
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-006 February 1, 2011

What is Decidable about Strings?
Vijay Ganesh, Mia Minnes, Armando
Solar-Lezama, and Martin Rinard

What is Decidable about Strings?

Vijay Ganesh†, Mia Minnes∗, Armando Solar-Lezama† and Martin Rinard†

†Massachusetts Institute of Technology
{vganesh, asolar, rinard}@csail.mit.edu
∗University of California, San Diego

minnes@math.ucsd.edu

Abstract. We prove several decidability and undecidability results for the satisfiability/validity prob-
lem of formulas over a language of finite-length strings and integers (interpreted as lengths of strings).
The atomic formulas over this language are equality over string terms (word equations), linear inequal-
ity over length function (length constraints), and membership predicate over regular expressions (r.e.).
These decidability questions are important in logic, program analysis and formal verification. Logicians
have been attempting to resolve some of these questions for many decades, while practical satisfiability
procedures for these formulas are increasingly important in the analysis of string-manipulating pro-
grams such as web applications and scripts.
We prove three main theorems. First, we consider Boolean combination of quantifier-free formulas con-
structed out of word equations and length constraints. We show that if word equations can be converted
to a solved form, a form relevant in practice, then the satisfiability problem for Boolean combination of
word equations and length constraints is decidable. Second, we show that the satisfiability problem for
word equations in solved form that are regular, length constraints and r.e. membership predicate is also
decidable. Third, we show that the validity problem for the set of sentences written as a ∀∃ quantifier
alternation applied to positive word equations is undecidable. A corollary of this undecidability result
is that this set is undecidable even with sentences with at most two occurrences of a string variable.

1 Introduction

Algorithms for deciding the satisfiability problem for formulas over finite-length strings (theories of strings)
have been studied for a long time by mathematicians and logicians such as Quine [22], Post, Markov and
Matiyasevich [17], Makanin [15], and Plandowski [12, 19, 20]; however, many interesting questions about
the existence and complexity of such algorithms are still open.

More recently, formulas over strings have become important in the context of automated bugfind-
ing [24], and analysis of database/web applications [9, 27]. These program analysis and bugfinding tools
analyze string-manipulating programs and generate string formulas containing equations over string con-
stants and variables, membership queries over regular expressions, and linear inequalities over the length
function. Increasingly, formulas thus generated are solved by off-the-shelf satisfiability procedures such as
HAMPI [13] or Kaluza [24]. The solutions to these formulas form the output of the program analysis ap-
plication. In this context, a deeper understanding of the theoretical aspects of the satisfiability problem for
theories of strings has become even more relevant, especially theorems that can be useful in practice.
Problem Statement: Is there an algorithm that decides whether a given formula in the language finite-
length strings and integers is satisfiable or not (Similar question, for validity of sentences). Atomic formu-
las in this language are equations over string terms (word equations), linear inequalities over length terms,
and membership predicate over regular expressions. A string term is constructed out of string constants,

string variables and the concatenation function. Length terms are constructed out of integer constants and
variables, addition, multiplication by constant, and the length function whose domain is strings and range is
non-negative integers (see Figure 1). While much progress has been made on the decidability of the satisfia-
bility problem for word equations [15,19,20], many related problems have remained open for decades. For
example, the question of whether the satisfiability problem for quantifier-free theory of word equations and
length constraints is decidable has remained open. Matiyasevich [18] noted the relevance of this question
to a novel resolution of Hilbert’s Tenth Problem. In particular, he showed that if the satisfiability problem
for the quantifier-free theory of word equations and length constraints is undecidable, then it gives us a
new way to prove Matiyasevich’s theorem [17,18]. Similarly, the decidability question for the satisfiability
problem for the quantifier-free theory of word equations, regular expressions, and length constraints is also
open.

In this paper, we provide the first decidability results that address the above-mentioned open questions
under certain minimal and practical conditions. These decidability results are important in the context of
program analysis and verification of web applications and scripts [14, 24]. We also prove an undecidability
result. More specifically, we prove the following theorems.
Summary of Contributions:

1. We show that if word equations can be converted to a solved form [2] then the satisfiability problem
for Boolean combination of word equations and length constraints is decidable. This is the first such
decidability result that we know of for these formulas. (Section 3)

2. We provide evidence of how this decidability result can be useful in practice. We empirically studied
the word equations in the formulas generated by the Kudzu JavaScript bugfinding tool [24], and verified
that all word equations in it are either already in solved form or can be algorithmically converted into
one. (Section 3)

3. We further show that the satisfiability problem for quantifier-free formulas constructed out of Boolean
combination of word equations in solved form that are regular (i.e., the solved form is a regular expres-
sion), length constraints, and membership predicate over regular expressions is also decidable. This is
the first such decidability result for this set of formulas. (Section 4)

4. We show that the validity problem for the set of sentences written as a ∀∃ quantifier alternation applied
to positive word equations (i.e., AND-OR combination of word equations without any negation) is
undecidable. (Section 5)

2 Preliminaries

Figure 1 gives the syntax of formulas that we consider here.

2.1 Syntax

Variables: We fix a disjoint two-sorted set of variables var = varstr ∪ varint; varstr consists of string
variables, denoted X,Y, S , . . . and varint consists of integer variables, denoted m, n,
Constants: We also fix a two-sorted set of constants Con = Constr ∪ Conint. Moreover, Constr ⊂ Σ∗ for
some finite alphabet, Σ, whose elements are denoted f , g, Elements of Constr will be referred to as string
constants or strings. Elements of Conint are integers. The empty string is represented by ε.
Terms: Formally, terms are either string terms or length terms. A string term (tstr in Figure 1) is either an
element of varstr, an element of Constr, or a concatenation of string terms (denoted by the function concat

F F Atomic | F ∧ F | F ∨ F | ¬F
| ∃x.F(x) | ∀x.F(x)

Atomic F Awordeqn | Alength | Aregexp

Awordeqn F tstr = tstr

Alength F tlen ≤ c where c ∈ Conint

Aregexp F tstr ∈ RE where RE is a regular expression
tstr F a | X | concat(tstr, ..., tstr) where a ∈ Constr & X ∈ varstr

tlen F m | v | len(tstr) | Σn
i=1ci ∗ ti

len where m, n, ci ∈ Conint & v ∈ varint

Fig. 1. The syntax of L1
e,l,r-formulas.

or interchangeably by ·). A length term (tlen in Figure 1) is either an element of varint, or an element of
Conint, or the length function applied to a string term, or a constant integer multiple of length term, or a
summation of length terms.
Atomic Formulas: Atomic formulas are word equations (Awordeqn), length constraints (Alength), or member-
ship predicate over regular expressions (Aregexp) as given in Figure 1. Regular expressions are defined in the
usual way [1] (regular expression may not contain variables).
Formulas: Formulas are defined in the usual way as a Boolean combination of formulas, possibly with
quantifiers (see Figure 1). We allow quantifiers over both string and integer variables.
Formula Nomenclature: We now establish notation for the languages over which formulas are built. De-
fine L1

e,l,r to be the first-order two-sorted language over which the formulas described above (Figure 1) are
constructed. This language contains word equations, length constraints, and membership predicate over reg-
ular expressions. The superscript 1 in L1

e,l,r denotes that this language allows quantifiers, and the subscripts
l, e, r stand for length, equation and regular expressions respectively. Similarly, letL1

e,l be the analogous col-
lection of formulas obtained when excluding membership predicate over regular expressions, and let L1

e be
the collection of formulas when the only atomic formulas are word equations (thus excluding both member-
ship predicate over regular expressions and length constraints). Define L0

e,l,r to be the set of quantifier-free
L1

e,l,r formulas. Similarly, L0
e,l and L0

e are the quantifier-free versions of L1
e,l and L1

e classes of formulas
respectively. We assume that formulas are always written in prenex normal form. Intuitively, a variable is
free in a formula if it is not quantified. For example, variable y appearing in a formula ∀yφ(y, x) is bound,
while x is free. For a full inductive definition, see [8]. A formula with no free variables is called a sentence.

2.2 Definitions

For a word w, len(w) denotes the length of w. For a word equation of the form t1 = t2, we refer to t1 as
the left hand side (LHS), and t2 as the right hand side (RHS). For an L1

e,l,r formula θ, an assignment to the
variables of θ is a mapping from the string variables (resp. integer variables) of θ to string elements (resp.
integer elements) of the domain. If such an assignment exists, we say θ is true under the assignment. If θ
is true under such an assignment, then the assignment is called a solution or a satisfying assignment to θ
(and θ is said to be satisfiable). An L1

e,l,r-formula with no satisfying assignment is called an unsatisfiable
formula. We say two formulas θ, φ are equisatisfiable if θ is satisfiable iff φ is satisfiable (they may have
different number of assignments, and need not even be from the same language).

The satisfiability problem for a set S of formulas is the problem of deciding whether any given formula
in S is satisfiable or not. We say that the satisfiability problem for a set S of formulas is decidable if there
exists an algorithm (or satisfiability procedure) that solves its satisfiability problem (i.e., the procedure is

sound, complete and terminating). We say a satisfiability procedure P is sound, complete and terminating
if P terminates on all inputs and returns satisfiable iff the input formula is satisfiable (In a practical setting,
some of these requirements may be relaxed).

Analogous to the definition of the satisfiability problem for formulas, we can define the notion of the
validity problem (aka decision problem) for a set Q of sentences in a language L. The validity problem for a
set Q of sentences is the problem of determining whether the elements of Q are valid or not, i.e., true under
all assignments (We refer the reader to [8] for a full definition of validity of sentences). We say a set of
L-sentences Q is decidable, if there exists an algorithm (or decision procedure) that can determine whether
any element of S is valid or not. Otherwise we say that Q is undecidable. All definitions in this section also
apply to other sets of formulas such as L0

e,l,r.

2.3 Representation of Solutions to String Formulas

It will be useful to have compact representations of sets of solutions to string formulas. For this, we use
Plandowski’s terminology of unfixed parts [20]. Namely, fix a set of new variables V disjoint from Σ, Con,
and var. For θ an L1

e,l,r formula, an assignment with unfixed parts is a mapping from the free variables of
θ to string elements of the domain or V . Such an assignment represents the family of solutions to θ where
each element of V is consistently replaced by a string element in the domain.

Another means by which we encapsulate many solutions to a formula θ into a compact form is via in-
teger parameters. If i is a non-negative integer, we write ui to denote the i-fold concatenation of the string
u with itself. An assignment with integer parameters to the formula θ is a map from the free variables of θ
to string elements of the domain, perhaps with integer parameters occurring in the exponents (Notice that
integer parameters are merely a shorthand). Combining the above two definitions, we may consider assign-
ments with unfixed parts and integer parameters. These assignments will provide the general framework for
representing solution sets to L1

e,l,r formulas compactly.

2.4 Examples

Below we give some example formulas and their solution sets. (Some of these examples are from existing
literature by Plandowski et al. [20].)

Example 1 Consider the following L0
e formula or word equation X = aYbZa. The set of all solutions to

this equation can be described by the assignment X 7→ aybza,Y 7→ y,Z 7→ z, where V = {y, z} are the
unfixed parts.

Example 2 Consider the equation abX = Xba with one variable X. This is a formula in L0
e . The map

X 7→ aba is a solution. Moreover, the map X 7→ (ab)ia with i ≥ 0 is a set of assignments with integer
parameters which exactly describes all possible solutions.

Example 3 Consider the L0
e,l,r formula

abX = Xba ∧ X ∈ (ab | ba)(ab)∗a ∧ len(X) <= 5.

The two solutions to this formula are X = aba and X = ababa.

3 Decidability Theorem

In this section we demonstrate the existence of an algorithm deciding whether any L0
e,l formula has a

satisfying assignment or not, under a minimal and practical condition.

3.1 Word Equations and Length Constraints

It is interesting to note that word equations by themselves are decidable [20], and so are systems of inequal-
ities over integer variables (since length constraints can be replaced by integer variables to get a quantifier-
free Presburger arithmetic [21] formula, and Presburger arithmetic is known to be decidable [21]). In this
section we show that if word equations can be converted into solved form, the satisfiability problem for
quantifier-free formulas over word equations and length constraints (i.e., L0

e,l formulas) is decidable. Fur-
thermore, we empirically studied the word equations in the formulas generated by the Kudzu JavaScript
bugfinding tool [24], and verified that all word equations in it are either already in solved form or can be
algorithmically converted into one.

3.2 What is Hard about Deciding Word Equations and Length Constraints?

The crux of the difficulty in establishing an unconditional decidability result is that, in order to decide the
satisfiability of a conjunction of word equations and length constraints, it is necessary to check the satis-
fiability of the conjunction of the given length constraints and the length constraints implied by the word
equations. In order to accomplish this we have to show two things: First, the satisfiability problem for
the conjunction of implied length constraints and given length constraints together is decidable. We know
how to decide linear constraints over the integers [21], but non-linear constraints in general are not decid-
able [17]. Unfortunately, there is no theorem that limits the length constraints implied by word equations
to be linear. Second (and perhaps more importantly), even if the implied length constraints are linear, it is
unclear whether the implied length constraints are in some sense equisatisfiable with the word equations.
In the absence of such a property, it is not clear how to finitize the search over the solutions to the length
constraints that may be consistent with the solutions to the word equations or vice-versa.

3.3 Definition of Solved Form

A word equation w has a solved form if there is a finite set S of formulas (possibly with integer parameters)
that is logically equivalent to w and satisfies the following conditions. The idea of solved form is well
known in equational reasoning and satisfiability procedures for rich logics (aka SMT solvers) [2].

– Every formula in S is of the form X = t, where X is a variable occurring in w, and t is the results of
finitely many concatenations of constants in w (with possible integer parameters) and possible unfixed
parts and integer parameters. (Recall the definitions for integer parameters and unfixed parts from
Section 2.) All integer parameters i in S are linear (i.e., of the form c ∗ i where c is an integer constant).

– Every variable in w occurs exactly once on the LHS of an equation in S and never on the RHS of an
equation in S.

The solved form corresponding to w is denoted as the conjunction of all the formulas in S: ∧S. Note
that formulas in S are not necessarily in the language L0

e,l of word equations and length constraints. Solved
form equations can have integer parameters, whereas L0

e,l formulas cannot. The solved form is not used as

such in the satisfiability procedure discussed below. Instead, the solved form is used to extract all necessary
and sufficient length information implied by w. Moreover, if there is an algorithm which converts any given
word equation to a solved form (if one exists), and if ∧S is the output of this algorithm when given w, we
say that the effective solved form of w is ∧S.

Example 4 Word Equations Without a Solved Form: Not all word equations can be written in solved
form. Consider the equation

XabY = YbaX

It is known that the solutions to this equation cannot be expressed using linear integer parameters [20].

Example 5 Satisfiable Solved Form Example: Consider the system of word equations

Xa = aY ∧ Ya = Xa.

This formula can be converted into solved form as follows:

X = ai ∧ Y = ai (i > 0).

Example 6 Unsatisfiable Solved Form Example: Consider the formula

abX = Xba ∧ X = abY ∧ len(X) < 2

with variables X,Y. The solution to the equation abX = Xba are described by the map X 7→ (ab)ia with
i ≥ 0. Hence the solved form for this equation is:

X = (ab)ia

However, the entire formula is unsatisfiable. This example illustrated the need for checking satisfiability of
given length constraints, and length constraints implied by the word equations.

3.4 Why Solved Form?

The solved form crucially addresses the issues we discussed regarding the difficulty of proving decidability.
If word equations can be converted into a solved form, we are guaranteed that all length information implied
by the word equations can be represented in a finite and complete (defined below) manner. The complete-
ness property enables a satisfiability procedure to decouple the word equations part from the (implied and
given) length constraints, because it implies that the word equation is equisatisfiable with the implied length
constraints. Furthermore, solved form guarantees that the implied length constraints are linear inequalities,
and hence their satisfiability problem is decidable [21]. This insight forms the basis of our decidability re-
sults. It also helps to note that all word equations that we have encountered so far in practice [24], are either
in solved form or can be converted into one.

3.5 Proof Idea for Decidability

Without loss of generality, we will only consider conjunction of word equations and length constraints (the
result can be easily extended to arbitrary boolean combination of such formulas). Let φ ∧ θ be an L0

e,l-
formula, where φ is a conjunction of word equations and θ is a conjunction of length constraints. Observe
that φ implies a certain set of length constraints. For example, if φ were the equation X = abY then we can
conclude the following set R of length constraints: len(X) = 2 + len(Y), len(Y) ≥ 0.

In the above example, the set of implied length constraints is finite but exhaustive. To be more precise
about what we mean by exhaustive, observe that any other length constraint implied by the equation X =

abY is either in R or is implied by R (a form of completeness or sufficiency). This fact allows one to easily
check the satisfiability of X = abY with any given length constraints. It turns out that the set of implied
length constraints for word equations that have a solved form is also finite and exhaustive. We prove this
fact below, and leverage it in proving that a sound, complete and terminating satisfiability procedure exists
for L0

e,l formulas with word equations in solved form.
Definitions: We say that a set R of length constraints is implied by a word equation φ if the lengths of the
strings in any solution of φ satisfies all constraints in R. A set R of length constraints implied by a word
equation φ is complete for φ if any length constraint implied by φ is either in R or is implied by a subset of
R. These definitions can be suitably extended to a Boolean combination of word equations.
Discussion on Finiteness and Completeness: Finiteness ensures that these length constraints in R can be
processed by a satisfiability procedure in finite time. Completeness guarantees that the satisfiability proce-
dure will have all the length information it needs to correctly decide the satisfiability of the original word
equation(s). In other words, completeness implies that the implied length constraints are equisatisfiable
with the original word equation(s). This allows us to decide φ ∧ θ (φ is the word equation, and θ is the
given conjunction of length constraints) by independently deciding φ and R ∧ θ, and combining the results
appropriately. Finally, we give an algorithm for obtaining finite and complete sets of length constraints for
any word equation in solved form. We use this to prove that the resulting satisfiability procedure for the
satisfiability of L0

e,l formulas is sound, complete and terminating.

3.6 Decidability Theorem

We prove a set of lemmas, followed by the actual decidability theorem.

Lemma 1. If a word equation w has a solved form S, then there exists a set R of linear length constraints,
implied by w, that is finite and complete. Moreover, there is an algorithm which, given w, computes this set
R of constraints.

Proof. By definition of solved form, a word equation w is logically equivalent to its solved form S (i.e.,
every solution to w is a solution to S and vice-versa). Hence, the set of length constraints implied by w is
equivalent to the set of length constraints implied by S. The solved form for w is a set S of equations of the
form X = t1t2 · · · tn, where X is a variable that occurs in w. Moreover, S contains exactly one such equation
for each variable X that occurs in w. Recall that each term ti in S is either the concatenation of constants or
unfixed parts (possibly with integer parameters). The integer parameters are linear; that is, they appear as
c ∗ i with c a positive integer in a term such as (a1a2...ak)c∗i.

For each X appearing in w, the corresponding equation in S implies that

len(X) = len(t1) + len(t2) + · · · + len(tn),

where each len(ti) is either a constant or a constant multiple of an integer parameter or an unfixed part. If ti
is an unfixed part, we also conclude the constraint len(ti) ≥ 0. For each X a single suitable inequality of the
form len(X) ≥ c, for some c that denotes the minimum length of X, is also added to R. Let R be the union
of all these constraints for each variable X in w. Since S is finite, there are finitely many variables X, and
finitely many length constraints per X that are added to R. Hence, by construction R is finite.

Next, we show that the set R is complete. By construction of S, every equation in S can at most
imply two length constraints for each variable X (an equality and an inequality as described above), and
one inequality per unfixed part (any other implied constraint is redundant). Every equation in solved form
has only one variable, and finitely many unfixed parts. All these length constraints are included in R by
construction. Since w is logically equivalent to S, they imply the same set of length constraints. Hence,
any length constraint implied by w is in R or is implied by a subset of R. Hence R is complete for w. The
existence of the algorithm to compute R given w in solved form follows directly from this proof.

Lemma 2. If a word equation w has a solved form S, then w is equi-satisfiable with the length constraints
R derived from S.

Proof. First of all the finiteness of R allows us to treat it as a formula (conjunction of its elements).
(⇒)If w is satisfiable, then so is R: Since w is satisfiable, and w and S are logically equivalent by

definition, it follows that S is satisfiable. Since, S is satisfiable and R is implied by S (i.e., contains only
length constraint implied by S) it follows that R is satisfiable.

(⇐) If R is satisfiable, then so is w: Any length constraint implied by S is in R, i.e., R is complete
for S. In other words, by construction of S and R, for every variable in w there is a finite number of
necessary and sufficient length constraints, and they are all in R. It follows that any assignment to R has
a corresponding assignment to S, and hence to w. (The solved form actually gives us something stronger
than equisatisfiability. It gives a bijection over the satisfying assignments of w and R.)

Theorem 7 The satisifiability problem for L0
e,l formulas is decidable, provided that there is an algorithm

to obtain the solved forms of given word equations.

Proof. It is sufficient to consider L0
e,l formulas with a single word equation and conjunction of length

constraints (The proof is easily extended to Boolean combination of word equations and length constraints).
We prove the theorem by constructing a satisfiability procedure, and showing that it is sound, complete,
and terminating. Let the input to the algorithm be a formula φ ∧ θ, where φ is the word equation and θ is a
conjunction of length constraints. The output of the algorithm is satisfiable (SAT) or unsatisfiable (UNSAT).

Recall that Plandowski’s algorithm [20] takes word equations as input and returns whether they are
satisfiable or not. The first step of our satisfiability procedure runs Plandowski’s algorithm with input φ in
parallel with the satisfiability algorithm for θ as a formula in Presburger arithmetic (known to be decid-
able [21]). If either of these return UNSAT, we return UNSAT.

Next, we use the assumption that the word equation φ has an effective solved form and generate both
the solved form S and the associated complete, and finite implied set R of linear length constraints (as in
Lemma 1). Consider the conjunction of θ and R (finiteness of R allows us treat it as a formula). This is a
system of linear integer equalities and inequalities, and hence can be decided using a satisfiability procedure
for Presburger arithmetic. Given the way R is constructed, we do not need to worry about considering an
unbounded number of implied constraints. Hence, the satisfiability procedure only has to do finite amount
of work in this case.

What remains to be established is the soundness and completeness. Since R is complete for S (and
hence for φ) it follows that φ ∧ θ is equisatisfiable with R ∧ θ (by Lemma 2). Thus, the above procedure is

a sound, complete and terminating procedure for L0
e,l-formulas whose word equations have effective solved

forms.

3.7 Practical Value of Solved Form and the Decidability Result

In their paper [24] on an automatic JavaScript testing program (Kudzu) and a practical satisfiability proce-
dure for strings Saxena et al. mention generating more than 50,000 L0

e,l,r formulas where the length of the
string variables is bounded (i.e., the string variables range over a finite universe of strings). Kudzu takes as
input a JavaScript program and (implicit) specification, and does some automatic analysis (a form of con-
crete and symbolic execution [4,10]) on the input program. The result of the analysis is a string formula that
captures the behavior of the program-under-test in terms of the symbolic input to this program. A solution
of such a formula is a test input to the program-under-test. Kudzu uses the Kaluza string solver to solve
these formulas to generate program inputs.

JavaScript programs often process strings. These strings occur as part of input forms on web-pages or as
parts of strings used by JavaScript programs to dynamically generate web-pages or as part of an SQL query
being constructed by these programs. During the processing of these strings, JavaScript programs often con-
catenate these strings to form larger strings, use strings in assignments, use string length for copying strings
and comparisons, construct equalities between strings as part of if-conditionals or use regular expressions
in order to check the sanity of the strings being processed. Hence, any program analysis of such JavaScript
programs results in formulas that contains string constants and variables, concatenation operation, regular
expressions, word equations and length function.

We analyzed the string formulas generated by the Kudzu automatic tester [24], and found that all of the
word equations in these formulas are either in solved form or can be converted into one. These formulas
ranged in size from a few to dozens of equalities, and were derived from 18 real-world JavaScript appli-
cations. Our analysis of string formulas generated by Kudzu bolsters our claim that most, if not all, word
equations that occur in practice are in solved form. All the test inputs generated by Kudzu are available at
the following URL: http://webblaze.cs.berkeley.edu/2010/kaluza/.

4 Word Equations, Length, and Regular Expressions

We now consider whether the previous result can be extended to show that the satisfiability problem for
L0

e,l,r formulas is decidable, provided that there is an algorithm to obtain the solved forms of given word
equations. A generalization of the proof strategy from above looks promising. That is, given a membership
test in a regular set X ∈ RE, we can extract from the structure of the regular expression a constraint on the
length of X that is expressible as a linear inequality. To do so, we recall the following fact [3].

Lemma 3. Given a regular set R, the set of lengths of strings in R is a finite union of arithmetic progres-
sions. Moreover, there is an algorithm to extract the parameters of these arithmetic progressions from the
regular expression defining R.

Using the above Lemma, the set of length constraints implied by an arbitrary regular expression can
be expressed as a finite system of linear inequalities. Thus, it seems that the same machinery as in the L0

e,l
theorem may be applied to the broader context of L0

e,l,r. However, there remain some subtleties to resolve.
These are best elucidated by example.
Example Consider the L0

e,l,r formula

abX = Xba ∧ X ∈ (ab)∗b ∧ len(X) ≤ 3.

A naı̈ve translation of each component into length constraints gives us the following:len(X) = 2i + 1, i ≥ 0 implied by the word eqn & r.e.
len(X) ≤ 3.

This system of length constraints is easily seen to be simultaneously satisfiable: let i = 0 or 1 and hence
len(X) = 1 or 3. However, the formula is not satisfiable since the word equation corresponds to X = (ab)∗a
and the regular expression requires any solution to end in a b. Thus, in order to address L0

e,l,r formulas, we
must take into account more information than is encapsulated by the length constraints imposed by regular
expressions. In particular, if we impose the additional restriction that the word equations must have solved
form (without unfixed parts) that are also regular expressions, then we can get a decidability result for L0

e,l,r
formulas.

Theorem 8 The satisifiability problem for L0
e,l,r formulas is decidable, provided that there is an algorithm

to obtain the solved forms of the given word equations, and the solved form equations do not contain unfixed
parts and are regular expressions.

Proof. Let
θ(X) ∧ φ ∧ (X ∈ RE)

be a L0
e,l,r formula, where θ(X) is a word equation, φ is a conjunction of length constraints and X ∈ RE is

a regular expression membership constraint. The proof can be easily extended to a Boolean combination of
atomic formulas. Using the above Lemma 3, it is easy to establish that this satisfiability procedure is sound,
complete and terminating. The satisfiability procedure proceeds as follows:

– If any of θ(X), φ or X ∈ RE is UNSAT, return UNSAT.
– Convert θ(X) into solved form where it is a regular expression, i.e., X ∈ RE1 (The theorem assumes that

such a form exists for θ(X)). Compute the intersection of the two regular expressions, X ∈ RE ∩ RE1.
If RE ∩ RE1 is empty, return UNSAT.

– Extract equisatisfiable length constraints ψ from X ∈ RE∩RE1 as suggested above using the Lemma 3.
if ψ ∧ φ is UNSAT, return UNSAT. Else return SAT.

5 The Undecidability Theorem

In this section we prove that the validity problem for the set of L1
e sentences over positive word equa-

tions (AND-OR combinaton of word equations without negation) whose prefix normal form contains ∀∃
quantifier alternation is undecidable.

5.1 Proof Idea

We do a reduction from the halting problem for two-counter machines, which is known to be undecid-
able [1], to the problem in question. We do this by essentially encoding computation histories as strings.
The use of two-counter machine is crucial for the proof to go through, as will become clear later.

The basic proof strategy is as follows: given a two-counter machine M and a finite string w, we construct
a L1

e sentence ∀S∃S 1, ...S 4θ(S , S 1, ..., S 4) such that M does not halts on w iff ∀S∃S 1, ..., S 4θ(S , S 1, ..., S 4)
is valid, i.e., all assignments to the string variable S are not halting computational histories of M over w.
The variables S 1, ..., S 4 denote substrings of S . A similar strategy is used by Michael Sipser [26] to show
that the problem of deciding whether a context-free grammar can generate all strings is undecidable.

5.2 Recalling Two-counter Machines

A two-counter machine is a deterministic machine which has a finite-state control, two semi-infinite storage
tapes whose tape alphabet contains only two symbols, Z and blank, and a separate read-only semi-infinite
input tape [1]. All tapes have a left endpoint, but the storage tapes have no right endpoint. All tapes are
composed of cells, each of which may store a symbol from the appropriate alphabet. Each tape has a
corresponding tape-head that may move left, right or stay put. The input tape-head cannot move past the
right end of the input string. The tape-heads scan the tape cell by cell, may read the symbol stored on the
cell being scanned by it or write in that cell (input tape is read-only). The cell being scanned by the input
tape-head is called the current cell. The initial position of all the tape-heads is the leftmost cell of their
respective tapes. The input to the machine is a finite string written on the input tape, starting at the leftmost
cell. A special character follows the input string on the tape to mark the end of the input.

The symbol Z serves as a bottom of stack marker on the storage tapes. Hence, it appears initially on the
cell scanned by the tape head and may never appear on any other cells. The finite control may only write
and erase blanks from the storage tapes. An integer i can be represented on the storage tape by moving the
tape head i cells to the right of Z. A number stored on the storage tape can be incremented or decremented
by moving the tape head right or left. We can test whether a number is zero by checking whether Z is
scanned by the head, but equality between two numbers cannot be directly tested. It is well known that
the two-counter machine can simulate an arbitrary Turing machine. Consequently, the halting problem for
two-counter machines is undecidable [1].

More formally, a two-counter machine M is a tuple 〈Q, ∆, Γ, δ, q0, F〉 where,

– Q is the finite set of control states of M. q0 ∈ Q is the initial control state, and F ⊆ Q is the set of final
control states.

– ∆ is the finite alphabet of the input tape, and Γ = {Z, B} is the storage tape alphabet, where Z is used
as the end marker for the two semi-infinite storage tapes and B is the blank symbol (In the language of
strings we use b and c, one for each storage tape).

– δ is the transition function for the control of M:

δ :Q × ∆ × Γ × Γ →
Q × {input, stor1, stor2} × {B ∪ erase ∪ NOP} × {L,R}

In words, given a state of the machine and the letter on the current cell of each tape, the transition
function specifies the next state of the machine, a tape-head (input or one of the storage tapes stor1 or
stor2) to move, specifies the corresponding action on the storage tapes (place a blank or erase a blank
or perform a No OPeration), and specifies whether the corresponding tape head moves left (L) or right
(R)

5.3 Instantaneous Description of Two-counter Machines as Strings

We define instantaneous descriptions (ID) of two-counter machines in terms of strings. Informally, the ID
of a machine represents its entire configuration at any instant in terms of machine parameters such as the
current control state, current input-tape letter being read by the machine, and current storage-tape contents.
Definition of ID: The instantaneous description (ID) of a two-counter machine M on an input w can be
described by a string given by concatenating the following components listed below (Each component of

an ID is separated from the others by an appropriate special character. In the discussion that follows we
will not refer to the separator explicitly anywhere, and we will assume that it is present in the appropriate
positions for every ID. Note that this internal separator is different from the one that separates IDs from
each other):

– Current control state of M: represented by a character over the finite alphabet Q.
– The finite-length input string w and the current input tape cell (or numbers between {0, · · · , |w| − 1}

encoded as string constants) being scanned by the input tape-head.
– The finite distances of the two storage heads from the symbol Z, represented as a string of blanks (i.e.,

in unary representation). For convenience, we will use the symbol b to denote the blanks on storage
tape 1, and c on storage tape 2.

Definition of Initial ID: The initial instantaneous description (ID) of a two-counter machine M with a
given input string w is a concatenation of the following (Note that for any two-counter machine and each
input w, there is exactly one initial ID; call it InitM,w): Initial state q0 of M, followed by w = w0u, encoding
the contents of the input tape by w0u, where w0 is the first letter of the input string w. Followed by number 0
encoded as a string constant (denoted by N0), indicating that the current cell is the 0th letter of w. Followed
by two string constants that are concatenations of suitable number of blanks to denote 0 on each tape (i.e.,
elements of b∗ for storage tape 1 and c∗ for storage tape 2).
Definition of Final ID: The final IDs of a two-counter machine are strings that are very similar to the
Initial ID. The only difference is that the control states are chosen to be one of the finitely many final
control states q f ∈ F of M. We use the convention that after reaching a final state, there is a series of
dummy moves wherein the storage tape-heads move to the leftmost cell, and the storage tapes contain the
unary representation of the number 0. Similarly, we use the convention that the input tape-head has moved
to the leftmost position (i.e., 0th letter of the input w) on the input tape. Observe that there are only finitely
many Final IDs.

5.4 Computational History of a Two-counter Machine as a String

A well-formed computational history of a two-counter machine M for a given input w is the concatenation
of a sequence of IDs separated by the special symbol #, where the sequence must start with the initial ID of
M on w. Moreover, for each i less than the length of the sequence of IDs, IDi+1 is the result of transforming
IDi according to the transition function of M. A well-formed computational history of the machine M on
the string w is called accepting if it is a finite string whose last ID is a Final ID of M on w. The last ID of
a string is defined to be the rightmost substring following a separator #. Otherwise, we call the finite string
non well-formed or rejecting.

5.5 Alphabet for String Formulas and The Universe of Strings

Given a two-counter machine M and an input string w, we first define a finite alphabet by doing a cross
product over the ID separator #, and the elements of the finite set Q (states of M), and the set of input
tape-head positions 0, · · · , |w| − 1 ∈ N, and w to get the alphabet Σ0:

Σ0 ≡ {#q10w, · · · , #qk · |w| − 1 · w}
This alphabet allows to treat the intial segment of the IDs of M (the part without the storage tapes) as

letters. We also define Σ1 = b and Σ2 = c (These will represent the storage tape contents for tape 1 and 2
resp.). We define the alphabet of strings as Σ ≡ {Σ0 ∪ Σ1 ∪ Σ2}, and the universe of strings as Σ∗.

5.6 The Undecidability Theorem

Theorem 9 The validity problem for the set ofL1
e sentences over positive word equations with ∀∃ quantifier

alternation is undecidable.

Proof. By Reduction: We reduce the halting problem for two-counter machines to the decision problem in
question. Given a pair 〈M,w〉 of a two-counter machine M and an arbitrary input w to M, we construct a
L1

e-formula θM,w(S , S 1, ..., S 4,U,V) such that

M does not accept and halt on w ⇐⇒
all assignments to S in ∃S 1, S 2, S 3, S 4θM,w(S , S 1, · · · , S 4)
are not a computational history of M over w, where S i are substrings of S

What Does θ Say?: For brevity, we write θ for θM,w. θ says S does not start with the Initial ID, or does
not end with any of the Final IDs, or is not a well-formed sequence of IDs or does not follow the transition
function of M over w.

Structure of θ: First, let NotInit denote the finite set of string constants that has the same (or smaller) length
as the Initial ID InitM,w, but is not equal to InitM,w. Note that there can only be finitely many such strings
over the alphabet Σ since the alphabet is finite and InitM,w is a finite string. Similarly define the finite set
NotFinal of string constants that are not equal to the Final IDs, but have the same or smaller length. Again
note that there can only finitely many such strings. The formula ∀S∃S 1, · · · , S 4θ(S , · · · , S 4) is constructed
as follows:

∀S∃S 1, S 2, S 3, S 4,U,V((
∨

E∈NotInit

S = E · S 1)∨

(
∨

E∈NotFinal

S = S 1 · E)∨

StartsWithInit FollowedBy BadStorages(S)∨
NotWellFormedSequence(S , S 1, · · · , S 4)∨
((S = S 1 · S 2 · S 3 · S 4) ∧ (Ub = bU) ∧ (Vc = cV) ∧ ¬Next(S , S 1, · · · , S 4,U,V)))

– NotInit and NotFinal: The first two disjuncts state that S either does not start with the initial ID or
does not end with any Final IDs. Note that E above is not a variable. It is simply a shorthand for the
elements of the finite sets NotInit and NotFinal.

– StartsWithInit FollowedBy BadStorages(): Another possibility of a not well-formed computational
history is when S starts with InitM,w but has non-zero b or c on the storage tapes (b and c are string
constants). First observe that a arbitrary sequence of b’s can be represented by word equation Ub = bU
(Similarly, for Vc = cV):

(S = InitM,w · b · U · V · S 1 ∧ (bU = Ub) ∧ (cV = Vc))∨
(S = InitM,w · c · V · S 1 ∧ (cV = Vc))

– NotWellFormedSequence(): Asserts that S contains at least one sequence of letters from the al-
phabet Σ such that this sequence is not well-formed, i.e., is not a sequence of IDs. First, observe
that any well-formed computational history is a sequence of IDs. Hence, any string that is NOT
well-formed should be a satisfying assignment to S in θ(S). This fact is captured by the formula
NotwellFormedSequence(S , S 1, · · · , S 4) below. Observe that a well-formed ID is a regular expression
of the form Σ0b∗c∗, and a well-formed sequence of IDs is a string of the form (Σ0b∗c∗)∗ − ε (We do not
allow the empty string ε to be a well-formed sequence). Hence, the set of all non well-formed strings
is given by the regular expression

NotWellFormed ≡ Σ∗ − (Σ0b∗c∗)∗

We constructed the deterministic finite automata for this regular expression, and observed that any string
defined by NotWellFormed either starts with b or a c, or has the sequence cb in it. Fortunately, these
facts can be easily captured using word equations, and we will not need to use regular expressions. The
fact that a non well-formed sequence may start with b or c is already captured by the NotInit formula
above. The fact that a non well-formed sequence contains cb or is an ε is encoded by the following
formula NotWellFormedSequence():

(S = ε) ∨ (S = S 1 · c · b · S 4)

– Encoding Legal Transitions as Next(S, · · · ,S4,U,V): We encode a legal transition using the formula
Next() defined below, where S 2, S 3 are well-formed IDs. The conjuncts to ¬Next() in θ() above, assert
that S can be partitioned into four substrings, and there exists some sequence of b’s captured by the
word equation Ub = bU representing storage-1 contents, Vc = cV capture storage-2). Given this, Next
is a big disjunction over all possible finitely-many pairs of IDs defined by the transition function:

∨
Transitions

S 2 = q2n2wUV => S 3 = q3n3wU1V1

Next() asserts that the pair of variables S 2, S 3 form a legal transition. Note that q2, q3 ∈ Q, n2, n3 ∈ N
are all constants determined by the transition function, and w is the input string to the two-counter
machine M. To be more precise, the transition function states that given the current control state q2, the
current cell contents at location n2 in w, current storage tape contents U and V , the next state should
be q3, the new position of the input tape-head should be n3 and the value of the storage tapes changed
from U and V to U1 and V1 respectively. Note that U,V are strings ranging over b∗, and U1 is either
U (No Op) or Ub (increment operation) or U1b = U (decrement operation) depending on the type of
instruction in the current cell in w (Similarly for V1). Note that U1 and V1 are not string variables, but
just shorthands defined in terms of U and V respectively. The above disjunction over transitions is finite
since the transition function of M is finite, and hence Next is a formula.

Removing Dis-equations: Note that dis-equalities in θ can always be replaced by a disjunction of equalities.
This is because the negated equalities in θ are of the form Varstr , ID, and since Q,N,w are all finite, and
since storage tape contents are already quantified away, we can represent a disequality as a disjunction of
equalities. Hence, we only have positive word equations in θ. Finally, an important observation about our
undecidability result is that the formula we constructed in the proof can be easily converted to a formula
which has at most two occurrences of any variable 1. Hence, we get the following final theorem.

1 We would like to thank Professor Rupak Majumdar with this and other improvements

Theorem 10 The validity problem for the set of L1
e sentences with ∀∃ quantifier alternation over positive

word equations, and with at most two occurrences of any variable is undecidable.

Bounding the Inner Existential Quantifiers: Observe that in θ all the inner quantifiers S 1, · · · , S 4 are
bounded since they are substrings of S . One way to express the bounding is to use the length function,
e.g., len(S 1) <= len(S). Hence, we observe that the set of L1

e,l sentences with a single universal quantifier
followed by a block of inner bounded existential quantifiers is undecidable.
Choice of Two-counter Machines: The reason we chose two-counter machines as opposed to vanilla
Turing machines is that the contents of the storage tapes (defined by the regular expression b∗) are easily
represented as word equations: Xb = bX. On the other hand, capturing the tape contents of Turing machines
using word equations seems impossible.

6 Related Work

In his original 1946 paper, Quine [22] showed that the first-order theory of string equations (i.e., quantified
sentences over Boolean combination of word equations) is undecidable. Due to the expressibility of many
key reliability and verification questions within this theory, this work has been extended in many ways.

One line of research studies fragments and modifications of this base theory which are decidable. No-
tably, in 1977, Makanin famously proved that the satisfiability problem for the quantifier-free theory of word
equations is decidable [15]. In a sequence of papers, Plandowski and co-authors showed that the complexity
of this problem is in PSPACE [19, 20]. Stronger results have been found where equations are restricted to
those where each variable occurs at most twice [23] or in which there are at most two variables [5,6,11]. In
the first case, satisfiability is shown to be NP-hard; in the second, polynomial (which was improved further
in the case of single variable word equations).

Concurrently, many researchers have looked for the exact boundary between decidability and undecid-
ability. During our research on related work, we found that Durnev [7] and Marchenkov [16] both showed
that the ∀∃ sentences over word equations is undecidable. Note that Durnev’s result is closest to our un-
decidability result. The main difference is that our proof is considerably simpler because of the use of
two-counter machines, as opposed to certain non-standard machines used by Durnev. We also note corol-
laries regarding number of occurences of a variable, and L1

e,l sentences with a single universal followed by
bounded existentials. On the other hand, Durnev uses only 4 string variables to prove his result, while we
use 7. We believe that we can reduce the number of variables, at the expense of a more complicated proof.

Word equations augmented with additional predicates yield richer structures which are relevant to many
applications. In the 1970s, Matiyasevich formulated a connection between string equations augmented with
integer coefficients whose integers are taken from the Fibonacci sequence and Diophantine equations [17].
In particular, he showed that proving undecidability for the satisfiability problem of this theory would suffice
to solve Hilbert’s 10th Problem in a novel way. Schulz [25] extended Makanin’s satisfiability algorithm to
the class of formulas where each variable in the equations is specified to lie in a given regular set. This is
a strict generalization of the solution sets of word equations. [12] shows that the class of sets expressible
through word equations is incomparable to that of regular sets.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Prentice
Hall (India) Ltd., 1979.

2. C. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of First-Order Theories. PhD thesis,
Stanford University, 2003.

3. A. Blumensath. Automatic structures. Diploma thesis, RWTH-Aachen, 1999.
4. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically generating inputs of

death. In 13th ACM Conference on Computer and Communications Security (CCS ’06), 2006.
5. W. Charatonik and L. Pacholski. Word equations in two variables. In Proceedings of the Second International

Workshop on Word Equations and Related Topics, volume 677 of LNCS, pages 43–57, 1991.
6. R. Da̧browski and W. Plandowski. On word equations in one variable. In MFCS, volume 2420 of LNCS, pages

212–220, 2002.
7. V. Durnev. Undecidability of the positive ∀∃3-theory of a free semigroup. Siberian Mathematical Journal,

36(5):1067–1080, 1995.
8. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Undergraduate Texts in Mathematics. Springer-

Verlag, 1994.
9. M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database applications. In International

Symposium on Software Testing and Analysis (ISSTA), 2007.
10. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In In ACM Conference on

Programming Language Design and Implementation (PLDI), 2005.
11. L. Ilie and W. Plandowski. Two-variable word equations (extended abstract). In STACS, volume 1770 of LNCS,

pages 122–132, 2000.
12. J. Karhumäki, W. Plandowski, and F. Mignosi. The expressibility of languages and relations by word equations.

In Automata, Languages and Programming, 24th International Colloquium, (ICALP), pages 98–109, 1997.
13. A. Kieżun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: A solver for string constraints. In

International Symposium on Software Testing and Analysis (ISSTA ’09), 2009.
14. R. Majumdar. Private correspondence, 2010. SWS, MPI, Kaiserslautern, Germany.
15. G. Makanin. The problem of solvability of equations in a free semigroup. Sbornik: Mathematics, 32(2), 1977.
16. S. S. Marchenkov. Unsolvability of positive ∀∃-theory of free semi-group. Sibirsky mathmatichesky jurnal,

23(1):196–198, 1982.
17. Y. Matiyasevich. Word equations, Fibonacci numbers, and Hilbert’s tenth problem (extended abstract). In Work-

shop on Fibonacci Words, Turku, Finland, Sept. 2006.
18. Y. Matiyasevich. Computation paradigms in light of Hilbert’s tenth problem. In New Computational Paradigms,

pages 59–85. Springer New York, 2008.
19. W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In 40th Annual Symposium on

Foundations of Computer Science (FOCS), pages 495–500, Oct. 1999.
20. W. Plandowski. An efficient algorithm for solving word equations. In ACM Symposium on Theory of Computing

(STOC), 2006.
21. M. Presburger. Über de vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen, die

addition als einzige operation hervortritt. In Comptes Rendus du Premier Congrès des Mathématicienes des Pays
Slaves, pages 92–101, 395, Warsaw, 1927.

22. W. V. Quine. Concatenation as a basis for arithmetic. The Journal of Symbolic Logic, 11(4):105–114, 1946.
23. J. M. Robson and V. Diekert. On quadratic word equations. In STACS ’99, volume 1563 of LNCS, pages 217–226,

1999.
24. P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao, and D. Song. A symbolic execution framework for

JavaScript. In Accepted in the international proceedings of IEEE Security & Privacy, May 2010.
25. K. U. Schulz. Makanin’s algorithm for word equations - two improvements and a generalization. In IWWERT ’90:

Proceedings of the First International Workshop on Word Equations and Related Topics, pages 85–150, London,
UK, 1992. Springer-Verlag.

26. M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
27. G. Wassermann and Z. Su. Sound and precise analysis of Web applications for injection vulnerabilities. In ACM

Conference on Programming Language Design and Implementation (PLDI ’07), 2007.

