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Abstract

New plate and shell elements for nonlinear finite element analysis are presented. These
elements are formulated using three-dimensional continuum mechanics theory with de-

generation and mixed-interpolations, and they are applicable to the analysis of thin and
moderately thick shells.

The mixed-interpolated plate bending elements are based on Reissner/Mindlin plate
theory with interpolation of the transverse displacement, section rotations and transverse
shear strain components. The elements considered are various 9 and 16-node quadrilateral
elements, as well as 7 and 12-node triangular elements. Although the theory for most of
these elements had been proposed earlier, the elements have not been studied in great
detail. In this thesis the formulation of these elements is summarized and some numerical
results are presented which demonstrate the high predictive capabilities of the elements.

In the case of a general nonlinear shell analysis, the 9-node mixed-interpolated plate

bending element is extended to a general nonlinear shell element. In addition to the
separate transverse shear strain interpolation, in-plane strains are also interpolated to
improve the membrane action of the element. Various interpolation fields for the in-plane
strains are studied. The tying scheme between the displacement assumptions and the
strain assumptions is also studied for the proposed element, and an efficient computa-
tional scheme is proposed.

A study is performed to identify the characteristics of the elements regarding conver-
gence, distortion sensitivity, and applicability to thin and moderately thick shells. It is
demonstrated that the elements are reliable and very effective in both linear and nonlin-
ear analysis. The key features of the elements are a sound mathematical foundation and
an efficient computational algorithm.

Thesis Supervisor: Klaus-Jirgen Bathe
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Although much research effort has been focused on developing reliable and efficient plate

and shell elements, the need for improved elements persists. For a shell finite element to

be generally applicable to both linear and nonlinear shell analyses with high reliability, it

must satisfy, among others, the following three important conditions [Bathe and Dvorkin,

1986; Bathe, 1982; Bathe and Ho, 1981b].

* The element should be applicable to general shell structures.

* The element should be mechanistically clear and "numerically sound": it must not

contain any spurious zero energy modes; it must not ever lock; and it must not

depend on numerically adjusted factors.

* The predictive capability of the element should be high and relatively insensitive

to geometric distortions of the element.

Many elements proposed in the literature for analyzing plates and shells violate these

conditions to a high degree. While some elements satisfy these conditions to a certain

extent, only a few elements are useful for engineering practice, and even these elements

require further improvements.

A promising approach towards the development of general plate and shell elements

has been the use of the isoparametric formulation [Bathe and Bolourchi, 1980; Bathe,

- 11 -



Introduction 12

1982]. However, in the formulation of isoparametric plate and shell elements (degenerate

from three-dimensional conditions, or equivalently for plate analysis, based on Reiss-

ner/Mindlin plate theory), the only purely displacement-based element that may be

recommended for general practical analysis of plates and shells is the 16-node bicubic

element with 4 x 4 Gauss integration [Bathe, 1982]. And yet, while being reliable, and

in some analyses efficient, the element can exhibit a rather low convergence rate when

geometrically distorted elements are used. This is largely due to the effects of membrane

and shear locking which, though negligible when the element is flat and undistorted,

increase as the element is geometrically distorted - a highly undesirable phenomenon.

Recently, much research effort has been concentrated on establishing reliable and effi-

cient lower-order elements, and improving the performance of the 16-node element. Since

the displacement-based isoparametric elements suffer major deficiencies, many authors

have proposed lower order (4-node and 9-node) elements based on reduced integration

[Hughes et al., 1978]. However, the selectively reduced integrated elements exhibit poor

convergence for some problems. Furthermore, the uniformly reduced integrated element

is rank deficient, even though this element may be convergent in some cases.

To satisfy the above requirements, a new approach based on assumed strains has

been proposed by Bathe et. al. The approach is based on Mixed-Interpolated Tensorial

Components (hence the resulting elements are referred to as MITC elements), and a

4-node element (the MITC4 element) [Dvorkin and Bathe, 1984; Bathe and Dvorkin,

1985] and an 8-node element (the MITC8 element) [Bathe and Dvorkin, 1986] have been

proposed. These elements employ the same nodal degrees of freedom as the standard

displacement-based isoparametric elements, but the strain fields are also assumed in the

elements. The assumed strain field, used in these elements is expressed as:

N

S= Z higDi
i=1

MMMff--, - =__ 7 MW
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where |dI is the strain tensor at the tying point i which is calculated from the strains

directly evaluated by the displacement assumptions, and hi are the interpolation functions

for the strain assumptions.

While the MITC4 shell element shows excellent performance, higher-order curved

elements can be considered to be advantageous in the following circumstances:

* Modeling curved boundaries.

* In dynamic analysis, higher order elements are usually more effective.

e Shell structures in which the stresses vary rapidly.

During the recent years, many authors also proposed other assumed strain plate/shell

elements [MacNeal, 1982; Crisfield, 1984; Park and Stanley, 1986; Huang and Hinton,

1986; Jang and Pinsky, 1987; Jang and Pinsky, 1988]. These elements have been largely

developed for linear analysis, even though they supposedly "can easily be extended to

general nonlinear analysis". Practical implementations show that the extension of a linear

plate bending element formulation to a general effective shell element is not trivial, and

that for some plate element formulations, this extension is almost impossible. Most of

these assumed strain elements were based on physical insight and numerical experiments.

The MITC4 and MITC8 shell elements were proposed in [Bathe and Dvorkin, 1985;

Bathe and Dvorkin, 1986; Dvorkin and Bathe, 1984]. Since the construction of these

elements was based on insights about the element behavior and the use of the patch test,

there has been a continuous effort to derive a more mathematically rigorous formulation

[Bathe and Brezzi, 1985; Brezzi and Bathe, 1986]. Based on the mathematical analogies

between the linear plate formulation and the analysis of incompressible media [Sussman

and Bathe, 1987], the MITC4 element has been analyzed mathematically. These math-

ematical considerations have led to some interesting and general results for the linear

analysis of plates and suggestions for the additional MITC elements for the plate bend-

ing problem [Bathe and Brezzi, 1987; Brezzi et al., 1989]. Since these new plate bending

elements were constructed much like the MITC4 and MITC8 elements, elements for the
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general shell analysis could be developed using similar approach as that of the MITC4

and MITC8 elements [Bathe and Dvorkin, 1986].

The major objective of this research is to develop a reliable and high-order accurate

finite element formulation for the analysis of general plate/shell structures in CAE ap-

plications. The approach has been to fully understand and evaluate the performance of

the mathematically proposed plate elements before attempting to develop a general shell

element formulation. Hence the research for this thesis has been divided into three major

parts:

1. Development and implementation of various plate bending elements as suggested

by mathematical analysis.

2. Performance evaluation of various MITC plate bending elements, including the

MITC7, MITC9, MITC12 and MITC16 elements.

3. Extension of the MITC9 plate bending element to a general shell element.

The extension of the MITC9 plate element to a general shell element involves the

following tasks:

* Research and development of an effective in-plane strain field assumption for the

shell element.

* Development of an efficient computational scheme for the element matrix evalua-

tions.

In order to design an element free from "locking" problems, the proper choice of an

assumed strain field is essential. The MITC plate elements which employ the math-

ematically proposed transverse shear strain field show good performance, as predicted

theoretically. For a general shell element, the proper choice of the in-plane strain field is

also necessary to prevent membrane locking.

An efficient computational scheme for the strain field interpolation was also developed

for the proposed element, and the treatment of the tying constraints was studied.
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The proposed solution procedure was tested numerically on various problems for which

either analytical solutions or experimental test results were available.



Chapter 2

The Mixed-Interpolated Plate

Bending Elements

In this chapter, a family of finite element approximations for Reissner/Mindlin plates are

presented. Essentially, the whole family is based on a common idea, which is to combine

in a proper way the approximation of Stokes problems with the approximation of linear

elliptic problems. The mathematical analysis provides the requirements which the mixed

interpolated plate elements must satisfy.

2.1 Mathematical Background

The analysis summarized here is in some sense a simplified one. While a more general

analysis is available for the 4-node element, only the limiting case as the thickness, t,

approaches zero is discussed in this section. Consider the spaces: (_a = (Ho(Q)) 2 and

W = Hj(Q)), and a load function f given in L 2(Q). A typical sequence of problems of

the Reissner/Mindlin plate under consideration is:

03  At2 3
PA: inf -a(, )+ -| - _w ||0 - ta(f, w). (2.1)!Ee,u w 2 2

- 16 -



2.1 Mathematical Background 17

where lla(0,2) is the internal bending energy, and L|| -2_w ||2 is the shear energy.

|| 1 and ( , ) represent the norm and the inner product in L2(Q) respectively.

Assume now that we are given the finite element subspaces _h C a and Wh C W.

The corresponding discretized problem is described by

is At
PA: inf -- a(2h2) + -- 11 -- Vwh ||2 - ta(f, Wh). (2.2)

1h Ofh'I"h E Wh 220

In general, Pth "locks" for small t. A common procedure to overcome this problem is

to reduce the influence of the shear energy. Consider the case in which the reduction is

carried out in the following way: assume that we are given a third finite element space,

E, and a linear operator R which takes the values in Ph. Then ||R(Oh - .w,,)||1 can be

used in place of I|2h - Ew 1|| in the expression of the shear energy. It is further assumed

that

R-wh = VWh for all Wh E Wh (2.3)

so that the discretized problem takes its final form

t3 h
Pth inf -a( h&) + -||Rfth - - Wh(f, wh). (2.4)

hE>h, -hEWh 2

Setting

At 2 (2 - Vw) and 2h - At-2(R-O, - Ew), (2.5)

the Euler equations of Pt and Pth are respectively

a( ,L) + (-y,y - E() =(f,( V71 E a, V( E- W(26
(2.6)

and

a(hY) + (2h, RO - w )E = ( ( V( E W(

2h ~_ At-2 (R-Oh ~~ Wh)-
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We may note that the limit problems are

a (2,,q) + (7, Tj - 2( f )V7 E 0, V( E W
(2.8)

0 = Vw

and

a(& ,0 + (7h , RTI - E( f )V71 E Qh , V( E Wh 29~ Vi~hVE~h(2.9)

R-h = Ywh.

Remark 1 The limit problems in Eq. 2.8 and Eq. 2.9 were analyzed in refs. [Bathe

and Brezzi, 1987] and [Brezzi et al., 1989]. Even though incomplete, such analysis

gives valuable insight into the behavior of element formulations when applied to

the analysis of very thin plates.

Remark 2 It can be shown that Eq. 2.8 and Eq. 2.9 are the limit problems of Eq. 2.6

and Eq. 2.7 respectively [Bathe and Brezzi, 1985]. In particular, the limit w will be

the solution corresponding to the Kirchhoff model. Note also that the limit Fyh that

appears in Eq. 2.9 will still belong to R(ah) - V(W). The results given in [Brezzi

and Bathe, 1986 with the discussion below give some insight into the behavior of

2 h

Remark 3 The operator R defines the "tying" to be employed between the basis func-

tions used in Ph and the interpolation functions used in Wh and Qh.

Now for each element formulation in the family, the following must be chosen:

e A finite element space .Oh for the approximation of the rotations;

* A finite element space Wh for the approximation of the transverse displacement;

e A finite element space Ph for the approximation of the shear strains; and

* A reduction operator R which interpolates piecewise smooth function into Ph.
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The choice of element variables are not arbitrary and the following mathematical

analysis gives restrictions in the selection of each variables.

The analysis of the above elements greatly depends on the theoretical results for finite

element solutions of the response of incompressible media. The solution seeks a "pressure

space" Qh made of discontinuous finite element functions1 such that, for all 7 E da,

(rot q, qh) = (rot (Rij), qh) Vqh E Qh (2.10)

&q2 aq 1where rot y = - ,and
- ax ay

rot (_lh) 9 Qh. (2.11)

The space Qh is never used in the actual computations; however, its existence (with the

suitable properties) is crucial in mathematical analysis. Conditions Eqs. 2.10 and 2.11 are

related to the so-called "commuting diagram property" of Douglas and Roberts [Douglas,

Jr. and Roberts, 1985] that is used in the study of mixed methods for elliptic equations.

To analyze the error between 0 and Oh in Eq. 2.8 and Eq. 2.9 (and as a consequence

the error between w and Wh), a pair 0, W in Oh x Wh, needs to be built such that |I-i li
is optimally small and

RO =VW^. (2.12)

Condition Eq. 2.12 implies

rot RO = 0 (2.13)

which, in turn, using Eqs. 2.10 and 2.11 is equivalent to

(rot 0, qh) = 0 Vqh E Q. (2.14)

Hence, a possible way of 0 construction is as follows. For 0 given in (H (Q)) 2 and

'This space corresponds to the pressure space in incompressible solutions.
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satisfying rot 0 = 0, consider the problem:

Find 3, p E 0 x L2(Q) such that

a (#, 17) + (p, rot r/) = a (2, r/) V E 19
(2.15)

(q, rot _)=0 Vq EL 2(

and its approximation,

Find Ph, P E .0h x Qh such that

a(0, 71) + (Ph, rot q) = a(2, q) Vi E Oh

(2.16)
(q, rot2)= 0 Vq E Qh.

Note that Eq. 2.15 is a kind of Stokes problem and its solution is given by = , p = 0.

If the pair _, Qh used in Eq. 2.16 is a suitable finite element discretization for the

Stokes problem, then one might expect to have optimal error bounds for 0 - 9. However,

note that once 0 satisfying Eq. 2.13 has been found, the db E W that uniquely satisfies

Eq. 2.12 can be determined. It can be shown that in each case such a W^ is an element of

Wh -

Condition Eq. 2.10 provides the tying scheme (restriction in the choice of R).

Equation 2.10 can be rewritten as,

(rot (Rq - q), qh) = 0 Vqh E Qh. (2.17)

Now, expressing the above equation in integral form and applying Green's theorem twice,

Rg - q) . zqhds - j(R - 77) - rot qhdA = 0 Vqh E Qh (2.18)

which can be further expressed in two equations:
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K(R_ -q) ' qhds = 0 Vqh E Qh (2.19)

and

IwRn - ) -rot qhdA = 0 Vqh E Qh (2.20)

where i is the tangential unit vector to each edge of each element. Equations. 2.19 and

2.20 are the tying scheme used to relate the directly interpolated strains and the assumed

strains.

2.2 The Elements

The MITC plate element formulations consist of the choices of the spaces O, Wh, Eh
and the tying used between the interpolations in £h and the transverse shear strain

components as evaluated from Qh and Wh.

The choices for each element considered are presented below. The elements use the

Cartesian coordinates, thus consider the uniform rectangular and triangular decompo-

sitions. The same interpolations are used in the natural coordinates for the covariant

strain components in the general elements [Bathe et al., 1989a; Bathe and Dvorkin, 1985;

Bathe and Dvorkin, 1986; Dvorkin and Bathe, 1984]. Figure 2-1 illustrates the nodal

point variables employed for each MITC family of plate elements.

2.2.1 The MITC4 Element

For the 4-node element,

0-h = { | ! E (Hd(Q)) 2, nIK E (Q1) 2 VK} (2.21)

W =f( I E Ho(Q), (K E Q1 VK} (2.22)



are used where Q1 is the set of polynomials of degree < 1 in each variable and K is

the current element in the discretization [Bathe and Dvorkin, 1985; Dvorkin and Bathe,

1984]. The space Fh is given by

E = | |KE TR(K) VK, 5. 'r continuous at the interelement boundaries} (2.23)

and

TR(K) = 61 = ai + biy, 62 = a2 + b2 x}. (2.24)

The space TR(K) is a sort of "rotated Raviart-Thomas" space of order zero [Raviart and

Thomas, 1975].

It can be shown that Eqs. 2.10 and 2.11 hold if we take for the MITC4 element,

Qh = {q I g|K E Po VK} (2.25)

where Pk denotes the set of polynomials of total degree < k. Hence, QA has a local

dimension of 1 in the MITC4 case. Note that the relation given in Eq. 2.10 is satisfied

because of the specific operator R used for the element.

Next, the reduction operator R is introduced by describing its action on the current

element: for smooth in K, RqIK is the unique element in TR(K) that satisfies the

tying scheme in Eq. 2.18. Equation 2.20 is automatically satisfied and Eq. 2.19 has the

form

-R)r ds = 0 for all edges e of K. (2.26)

Note that if 71 E (Q1) 2 then Eq. 2.26 holds if and only if 1 -L = R(q) -r at the midpoints

of each edge.

In refs. [Bathe and Brezzi, 1985; Bathe and Brezzi, 1987; Brezzi et al., 1989], the

error estimate for the MITC4 element is given by,

||2 - 2hI1i + 11'w - VWho < c h (||.||2 +|7_|o). (2
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(2.27)
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Hence, the MITC4 element shows a linear convergence behavior. For the MITC4 element

the pair Oh, Qh is the classical bilinear velocities-constant pressure element. Hence the

result in Eq. 2.27 corresponds to the behavior of the Q1 - PO elements, and an excellent

predictive capability of the MITC4 element can be anticipated.

2.2.2 The MITC7 Element

For the 7-node triangular element,

a = { I y E (Ho (Q)) 2, | E (S 7 (T)) 2 VT} (2.28)

Wh = {( | E Hol(Q), CIT E P2 VT} (2.29)

are used where T is the triangular element in the discretization, P2 is the space of complete

second-order polynomials (corresponding to a 6-node element), and S7 is expressed as

S7(T) = {oI E P3 , pie E P2 on each edge e of T} (2.30)

where P3 is the space of complete third-order polynomials [Bathe et al., 1989a; Brezzi et

al., 1989].

Clearly S7 is a finite dimensional linear space of dimension 7. It can also be characterized

as S7 = P2 E {AA 2A3} where AlA 2A3 is the cubic bubble in T. As the degrees of freedom

in S7(T), the values can be chosen at the vertices, the midpoints of the edges, and the

barycenter of T. Also, in each triangle T,

TR1 (T) = {j 61 = P1 + y(ax + by);

b2 = P1 - x(ax + by)}. (2.31)

The space TR 1(T) is a kind of "rotated Raviart-Thomas" space of order one [Raviart

and Thomas, 1975].

-M
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(a) MITC4 element

Nodal Point Variables:

* rotations and transverse
displacement

O rotations only

(b) MITC7 element

(c) MITC9 element

Figure 2-1: Nodal point variables for each of the MITC elements.
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(d) MITC12 element

Nodal Point Variables:

* rotations and transverse
displacement

o rotations only

9 transverse displacement only

(e) MITC16 element

s

r

(f) MITC8 element

Figure 2-1 Continued.

di
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The space Fh is given by

Uh = I IT E TR1 (T), VT, S.,r continuous at the interelement boundaries,

6 -, = 0 on 80}. (2.32)

It can be shown that Eqs. 2.10 and 2.11 hold if we take for the MITC7 element,

Q, = {q I q1TE P1 VT}. (2.33)

Here, Qh has a local dimension of 3 in the MITC7

is satisfied because of the specific operator R used

Next, the reduction operator R is introduced.

given as follows: for y smooth in T, Ry in T is

satisfies the tying scheme in Eqs. 2.19 and 2.20.

case. Note that the relation Eq. 2.10

for the element.

Its action on the current element is

the unique element in TR1 (T) that

1(q - R) .E pi(s)ds = 0 Ve edge of T, Vp 1 (s) E P1 (e)

(q - Ry)ddy = 0.

(2.34)

(2.35)

Note that if 9 E (S 7)2 then Eq. 2.34 holds if and only if r/ - = (Rr) -r at the two Gauss

points of each edge. Notice that Eqs. 2.34 and 2.35 characterize Ry in T in a unique

way. It is also clear that if i is continuous in Q, then the Ry constructed element by

element through Eqs. 2.34 and 2.35 actually belongs to Ph (because Eq. 2.34 ensures the

continuity of (Riy) - T at the interelement boundaries).

The above integral tying scheme requires a numerical integration over the element.

Instead of the integral-tying given by Eq. 2.35, simply the mean of the values at points

TA, TB and TC of the element can also be used (see Fig. 2-2); hence Eq. 2.35 is replaced

by
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(1ITA + 91|TB + 1|ITC) = Ry1|A (2.36)

{('2|TA + 2|TB + I2|TC) = Rq2|A

where point A corresponds to the barycenter of the element and the points TA, TB, and

TC correspond to the Gauss points of 3-point integration in the triangle [Bathe et al.,

1989a].

The element using Eq. 2.35 is referred to as the MITC7' element, and the element

using Eq. 2.36 the MITC7 element.

In refs. [Bathe and Brezzi, 1985; Bathe and Brezzi, 1987; Brezzi et al., 1989], the

error estimate for the MITC7 element is given by,

||2 - fU|11 + |w - VWhI|o < c h2 (1l2||3 + 1|7||). (2.37)

Hence the MITC7 element shows quadratic convergence. For the MITC7 element the

pair dQ, Qh is the Crouzeix-Raviart element with the velocities given by quadratic plus

cubic bubble variations and the pressure given by linear variation. Hence the result in

Eq. 2.37 corresponds to the behavior of the Q2 - P1 elements [Sussman and Bathe, 1987],

and an excellent predictive capability of the MITC7 element can be anticipated.

2.2.3 The MITC9 Element

For the 9-node element,

_h = {Y I Y E (Hol(Q)) 2 , Y K E (Q2) 2 VK} (2.38)

Wh = I( | E Hol(Q), (|K E Qr VK} (2.39)

are used where Qr is the usual serendipity reduction of Q2 (the space of polynomials of

degree < 2 in each variable corresponding to a 9-node element) [Bathe and Brezzi, 1987;

2.2 The Elements 27
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(a) Tying for MITC7 element

S

2 T2I

(b) Tying for MITC9 element

Figure 2-2: Gauss points used for tying of covariant shear strain components.

a
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Bathe et al., 1989a; Brezzi et al., 1989]. The space Ph is given by

L = {| &|K E G1(K) VK, 6. -r continuous at the interelement boundaries} (2.40)

where

G1 (K) = {I | 61 = Qi + ay2 ;

62 = Q1 + bx 2 }.

The space G1 is some kind of rotated Brezzi-Douglas-Fortin-Marini space [Brezzi et al.,

1987].

Note that if ( E Qr then V E G1. Therefore, Wh has been discretized with the

interpolations of the 8-node element instead of the 9-node element.

It can be shown that Eqs. 2.10 and 2.11 hold if we take for the MITC9 element,

Qh = {q I q1K E P1 VK}. (2.42)

Here, Qh has a local dimension of 3 in the MITC9 case. Note that the relation Eq. 2.10

is satisfied because of the specific operator R used for the element.

Next, the reduction operator R is introduced. Its action on the current element is

given as follows: for q smooth in K, Ry|K is the unique element in G that satisfies the

tying scheme in Eqs. 2.19 and 2.20.

(h - R) -r pi(s)ds = 0

( - Ry)dxdy = 0.

Ve edge of K,

Vpi(s) polynomial of degree < 1 on e (2.43)

(2.44)

Note that if E (Q2) 2 then Eq. 2.43 holds if and only if q -z = (Ri7 ) -1 at the two Gauss

points of each edge.

(2.41)



As in the MITC7 element, instead of the integral-tying given by Eq. 2.44, the mean of

the values at points RA, RB and SA, SB respectively can be used (see Fig. 2-2). Hence

Eq. 2.44 is replaced by

{(q1|RA + Y1 IRB) = Ryl|A
(2.45)

'(Y2|sA + Y2|SB) = Rq2 JA

where A corresponds to the center point of the element and RA, RB, and SA, SB

correspond to the Gauss points along the x and y axes, respectively [Bathe et al., 1989a].

The element using Eq. 2.44 is called the MITC9' element, and the element using

Eq. 2.45, the MITC9 element. These elements yield identical results when they are of

rectangular shape [Bathe et al., 1989a]. (See Appendix A.1 for proof.) The point tying

scheme used in the MITC9 element can be interpreted as a kind of reduced integration of

integral tying constraint of Eq. 2.44. Additional discussion on the integral tying scheme

for the general 9-node shell element is given in Sec. 3.4.

In refs. [Bathe and Brezzi, 1985; Bathe and Brezzi, 1987; Brezzi et al., 1989], the

error estimate for the MITC9 element is given by,

||2 - OhII1 + 11Ew - VWh||o < c h2 (1[2113 + l||1). (2.46)

Hence, the MITC9 element show quadratic convergence. For the case of the MITC9

element the pair _Oi, Qh is the biquadratic velocities and linear pressure element. Thus,

the result in Eq. 2.46 corresponds to the behavior of the Q2 - Pi elements [Sussman and

Bathe, 1987], and excellent predictive capability of the MITC9 element can be expected.

2.2.4 The MITC12 Element

The 12-node triangular element is an extension of the MITC7' element. Here,

h = {y | 77 E (Ho1(Q)) 2 , LIT E (S12 (T)) 2 VT}

9
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(2.47)
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Wh = {( | ( E H (Q), (|T E P3 VT} (2.48)

are used where T is the triangular element in the discretization and S12 is

W E P4, e E P3 on each edge e of T} (2.49)

where P4 is the space of complete fourth-order polynomials. The space Eh is given by

h = {UI &r E TR2 (T) VT, 6 r continuous at the interelement boundaries} (2.50)

where

TR 2(T) = {& I 61 = P2 + y(ax 2 + bxy + cy2);

62 = P2 - x(ax2 + bxy + cy2)}.

The space TR 2 (T) is a kind of "rotated Raviart-Thomas" space of order two [Raviart

and Thomas, 1975]. The reduction operator R is given by

(y - R) -Zp2(s)ds = 0 Ve edge of T, Vp2(s) E P2(e)

(1 - R) -pidxdy = 0 Vpi E (P1 (T))2 .

(2.52)

(2.53)

So far, only the integral tying of Eq. 2.53 has been used for the element; therefore,

the element is referred to as the MITC12' element.

2.2.5 The MITC16 Element

The 16-node element is an extension of the MITC9' element. Here,

_ah = { j | 2 E (H (Q)) 2, 7IK E (Q3)2

Wh ={ C E H (Q), (IK E Q3 n P4

VK} (2.54)

VKJ (2.55)

(2.51)
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are used where Q3 is the space of polynomials of degree < 3 in each variable corresponding

to a 16-node element. The space Fh is given by

E_ = I IK E G2 (K) VK, b- continuous at the interelement boundaries} (2.56)

where

G2(K) = {b I 6i = P2 + a1 x2 y + b1xy 2 + c1 y3

b2 = P2 + a2x 2 y + b2 xy 2 + c2 x 3}. (2.57)

The space G2 is some kind of rotated Brezzi-Douglas-Fortin-Marini space [Brezzi et al.,

1987]. The reduction operator R is given by

(q - Rq) -Z p2 (s)ds = 0 Ve edge of K, VP2 (s) E P2 (e) (2.58)

(- R) -pidxdy = 0 Vpi E (P1(K)) 2 . (2.59)

As in the MITC12' element, only the integral tying of Eq. 2.59 has been used; there-

fore, the element is referred to as the MITC16' element.

2.2.6 The MITC8 Element

The MITC8 element is given here for comparison purposes only. Since the element is

constructed directly as a general shell element, the interpolation of the covariant shear

strain tensor components and the contravariant base vectors are used in the formulation.

The MITC8 element in a flat plate condition, as a special case, is described below. For

the 8-node element, the following space is used [Bathe and Dvorkin, 1986]:

Qh = { | i E (H (Q)) 2, |K E (Qr) 2 VK} (2.60)

Wh = { | E Hd(Q), (|K E Qr VK}. (2.61)
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The space Ph is given by

Ph = { | IK E F(K) VK, 6 -Tr continuous at the interelement boundaries} (2.62)

where F is the following space

F(K) = {A | 61, 62 = Q1 E {X2 Y2 }}. (2.63)

The tying is achieved by point-tying along the edges and in the interior as described

in [Bathe and Dvorkin, 1986].

2.3 Reliability of the Elements

The objective of this section is to present some numerical results of plate analyses ob-

tained using the MITC plate elements. These results demonstrate the excellent predictive

capabilities of the elements.

Also some comparisons with the results obtained with the MITC4 [Bathe and Dvorkin,

1985] and MITC8 [Bathe and Dvorkin, 1986] elements are presented. Note that all the

MITC element stiffness matrices are evaluated using "full" numerical integration and

that these elements (and the MITC4 and MITC8 elements) do not contain any spurious

zero energy modes.

Mathematical analyses are presented in [Bathe and Brezzi, 1985; Bathe and Brezzi,

1987; Brezzi et al., 1989] for the MITC4, MITC7', MITC9', MITC12' and MITC16'

elements that prove the convergence of discretization based on these elements to the

analytical plate theory solutions.

Theoretical analyses do not consider the MITC8, MITC7 and MITC9 elements. How-

ever, the MITC7 and MITC9 elements constructions are very close to those using the

integral tying, and all three elements pass the patch test and have shown excellent conver-

gence characteristics in numerical experiments [Bathe et al., 1989a; Bathe et al., 1989b].
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2.3.1 Patch Test

Figure 2-3 shows the patch of elements considered. For the patch test, only the minimum

number of degrees of freedom are deleted to eliminate the physical rigid body modes

[Dvorkin and Bathe, 1984]. Recall that the MITC4 and MITC8 elements passed the

patch test.

The MITC7', MITC7, MITC9, MITC12' and MITC16' elements pass the patch test

as well. It is interesting to note that the MITC9 element passes the patch test, whereas

the MITC9' element does not; however, the degree of failure is not severe. Figure 2-4

shows the stress distributions obtained when the patch of MITC9' elements is subjected

to a constant bending moment. The predicted stresses do not vary from the analytical

solution by a large amount; hence, it practically passes the patch test.

Although this simple patch test does not display the complete convergence charac-

teristics of an element, the test is a condition for a reliable finite element and it is an

indication of the element's sensitivity to geometric distortions [Bathe and Dvorkin, 1986].

2.3.2 Analysis of a Square Plate

Figure 2-5 shows the plate problems considered and the meshes used in the analyses. Ta-

ble 2-1 summarizes the displacement results obtained, including those using the MITC4,

MITC8 and 16-node cubic shell (referred to as DISP16 element) elements.

Note that in these analyses, the finite element imposed boundary conditions corre-

spond to the "soft" conditions for the problem considered [Higgblad and Bathe, 1990].

The meshes distort-1 and distort-2 have of course only been included in the tests in

order to identify the distortion sensitivity of the elements [Bathe and Dvorkin, 1986].

As shown in Table 2-1, the MITC of plate elements performs very well. Notice that

9-node MITC9 element performs much better than 16-node cubic shell element.

Figure 2-6 shows the displacement convergence solutions obtained with the new MITC

elements. Here, the problem of a clamped square plate subjected to distributed pressure
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B (10,10)

E = 2.1 x 106
v = 0.3
Thickness = 0.01

(a) Patch test mesh layout for rectalgular elements

x2

(0 10) 2(10,10)

10

xl1
101

(0,0) c |(10,0)

(b) Patch test mesh layout for triangular elements

Figure 2-3: Patch of the elements used in a patch test.
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cc
t;)

'M M M M M 40 an



2.3 Reliability of the Elements 37

was selected because the solution is smooth. Hence, the finite element solution for the

center displacement, for a small thickness to length ratio, (e.g. h/L = 1/1000) is com-

parable to the Kirchhoff plate theory solution.

For the quadrilateral elements, regular meshes have been used with N x N elements

for a quarter of the plate. The regular triangular element meshes were then obtained by

representing each square element by two triangular elements, the subdividing line of the

corner element bisecting the corner of the quarter plate. Figure 2-6 shows the excellent

predictive behavior of the elements.

Figure 2-7 shows displacement and stress distributions calculated using the MITC7

and MITC9 elements compared to the analytical solution [Timoshenko and Woinowsky-

Krieger, 1959].

The stresses have been calculated at the nodal points from the element displacements,

and thus, stress jumps can be observed. However, the stress jumps are small for the fine

mesh results and are largely confined to the area of the stress singularity (the center of

the plate when subjected to the concentrated load).

Next, prediction of edge shear stress in a simply-supported square plate subjected to

uniformly distributed pressure is studied. The analysis of a simply-supported square plate

is suitable to study the capability of the elements to predict transverse shear stresses.

In this analysis, the boundary layer of the transverse shear stresses near a corner was

considered [Hiiggblad and Bathe, 1990].

To obtain a reference solution the 16-node displacement-based element was used (in

undistorted form), and two graded meshes were used for a quarter of the plate. The 10

x 10 mesh is shown in Fig. 2-8, and the 20 x 20 mesh was obtained by subdividing each

element of the 10 x 10 mesh into four new elements. The two solutions obtained with

these meshes show negligible differences.

Figure 2-9 shows the shear stress predictions obtained using lower-order MITC ele-

ments, i.e., the MITC4, MITC8 and MITC9 elements, in comparison to the reference

solution. Note that, at a sufficient distance from the corner, the reference solution cor-
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responds to the Kirchhoff analytical solution.

The stresses shown in Fig. 2-9 have been directly calculated at the corner nodes of the

elements using the Lh spaces. Good convergence to the reference solution is observed,

and the MITC9 element solutions shown correspond to the MITC9' element solutions

(since only rectangular elements have been used). Note also that the grading of the mesh

in this analysis has an important effect.

Regarding the shear stress predictions, recall that the mathematical theory does not

give the rate of convergence of these stress components. However, a particularly good

convergence behavior for the MITC9' element is expected because this element corre-

sponds to the Q2 - P1 element (the 9/3 element) used in incompressible analysis [Brezzi

and Bathe, 1986; Brezzi et al., 1989] (see Fig. 2-9). (In general, the MITC elements

are expected to be as effective in shear stress predictions as their counterparts are in

predicting the pressure in incompressible analysis.)

Considering these results, note that the predictive capabilities of the MITC elements

are excellent, and that there is little difference between the results of the MITC7' and

MITC7 elements, and the MITC9' and MITC9 elements, respectively.
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L = 20

Thickness=0.02

E = 2.1 x 10 6

V = 0.3

Boundary conditions

Simply supported edge

w=0

Clamped edge

w=0

t= 0
2 x 2 mesh

(a) Physical model

2 x 2 mesh 4 x 4 mesh 8 x 8 mesh

(b) Rectangular mesh layout

2 x 2 mesh 4 x 4 mesh 8 x 8 mesh

(c) Triangular mesh layout

Figure 2-5: Analysis of a square plate.
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(d) Distorted mesh layout for rectangular elements

(e) Distorted mesh layout for triangular elements

Figure 2-5 Continued.
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Table 2-1: Analysis of a square plate.

(a) Response for various plate thicknesses for concentrated load at the center of the
plate, 2 x 2 mesh.

* The analytical solution used as reference is the Kirchhoff plate theory solution of
Ref. [Timoshenko and Woinowsky-Krieger, 1959].

Element Thickness a: simply supported a - clampededge edge

0.2 0.996 0.869
MITC4 0.02 0.995 0.867

0.002 0.995 0.867

0.2 1.000 1.004
MITC8 0.02 0.998 1.001

0.002 0.998 1.001

0.2 0.982 0.918
MITC7' 0.02 0.980 0.907

0.002 0.980 0.907

0.2 1.000 1.010
MITC9' 0.02 0.998 1.006

0.002 0.998 1.006

0.2 0.982 0.929
MITC7 0.02 0.979 0.918

0.002 0.979 0.918

0.2 1.000 1.010
MITC9 0.02 0.998 1.006

0.002 0.998 1.006

0.2 0.999 0.998
MITC12' 0.02 0.996 0.994

0.002 0.996 0.994

0.2 1.003 1.010
MITC12 0.02 1.000 1.006

0.002 1.000 1.006

0.2 1.009 1.017
MITC16' 0.02 1.006 1.014

0.002 1.006 1.014

fat - at center of the plate



2.3 Reliability of the Elements 42

Table 2-1 Continued.

(b) Response for various mesh layouts. (thickness = 0.02)

Concentrated Load Uniform Pressure
Element Mesh

, simply supported , clamped , simply supported . clamped
edge edge .edge 'edge

2 x 2 0.995 0.867 0.981 0.963
MITC4 4 x 4 0.995 0.965 0.996 0.993

8 x 8 0.998 0.992 0.999 1.001

2 x 2 0.998 1.001 1.000 1.006
MITC8 4 x 4 1.000 1.001 1.001 1.005

8 x 8 1.000 1.002 1.001 1.004

2 x 2 0.980 0.907 1.003 0.965
MITC7' 4 x 4 0.994 0.985 1.000 1.001

8 x 8 0.999 0.999 1.000 1.004

2 x 2 0.998 1.006 0.999 1.025
MITC9' 4 x 4 1.000 1.001 1.000 1.005

8 x 8 1.000 1.002 1.000 1.004

2 x 2 0.979 0.918 1.003 0.977
MITC7 4 x 4 0.994 0.987 1.001 1.003

8 x 8 0.999 0.999 1.000 1.004

2 x 2 0.998 1.006 0.999 1.025
MITC9 4 x 4 1.000 1.001 1.000 1.005

8 x 8 1.000 1.002 1.000 1.004

2 x 2 0.996 0.994 1.000 1.005
MITC12' 4 x 4 0.999 1.000 1.000 1.004

8 x 8 1.000 1.002 1.000 1.004

2 x 2 1.000 1.006 0.999 1.004
MITC12 4 x 4 1.000 1.003 1.000 1.004

8 x 8 1.000 1.002 1.000 1.004

2 x 2 1.006 1.014 1.000 1.003
MITC16' 4 x 4 1.002 1.005 1.000 1.004

8 x 8 1.000 1.003 1.000 1.004

1 x 1 0.955 0.946 1.016 1.052
DISP16 2 x 2 0.989 0.979 1.001 1.004

3 x 3 0.995 0.992 1.001 1.004

a em at center of the plate
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Table 2-1 Continued.

(c) Response for distorted mesh layouts
plate (thickness = 0.02).

under concentrated load at the center of the

Element Mesh a : simply supported clamped
edge Msedge

distort-i 0.986 0.807
MT4 distort-2 0.984 0.922

MITC8 distort-i 1.002 0.975
distort-2 0.999 0.994

MITC7' distort-i 0.966 0.827
distort-2 0.991 0.975

MITC9' distort-i 1.011 1.025
distort-2 0.999 1.001

MITC7 distort-i 0.965 0.844
distort-2 0.991 0.978

MITC9 distort-i 1.002 1.015
distort-2 0.999 1.001

MITC12, distort-1 0.992 0.988
distort-2 0.999 0.999

MITC12 distort-i 0.997 1.004
distort-2 1.001 1.004

MITC16, distort-i 1.006 1.014
distort-2 1.003 1.008

DISP16 distort-i 0.975 0.918
distort-2 0.995 0.990

a fem at center of the plate.

d
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Figure 2-6: Convergence of center displacement of a clamped square plate, compared
to the Kirchhoff plate theory solution, thickness/length = 1/1000,
WR = ratio of finite element solution to analytical result.
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SIMPLY SUPPORTED SQUARE PLATE
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Figure 2-7: Displacement/stress response of a simply supported square plate using
meshes of Fig. 2-5. Transverse displacement and in-plane stress along
center line of the plate are shown for the case of concentrated load and
uniform pressure loading.
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Figure 2-7 Continued.

X



2.3 Reliability of the Elements

V

Lx

Figure 2-8: 10 x 10 graded mesh used in a simply-supported plate,
thickness/length = 1/100.
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Figure 2-9: Shear stress predictions near corner of a simply-supported plate subjected
to pressure loading.
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2.3.3 Analysis of a Circular Plate

The analysis of a circular plate requires the use of non-rectangular elements, and thus

the solution will display the predictive capabilities of the elements when they are geo-

metrically distorted.

Figure 2-10 shows the circular plate problem considered and the meshes used. Table 2-

2 compares the displacement results obtained and Figure 2-11 shows the displacement

and stress distributions calculated using the MITC7 and MITC9 elements. Note that as

in the analysis of the square plate, the stress jumps at the nodal points are less severe

for the fine meshes, and are confined to the area of the stress singularity, i.e. the center

of the plate.

Furthermore, as in the analysis of the square plate, there is a little difference between

the results obtained with the MITC7' and MITC7 elements, and the MITC9' and MITC9

elements, respectively.

Next, the prediction of shear stress along the radial line in a clamped square plate

subjected to uniformly distributed pressure is studied. Figures 2-12 and 2-13 show the

meshes used in this analysis. Figures 2-14 and 2-15 give the bending and transverse shear

stresses predicted when the MITC4, MITC8, MITC9, MITC9' and MITC16 elements

are employed in the solution. In Fig. 2-14 the results obtained with mesh A are shown

whereas the results using mesh B are shown in Fig. 2-15. The reason is that the bending

stresses are already quite well predicted in Fig. 2-14 with relatively coarse meshes (mesh

A). Since the stresses have been calculated directly at the element nodes using the spaces

Oh and .Eh, the stress jumps in Figs. 2-14 and 2-15.

To study the sensitivity of the elements due to geometric distortions a large artificial

mesh distortion as shown in Fig. 2-13 (node A and the adjacent nodes were relocated)

was applied. Figure 2-16 shows the shear stresses predicted when using the mesh of

Fig. 2-13. The calculated shear stresses changed very little from the solutions given in

Fig. 2-15.
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12 elements 48 elements

(a) Rectangular mesh layout

24 elements 96 elements

(b) Triangular mesh layout

Figure 2-10: Finite element meshes used for the analysis of a circular plate.
Diameter = 20, thickness = 0.02, E = 2.1 x 106, y' = 0.3.
Due to symmetry only one quarter of the plate is discretized.

3 elements

6 elements
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Table 2-2: Analysis of a circular plate subjected to concentrated load at the center of
the plate.

* The analytical solution used as reference is the Kirchhoff plate theory solution
Ref. [Timoshenko and Woinowsky-Krieger, 1959].

simply supported clampedElement Mesh a : eg " a -ea

3 elements 0.983 0.786
MITC4 12 elements 0.995 0.948

48 elements 0.998 0.986

3 elements 0.990 0.984
MITC8 12 elements 0.999 0.997

48 elements 1.000 0.997

6 elements 1.006 0.965
MITC7' 24 elements 1.000 0.990

96 elements 1.000 0.997

3 elements 0.992 0.973
MITC9' 12 elements 0.998 0.997

48 elements 1.000 1.000

6 elements 0.987 0.980
MITC7 24 elements 0.996 0.992

96 elements 0.999 0.998

3 elements 0.997 0.991
MITC9 12 elements 0.999 0.998

48 elements 1.000 1.000

3 elements 0.998 0.996
MITC12' 12 elements 0.999 0.998

48 elements 1.000 1.000

3 elements 1.002 1.008
MITC12 12 elements 1.000 1.002

48 elements 1.000 1.001

3 elements 1.005 1.014
MITC16' 12 elements 1.001 1.003

48 elements 1.000 1.001

= 
fema w yat center of the plate (thickness=0.02)
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Figure 2-11: Displacement/stress response of a circular using meshes of Fig. 2-10. Trans-
verse displacement and in-plane stress along radial line of the plate are
shown for the case of concentrated load.
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Figure 2-11 Continued.
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Y

Lx

MESH A

x

Lx

MESH B

Figure 2-12: Finite element meshes used for the analysis of clamped circular plate,
thickness/diameter = 1/100.
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x

Figure 2-13: Distorted mesh B of Fig. 2-12 used in the analysis of a clamped circular
plate,
thickness/diameter = 1/100.
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Figure 2-14: Radial bending stress prediction in a clamped circular plate,
Mesh A.

0,

I-

N,

0,



MESH B
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Figure 2-15: Transverse shear stress predictions obtained at element corner nodes in
analysis of a clamped circular plate.
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Figure 2-16: Transverse shear stress predictions obtained at element corner nodes in
analysis of a clamped circular plate when using the distorted mesh of Fig 2-
13.



Clapter 3

Formulation of tie

Mixed-Interpolated Nine-Node

SLell Element

In this chapter, the mixed-interpolated plate element is extended to a general shell ele-

ment. Since the MITC9 plate element shows excellent predictive capabilities, a MITC9

general shell element is proposed. The MITC8 shell element [Bathe and Dvorkin, 1986]

is also discussed for comparison, and a suggestion for an improved MITC8 element is

presented. Since the general shell element has a curved geometry, membrane strains

need to be interpolated in addition to the shear strains to avoid membrane locking. The

formulation consists of three phases: the displacement-based formulation of strains, the

interpolation of the assumed strains (both membrane and shear strains), and the tying

of the displacement assumptions to the strain assumptions. In the displacement formula-

tion Reissner/Mindlin kinematics is assumed, and the standard procedure for establishing

shell element from the 3-D continuum element is used.

For geometrically nonlinear analysis an incremental total Lagrangian formulation is

used for the assumed strain-based curved shell element. In the construction of the element

matrices for nonlinear analysis, the consideration of large rotations introduces difficul-
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ties due to the non-vectorial nature of finite rotations. The consideration of the strain

interpolations in the assumed strain-based element introduces additional difficulties due

to the complexities arising from the construction of the strain matrices.

A derivation of the displacement-based shell finite element is presented by Bathe,

and an extensive derivation of the kinematics of large rotations is presented by Argyris

[Bathe, 1982; Argyris, 1982]. The formulation presented here includes all the terms in the

linearized equations of motion that can be considered in a tangent stiffness formulation,

as well as the exact assumed strain field treatment. Thus quadratic convergence can be

achieved in the full Newton iteration.

3.1 Kinematics

The assumptions used for the shell kinematic and stress conditions are a generalization

of Reissner/Mindlin plate theory. Figure 3-1 shows a typical shell to be analyzed. The

kinematics of the shell are described by the motion of the shell mid-surface and the

motion of the director vector 'V, which is defined for each material point of the mid-

surface: the origin of the director vector is at the mid-surface of the shell and usually the

vector is initially normal to the mid-surface. During the shell deformations the director

vector translates and rotates, and if initially normal to the shell mid-surface it may not

necessarily remain so (shear deformations are considered). To describe the motion of the

director vector the three Cartesian displacements of the vector origin and the direction

cosines of the vector are used. Note that the fundamental assumption is that the particle

lying originally on the director vector will continue to lie on that vector throughout the

motion.

Regarding the stress conditions it is assumed that the Cauchy stresses in the direction

of the director vector are initially zero and remain zero throughout the motion of the

shell. Hence, plane stress conditions with the direction "normal to the plane" defined by

the director vector are assumed.

9
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Figure 3-1: The geometry of the typical shell element. The direction of the isopara-
metric coordinate t is given by the director vector 'V,(r, s).

3.2 Displacement-Based Shell Element

Figure 3-2 shows the orientation of the director vector tV, and the directions of the

rotational degrees of freedom ak and #k. Defining the natural co-ordinate system (r, s, t)

the position vector of any point inside the shell element is

(3.1)x(r, s, t) = hk(r, s) 0Xk + $ akhk 0Vn.
k=1 k=1

At any time t, the position vector of the (r, s, t) point in the degenerated shell element

N N

tx(r, s, t) = E hk(r, s) txk + - akhk Vn.
k=1 2 k=1

(3.2)

The displacement vector of the same point, corresponding to the configuration at time t

is,

tu = tx - x. (3.3)

Using Eqs. 3.1 and 3.2 in 3.3 the following equation can be obtained

tu= hk tuk+ 2 ahk(tVn, _Vk)
k=1 k=1

(3.4)

3.2 Displacement-Based Shel] Element 67
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Figure 3-2: Definition of rotational degrees of freedom ak and 3 k.
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where t Uk is the displacement vector of node k, at time t.

Since the orthonormal system at node k rotates,

tV 0 = RkOVi (3.5)

where tRk is the rotation matrix corresponding to node k, at time t and is referred to

the initial configuration.

The rotation of the orthonormal system at node k can be described by a vector

[Argyris, 1982],

0k= 6Otek (3.6a)

tk = (tok 2 + (tok)2 + (tok)2] (3.6b)

where tek is a unit vector in the direction of the rotation axis.

Studying this rotation, Argyris arrived at [Argyris, 1982]

sin 1 sin (6o -/2)1 2tRk = 13 + gk + (k/2) 0 +) (37)

where
0 tok t Ok

03 02

tok = ok 0 -tok . (3.8)

6 2 0 0

Note that the W are not independent rotations around the global axes but are the

components of the matrix defined in Eq. 3.8, which characterizes a rotation around the

axis tek

Argyris elegantly proved that Eq. 3.7 can be rewritten as,

Rk = I 3 + Ok + ( )2 (-k) (3.9)
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where 13 is a (3 x 3) unit matrix.

The incremental displacement from the configuration at time t to the configuration

at time t + At is,

u = t+Atx - tx. (3.10)

Therefore,
N N

u = E hkuk + 2 akhk( 'Vi - tVn). (3.11)
k=1 k=1

To go from the configuration at time t to the configuration at time t + At, the orthogonal

system at node k is only rotated; therefore,

t+ZtVk __ t+AtRk V. (3.12)

Using Eq. 3.9,
t+ik ± k± (ak )2 +l(k)3±(.3

t+AtR =13 + + - *2 + --- (3.13)

where

0 -

.k =Ok 0 -O . (3.14)

-k 0 k 02 1

Again, the 9 are not independent incremental rotations around the global axes, but they

are the components of the matrix defined in Eq. 3.14 which characterizes via Eq. 3.13

the incremental rotations at node k.

Note, that if the incremental rotations are infinitesimal, keeping only the linear terms

in Eq. 3.13, Eqs. 3.12 through 3.14 produce,

t+AtVk - tVk = 9 k x tVk (3.15)

where T = [Ok k, O. In this case the 0y are independent infinitesimal incremental

rotations around the three global axes.

Because the incremental rotations are finite we keep the linear and the quadratic
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terms in Eq. 3.13.

Therefore,

t+AtVk - tVk = ®k tVk +g kgktVk
n n- n _ + - (3.16)

can be rewritten as

t+AtVk - tVk = k t Vkw + nka k xk'V
n n - n 2- (2 V~X n) (3.17)

Since the incremental rotations ak and #k in the shell element are given with respect to

the tVk-tVk-tVk frame, the vector crossproduct in Eq. 3.17 can be effectively evaluated

in the t V- t-_ tVk frame to get

t+AtVk - tVk = -ak tVk + #tVk- 1 (a2 + #2)t.k
n n 2 1 2 k k n

(3.18)

Using Eq. 3.18 in 3.11,

hku2
2k=1

akhk r-ak V~ + -/-k tVk - (a2 + #o2) tVk

U = UL + UQ (3.20)

where UL is the term obtained considering only the infinitesimal rotation increments, (i.e.

using Eq. 3.15) and uQ is the extra term obtained using Eq. 3.18.

Hence,
N N

UL = hkU + (
k=1 k=1

akhk [-ak V 2 + k + l (3.21)

t N 2
UQ = ( akhk - (ak

k=1
-#2) tv .

At any time t, the covariant base vectors of the convected systems (r, s, t) are [Green and

N
u = (

k=1

and,

(3.19)

and

(3.22)
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Zerna, 1968]

t gr = Ox
Or

tg 0 a
Os

0 Otu
= gr + Or

Otu
Ogs + aas

t O x 0
gt= -a gtt

(3.23a)

(3.23b)

(3.23c)+ .t
at

Similarly, in the incremental step from time t to t + At,

8t+Atx
Or

a t+Aix
Os

O t+Atx

Ot

Ou
= g,- + -u

ar

Ou=gs + auas
=tgt + .u

at

(3.24a)

(3.24b)

(3.24c)

The covariant components of the Green-Lagrange deformation tensor in the configuration

at times t and t + At, referred to the configuration at time t = 0 and measured in the

convected system are [Green and Zerna, 1968]

t = tig g"g = 1 (t* -g 3

t+At t+At 
0 g 

0 g. 1

- "g - "g0 ) 0g gi

S0i. 0j) i og j

Therefore, using Eqs. 3.23 and 3.24 in Eqs. 3.25 and 3.26, the incremental Green-Lagrange

strain is expressed as,

= t+At - o i o

Ou
tg+ tg

Or3

t g3 1 Ogji0gJ

Ou au 0 io 3

+ gg.Ori Or r

The strain increment (oks) can be decomposed into two parts: One part has all the

t+At gr

t+At 9

(3.25)

(3.26)

[ t±Atg t+LAt 9 ~
2
1

2

au
Ori

(3.27)

3.2 Displacement-Based Shell Element 72

( +Atg . t+At 9
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linear terms in generalized displacements (oEji); and the other has all the quadratic terms

in generalized displacements (o0i;) [Bathe, 1982]. Therefore,

Olij = oei + oAij. (3.28)

Note that:

e In elements with no rotational degrees of freedom (e.g. 2-D and 3-D continuum

elements) Eq. 3.28 represents exactly the total strain increments. In the present

case, Eq. 3.28 represents only an approximation to the strain increments, because

in the derivation of Eq. 3.27 the terms of order higher than two in generalized

displacement increments are neglected [Bathe, 1986].

e Equation 3.27 contains all the terms up to the second order in generalized displace-

ment increments. This guarantees a complete quadratic form of the incremental

energy, thus leading to a complete expression of the tangent stiffness matrix.

Using Eq. 3.20 in Eq. 3.27, the terms in Eq. 3.28 can be expressed as:

1 aBuL Buat
oeij= - - - gj+ g; - (3.29)

2 ori ar 3

1rau uLi1rauQ t t OUQ1

rj= --- + Igj+ gi- .r3 ] (3.30)
2 or. or - 2 ari orj

Writing Eq. 3.29 and 3.30 for each component:

N N

Oerr = > 'gr - (hk,ruk) + E t gr - [akhk,r(--ak t V2 + k3 tVk) (3.31a)
k=1 k=1

N N

oe = g - (hk,,uk) + E gs - [akhk,s(-ak tV2 + #3 Vf) (3.31b)
k=1 k=1

N N

20rs = Z tgr - (hk,sUk)+ E: tgr. [akhk,,(-ak tV2 + k tVk)]
k=1 k=1
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N

+ E 'g, . (hk,ruk) +
k=1

N

=E gt. (hk,,uk) +
k=1

N

E tgs
k=1

N

E tg,
k=1

=E tgt - (hk,,uk) + E g,
k=1 k=1

- [akhk,r(-ak *V2 + ! kV k)]

- [akhk(-ak V 2 + #ktVk)]

-[akhk(--ak V + #3 tVk)]

Equation 3.31 is used to construct the linear incremental strains at the sampling points

in the assumed strain formulation.

Now define the following matrices:

0

hk,r

o -{akhk,, tV2x

o -Lakhk,r V2y

0 0 hk,r -- jakhkr t V2z

o -Iakhk,s ,V2x

o -- Lakhk,s tV2y

0 0 hk,s -{akhk,s ,V2z

2lakhk tTV/

lakhktV

2akhk
t V

jakhk,r V

jakhk,r V1  -...

takhk,r tV1

lakhk, tV 1x

-iakhk,s t 1 z

1x

y ... U = U

1z

U B ErU (3.32a)

U B $,U (3.32b)

(3.32c)

and for in-layer strains,

2 oert

2 oEst

(3.31c)

(3.31d)

(3.3 1e)

ouL
Or

hk,r

0

OUL

Os

hk,s 0

0 hk,s

OUL

at

o o 0 -{akhk'V 2x

o o 0 -lakhktV 2y

o o 0 -{akhk t V2z

tg. OuQ
Or

O UQ3

Or

- UTS 2 U- rru

SUTBE U

SUT$ 2 U

SUTEBU
rS

(3.33a)

(3.33b)

(3.33c)

(3.33d)
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where the matrices 5 ,.. in Eq. 3.33 are the diagonal matrices whose values are given as,

~ r0 for m = 1, 2,3
B 2(k - 1) + m, 2(k - 1) + m = (3.34)

for m= 4,5

where k is a node number. In other words, the diagonal terms in matrices f 2 in

Eq. 3.33 have zero values for the terms corresponding to the displacement degrees of

freedom, and they have the value given in Eq. 3.34 for the terms corresponding to the

rotational degrees of freedom.

For shear strains,

g u = UTat U (3.35a)
_ r

g -u = U5 ,U (3.35b)
Or t

tg - Oug UTB5 U (3.35c)at

Og U =luQ UT5 ,U (3.35d)
Os

where the matrices ,2 in Eq. 3.35 are the diagonal matrices whose values are given as,

0 for m =1, 2,3

5 [2(k - 1) + m, 2(k - 1) + m = -akhk g,. - Vi form = 4, 5 and 52 ,S

- akhk,,, t g, -Vk for m = 4, 5 and f3,, S ,I

(3.36)

where k is a node number. In other words, the diagonal terms in matrices 52  in

Eq. 3.35 have zero values for the terms corresponding to the displacement degrees of

freedom and they have the value given in Eq. 3.36 for the terms corresponding to the

rotational degrees of freedom.

Finally, using Eqs. 3.32, 3.33 and 3.35 in Eq.3.30 a matrix expression for the directly

interpolated nonlinear incremental strains can be obtained. Hence, the variation of the
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nonlinear incremental strains are,

60,rr

6 oss

60,rs

6 ort

6 ost

= bU T [Bf5, + 25,.]U

= 6U T [N'N, + 25 ,]U

= 6U T [jNT'. + Eh , + N,.2, + h,]U2

= 6U T [}$hh + NTN, + h2t + h,]U

= 6U T [iNIt + Eh[5, + h2 + 2]U.

(3.37a)

(3.37b)

(3.37c)

(3.37d)

(3.37e)

Eq.3.37 is used to construct the nonlinear incremental strains at the sampling points in

the assumed strain formulation.

3.3 Formulation of the Mixed-Interpolated Shell

Element

To avoid membrane-locking problem in the case of the displacement-based shell element, a

mixed-interpolated 9-node shell element based on the independent interpolation of strains

is presented. The displacements are interpolated using 8-node interpolation functions,

whereas the rotations are interpolated using 9-node interpolation functions where the

interpolation functions, hi, are:

hi =1(1

h2 =

h 3 = (1 - r)(1 - s) - I(h6

h4= 1(1 + r)(1 - s) - }(h7

h = (1 - r 2)(1 + s) - ih
h =

+ h8 ) - 1h9

+ h6 ) - he

+ h7 ) - 1h9

+ h8 ) - he

(3.38)

+ r)(1 + I)- (h5

- r)(1 + s) -I(hs
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h7 = 1(1 - r 2)(1 - s) - Ig

h8 = .1l1-- S2)(1 + r) - }h9h4 2

h = (1 - r 2 )(1 _ S2 )

where the term h9 is included only when Eq. 3.38 is used for the nine node interpolation.

To avoid membrane and shear locking of the displacement-based shell element, the

in-layer strains are interpolated in addition to the shear strains. Then, the coefficients

in these interpolations are tied to the strain components evaluated directly from the

displacement interpolations given in Eqs 3.31 and 3.37 at the sampling points. The in-

layer strain interpolation yields the membrane and bending action of the element, and

the transverse shear strain interpolation gives the transverse shear action. To obtain a

general shell element, we interpolate the strain tensor expressed in terms of covariant

components and contravariant base vectors.

In the following formulation of an assumed strain field, the element strain tensor at

any time during the response history is considered; therefore, the left superscript denoting

time is omitted for notational simplicity (e.g. henceforth g, = tgr in the case of a total

Lagrangian formulation).

The strain tensor at any point in the element is,

= ,gg' + e SSSgS + e '(grgs + gsgr)

in-layer strains

+ rt(grgi + gt gr) + ist(g'gt + gigs). (3.39)

transverse shear strains

The key aspect of this element formulation is the appropriate interpolation of the in-

layer strains and the transverse shear strains to satisfy basic shell element requirements

as closely as possible.
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3.3.1 In-Layer Strain Interpolation

To avoid membrane locking and to have no spurious zero energy modes, the following

in-layer strain interpolation is used (see Fig. 3-3),

8

= his|; (3.40)

where the his are obtained from the hi in Eq. 3.38 for the 8-node interpolation by

replacing the variable r with r/a, and the variable s with s/a, a = 1/v3.

i= 1, 2,3 and 4 (see Fig. 3-3a),

i = grgrf + issg'g"|PI + ' (grgs + gsgr)DI.

For i = 5 and 7,

'5 5

el7 = s sgS7I

+ i r -{1lf' + elf1'} r] rgTIr '
+ i [g -{ef'+I'}-g] (g'gs+ gsgr)ID

+ [ gr -{ f' + f'} - gr 7

+ - - {If' DII r' ] g s '+ sr) IDI

gt = gt

g
g= gr- ags; a=~2

YSS

For i = 6 and 8, in Eq. 3.40,

+ . {DI I '

Also, for

(3.41)

where,

(3.42)

(3.43)

(3.44a)

(3.44b)

(3.44c)
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+ -[ {l' I ,] s + sr)IDI (3.45)

| -- r,'g'DI I DI gsgsDIf 18 = &rrgl + 9 8ge {2If 1~~' 4 1 8

+ If[ IIIIf + fID". g.] (grgs + gsgr)IDI (3.46)

where

g, g, (3.47a)

t gt (3.47b)

5 = gs - gr; 0- (3.47c)
grr

3.3.2 Transverse Shear Strain Interpolation

The transverse shear strain interpolation is selected to avoid shear locking and, as for

the in-layer strain interpolation, no spurious zero energy mode must be introduced. The

transverse shear strain interpolation selected for the shell is a generalization of the shear

strain field used for the plate formulation using the covariant components and the con-

travariant base vectors. The following interpolation for rtgrgt (see Fig. 3-3b) is used,

4
,rtgg= hRrt ggI O+hyT +,I-|-It| rtD

ertg ~ ~ ~ ~ [( r g = ii.T, .tD rtI1gg

where,

h T= '(1 + Z)(1 + s)- h

hRT = '(1 - r)(1 + s) - h R

h = '(1 - Z)(1 - s) - 1h T  (3.49)

h RT = '(1 + Z)(1 - s) - .h RT

79
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2 L
RB

5

RA

2

(a) Points used for interpolation of transverse shear strain

(b) Points used for interpolation of transverse shear strain 9st

(c) Points used for interpolation of in-layer strains

Figure 3-3: Sampling points used for the MITC9 and MITC8N shell elements.
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hRT _ { (12_92)
(1 -2)

for the MITC8 element

for the MITC8N and MITC9 elements

where a = 1/v3. Here an improvement in the 8-node mixed-interpolated shell element

(referred to as the MITC8N element) is introduced. The difference between the MITC8

and the MITC8N elements is in the choice of the assumed shear strain field. The differ-

ences are discussed in more detail in the next chapter. Note that in Eq. 3.48 Ert|' was

replaced with the mean of the components at points RA and RB.

Similarly, the following interpolation for ,tgsgt (see Fig. 3-3c) is used,

4
st gh gT F1it 'DI
estg g = S h qtggsgtjfDI +hjKs + ESt I) g"gi5tI

1h = {(1 + r) (1 +

hST ={ - +

hjT= (1 r)(1 -

h4T = {1-+ r)(1

h (1- r2)(

- .1hST

4 5

- 1hST

- {1hST

(1)2) for the MITC8 element

for the MITC8N and MITC9 elements

where a = 1/,.

3.4 Tying Scheme for Shell Element

The tying of transverse shear strains used in Sec. 3.3 is based on the point tying at the

center point. In this section, possible alternatives in the tying of transverse shear strains

are suggested and discussed. In the discussion only the Zt component of shear strains is

considered since the strains Ert and Est are symmetric in r and s.

where

(3.50)

(3.51)

.a
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In the interpolation of shear strains, the relationship between ert |D and ?rt|AS needs

to be identified in terms of five unknown constants in IrtAS. Equation 2.43 is used in the

shell element formulation as well to get four equations of tying. After imposition of the

requirements for tying along the edges of the element, the Ert|AS term is expressed as,

4

Ert(grgt + gtgr)As = hT(ggt + gigr)ji + h RT6I (3.52)
i=1

where elI is an unknown constant tensor to be determined. It is desirable to construct

the tying scheme for the shell element which reduces to Eq. 2.44 when the element is in

the flat plate condition. Hence as a first attempt, Eq. 3.52 may be numerically integrated

and equated with the integral of the directly interpolated strains. Namely,

J IAsdV = J DIV (3.53)

or using Eq. 3.52,

E h (, (grg' + gi gr)| 1 + f h'Ej' ,g f g + gtgr|DIdV (3.54)
V i= +gV 5 VW. (54

Solving Eq. 3.54 for ej',

I h 'dV [ t r(grgt + gtgr)IDI _ {f Tdv}t(gr gt + gt)|i (3.55)
V h5 j=1 j=1

is obtained where the first summation runs over the integration point (up to ipt) for

numerical integration (See Fig. 3-4). For full integral tying, the strains in Eq. 3.55 need to

be numerically integrated with 3 x 3 Gauss points (See Fig. 3-4a). This formulation gives

full integral tying and the scheme reduces precisely to Eq. 2.44 when the element is in the

flat plate condition. Though full integral tying satisfies the mathematical requirement,

the scheme requires additional nine points in the expression of assumed strain field which

makes the practical implementations complicated and numerically inefficient in the shell
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2 1 2 1

x x x
RB RA RB 5 RA

x x x x x x ox

x x x

3 4 3 4

(a) Full integration (b) Reduced integration (c) Point tying used

Figure 3-4: Reduced integration for integral tying.

element formulation. Recall also that the plate element using full integral tying does not

pass the bending patch test exactly.

To simplify the numerical integration in Eq. 3.55 without loss of accuracy, a reduced

integration can be used in Eq. 3.54 ( i.e. use a reduced number of points in the first

summation of Eq. 3.55). Since we are interested in reducing the number of additional

sampling points, it is tempting to use the points illustrated in Fig. 3-4b. As shown in

Fig. 3-4b, the reduced integral tying scheme uses

e 2-point Gauss integration in the r direction. (accuracy order 3)

* 3-point Newton-Cote integration in the s direction. (accuracy order 2)

In this case only two additional sampling points are needed since the value of the strains

at points on the edges (points 1 through 4) are already evaluated for the imposition of

Eq. 2.43. Using this reduced integral tying scheme, Eq. 3.55 can be rewritten,

f hdV [ wRA 4(rg t + g tgr)RA + wRBrt (gg + gtgr)IRB

- wRA {grt(grgt + t r (grgt + gtgr)12}

1 wRA {irt(grgt + gigr)j4 - irt(grgt + gtgr)3}

-1wRB {?rj(grgt ± gigr) 1
2

- Ert(grgt + gtgr)1}
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- WRB {rt(g'g + gtg) _ t(grgt + gtgr)14} (3.56)

where wi is the weight of the numerical integration at integration point i multiplied by

the value of the Jacobian determinant. The tying based on reduced integration simulates

the full integral tying with only two additional sampling points. The numerical results

obtained using the full integral tying and the reduced integral tying show very little

difference in the case of the plate analysis. It is tempting to use the tying given in

Eq. 3.56 for shell element formulation since the integral tying is one of the mathematical

requirements in the plate formulation. However, as in the case of full integral tying, the

element with reduced integral tying fails the bending patch test. Since the mathematical

analysis for optimal convergence in Sec. 2.1 is for the limiting case when the thickness

approaches zero, similar behavior for thin plate conditions can be expected.

From an engineering point of view it is desirable to design an element which passes

the necessary patch tests. In order to design an element which passes the patch test,

consider applying Eq. 3.56 to a case where the element is in flat rectangular shape. In

this special geometry,

WRA = WRB (3.57a)

fv h T dV = WRA + WRB (3.57b)

grgt|RA - grgtIRB - g'gt|5 . (3.57c)

Using Eq. 3.57 in 3.56,

= h T [(rtit| + ZrtID)] grg t IDI (3.58)

which is precisely the last term in Eq. 3.48. Hence the reduced integral tying in Eq. 3.56

reduces to point tying used in the MITC8N and MITC9 shell elements. Notice also that

the full integral tying reduces to point tying for rectangular elements (See appendix A.1).

In summary, full integral tying, reduced integral tying, and point tying are all identical
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for the flat rectangular elements.

The point tying used in Eq. 3.48 is based on the conditions in Eq. 3.57. These

conditions do not hold for the non-rectangular element. By assuming the condition in

Eq. 3.57 for non-rectangular geometry as well (hence neglecting the geometry distortion

effect in the reduced integration of tying constraint), the element using Eq. 3.48, which

passes the bending patch test can be obtained. Notice that the point tying scheme is not

totally new but it is derived from Eq. 3.56 with a further reduction in integration. Thus,

one of the mathematical requirements is violated slightly to obtain the element which

satisfies the engineering requirement (patch test).

3.5 Incremental Formulation

In general, a large deformation analysis requires a step-by-step incremental solution. The

basic continuum mechanics equation in this solution is the linearized incremental form of

the principle of virtual work. For the equilibrium configuration at time t + At (the one

being sought), the principle of virtual work [Bathe, 1982] states that

t+At53 6 t+Atg odV = t+AtR (3.59)

where 0 V is the volume in the initial configuration (t = 0), t+At 5'j are the contravariant

components of the 2nd Piola-Kirchhoff stress tensor measured in the convected system

and t+MlR is the virtual work of the external loads acting on the configuration at time

t + At.

After the linearization of Eq. 3.59, and using the kinematic equations for strains, the

incremental total Lagrangian Formulation for the shell element can be developed.

With the Newton-Raphson iteration scheme, the equations for the i-th iteration in a

finite elements model are,

(t+AtKL + t+AtKNL)(i 1)AU(i) = t+AtP - tF(-0 ) (3.60)
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For the displacement,

U() U(i- 1) + AU() (3.61)

and for the rotations,

(t+AtR)(i) - (A t+AtR k)( i+ARk)(i-l). (3.62)

In the equations above,

t+AtKL is the linear part of the tangent stiffness matrix,

t+At KNL is the nonlinear part of the tangent stiffness matrix,

U is the vector of generalized nodal incremental displacement,

t+AtP is the vector of generalized external nodal loads acting at t + At,

and

tF is the vector of generalized internal nodal loads acting at t + At, equivalent (in

the virtual work sense) to the element stresses.



Chapter 4

Analysis of the Mixed-Interpolated

Shell Element

In this chapter, an analysis of the mixed-interpolated shell element is presented. The

purpose of this study is to gain insight into the interpolation scheme for the strain fields.

Since the shear strain interpolations have already been discussed in Chapter 2, this

chapter will focus on the in-plane strain interpolations. The behavior of the improved

8-node shell element introduced in Chapter 3 is discussed further. Finally, an efficient

computational scheme is proposed and studied in terms of computational efficiency.

4.1 Covariant Strain Interpolation and Its Analysis

The behavior of covariant strains used in the mixed-interpolated shell elements is ex-

amined, and an example of a square plate is given to show how the in-plane strains are

calculated in the element.

- 87 -
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4.1.1 Covariant Strain in a One-Dimensional Bar

In this subsection, a simple example is carried out to demonstrate how the covariant

strains in an element are calculated. The calculated covariant strains are then compared

to the Green-Lagrange strain components obtained using the conventional formula. The

calculation of the incremental strains using the total Lagrangian formulation was given

in Sec. 3.2. Equation 3.27 is rewritten below for convenience.

of = [ -- . tg + tg, u+ g - a2] Ogi Og (4.1)
2 [ri Or. ari rj

A similar expression can be obtained for the updated Lagrangian formulation as well

by using the procedure outlined in Sec. 3.2,

= t+At'E - tgitgi

=it+Atgi . t+t 9tg 1 'i tgj tti tg9j

1 BuOu Ou aBuH
S [-g . gj + g + -,auJ ag g - (4.2)2 B~r; Brj Bri Brj

The following comparisons can be made between Eqs. 4.1 and 4.2:

* The components of the strains are identical in the total Lagrangian and updated

Lagrangian formulations,

ofij = t ij. (4.3)

Notice, however, that the base vectors in each formulation are different,

of = g ij8 0 ti g g = f-. (4.4)

* In the total Lagrangian formulation, the initial displacement effects are accounted

for via the base vectors, i.e. Ogi0g3 contains the initial displacement effects.

Hence, in the covariant strain calculation, the base vectors (in which each component
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is measured) are as important as the components themselves. Therefore the assumed

covariant strains need to be interpolated along with the base vectors in the mixed-

formulation.

To obtain the components with respect to a different coordinate system, a second

order tensor transformation should be used. For example, to get the global Cartesian

components,

ZEig = eklekel (4.5)

or

Akl = (eij)(Ok ' )(g ' ) (4.6)

should be used where Ekl is the component of the strain tensor measured in the global

Cartesian coordinate system.

A familiar expression of the Green-Lagrange strain component in the global Cartesian

system is

t 1
Ok l = 1 Ukj + OUl,k + OUm,k 0Um,] (4.7)

from which, the following two expressions can be derived:

0k I OUk,l + OUI,k + O Um,k OUm,l + OUm,kOUm,l + OUm,k OUm,l) (4.8a)

tSkl 2 ( tUk,l + tUl,k + tUm,k tUm,l). (4-8b)

It can be shown without further elaboration that the expressions for the strain compo-

nents in Eqs. 4.6 and 4.8 are identical.

In the next example a 1-D truss element is investigated. The configurations for the

rod under consideration are shown in Fig. 4-1 for times 0, t, and t + At.

First, consider the total Lagrangian formulation. The only nonzero strain component

of the rod is o,,, which can be expressed by using Eqs. 4.1 and 4.6 as follows:
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Figure 4-1: Covariant strains in a truss element.

t t au au au
g,.+ gr- - + Tr or or

'Lu uu' 2 2
2 2 22

(Og -ex)(0g -

'Lu 1( u

= L 2  2 (L)

The same expression can be obtained by using the standard notation of Eq. 4.8a,

eX = ou1,1 + ju1,1u1,1 + ( 0u1,1)2
U tUU U 2

= -+-- + R-)
OL 0L OL 2  2OL
0Lu+( t L - L)u u 2

oL2 + 2 )
tLu 1 u

oL2+ _ (_)2.

(4.9)

(4.10)

Similar comparison can be made using the updated Lagrangian formulation. The only

nonzero strain component in the rod is t6xx, which can be expressed by using Eqs. 4.2

and 4.6 as follows:

texx =- -2 Br
ou Ou

gr + gr - + T
Or Or r ( 9 -x)( t gr - X)

OExx
9u
or

2 2

1
2

~2
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0 00

(a) MITC 8 element

0o @04

0 0 0

(b) MITC 9 element

Figure 4-2: Sampling points for the membrane strain interpolation.

uu] 2 2
22 ]L t L

1 u'L 'Lu

2 2 2 2 2
U 1U

= FL + 2( t)2 (4.11)

Again, the same expression can be obtained by using the standard notation of Eq. 4.8b,

tex = (tU1,1 + tUi,1) + 1( ti1,1) 2

U 1 u
= + _(_L 2. (4.12)

4.1.2 Covariant Strain Interpolations in a Square Plate

Consider the square plate shown in Fig. 4-2. The plate has dimensions of 2 x 2 x

2 unit length and hence, the r-s isoparametric coordinate system is aligned with the

global X-Y coordinate system. Figure 4-2 illustrates the nodal points as well as the in-

plane strain sampling points for the MITC8 and MITC9 elements. The purpose of this

example is to study the in-plane strain interpolations to gain insight into the assumed

strain formulation methodology. The simplicity of the geometry allows for the analytical

calculation of the interpolated strains.
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First, note that,

g= = gr = 5 =O

g, = g, = gS = g =e

t A
gt = g = ek

which are constant throughout the element.

The displacements are interpolated as

f(1, r,s, r
2, rs, s2, r2s, rs

2)

f(1,r,s,r 2, rs, s2 r 2s, rs2, r2s2)

The directly interpolated strains can be calcula

relationships as follows: for the MITC8 element

for the MITC8 element,

for the MITC9 element.

ted using the usual displacement-strain

rr DI = f (1, r, s, rs, s2)

Ss|DI = f (1, r, s, rs, r2)

rsIDI _ f(Ir,s, r 2 is 2)

and for the MITC9 element;

rr DI = f(1, r, s, rs, s2 ,rs2 )

isIDI = f(1, r, s, rs, r2 ,r2s)

irsDI = f(1,r,s,rs,r2 s2 r2 Srs2).

The assumed strains are calculated using Eq. 3.40 as follows:

grr|As - hIsAIr + hIsIDI + h/s rrI + hIS r I

+IhIs[1rrI + ?rr I'] + hIStrr II

92

(4.13a)

(4.13b)

(4.13c)

(4.15a)

(4.15b)

(4.15c)

(4.16a)

(4.16b)

(4.16c)

U
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+Ah?,5['rr IDI + err I'] + hI~r D (4.17a)+IS DI IS4 DI

s|As = hfs 1I+ hIsqID + hISI DI + hS I

+hsS 1 +2 2 h 3s4+']
+hIsE II+ 1h Is [E.9,\IDI D s I

±hI5S38ID1 + lhIS[?ssIDI + .5DI (4.17b)

'|As = hs +s +h rSID1 + h~rs DI + hIs IDI

+hIs[' ID + ,s ] + DhIs DI+ DI IDI
2~ 5 1~s~ +6 2 2 6 2

+hs[ DI + rsIDI] + lhS[frs Is ' + 1 rsIVi. (4.17c)

From Eq. 4.17, the assumed strain fields can be summarized as follows:

rrAS = f(1, r, s, rs, S 2 ) (4.18a)

,5 1 AS = f ( r,,rsr 2 ) (4.18b)

rsIAS = f(1, r, s, rs). (4.18c)

In this example, the rr AS component is interpolated linearly in the r-direction,

and quadratically in the s-direction. The z,,|AS component is interpolated in a similar

manner. In the case of the MITC8 element, it is clear that 'rrIDI = grr AS, and 2,,|DI =

6 ,,|AS. However, the rs AS component is interpolated linearly in both r and s directions

(r2 and s2 terms are not included in the interpolation). In the case of the MITC9 element,

all three strain fields in Eq. 4.18 correspond to reduced fields compared to the directly

interpolated strains of Eq. 4.16.

When the mesh is distorted, the contravariant base vectors corresponding to each

strain component are no longer simple polynomials. Therefore, it is not trivial to express

the interpolated strains in closed form. Further, the directions of the base vectors at

midside sampling points are not aligned with the directions of base vectors at the adjacent

corner sampling points. In such situation, it is necessary to transform the strain tensor at

the corner sampling points into the direction of the base vectors at the midside sampling

WOO--
----- d
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points in order to reduce the interpolation fields of the assumed in-plane strains. This

transformation is equivalent to the projection shown in Eqs.3.42 to 3.47.

4.2 Improvement of the Eight-Node Element

Initially, the MITC8 element [Bathe and Dvorkin, 1986] was constructed directly as a

general shell element. Its development was based on physical insight and the patch test.

While the MITC8 element performs well in most cases, a suitable counterpart element in

the analysis of incompressible media has not yet been found. As mentioned in Chapter 2,

the MITC9 element corresponds to the Q2 - P1 element (sometimes called 9/3 element,

i.e. 9 node element with 3 pressure variables) which possesses the optimal convergence

characteristics. Although the 8/3 element (8-node element with 3 pressure variables) does

not satisfy all the mathematical conditions for optimal convergence, it has been shown

that the element performs quite well in the study of incompressible media [Sussman and

Bathe, 1987].

It is possible to construct an 8-node plate element which corresponds to the 8/3

element used in the analysis of incompressible media. The element is constructed by

changing the fields of shear strain interpolation as shown in Eqs. 3.49 and 3.51. The

resulting 8-node element with improved characteristics is referred to as the MITC8N

element. The MITC8N element does not satisfy all the mathematical requirements for

optimal convergence, but is closer to the mathematically suggested element compared to

the conventional MITC8 element. The differences in the predictive capabilities between

the MITC8 and MITC8N elements are in general not very significant. Yet, the following

two examples demonstrate the improvements in the MITC8N element.

First, consider the analysis of a circular plate shown in Fig. 2-10. A finite element

mesh with 16 elements per radial line which is obtained by subdividing each element

in Fig. 2-10a is used (192 elements). The plate is subjected to a uniform pressure with

clamped boundary conditions along its circumference. Figure 4-3 shows the lines of
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Line of strain plot Line of strain plot

(a) Shear strain along radial line (b) Shear strain along closest
gauss points.

Figure 4-3: Lines of shear strain plot for a clamped circular plate under uniform pressure.
h/D = 1/100. Finite element mesh used is 16 elements per radial line which is obtained
by subdividing each element in Fig. 2-10a (192 elements).

interest for the shear strain plots. The shear strain variation along the radial line (Fig. 4-

3a), as well as the same strain components along the Gauss integration points closest

to the radial line (Fig. 4-3b) are examined. We should expect little variation in strains

and in the shape of strain variation between these two lines. Figure 4-4a shows the

strain plot constructed using the MITC8 element. The strain plot along the radial line

shows reasonable variations in the yz-component. The xz-component strain plot along

the radial line shows small oscillations. However, the yz-component plot along the Gauss

line shows unreasonably large oscillations and the oscillations in the xz-component are

also observed. On the average the shear strains along the Gauss line may satisfy the

equilibrium condition. However, internally, they exhibit large oscillations. Figures 4-4b

and 4-4c show the strain plots using the MITC8N and MITC9 elements. In both elements

no oscillations are observed along both the radial and Gauss lines.

In the next example we will consider the analysis of a square plate using the graded

mesh shown in Fig. 2-8. The plate is analyzed using both "soft" and "hard" boundary

conditions and the shear stress along the top edge is plotted in Fig. 4-5. Notice that in this

case stresses are calculated at the midside nodes as well as at the corner nodes. Figure 4-
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(a) MITC8 element

Figure 4-4: Shear strain oscillation in a circular plate.
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Figure 4-4 Continued.
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Figure 4-4 Continued.
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5a shows that severe oscillations in shear stresses occur when the MITC8 element is used.

As in the case of the previous example (circular plate), no oscillations are observed when

the MITC8N and MITC9 elements are used in the shear stress plots (see Figs. 4-5b and

4-5c).

The oscillations in shear stresses result from the use of an inappropriate field in the

shear strain interpolation within the MITC8 element. Recall that the fields used for

shear strain interpolations are

f (1, r, s, rs, r 2S 2) for the MITC8 element, (4.19a)
f(1,r,s,rs,s2 ) for the MITC8N and MITC9 elements,

f(1,r,s,rs, r 2s 2) for the MITC8 element,

E f(1, r,s, rs,r 2 ) for the MITC8N and MITC9 elements.

Each field in Eq. 4.19 consists of a bilinear field plus one additional field. In the case of

the MITC8 element, the order of the fifth field, r 2s 2 , is unreasonably high. This suggests

that the MITC8 element is directly employing the r2 S2 field, skipping s2 and rs 2 terms

in the interpolation of Ert component. The use of such incomplete field is responsible for

the stress oscillation of the MITC8 element in the previous two examples.

4.3 Discussion of Different Interpolation Fields for

the Nine-Node Elements

Now consider a curved cantilever under a tip moment as shown in Fig. 4-6. Table 4-1

summarizes the results obtained using the MITC8 element for the various meshes. The

results show excellent predictive capabilities for all types of meshes used, except for the

mesh distorted horizontally, as shown in Table 4-1c. Notice that the results obtained using

the mesh distorted vertically (Table 4-1e) do not show any locking, even for extremely

thin situations.
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TNE 1.000

CD SOFT B.C.

X HAFDB.C.

L.2 .&8 10.

DISTANCE ALONG EDGE

(a) MITC8 element

TME 1.000

0SOFT B.C.

X HAR B.C.

DISTANCE ALONG EDGE

(b) MITC8N element

Figure 4-5: Shear stress oscillation in a square plate.
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DISTANCE ALONG EDGE

(c) MITC9 element

Figure 4-5 Continued.

R = 20
h (thickness) = 0.2, 0.02, 0.0002

E =2.1 x 10 6
V =0.3

L = 10

C= 30 degrees
M = 240

Figure 4-6: Physical model of the curved cantilever considered.
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Table 4-1: 30 degrees curved cantilever under a tip
tortions.

moment for various mesh dis-

Mesh used h / R V = 0.0 V = 0.3

1/100 0.9998 1.0656

1/1000 0.9996 1.0608

(a) C 1/105 0.9996 1.0608

1/100 1.0008 1.0529

1/1000 1.0000 1.0376

(b) 1/10 5  1.0000 1.0373

1/100 0.8958 0.9482

1/1000 0.7230 0.7538

(c) 1/10 5  0.0626 0.0649

1/100 0.9995 1.0315

1/1000 0.9996 0.9962

(d) C 1/10 5  0.9996 0.9947

1/100 0.9999 1.0297

1/1000 0.9999 1.0027

(e) C 1/105 0.9999 1.0016

=_ + zz ,- .
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A similar deterioration, as in the case of the horizontally distorted element, is observed

when the side nodes are shifted in the opposite direction within a single element. Figure 4-

7a shows the results of the analysis obtained using the undistorted element. Notice that

the 90 degree curved cantilever beam can be analyzed using just a single shell element

and yet maintain an error to within 3 percent of the tip rotation.

Figures 4-7b and 4-7c show the results of the analyses obtained using the elements

with shifted nodes. In Fig. 4-7b, two side nodes are shifted in the same direction while

the location of the other nodes are fixed. The elements are quite insensitive to node

shifting of this kind.

The single element with two side nodes shifted in the opposite direction (see Fig. 4-7c)

shows similar behavior as in the case of the horizontally distorted element (Table 4-1c).

The behavior of the distorted elements is related to the orientation of the base vectors at

the sampling points. Figure 4-8a shows the configuration of base vectors at the sampling

points for the vertically distorted element. As can be seen in the side view of Fig. 4-8a,

the distribution of sampling points for in-plane strain interpolation along the y-direction

is equivalent to the 3-node curved beam element. It is known that the three node curved

beam element does not membrane lock if the mixed-interpolation is used. Hence, if

the membrane interpolation used at sampling points 6 and 8 (see 4-8a) is equivalent

to the one used in the mixed-interpolated isobeam element, then a locking-free element

for membrane strain is obtained. Since g, and g, run parallel to the x-axis and y-axis

respectively, the strain component egy is correctly interpolated as in the case of the 3-node

isobeam element with mixed-interpolation. Notice that the , component of strains at

the sampling point 6 is calculated using the projection of strains at sampling points 2

and 3. Component is, at sampling point 8 is calculated similarly using the strains at

sampling points 1 and 4. In other words, the strain components E,, at points 6 and 8

are not obtained by direct interpolation, but are interpolated using the strains at the

neighboring sampling points. Notice also that the Er, components at points 6 and 8

are calculated by direct interpolation; however, ,, components do not contribute to the
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10 M6 R - 20
h (thickness) = 0.2

E =2.1 x 10 6
V =0.0

L = 10

C= 30, 60, 90 degrees

M = 240

a (degrees) MITC8 MITC9

30 0.999 0.999
60 0.994 0.993
90 0.974 0.972

(a) Analysis using undistorted element.

Figure 4-7: Analysis of a curved cantilever beam.
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y (degrees) MITC8 MITC9

0 0.999 0.999
3 1.001 1.002
5 1.003 1.005

(b) Analysis with node shifting in the same direction.

SM
6 y (degrees) MITC8 MITC9

0 0.999 0.999
3 0.971 0.980
5 0.895 0.893

(c) Analysis with node shifting in the opposite direction.

Figure 4-7 Continued.
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calculation of e~y since g, is perpendicular to the y-axis as mentioned earlier.

Figure 4-8b shows the configuration of base vectors at the sampling points for the

horizontally distorted element. Notice that the base vector orientation of the element in

Fig. 4-7c is similar to the horizontally distorted element. In the case of a horizontally

distorted element, the strain ey, cannot be interpolated properly for two reasons. First,

as can be seen in the side view of Fig. 4-8a, more than enough sampling points are used

along the y-direction. Only two sampling points must be used along the y-direction to

avoid membrane locking, but the geometry of the mesh does not allow the reduced number

of points in the sampling of strains. The second disadvantage of this geometry is that

the base vector g, is not orthogonal to the y-axis at sampling points 6 and 8. Hence,

in the calculation of e.., there is a contribution from the Z,, component of strains at

sampling points 6 and 8, which are directly interpolated (i.e. no projection is performed

using neighboring elements). In other words, the structure becomes overconstrained in

this situation.

To improve the predictive capabilities of the element, the space of the displacement

interpolation should be increased but without introducing spurious zero energy modes or

nonconvergent behavior.

In the case of the MITC8 element, the space of the interpolation cannot be increased

unless additional nodes are introduced. However, in the case of the 9-node element the

space of the displacement interpolation can be increased by employing additional degrees

of freedom at the center node. Table 4-2 shows the comparison between the MITC8,

MITC9 and a few trial elements. The MITC9 element uses 0, and O, (rotations only)

at the center node. The TRIAL-1 element is obtained by using 02, 0,, u, and uy at the

center node, whereas the TRIAL-2 element is obtained by using 0,, O,, u, uY and u, at

the center node.

Both the MITC9 and TRIAL-1 elements reduce to the MITC9 plate element given in

Chap. 2 when the element is in the flat plate condition. The TRIAL-2 element violates the

mathematical requirement even in the flat plate condition, but is included in Table 4-
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(plane view)

3,4,7

-Mb- M

(side view)

(a) Vertical distortion

(plane view)

r, r,gr8

M

(side view)

3,4,7

(b) Horizontal distortion

Figure 4-8: Base vector variation in a curved cantilever beam.
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Table 4-2: Response of a horizontally distorted curved cantilever.

Degrees of freedom at center node

MITC 8 ; No. d.o.f.
MITC 9 ;0, , Oy
TRIAL-1; O , 0 , uY
TRIAL-2 ; x > y u, , u , uz

-_M

Thickness Location MITC8 MITC9 TRIAL-1 TRIAL-2

A 1.067 1.012 1.020 1.037
1/102 B 1.037 0.957 1.000 1.029

C 0.948 0.996 1.067 1.083

A 0.783 0.846 0.979 0.963
1/103 B 0.894 0.661 0.956 0.953

C 0.754 0.668 1.036 1.073

A 0.125 0.400 0.902 0.968
1/105 B 0.007 0.671 0.943 0.892

C 0.065 0.287 0.951 1.065
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2 for comparison. As the number of degrees of freedom employed at the center node

increases, the locking is reduced. Comparing the MITC8 and MITC9 elements, the

MITC9 element still has the tendency to lock in the case of very thin thickness, but the

overall results are better compared to the MITC8 element. The TRIAL-1 element gives

very accurate results (almost insensitive to the distortion and the element thickness).

However, subsequent numerical experiment shows that the TRIAL-1 element is too soft

in most situations, and hence is rejected from further consideration. As for the TRIAL-2

element, it can not be used in practice because the element contains one spurious zero

energy mode.

The space of the displacement interpolation can be increased as long as the element

does not contain any spurious zero energy mode. As the space of the displacement

interpolation is increased in the element, the element exhibits softer behavior even in the

case when there are no spurious zero energy modes (the TRIAL-1 element).

4.4 Implementation

Due to the complexity of the assumed strain interpolation, a proper computational

scheme is necessary for the element to be effective. In this section, implementation

of the MITC8N and MITC9 elements is discussed. First, consider the in-layer strain

interpolation. Using Eqs. 3.41 through 3.46 in Eq. 3.40, the assumed strain field can be

expressed as follows,

4

Eh6 + >jsg sihsE(g [rgr gr~+ 8 gSgD +4(gS + gsgr)I]I

5 + 5~ [gr 1 2.f +9"} r] rjI

+ ~ ~ D V~ ~ ~f ~~ } .51 (grgs + gsgr)I
~~ ~+ hIS [gr 41{1~ +ft' r rTg

+ h~s gr . ~' + ~'} .g.](rgs + gsgr)~I
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+hS'rrrgr DI

+ 'I

+ hIs . {eII I s I

+ h s r.Ig + 1'} - + 6S' )'DI

+ hIs . II1 + { -IDI g. gs I

+ h s . { .I Df III} rs] (grgs + gsgr)DI

Next the following tensor transformation is used to obtain the global Cartesian compo-

nents of the strain,

i i = e e e

Ekl = (Zij)(^k - g)g - ^1)

(4.21)

(4.22)

where skI is the component of the strain tensor measured in the global Cartesian coordi-

nate system.

The resulting components of strain tensor in the global Cartesian coordinate system

are,

eki = Zrrl [ hisek - (g'g'g)|1 - 6I

+ hrsRlsSek. (gsgs)| 8 - e + h~sR1stek . (grgs + gsgr) 18 -l

+ hISRs ek - (gsgs) 5 e + hStR15 tek - (grgs + g"g T )|- e

+ is|1 [ - (gegl) 1

± hrs S~sek - ( gS gS) - + hrst A (grgs + gsgr)| -

+ hrSSl8ek . ( gr gr) e + hrS(r g + g 18g'e)|

+ .isS|1 [ h (grgs + gsg)| 1 -6

+ hS~TlsS- ( g' gS 8 . &- 6 + hS~Tlstk &.- ( gr gs + gsg) &r- 6

+ h1sTlsrekA (grgr) 5 1 + hsT1te - (grgs + gsgr)| 5 -. ]

+ similar expressions for sampling points 2, 3 and 4

(4.20)
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+ ?ssI5 [ hSek (g'g8)15 61]

+5rr16 [ h6sk )1rg)6 -

+ essI7 [ h7s k (gg) e .

+ rrS [ hISek. (gegs (4.23)

where R, S and T are constants derived from the product of base vectors:

Rmni = g (g'')|1m -g In (4.24a)

Smni = IgIn- (gsg")|m -gil (4.24b)

Tmni = -(g'g + g -g)|- gijn. (4.24c)

Equation 4.23 represents the contribution from the in-layer part of the strains to the

global Cartesian strain components.

The contribution from the shear strain can be constructed in a similar way. Using

Eqs. 3.48 and 3.50 in Eq. 4.22, the components of the strain tensor measured in the global

Cartesian coordinate system are,

4
6 k1 = Z~Rt~ T~k (grgt + glgr)1jelEkl Zrt li T k -i-6

i=1

+ krt|R Ah ek- (grgt + gtgr)|5 -

+ irt|RBh 5 ek - (g gt + gt gr) 1 -

4

+ ( stjihT ek- (gsgt + gtg"% -l

i=1

+ sts AhTek - (gSgt + g t gS)| 5 -

+ kstISBh 5 e k (gsgt + ggs)| - 6. (4.25)

Notice that Eqs. 4.23 and 4.25 are the expressions for the general total strains. Hence,



they can be used for the calculation of both linear and nonlinear incremental strains.

For linear incremental strains, Eq. 3.31 can be used to calculate the strains at the

sampling points (i.e. oej jp) in Eqs. 4.23 and 4.25. Then, defining a vector

oeT = [oexx oeyy oe2 2 oex 2 oex2 2oey2], (4.26)

the usual relation [Bathe, 1982]

oeT = tBLU (4.27)

is obtained. Expression of strains in a form given in Eq. 4.27 is possible because all the

strain terms in Eq. 3.31 are expressed in terms of nodal point variables.

From the linearized equation of motion,

tKL = J oBIOC OBL dV (4.28)

is obtained where oC is a constitutive matrix formed with the contravariant components

oCijkl of the constitutive tensor. The contravariant components oCijk' of the constitutive

tensor relates the increments of the contravariant components OSu' of the 2nd Piola-

Kirchhoff stress tensor with the increments of the covariant components o6 ij of the Green-

Lagrange strain tensor. Both OSi' and oEij components are measured in the global

Cartesian system. The incremental constitutive equation in matrix notation is,

oS = oC OE (4.29)

where

oST = [oSxx oS"" oSzz oS"" oSxz oSyz] (4.30)

and

of= [OErx OeyY oe22 2 Osxy 2 Oexz 2 0 E2]. (4.31)

The global Cartesian components oCijk' are calculated from the components in r, .,

4.4 Implementation 112
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t Cartesian shell-aligned coordinate system (a,, es, er).

Cik = 00n(6- 6,- (4.32)

The fourth-order tensor transformation in Eq. 4.32 can be effectively evaluated using the

matrix notation,

0C = QsoCQh (4.33)

where

1 v 0 0 0 0

v 1 0 0 0 0

E 0 0 0 0
1- v 2  symmetric 1- 0 0

k"" 0
2

2.

and Qh represents a matrix that transforms the stress-strain law from an e, e, et Carte-

sian shell-aligned coordinate system to the global Cartesian coordinate system. The ele-

ments of the matrix Qh are obtained from the direction cosines of the 8,, es, 6t coordinate

axes measured in the x, y, z coordinate directions.

The non-linear part of the tangent stiffness matrix can be derived from the equality

SUT KNLU = 1 SJ6 0 i o-lOdV (4.35)

In the formulation, the strain-displacement matrix corresponding to the global Carte-

sian strain components, which were obtained from the assumed strain components by

tensor transformation, was calculated. Alternatively, one could calculate the strain com-

ponents corresponding to coordinate axes aligned with the midsurface of the shell element

and establish a strain-displacement matrix for strain components. In the displacement-

based shell element, the relative computational efficiency of these two approaches depends

on whether it is more effective to transform the strain components (which always differ
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at the integration points) or to transform the stress-strain law.

This comparison does not apply in the current formulation. In the assumed strain

formulation, the components of the strains are interpolated together with the base vectors

referred to them at the sampling points. Therefore, the base vector at a particular

integration point and its component cannot be separated. As shown in Eq. 4.20, the

strain is always expressed in terms of the components and the base vectors interpolated

together at the sampling points. To extract the component at a particular point of interest

(usually at an integration point), a second order tensor transformation is required. This

transformation is necessary regardless of the coordinate system used at that point, and

can be performed by using Eq. 4.23 after replacing ek and eI with the base vectors from

the coordinate frame employed at the point of interest. In the present case where the

global Cartesian coordinate frame is used for stress and strain reference, both the strain

components and the stress-strain law need to be transformed. Therefore it is tempting

to use f, , t shell-aligned Cartesian coordinate system (e,, e,, et) in order to avoid the

transformation of the stress-strain law given in Eq. 4.33. However, the use of the global

Cartesian coordinate frame in the present formulation is more efficient because of the

following two reasons.

First, consider the transformation of strains in Eqs. 4.23 and 4.25. In the case of

using the global Cartesian coordinate system, the base vector product involved has the

following form

Ekl = f(^k - (ig Ispg - , -- (4.36)

where (gigj)|sp are the contravariant base vectors at the sampling points.

In the case of the shell aligned F, s, t Cartesian coordinate system, the base vector

products involved are

Eki f f(9k - (9 gj)~~ I gi, 1.) (4.37)

Since all base vectors are expressed in terms of the global Cartesian coordinate, the

base vector product in Eq. 4.36 does not require any multiplication operation. Only the



4.4 Implementation 115

k-component from the g' vector is necessary to calculate ek (g,,. However, in the

case of using the f, 9, t Cartesian coordinate system in Eq. 4.37, the base vector product

requires explicit evaluation of the vector product 9k - (gI),. Due to the large number of

operations involved in the base vector product, this approach is less efficient in spite of

the computational time savings in applying the stress-strain law.

Second, and more importantly, the advantage of using the global Cartesian coordinate

system is that the product ek - (g),, is constant throughout the element for the fixed

layer. In the i, , t Cartesian coordinate system, the products gk - (g),, always differ

at the integration points. The fact that the product k. (g),, is constant contributes to

the large reduction in computation time in evaluating Eqs. 4.23 and 4.25. In Eqs. 4.23

and 4.25 the only varying term at each integration point for the fixed layer is the value

of interpolation function. Hence, the calculation of all the constant terms and the base

vector product can be extracted from the numerical integration loop for the fixed layer.

This extraction is not possible if the f, s, t Cartesian coordinate system is used since the

base vector products are not constants.

Since the evaluation of Eqs. 4.23 and 4.25 involves large amount of computation, it

is important to extract the operation, as much as possible, from the in-plane numeri-

cal integration loop. Careful implementation considering these characteristics reduces

computation time in the stiffness matrix evaluation by a factor of two compared to the

existing procedure in the the case of a linear analysis. In the case of a nonlinear analysis,

full quadratic convergence is observed as expected, without additional computation time

increase for executing nonlinear stiffness matrix reformation. Additional discussion is

presented with an example in Chapter 5.

For the MITC8N and MITC9 shell elements, the following steps are carried out in

the implementation.

step 1: At the midsurface,

* Calculate the base vectors at the sampling points for the transverse shear

strain interpolation.
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e Calculate the directly interpolated shear strains at each sampling point and

put them in a storage.

* Calculate constant terms and base vector products in Eq. 4.25 and put them

in a storage.

step 2: For each layer (integration through t-direction),

e Calculate base vectors at the sampling points for in-layer strain interpolation.

* Calculate the directly interpolated in-layer strains at each sampling point and

put them in a storage.

* Calculate constant terms and base vector products in Eq. 4.23 and put them

in a storage.

* For each integration point with a fixed layer (integration over r-s plane, while

t is fixed.),

- Transform the stress-strain law to the global Cartesian coordinate system

using Eq. 4.33.

- Calculate the component of strains using Eqs. 4.23 and 4.25. Here, only

the values of the interpolation function at the integration point need to be

evaluated. Then, use the constant terms and directly interpolated strains

in the storage for the actual evaluation of the strain components.

- From the strain components calculated, construct the strain displacement

matrix.

- Use Eq. 4.28 to calculate the linear contribution to the stiffness matrix.

- For a nonlinear analysis, accumulate the coefficients corresponding to each

directly interpolated nonlinear strain in Eq. 4.23.

e For the nonlinear analysis use Eq. 4.35 to calculate nonlinear contribution to

the stiffness matrix. Here, the previously accumulated coefficients are multi-

plied to the corresponding directly interpolated nonlinear strains.



Chapter 5

Numerical Tests and Problem

Solutions

The new nine node shell element discussed in Chapters 3 and 4 has been implemented

in the general purpose computer program ADINA [ADINA R&D, 1987]. In this chapter,

various numerical tests are conducted to study the predictive capabilities of the element.

The results demonstrate the excellent predictive capabilities of the new MITC9 shell

element.

For some analyses, results obtained with the MITC4 [Bathe and Dvorkin, 1985] and

MITC8 [Bathe and Dvorkin, 1986] elements are also presented for comparison. A com-

parison with other existing elements in the literature is also included. As in the case

of the MITC plate analyses, the MITC9 shell element stiffness matrix is evaluated with

"full" numerical integration (3 x 3 Gauss integration in case of the MITC9 element).

5.1 Stability of the Element

As a first step to check the stability of the MITC9 element, the eigenvalues of the stiffness

matrices of undistorted and distorted elements were calculated. In all cases, the element

displayed the six rigid body modes and no spurious zero energy modes.

- 117 -
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Next, various patch tests were performed for the patch of elements shown in Fig. 5-

la. Since the pass of the patch tests is only a necessary condition for convergence, this

simple patch test does not display the complete convergence characteristics of an element.

However, the pass of the patch tests is an indication of the stability of the element for

practical purposes and is regarded as a condition for a reliable element.

In the first analysis (Fig. 5-1b), distributed edge tension and shearing forces of con-

stant intensity are applied for the membrane patch test. In this test, only the minimum

number of degrees of freedom are deleted to eliminate the physical rigid body modes

[Dvorkin and Bathe, 1984]. Linear displacements and constant membrane stresses (both

tensile and in-plane shear) are obtained.

In the second analysis, the bending patch test shown in Fig. 5-1c was performed. In

the test distributed edge couples of constant intensity were applied at the right hand

edge of the patch of elements which is clamped at the left hand edge. Note that the

vertical deflections at the two corner nodes on the clamped edge are left free to enable

the shell to deform with constant curvature. A constant curvature (linear distribution of

rotations) was obtained in the two directions.

In the third analysis, the mesh was subjected to an external twisting moment as

shown in Fig. 5-1d. In the test, the patch of elements is supported on three corners and

loaded with a point load on the fourth corner. This test is reasonable for Mindlin plates

which are very thin. In this test (thickness/length = 1/1000), a slight asymmetry in the

displacement response (the sixth digit) was obtained due to the asymmetric representa-

tion of the transverse shear deformations. In the thin plate analysis (thickness/length =

1/10000), this asymmetry is not observed and constant curvatures were obtained in both

plate directions and the transverse displacements agreed with the analytical thin plate

solution.
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E = 2.1 x 10 6
v = 0.3
Thickness = 0.01

kV-) x

-(10,0)
10

(a) Patch of elements considered.

D
(b) Membrane tests

o.0
(c) Bending tests

~LIJ~
(d) Twisting test

Figure 5-1: Patch of the elements used in a patch test.
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5.2 Sample Analyses

5.2.1 Analysis of a Perforated Tension Strip

To illustrate the difference in stress prediction between the new 9-node shell element and

the usual isoparametric 8-node plane stress element, the results obtained in the analysis

of the plate shown in Fig. 5-2a are given. The analytical solution for the stress r 2 at

locations C and D in Fig. 5-2a is given in [Timoshenko and Goodier, 1970]. Figure 5-2b

shows the finite element mesh used in the analysis. For the stress calculations in both

cases, the strains are obtained from the strain-displacement matrices evaluated directly

at the points C and D. Hence, no stress extrapolation or stress smoothing is used.

Figure 5-2c shows that the 8-node isoparametric element yields a slightly more accurate

solution. Notice that the 8-node isoparametric element passes the membrane patch test

even for curved element sides.

5.2.2 Analysis of a Cantilever under Distributed Load

In this example, a cantilever shown in Fig. 5-3 was analyzed to verify the shell element

when subjected to distributed loading. The cantilever is discretized with five equally

spaced shell elements. Using beam theory the theoretical solution for the end displace-

ment is
11PL3  5 PL
60 El 6 AsG

Figure 5-3a shows normalized solution for the end displacement and the axial stress

(in the direction of the beam) at the upper stress point closest to the fixed end. The

results show a good agreement with the analytical solution.

5.2.3 Analysis of Morley Skew Plate

Figure 5-4 shows the thirty degree skew plate which is simply supported on all edges.

This problem is often used to test the performance of the shell element because of the
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L = 56

b = 20

d =10

h (thickness) = 1

(a) Physical model considered.

(b) Finite element discretization.

Stress Reference 2-D element MITC8 MITC9

TzzIC 107.5 109.7 112.4 112.4
TzzD 18.75 16.73 16.79 16.80

(c) Analysis results.

Figure 5-2: Analysis of a perforated tension strip.

E=7x 10

v = 0.25

p=25
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Z

p-0.5 Lpb

Solution MITC9

h 6max 0.996
L ' Tmax 0.996

L = 1.000 p = 0.20 x 10 6

h = 0.100 E = 2.0 x 106

b = 0.050 v = 0.3

Figure 5-3: Analysis of a cantilever under a distributed load.
The cantilever is discretized with five equally spaced shell elements.

difficulty in the analysis due to the singularity in the bending moment at the obtuse

corner.

The typical finite element discretization with the uniform skew mesh topology is also

shown in Fig. 5-4a. The appropriate boundary condition to model the simple support with

a Reissner/Mindlin plate theory-based element is that only the transverse displacement w

is constrained to zero (soft condition). Figure 5-4b shows the good convergence behavior

of the MITC9 element to the solution obtained by Morley [Morley, 1963]. The MITC8N

element shows a slight improvement compared to the old MITC8 element. The result

obtained by Huang and Hinton is also included for comparison [Huang and Hinton, 1984;

Hinton and Huang, 1986]. Huang and Hinton tested various assumed strain elements in

the literature, the best results obtained using QUAD9* element are compared. Notice

that the MITC9 element outperforms the QUAD9* element.

5.2.4 Analysis of Scordelis-Lo Cylindrical Roof

The Scordelis-Lo roof shown in Fig. 5-5a has attained the status of a de facto standard test

problem. In this test, a cylindrical shell roof subjected to gravity loading is considered.

1225.2 Sample Analyses
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4 x 4 mesh

Simply supported edges

E = 30. x 106

v = 0.3

b = 1

Boundary condition w = 0

on four edges

a = 30 degrees

Thickness = 0.01

Uniform pressure p = 1

(a) Physical model considered.

MITC4

(D MITC9

X MITC8

<MITC8N
SHUANG

4. 8. 12. 16.

NUMBER OF ELEMENTS PER SIDE

(b) Analysis results.

Figure 5-4: Analysis of Morley skew plate.

20.
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The shell roof is supported on diaphragms at the ends and it is free along the longitudinal

sides. Both membrane and bending deformations contribute significantly to the response.

The analytical shallow shell solution generally quoted for the vertical deflection at the

center of the free edge (point B in Fig. 5-5a) is 3.703 [Scordelis and Lo, 1964], but

many finite elements converge to a slightly smaller value and some authors use 3.696 as

a reference solution. A deep shell exact analytical solution quoted is 3.610. Figure 5-

5b shows that using the MITC9 element good convergence to the analytical solution is

obtained. The result obtained by Huang and Hinton is also included for comparison

[Huang and Hinton, 1986]. Huang's result shown in Fig. 5-5b is the one obtained using

their best element QUAD9** for this problem. Notice also that the MITC9 element

converges fast and gives excellent results even with the coarse meshes.

Figures 5-5c and 5-5d are the pressure band plots obtained using the MITC4 and

MITC9 elements respectively. Notice that the pressure band plot using the MITC9

element shows smoother distribution of the stresses. Figures 5-5e, 5-5f, and 5-5g are the

in-plane stress plots along the line BC obtained using the MITC4, MITC8, and MITC9

elements respectively. The rr-component plots show the advantage of using higher order

element in the stress prediction.

5.2.5 Analysis of a Pinched Cylindrical Shell

The cylindrical shell structure shown in Fig. 5-6a is analyzed to study its static response.

The cylinder is freely supported at its ends and is loaded by two centrally located and

diametrically opposed concentrated forces. Using the double symmetry of the structure

and the loads, only one eighth of the cylinder is analyzed. The results were compared

to the analytical solution reported in [Lindberg et al., 1969]. It is interesting to note

that the MITC9 element converges from upward in this problem. This is due to the fact

that the MITC9 element employs more expanded field in the displacement interpolation,

resulting in a softer solution compared to the MITC8 element in general.

Figure 5-6c shows that for the 10 x 10 element idealizations, the stress distributions
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R =300

L = 600

Thickness = 3

E=3.0 x10 6

V = 0.3

Specific weight = 0.20833

$ = 40 degree

Rigid / l.
diaphragm

(a) Physical model considered.

zw

CO)

25

r -- h
A

A

A MITC4
(D MITC9
X MITC8
+ HUANG
UPPER SOLID: SHALLOW SHELL
LOWER SOLID: DEEP SHELL

NUMBER OF ELEMENTS PER SIDE

Shallow shell solution: 3.703/3.696
Deep shell theory: 3.610

(b) Analysis results.

Figure 5-5: Analysis of Scordelis-Lo cylindrical roof.
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(c) Pressure band plot using the MITC4 element

P

TIME 1.000

REPEAT
1000.

900.

800.

700.

600.

500.

- 400.

- 300.

- 200.

REPEAT

(12 x 12 mesh).

P

TIME 1.000

REPEAT
1000.

900.

800.

700.

600.

500.

400.

300.

- 200.

REPEAT

(d) Pressure band plot using the MITC9 element (6 x 6 mesh).

Figure 5-5 Continued.
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100. 200.
BC-TOP

10M 200.

B-TOP

(e) In-plane stress plot using the MITC4 element (12 x 12 mesh).

100. 200.

BC-TOP

10c. 200.

BC-TOP

(f) In-plane stress plot using the MITC8 element (6 x 6 mesh).

100. P.

BC-TOP

100.T

BC-TOP

(g) In-plane stress plot using the MITC9 element (6 x 6 mesh).

Figure 5-5 Continued.
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obtained are in good agreement with the analytical solution. Figure 5-6d shows the

pressure band plot for the mesh used in the stress calculations.

5.2.6 Fundamental Frequency of a Cantilever

A cantilever shown in Fig. 5-7a was analyzed again in order to verify the dynamical

behavior of the MITC9 shell element in frequency analysis. Three equally spaced MITC9

elements are employed using the subspace iteration method in the frequency solution.

A consistent mass discretization is used. The theoretical solution for this problem is

presented in [Blevins, 1979].

Figure 5-7b shows the fundamental frequency for motion in the Y-Z plane (mode 2).

In frequency analysis, the result obtained with only three MITC9 elements shows good

agreement with the analytical solution.

5.2.7 Fundamental Frequency of a Simply Supported Plate

A simply supported square plate shown in Fig. 5-8a was analyzed in order to verify the

dynamic behavior of the MITC9 shell element in frequency analysis. In order to calculate

the asymmetric modes as well, the full plate is modeled using 4 x 4 uniform meshes. A

subspace iteration method is employed using the consistent mass matrix in the frequency

solution. The theoretical solution for this problem is also presented in [Blevins, 1979].

Figure 5-8b shows the natural frequencies obtained using the MITC8 and MITC9

elements. In this analysis, the results obtained with MITC elements show good agreement

with the analytical solution. Notice that the MITC9 element performs better than the

MITC8 element in the calculation of the higher modes.

5.2.8 Analysis of a Cantilever under Large Displacement

The cantilever shown in Fig. 5-9a has been analyzed using the MITC9 element. The

finite element model consists of two MITC9 shell elements, as shown in Fig. 5-9b. The



5.2 Sample Analyses

Rigid
diaphragm
support

z,w E =30.0 x 106

V =0.3

t = 1.0

R/t = 100

L/R = 2

Rigid
diaphragm
support

(a) Physical model considered.

0. 2. 4. 6. 8. 10. 12. 14.

NUMBER OF ELEMENTS PER SIDE

(b) Analysis results.

Figure 5-6: Analysis of a pinched cylindrical shell.
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0. 20. 40. 60. 80. 100. 120. 140.

ALONG LINE BC

0. 20. 40. 60. 80. 100.

ALONG LINE DC

(c) In-plane stress plots using the MITC9 element (10 x 10 mesh).

Figure 5-6 Continued.
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P

TIME 1.000

REPEAT
12000.

10500.

9000.

7500.

6000.

4500.

3000.

1500.

- 0.

REPEAT

(d) Pressure band plot using the MITC9 element (10 x 10 mesh).

Figure 5-6 Continued.
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Y jh

L = 1.0

b = 0.05

h =0.10 (thickness)

E = 2.0 x 101"

V = 0.30

P = 7800

(a) Physical model considered.

Beam theory MITC9

81.80 81.19

(b) Analysis results.

Figure 5-7: Fundamental frequency of a cantilever.

"M
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E = 2.0 x 10

V =0.3

a =2.00

a h =0.01

P= 7850

Boundary condition w = 0

on four edges

a

(a) Physical model considered.

Mode Number Reference MITC8 (ratio) MITC9 (ratio)

1 12.00 12.03 (1.003) 12.03 (1.003)
2 29.99 30.56 (1.019) 30.10 (1.004)
3 29.99 30.56 (1.019) 30.10 (1.004)
4 47.99 50.39 (1.050) 49.55 (1.033)
5 59.98 64.39 (1.073) 56.36 (0.940)
6 59.98 64.39 (1.073) 56.36 (0.940)

(b) Analysis results.

Figure 5-8: Fundamental frequency of a simply supported plate.
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load is applied in twenty equal load steps in a large displacement analysis with stiffness

reformation and equilibrium iterations using the full Newton method in each step. Fig-

ure 5-9c shows the solution results obtained for tip rotation and displacements. It is

observed that even using only two elements to model the cantilever, excellent results are

obtained for up to 180 degrees of rotations. The standard isoparametric 9-node element

with full integration, which matches the exact result in linear analysis, locks in the large

displacement solution.

Table 5-1 summarizes the number of equilibrium iterations required for each time step

up to ten time steps. Table 5-2 shows the convergence ratio for out-of-balance energy at

time step 10. Three types of nonlinear stiffness matrices which have been used in this

numerical test are:

KL Directly interpolated tangent stiffness. In this case, the assumed strain interpola-

tion is ignored in the nonlinear stiffness matrix construction. This formulation has

been used in the existing MITC8 shell element.

KNL1 Assumed strain tangent stiffness matrix with first order rotations only. Hence in

the construction of the nonlinear stiffness matrix, only the linear terms in Eq. 3.16

are kept in the formulation.

KAS 2 Assumed strain tangent stiffness with second order rotations included. In this

case, the assumed strain interpolation is also accounted for in the construction of

nonlinear incremental strain tensor. Hence this formulation includes every term

that can be considered in nonlinear incremental strain calculations. This formula-

tion has been used for the MITC9 and the new MITC8N shell elements.

Notice that in all three cases, the linear stiffness matrix and out of balance load vector

were constructed using the formulation presented in Chapter 3. Hence the use of differ-

ent nonlinear stiffness matrices affects only the rates of convergence in the equilibrium

iterations.



First, it is observed that inclusion of the second order rotations in the nonlinear

stiffness construction is crucial. The convergence rate of the element with KAS- 1 rapidly

slows down as the geometric nonlinearity becomes large.

The element with KDI shows better convergence compared to the element with

KA-1. However this element also loses quadratic convergence as geometric nonlinearity

becomes large (see Table 5-2).

Next observation is that the assumed strain formulation should be accounted for

in order to keep full quadratic convergence even in the analysis with large geometric

nonlinearity. The last columns of Tables 5-1 and 5-2 show full quadratic convergence

when using the element with K A- 2 (the MITC9 and MITC9' element).

The MITC8 element employs K'I because of its simplicity in the implementation.

However using the computational scheme presented in Sec. 4.4, the exact nonlinear stiff-

ness matrix can be constructed without increasing the computation time. Individual

construction time of K A- 2 is slightly higher than the time required for K'I, but since

the total number of iterations required for the element using KyA- 2 is smaller, the total

computational time is reduced.

5.2.9 Large Displacement Analysis of a Simply-Supported

Plate

The simply supported square plate subjected to a uniformly distributed pressure shown

in Fig. 5-10a was analyzed to study its large deflection response. Because of symme-

try conditions only one quarter of the plate is modeled using 2 x 2 MITC9 elements.

Constraint equations are used to model uniform in-plane edge displacements. In the

numerical solution, the loading is applied in 22 load steps up to the final load parameter

K = qa 4 /Eh4 = 500. The computed center deflection ratio w/h as a function of the load

parameter K is shown in Fig. 5-10b. The computed displacement response agrees very

closely with the solution given by Levy [Levy, 1942].
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L=12 E=1800

b=1 V 0

h=1 M=35
IM b

(a) Physical model considered.

Y

x

2 1

z K

~-k '~

- 2'

4-

(b) Finite element discretization and the deformed configuration.

Figure 5-9: A cantilever under large displacement.
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(c) Analysis results for the tip rotation and displacements.

Figure 5-9 Continued.
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Table 5-1: Number of iterations for the cantilever analysis using the MITC9 element.

Time Step K

1
2
3
4
5
6
7
8
9

10

Total Iterations
Total CPU Time

4
4
4
5
5
5
5
6
7
9

54
348

K AS-1

4
5
7
9

12
15
20
26
36
50

184
1201

KAS-2

4
4
4
4
4

5
5
5
5
5

45
340

K"i: Directly interpolated tangent stiffness.

KAS~1 : Assumed strain tangent stiffness with

KAS- 2 : Assumed strain tangent stiffness with

first order rotations only.

second order rotations included.
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Table 5-2: Convergence ratio for the out-of-balance energy at time step 10.

Iteration KDI KA-1 KAS-2

1 0.56 x 10+1 0.48 x 10+0 0.87 x 10+1
2 0.35 x 10-1 0.30 x 10+0 0.34 x 10-1
3 0.83 x 10-2 0.21 x 10+0 0.18 X 10-2
4 0.13 x 10-2 0.15 x 10+0 0.49 x 10-'
5 0.14 x 10-3 0.11 x 10+0 0.93 x 10-8
6 0.14 x 10-1 0.85 x 10-1 (Converged.)
7 0.14 x 10-' 0.64 x 10-1
8 0.15 x 10-6 0.48 x 10-1
9 0.16 x 10-7 0.37 x 10-1

10 (Converged.) 0.28 x 10-1
11 0.22 x 10-1
12 0.17 x 10-1
13 0.13 x 10-1
14 0.10 x 10-1
15 0.81 x 10-2
16 0.64 x 10-2
17 0.51 x 10-2
18 0.41 x 10-2

19 0.32 x 10-2
20 0.26 x 10-2

21

K'i: Directly interpolated tangent stiffness.

KAS- 1 : Assumed strain tangent stiffness with first order rotations only.

KAS- 2: Assumed strain tangent stiffness with second order rotations included.
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Region discretized

E = Young modulus = 10 7psi

v - Poisson ratio = /~1~
h = Plate thickness = 0.12 IN

a = Plate width = 24 IN

q = Uniform applied pressure
per unit area

K = qa 4/ Eh4

All edges are simply supported.

(a) Physical model considered.

( MITC9

A LEVY

100. 200. 300. 400. 500.

LOAD PARAMETER K

(b) Analysis results.

Figure 5-10: Large displacement analysis of a simply-supported plate.

a
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5.2.10 Linearized Buckling Analysis of a Circular Arch

A circular arch with fixed ends shown in Fig. 5-11a was considered. The arch is subjected

to a distributed load. An analysis is performed to calculate estimates of the applied

distributed load intensities corresponding to the first in-plane buckling modes of the

arch. A linearized buckling analysis is performed using 10 equally spaced shell elements.

Since the first buckling mode is expected to be skew-symmetric, the full arch is modeled

in the analysis even though the arch structure has an axis of symmetry. The linearized

buckling analysis involves two steps. First, the displacement response is calculated for the

unit distributed load. Next, using the deformed geometry corresponding to the prescribed

external loading, an eigenvalue problem is solved to obtain the estimates of the linearized

buckling distributed load intensities. Figures 5-1ib shows the analysis results compared

to the analytical solution [Timoshenko and Gere, 1961].

Since the value of nonlinear stiffness matrix is directly used in the linearization, exact

construction of the nonlinear stiffness matrix is necessary. However, it is observed that

the directly interpolated nonlinear stiffness matrix also gives accurate results (the MITC8

element) for this problem.

5.2.11 Large Deflection Analysis of a Shallow Cylindrical Shell

A shallow cylindrical shell with a concentrated central load was analyzed to study its

large deflection behavior. The longitudinal boundaries are hinged and immobile whereas

the curved edges are completely free (see Fig. 5-12a). The structure exhibits a snap-

through as well as a snap-back phenomena with horizontal and vertical tangents. Using

the symmetry of the structure and the load, only one quarter of the cylinder is analyzed

using 3 x 3 MITC9 elements. The load-displacement control method is used in the

analysis [ADINA R&D, 1987]. Figure 5-12b shows the analysis results compared to the

solution obtained by Sabir and Lock [Sabir and Lock, 1973].
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X= 22.5
Cross-section

R = 64.85

*1h=1

2 R -2H_
a -~ - 10.0

h h
b=1
b = 1.xl

E =2.1x10

V= 0.3

(a) Physical model considered.

Reference Solution MITC8 MITC9

83.0 82.7 82.9

(b) Analysis results.

Figure 5-11: Linearized buckling analysis of a circular arch.
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R = 2540
L = 254

h = 6.35
0 = 0.1
E = 3102.75
V = 0.3

Straight edges are

hinged and immovable.

Curved edges are free.

(a) Physical model considered.

o DISP. AT C, MITC9
A DISP. AT S, MITC9
X DISP. AT C, SABIR
+ DISP. AT C, REF.
X DISP. AT S, REF.

r I I I I I I I I

DISPLACEMENTS OF SHALLOW CYLINDRICAL SHELL

(b) Analysis results.

Figure 5-12: Analysis of a shallow cylindrical shell.
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Chapter 6

Concluding Remarks

New plate and general shell finite elements for nonlinear analysis have been developed.

The formulation corresponds to the use of a mixed variational principle. The inde-

pendent strain interpolations are "tied internally" to the interpolations of the displace-

ments/section rotations; hence the only final element unknowns are the nodal point

displacements and section rotations. The element stiffness matrices are calculated using

"full" numerical integration and do not contain spurious zero energy modes. The new

plate and shell elements have the following important properties:

e The elements are formulated using three-dimensional continuum mechanics theory;

therefore the use of the elements is not restricted by application of a specific shell

theory. Also the formulation does not depend on any special numerical parameters.

e The elements satisfy, to a high degree, the objectives of being mechanistically clear,

mathematically stable, and accurate.

e The new computational scheme for mixed-interpolated shell elements reduces com-

putation time in the calculation of the stiffness matrix by a factor of two compared

to the existing procedure in the case of linear analysis.

* The nonlinear shell formulation with the assumed strain interpolations gives full

quadratic convergence during the equilibrium iterations when the full Newton
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method is used.

In this thesis, a number of MITC plate elements as well as a 9-node general nonlinear

shell element have been presented and studied. The MITC plate elements are based on

the previously proposed mathematical theory. It is interesting that the mathematical

theory used in the formulation of the elements strictly asks for some point-tying and

an integral-tying of the assumed transverse shear strain components to the transverse

displacement/section rotations. However, the numerical results show that instead of the

integral-tying, a point-tying can be used. The numerical results from the point-tying are

as accurate as those of the integral-tying; and for both triangular and quadrilateral ele-

ments, the point-tying is computationally more efficient. Hence, the point-tying scheme

of the shear strains is employed for the development of the new 9-node general nonlinear

shell element.

It has been demonstrated that the elements are very effective and reliable both in

linear and nonlinear analyses. The solution results obtained are most encouraging. The

success of the MITC shell elements is due to their sound mathematical foundations

in the plate formulation, although a mathematical convergence study of the in-plane

strain interpolation of the element is still not available. Hence, future work should focus

on the analytical study of membrane strain interpolation, as well as the extension of

the other MITC plate elements to general shell elements. To model structures with

higher nonlinearity or for the analysis of structures with complicated loading conditions,

the development of even higher-order mixed-interpolated shell elements is desired (e.g.

MITC16 shell element). Also, the development of triangular shell elements (e.g. the

MITC7 or MITC12 shell elements) would be valuable since the triangular geometry is

employed extensively in many geometric modellers for automatic mesh constructions.
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