calculated	-0.29	-0.40	-0.12	-0.76
Theoretical	-0.30	-0.53	-0.23	-0.91

Tables K and L contain bending and membrane stress per unit couple for longitudinal and circumferential couples. Unlike the case involving radial loads, the Bulletin's theoretical values for both attachments were obtained using Bijlaard's method for determining stresses with cylindrical shell theory.

Examining the stresses due to a longitudinal couple, my calculated values are in good agreement with the theoretical values. This agreement was expected. The calculated values are also very consistent with the experimental results, and in certain cases, the calculated stresses are closer to the experimental results than the theoretical values.

For the circumferential couple, calculated stresses are in good agreement with the theoretical values, as they should be. As before, the calculated results are consistent with experimental values, and in some cases, the calculated values represent a better estimate of the experimental stresses than the theoretical values.

Thus, although there were ambiguities in simulating the experimental procedure in this Bulletin, my calculated values were in consistent and in good agreement with the experimental and theoretical values. The discrepancies arose primarily because of ambiguities in the treatment of the welds of the attachments and in the method of support for the vessel.

TABLE K - Longitudinal Couple, Bending and Membrane Stress per Unit Couple (psi./in-lbs)

Method $(P=i n-l b s .)$	$\mathrm{N}_{\mathrm{z}} / \mathrm{Pt}$	$6 M_{x} / P t^{2}$	$\mathrm{N}_{6} / \mathrm{Pt}$	$6 M_{\phi} / P t^{2}$
Attachment No. 1$\left(P=1.344 \times 10^{5}\right)$				
Experiment	0.019	0.27	0.036	0.15
Calculated	0.039	0.37	0.113	0.24
Theoretical	0.029	0.35	0.098	0.22
Attachment No. 3$\left(P=1.296 \times 10^{5}\right)$				
Generator:				
Experiment	0.028	0.14	0.017	0.074
Calculated	0.025	0.12	0.053	0.104
Theoretical	0.023	0.14	0.066	0.094

TABLE L - Circumferential Couple, Bending and Membrane Stress per Unit Couple (psi./in-lbs.) at Edge of Attachment

Method	$N_{x} /$ Pt	$6 M_{2} / P t^{2}$	$N_{\phi} /$ Pt	$6 \mathrm{M}_{6} / \mathrm{Pt}^{2}$
Attachment No. 1 $(P=59,520 \text { in-lbs. })$ Meridian:				
Experiment	0.015	0.24	0.079	0.53
Calculated	0.060	0.32	0.038	0.60
Theoretical	0.045	0.27	0.031	0.50
Attachment No. 3 $(P=87,340 \text { in-lbs. })$				
Experiment	0.024	0.16	0.091	0.41
Calculated	0.042	0.14	0.027	0.25
Theoretical	0.044	0.15	0.023	0.29

6.3.2 DEFLECTIONS

Figure 6.5 Deflection per Unit Radial Load, Attachment 1

[^0]
7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE IMPROVEMENTS

7.1 SUMMARY AND CONCLUSIONS

The objective of this thesis was to extend the Fourier method of modelling pressure vessels as continuous simply-connected surfaces with central patch loads. This work has resulted in a closed-form solution for determining stresses and flexibities of pressure vessel attachments. The method's capabilities include placing loads or load combinations anywhere on the cylindrical surface, designating rectangular or circular attachments, examining displacements and stresses resulting from multiple attachments, and simulating rigid or soft attachments.

In comparing the calculations of the thesis with experimental tests in existing literature, there was generally good agreement between my calculated values and those determined from experiments. In comparing the calculations with Bijlaard's results, the calculated values are in good agreement with Bijlaard's values, as they should be.

In simulating experimental tests on an API-650 nozzle located on a storage tank, the discrepancy in the boundary condition primarily accounted for inaccuracies between experimental and calculated data. The calculations assumed a simply-supported base, when in reality, it is fixed. However, the effect of the fixed boundary condition may be lessened by locating the attachment farther from the base or by including a hydrostatic load. For the hydrostatic load, I found the calculated deflections were in good agreement with experimental values, especially when the tank was full. When the tank is full, the hydrostatic load is predominant over the base rigidity.

Despite ambiguities in interpreting the experimental procedure of tests performed on pressure vessel attachments in Welding Research Council Bulletin 60, there was generally good agreement between my calculated stresses and the Bulletin's experimental and theoretical results. The agreement between my
calculated values and the Bulletin's theoretical stresses was expected, since both were based on Bijlaard's work in cylindrical shell theory. Because the method in the thesis does not truncate the partial differential equations which govern equilibrium, the calculated stresses were at times closer to the experimental values than were the previous theoretical predictions. Variations between my calculated values and the Bulletin's experimental results were largely due to the stiffening effect of the welds on the attachments and the ambiguity in the method of support for the vessel.

In attempting to compare the method of the thesis with tests in existing literature, one problem that was often encountered was the fact that not many comprehensive tests have been performed. As seen in the Welding Research Council Bulletin 60, many ambiguities arose while trying to accurately simulate the experiments. As a result, one should use these comparisons to evaluate the general trend of the solution, rather than use them for numerical exactness.

7.2 RECOMMENDATIONS FOR FUTURE IMPROVEMENTS

A few recommendations can be made to enhance the method presented in this thesis. An effective convergence algorithm could be incorporated to ensure that the Fourier series has converged. The convergence of the Fourier series is an important factor for thin vessels and attachments with small annular cross sections.

A torsional moment could easily be incorporated into the method. To simulate a torsional moment, one would load each of the elements in the attachment-shell intersection with forces that represent a torsional vector. The displacements and stresses would then be calculated in the usual manner. Torsion could also be included in colocation. As a result, a torsional moment

```
could be applied to a rigid attachment.
    The simulation of an external moment could be more accurately
represented. The method in the thesis does not account for the linearly
varying stress field across the face of an element. It distributes a uniform
stress field over the face of each element, whose magnitude is determined by
the distance that the center of the element is from the neutral axis. The
difference between the linearly varying and uniform stress field for a
particular element is a couple. Adding this couple would simulate the moment
more accurately. However, using the present approach in the thesis, one would use
more elements above and below the neutral axis to obtain a reasonable
represetation of the moment. This is an improvement over Bijlaard's method
which only used one element above and below the neutral axis.
    Finally, a method to simulate a fixed boundary condition would be
useful in analyzing tanks or vessels with fixed ends.
```


NOMENCLATURE

Symbol	Description	Units	Defining Equation or Page
D	Flexural rigidity [$\mathrm{D}=\mathrm{Et}$? $/ 12\left(1-v^{2}\right)$		P. 7
E	Modulus of elasticity	psi.	P. 7
I_{Y}, I_{ϕ}	Moments of inertia	in. ${ }^{4}$	p. 14
L	Length of cylinder	in.	P. 6
M_{x}, M_{ϕ}	Radial and tangential moments per unit distance	1 b .	(4.4d, e)
$M_{x}{ }^{\prime}$	Twisting moment per unit distance on radial plane	1 b .	(4.4f)
N_{x}, N_{ϕ}	Radial and tangential forces per unit distance	lb/ft	(4,4a,b)
$N_{x \phi}$	Shearing force per unit distance on axial plane and parallel to ϕ-axis of cylinder	lb/ft	(4.4c)
P_{X}, P_{ϕ}, P_{r}	Surface loadings in axial, tangential, and radial directions	psi	p. 5
a	Radius of cylinder	in.	P. 6
b, B	Dimensions of rectangular element	in.	P. 7
9	Acceleration of gravity	$f t / s^{2}$	P. 30
m, n	integers, Fourier indices	-	(4.1)
t	Thickness of cylindrical shell	in.	p. 5
u, v, w	Displacements in axial, tangential, and radial directions	in.	P. 5

ν	Poisson's ratio	(2.1)	
ρ	Density	lbs/in	p. 30
$\sigma_{x}, \sigma_{\phi}, \sigma_{r}$	Radial, tangential, and axial normal stress	psi	p. 28
τ	Shear stress	psi	p. 28

SUMMARY OF DRTHOGONAL FUNCTIONS

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sin \left(m^{\prime} \phi\right) \sin (m \phi) d \phi=0 \quad m^{2}=m \\
& \int \begin{array}{l}
2 \pi \\
0 \\
\cos \left(m^{\prime} \phi\right) \cos (m \phi) d \phi=0 \quad m^{\prime}=m \\
\pi\left(1+\delta_{m, 0} \quad m^{\prime}=m\right.
\end{array} \\
& \int_{0}^{L} \sin \left(n^{\prime} \pi x / L\right) \sin (n \pi x / L) d x=0 \quad \begin{array}{l}
n^{\prime}=n \\
L / 2
\end{array} \\
& \int_{0}^{L} \cos \left(n^{\prime} \pi x / L\right) \cos (n \pi x / L) d x=\begin{array}{ll}
0 \quad n^{\prime}=n \\
L\left(1+\delta_{n}, 0^{\prime} / 2\right.
\end{array} \quad n^{\prime}=n \\
& \delta_{i, 0}=\text { Kronecker Delta }
\end{aligned}
$$

INTEGRALS USED TO DETERMINE FOURIER COEFFICIENTS FOR RECTANGULAR AREAS
$\int_{x_{0}-b}^{x_{0}+b} \cos (n \pi x / L) d x=\frac{2 L}{n \pi} \cos (n \pi x / L) \sin (n \pi b / L)$
$\int_{x_{0}-b}^{x_{0}+b} \sin (n \pi x / L) d x=\frac{2 L}{n \pi} \sin (n \pi x / L) \sin (n \pi b / L)$
$\int_{\phi_{0}-\beta}^{\phi_{0}+\beta} \cos (m \phi) d \phi=\frac{2}{m} \cos (m \phi) \sin (m \beta)$
$\int_{\phi_{0}-\beta}^{\phi_{0}+\beta} \sin (m \phi) d \phi=\frac{2}{m} \sin (m \phi) \sin (m \beta)$

USEFUL TRIGONOMETRIC IDENTITIES

```
sin}(A+B)=\operatorname{sin}A\operatorname{cos}B+\operatorname{cos}A\operatorname{sin}
sin}(A-B)=\operatorname{sin}A\operatorname{cos}B-\operatorname{cos}A\operatorname{sin}
cos(A + B) = cosA cosB - sinA sin}
cos(A-B)=\operatorname{cos}A\operatorname{cos}B+\operatorname{sin}A\operatorname{sin}B
```



```
sin(Ax)\operatorname{sin}(Bx)=1/2[ cos(A - B)x-\operatorname{cos}(A+B)x]
sin(Ax)\operatorname{cos}(Bx)=1/2[\operatorname{sin}(A-B)x+\operatorname{sin}(A+B)x]
```


INTEGRALS USED TO DETERMINE FOURIER

 COEFFICIENTS FOR TRIANGULAR AREAS$$
\begin{aligned}
& \int_{\phi_{a}}^{\phi_{b}} \cos (m \phi) \cos (k \phi) d \phi=1 / 2 \int_{\phi_{a}}^{\phi_{b}}[\cos (m+k) \phi+\cos (m-k) \phi 1 d \phi \\
& =\frac{1}{2}\left[\frac{\sin (m+k) \phi}{m+k}+\frac{\sin (m-k) \phi}{m-k}\right]_{\phi_{a}}^{\phi_{b}} \\
& \int_{\phi_{a}}^{\phi_{b}} \cos (m \phi) \sin (k \phi) d \phi=1 / 2 \int_{\phi_{a}}^{\phi_{b}}[\sin (m+k) \phi-\sin (m-k) \phi] d \phi \\
& =\frac{1}{2}\left[-\frac{\cos (m+k) \phi}{m+k}+\frac{\cos (m-k) \phi}{m-k}\right]_{\phi_{a}}^{\phi_{b}} \\
& \int_{\phi_{a}}^{\phi_{b}} \sin (m \phi) \cos (k \phi) d \phi=1 / 2 \int_{\phi_{a}}^{\phi_{b}}[\sin (m+k) \phi+\sin (m-k) \phi 1 d \phi \\
& =\frac{1}{2}\left[-\frac{\cos (m+k) \phi}{m+k}-\frac{\cos (m-k) \phi}{m-k}\right]_{\phi_{a}}^{\phi_{b}} \\
& \int_{\phi_{a}}^{\phi_{b}} \sin (m \phi) \sin (k \phi) d \phi=1 / 2 \int_{\phi_{a}}^{\phi_{b}}[-\cos (m+k) \phi+\cos (m-k) \phi 1 d \phi \\
& =\frac{1}{2}\left[-\frac{\sin (m+k) \phi}{m+k}+\frac{\sin (m-k) \phi}{m-k}\right]_{\emptyset_{a}}^{\phi_{b}}
\end{aligned}
$$

APPENDIX C

ATTACHMENT NO. 5 OF WELDING RESEARCH COUNCIL BULLETIN 60

Abstract

Attachment No. 5 of Welding Research Council Bulletin 60 consisted of a solid circular steel rod inserted through a hole in the vessel and welded to the surface. The radius of the rod was 1.75 inches and the average weld size was $17 / 32$ inches. This attachment was located 65 inches from the left hand side of the vessel or at the same longitundinal location as Attachment 1 (See Figure 6.1). The major difficulty in simulating Attachment 5 is that it is a true rigid body. Stresses on Attachments 1 and 3 were calculated in the usual manner, as soft attachments. This procedure assumes that the attachment-shell junction is flexible. However, to accurately model Attachment 5, this junction is must be rigid. As a result, the method of colocation would be well suited to this application. The data presented here is the result of simulating Attachment 5 as a soft attachment and is included for completeness.

Tables M shows the bending and membrane stresses at the edge of the attachment due to a radial load. While at times the calculated values are within the same order of magnitude as the experimental results, they are usually lower than the experimentally determined stresses. This discrepancy is primarily caused by rigidity of the attachment. If the colocation method was employed, then one would expect the stresses to become higher near edge of the attachment, since the attachment-shell junction would be rigid. Table N shows the bending and membrane stresses at the edge of the attachment due to longitudinal and circumferential couples. As before, due to the discrepancy in simulating the rigidity of the attachment, the calculated stresses are usually lower than experimental values.

The deflection per unit radial load of Attachment 5 is shown in figure C.1. The calculated deflections are lower than the experimentally determined

values. However, the slope of the both curves is consistent. Since the cross section of the attachment-shell intersection is large compared to the size of the welds, the welds are not a significant consideration in the discrepancy between calculated and experimental results. Rather, as seen in the deflection of Attachment 3, the difference between the two curves is due to the fact that the experimental data reflects the total deflection of the vessel as a whole. The method in this thesis only calculates the local deflection in the shell.

TABLE M - Attachment No. 5, Radial Load, Bending and Membrane Stress per Unit Force (psi./lbs.), $P=10,300$ lbs.

Method	$\mathrm{N}_{\mathrm{x}} / \mathrm{Pt}$	$6 \mathrm{M}_{x} / \mathrm{Pt}^{2}$	$\mathrm{~N}_{\phi} / \mathrm{Pt}$	$6 \mathrm{M}_{\phi} / \mathrm{Pt}^{2}$
Meridian:				
Experiment	-0.25	-1.35	-0.55	-2.96
Calculated	-0.29	-0.94	-0.30	-1.11
Bijlaard	-0.44	-1.80	-0.46	-2.32
Generator:	-0.44	-1.49	-0.17	-1.01
Experiment	-0.30	-0.83	-0.24	-1.46
Calculated	-0.44	-1.80	-0.46	-2.32
Bijlaard				

TABLE N - Attachment 5, Longitudinal and Circumferential Couples, Bending and Membrane Stress per Unit Couple (psi./in-lbs)

Figure C. 1 Deflection per Unit Load, Attachment 5

APPENDIX D

COMPUTER PROGRAM LISTINGS

PROGRAM BIJLAARD

DRIVER PROGRAM TO CALCULATE LOADS, DEFLECTIONS, AND STRESSES
OF CYLINDERS DUE TO RADIAL LOADS

CREATED	$:$	$15-J U L-83$	$B Y:$	W. CRAFT
DIVIDED INTO SUBROUTINES	$:$	$18-J U L-83$	BY:	F.M.G. WONG
INTERNAL PRESSURE INCLUDED	$:$	$10-A U G-83$	BY:	F.M.G. WONG
EXTERNAL MOMENTS INCLUDED	$:$	$02-S E P-83$	BY:	F.M.G. WONG
COLOCATION INCLUDED	$:$	$07-D C T-83$	BY:	F.M.G. WONG
MULTIPLE NOZZLES INCLUDED	$:$	$12-N O V-83$	BY:	F.M.G. WONG
TRIANGULAR PATCHES INCLUDED $:$	$22-N O V-83$	$B Y:$	F.M.G. WONG	
HYDROSTATIC PRESS. INCLUDED :	$14-D E C-83$	BY:	F.M.G. WONG	

> LATEST REVISION : 19-JAN-84

REAL L, NU,LPHI,LX
CHARACTER*9 CDATE
CHARACTER*8 CTIME
DIMENSION PLAT(4,4), FOR(3), NDIR(3)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / $\operatorname{PRE}(100,100), \operatorname{PRO}(100,100), \operatorname{PXE}(100,100)$,
1
$\operatorname{PXO}(100,100), \operatorname{PPHIE}(100,100), \operatorname{PPHIO}(100,100)$
COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),
1
WE(100,100), WO(100,100)
COMMON / INTPRS / PRESS(100), QPRES
COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIEL(4,4,4)
COMMON / CIRCTB / CIRCX (7,4), CIRCPHI (7,4)
COMMON / CIRCSD / CIRCSX $(3,4), \operatorname{CIRCSP}(3,4)$
COMMON / STIFMAT / STIFFA(8,8), STIFFB(32,32), STIFFC(72,72),
1
STIFFD(128,128)
DATA PRE $/ 10000 * 0 /, \mathrm{PRO} / 10000 * 0 /, \mathrm{PXE} / 10000 * 0 /, \mathrm{PXO} / 10000 * 0 /$
DATA PPHIE $/ 10000 * 0 /$,PPHIO $/ 10000 * 0 /$
$\mathrm{PI}=3.14159265359$
OPENCUNIT=1,FILE='BIJLRD.DAT',CARRIAGECONTROL='LIST',
1 STATUS='NEW')
OPEN (UNIT $=4$, FILE='AUTOZ.DAT', STATUS = 'OLD')
CALL DATE(CDATE)
CALL TIME(CTIME)

THIS ROUTINE ROLLS CYLINDER INTO A FLAT SURFACE OF SIZE L* (2PI*A) OR SMALLER AND CHECKS LOAD INTENSITY DUE TO A COMBINATION OF AXIAL, SHEAR, RADIAL LOADS OF ANY INTENSITY AND LOCATION.

A = CYLINDER RADIUS (INCHES)
L = CYLINDER LENGTH (INCHES)

```
M = SUMMATION LIMIT PHI HARMONICS
N = SUMMATION LIMIT X HARMONICS
    T = CYLINDER WALL THICKNESS (INCHES)
    E = YOUNGS MODULUS FOR CYLINDER (PSI)
    NU = POISSONS RATIO FOR CYLINDER (DIM'LESS)
    X AND PHI ARE CYLINDER COORDINATES (X INCHES, PHI INPUT IN DEGREES)
    (XC,PHIC) IS CENTER OF TUBE CONNECTION TO CYLINDER
    TAUX = TUBE WALL THICKNESS IN THE X DIRECTION (INCHES)
    TAUPHI = TUBE WALL THICKNESS IN THE HODP DIRECTION (INCHES)
    (CORX,CORPHI) ARE OUTER DIMENSIONS OF TUBE IN THE
        AXIAL AND HOOP DIRECTIONS (EACH IN INCHES)
    MTUB = THE NUMBER OF LOADING PATCH ELEMENTS IN ONE QUARTER OF
        THE TUBE WALL IN THE HOOP DIRECTION
    NTUB = THE NUMBER OF LOADING PATCH ELEMENTS IN ONE QUARTER OF
        THE TUBE WALL IN THE AXIAL DIRECTION
    F = THE LATERAL FORCE IMPOSED ON THE CYLINDER BY THE ATTACHMENT
        TUBE (LBS.)
    QPRES = INTERNAL PRESSURE OF CYLINDER (PSI)
    RMOM = EXTERNAL APPLIED MOMENT
    *********************************************************************************
    WRITE(1,40) CDATE,CTIME
    FORMAT(15X,'OUTPUT FILE FOR PROGRAM BIJLAARD',2X,A9,2X,A8,/)
    ::::::
    ::::::: INITIAL CYLINDER PARAMETERS
    :::::::
    WRITE(6,13)
    WRITE(1,13)
    FORMAT(IX,'INPUT CYLINDER PARAMETERS: A,L,M,N,T,E,NU WHERE',ノ,
    1X,'A = RADIUS, L = LENGTH, M,N<=100,100: AS SERIES SUMS,',/,
    1X,'T = THICKNESS, E = MODULUS OF ELASTICITY,',/,
    IX,'NU = POISSON''S RATIO :',/)
    READ(4,10) A, L, M, N, T, E, NU
    FORMAT (1X,2E11.4,2I4,3E11.4)
    WRITE(1,42) A, L, M, N, T, E, NU
    FORMAT(1X,'A, L, M, N, T, E, NU=',2E11.4,2I4,3E11.4)
    ::::::
    ::::::: INITIAL ATTACHMENT DIMENSIONS
    :::::::
    WRITE (6,61)
    WRITE (1,61)
```

 FORMAT (\(/, 1 \mathrm{X}, \mathrm{MULTIPLE}\) NOZZLES: YES \(=1\), NO = 0')
 READ (4,201) MULNZ
 WRITE (6,63) MULNZ
 WRITE \((1,63)\) MULNZ
 FORMAT (1X,'MULTIPLE NOZZLES = ',I1)
 IF (MULNZ .EQ. 1) THEN
 CALL MULTNOZ
 GO TO 49
 ENDIF
 WRITE \((6,65)\)
 WRITE (1,65)
 FORMAT (/,1X,'DESIGNATION OF CIRCULAR ATTACHMENTS: YES=1, NO=0')
 READ (4,201) ICIRC
 WRITE \((6,66)\) ICIRC
 WRITE (1,66) ICIRC
 FORMAT (1 X, 'ICIRC \(=1, I 1\))
 IF (ICIRC .NE. 1) GO TO 50
 WRITE \((6,67)\)
 WRITE \((1,67)\)
 FORMAT (/,1X,'ENTER CIRCULAR PARAMETERS: XC, PHIC, R1, R2, NFOR')
 READ (4,68) XC, PHIC, R1, R2, NFOR
 FORMAT (1X,4E11.4,1X,I1)
 WRITE (6,68) XC, PHIC, R1, R2 ,NFOR
 WRITE (1,68) XC, PHIC, R1, R2 ,NFOR
 DO \(69 \mathrm{~K}=1\), NFOR
 WRITE \((6,70) K\)
 WRITE (1,70) K
 FORMAT (/,'ENTER FORCE: ',I1,' MAGNITUDE \& DIRECTION ')
 \(\operatorname{READ}(4,71)\) FOR(K), NDIR(K)
 FORMAT(1X,E11.4,1X,I1)
 WRITE (6,71) FOR(K), NDIR(K)
 WRITE (1,71) FOR(K), NDIR(K)
 CONTINUE
 GO TO 200
 WRITE \((6,18)\)
 WRITE (1,18)
 FORMAT(/,1X,'INPUT TUBE CENTER (XC,PHIC), WALL THICKNESSES,',/,
 1 1X,'TAUX, TAUPHI, THEN TUBE SECTIONS, LX, LPHI', \(/\),
 \(21 X\), 'THEN ND. OF QUARTER-TUBE ELEMENTS, MTUB, NTUB, AND LATERAL',
 3 1X,'FORCE, \(F\), IN POUNDS', \(/\))
 WRITE (6,15)
 WRITE (1,15)
 FORMAT(1X,'INPUT XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F', \(/\),
 1 1X,'PHIC IN DEGREES.',ノ)
 READ (4,11) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F
 FORMAT (\(1 \mathrm{X}, 6 \mathrm{E} 11.4,2 \mathrm{I} 3, \mathrm{E} 11.4\))
 WRITE \((6,44) \mathrm{XC}, \mathrm{PHIC}, \mathrm{TAUX}, \mathrm{TAUPHI}, \mathrm{LX}, \mathrm{LPHI}, \mathrm{MTUB}, \mathrm{NTUB}\),
 WRITE (1,44) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F
 FORMAT (1X,'XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, \(F=1, /\),
 1 1X,6E11.4,213,E11.4,/)
 PHIC \(=\) PI \(*\) PHIC \(/ 180\).
    ```
C ::::::: EXTERNALLY APPLIED MOMENTS
C
200
20 FORMAT (1X,'EXTERNALLY APPLIED MOMENTS: YES = 1, NO = 0')
        READ (4,201) MOMRPY
201 FORMAT (1X,II)
    WRITE (6,21) MOMRPY
    WRITE (1,21) MOMRPY
    FORMAT (1X,'RESPONSE TO MOMENT PROMPT = ',I,/)
    IF ( MOMRPY .EQ. O ) GO TO 49
    WRITE (6,22)
    WRITE (1,22)
    FORMAT (1X,'TYPE OF MOMENT: LONG. = 1, CIRCUM. = 2, TORSION = 3')
    READ (4,201) MOMTYP
    WRITE (6,23) MOMTYP
    WRITE (1,23) MOMTYP
    FORMAT (1X,'TYPE OF MOMENT = ',I,l)
    WRITE (6,24)
    WRITE (1,24)
    FORMAT (1X,'ENTER EXTERNALLY APPLIED MOMENT (IN.-LBS.):')
    READ (4,25) RMOM
25 FORMAT (1X,EI1.4)
    IF (MOMTYP .EQ. 3) TMOM = RMOM
    WRITE (6,26) RMOM
    WRITE (1,26) RMOM
    FORMAT (1X,'EXTERNALLY APPLIED MOMENT (IN.-LBS.) = ',E11.4,/)
C
C
49 WRITE (6,491)
481
482
483
    WRITE (6,20)
        WRITE (1,20)
```

c ::::::: INTERNAL PRESSURE PARAMETER

```
c ::::::: INTERNAL PRESSURE PARAMETER
    WRITE (1,491)
    WRITE (1,491)
491 FORMAT (1X,'ENTER TYPE OF INTERNAL PRESS. 1=RAD; 2=HYDRO.; 0=NONE')
491 FORMAT (1X,'ENTER TYPE OF INTERNAL PRESS. 1=RAD; 2=HYDRO.; 0=NONE')
    READ (4,201) INPRTYP
    READ (4,201) INPRTYP
    WRITE (6,490) INPRTYP
    WRITE (6,490) INPRTYP
    WRITE (1,490) INPRTYP
    WRITE (1,490) INPRTYP
    FORMAT (1X,'INTERNAL PRESSURE TYPE = ',I1)
    FORMAT (1X,'INTERNAL PRESSURE TYPE = ',I1)
    IF ( INPRTYP .EQ. 1 ) THEN
    IF ( INPRTYP .EQ. 1 ) THEN
        WRITE (6,14)
        WRITE (6,14)
        WRITE (1,14)
        WRITE (1,14)
        FORMAT (1X,'ENTER VALUE OF INTERNAL PRESSURE (PSI) :')
        FORMAT (1X,'ENTER VALUE OF INTERNAL PRESSURE (PSI) :')
        READ (4,12) QPRES
        READ (4,12) QPRES
        FORMAT (1X,F7.2)
        FORMAT (1X,F7.2)
        WRITE (6,48) QPRES
        WRITE (6,48) QPRES
        WRITE (1,48) QPRES
        WRITE (1,48) QPRES
    FORMAT (1X,'INTERNAL PRESSURE =',F7.2,ノ)
    FORMAT (1X,'INTERNAL PRESSURE =',F7.2,ノ)
        ENDIF
        ENDIF
        IF ( INPRTYP .EQ. 2 ) THEN
        IF ( INPRTYP .EQ. 2 ) THEN
        WRITE (6,481)
        WRITE (6,481)
        WRITE (1,481)
        WRITE (1,481)
```

 FORMAT (1X,'ENTER VALUES FOR RHOG, XO :')
    ```
        FORMAT (1X,'ENTER VALUES FOR RHOG, XO :')
        READ (4,482) RHOG, XO
        READ (4,482) RHOG, XO
        FORMAT (1X,E11.4,1X,E11.4)
        FORMAT (1X,E11.4,1X,E11.4)
        WRITE (6,483) RHOG, XO
        WRITE (6,483) RHOG, XO
        WRITE (1,483) RHOG, XO
        WRITE (1,483) RHOG, XO
        FORMAT (1X,'RHDG = ',E11.4,' XO = ',E11.4,ノ)
```

 FORMAT (1X,'RHDG = ',E11.4,' XO = ',E11.4,ノ)
    ```
```

 ENDIF
 C
C
C
IF (ICOLC .EQ. 1) THEN
IF (ICIRC .EQ. 1) THEN
CALL_ COLOCATE (XC, PHIC, R2, 0.0, 0.0, 0.0, 0, 0, 2)
GO TO 99
ENDIF
CALL COLOCATE (XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, 1)
GO TO 99
ENDIF
C
c ::::::: DISPLACEMENT SOLUTION TYPE
C
80
C
C
C
C
85
C
IF (F .NE. O.) THEN
PL = F/((LX*LPHI) -(LX - 2.*TAUX)*(LPHI - 2.*TAUPHI))
PRINT *, ' PL =',PL
CALL RECTUBE (PL, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, IKP)
IF (IKP .EQ. 1) GO TO 50
ENDIF
C
89
IF (MOMRPY .EQ. 1) THEN
IF (ICIRC .EQ. 1) THEN
PHIC = PHIC*PI/180.
IF (MOMTYP .EQ. 3) THEN
CALL TORSION (XC, PHIC, R1, R2, TMOM)

```
```

 GO TO 90
 ENDIF
 CALL CIRCSET (XC, PHIC, R1, R2, RMOM, MOMTYP)
 GO TO 90
 ENDIF
 CALL MOMENTSET (RMOM, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB,
 NTUB, IKP, MOMTYP)
 IF (IKP .EQ. 1) GO TO 50
 ENDIF
 C
C
C
C
90
CALL LOADMAP (MAP, N1)
IF (MAP.NE.3) GO TO 50
IF (INPRTYP .NE. 0.0) CALL MERGPRES
C
C ::::::: CALCULATE DISPLACEMENTS AND DISPLACEMENT MAP FOR THIS PATCH
C
CALL DISPLACE (IDIS)
CALL DISPMAP
C
c ::::::: CALCULATE STRESSES AND STRESS MAP FOR THIS PATCH
C
CALL STRESS
C
99 STOP
END
c
C

```

SUBROUTINE PATCH (XO, PHIO, B, BETA, F, NI)
Calculates the loads df a rectangular patch
CREATED: 26-JUL-83 BY: W. CRAFT

REAL L, NU, LXEL, LPHIEL
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / PRE (100,100), \(\operatorname{PRO}(100,100), \operatorname{PXE}(100,100)\),
1 \(\operatorname{PXO}(100,100), \operatorname{PPHIE}(100,100), \operatorname{PPHIO}(100,100)\)

PHIOD \(=180\).*PHIO/PI
\(\mathrm{BETAD}=180 . * \mathrm{BETA} / \mathrm{PI}\)
LXEL=2.*B
LPHIEL=2.*BETAD
IF (F.EQ.O) GOTO 99
PI2 \(=\mathrm{PI}\) *PI
DO 3 MT \(=0, M-1\) IF (MT.EQ.O) GO TO 5
XMT=FLOAT (MT)
SBETA \(=\operatorname{SIN}(X M T * B E T A)\)
\(C P H I O=\operatorname{COS}(X M T * P H I O)\)
SPHIO \(=\) SIN(XMT*PHIO)
CONTINUE
DO 2 NT = 1, N
XNT \(=\) FLDAT (NT)
\(\mathrm{SB}=\mathrm{SIN}(X N T * P I * B / L)\)
IF ((N1.EQ.1).OR.(N1.EQ.2)) SXD=SIN(XNT*PI*XO/L)
IF (N1.EQ.3) CXO=COS(XNT*PI*XO/L)
IF (MT.GT.0) GO TO 4
\(\mathrm{D}=8 . /(\mathrm{XNT} * \mathrm{PI} 2)\)
\(P H I=D * F * B E T A\)
IF (N1.EQ.1) \(\operatorname{PRE}(M T+1, N T)=P R E(M T+1, N T)+P H I * S X O * S B\)
IF (N1.EQ.2) PPHIO(MT+1,NT)=PPHIO(MT+1,NT)+PHI*SXO*SB
IF (N1.EQ.3) \(\operatorname{PXE}(M T+1, N T)=P X E(M T+1, N T)+P H I * C X O * S B\)
GO TO 2
\(C=16 . /(X M T * X N T * P I 2)\)
IF (N1.GT.1) GO TO 20
\(\operatorname{PRE}(M T+1, N T)=P R E(M T+1, N T)+C * F * C P H I O * S B E T A * S X O * S B\)
\(\operatorname{PRO}(M T+1, N T)=P R O(M T+1, N T)+C * F * S P H I O * S B E T A * S X O * S B\)
GO TO 2
IF (N1.GT.2) GO TO 30
\(\operatorname{PPHIE}(M T+1, N T)=P P H I E(M T+1, N T)+C * F * S P H I O * S B E T A * S X O * S B\)
\(\operatorname{PPHIO}(M T+1, N T)=P P H I O(M T+1, N T)+C * F * C P H I O * S B E T A * S X O * S B\)
GO TO 2
\(\operatorname{PXE}(M T+1, N T)=P X E(M T+1, N T)+C * F * C P H I D * S B E T A * C X O * S B\)
\(P X O(M T+1, N T)=P X O(M T+1, N T)+C * F * S P H I O * S B E T A * C X O * S B\)
CONTINUE
CONTINUE

RETURN
END

C
c c

```

 SUBROUTINE LOADMAP (MAP, N1)
 WRITES THE LOAD MAP
 CREATED: 18-JUL-83 BY: W. CRAFT

    ```
    REAL L, NU
    DIMENSION XMAT(11), PHIMAT(11), INT(11,11), \(\operatorname{RINT}(11,11)\)
    COMMON / CONSTANTS / A, E, L, NU, PI, T
    COMMON / INDEXES / M, N
    COMMON / LOADS / PRE(100,100), \(\operatorname{PRO}(100,100), \operatorname{PXE}(100,100)\),
    1
        \(\operatorname{PXO}(100,100), \operatorname{PPHIE}(100,100), \operatorname{PPHIO}(100,100)\)
    COMMON / INTPRS / PRESS(100), QPRES
    WRITE (6,25)
    WRITE 1,25 )
    FORMAT(/, \(1 \times\),'DO YOU WANT A NEW LOAD MAP? \(1=Y E S, 2=N O, 3=E N D\) ')
    \(\operatorname{READ}(4,26)\) MAP
    FORMAT (1X,I1)
    WRITE \((1,46)\) MAP
    FORMAT(1X,'MAP=',I1,/)
    IF (MAP.NE.1) GO TO 100
    WRITE(6,14)
    WRITE (1,14)
    FORMAT (1X́,'INPUT XST, DXST, PHIST, DPHIST, N1 (ANGLES/DEG)',ノ)
    READ (4,15) XST, DXST, PHIST, DPHIST, N1
    FORMAT (1X,4E11.4,12)
    WRITE (1,47) XST, DXST, PHIST, DPHIST, N1
    FORMAT(1X,'XST, DXST, PHIST, DPHIST, N1=',4E11.4,I2,/3
    PHIST \(=\) PI \(*\) PHIST \(/ 180\).
    DPHIST \(=\) PI \(*\) DPHIST \(/ \mathbf{1 8 0}\).
CALL TIMESTAT (1)
DO \(10 \mathrm{I}=1,11\)
                        \(X C D=X S T+D X S T * F L O A T(I-6) / 10\).
        XMAT(I)=XCD
        DO \(12 \mathrm{~J}=1,11\)
                PHICO=PHIST+DPHIST*FLOAT \((J-6) / 10\).
                IF (I.EQ.1) PHIMAT(J)=PHICO*180./PI
    \(::::::\) NEW COMPUTE THE LOADS ON THE SURFACE MAP AND PRESENT THE
\(:::::\) RESULTS AS 0 TO \(100 \%\) OF F AT EACH GRID POINT AND PLOT.
        XINT=0.
        PRSINT \(=0\).
        DO \(6 \mathrm{MT}=0, \mathrm{M}-1\)
        SPHI \(=\) SIN (FLOAT (MT) *PHICO)
        \(C P H I=\operatorname{COS}(F L O A T(M T) * P H I C O)\)
```

 DO 6 NT=1,N
 IF ((QPRES .NE. O.O) .AND. (MT .EQ. D))
 PRSINT = 2.*PRESS(NT)*SIN(FLOAT(NT)*PI*XCO/L)
 IF (N1.EQ.1) XINC=(PRE(MT+1,NT)*CPHI+PRO(MT+1,NT)
 *SPHI)*SIN(FLOAT(NT)*PI*XCO/L)
 IF (N1.EQ.2) XINC=(PPHIE(MT+1,NT)*SPHI+PPHIO(MT+1,NT)
 *CPHI)*SIN(FLOAT(NT)*PI*XCO/L)
 IF (N1.EQ.3) XINC=(PXE (MT+1,NT)*CPHI+PXO(MT+1,NT)
 *SPHI)*COS(FLOAT(NT)*PI*XCO/L)
 XINT=XINT+XINC
 IF ((QPRES .NE. O.O) .AND. (MT .EQ. O))
 XINT = XINT - PRSINT
 CONTINUE
 XINT=XINT*.5
 INT(I,J) = NINT(XINT)
 RINT(I,J) = XINT
 CONTINUE
 C
CALL TIMESTAT (2)
CONTINUE
CALL TIMESTAT (3)
CALL FINDMIN (RINT, RMIN, RMAX)
c
c
C
C
18
DO 9 NN=1,11
IF (LOG1O(EXPT) .GT. 4.0 .OR. LOG10(EXPT) .LT. 0.0) THEN
WRITE(6,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)
WRITE(1,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)
FORMAT(1X,F6.2,11F8.4)
ELSE
WRITE(6,191) XMAT(12-NN),(INT(12-NN,K),K=1,11)
WRITE(1,191) XMAT(12-NN),(INT(12-NN,K),K=1,11)
FORMAT(1X,F6.2,1116)
ENDIF
9 CONTINUE
GO TO 11
C
100 RETURN
END
C
C

```

C
C
```

CREATED : 26-JUL-83 BY: W. CRAFT

```
LATEST REVISION : 19-AUG-83
****************************************************************************

REAL L,NU,LPHI,LX
DIMENSION PLAT(4,4)
COMMON / CONSTANTS / A, E, L, NU, PI, T
C
\(A L P O=A S I N(L P H I /(2 . * A))\)
ALPI \(=A S I N((L P H I-2 . * T A U P H I) /(2 . * A))\)
\(V 1=.5 *(A L P O+A L P I)\)
\(V 2=L X-2 . * T A U X\)
\(v 3=.5 *(L X-\) TAUX \()\)

C

\section*{RETURN}

END
c
\(A N G=A L P O-A L P I\)
\(V 4=2 . * A L P D\)

CALL PATCHLAT (M, N, XC, PHIC, \(0, V 1, V 2\), ANG, PLAT, IKP)
CALL PATCHLAT (M, \(N, X C\), PHIC, V3, 0 , TAUX, V4, PLAT, IKP)
CALL PATCHLAT ( \(M, N, X C\), PHIC, \(0,-V 1, V 2, A N G, ~ P L A T, ~ I K P)\)
CALL PATCHLAT ( \(M, N, X C\), PHIC, \(-V 3,0\), TAUX, V4, PLAT, IKP)
            DO \(1 \mathrm{~J}=1, \mathrm{~N}\)
            \(X J=F L O A T(J)\)
            \(X E L=X C+X L+T H X *(2 . * X J-1 .-X N) /(2 . * X N)\)
c
```

PR = PLAT(I,J)*(COS(PSI))**2

```
PPHI \(=.5 *\) PLAT \((I, J) * S I N(2 . * P S I)\)
THXT \(=\) THX \((2 . * X N)\)
THPHIT \(=\) THPHI/(2.*XM)
c
SUBROUTINE PATCHLAT (M, N, XC, PHIC, XL, PHIL, THX, THPHI, PLAT, IKP)
PATCHLAT ALLOWS PARTITIONING OF LOADS IN LOCAL CODRDINATES TO MATCH
LATERAL COMPONENTS
M = NO. OF PHI DIRECTION ELEMENTS IN PATCH
\(\mathrm{N}=\mathrm{NO}\). DF \(X\) DIRECTION ELEMENTS IN PATCH
XC \(\quad=\) LOCAL PATCH REFERENCE X COORDINATE
PHIC = LOCAL PATCH REFERENCE PHI COORDINATE
(XC,PHIC) DEFINE DIRECTION OF LATERAL LOAD AXIS ON CYLINDER
\(X L \quad=X\) COOR DISTANCE FROM XC TO PATCH CENTROID
PHIL \(=\) PHI(ANGLE) DISTANCE FROM PHIC TO PATCH PHI CENTROID
THX \(\quad=\) PATCH DIMENSION ALONG \(X\) - AXIS
THPHI = PATCH ARCLENGTH (RADIANS) ALONG PHI - AXIS
\(\operatorname{PLAT}(M, N)=\) THE APPLIED PRESSURE ACROSS (THX)X(A*THPHI) OF PATCH (M,N)
                                    ALONG NORMAL TO CYLINDER AT XC,PHIC + INWARD
    THIS SUBROUTINE CREATES PR AND PPHI LOAD HARMONICS FOR SUCH LATERAL
    LOADS IKP IS AN ERROR CHECK IF IKP .NE. O GO TO END OF PROGRAM
\begin{tabular}{lll} 
CREATED & \(: \quad 27-J U L-83\) & BY: W. CRAFT \\
LATEST REVISION & \(: 30-S E P-83\) & \(B Y: ~ F . M . G . W O N G ~\)
\end{tabular}
    REAL L,NU
    DIMENSION PLAT(4,4)
    COMMON / CONSTANTS / A, E, L, NU, PI, T
        IKP \(=0\)
        IF ( (M.GT. 4) .OR. (N.GT. 4) ) IKP = 1
        IF ( (M.LT. 1) .OR. (N.LT. 1) ) IKP = 1
        IF ( IKP .EQ. 1 ) GO TO 98
        \(X M=F L O A T(M)\)
        \(X N=F L O A T(N)\)
        DO 1 I = 1, M
        \(X I=F L O A T(I)\)
        PHIEL \(=\) PHIC + PHIL + THPHI*(2.*XI - 1. - XM)/(2.*XM)
        PSI = PHIEL - PHIC
            CALL PATCH (XEL, PHIEL, THXT, THPHIT, PR, 1)

CALL PATCH (XEL, PHIEL, THXT, THPHIT, PPHI, 2)
```

C
1 CONTINUE
C
98 WRITE(6,2) M, N
2 FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES,M,N = ',2I3)
WRITE(1,2)
c
C
99 RETURN
END
C

```
c
    谷
    SUBROUTINE ELMCNT(M, N, XC, PHIC, XL, PHIL, THX, THPHI, IND, IKP)
COMPUTES THE ELEMENT CENTERS FOR ALL PATCHES AND STORES THEM
IN THE COMMON BLOCK "CENTELM"
    IND = CODE FOR DESIGNATING THE PATCH AREA (1, 2, 3, OR 4)
    CREATED : 06-DCT-83 BY: F.M.G. WONG
    LATEST REVISION : 24-OCT-83 BY: F.M.G. WONG
    REAL L,NU
    COMMON / CONSTANTS / A, E, L, NU, PI, T
    COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIEL(4,4,4)
    IKP \(=0\)
    IF ( (M.GT. 4) .OR. (N.GT. 4) ) IKP = 1
    IF ( (M.LT. 1) .OR. (N .LT. 1) ) IKP = 1
    IF ( IKP .EQ. 1 ) GO TO 98
    \(X M=F L O A T(M)\)
    \(X N=F L O A T(N)\)
    DO \(20 \mathrm{I}=1, \mathrm{~N}\)
        DO \(10 \mathrm{~J}=1, \mathrm{M}\)
        XI = FLOAT(I)
        CNTPHIEL(I,J,IND) \(=\) PHIC+PHIL + THPHI*(2.*XI - 1. - XM)/(2.*XM)
        \(X J=F L O A T(J)\)
        \(\operatorname{CNTXEL}(\mathrm{I}, \mathrm{J}, \mathrm{IND})=\mathrm{XC}+\mathrm{XL}+\mathrm{THX} *(2 . * X J-1 .-X N) /(2 . * X N)\)
        PRINT *,'PHIC = ',PHIC,' PHIL = ',PHIL,' THPHI = ',THPHI
        PRINT *, 'CENTER: ',IND,CNTXEL(I,J,IND), CNTPHIEL(I,J,IND)
        PRINT *
        CONTINUE
    CONTINUE
    GO TO 99
    \(\operatorname{WRITE}(6,2) \mathrm{M}, \mathrm{N}\)
    FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES, \(M, N=\) ',2I3)
    WRITE (1,2)
RETURN
END

C

C

SUBROUTINE DISPLACE (INDEX)
CALCULATES THE \(u, v\), AND \(W\) DISPLACEMENTS

INDEX: \(1=W, 2=V, 3=U, 4=W \& V, 5=W \& U, 6=W, V, \& U\)
CREATED : 18-JUL-83 BY: F.M.G. WONG
LATEST REVISION : 19-JAN-84


REAL*4 L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / PRE(100,100), \(\operatorname{PRO}(100,100), \operatorname{PXE}(100,100)\),
1 \(\operatorname{PXO}(100,100), \operatorname{PPHIE}(100,100), \operatorname{PPHIO}(100,100)\)
CDMMON / DISPL / UE(100,100), \(\operatorname{UO}(100,100), \operatorname{VE}(100,100), \operatorname{VO}(100,100)\),
1 WE (100,100), WO(100,100)
DIMENSION EVEN(3), \(\operatorname{ODD}(3), \operatorname{COEFF}(3,3)\)
DATA EVEN / \(3 * 0 /\), ODD / \(3 * 0\) /
:::::: SET UP VALUES OF THE COEFFICIENT MATRIX
\(A 2=A * A\)
\(A 4=A 2 * A 2\)
\(R L 2=L * L\)
PI2 \(=P I * P I\)
\(T 2=T * T\)

CALL TIMESTAT (1)
DO \(20 \mathrm{I}=\mathrm{O}, \mathrm{M}-1\)
\(R M=F L O A T(I)\)
\(R M 2=R M * R M\)

DO \(10 \mathrm{~J}=1\), N

RN = FLOAT(J)
RN2 \(=R N * R N\)
```

 COEFF(1,1)=-((RN2*PI2)/RL2 + (RM2*(1. - NU))/(2.*A2))
    ```
    \(\operatorname{COEFF}(1,2)=((1 .+N U) * R M * R N * P I) /(2 . * A * L)\)
    \(\operatorname{COEFF}(1,3)=-(N U * R N * P I) /(A * L)\)
    \(\operatorname{CDEFF}(2,1)=\operatorname{CDEFF}(1,2)\)
    \(\operatorname{COEFF}(2,2)=-(((1 .-N U) * R N 2 * P I 2) /(2 . * R L 2)+R M 2 / A 2+\)
                (T2*(1. - NU)*RN2*PI2)/(12.*RL2*A2) +
                        (RM2*T2)/(12.*A4) )
    \(\operatorname{COEFF}(2,3)=(T 2 * R M * * 3) /(12 . * A 4)+(R M * R N 2 * P I 2 * T 2) /(12 . * A 2 * R L 2)+R M / A Z\)
    \(\operatorname{COEFF}(3,1)=\operatorname{COEFF}(1,3)\)
    \(\operatorname{COEFF}(3,2)=\operatorname{CoEFF}(2,3)\)
    \(\operatorname{COEFF}(3,3)=-(1 . / A 2+(T 2 * R N 2 * R N 2 * P I 2 * P I 2) /(12 * * R L 2 * R L 2)+\)
1
    (2.*T2*RM2*RN2*PI2)/(12.*A2*RL2) +

1

RETURN
END
c
c
c
c
    ENDIF
    ENDIF
    ENDIF

    CONTINUE
    CONTINUE
END
.
C
C
    ::::::: SET UP VALUES FOR LOADING COLUMN MATRIX
    CONST \(=(1 .-N U * N U) /(E * T)\)
    IF ((INDEX.EQ.1).OR.(INDEX.EQ.4).OR.(INDEX.EQ.5).OR.(INDEX.EQ.6)) THEN
        \(\operatorname{EVEN}(3)=-\operatorname{PRE}(I+1, J) * C O N S T\)
        \(\operatorname{ODD}(3)=-\operatorname{PRO}(I+1, J) * C O N S T\)
    IF ( (INDEX .EQ. 2) .OR. (INDEX .EQ. 4) .OR. (INDEX .EQ. 6) ) THEN
        \(\operatorname{EVEN}(2)=-\operatorname{PPHIE}(I+1, J) * C O N S T\)
        \(\operatorname{ODD}(2)=-\operatorname{PPHIO}(I+1, J) * C O N S T\)
    IF ( (INDEX .EQ. 3) .OR. (INDEX .EQ. 5) .OR. (INDEX .EQ. 6) ) THEN
        EVEN(1) \(=-\operatorname{PXE}(I+1, J) * C O N S T\)
        ODD (1) \(=-\operatorname{PXO}(I+1, J) * C O N S T\)
:: :: : : : SOLVE FOR EVEN \(U, V\), AND W DISPLACEMENTS
    CALL MATRIX (U, V, W, EVEN, COEFF)
    \(\operatorname{UE}(I+1, J)=U\)
    \(\operatorname{VE}(I+1, J)=V\)
    \(W E(I+1, J)=W\)
    ::::::: SOLVE FOR DDD \(U, V\), AND W DISPLACEMENTS
    \(\operatorname{COEFF}(1,2)=-\operatorname{COEFF}(1,2)\)
    \(\operatorname{COEFF}(2,1)=-\operatorname{CoEFF}(2,1)\)
    \(\operatorname{COEFF}(2,3)=-\operatorname{COEFF}(2,3)\)
    \(\operatorname{COEFF}(3,2)=-\operatorname{CoEFF}(3,2)\)
    CALL MATRIX (U, V, W, ODD, COEFF)
    \(\mathrm{UO}(\mathrm{I}+1, \mathrm{~J})=\mathrm{U}\)
    \(\operatorname{VO}(I+1, J)=V\)
    \(W O(I+1, J)=W\)
    IF ( I/2 .EQ. INT(I/2) ) CALL TIMESTAT (2)
    CALL TIMESTAT (3)
    SUBROUTINE MATRIX (U, V, W, RLOAD, COEFF)

C C C C c

C

C :::::: \(:\) MAKE \(\operatorname{DOEFF}(3,2)\) ZERO TO COMPLETE UPPER TRIANGULAR MATRIX
IF ( \(\operatorname{DOEFF}(3,2)\).EQ. 0.00 ) GOTO 30
\(\operatorname{DOEFF}(2,3)=\operatorname{DOEFF}(2,3) / \operatorname{DOEFF}(2,2)\)
\(\operatorname{SLOAD}(2)=\operatorname{SLOAD}(2) / D O E F F(2,2)\)
\(\operatorname{DOEFF}(2,2)=1.0\)
:::::: : MAKE FIRST COLUMN IN MATRIX ALL 1 'S
\(\operatorname{DOEFF}(1,2)=\operatorname{COEFF}(1,2) \operatorname{COEFF}(1,1)\)
\(\operatorname{DOEFF}(1,3)=\operatorname{COEFF}(1,3) \operatorname{COEFF}(1,1)\)
\(\operatorname{SLOAD}(1)=\operatorname{RLOAD}(1) / \operatorname{COEFF}(1,1)\)
\(\operatorname{DOEFF}(1,1)=1.0\)

IF ( \(\operatorname{COEFF}(2,1)\).EQ. 0.00) GOTO 15
\(\operatorname{DOEFF}(2,2)=\operatorname{COEFF}(2,2) \operatorname{COEFF}(2,1)\)
\(\operatorname{DOEFF}(2,3)=\operatorname{COEFF}(2,3) / \operatorname{COEFF}(2,1)\)
\(\operatorname{SLOAD}(2)=\operatorname{RLOAD}(2) / \operatorname{COEFF}(2,1)\)
\(\operatorname{DOEFF}(2,1)=1.0\)
\(\operatorname{DOEFF}(3,2)=\operatorname{COEFF}(3,2) / \operatorname{COEFF}(3,1)\)
\(\operatorname{DOEFF}(3,3)=\operatorname{COEFF}(3,3) / \operatorname{COEFF}(3,1)\)
\(\operatorname{SLOAD}(3)=\operatorname{RLOAD}(3) / \operatorname{COEFF}(3,1)\)
\(\operatorname{DOEFF}(3,1)=1.0\)
:::::: MAKE FIRST ELEMENT IN 2ND AND 3RD ROWS ZERO
IF ( \(\operatorname{COEFF}(2,1) \cdot\).EQ. 0.00 ) GOTO 25
\(\operatorname{DOEFF}(2,1)=\operatorname{DOEFF}(1,1)-\operatorname{DOEFF}(2,1)\)
\(\operatorname{DOEFF}(2,2)=\operatorname{DOEFF}(1,2)-\operatorname{DOEFF}(2,2)\)
\(\operatorname{DOEFF}(2,3)=\operatorname{DOEFF}(1,3)-\operatorname{DOEFF}(2,3)\)
\(\operatorname{SLOAD}(2)=\operatorname{SLOAD}(1)-\operatorname{SLOAD}(2)\)
\(\operatorname{DOEFF}(3,1)=\operatorname{DOEFF}(1,1)-\operatorname{DOEFF}(3,1)\)
\(\operatorname{DOEFF}(3,2)=\operatorname{DOEFF}(1,2)-\operatorname{DOEFF}(3,2)\)
\(\operatorname{DOEFF}(3,3)=\operatorname{DOEFF}(1,3)-\operatorname{DOEFF}(3,3)\)
\(\operatorname{SLOAD}(3)=\operatorname{SLOAD}(1)-\operatorname{SLOAD}(3)\)

DOEFF(2,2) \(=1.0\)
```

 DOEFF(3,3)= DOEFF(3,3)/DOEFF(3,2)
 SLOAD(3) = SLOAD(3)/DOEFF(3,2)
 DOEFF(3,2) = 1.0
 C
C
c
C
30
C
c
C
C
C
C
C
C
C
c
C
c
C
C
C
REAL L,NU
DIMENSION XMAT(11),PHIMAT(11),RINT(11,11)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),
1
WE(100,100), WO(100,100)
c
c
DOEFF(3,2)= DOEFF(3,2)-\operatorname{DOEFF}(2,2)
DOEFF(3,3) = DOEFF(3,3) - DOEFF(2,3)
SLOAD(3) = SLOAD(3) - SLOAD(2)
C
::::::: SOLVE FOR U, V, AND W: DISPLACEMENTS
*
RETURN
END
W= SLOAD(3)/DOEFF(3,3)
V = SLOAD(2) - DOEFF(2,3)*W
U = SLOAD(1) - DOEFF(1,2)*V - DOEFF(1,3)*W
PRINT *, 'U=',U,'V =',V,'W =',W
**
SUBROUTINE DISPMAP
WRITES THE DISPLACEMENT MAP
CREATED: 20-JUL-83 BY: F.M.G. WONG

```

```

 WRITE(6,25)
 WRITE(1,25)
 FORMAT(/,1X,'DO YOU WANT A NEW DISPLACEMENT MAP? 1=YES, 2=NO, 3=END')
 READ(4,26) MAP
 FORMAT (1X,I1)
 WRITE(1,46) MAP
 FORMAT(1X,'MAP=',I1,/)
 IF (MAP.NE.1) GOTO 100
 WRITE (6,13)
 WRITE (1,13)
 FORMAT (1X,'INPUT DESIRED DISPLACEMENT MAP: W = 1, V = 2, U = 3')
 READ (4,26) INDEX
 WRITE (1,45) INDEX
 FORMAT (1X,'INDEX =',I1,/)
 WRITE(6,14)
 WRITE(1,14)
    ```

C : : : : : : : NOW THE ARRAY IS SETUP THAT HAS PERCENTAGES OF DISPLACEMENTS
    FORMAT(1X,'INPUT XST, DXST, PHIST, DPHIST (ANGLES/DEG)',/)
    READ (4,27) XST, DXST, PHIST, DPHIST
    FORMAT (1X,4F11.4)
    WRITE(1,47) XST, DXST, PHIST, DPHIST
    FORMAT(1X,'XST, DXST, PHIST, DPHIST =',4F11.4,/)
    PHIST=PI*PHIST/180.
    DPHIST=PI*DPHIST/180.
    CALL TIMESTAT (1)
    DO \(10 \mathrm{I}=1,11\)
            \(X C O=X S T+D X S T * F L O A T(I-6) / 10\).
            \(X M A T(I)=X C D\)
            DO \(12 \mathrm{~J}=1,11\)
                PHICO \(=\) PHIST + DPHIST*FLOAT \((J-6) / 10\).
                IF (I.EQ.1) \(\operatorname{PHIMAT}(J)=P H I C O * 180 . / P I\)
    ::::::: NOW COMPUTE THE DISPLACEMENTS ON THE SURFACE MAP AND PRESENT
    ::::::: THE RESULTS AS 0 TO \(100 \%\) OF F AT EACH GRID POINT AND PLOT.
                \(X \operatorname{INT}=0\)
                DO \(6 M T=0, M-1\)
                SPHI \(=\operatorname{SIN}(F L O A T(M T) * P H I C O)\)
                \(C P H I=\operatorname{COS}(F L O A T(M T) * P H I C O)\)
                DO \(6 \mathrm{NT}=1, \mathrm{~N}\)
                IF ( INDEX .EQ. 1 ) XINC=(WE(MT+1,NT)*CPHI+WO(MT+1,NT)
                *SPHI)*SIN(FLOAT(NT)*PI*XCO/L)
                IF ( INDEX .EQ. 2 ) XINC=(VE(MT+1,NT)*SPHI+VD(MT+1,NT)
                *CPHI)*SIN(FLDAT(NT)*PI*XCO/L)
                IF ( INDEX .EQ. 3 ) XINC=(UE (MT+1,NT)*CPHI+UO(MT+1,NT)
                *SPHI)*COS(FLOAT(NT)*PI*XCD/L)
                XINT \(=\) XINT + XINC
                CONTINUE
    XINT=XINT*. 5
    \(\operatorname{RINT}(I, J)=X I N T\)
    CONTINUE
    CALL TIMESTAT (2)
    CONTINUE
    CALL TIMESTAT (3)
    CALL FINDMIN (RINT, RMIN, RMAX)
    CALL DIVTEN (RINT, RMIN, RMAX, EXPT)
    ::::::: NOW THE ARRAY IS SETUP THAT HAS PERCENTAGES OF DISPLACEMENTS
    IF ( EXPT .NE. 0.0 ) THEN
        WRITE \((6,18)\) EXPT
        WRITE \((1,18)\) EXPT
        FORMAT (15X, \(\rightarrow-->\) VALUES IN MAP SCALED AS ',E9.2, \()\)
    ENDIF
    IF ( INDEX .EQ. 1 ) THEN
        WRITE \((6,1801)\)
        WRITE (1,1801)
        FORMAT (26X,'DISPLACEMENT MAP OF W COMPONENT', \()\)
```

 ENDIF
 IF (INDEX .EQ. 2) THEN
 WRITE (6,1802)
 WRITE (1,1802)
 FORMAT (26X,'DISPLACEMENT MAP OF V COMPONENT',/)
 ENDIF
 IF (INDEX .EQ. 3) THEN
 WRITE (6,1803)
 WRITE (1,1803)
 1803
ENDIF
c
WRITE(6,17) (PHIMAT(K),K=1,11)
WRITE(1,17) (PHIMAT(K),K=1,11)
FORMAT(1X,'OUTPUT OF DISPLACEMENTS ON GRID IS:',/,8X,11(F6.1,2X),/)
c
DO 9 NN=1,11
WRITE(6,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)
WRITE(1,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)
FORMAT(1X,F6.2,11F8.4)
CONTINUE
GO TO 11
C
100
RETURN
END
C
C
C
C
C
C FINDS THE MININUM AND MAXIMUM VALUE IN THE ARRAY 'DISP' AND
C
c
C
C
C
C
C
CONTINUE
C
RETURN
END
c

C
c
C

C
C
C
C
C

RETURN .
END
C
c
C

C
c

PRINT *

$\operatorname{PRINT} *, \operatorname{COEFF}(1,1), \operatorname{COEFF}(1,2), \operatorname{COEFF}(1,3), \quad: \prime, \operatorname{RLOAD}(1)$
$\operatorname{PRINT} *, \operatorname{COEFF}(2,1), \operatorname{CoEFF}(2,2), \operatorname{CoEFF}(2,3), \quad$ ':', $\operatorname{RLOAD}(2)$
PRINT *, $\operatorname{COEFF}(3,1), \operatorname{CoEFF}(3,2), \operatorname{COEFF}(3,3), \quad$ ':', $\operatorname{RLOAD}(3)$
PRINT *
C
RETURN
END

```
    SUBROUTINE MOMENTSET(RMOM, XC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N, IKP,
```

 1
 MOMTYP)
 SETS UP THE CALLS TO "MOMENTLAT" WHICH DECOMPOSES THE SPECIFIED
 MOMENT INTO DISCRETE RADIAL FORCES
 XC = X -COORDINATE OF TUBE CENTER (INCHES)
 PHIC = PHI-COORDINATE OF TUBE CENTER (RADIANS)
 TAUX \(=\) THICKNESS OF ATTACHMENT TUBE ALONG \(X\) (INCHES)
 TAUPHI \(=\) THICKNESS OF ATTACHMENT TUBE ALONG PHI (INCHES)
 LPHI = QUTER HORIZONTAL DIMENSION (INCHES) OF ATTACHMENT TUBE
 LX = OUTER VERTICAL DIMENSION (INCHES) OF ATTACHMENT TUBE
 RMOM = EXTERNALLY APPLIED MOMENT
 MOMTYP \(=\) DIRECTION OF MOMENT
 M,N ARE ELEMENT MEMBERS OF PATCH IN PHI AND X DIRECTIONS, RESP.
 CREATED : 02-SEP-83 BY: F.M.G. WONG
 LATEST REVISION : 29-SEP-83
 REAL L,NU,LPHI,LX
 COMMON / CONSTANTS / A, E, L, NU, PI, T
 $A L P O=A S I N(L P H I /(2 . * A))$
ALPI $=A S I N((L P H I-2 . * T A U P H I) /(2 . * A))$
$V_{1}=.5 *(A L P O+A L P I)$
$v 2=L X-2 . * T A U X$
$v 3=.5 *(L X-$ TAUX $)$
ANG $=$ ALPO - ALPI
$V 4=2 . * A L P D$
IF (MOMTYP .EQ. 1) CALL MOMINERT (E, LX, LPHI, TAUX, TAUPHI)
IF (MOMTYP .EQ. 2) CALL MOMINERT (E, LPHI, LX, TAUPHI, TAUX)
WRITE (1,10) E
FORMAT (1X,'MOMENT OF INERTIA: ',F10.5)
CALL MOMENTLAT (M, N, XC, PHIC, O., V1, V2, ANG, IKP, RMOM, MOMTYP, E)
CALL MOMENTLAT (M, N, XC, PHIC, V3, O., TAUX, V4, IKP, RMOM, MOMTYP, E)
CALL MOMENTLAT (M, N, XC, PHIC, $\mathrm{O} .,-\mathrm{V} 1, \mathrm{~V}$, ANG, IKP, RMOM, MOMTYP, E)
CALL MOMENTLAT (M, N, XC, PHIC, -V3, O., TAUX, V4, IKP, RMOM, MOMTYP,E)
RETURN
END

SUBRDUTINE MOMINERT (ERTIA, LX, LPHI, TAUX, TAUPHI)
CALCULATES THE MOMENT OF INERTIA OF A RECTANGULAR ATTACHMENT.

```
C
C ERTIA = MOMENT OF INERTIA RETURNED
C LX = PATCH AXIAL LENGTH
C LPHI = PATCH CIRCUMFERENTIAL LENGTH
C TAUX = PATCH AXIAL THICKNESS
C TAUPHI = PATCH CIRCUMFERENTIAL THICKNESS
C
C CREATED : 09-SEP-83 BY : F.M.G.WONG
C LATEST REVISION : 09-SEP-83
C
C ***********************************************************************************
C
C
    REAL LX, LPHI
C
C
    ENTIRE = (LPHI*LX**3)/12.
    HOLE = ((LPHI - 2.*TAUPHI)*(LX - 2.*TAUX)**3)/12.
C
    ERTIA = ENTIRE - HOLE
C
C
RETURN
END
```

SUBROUTINE MOMENTLAT (M, N, XC, PHIC, XL, PHIL, THX, THPHI, IKP,
1 RMOM, MOMTYP, ERTIA)

MOMENTLAT ALLOWS PARTITIONING OF LOADS IN LOCAL COORDINATES TO MATCH LATERAL COMPONENTS

M $=$ NO. OF PHI DIRECTION ELEMENTS IN PATCH
$\mathrm{N}=\mathrm{NO}$. DF \times DIRECTION ELEMENTS IN PATCH
$X C \quad=\quad$ LOCAL PATCH REFERENCE X COORDINATE
PHIC $=$ LOCAL PATCH REFERENCE PHI CODRDINATE
(XC,PHIC) DEFINE DIRECTION OF LATERAL LOAD AXIS ON CYLINDER
$X L \quad=\quad X$ COOR DISTANCE FROM XC TO PATCH CENTROID
PHIL $=$ PHI(ANGLE) DISTANCE FROM PHIC TO PATCH PHI CENTROID
THX $\quad=\quad$ PATCH DIMENSION ALONG X - AXIS
THPHI $=$ PATCH ARCLENGTH (RADIANS) ALONG PHI - AXIS
RMOM $=$ EXTERNALLY APPLIED MOMENT (IN.-LBS.)
MOMTYP $=$ DIRECTION OF MOMENT
ERTIA $=$ MOMENT OF INERTIA
THIS SUBROUTINE CREATES PR AND PPHI LOAD HARMONICS FOR SUCH LATERAL LOADS.
IKP IS AN ERROR CHECK IF IKP .NE. O GO TO END OF PROGRAM
CREATED : 01-SEP-83 BY: F.M.G. WONG
LATEST REVISION : 06-DEC-83

REAL L,NU
DIMENSION PLAT(4,4), PHINTL(4,4), XNTL(4,4), XEL(4,4), PHIEL(4,4),
1
PSI(4,4)
COMMON / CONSTANTS / A, E, L, NU, PI, T
$I K P=0$
IF ((M.GT. 4) .OR. (N.GT. 4)) IKP = 1
IF ((M.LT. 1) .OR. (N.LT. 1)) IKP = 1
IF (IKP .EQ. 1) GO TO 98
$X M=F L O A T(M)$
$X N=F L O A T(N)$
DO $20 \mathrm{I}=1, \mathrm{~N}$
DO $10 \mathrm{~J}=1$, M
$X J=F L O A T(I)$
$X I=F L O A T(J)$

PHIEL(I,J) $=$ PHIC+PHIL+ THPHI*(2.*XI - 1. - XM)/(2.*XM)
PSI(I,J) $=\operatorname{PHIEL}(I, J)-\operatorname{PHIC}$

```
XEL(I,J) = XC + XL - THX*(2.*XJ - 1. - XN)/(2.*XN)
```

$X N T L(I, J)=X E L(I, J)-X C$
$\operatorname{PHINTL}(I, J)=A * \operatorname{SIN}(\operatorname{PHIEL}(I, J)-\operatorname{PHIC})$

C

10
20 CONTINUE
C
DO $50 \mathrm{I}=1, \mathrm{~N}$
c
c

C
C
:::::: NOW PHI AND \times COORDINATES OF ELEMENT M,N ARE KNOWN
C

$$
\operatorname{PR}=\operatorname{PLAT}(I, J) *(\operatorname{CoS}(\operatorname{PSI}(I, J))) * * 2
$$

$$
\operatorname{PPHI}=.5 * \operatorname{PLAT}(I, J) * \operatorname{SIN}(2 . * \operatorname{PSI}(I, J))
$$

$$
\text { THKT }=T H X /(2 . * X N)
$$

$$
\text { THPHIT }=\text { THPHI } /(2 . * X M)
$$

C
CALL PATCH (XEL(I,J), PHIEL(I,J), THXT, THPHIT, PR, 1) CALL PATCH (XEL(I,J), PHIEL(I,J), THXT, THPHIT, PPHI,2)
C
40
50 CONTINUE CONTINUE
C GO TO 99
C
98
2 FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES,M,N = ',2I3) WRITE (1,2)
C
C 99

RETURN
END

```
C
C
C
c
C
c
C
C
C
C
C
C
C
    PHIST=PI*PHIST/180.
    DPHIST=PI*DPHIST/180.
C
C
    AZ = A*A
    T2 = T*T
C
    CALL TIMESTAT (1)
    DO 10 I = 1, 11
```

```
            XCO = XST + DXST*FLDAT(I-6)/10.
            XMAT(I) = XCO
            DO 12 J = 1, 11
                                    PHICO = PHIST + DPHIST*FLOAT(J-6)/10.
                                    IF (I .EQ. 1 ) PHIMAT(J) = PHICO*180./PI
```

C : : : : : : : COMPUTE DERIVATIVES OF DISPLACEMENTS

C

C

C

C
C
C
C

C

C

C

C
12

C
C
CALL DIVTEN (RMAP, RMIN, RMAX, EXPT)
C

CONTINUE
CONTINUE
CALL TIMESTAT (3)

CALL FINDMIN (RMAP, RMIN, RMAX)

```
CALL DERIVDSP (XCO, PHICO, W, DWXXS, DWPPS, DWXPS, DVXS, DVPS, DUXS, DUPS)
```

```
RNX = E*T/(1. - NU*NU)*(DUXS + NU*(DVPS - W)/A)
```

RNX = E*T/(1. - NU*NU)*(DUXS + NU*(DVPS - W)/A)
RNP = E*T/(1. - NU*NU)*(DVPS/A - W/A +NU*DUXS)
RNP = E*T/(1. - NU*NU)*(DVPS/A - W/A +NU*DUXS)
RNXP = E*T/(2.*(1. + NU))*(DVXS +DUPS /A)
RNXP = E*T/(2.*(1. + NU))*(DVXS +DUPS /A)
D = E*T**3/(12*(1. - NU*NU))
IF (EXPT .NE. O.0) THEN

```
```

 WRITE (6,18) EXPT
 WRITE (1,18) EXPT
 FORMAT (1X,'VALUES IN MAP SCALED AS ',E9.2./)
 ENDIF
 C
C
WRITE(6,17) (PHIMAT(K),K=1,11)
WRITE(1,17) (PHIMAT(K),K=1,11)
FORMAT(1X,'OUTPUT OF M, N, OR STRESS ON GRID IS:',/,8X,11(F6.1,2X),/)
C
1 9
9
C
RETURN
END
C
C
C
C
C
C
1
SUBROUTINE DERIVDSP (XCD, PHICO, WS, DWXXS, DWPPS, DWXPS,
DVXS, DVPS, DUXS, DUPS)
CALCULATES THE DERIVATIVES OF THE DISPLACEMENTS U,V, AND W
W = DISPLACEMENT W
DWXXS = SECOND DERIV. OF W WITH RESP. TO X
DWPPS = SECOND DERIV. OF W WITH RESP. TO PHI
DWXPS = MIXED PARTIAL OF W WITH RESP. TO X THEN PHI
DVXS = FIRST DERIV. OF V WITH RESP. TO }
DVPS = FIRST DERIV. DF V WITH RESP. TO PHI
DUXS = FIRST DERIV. DF U WITH RESP. TO X
DUPS = FIRST DERIV. OF U WITH RESP. TO PHI
CREATED: 27-JUL-83 BY: F.M.G. WONG
**
REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M,N
COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),
1
WE(100,100), WO(100,100)
C
C ::::::: NOW COMPUTE THE DERIVATIVES OF THE DISPLACEMENTS
C
WRITE (6,15) TYPE(INDEX)
WRITE (1,15) TYPE(INDEX)
FORMAT (26X,'M, N, OR STRESS MAP OF ',A5,>)
C
DO 9 NN=1,11
WRITE(6,19) .XMAT(12-NN), (RMAP(12-NN,K),K=1,11)
WRITE(1,19) XMAT(12-NN),(RMAP(12-NN,K),K=1,11)
FORMAT(1X,F6.2,11F8.4)
CONTINUE
GO TO 11
C
C
C
REAL L, NU
WS = 0.
DWXXS = 0.

```

> DWPPS \(=0\).
> DWXPS \(=0\).
> DVXS \(=0\).
> DVPS \(=0\).
> DUXS \(=0\).
> DUPS \(=0\).

C

C

C

C

C
1

1

1

1
C

1

1
C

1

1
C
c

C
C
RETURN
END
C
C
```

RMT = FLOAT(MT)
SPHI = SIN(RMT*PHICO)
CPHI = COS(RMT*PHICO)

```
DO \(6 \mathrm{NT}=1, \mathrm{~N}\)
RNT \(=\) FLOAT(NT)

CALL TIMESTAT (2)
\begin{tabular}{rl} 
WS & \(=\) WS \(+W\) \\
DWXXS & \(=\) DWXXS + DWXX \\
DWPPS & \(=\) DWPPS + DWPP \\
DWXPS & \(=\) DWXPS + DWXP \\
DVXS & \(=\) DVXS + DVX \\
DVPS & \(=\) DVPS + DVP \\
DUXS & \(=\) DUXS + DUX \\
DUPS & \(=\) DUPS + DUP
\end{tabular}

DUX \(=-.5 *(R N T * P I / L) *(U E(M T+1, N T) * C P H I+\)
(WE(MT+1,NT)*CPHI + WO(MT+1,NT)*SPHI) *SIN(RNT*PI*XCO/L)
\(D W X X=-.5 *(R N T * P I / L) *(R N T * P I / L) *(W E(M T+1, N T) * C P H I+\) \(W O(M T+1, N T) * S P H I) * S I N(R N T * P I * X C O / L)\)
DWPP \(=-.5 * R M T * R M T *(W E(M T+1, N T) * C P H I+W O(M T+1, N T)\)
*SPHI)*SIN(RNT*PI*XCO/L)
\(D W X P=.5 * R M T *(R N T * P I / L) *(-W E(M T+1, N T) * S P H I+\) \(W O(M T+1, N T) * C P H I) * C O S(R N T * P I * X C D / L)\)
\(D V X=.5 *(R N T * P I / L) *(V E(M T+1, N T) * S P H I+V O(M T+1, N T)\) \(* C P H I) * \operatorname{COS}(R N T * P I * X C O / L)\)
\(D V P=.5 * R M T *(V E(M T+1, N T) * C P H I-V D(M T+1, N T)\)
*SPHI) *SIN(RNT*PI*XCO/L)
\[
\begin{gathered}
U O(M T+1, N T) * S P H I) * S I N(R N T * P I * X C O / L) \\
D U P=\begin{array}{c}
5 * R M T *(-U E(M T+1, N T) * S P H I+U O(M T+1, N T) \\
* C P H I) * S I N(R N T * P I * X C O / L)
\end{array}, ~
\end{gathered}
\]

C INTEGRATES THE INTERNAL PRESSURE COMPONENT INTO THE GENERAL
c
c

SUBROUTINE INTPRES (INDEX, RHOG, XO)
ADDS INTERNAL PRESSURE TO THE RADIAL COMPONENT OF THE LOAD
INDEX = 1: UNIFORM INTERNAL RADIAL PRESSURE; 2: HYDROSTATIC PRESSURE
RHOG \(=\) DENSITY OF FLUID (LBS./IN**3)
XO = FLUID LEVEL IN TANK (IN.)
QPRES = INTERNAL PRESSURE (PSI)
CREATED : 10-AUG-83 BY: F.M.G. WONG
LATEST REVISION : 14-DEC-83

REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / INTPRS / PRESS(100), QPRES

IF ( INDEX .EQ. 1 ) THEN
DO 40 NT \(=1, N, 2\) XNT \(=\) FLOAT(NT)
\(\operatorname{PRESS}(N T)=4 . *\) QPRES \(/(P I * X N T)\)
CONTINUE
ENDIF
IF ( INDEX .EQ. 2 ) THEN
DO \(50 \mathrm{NT}=1\), N
XNT \(=\) FLOAT(NT)
\(C=(X N T * P I) / L\)
ONE \(=(X O / C) *(1 .-\operatorname{COS}(C * X O))\)
\(F=1 . /(C * * 2)\)
\(G=X O / C\)
TWD \(=F * \operatorname{SIN}(C * X O)-G * \operatorname{COS}(C * X O)\)
VALPRS \(=2 . * R H O G *(O N E-T W O) / L\)
PRESS (NT) \(=\) VALPRS
CONTINUE QPRES \(=1.0\)
ENDIF

RETURN
END


SUBROUTINE MERGPRES
```

C CREATED: 22-AUG-83 BY: F.M.G. WONG

```

C
C

C RETURN
END
```

C
C
C
C
C
C
C
C
C
C
C


```
C
C
c
PHIC \(=\) PI \(*\) PHIC \(/ 180\).
    ::::::: EXTERNAL MOMENT DATA
    :::::::
        WRITE (6,20)
        WRITE (1,20)
```

```
20 FORMAT (1X,'EXTERNALLY APPLIED MDMENTS: YES = 1, NO = O')
    READ (4,201) MOMRPY
201 FDRMAT (1X,I1)
    WRITE (6,21) MDMRPY
    WRITE (1,21) MOMRPY
    FORMAT (1X,'RESPONSE TO MOMENT PROMPT = ',I, )
    IF ( MOMRPY .EQ. O ) GO TO 30
    WRITE (6,22)
    WRITE (1,22)
    FORMAT (1X,'TYPE OF MDMENT: LONGITUDINAL = 1, CIRCUMFERENTIAL = 2')
    READ (4,201) MOMTYP
    WRITE (1,23) MOMTYP
    FORMAT (1X,'TYPE OF MOMENT = ',I,/)
    WRITE (6,24)
    WRITE (1,24)
24. FORMAT (1X,'ENTER EXTERNALLY APPLIED MOMENT (IN.-LBS.):')
    READ (4,25) RMDM
    FORMAT (1X,F9.1)
    WRITE (1,26) RMOM
    FORMAT (1X,'EXTERNALLY APPLIED MOMENT (IN.-LBS.) = ',F9.1,>)
C
C :::::::
c ::::::: ASSEMBLE LOADING COEFFICIENTS }->\mathrm{ -> FORCES & MOMENTS
C :::::::
c
    1
                CALL MOMENTSET (RMOM, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB,
                NTUB, IKP, MOMTYP)
            IF ( IKP .EQ. 1 ) GO TO 900
    ENDIF
c
30 IF ( F .NE. O. ) THEN
    PL = F/( (LX*LPHI) -(LX - 2.*TAUX)*(LPHI - 2.*TAUPHI) )
    CALL RECTUBE (PL, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, IKP)
    IF ( IKP .EQ. 1 ) GO TO 900
    ENDIF
C
90 CONTINUE
    WRITE (6,95)
    WRITE (1,95)
95 FORMAT (/,1X,' --> END MULTIPLE NOZZLE DATA',/)
C
    GO TO 1000
C
900 WRITE (6,901)
    WRITE (1,901)
901 FORMAT(1X,'ERROR DETECTED IN -- IKP --')
C
1000 RETURN
    END
```

 CALL CIRCPRES (XC, PHIC, R1, R2, ANG1, 1.0, 1.0, 1, PRS, NDIR)
 CALL CIRCPRES (XC, PHIC, R1, R2, ANG2, 1.0, -1.0, 2, PRS, NDIR)
CALL CIRCPRES (XC, PHIC, R1, R2, ANG3, $-1.0,-1.0,3$, PRS, NDIR)
CALL CIRCPRES (XC, PHIC, R1, R2, ANG4, $-1.0,1.0,4$, PRS, NDIR)
SUBRDUTINE CIRCSPLIT (XC, PHIC, R1, R2, PRS, NDIR)
SPLITS CIRCULAR ATTACHMENT INTO FOUR QUADRANTS THROUGH FOUR CALLS
TO "CIRCPART."
XC $=X$-COORDINATE OF ATTACHMENT CENTER
PHIC $=$ PHI-COORDINATE OF ATTACHMENT CENTER
R1 = INNER RADIUS OF ATTACHMENT
R2 = DUTER RADIUS OF ATTACHMENT
PRS = LOADING
NDIR $=$ LOADING DIRECTION
CREATED : 18-NOV-83 BY: F.M.G. WONG
LAST REVISED : 06-DEC-83

REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
RADIAN $=\mathrm{PI} / 180$.
ANG1 $=45 . *$ RADIAN
ANG2 $=135 . *$ RADIAN
ANG3 $=225 . *$ RADIAN
ANG4 $=315 . *$ RADIAN
CALL CIRCPART (XC, PHIC, R1, R2, ANG1, 1.0, 1.0, 1)
CALL CIRCPART ($X C$, PHIC, R1, R2, ANG2, 1.0, $-1.0,2$)
CALL CIRCPART (XC, PHIC, R1, R2, ANG3, $-1.0,-1.0,3$)
CALL CIRCPART (XC, PHIC, R1, R2, ANG4, -1.0, 1.0, 4)
CALL TRIPATCH (XA, XB, PHIA, PHIB, PRS, IORIENT, 1)
RETURN
END

```
C
C
C
C
C
C
C
C
C
C ANG = ANGLE=45, WHICH DEFINES THE QUADRANT
C XFACT = DETERMINES SIGN OF X-DIRECTION
C PFACT = DETERMINES SIGN OF PHI-DIRECTION
C INDEX = INTEGER DESIGNATION OF QUADRANT: 1, 2, 3, OR 4
C
C
c
C
C
c
c
C
c
C
C
C
C
C
c
C
C
C
C
C
C
C
CIRCX(3,INDEX) = XC + XFACT*(R1 + (R2 - R1)/2.)
CIRCPHI(3,INDEX) = PHIC + 0.5*PR1*COS(ANG)
C
c ::::::: CALCULATION OF CENTERS FOR TRIANGULAR ELEMENTS
C
CIRCX(4,INDEX) = XC + THD2*R1*SIN(ANG)
```

C

C

C
c
C
C
C
C
C

C

C

C

C

C
c
$\operatorname{CIRCPHI}(4$, INDEX $)=P H I C+P R 1 * C O S(A N G)+P F A C T * T H D 2 *(P R 1-P R 1 * A B C O S)$

CIRCX(5,INDEX) $=X C+R 1 * S I N(A N G)+$ THD1*(R2 $-R 1) * S I N(A N G)$ CIRCPHI(5,INDEX) $=$ PHIC+PR2*COS(ANG)+PFACT*THD1*(PR2-PR2*ABCOS)
$\operatorname{CIRCX}(6$, INDEX $)=X C+R 2 * S I N(A N G)+X F A C T * T H D 1 *(R 2-R 2 * A B S I N)$ CIRCPHI(6,INDEX) $=$ PHIC + PR1*COS(ANG) + THD1*(PR2 - PR1)*COS(ANG)

CIRCX(7,INDEX) $=X C+R 1 * S I N(A N G)+X F A C T * T H D 2 *(R 1-R 1 * A B S I N)$ CIRCPHI(7,INDEX) $=$ PHIC + THD2*PR1*COS(ANG)

ENDIF
::::::
::::::: ELEMENT PARTITION FOR A CIRCULAR SOLID
::: :: :

IF (R1 .EQ. 0.0) THEN
$\operatorname{CIRCSX}(1, \operatorname{INDEX})=X C+0.5 * R 2 * S I N(A N G)$
$\operatorname{CIRCSP}(1$, INDEX $)=$ PHIC $+0.5 * P R 2 * \operatorname{COS}(A N G)$
$\operatorname{CIRCSX}(2, I N D E X)=X C+R 2 * S I N(A N G)+X F A C T * T H D 1 *(R 2-R 2 * A B S I N)$
$\operatorname{CIRCSP}(2, \operatorname{INDEX})=\mathrm{PHIC}+\mathrm{THD1*R2*COS}(A N G)$
$\operatorname{CIRCSX}(3, \operatorname{INDEX})=X C+T H D 1 * R 2 * S I N(A N G)$
$\operatorname{CIRCSP}(3$, INDEX $)=\mathrm{PHIC}+\mathrm{R} 2 * \operatorname{COS}(A N G)+\operatorname{PFACT} * T H D 1 *(R 2-R 2 * A B C O S)$

ENDIF

RETURN
END
SUBROUTINE CIRCPRES (XC, PHIC, R1, R2, ANG, XFACT, PFACT, IND, PRS,
1
NDIR)
APPLIES PRESSURE LOADINGS TO CIRCULAR ATTACHMENT
R1 = INNER RADIUS OF ATTACHMENT
R2 = OUTER RADIUS OF ATTACHMENT
ANG $=$ ANGLE DESIGNATING THE QUADRANT
XFACT $=$ DETERMINES SIGN OF X-DIRECTION
PFACT $=$ DETERMINES SIGN OF PHI-DIRECTION
IND = INTEGER DESIGNATING QUADRANT
PRS = PRESSURE LOADING TO BE UNIFORMLY DISTRIBUTED
NDIR $=$ DIRECTION OF LDADING
CREATED : 18-NOV-83 BY: F.M.G. WONG
LAST REVISED : 08-DEC-83
REAL L, NU
DIMENSION $\operatorname{THX}(3,4), \operatorname{THP}(3,4), \operatorname{TRIXA}(4,4), \operatorname{TRIXB}(4,4), \operatorname{TRIPA}(4,4)$,
1
$\operatorname{TRIPB}(4,4), \operatorname{IORIENT}(16), \operatorname{ITYPE}(4)$
DIMENSION KORIENT (4)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CIRCTB / CIRCX(7,4), CIRCPHI (7,4)
COMMON / CIRCSD / CIRCSX(3,4), $\operatorname{CIRCSP}(3,4)$
DATA IORIENT / 2, 3, 3, 2, 4, 1, 1, 4, 3, 2, 2, 3, 1, 4, 4, 1//
DATA ITYPE / 1, 5, 9, $13 /$
DATA KDRIENT / 3, 1, 2, 4/
$\mathrm{ABTRIG}=\operatorname{COS}(45 . * \mathrm{PI} / 180$.
PR1 $=A S I N(R 1 / A)$
$P R 2=A S I N(R 2 / A)$
:: :: :: : LOADINGS FOR CIRCULAR TUBES
IF (RI.NE. O.O) THEN
$\operatorname{THX}(1, I N D)=0.5 * R 1 * A B T R I G$
$\operatorname{THP}(1, I N D)=0.5 *(P R 2-P R 1)$
$\operatorname{THX}(2$, IND $)=0.5 *(R 2-R 1) * A B T R I G$
$\operatorname{THP}(2, I N D)=0.5 *(P R 2-P R 1) * A B T R I G$
$\operatorname{THX}(3, I N D)=0.5 *(R 2-R 1)$
$\operatorname{THP}(3, I N D)=0.5 * P R 1 * A B T R I G$
PRINT *, ' RECTANGLES '
DC $40 \mathrm{I}=1,3$
$C I R X=C I R C X(I, I N D)$
CIRPHI = CIRCPHI(I,IND)
PSI $=C I R P H I-P H I C$
$P R=P R S *(\operatorname{COS}(P S I)) * * 2$
$\mathrm{PPHI}=0.5 * \mathrm{PRS} * S I N(2 . * P S I)$
C
C
50 CONTINUE
c
PRINT *, CIRX, CIRPHI, PR, I
PRINT *, CIRX, CIRPHI, PPHI, I
CONTINUE
$\operatorname{TRIXA}(1, I N D)=X C+R 1 * S I N(A N G)$
$\operatorname{TRIXB}(1, I N D)=X C$
$\operatorname{TRIPA}(1, I N D)=P H I C+P R 1 * C O S(A N G)$
$\operatorname{TRIPB}(1, I N D)=P H I C+P R 1 * P F A C T$
$\operatorname{TRIXA}(2, I N D)=X C+R 2 * \operatorname{SIN}(A N G)$
$\operatorname{TRIXB}(2, I N D)=X C+R 1 * S I N(A N G)$
$\operatorname{TRIPA}(2, I N D)=P H I C+P R 2 * C O S(A N G)$
$\operatorname{TRIPB}(2, I N D)=P H I C+P R 2 * P F A C T$
$\operatorname{TRIXA}(3$, IND $)=X C+R 2 * X F A C T$
$\operatorname{TRIXB}(3, I N D)=X C+R 2 * \operatorname{SIN}(A N G)$
$\operatorname{TRIPA}(3, I N D)=P H I C+P R 1 * C O S(A N G)$
$\operatorname{TRIPB}(3, I N D)=P H I C+P R 2 * C O S(A N G)$
$\operatorname{TRIXA}(4, I N D)=X C+R 1 * X F A C T$
$\operatorname{TRIXB}(4, \operatorname{IND})=X C+R 1 * \operatorname{SIN}(A N G)$
$\operatorname{TRIPA}(4, I N D)=P H I C$
$\operatorname{TRIPB}(4, \mathrm{IND})=\mathrm{PHIC}+\mathrm{PR} 1 * \operatorname{COS}(\mathrm{ANG})$
PRINT *, 'IND =',IND
IF ((IND .EQ. 2) .OR. (IND .EQ. 3)) THEN
DO $45 \mathrm{~J}=1,4$
TEMPA $=$ TRIXA (J, IND $)$
TEMPB $=\operatorname{TRIXB}(J, I N D)$
$\operatorname{TRIXB}(J, I N D)=$ TEMPA
TRIXA(J,IND) $=$ TEMPB
TEMPC $=\operatorname{TRIPA}(J, I N D)$
TEMPD $=\operatorname{TRIPB}(J, I N D)$
TRIPA(J,IND) $=$ TEMPD
$\operatorname{TRIPB}(J, \operatorname{IND})=\operatorname{TEMPC}$
CONTINUE
ENDIF
KTYP $=\operatorname{ITYPE}(I N D)$
DO $50 \mathrm{~K}=1,4$
PSI $=$ CIRCPHI $(K+3, I N D)-P H I C$
$P R=P R S *(\operatorname{COS}(P S I)) * * 2$
$\mathrm{PPHI}=0.5 * \mathrm{PRS} * \operatorname{SIN}(2 . * \mathrm{PSI})$
c

```
        CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),
        1 TRIPB(K,IND),PR,IORIENT(KTYP),1)
    CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),
    1 TRIPB(K,IND),PPHI,IORIENT(KTYF),2)
```

 \(K T Y P=K T Y P+1\)
 CALL PATCH (CIRX, CIRPHI, THX(I,IND), THP(I,IND), PR, 1)
 CALL PATCH (CIRX, CIRPHI, THX(I,IND), THP(I,IND), PPHI, 2)
 ENDIF
c
c

```
    CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),TRIPB(K,IND),
```

 1 PR, KORIENT (IND) , 1)
 CALL TRIPATCH (TRIXA(K,IND), TRIXB(K,IND), TRIPA(K,IND),TRIPB(K,IND),
 1 PPHI,KORIENT(IND),2)
 C
60 CONTINUE
C
:::::: LOADINGS FOR SOLID CIRCULAR ATTACHMENTS

PSI $=\operatorname{CIRCSP}(K+1, I N D)-P H I C$
PR $=\operatorname{PRS} *(\operatorname{COS}(P S I)) * * 2$
PPHI $=0.5 * P R S * S I N(2 . * P S I)$
ENDIF
DO $60 \mathrm{~K}=1,2$

1 PR,KORIENT(IND),1)
ENDIF

RETURN
END

C \quad PHIB $=0.137881$
C \quad PRS $=10$.
C
C PRINT *,XA,XB,PHIA,PHIB,PRS
$A A=(X B-X A) /(P H I B-P H I A)$
$B=(X A * P H I B-X B * P H I A) /(P H I B-P H I A)$
$P I 2=P I * P I$
PRINT *, ' $A A=$ ', $A A,{ }^{\prime} B=', B$
C
DO 200 MT $=0, \mathrm{M}-1$
IF (MT .EQ. O) GO TO 5
XMT = FLOAT(MT)
CPHIO $=\operatorname{COS}(X M T *$ PHIO)
SPHIO $=\operatorname{SIN}(X M T * P H I O)$
CONTINUE
DO 100 NT $=1, N$
XNT $=$ FLOAT(NT)
$X K=X N T * P I * A A L$
$S X O=\operatorname{SIN}(X N T * P I * X O / L)$
CXO $=\cos (X N T * P I * X O / L)$
XMKPV $=1 . /(X M T+X K)$
DUM $=X M T$ - XK
IF (DUM .EQ. 0.0) PRINT*,DUM,XMT,XK,MT,NT
XMKNV $=1 . /(X M T-X K)$
c

C

C

C

C

$\operatorname{csXA}=\cos (X N T * P I * X A / L)$
$\operatorname{SSXA}=\operatorname{SIN}(X N T * P I * X A / L)$
$C S B=0.5 * \cos (X N T * P I * B / L)$
$S S B=0.5 * S I N(X N T * P I * B / L)$
IF (MT .NE. O) THEN
SMPA $=(1 . / X M T) * S I N(X M T * P H I A)$
CMPA $=(1 . \angle X M T) * \operatorname{COS}(X M T * P H I A)$
SMKPA $=X M K P V * S I N((X M T+X K) * P H I A)$
SMKNA $=X M K N V * S I N((X M T-X K) * P H I A)$
CMKPA $=X M K P V * \operatorname{COS}((X M T+X K) * P H I A)$
CMKNA $=X M K N V * \operatorname{COS}((X M T-X K) * P H I A)$
SMPB $=(1 . / X M T) * S I N(X M T * P H I B)$
CMPB $=(1 . / X M T) * \operatorname{COS}(X M T * P H I B)$
.SMKPB $=$ XMKPV*SIN($(X M T+X K) * P H I B)$
SMKNB $=X M K N V * S I N((X M T-X K) * P H I B)$
$C M K P B=X M K P V * \operatorname{COS}((X M T+X K) * P H I B)$
CMKNB $=X M K N V * \operatorname{COS}((X M T-X K) * P H I B)$
ENDIF

IF (MT .EQ. O) THEN

CKPA $=\cos (X K * P H I A)$
SKPA $=\operatorname{SIN}(X K * P H I A)$
$C K P B=\cos (X K * P H I B)$
SKPB $=\operatorname{SIN}(X K *$ PHIB $)$
$X K V=1 . / X K$

FUNA $=$ PHIA $* C S X A-X K V * 2 . * C S B * S K P A-X K V * 2 . * S S B * C K P A$
FUNB $=P H I B * C S X A-X K V * 2 . * C S B * S K P B-X K V * 2 . * S S B * C K P B$
FUNC $=$ FUNB - FUNA

```
FUND = -PHIA*SSXA-XKV*2.*CSB*CKPA+XKV*2.*SSB*SKPA
FUNE = -PHIB*SSXA-XKV*2.*CSB*CKPB+XKV*2.*SSB*SKPB
FUNF = FUNE - FUND
```

C

C

C

C

C

C

C

C
c
$C O N=2 . * P R S * O N E /(X N T * P I 2)$
IF (N1 .EQ. 1) $\operatorname{PRE}(M T+1, N T)=\operatorname{PRE}(M T+1, N T)+C O N * F U N C$
IF (N1.EQ.2) $\operatorname{PPHIO}(M T+1, N T)=P P H I O(M T+1, N T)+C O N * F U N C$
IF (N1 .EQ. 3) PXE(MT+1,NT) $=\operatorname{PXE}(M T+1, N T)+C O N * F U N F$
PRINT *, ' $M=0:$, IORIENT,CON*FUNC*ONE,NT
GO TO 100
ENDIF
IF ($(N 1$.EQ. 1). OR.(N1 .EQ. 2)) THEN
FUNA $=$ CSXA $*$ SMPA - CSB $*(S M K P A+S M K N A)+S S B *(-C M K P A+C M K N A)$
FUNB $=$ CSXA A SMPB-CSB $*(S M K P B+S M K N B)+S S B *(-C M K P B+C M K N B)$
FUNC $=$ FUNB - FUNA

```
FUND = -CSXA*CMPA-CSB*(-CMKPA-CMKNA)+SSB*(-SMKPA+SMKNA)
FUNE = -CSXA*CMPB-CSB*(-CMKPB-CMKNB)+SSB*(-SMKPB+SMKNB)
FUNF = FUNE - FUND
```

$\mathrm{CON}=4 . * \mathrm{PRS} * \mathrm{ONE} /(\mathrm{XNT} * \mathrm{PI} 2)$
IF (N1 .EQ. 1) THEN
$\operatorname{PRE}(M T+1, N T)=\operatorname{PRE}(M T+1, N T)+C O N * F U N C$
$\operatorname{PRO}(M T+1, N T)=\operatorname{PRO}(M T+1, N T)+C O N * F U N F$
ENDIF
PRINT *, IORIENT, CON*FUNC*ONE, CON*FUNF*ONE
IF (N1 .EQ. 2) THEN
$\operatorname{PPHIE}(M T+1, N T)=\operatorname{PPHIE}(M T+1, N T)+C O N * F U N F$
$\operatorname{PPHIO}(M T+1, N T)=\operatorname{PPHIO}(M T+1, N T)+C O N * F U N C$
ENDIF

ENDIF
IF (N1 .EQ. 3) THEN
$\operatorname{cxO}=\cos (X N T * P I * X O / L)$
FUNA $=-$ SSXA ${ }^{\text {S SMPA }}+C S B *(-C M K P A+C M K N A)+S S B *(S M K P A+S M K N A)$
FUNB $=-S S X A * S M P B+C S B *(-C M K P B+C M K N B)+S S B *(S M K P B+S M K N B)$
FUNC $=$ FUNB - FUNA
FUND $=$ SSXA $*$ CMPA + CSB $*(-S M K P A+$ SMKNA $)+$ SSB $*(-C M K P A-C M K N A)$
FUNE $=S S X A * C M P B+C S B *(-S M K P B+S M K N B)+S S B *(-C M K P B-C M K N B)$
FUNF $=$ FUNE - FUND
$\mathrm{CON}=4 . * \mathrm{PRS} /(\mathrm{XNT} * \mathrm{PI} 2)$
$\operatorname{PXE}(M T+1, N T)=\operatorname{PXE}(M T+1, N T)+C O N * F U N C * O N E$
$\operatorname{PXD}(M T+1, N T)=P X O(M T+1, N T)+C O N * F U N F * O N E$

ENDIF
100 CONTINUE

CONTINUE

C

c
RETURN
END

SUBROUTINE CIRCSET (XC, PHIC, R1, R2, RMOM, MOMTYP)
SPLITS CIRCULAR ATTACHMENT INTO FQUR QUADRANTS THROUGH FDUR CALLS TO "CIRCPART."

Xc = X-COORDINATE OF ATTACHMENT CENTER
PHIC = PHI-COORDINATE OF ATTACHMENT CENTER
R1 = INNER RADIUS OF ATTACHMENT
R2 = OUTER RADIUS OF ATTACHMENT
RMOM $=$ EXTERNAL MOMENT
MOMTYP $=$ TYPE OF MOMENT: LONG. $=1$, CIRCUM $=2$, NONE $=0$
CREATED : 01-DEC-83 BY: F.M.G. WONG
LAST REVISED : 01-DEC-83

REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
RADIAN $=$ PI/ 180.
ANG1 $=45 . *$ RADIAN
ANG2 $=135 . *$ RADIAN
ANG3 $=225 . *$ RADIAN
ANG4 $=315 . *$ RADIAN
CALL CIRCPART (XC, PHIC, R1, R2, ANG1, 1.0, 1.0, 1)
CALL CIRCPART (XC, PHIC, R1, R2, ANG2, 1.0, -1.0, 2)
CALL CIRCPART (XC, PHIC, R1, R2, ANG3, -1.0, -1.0, 3)
CALL CIRCPART (XC, PHIC, R1, R2, ANG4, -1.0, 1.0, 4)
CALL CIRCINERT (R1, R2, ERT)
CALL CIRCMOM (XC, PHIC, R1, R2, ANG1, $1.0,1.0,1$, RMOM, ERT, MOMTYP)
CALL CIRCMOM ($X C$, PHIC, R1, R2, ANG2, $1.0,-1.0,2$, RMOM, ERT, MOMTYP)
CALL CIRCMOM (XC, PHIC, R1, R2, ANG3, $-1.0,-1.0,3$, RMOM, ERT, MOMTYP)
CALL CIRCMOM (XC, PHIC, R1, R2, ANG4, $-1.0,1.0,4$, RMOM, ERT, MOMTYP)
RETURN
END

SUBRDUTINE CIRCINERT (R1, R2, ERT)
calculates the moment of inertia for a circular attachment

```
CREATED : 01-DEC-83 BY: F.M.G. WONG
```

COMMON / CONSTANTS / A, E, L, NU, PI, T
$E R T=(R 2 * * 4-R 1 * * 4) * P I / 4$.
c
RETURN
END
SUBROUTINE CIRCMOM (XC, PHIC, R1, R2, ANG, XFACT, PFACT, IND, RMOM,
1
ERTIA, MOMTYP)
APPLIES PRESSURE LOADINGS TO CIRCULAR ATTACHMENT
R1 = INNER RADIUS OF ATTACHMENT
R2 = OUTER RADIUS OF ATTACHMENT
ANG $=$ ANGLE DESIGNATING THE QUADRANT
XFACT = DETERMINES SIGN OF X-DIRECTION
PFACT = DETERMINES SIGN OF PHI-DIRECTION
IND = INTEGER DESIGNATING QUADRANT
RMOM = EXTERNAL MOMENT TO BE APPLIED
ERTIA = MOMENT OF INERTIA
MOMTYP $=$ MOMENT TYPE $:$ LONGITUDINAL $=1$, CIRCUMFERENTIAL $=2$
CREATED : 01-DEC-83 BY: F.M.G. WONG
LAST REVISED : 08-DEC-83

REAL L, NU
DIMENSION $\operatorname{THX}(3,4), \operatorname{THP}(3,4), \operatorname{TRIXA}(4,4), \operatorname{TRIXB}(4,4), \operatorname{TRIPA}(4,4)$,
1
$\operatorname{TRIPB}(4,4), \operatorname{IORIENT}(16), \operatorname{ITYPE}(4)$
DIMENSION KDRIENT(4)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CIRCTB / CIRCX(7,4), CIRCPHI $(7,4)$
COMMON / CIRCSD / CIRCSX(3,4), $\operatorname{CIRCSP(3,4)}$
DATA IORIENT / 2, 3, 3, 2, 4, 1, 1, 4, 3, 2, 2, 3, 1, 4, 4, $1 /$
DATA ITYPE / 1, 5, 9, 13/
DATA KORIENT / 3, 1, 2, 4/
ABTRIG $=\cos (45 . * \mathrm{PI} / 180$.
PR1 $=$ ASIN(R1/A)
$P R 2=A S I N(R 2 / A)$
:::::: : LOADINGS FOR CIRCULAR TUBES
IF (R1 .NE. O.O) THEN
$\operatorname{THX}(1, I N D)=0.5 * R 1 * A B T R I G$
$\operatorname{THP}(1, I N D)=0.5 *(P R 2-P R 1)$
$\operatorname{THX}(2, I N D)=0.5 *(R 2-R 1) * A B T R I G$
$\operatorname{THP}(2, I N D)=0.5 *(P R 2-P R 1) * A B T R I G$
$\operatorname{THX}(3, I N D)=0.5 *(R 2-R 1)$
$\operatorname{THP}(3, I N D)=0.5 * P R 1 * A B T R I G$
DO 40 I $=1,3$
CIRX $=$ CIRCX(I,IND)
CIRPHI = CIRCPHI(I,IND)
PSI = CIRPHI - PHIC
IF (MOMTYP .EQ. 1) ELD = CIRX - XC
IF (MOMTYP .EQ. 2) ELD = A*SIN(CIRPHI - PHIC)

```
        PRS = RMOM*ELD/ERTIA
        PR = PRS*(COS(PSI))**2
        PPHI = 0.5*PRS*SIN(2.*PSI)
        CALL PATCH (CIRX, CIRPHI, THX(I,IND), THP(I,IND), PR, 1)
        CALL PATCH (CIRX, CIRPHI, THX(I,IND), THP(I,IND), PPHI, 2)
    CONTINUE
C
    TRIXA(1,IND) = XC + R1*SIN(ANG)
    TRIXB(1,IND) = XC
    TRIPA(1,IND) = PHIC + PR1*COS(ANG)
    TRIPB(1,IND) = PHIC + PR1*PFACT
C
C
C
C
    KTYP = ITYPE(IND)
    DO 50 K = 1, 4
C
    PSI = CIRCPHI(K+3,IND) - PHIC
    IF ( MOMTYP .EQ. 1 ) ELD = CIRCX(K+3,IND) - XC
    IF ( MOMTYP .EQ. 2 ) ELD = A*SIN( CIRCPHI(K+3,IND) - PHIC )
    PRS = RMOM*ELD/ERTIA
    PR = PRS*(COS(PSI))**2
    PPHI = 0.5*PRS*SIN(2.*PSI)
C
    CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),
        1 TRIPB(K,IND),PR,IORIENT(KTYP),1)
        CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),
        1 TRIPB(K,IND),PPHI,IORIENT(KTYP),2)
```

C

```
    KTYP = KTYP + 1
C
50
    CONTINUE
C
    ENDIF
C
C
C
C
C
    CIRX = CIRCSX(1,IND)
    CIRPHI = CIRCSP(1,IND)
C
    PSI = CIRPHI - PHIC
    IF ( MOMTYP .EQ. 1 ) ELD = CIRX - XC
    IF ( MOMTYP .EQ. 2 ) ELD = A*SIN( CIRPHI - PHIC )
    PRS = -RMOM*ELD/ERTIA
    PR = PRS*(COS(PSI))**2
    PPHI = 0.5*PRS*SIN(2.*PSI)
C
C
    DO 60 K = 1, 2
C
PSI = CIRCSP(K+1,IND) - PHIC
IF ( MOMTYP .EQ. 1 ) ELD = CIRCSX(K+1,IND) - XC
IF ( MOMTYP .EQ. 2 ) ELD = A*SIN( CIRCSP(K+1,IND) - PHIC )
PRS = RMOM*ELD/ERTIA
```

$P R=P R S *(\operatorname{COS}(P S I)) * * 2$
$\mathrm{PPHI}=0.5 * P R S * \operatorname{SIN}(2 . * P S I)$

CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),TRIPB(K,IND), 1 PR,KORIENT(IND),1)

CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPA(K,IND),TRIPB(K,IND), 1 PPHI,KORIENT(IND),1)
c
continue

ENDIF
C
c

RETURN
END

C

C

SUBROUTINE COLOCATE (XC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N, IGEOM)
DRIVER MODULE FOR THE COLOCATION METHOD FOR RIGID PLUG PROBLEMS.
IGEOM $=$ TYPE OF ATTACHMENT GEOMETRY: RECTANGULAR $=1$, CIRCULAR $=2$

```
    CREATED : 05-DCT-83 BY : F.M.G. WONG
```

 LATEST REVISION : O2-DEC-83 BY : F.M.G. WONG

REAL LX, LPHI
DIMENSION TEMPA(8,8), $\operatorname{TEMPB}(32,32), \operatorname{TEMPC}(72,72), \operatorname{TEMPD}(128,128)$,
$\operatorname{TEMPE}(24,24), \operatorname{DISPL}(64), \operatorname{FOR}(64)$
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIEL(4,4,4)
COMMON / STIFMAT / STIFFA(8,8), STIFFB(32,32), STIFFC(72,72),
1 STIFFD(128,128), STIFFE(24,24)
COMMON / CIRCSD / $\operatorname{CIRCSX}(3,4), \operatorname{CIRCSP}(3,4)$
::::::: COMPUTE STIFFNESS MATRIX BY APPLYING UNIT PRESSURES
:::::: $:$ ON ATTACHMENT AREA AND SOLVING FOR THE DEFLECTIONS.
IF (IGEOM.EQ.1) CALL PATSPLIT (XC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N) IF (IGEOM.EQ.2) CALL CIRCOLSPL(XC, PHIC, D.0, TAUX)
:::::: STIFFNESS MATRIX IS NOW DEFINED. PRESSURES MAY NOW
:::::: BE CALCULATED, GIVEN A KNOWN DISPLACEMENT.

IF (IGEDM .EQ. 1) ISIZE $=M * N * 4$
IF (IGEOM .EQ. 2) ISIZE $=12$
DO $10 \mathrm{I}=1$, ISIZE*2
DO $5 \mathrm{~J}=1$, ISIZE*2
IF (ISIZE .EQ. 4) TEMPA(I, $j)=\operatorname{STIFFA}(I, j)$
$\operatorname{IF}(\operatorname{ISIZE} . E Q .16) \operatorname{TEMPB}(I, J)=\operatorname{STIFFB}(I, J)$
IF (ISIZE .EQ. 36) $\operatorname{TEMPC}(I, J)=\operatorname{STIFFC}(I, J)$
IF (ISIZE .EQ. 64) $\operatorname{TEMPD}(I, J)=\operatorname{STIFFD}(I, J)$
IF (ISIZE .EQ. 12) TEMPE(I,J) = STIFFE(I,J)
CONTINUE
CONTINUE
:::::: ASSEMBLE KNOWN DISPLACEMENT MATRIX
INC $=1$
PRINT *
DO $40 \mathrm{~J}=1,4$
IF (IGEOM .EQ. 1) THEN
DO $25 \mathrm{~K}=1$, N
DO $20 \mathrm{~L}=1, \mathrm{M}$
DISPL(INC) $=\operatorname{COS}(\operatorname{CNTPHIEL}(K, L, J)-\operatorname{PHIC})$
DISPL(INC+ISIZE) $=\operatorname{SIN}(\operatorname{CNTPHIEL}(K, L, J)-$ PHIC $)$
continue
IF (ISIZE .EQ. 4) CALL SOLVE (TEMPA, FOR, DISPL, 8, DET)
IF (ISIZE .EQ. 16) CALL SOLVE (TEMPB, FOR, DISPL, 32, DET)
IF (ISIZE .EQ. 36) CALL SOLVE (TEMPC, FOR, DISPL, 72, DET)
IF (ISIZE .EQ. 64) CALL SOLVE (TEMPD, FOR, DISPL, 128, DET)
IF (ISIZE .EQ. 12) CALL SOLVE (TEMPE, FOR, DISPL, 24, DET)
c
CALL TIMESTAT (2)
WRITE $(6,800)$
WRITE $(1,800)$
800 FORMAT (/,1X,'THE COLOCATION FORCES ARE:', $ノ)$
c
CONTINUE
CONTINUE
ENDIF

```
    IF ( IGEOM .EQ. 2 ) THEN
DO 30 K = 1, 3
            DISPL(INC) = COS( CIRCSP(K,J) - PHIC )
            DISPL(INC+ISIZE) = SIN( CIRCSP(K,J) - PHIC )
            PRINT *,'DISPR =',DISPL(INC),' DISPP=',DISPL(INC+ISIZE)
            INC = INC + 1
CONTINUE
ENDIF
```

CONTINUE
:::: : : : SOLVE MATRIX EQUATION --
:::::: [STIFF] X [PRESSURES] = [DEFLECTION]
::::: :
::::::: FOR PRESSURES.
WRITE (1,100)
WRITE $(6,100)$
FORMAT ($1 \mathrm{X}, \cdot \rightarrow->$ SOLVING MATRIX', $)$
CALL TIMESTAT (1)
DO $300 \mathrm{~K}=1$, ISIZE*2
WRITE (1,200) TEMPE (K,1), TEMPE(K,13)!(TEMPE(K,L), L=1,ISIZE*2), DISPL(K)
WRITE (6,200) $\operatorname{TEMPE}(K, 1), \operatorname{TEMPE}(K, 13)!(\operatorname{TEMPE}(K, L), L=1, I S I Z E * 2), \operatorname{DISPL}(K)$
FORMAT ($1 \mathrm{X},{ }^{\prime}$ TEMPE $=$ ',E12.4,3X,'TEMPE13 = ',E12.4)
FORMAT (<ISIZE*2>(E12.4,1X),2X,'DSP= ',E12.4)
DO 900 I = 1, ISIZE*2
WRITE (1,910) I, FOR(I)
WRITE (6,910) I, FOR(I)
FORMAT (1X,'FOR(',I2,') = ',E12.4,/)
CONTINUE
INC $=$ INC +1
RETURN
END
c

```
ALPO = ASIN(LPHI/(2.*A))
```

ALPI $=\operatorname{ASIN}((L P H I-2 . * T A U P H I) /(2 . * A))$
$V_{1}=.5 *(A L P D+A L P I)$
$V 2=L X-2 . * T A U X$
$v 3=.5 *(L X-$ TAUX $)$
C
c
c
C
C :::::: OBTAIN COEFFICIENTS FOR RADIAL UNIT LOAD
C
IGLOB $=1$
IFOR $=1$

C
CALL PATPRES (M, N, XC, PHIC, $0, V 1, V 2$, ANG, 1 , IGLOB, IFOR, IKP)

C
C C C C C
C
C CALL PATPRES ($M, N, X C$, PHIC, $0, V 1, V 2, A N G, 1$, IGLOB, IFOR, IKP)
C
C
C
C
CALL PATPRES ($M, N, X C$, PHIC, V3, 0, TAUX, V4, 2, IGLOB, IFOR, IKP)
\qquad

```
IGLOB = ISIZE + 1
```

IGLOB = ISIZE + 1
IFOR = 2
IFOR = 2
CALL INITIALIZE

```
CALL INITIALIZE
```

 CALL PATPRES (M, N, XC, PHIC, V3, 0, TAUX, V4, 2, IGLOB, IFOR, IKP)
 CALL PATPRES (M, N, XC, PHIC, \(0,-\mathrm{V} 1, \mathrm{~V}, \mathrm{ANG}, 3\), IGLOB, IFOR, IKP)
 CALL PATPRES (\(M, N, X C, P H I C,-V 3,0, T A U X, V 4,4\), IGLOB, IFOR, IKP)
 RETURN
 END
    ```
DO 1 J = 1,M
```

C
C : : : : : : : NOW PHI AND X COORDINATES OF ELEMENT M,N ARE KNOWN
THXT $=$ THX $/ 2 . * X N)$
THPHIT $=$ THPHI $/(2 . * X M)$
AREA $=$ THXT $* A * T H P H I T * 4$.
FORCE $=1.0$
c
c
c
c
c
c
c
.
.

$P R=F O R C E / A R E A$
PPHI $=$ FORCE/AREA
IF (IND.NE. 1) CALL INITIALIZE
XFOR $=$ CNTXEL(I, $J, I N D)$
PHIFOR = CNTPHIEL(I,J,IND)
PRINT *
PRINT *,'XFOR = ',XFOR,' PHIFOR = ',PHIFOR,IND PRINT *

IF (IFOR .EQ. 1) CALL PATCH (XFOR, PHIFOR, THXT, THPHIT, PR, 1) IF (IFOR .EQ. 2) CALL PATCH (XFOR, PHIFOR, THXT, THPHIT, PPHI, 2)

CALL TIMESTAT (2)
::::::: CALCULATE STIFFNESS COEFFICIENTS FOR COLOCATION
CALL CALCMAT (M, N, IND, ISIZE, IGLOB, IFOR)

```
IGLOB = IGLOB + 1
```

continue
CALL TIMESTAT (3)

60 TO 99
WRITE(6,2) M, N
FORMAT(1X,'erRor DETECTED IN ELEMENTS - No LOAD CREATES, M,N = ',2I3) WRITE (1,2)

RETURN
END
**
SUBROUTINE INITIALIZE
INTIALIZES ALL PRESSURE ARRAYS TO ZERO
CREATED : 19-OCT-83 BY : F.M.G. WONG
LAST REVISED : 24-0CT-83

COMMON / LOADS / $\operatorname{PRE}(100,100), \operatorname{PRO}(100,100), \operatorname{PXE}(100,100)$,
c
DO $20 \mathrm{I}=1,100$
DO $10 \mathrm{~J}=1,100$
C

CONTINUE
CALL TIMESTAT (2)
CONTINUE
$\operatorname{PRE}(I, J)=0$.
$\operatorname{PRO}(I, J)=0$.
$\operatorname{PXE}(I, J)=0$.
$\operatorname{PXO}(I, J)=0$.
$\operatorname{PPHIE}(I, J)=0$.
$\operatorname{PPHIO}(I, J)=0$.

RETURN
END

C
CREATED : D5-OCT-83 BY: F.M.G. WONG

LATEST REVISION : 02-DEC-83


```
    COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIEL(4,4,4)
```

 COMMON / CIRCSD / CIRCSX (3,4), CIRCSP(3,4)
 COMMON / STIFMAT / STIFFA \((8,8)\), \(\operatorname{STIFFB}(32,32), \operatorname{STIFFC}(72,72)\),
 1
 \(\operatorname{STIFFD}(128,128), \operatorname{STIFFE}(24,24)\)
 SUBROUTINE CALCMAT (M, N, IPATCH, ISIZE, IGLOB, IFOR)
 IPATCH = INTEGER DESIGNATION OF PATCH AREA ON WHICH FORCE IS
 APPLIED (1, 2, 3, OR 4)
 ISIZE = TOTAL NUMBER OF ELEMENTS IN ATTACHMENT AREA (M*N*4)
 IGLOB = CURRENT GLOBAL COUNTER TO WHICH THE UNIT PRESSURE IS
 APPLIED
 IF \(M=N=0\), THEN COLOCATION IS PERFORMED FOR A CIRCLE
 WRITE (1,800) IPATCH
WRITE $(6,800)$ IPATCH
800

IF (M. NE. O) .AND. (N .NE. O)) THEN
DO 30 IND $=1,4$
DO $20 \mathrm{I}=1, \mathrm{M}$ DO $10 \mathrm{~J}=1, \mathrm{~N}$

XPOS $=$ CNTXEL(I,J,IND)
PHIPOS $=$ CNTPHIEL(I,J,IND)
C
CALL SUMDISP (XPOS, PHIPOS, DEFLR, 1) CALL SUMDISP (XPOS, PHIPOS, DEFLP, 2)
C

C
FORMAT ($1 \times, \cdots$ CALCULATING DISPLACEMENTS: $\because, I 1, /$)
IF (IFOR .EQ. 1) CALL DISPLACE (1)
IF (IFQR .EQ. 2) CALL DISPLACE (2)
WRITE (1,900) IPATCH
WRITE (6,900) IPATCH
FORMAT ($1 \times,{ }^{\prime}-\longrightarrow \rightarrow$ SUMMING FOURIER DISPLACEMENT: $1, I 1,1$)
CALL TIMESTAT (1)
$I L O C=0$

: : : : : : : COLOCATION FOR RECTANGULAR ATTACHEMENTS
IF ((M.NE. O).AND. (N .NE. O)) THEN
c
c
ILOC $=I$ LOC +1
IF (ISIZE .EQ. 4) THEN
STIFFA(ILOC, IGLOB) $=$ DEFLR
STIFFA (ILOC+ISIZE,IGLOB) = DEFLP
c
c
c

ENDIF
C
C
CONTINUE

ENDIF

CONTINUE

ENDIF

ENDIF

CONTINUE CONTINUE
ENDIF

IF (ISIZE .EQ. 64) THEN STIFFD(ILOC,IGLOB) $=$ DEFLR STIFFD(ILOC+ISIZE,IGLOB) $=$ DEFLP
:::::: COLOCATION FOR CIRCULAR ATTACHMENTS

IF ((M..EQ. O). AND. (N.EQ. O)) THEN

DO 60 IND = 1,4
DO $50 \mathrm{~K}=1,3$
$X P O S=\operatorname{CIRCSX}(K, I N D)$
PHIPOS $=$ CIRCSP(K,IND)

CALL SUMDISP (XPOS, PHIPOS, DEFLR, 1) CALL SUMDISP (XPOS, PHIPOS, DEFLP, 2)

```
ILOC = ILOC + 1
```

 STIFFE(ILOC,IGLOB) = DEFLR
 STIFFE(ILOC+ISIZE, IGLOB) \(=\) DEFLP
 PRINT *,XPOS, PHIPOS
 PRINT *,'DEFLR=',DEFLR,' DEFLP =',DEFLP
 CONTINUE
 RETURN
END
SUBROUTINE SUMDISP (XST, PHIST, DEFL, INDEX)
SUMS UP THE FOURIER SERIES OF THE DISPLACEMENTS FOR A GIVEN
X AND PHI ON THE CYLINDRICAL SURFACE
XST = X-COORDINATE OF DEFLECTION
PHIST = PHI-COORDINATE OF DEFLECTION
DEFL = SUMMED UP DEFLECTION
INDEX = TYPE OF DEFLECTION (RADIAL, SHEAR, OR AXIAL)
CREATED : 05-0CT-83 BY : F.M.G. WONG
LATEST REVISION : 17-DCT-83 BY : F.M.G. WONG

REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / DISPL / UE (100,100), UO(100,100), VE(100,100), VO(100,100),
1
WE (100,100), WO(100,100)
CALL TIMESTAT (1)
XCD=XST
PHICO=PHIST
XINT $=0$.
DO 6 MT $=0, \mathrm{M}-1$
$\operatorname{SPHI}=\operatorname{SIN}(F L O A T(M T) * P H I C O)$
$C P H I=\operatorname{COS}(F L O A T(M T) * P H I C O)$
DO 6 NT=1,N
IF (INDEX.EQ. 1) XINC=(WE(MT+1,NT)*CPHI+WO(MT+1,NT)
1
1
1
SPHI) $ S I N(F L D A T(N T) * P I * X C O /)$
IF (INDEX .EQ. 2) XINC=(VE(MT+1,NT)*SPHI+VO(MT+1,NT)
CPHI) $$ SIN(FLOAT (NT) $* P I * X C D / L)$
IF (INDEX .EQ. 3) XINC=(UE (MT+1,NT)*CPHI+UO(MT+1,NT)
*SPHI)*COS(FLOAT (NT)*PI*XCO/L)
XINT $=X I N T+$ XINC
CONTINUE
XINT $=$ XINT*. 5
DEFL $=$ XINT
CALL TIMESTAT (2)
CALL TIMESTAT (3)
RETURN
END

```
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C DOUBLE PRECISION A, X, B, Y, DET, TEMP, D, D1, SIG
DIMENSION B(N), X(N), A(N,N), K(100), Y(100)
C
C PRINT *
C PRINT *, ' N = ',N
C
C
C
C
C200
C300
C
C
16
C DET = 1.
SIG = 1.
C
C
C ::::::: SEARCH FOR LARGEST ELEMENT
C
C
C
C
        IF (`ABS(A(L1,L2)) - ABS(D) ) 1, 1, 1550
1550
        = A(L1,L2)
        ID = Ll
        JD = L2
1
        CONTINUE
        IF (D) 2, 99, 2
C
C ::::::: INTERCHANGE ROWS AND COLUMNS TO PUT LARGEST
C ::::::: ELEMENT ON DIAGONAL
C
2 IF ( JD .EQ. L ) GO TO 14
```

```
    SIG = -SIG
    IEMP = K(L)
    K(L) = K(JD)
    K(JD) = IEMP
C
C
4
14
C
C
3
c ::::::: ELIMINATE IN COLUMN UNDER LARGEST ELEMENT
C
C
C
5
C
C
1515
C
C
    Y(N)=B(N)/A(N,N)
    DET = DET*A(N,N)*SIG
C
    DO 11 L = 1, N1
C
    LL = N-L + 1
    D1 = B(LL-1)
C
DO \(10 \mathrm{~J}=\mathrm{LL}, \mathrm{N}\)
```

```
C
10 D1 = D1 - A(LL-1,J)*Y(J)
11 Y(LL-1) = D1
C
C :::::::: RE-ORDER ANSWER
C
    DO 12 I =1,N
C
12 X(J) = Y(I)
    GO TO 13
C
99 WRITE (6,100)
    WRITE (1,100)
100 FORMAT (2X,'MATRIX IS SINGULAR NO SOLUTION GIVEN')
    DET = 0.
C
13 RETURN
    END
C
```

SUBROUTINE CIRCOLSPL (XC, PHIC, R1, R2)
SPLITS CIRCULAR ATTACHMENT INTD FOUR QUADRANTS THROUGH FOUR CALLS TO "CIRCPART." THEN FOUR CALLS TO "CIRCOLPRS" ARE USED TO INVOKE THE METHOD OF COLOCATION FOR A CIRCULAR ATTACHMENT.

XC = X-COORDINATE OF ATTACHMENT CENTER
PHIC $=$ PHI-COORDINATE OF ATTACHMENT CENTER
R1 = INNER RADIUS OF ATTACHMENT $=0.0$
R2 = OUTER RADIUS OF ATTACHMENT
CREATED : 02-DEC-83 BY: F.M.G. WONG
LAST REVISED : 03-DEC-83

REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
RADIAN $=P I / 180$.
ANG1 $=45 . *$ RADIAN
ANG2 $=135 . *$ RADIAN
ANG3 $=225 . *$ RADIAN
ANG4 $=315 . *$ RADIAN
ISIZE = 12
CALL CIRCPART (XC, PHIC, R1, R2, ANG1, 1.0, 1.0, 1)
CALL CIRCPART (XC, PHIC, R1, R2, ANG2, 1.0, -1.0, 2)
CALL CIRCPART (XC, PHIC, R1, R2, ANG3, $-1.0,-1.0,3$)
CALL CIRCPART (XC, PHIC, R1, R2, ANG4, $-1.0,1.0,4$)

CALL CIRCOLPRS (XC, PHIC, R1, R2, ANG1, 1.0, 1.0, 1, IGLOB, IFOR)
CALL CIRCOLPRS (XC, PHIC, R1, R2, ANG2, 1.0, -1.0, 2, IGLOB, IFOR)
CALL CIRCOLPRS (XC, PHIC, R1, R2, ANG3, $-1.0,-1.0,3$, IGLOB, IFOR)
CALL CIRCOLPRS (XC, PHIC, R1, R2, ANG4, $-1.0,1.0,4$, IGLOB, IFOR)

RETURN

END

C c

1

SUBROUTINE CIRCOLPRS (XC, PHIC, R1, R2, ANG, XFACT, PFACT, IND, IGLOB, IFOR)

C
C
C C C
C
c
C
c
c
C
C
C

C
APPLIES PRESSURE LOADINGS TO CIRCULAR ATTACHMENT
R1 = INNER RADIUS OF ATTACHMENT
R2 = OUTER RADIUS OF ATTACHMENT
ANG = ANGLE DESIGNATING THE QUADRANT
XFACT $=$ DETERMINES SIGN OF X-DIRECTION
PFACT $=$ DETERMINES SIGN OF PHI-DIRECTION
IND = INTEGER DESIGNATING QUADRANT
IGLOB $=$ GLOBAL DESIGNATION OF ELEMENT IN ATTACHMENT AREA
IFOR = DETERMINES TYPE OF FORCE: $1=$ RADIAL, $2=$ SHEAR
CREATED : 02-DEC-83 BY: F.M.G. WONG
LAST REVISED : 03-DEC-83

REAL L, NU
DIMENSION $\operatorname{THX}(3,4), \operatorname{THP}(3,4), \operatorname{TRIXA}(4,4), \operatorname{TRIXB}(4,4), \operatorname{TRIPA}(4,4)$,
1
$\operatorname{TRIPB}(4,4), \operatorname{KORIENT}(4)$
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CIRCSD / CIRCSX(3,4), $\operatorname{CIRCSP}(3,4)$
DATA KORIENT / 3, 1, 2, 4/
ABTRIG $=\cos (45 . * \mathrm{PI} / 180$.
PR1 = ASIN(R1/A)
PR2 $=A S I N(R 2 / A)$
FORCE $=1.0$
PRINT *,' WORKING ON QUADRANT :',IND
::::::: LOADINGS FOR SOLID CIRCULAR ATTACHMENTS
$\operatorname{THX}(1, I N D)=0.5 * R 2 * A B T R I G$
$\operatorname{THP}(1, I N D)=0.5 * P R 2 * A B T R I G$
AREA $=R 2 * P R 2 * A B T R I G * A B T R I G$
PRS $=$ FORCE $/$ AREA
CIRX $=$ CIRCSX(1,IND)
CIRPHI $=\operatorname{CIRCSP}(1, I N D)$
IF (IND.NE. 1) CALL INITIALIZE
PRINT *
PRINT *, ' RECTANGLE -- ', IND,' PRS = ',PRS
CALL PATCH (CIRX, CIRPHI, THX(1,IND), THP(1,IND), PRS, IFOR)
CALL CALCMAT (0,0 , IND, 12, IGLOB, IFOR)
IGLOB $=$ IGLOB +1
TRIXA(1,IND) $=X C+X F A C T * R 2$
$\operatorname{TRIXB}(1, \operatorname{IND})=X C+R 2 * S I N(A N G)$
TRIPA(1,IND) $=$ PHIC

C
c

C
C

C
c

C
c
60 CONTINUE
C
c
ENDIF
DO $60 \mathrm{~K}=1,2$
$\operatorname{TRIPB}(1, I N D)=P H I C+P R 2 * C O S(A N G)$
c PRINT *,'IND =', IND
IF ((IND .EQ. 2) .OR. (IND .EQ. 3)) THEN DO $55 \mathrm{~J}=1,4$ TEMPA $=\operatorname{TRIXA}(J, I N D)$
TEMPB $=\operatorname{TRIXB(J,IND)}$
$\operatorname{TRIXB}(J, I N D)=$ TEMPA
TRIXA(J, IND) $=$ TEMPB
TEMPC $=$ TRIPA(J, IND $)$
TEMPD $=\operatorname{TRIPB}(\mathrm{J}, \mathrm{IND})$ TRIPA(J,IND) $=$ TEMPD $\operatorname{TRIPB}(J, \operatorname{IND})=\operatorname{TEMPC}$ CONTINUE

AREA $=0.5 *(A B S(\operatorname{TRIXA}(K, I N D)-\operatorname{TRIXB}(K, I N D)) * A B S(\operatorname{TRIPA}(K, I N D)-$
1 TRIPB(K,IND)))
PRS $=$ FORCE/AREA
CALL INITIALIZE
PRINT *,'TRIANGLE ---',IND
CALL TRIPATCH (TRIXA(K,IND), TRIXB(K,IND),TRIPA(K,IND), TRIPB(K,IND),
1 PRS, KORIENT(IND), IFOR)
CALL CALCMAT (0,0 , IND, 12, IGLOB, IFOR)

IGLOB $=$ IGLOB +1

RETURN
END

REFERENCES

1. Wichman, K.R., Hopper, A.G., Mershon, J.L., "Local Stresses In Spherical And Cylindrical Shells Due To External Loading," Welding Research Council Bulletin 107, August 1965.
2. Bijlaard, P.P., "Stresses From Local Loadings In Cylindrical Pressure Vessels," Iransactions A.S.M.E., 77, No. 6, 1954.
3. Bijlaard, P.P., "Stresses From Radial Loads And External Moments In Cylindrical Pressure Vessels," A.S.M.E., December 1955.
4. Ugural, A.C., Stresses In Plates And Shells, New York, McGraw-Hill Book Co., 1981.
5. Billimoria, H.D. and Tam, K.K., "Experimental Investigation of Stiffness Coefficients and Allowable Loads for a Nozzle in a Flat Bottom Storage Tank," A.S.M.E., April 1980.
6. Cranch, E.T., "An Experimental Investigation of Stresses in the Neighborhood of Attachments to a Cylindrical Shell," Welding Research Council Bulletin 60, May 1960.

[^0]: Figure 6.6 Deflection per Unit Radial Load, Attachment 3

