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A four-component Fermi gas in one dimension with a short-range four-body interaction is shown to exhibit a
one-dimensional analog of the BCS-BEC crossover. Its low-energy physics is governed by a Tomonaga-Luttinger
liquid with three spin gaps. The spin gaps are exponentially small in the weak coupling (BCS) limit where they
arise from the charge-density-wave instability, and become large in the strong coupling (BEC) limit because of
the formation of tightly bound tetramers. We investigate the ground-state energy, the sound velocity, and the gap
spectrum in the BCS-BEC crossover and discuss exact relationships valid in our system. We also show that a
one-dimensional analog of the Efimov effect occurs for five bosons while it is absent for fermions. Our work
opens up a very rich field of universal few-body and many-body physics in one dimension.
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I. INTRODUCTION

Experiments using ultracold atomic gases have achieved
striking progress in realizing and studying various many-body
systems previously regarded as purely theoretical models.
One example is the Tonks-Girardeau gas in one dimension,
proposed 50 years ago [1] and realized experimentally in
2004 [2,3]. Another example is the BCS-BEC crossover in
a two-component Fermi gas with a short-range two-body
interaction [4–6]. It was predicted about 40 years ago [7–9] and
has been subject to extensive studies after recent experimental
realization [10–12]. In the weak coupling limit, the system
is a BCS superfluid where fermionic excitations have an
exponentially small gap, while at strong coupling it becomes
a dilute Bose-Einstein condensate (BEC) of tightly-bound
dimers with a large gap for the fermionic excitations. These two
limits are smoothly connected by varying a single parameter,
the scattering length. When the scattering length is much
larger than the range of the interaction potential, the properties
of such a system are independent of the potential shape.
This universality makes the study of the BCS-BEC crossover
extremely worthwhile because the same properties are shared
by many different systems [13].

In this paper, we propose a purely one-dimensional analog
of the BCS-BEC crossover in a four-component Fermi gas
with a short-range four-body interaction. The short-range
four-body interaction in one dimension is characterized by the
scattering length exactly in the same way that it characterizes
the short-range two-body interaction in three dimensions [14],
and therefore, leads to the universal “BCS-BEC” crossover in
one dimension. We note that while the BCS-BEC crossover
of a two-component Fermi gas in a quasi-one-dimensional
geometry has been studied before [15,16], the crossover
studied in this paper has the distinction of being universal,
i.e., independent of the confinement potential. We also note
that four-component (spin-3/2) Fermi gases with two-body
interactions have been studied and reviewed in Ref. [17].

In Sec. II A, we start with a lattice model that realizes the
BCS-BEC crossover in one dimension. The universal regime
in the vicinity of a four-body resonance is described by a
continuum theory derived in Sec. II B. We show in Sec. II C
that a one-dimensional analog of the Efimov effect occurs for

five bosons, while it is absent for fermions which is necessary
for the stability of the many-body system studied in Sec. III.
We investigate the sound velocity and the gap spectrum in
the BCS limit (Sec. III A) and in the BEC limit (Sec. III B)
and hypothesize that these two limits are smoothly connected
without phase transitions just as in three dimensions. In
the unitarity limit, a one-dimensional Bertsch parameter
and its connection to the Tomonaga-Luttinger parameter are
introduced in Sec. III C, whose value can be estimated in
principle by using ε expansions. Exact relationships involving
a contact density are derived in Sec. III D and the contact
density is determined from the ground-state energy density in
the BCS and BEC limits. Finally, Sec. IV is devoted to the
summary of this paper.

II. FEW-BODY PROBLEMS

A. Lattice model

We start with a system of fermions with four components
labeled by σ = a,b,c,d living on a one-dimensional lattice.
We assume that each lattice site can accommodate one, two,
or three particles with no change in energy, but an introduction
of a fourth particle into a site with three particles releases a
finite amount of energy. The lattice Hamiltonian for such a
system is

H = −t
∑

〈xy〉,σ
c†xσ cyσ − U

∑
x

c†xac
†
xbc

†
xcc

†
xdcxdcxccxbcxa. (1)

We will be interested in the dilute limit where the average
number of particles per site is small. To find the universal
regime, we consider the scattering among all different compo-
nents of fermions. Such a four-body problem is described by
the Schrödinger equation[

−t
∑

σ

�σ + V (x)

]
�(x) = E�(x), (2)

where x = (xa,xb,xc,xd ) is a set of coordinates of four
particles and �σ is the discrete Laplacian with respect to xσ ;
�σ�(xσ ) ≡ �(xσ + l) + �(xσ − l) − 2�(xσ ) with l being
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the lattice spacing. The four-body interaction potential is given
by V (x) = −U when all xσ are equal and V (x) = 0 otherwise.

Since V (x) is translationally invariant, it is convenient to
introduce new coordinates X = (xa + xb + xc + xd )/4, r1 =
(xa + xb − xc − xd )/2, r2 = (xa − xb + xc − xd )/2, and r3 =
(xa − xb − xc + xd )/2 and assume �(x) to be independent of
the center-of-mass coordinate X. The Schrödinger equation (2)
in terms of the remaining three relative coordinates r =
(r1,r2,r3) becomes[

−t

4∑
i=1

�i − δr,0U

]
�(r) = E�(r), (3)

where �i�(r) ≡ �(r + ei) + �(r − ei) − 2�(r) with e1 =
l
2 (1,1,1), e2 = l

2 (1, − 1, − 1), e3 = l
2 (−1,1, − 1), and e4 =

l
2 (−1, − 1,1). Equation (3) is equivalent to the Schrödinger
equation describing one particle moving in a body-centered
cubic lattice with an attractive potential of the magnitude U

concentrated at one lattice site.
One can see from Eq. (3) that the zero-energy wave function

at a long distance has the form

�(|r| → ∞)|E=0 ∝ 1

|r| − 1

a
, (4)

where |r|2 = ∑
σ (xσ − X)2 = 1

4

∑
σ<τ (xσ − xτ )2 is the

hyperradius of four particles in one dimension. The form
(4) is familiar in two-body scattering problems in three
dimensions, which can be understood from the fact that the
continuum limit of Eq. (3) with l2t ≡ h̄2/(2m) is exactly
the Schrödinger equation in three dimensions. Here a is
an arbitrary real parameter characterizing the long-distance
physics and referred to as the scattering length. By matching
the solution of Eq. (3) [18]:

�(r)

�(0)

∣∣∣∣
E=0

= 1 − �
(

1
4

)4

32π3

U

t

+ U

8t

∫ π

−π

dk
(2π )3

e2ik·r/l

1 − cos k1 cos k2 cos k3

→ 1 − �
(

1
4

)4

32π3

U

t
+ U

8πt

l

|r| (|r| → ∞) (5)

with the asymptotic form (4), we find a in units of the lattice
spacing l to be

l

a
= �

(
1
4

)4

4π2
− 8πt

U
. (6)

The scattering length a can be fine-tuned to infinite
corresponding to the four-body resonance by choosing

U

t
= 32π3

�
(

1
4

)4 ≈ 5.742. (7)

This value of U/t separates the weak coupling regime (a < 0)
with no bound state from the strong coupling regime (a > 0)
in which there exists a four-body bound state (tetramer). The
wave function and binding energy of the tetramer for a � l

are given by the universal formulas independent of the lattice
parameters:

�(|r| → ∞) ∝ e−|r|/a

|r| and E0 = − h̄2

2ma2
. (8)

The long-distance physics near the critical value of U/t should
be universal and, in particular, scale and conformal invariance
are achieved in the unitarity limit a → ∞ [14].

B. Field-theoretical formulation

The physics in the universal regime can be described by
the following continuum-limit Hamiltonian density (hereafter
h̄ = 1):

H = −
∑

σ

ψ†
σ ∇2ψσ

2m
− c0ψ

†
aψ

†
bψ

†
cψ

†
dψdψcψbψa. (9)

Throughout this paper, we neglect two-body and three-body
interactions and interactions involving the same components
of fermions. In addition to the translational and Galilean
symmetries, the Hamiltonian density has global U(1) and
SU(4) symmetries,

ψσ → eiθψσ and ψσ → Uσσ ′ψσ ′ , (10)

corresponding to the conservations of charge and SU(4) spins,
respectively.

The second term in Eq. (9) describes the four-body contact
interaction among all different components of the fermionic
field ψσ . c0 is a cutoff-dependent coupling constant and can be
related to the above-introduced scattering length a by matching
in the four-body problem. The four-body scattering amplitude
A(E,p) is obtained by summing the Feynman diagrams in
Fig. 1 into a geometric series:

[iA(E,p)]−1

= 1

ic0
+ i

∫ ∞

−∞

dk1dk2dk3

(2π )3

× 2m

k2
1 + k2

2 + k2
3 + (k1 + k2 + k3)2 + p2/4 − 2mE − i0+ .

(11)

Here the integrations over momenta k1, k2, and k3 are linearly

divergent. Introducing a momentum cutoff
√

k2
1 + k2

2 + k2
3 <

� and choosing the cutoff dependence of c0 as

1

c0
= m�

3
√

3π
− m

4πa
, (12)

= +

FIG. 1. Feynman diagrams describing the four-body scattering in
vacuum. The dot represents the bare vertex ic0 and the dashed line
represents the scattering amplitude iA(E,p).
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we obtain the following cutoff-independent scattering ampli-
tude in the limit � → ∞:

A(E,p) = 4π

m

1

−1/a +
√

p2/4 − 2mE − i0+ . (13)

In particular, when a > 0, A(E,0) has a pole at a real and
negative E, indicating the existence of the four-body bound
state. Because its binding energy is given by E0 = −1/(2ma2),
we can identify a in Eq. (12) with the scattering length
introduced in Eq. (4).

C. Five-body problem and Efimov effect

The above arguments equally apply to four-component
bosons in one dimension. However, many-body systems of
attractive bosons tend to be unstable to collapse, in contrast
to the case of fermions where the Pauli exclusion principle
acts against such a collapse. We now show how such a
difference already appears in a five-body problem: five bosons
develop deep bound states while five fermions do not. This
can be seen by studying a scaling dimension of five-body
composite operator φψσ in the unitarity limit a → ∞, where
φ ≡ c0ψaψbψcψd is a tetramer field. If this operator has a real
scaling dimension, the corresponding five-body system is scale
invariant and thus does not support bound states. However,
if the scaling dimension is complex, the full scale invariance
is broken down to a discrete one [19], which indicates
the formation of an infinite tower of bound states. Such a
connection between the complex scaling dimension and the
infinite tower of bound states has been observed in resonantly
interacting three bosons or mass-imbalanced fermions in
three dimensions [19], two particles interacting with a 1/r2

potential [20], and the nonrelativistic anti–de Sitter spacetime
and conformal field theory (AdS-CFT) correspondence [21].

Feynman diagrams to renormalize φψσ are depicted in
Fig. 2. The vertex function z(p) satisfies the following integral
equation:

z(p) = 1 + λ

∫ ∞

−∞

dq

2π
z(q)

8π√
5|q|

×
∫ ∞

−∞

dk1dk2

(2π )2

1
2p2+2q2+pq

3 + k2
1 + k2

2 + k1k2

, (14)

where λ = ±1 for four-component bosons or fermions. Be-
cause of the scale invariance, we can assume z(p) ∝ (|p|/�)γ .
Performing the integrations in Eq. (14), we find that the

= +

FIG. 2. Feynman diagrams to renormalize five-body composite
operators. The dashed line is a resummed propagator of φ field which
is equal to −iA. The shaded bulb represents the vertex function z(p).

anomalous dimension γ satisfies [22]

1 = − 4λ√
15

cos
(
γ arctan 1√

15

)
γ sin

(
πγ

2

) . (15)

The anomalous dimensions of even-parity operators satisfy the
same equation (15) and their scaling dimensions are given by

�φ + �ψ + γ = 3
2 + γ. (16)

For fermions (λ = −1), we can find a series of real solu-
tions; γ = 1.59, 4.08, 5.99, . . . . According to the operator-
state correspondence [23–25], each solution corresponds to
the energy of resonantly interacting five fermions in a one-
dimensional harmonic potential by

E = (
3
2 + γ

)
ω. (17)

On the other hand, for bosons (λ = +1), in addition to
real solutions γ = 2.25, 3.91, 6.01, . . . , we can find a pair
of complex solutions γ = ±0.735i. This is a signal of the
formation of an infinite tower of five-body bound states
(pentamers) whose spectrum exhibits the discrete scaling
symmetry [26]:

En

En+1
= e2π/|Imγ | = (71.8)2. (18)

For identical bosons with the four-body resonant interaction,
the anomalous dimension of the five-body composite oper-
ator φψ satisfies Eq. (15) with λ = 4. In addition to real
solutions γ = 3.43, 6.02, 8.15, . . . , it has complex solutions
γ = ±1.25i, and therefore, the spectrum of pentamers is much
denser [26];

En

En+1
= e2π/|Imγ | = (12.4)2. (19)

This is an analog of the Efimov effect for three identical bosons
in three dimensions [27]. Note that the ordinary Efimov effect
can occur only in a spatial dimension 2.30 < d < 3.76 and not
in one dimension [28]. For comparison, the scaling factor for
Efimov trimers in three dimensions is known to be e2π/|Imγ | =
(22.7)2.

Similarly, the anomalous dimensions of odd-parity opera-
tors [e.g., 4φ(∇ψσ ) − (∇φ)ψσ ] are found to satisfy [22]

1 = − 4λ√
15

sin
(
γ arctan 1√

15

)
γ cos

(
πγ

2

) (20)

with the scaling dimensions given by Eq. (16). In this channel,
both fermions and bosons have real solutions only; γ =
0.833, 3.15, 4.87, . . . for λ = −1, γ = 1.17, 2.85, 5.12, . . .

for λ = +1, and γ = 2.04, 5.53, 6.57, . . . for λ = 4. There-
fore, the corresponding states in a harmonic potential are
universal and their energies are given by Eq. (17) [23–25].

III. MANY-BODY PROBLEMS

Since bosons with the four-body resonant interaction in
one dimension develop deep five-body bound states, the
corresponding many-body system cannot be stable to collapse.
Therefore, we will study the many-body physics of four-
component Fermi gas in one dimension as a function of
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the dimensionless parameter kFa characterizing the short-
range four-body interaction. Here kF ≡ πn/4 is the Fermi
momentum defined by the total number density n. In analogy
with the BCS-BEC crossover in three dimensions, we will
refer to the weak (strong) coupling limit kFa → −(+)0 as the
“BCS” (“BEC”) limit. We caution that this terminology should
not be taken literally, since we do not have the spontaneous
symmetry breaking in one dimension. We shall see below that
the properties of our system in these two limits are consistent
with the crossover hypothesis that they are smoothly connected
without phase transitions.

A. BCS limit

The many-body physics is conveniently described by
introducing the chemical potential term −µψ†

σ ψσ to the
Hamiltonian density in Eq. (9). In the weak coupling (BCS)
limit kFa → −0, the system develops two Fermi points k =
±kF and low-energy degrees of freedom are excitations around
them. Therefore, assuming |k ∓ kF|  kF, we can linearize the
dispersion relation and express the fermionic field in terms of
two slowly varying fields describing excitations around the
Fermi points:

ψσ (x) � eikFxψR
σ (x) + e−ikFxψL

σ (x). (21)

The low-energy effective theory consistent with the original
symmetries (10) can be written as

HBCS = −ivFψ
R†
σ ∇ψR

σ + ivFψ
L†
σ ∇ψL

σ

+ g1ψ
L†
σ ψR†

τ ψL
τ ψR

σ + g2ψ
R†
σ ψL†

τ ψL
τ ψR

σ

+ g4

2

(
ψR†

σ ψR†
τ ψR

τ ψR
σ + ψL†

σ ψL†
τ ψL

τ ψL
σ

)
, (22)

where vF ≡ kF/m is the Fermi velocity and summations
over σ (τ ) = a,b,c,d are implicitly understood. The g1 term
describes the backward scattering and the g2 and g4 terms
describe the forward scatterings. The low-energy parameters
g1, g2, and g4 are determined by matching two-body scattering
amplitudes at the Fermi points with those from the microscopic
theory (9). To leading order in kFa, we find

g1 = g2 = g4 = −4vF

π
kF|a| + O[(kFa)2]. (23)

The spectrum of the low-energy effective theory HBCS can
be obtained exactly by bosonization. We introduce charge
current operators

J
R(L)
0 ≡ ψR(L)†

σ ψR(L)
σ (24)

and spin current operators

J R(L)
α ≡ ψR(L)†

σ (tα)σσ ′ψ
R(L)
σ ′ , (25)

where tα with α = 1, . . . ,15 are generators of SU(4) Lie
algebra normalized as Tr(tαtβ) = δαβ/2. Using these current
operators, HBCS can be separated into two mutually commut-
ing parts (spin-charge separation) [29,30];HBCS = Hch + Hsp

with

Hch = 2πvF + 3g4

8

(
J R

0 J R
0 + J L

0 J L
0

) + 4g2 − g1

4
J R

0 J L
0 (26)

and

Hsp =
15∑

α=1

[
2πvF − g4

5

(
J R

α J R
α + J L

α J L
α

) − 2g1J
R
α J L

α

]
. (27)

The charge part Hch is easily diagonalized by the
Bogoliubov transformation and equivalent to the Tomonaga-
Luttinger liquid. Introducing a bosonic field ϕ0(x) by

∂xϕ0 ≡ π

2

(
J R

0 + J L
0

)
(28)

and its canonical conjugate by

�0 ≡ − 1
2

(
J R

0 − J L
0

)
, (29)

the Hamiltonian density can be brought into the standard form

Hch = πKvs

2
�2

0 + vs

2πK
(∂xϕ0)2, (30)

which describes a gapless excitation transporting a particle
number with the linear dispersion relation E = ±vsk. Here
the Tomonaga-Luttinger parameter K and the sound velocity
vs in the BCS limit kFa → −0 are given by

K =
√

2πvF + 3g4 − 4g2 + g1

2πvF + 3g4 + 4g2 − g1
→ 1 + 6kF|a|

π2
(31)

and

vs =
√(

vF + 3g4

2π

)2

−
(

4g2 − g3

2π

)2

→ vF

(
1 − 6kF|a|

π2

)
.

(32)

We note that the relationship Kvs = vF is guaranteed by
Galilean invariance [31]. The Tomonaga-Luttinger parameter
also appears in other physical observables [29,32], for exam-
ple, in the compressibility

κ ≡ ∂n

∂µ
= 4K

πvs
(33)

and the long-distance asymptotics of correlation functions [see
Eqs. (44) and (45) below].

On the other hand, the coupling g1 < 0 in the spin part Hsp

is marginally relevant and thus opens up gaps in the spectrum.
This can be seen by studying the renormalization group flows
of the couplings in Eq. (22). The straightforward one-loop
calculations result in

dg1

ds
= − 4g2

1

2πvF
,

dg2

ds
= − g2

1

2πvF
,

dg4

ds
= 0, (34)

where �s = e−s�0 is the momentum scale at which the
couplings gi(s) are defined. g4 and 4g2 − g1 are exactly
marginal as is consistent with the fact that Eq. (26) can be
diagonalized, while g1 evolves as

g1(s) = 1
1

g1(0) + 4s
2πvF

. (35)

When g1(0) < 0, g1(s) reaches the Landau pole at s =
− 2πvF

4g1(0) = π2

8kF|a| , indicating that the second term in Eq. (27)
develops spin gaps whose magnitude is set by

� ∼ vF�s ∼ vFkFe
−π2/(8kF|a|). (36)
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The exact gap spectrum can be obtained from the Bethe-
ansatz solution if we recognize Hsp as the non-Abelian part of
the SU(4) chiral Gross-Neveu model [33–35]:

�f ∝ vFkFe
−π2/(8kF|a|) sin

(
f π

4

)
. (37)

Here f = 1,2,3 is a number of excited fermions, and accord-
ingly, there are three distinct gaps which are exponentially
small in the BCS limit kFa → −0. The degeneracy of �1 and
�3 can be traced back to an accidental particle-hole symmetry
in HBCS under ψR(L)

σ ↔ ψR(L)†
σ . This symmetry is broken by

quadratic derivative terms ψR(L)†
σ ∇2ψR(L)

σ /(2m) neglected in
HBCS. Because the characteristic momentum scale is set by
�s ∼ kFe

−π2/(8kF|a|), the small splitting of the degeneracy is
estimated to be

�3 − �1 ∼ �2
s

2m
∼ vFkFe

−π2/(4kF|a|). (38)

B. BEC limit

In the strong coupling (BEC) limit kFa → +0, four
fermions with all different components form a tightly-bound
tetramer and thus the many-body system will be a dilute Bose
gas of such tetramers. In this limit, fermionic excitations are
largely gapped because of the binding energy of the tetramer
E0 = −1/(2ma2). The gap spectrum with the fermion number
f = 1,2,3 is simply given by

�f → f

8ma2
. (39)

Interestingly, we find that the ordering of the three spin gaps
is �1 < �2 < �3 in the BEC limit while it is �1 � �3 < �2

in the BCS limit [see Eqs. (37) and (38)]. Therefore, there has
to be a crossing between two gaps �2 and �3 as a function of
−∞ < (kFa)−1 < ∞ in the BCS-BEC crossover.

The dilute Bose gas of tetramers to leading order in kFa is
described by the Hamiltonian density

HBEC = −φ†∇2φ

2M
− 1

Matt

φ†φ†φφ, (40)

where M ≡ 4m is the tetramer mass and the tetramer density
is nt ≡ n/4. att is a tetramer-tetramer scattering length (analo-
gous to the dimer-dimer scattering length in three dimensions
[36]) characterizing the scattering of two tetramers in one
dimension. Because the scattering length a is the only scale of
the system in vacuum, att has to be proportional to a:

att = −ηa. (41)

The coefficient η is a universal number obtained by solving
the eight-body problem of fermions nonperturbatively. η is
expected to be positive because tetramers should repel each
other due to the fermionic statistics of the constituents. If
η > 0, then the many-body system of tetramers is stable. Here
we shall assume η > 0 and leave the determination of the exact
value of η as a future problem.

The effective theory of tetramers HBEC is nothing but
bosons with a δ-function interaction in one dimension. In
contrast to the dilute Bose gas in three dimensions, that in
one dimension is strongly interacting because the tetramer-
tetramer coupling in Eq. (40) is inversely proportional to the

scattering length. As a consequence, the tetramers in the limit
kFa = +0 behave as noninteracting spinless “fermions” and
the thermodynamic properties of our system in the BEC limit
are equivalent to those of a noninteracting Fermi gas with the
same mass M and density nt [1]. Beyond such a hard-core
limit, the ground-state energy and the excitation spectrum of
HBEC have been obtained exactly in Ref. [37]. In particular, its
low-energy physics is described by the Tomonaga-Luttinger
liquid (30) again [31]. The Tomonaga-Luttinger parameter K

and the sound velocity vs in the BEC limit kFa → +0 are
given by

K → 4(1 − 2ntatt ) = 4

(
1 + η

2kFa

π

)
(42)

and

vs → πnt

M
(1 + 2ntatt ) = vF

4

(
1 − η

2kFa

π

)
. (43)

In the expression for K , we have taken into account the fact that
the particle number of a tetramer is four [38]. The BCS-BEC
crossover hypothesis indicates that K in Eqs. (31), (42) and vs

in Eqs. (32), (43) are smoothly connected, and therefore, there
has to be a maximum (minimum) in K (vs) as a function of
−∞ < (kFa)−1 < ∞.

The Tomonaga-Luttinger parameter determines the long-
distance asymptotics of correlation function. Because the spin
degrees of freedom are gapped in the BCS-BEC crossover,
only SU(4) singlet operators can have quasi-long-range order-
ings. Two such examples are the density-density correlation
function:

〈δn(x)δn(0)〉|x→∞ → − 2K

π2x2
+ A

cos(2kFx)

|kFx|K/2
+ · · · (44)

and the tetramer-tetramer correlation function:

〈φ(x)φ†(0)〉|x→∞ → B

|kFx|2/K
+ · · · , (45)

where A, B are unknown parameters and both x � k−1
F and

x � vF/�f are assumed. We can see that the 2kF-charge-
density wave is the dominant order for K <∼ 2 (BCS side),
while the tetramer quasicondensation is the dominant order
for K >∼ 2 (BEC side), and there is a crossover in between. We
note that these correlation functions have been studied in the
context of spin-3/2 Fermi gases with two-body interactions
[17,39–43].

C. Unitarity limit

It would be difficult to compute K and vs away from
the BCS or BEC limit. However, in the unitarity limit
kFa → ∞, we can derive exact relationships between K and
thermodynamic quantities. Because the density n is the only
scale of the system, the ground-state energy density of the
unitary Fermi gas can be written as

Eunitary(n) ≡ ξEfree(n), (46)

where the ground-state energy density of a noninteracting
Fermi gas is

Efree(n) = π2

96m
n3. (47)

043606-5



YUSUKE NISHIDA AND DAM T. SON PHYSICAL REVIEW A 82, 043606 (2010)

Here ξ , which measures how much energy is gained
due to the attractive interaction, is a universal number to
characterize the strongly interacting unitary Fermi gas and
analogous to the Bertsch parameter in three dimensions [13].
From the thermodynamic relationships, we obtain the
pressure as P (n) = 2E(n), and thus, the sound velocity is
given by

v2
s = 1

m

∂P

∂n
= ξv2

F. (48)

Because Kvs = vF is guaranteed by Galilean invariance [31],
we find that the Tomonaga-Luttinger parameter is related to
the one-dimensional Bertsch parameter by

K = 1√
ξ
. (49)

This relationship implies K > 1 in the unitarity limit because
0 < ξ < 1 is expected for the attractive interaction. It is a
challenging many-body problem to determine the exact value
of ξ .

One possible way to estimate the value of ξ is to use
the ε expansion [19,44]. Considering the same Hamiltonian
density (9) in an arbitrary spatial dimension d, we find that the
dimension of the coupling constant c0 is given by ν = 2 − 3d,
which also determines the behavior of the four-body wave
function at a short distance:

�(|r| → 0) → |r|ν . (50)

In the limit d → 2/3, we have ν → 0 and the singularity in
the wave function disappears. This means that the contact
interaction among four fermions disappears and thus the
unitary Fermi gas reduces to a noninteracting Fermi gas
[45]. On the other hand, in the limit d → 4/3, we have
ν → −2 so that the normalization integral of the wave
function ∫

d3d r|�(r)|2 ∼
∫

0
drr3−3d (51)

diverges at the origin |r| → 0. This means that four fermions
behave as a pointlike composite boson and thus the unitary
Fermi gas reduces to a noninteracting Bose gas of such
tetramers [45,46]. Therefore, ξ defined as in Eq. (46) is found
to be

ξ |d→ 2
3

→ 1 and ξ |d→ 4
3

→ 0. (52)

It is possible to formulate appropriate perturbation theories
around these critical dimensions [47]. Interpolations of two
systematic expansions in terms of ε̄ = d − 2

3 and ε = 4
3 − d

would provide a reasonable estimate of ξ in d = 1 as in three
dimensions [19,44].

D. Exact relationships

Another characteristic of our system (9) that resembles
the BCS-BEC crossover in three dimensions is the large-
momentum tail of the momentum distribution of fermions
and its relationships to other properties of the system [48]. In

order to see this, we consider the following operator product
expansion (no sum over σ = a,b,c,d):

ψ†
σ

(
x − y

2

)
ψσ

(
x + y

2

)

= ψ†
σ ψσ (x) + y

2
ψ†

σ

↔
∇ ψσ (x)

−
√

3|y|
8π

(mc0)2ψ†
aψ

†
bψ

†
cψ

†
dψdψcψbψa(x) + O(y2).

(53)

This can be confirmed by evaluating expectation values of
the both sides for a state consisting of four fermions with
all different components [49]. The nonanalytic term ∼ |y|
indicates that the momentum distribution of fermions

ρσ (k) ≡
∫

dye−iky

〈
ψ†

σ

(
x − y

2

)
ψσ

(
x + y

2

)〉
(54)

falls off by a power of |k| → ∞ as

ρσ (k) →
√

3

4π

C
k2

. (55)

The coefficient is given by the so-called contact density:

C ≡ 〈(mc0)2ψ†
aψ

†
bψ

†
cψ

†
dψdψcψbψa〉. (56)

The same result can be obtained by the method used in
Ref. [50] (see Fig. 3).

From Eqs. (9), (12), and (56), we find that the energy density
of the system E ≡ 〈H〉 can be expressed by

E =
∑

σ

∫ ∞

−∞

dk

2π

k2

2m

(
ρσ (k) −

√
3

4π

C
k2

)
+ C

4πma
. (57)

This relationship is valid for any state of the system and for any
value of the scattering length a. Derivations of the pressure

P = 2E + C
4πma

, (58)

the adiabatic relationship

dE
da

= C
4πma2

, (59)

and the generalized virial theorem in the presence of a
harmonic potential Vω = ∫

dx 1
2mω2x2 ∑

σ ψ†
σ (x)ψσ (x):

E = 2〈Vω〉 −
∫

dx
C(x)

8πma
(60)

are straightforward from the above results by using the
methods in Refs. [48,49].

C

FIG. 3. Contribution of the contact density C to the fermion
propagator iGσ (k0,k). The integration over k0 leads to the momentum
distribution in Eq. (55).
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From the adiabatic relationship (59) together with the
ground-state energy density in the BCS limit (up to the
mean-field correction):

EBCS = Efree + 4πa

m

(
n

4

)4

+ O
[
k5

Fa
2
]

(61)

and in the BEC limit [37]:

EBEC = E0nt + π2

6M
n3

t + π2

3M
n4

t att + O
[
k5

Fa
2
]
, (62)

we find that the contact density C is given by

C
k2

F

→ 16k2
Fa

2

π2
(kFa → −0) (63)

and

C
k2

F

→ 4

kFa
− η

k2
Fa

2

3π
(kFa → +0). (64)

The BCS-BEC crossover hypothesis indicates that both E and
C smoothly evolve as functions of −∞ < (kFa)−1 < ∞.

References [48,49] have also shown that the contact density
in three dimensions is related to the local pair density,
which is the number of pairs of spin-up and -down fermions
with small separations. Similarly, the contact density in our
one-dimensional system is related to the local quadruplet
density N4(R), which is the number of sets of four-component
fermions with small hyperradii. This can be seen from the
following operator product expansion:

ψ†
aψa(xa)ψ†

bψb(xb)ψ†
cψc(xc)ψ†

dψd (xd )

= (mc0)2ψ
†
aψ

†
bψ

†
cψ

†
dψdψcψbψa(X)

16π2
(
r2

1 + r2
2 + r2

3

) + O(|r|−1). (65)

The integral of the left-hand side over the three relative coor-
dinates |r| < R counts the number of sets of four-component

fermions at the fixed center-of-mass coordinate X but with
the hyperradius smaller than R. Therefore, we find that the
short-distance asymptotics of the local quadruplet density is
related to the contact density by

N4(R → 0) → C
4π

R. (66)

IV. CONCLUSIONS

In summary, we have demonstrated that the four-component
Fermi gas in one dimension exhibits the one-dimensional
analog of the BCS-BEC crossover as a function of the
scattering length characterizing the short-range four-body
interaction. We investigated the ground-state energy, the sound
velocity, the gap spectrum, and the exact relationships in the
BCS-BEC crossover and found that the gap spectrum has the
rich structure because of the existence of three distinct gaps.
We also showed that the one-dimensional analog of the Efimov
effect occurs for five bosons while it is absent for fermions.
This work extends our perspectives on the universal few-body
and many-body physics to one dimension and possibly opens
up a very rich research area. Finally, we note that the system
considered in this paper is highly fine-tuned: not only the
four-body interaction is tuned to the resonance, two-body
and three-body interactions have to be tuned to vanish. Its
experimental realization would be challenging.

ACKNOWLEDGMENTS

The authors thank Shina Tan for discussions. Y.N. was
supported by MIT Department of Physics Pappalardo Program
and DOE Office of Nuclear Physics under Grant No. DE-
FG02-94ER40818. This work was supported, in part, by DOE
Grant No. DE-FG02-00ER41132.

[1] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[2] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac,
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