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Here we report kinetic Monte Carlo simulations of dislocation climb in heavily deformed, body-

centered cubic iron comprising a supersaturation of vacancies. This approach explicitly incorporates the

effect of nonlinear vacancy-dislocation interaction on vacancy migration barriers as determined from

atomistic calculations, and enables observations of diffusivity and climb over time scales and tempera-

tures relevant to power-law creep. By capturing the underlying microscopic physics, the calculated stress

exponents for steady-state creep rates agree quantitatively with the experimentally measured range, and

qualitatively with the stress dependence of creep activation energies.

DOI: 10.1103/PhysRevLett.105.095501 PACS numbers: 61.72.Lk, 62.20.Hg

Dislocations are line defects that play a central role in
crystalline plasticity [1]. Nonconservative motion of these
defects via emission or absorption of lattice vacancies,
termed dislocation climb, is a key mechanism of high
temperature deformation (creep). As illustrated in Fig. 1,
microscopic vacancy-dislocation interactions and ener-
getic barriers to vacancy migration can depend strongly
on the vacancy migration paths. However, these atomistic
details are generally overlooked in the study and prediction
of climb [1]. Moreover, incorporation of both vacancies
and dislocations in a single computational framework is
complex, as this requires accounting simultaneously for
nonlinear vacancy-dislocation interactions (beyond the
range of applicability of dislocation dynamics [2,3]) and
long time scales associated with thermally activated pro-
cesses such as vacancy diffusion (beyond the accessible
time scales of molecular dynamics [4]). In this Letter, we
introduce a bridging approach to include atomistic fidelity
within simulations over macroscopically relevant time
scales. This approach involves constructing energy barrier
databases, which include every plausible (microscopic)
atomistic mechanism, and then statistically sampling the
various pathways through kinetic Monte Carlo (KMC)
methods to predict (macroscopic) dislocation mobility
over relevant time scales.

Mott initially posited that motion of an edge dislocation
segment normal to the slip plane proceeds at a velocity
proportional to applied stress (/�1) [1,5]. Application of
this model predicts that, for crystalline materials compris-
ing noninteracting, pinned dislocations that exhibit only
climb, the steady-state creep rate exhibits a power-law
stress dependence with an exponent of three ( _" / �3)
[6]. However, this prediction has not been experimentally
verified and thus, as noted by Weertman [6], has prompted
more complex analytical solutions to include dislocation
pile-up effects [7] and core diffusion [8,9]. In fact, the
exponent is instead between 4 and 6 even under conditions
in which power-law dislocation creep is expected to be the

dominant mechanism [6,10]. Here, we explore whether
explicit consideration of microscopic point-line defect in-
teractions can address this discrepancy. Moreover, our goal
is to develop a model that could accurately predict the
general experimental trends (such as variations of stress
exponent and activation barrier with creep conditions)
observed for power-law creep deformation, and thereby
capture the underlying microscopic physics. We show that
for a model system (bcc Fe comprising a high density of
pinned dislocations and vacancies), this general framework
that accounts for atomistic effects in dislocation climb
allows prediction of power-law creep stress exponents in
quantitative agreement with experiments.
The unit process of dislocation climb is migration of a

vacancy to or from a dislocation core [5,11]. We thus first
determined the migration barriers of bcc Fe vacancies as a
function of distance and orientation of the migration path
with respect to a dislocation core. We have previously
computed these migration barriers via the nudged elastic
band method [12] for the h111i (110) 71� mixed edge-type
dislocation dipole of Burgers vector b ¼ 1

2 ½111� and line

direction along ½�11�1� [Fig. 1(a)], using our many-body
Finnis-Sinclair potential [13] and sampling the nonredun-
dant pathways [Fig. 1(b)] (see Ref. [11] for details).
Briefly, the vacancy-dislocation interaction Eint

v�d deviates

significantly from elastic theory [1] when the vacancy is
within the core region (<4jbj) [11] and depends on the
migration path details. Figure 1(c) shows that the vacancy
migration energies Em inside the core region
(<4jbj) are strongly influenced by the nonlinear core-
vacancy interaction. The latter decreases with core-
vacancy distance r for a particular migration path and
differs substantially along various migration paths defined
by orientation � to the dislocation line. Interestingly, va-
cancy migration barriers for a particular path do not depend
on the jog structure of the core except for the last jump
(<0:1 eV) [11], whereas Em for the last jump depends
much more strongly on the path details [e.g., paths C and
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D in Fig. 1(c) differ by �0:8 eV]. This observation sub-
stantially simplified subsequent KMC simulations by re-
ducing the number of distinct possible events.

We used these calculated barriers Emðr; �Þ within event
tables for KMC simulations of heavily deformed bcc Fe,
our case of interest. The total dislocation density of highly
deformed metals such as cold-rolled or fatigued bcc Fe and
its alloys can range from 1015 m�2 to 1016 m�2 [14]; the
mobile dislocation density �d depends on applied stress �
and will attain these magnitudes at sufficient �. In such
deformed materials, vacancy concentrations %v also sig-
nificantly exceed thermal equilibrium values (by at least 4
orders of magnitude), due to processes such as dislocation
jog drag [15], and under a constant applied stress this
supersaturation attains a steady state [16]. Because of the
annihilation of vacancies at the core, the vacancy concen-
tration adjacent to the core instantly achieves its thermal
equilibrium level such that %v at the core can be neglected.
However, far from the core, the vacancy concentration
remains at steady-state supersaturation corresponding to
the applied stress. This sets a vacancy concentration gra-
dient between the core and lattice, resulting in vacancy

diffusion towards the core. Under this assumption of
steady-state vacancy supersaturation, explicit considera-
tion of vacancy emission in the unit process of climb is
neglected here [17]. The KMC configuration was con-
structed for a monoclinic periodic supercell with periodic
boundaries along x ¼ ½111�, y ¼ ½�11�1� and z ¼ ½�101� di-
rections withNx,Ny ¼ 50, andNz repeat layers.Nx andNz

control the dislocation density �d and separation distance
between dislocations 1=

ffiffiffiffiffiffi
�d

p
. This �d is directly related to

the applied stress according to Taylor’s relation, �d ¼
ð�=�GbÞ2, where � is an empirical constant of 0.4 and
G is the shear elastic modulus [9]. The point/line defect
densities and temperature ranges were chosen to approxi-
mate conditions relevant to highly deformed bcc Fe exhib-
iting power-law creep: 1015 m�2 <�d < 1017 m�2,
5� 10�5 <%v < 10�3, and T > 0:4Tm, where Tm is melt-
ing temperature [14,15,18].
As dislocation climb is mediated by free vacancy diffu-

sion, we first studied the dependence of vacancy diffusivity
on �d. To maintain the steady-state vacancy supersatura-
tion constant, a new vacancy was inserted (far from the
core at a random Fe lattice position), each time a vacancy
was absorbed to a core. In the temperature range of interest
(at least 700 K below Tm), it is reasonable to invoke the
harmonic approximation to the transition state theory.
Here, vibrational entropy effects are included in the
temperature-independent preexponential factor, and thus
a constant prefactor (60 THz) is assumed to calculate
vacancy diffusion rate. Figure 2 shows self-diffusivity
D�d;T normalized by diffusivity in a dislocation-free lat-
tice, D0;T , indicating that D�d;T=D0;T increases with in-
creasing �d and decreases with increasing temperature T.
Note that the severity of this temperature dependence also
increases with increasing �d. These features can be
rationalized qualitatively as follows. The general diffusion
equation reads as, D0;T ¼ D0 expð�Em=kBTÞ, where
Em is the vacancy migration barrier in a dislocation-
free lattice and kB is Boltzmann’s constant. Near the dis-
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FIG. 2 (color online). Normalized diffusivity D�d;T=D0;T at
different temperatures T as a function of dislocation density
�d for a constant vacancy concentration (%v ¼ 10�4).

FIG. 1 (color online). (a) Simulation cell, in which a pair of
edge dislocations (>, ?) of opposite sign (dislocation dipole) is
created by removing a half plane of atoms (yellow). Vacancies
(red) are distributed randomly; two are indicated with red
arrows. (b) Various possible vacancy migration paths towards
the dislocation core. (c) Eint

v�d and activation barrier for vacancy

migration along various paths shown in (b).
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location core [Fig. 1(c)], the migration barrier decreases
substantially and the effective migration barrier inside the
core can be written as hEmðr; �Þi ¼ Em � h�Emðr; �Þi,
where h� � �i represents the time average over vacancies
near the core. Therefore, vacancy diffusivity within the

core vicinity, D�d;T
<4jbj ¼ D0 expð�½Em � h�Emðr; �Þi�=

kBTÞ ¼ D0;T expðh�Emðr; �Þi=kBTÞ, exceeds the diffusiv-
ity of vacancies that are beyond the influence of the core:

D
�d;T
>4jbj ¼ D0;T . The effective diffusivity in the presence of

dislocations at a given density can be written as D�d;T ’
fvD

�d;T
<4jbj þ ð1� fvÞD0;T , where fv is the volume fraction

of vacancies within 4jbj of the core vicinity. Therefore,
D�d;T=D0;T at a fixed �d decreases with increasing tem-
perature. However, at fixed T and %v, diffusivity increases
with increasing �d because the corresponding fraction of
faster-moving vacancies near the core concurrently
increases.

Next, we extracted the climb velocity vc from KMC
simulations. Although both dislocation climb and glide can
occur sequentially, power-law creep is controlled by the
climb of edge-type dislocations segments [9]. Thus, we did

not explicitly allow glide moves, but incorporated these
effects through the maintenance of a vacancy supersatura-
tion under a constant applied stress; see analytical treat-
ment in Eq. (1) below. We calculated the number of
vacancies binding to the core as a function of time, the
slope of this linear regression yielding the vacancy-core
binding rate �, and vc ¼ �h=Ny. Here, h is the dislocation

jog displacement due to single vacancy adsorption or inter-
plane spacing along z ¼ ½�101� andNy ¼ 50, the number of

f111g planes intersected along the dislocation line direction
½�11�1� for this periodic simulation cell. We also explicitly
allowed vacancy diffusion along the dislocation core,
which changes the local dislocation jog structure but
does not contribute to the climb displacement. The KMC
simulation enables us to separately investigate the effects
of increasing dislocation density or vacancy concentration
on climb velocity: vcð�Þ ¼ vc½�dð�Þ; %vð�Þ�. Figure 3(a)
shows that for a constant %v, vc increases monotonically

with �d, and exhibits a power-law dependence, vc ¼
P ðTÞ��ðTÞ; P ðTÞ is a temperature-dependent prefactor.
Vacancy supersaturation is realized in heavily deformed
metals [15]; under a constant applied stress and tempera-
ture, this supersaturation will be maintained at steady state
and can be given by [16,17]

%v ¼ %ref
v

�

�ref

exp

�
Em

kB

�
1

T
� 1

Tref

��
P ðTÞ��ðTÞ

P ðTrefÞ��ðTref Þ
ref

; (1)

where %ref
v is the assumed supersaturation at a reference

applied stress �ref and temperature Tref . Figure 3(b) shows
that when the vacancy supersaturation level is varied with

� for constant �d, vc also exhibits a power-law vc / ��ðTÞ.
Next, we simultaneously varied both the defect densities,
�d and %v, corresponding to � and as shown in Fig. 3(c)

vc / ��ðTÞ, with �ðTÞ � �ðTÞ þ �ðTÞ. Figure 3(d) shows
that all exponents decrease with increasing temperature,
which is consistent with the previous discussion on
D�d;T=D0;T; i.e., D�d;T=D0;T decreases with increasing T
and the effect is more pronounced at higher � and thus at
higher �d. These observations are consistent for a wide
range of %ref

v (Fig. 3(c) and supplementary material [17]).
Thus, we find from direct KMC simulation comprising
point and line defects that vc does not vary as �1 as
classically predicted and generally assumed for generic
climb-assisted creep in metals [6,9]. Rather, vc varies

with ��ðTÞ where �ðTÞ exceeds a value of 3 over the range
of temperatures considered.
We then use this microscopically accessed information

to predict macroscopic creep rates. The steady-state creep
rate is given by Orowan’s general equation of dislocation-
mediated time-dependent deformation, _" ¼ �dbvc [9].
Figure 4(a) shows creep at elevated temperatures T >
0:4Tm, for which power-law creep is anticipated and can
be stated in the form _" ¼ A�n expð�Q=kBTÞ. We find
that the stress exponent n slightly decreases with increas-
ing T: 5:5� 0:20 at 800 K to 5:2� 0:20 at 1100 K, through
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FIG. 3 (color online). Dislocation climb velocity as a function
of applied stress for (a) varied �dð�Þ (via Taylor’s equation) and
constant %v ¼ 10�4 for all �d at temperatures T > 0:4Tm; and
(b) varied %vð�; TÞ according to Eq. (1) for a set of constant �d

and T ¼ 800 K, where %ref
v ð729:9 MPa; 1100 KÞ ¼ 10�4. (c)

Complete stress dependence of vc, where both �d and %v change
simultaneously and correspond to �. Statistical errors in vc are
smaller than the data points in log-scale. (d) Climb velocities in
(a), (b), and (c) show power-law dependence on �. Exponents of
these power-laws �, �, and �, respectively, vary weakly with T.
Results for different levels of %ref

v are shown in supplementary
material [17].
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the microscopic dependence of vc on applied stress and
thus on the abundance of point and line defects [17].
Both the temperature dependence and magnitude of n in
Fig. 4(b) are in good agreement with experiments for
which n 	 4:5 [10,18]. The creep activation energy Q
decreases with increasing applied stress [Fig. 4(b)], as
effective Em decreases and diffusivity near dislocation
core increases with increasing �. This observation is in
agreement with experiments [18,19]. Although our case of
interest is for �> 500 MPa, experimentally reported
creep rates for bcc Fe are limited to lower stresses.
Assuming the same creep mechanism (climb controlled)
in the experimental stress regime, our extrapolation of _"
(for %ref

v ¼ 10�4) agrees within 1 order of magnitude with
experimental creep rates for �< 100 MPa and 900 K 

T 
 1100 K [10,17,18]. The agreement is poorer at lower
temperatures, although the trends for the stress exponent
and activation energy are maintained. In understanding the
microscopic origin of power-law creep deformation, these
trends of stress exponent n and activation energy Q with
temperature and applied stress, respectively [10,18,19], are
arguably more important than the creep rate magnitudes
alone; these trends are correctly predicted within the
present microscopic model [Fig. 4(b)]. Further, we antici-
pate that explicit inclusion of magnetic interactions will
systematically affect migration barriers [20], and thus the
quantitative creep rate, but not the qualitative effects of
applied stress and temperature.

In summary, we have demonstrated a general framework
to predict the macroscopic, dislocation climb-mediated
creep plasticity from consideration of microscopic inter-
actions between point and line defects. The departure from
the previous models (n� 3) lies in the stress dependence

of the overall vacancy concentration of the present formu-
lation. This assumption along with the recognized depen-
dence of mobile dislocation density on applied stress not
only gives rise to the predicted n� 5 but also predicts the
trends in creep deformation, in agreement with experimen-
tal findings. We anticipate future studies of macroscopic
creep with such microscopic fidelity will also consider
solute-vacancy and solute-dislocation interactions in
alloys.
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FIG. 4 (color online). (a) Creep over a range of stresses and
temperatures T > 0:4Tm for reference supersaturation
%ref
v ð729:9 MPa; 1100 KÞ ¼ 10�4. (b) Stress exponents and ef-

fective activation energies at different temperatures and applied
stresses, respectively. The solid horizontal line represents the
activation barrier of self-diffusion (0.84 eV) in a dislocation-free
lattice. The effective activation energy is a linear function of
applied stress, Q ¼ Q0 � Va�, where Q0 ¼ 0:87 eV. Calcu-
lated activation volume Va ¼ ð0:85� 0:03Þ�0, where �0 is
the Fe atomic volume, is consistent with dislocation creep
controlled by vacancy diffusion.
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