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in particular - the Systematic Design Methodology (SDM).
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were found.
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Chapter I

INTRODUCTION

Rs computer systems become more complex, software devel-
opment and maintainance costs begin to dominate. The prob-
lem is that software has become large and difficult to man-
age, and it is evident that the ad-hoc way of programming
only makes matters worse. What is needed is a disciplined
methodology for software development.

Past research has revealed various phases in the softuare

development life-cycle (see figure 1).

User Requirements

4

System Requirements Specification

4

Architectural Design

¢

Detailed Design

¢

Programming

Debugging

4

Testing Operxration and Monitoring

4

Maintainence

Figure 1: The System Development Life-cycle.
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Furthexrmorxe, it has been found +that problems arising in

débugging and testing usually have their roots in an earlier

phase. In the case of ad-hoc programming, the cause is the
absence of any architectural design effort.

In recent years, an attempt has been made to attack the

above problem. The result is a body of technology called
"software Design Methodologies". These methodologies différ
in approach and in specific areas of application. Some pro-—

vide technigues with which a  design can be mechanically de-
rived. Others merely give guidelines and require the de-
‘signer to work out the design. Some can be applied best on
programs of small size, others are meant for large system
designs. However, these methodologies are united in their
final objective - to £ill the void between regquirements
specification and actual coding.

Essentially, design methodologies attempt t% provide de-
signers with a structural framework for software planning.
The framework is designed to provide a way to manage the
complexity of the design task (usually in the form of a di-
vide—-and~conquexr tactic). It is also designed to embed de-
sirable qualities in the software undér development. But
most importantly, it 1is designed to allow the designer to
think about the program carefully before he starts the actu-
al coding. |

One methodology in particular is the integral part of

this thesis: The Systematic Design Methodology (SDM). sSDM
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is a methodology developed by the MIT Sloan School of Man-
agement. It has been used in the design of a Database Man-
agement System (DBMS), an Operating System, a Budgeting Sys-
tem, and a test program preparation facility. So far the
repoxrts on the methodology have been encouraging. However,
to get a bettexr idea of SDM's potential, it would be benefi-
cial to compare it against othér methodologies.

Thus the goals of this thesis are to compare SDM against
other methodologies, develop qualitative as well as quanti-
tative evaluations of methodologies, and to suggest exten-
sions or improvements for SDM.

The project proceeds from an examination of the general

design problem to specific methodologies. Five stages are
identified:
1. Design Theories.

2. Design Techniques,

3. Design Methodologies,

4. Comparing design methodologies through actual design,
5. Extending SDM.

The rest of this thesis is organized in a similar manner.

Chapter II presents a few of the popular vieuws on the nature

of design problems. Chapter III presents a list of design
methodologies. Chapter IV describes an experiment in com-
paring several design methodologies. Finally, the conclud-

"ing chapter presents suggestions for modifying and extending

sbn.



Chapter II

DESIGN THEORIES

Before a study of design methodologies can be undertaken,
it is necessary to understand design from a broad perspec-—
tive. Peter Freeman speaks of this need [FREE77]:

"Without an understanding of broad classes of phenome-
na, one is condemned to understand each new instance by
itself."

Indeed, the essence of science is to discover unifying
characteristics in the environment around us. Having this
knouledge, we c¢an predict the outcome of specific actions.
Furthermore, we can use this Knowledge to choose those ac-
tions which yield desired results.

The purpose of this chapter, therefore, is to present
popular views on the hature of design, and houw it relates to
software developmént. The first section describes three
different viewpoints on design. These viewpoints are col-
lected from three different disciplines - Architecture, Civ-
il Engineering, and Axrtificial Intelligence. The second
section puts design in perspective with software develop-

ment.



2.1 DESIGN THEOQORTES

Although software design is a recent development, the
subject of des;gn in general has been around for a 1long
time. Considexr the Egyptian Pyramids and Roman Cathedrals,
these are all complex structures which required careful
planning and design. Therefore it is logical to expect a
significant understanding of design from the fields of Ar-
chitecture and Civil Engineering. In £fact, the first two
views on the nature of design are taken from these fields.

Christopher Alexander is an architect who received his edu-

cation fxrom MIT and Harvard. His views on design [ALEX64]
have become the backbone of SDM. Marvin Manheim is a pxo-
fessor of Civil Engineering at MIT. Professoxr Manheim's

work in Urban Planning [MANH64,67] also represents an unique
view on design.

A third area from which interesting results have emerged
is Artificial Intelligence. Professor Hexrbexrt Simon of Car-—-
negie Mellon looks at design from a psychological perspec-—

tive. His views ¢an be found in [SIMO69].

2.1.1 Discovering the Structure

The first approach to design piesented here is advocated
by Christopher Alexander [ALEX64]. It is of spécial intex-
est because it is the basis for the SDM approach.

In Alexandexr's view, the major difficulties in design are

caused by the complexity of the design problems. The numbex



6
of competing factors a designer must consider has become so
large that it is not possible to Kkeep track of all of them.
Therefore, it is necessary to have a systematic way of re-
ducing the design problem into manageable pieces. These
separate pieces can then be attacked one by -one and a more
satisfactory solutibn to the original problem can be pro-
duced.

Before proceeding further, it is necessary to understand
what causes complexity. It is not merely the size of the
problem, for surely we can solve a thousand arithmetic prob-
lems easily; when each problem has nothing to do with the
others. Alexander points out that the real culprit is the
interaction among requirements. In other worxds, the solu-
tion to one requirement is often dependent on the solutions
to many of the othexr requirements.

Thus, Alexander proposes a way to model the intexractions

between requirements, and extract the optimal decomposition

from that model. The basic idea is to model the situation
with a graph. The requirements are the nodes, and the in-
teraction betuween requirements are the links. The designer

can then apply an algorithnm to the graph and find the decom-
position which minimizes thé interaction among the resulting
components. This decomposition allows the designer to deal
with each c¢omponent independently, thus reducing the com-
plexity faced by the designer. This process is, in effect,

the search for the problem structure, where structure is de-'
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fined to be the underlying components and their. interac-

tions.

2.1.2 Problem Solving

Manhiem [MANH64,67] expressed the view that complexity
management is the major difficulty in design. The variety
of options open to a designer are so numerous that it is
difficult just to list them exhaustively. To find the opti-
mal solution is somewhat an unrealistic goal.

Manheim proposes a model called »the Problem Solving Pro-
cess (PSP). The basic activities of the PSP are search and
select. Search generates a set of alternatives and select
makes a decision on which alternative to follow.

The search and select procedures are used repetitively,.
until a satisfactory solution is found. Morxe specifically,
the search procedure generates a set of options which it
feeds into the select procedure. Select then employs some

evaluation techniques to assign a priority ordexring to the

options. The option with the highest priority is pursued
further, and the search-selec¢t process is repeated until a
solution is found. The designer must decide when the op-

tions provide a sufficient decision space and the solution
is satisfactory.

Manheim also suggests that a computer be used in PSP, es-—
pecially the graphic capabilities because the human mind can

work much better with a picture than with sentenges. Fur-
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thermore, the entire PSP can be automated to increase its
efficiency as well as its effectiveness. Moreover, Manheim
asserts that the complexity of design problems precludes a

rrovably optimal solution. Nevertheless, one can still de-

velop an optimal design process.

2.1.3 Reducing the Difference

In yet anothexr view, Hexrbert Simon [SIM069] defines de-
sign as a process of reducing the difference between the
present state and the desired state. At every stage of the
design, some sensors (e.g., human or machine) describe the
state of the world, then the state is compared to the de-
sired state. A set of differences is generated, and solu-
tions are devised te resolve the differences.

Simon models the above process as a General Problem Sol-
ver (GPS). At any momeht in the design, the GPS asks the
question, "What shall I do next?". To ansuer this question,
the GPS stores information in its memoxry about states of the.
world and about actions. It also stores associations be-
tween changes in states and the actions that bring about
these changes. Now the GPS's question c¢an be answexed by
seaxrching for a series of actions which produce the desired
changes in the state of the world.

The difficulty 4in the above scheme lies in the search
p;ocedu:e. Simon suggests a breadth-wise seaxch. The GPS

starts with a set of alternative actions, and assigns a val-
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ue to each. The value corresponds to the relative likeli-
hood that the desired state <c¢an be <reached through that
path. The GPS investigates several of the most promising
actions in parallel. An alternative is eliminated as more
information is gathered, and the path begins to look less
promising than othezrs. In effect, the GPS is building up a
decision tree in its memory. It gathers morxe and morxe in-
formation about the design as decisions are explored. This
process continues until a path to the desired state 1is
found.

Note that Simon does not incorporate any notion of opti-
mization in his model. In fact he believes that design can
be best described by the word "satisficing". In other
words, most designs are merely a satisfactory solution to
the problem. Optimization is not possible because of the

enormous éomplexity of most design problems.

2.2 SOFTWARE DESTIGN AND THE SYSTEM LIFE-CYCLE

Early in the growth of software engineering research, it
was found that typical softuare systems go through 9 differxr-
ent phases:

1. User requirements specification,

2. System requirements specification,

3. Arxrchitectural design

4. Logical design (or detailed design),

5. Programming,
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6. Debugging,

7. Testing,

8. Operation and monitoring,

9. Maintainence.

Further research revealed.that the greatest costs were
incurred when components are put together and debugged.
This phenomenon is caused by the lack of overall system
planning or architectural design. Thus, software design c¢an
be effectively defined as the bridge betuween requirements
specification and programming. It is the activity of look-
ing ahead and planning out the organization of the program.

Software design can be further divided into architectural
design and logical design. Rrchitectural design deals with
the entire systemnm. It usually involves decomposition, set-
ting up communication between components, and making deci-
sions that have global effects (e.g., creating a module to
handle file I/O0, or an executive module to do dispatching).
In effect, the architectural design is analogous to the bone
structure in the human body. Logical design, on the other
hand, deals with local issues. It involves the details of
each component (e.g., how data is taken out of the file and
put into a buffer, or what to do when the input is the num-
bexr 0). This subphase can be thought of as the flesh which
envelops the framework of bhones. Together the flesh and the

bones perform the functions of the system.



Chaptexr III

THE DESIGN METHODOLOGIES

The last chapter identified the basic issues in software
design. This chaptexr looks at the technology which address-
es these issues. The technology is called "Software Design
Methodology™.

Formally, a software design methodology has the following
properties (see also [HUFF79]):

1. A structured approach. This properxrty requires the

methodology to have a definite view on how the design
should proceed. It may be top-down, bottom-up, or a
mixture of the two. The important thing is that the
methodology provides the designer with a direction.
It can be thought of as a compass, a top level strat-

egy, or an overall plan.

2. A procedure. The procedure specifies the detailed
steps in c¢arrying out the structured approach. It

adds a sense of mechanization to the design process.
More specifically., the procedure provides clear in-
structions and specifies well defined tasks. In es—
sence, the procedure is like an assembly line, and
the designexs are the workers who actually put the

parts together.
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3. Tools. Tools are mechanical helpers for the design-

erx. They may vary from sihple graphic representa-

tions of design to design languages, or even programs
which produce programs.

The rest of the chapter describes a collection of method-

oclogies. The first 4 sections describe methodologies that
are used in the experiment (chaptexr 4). The final section
contains descriptions of 4 other methodologies, briefly

overviewed and included for completeness.
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3.1 HIERARCHICAL DEVELOPMENT METHODOLOGY (HDM)

HDM ([LEVI80]), [ROBI79], [SILV79]) is primarily an aid
in structuring and zrecording decisions made during the de-
sign process. Based on a decision model, HDM employs sevexr-—
al different software engineering concepts for the structur-
ing and the grouping of decisions. HDM also emphasizes the
need for flexibility in a design methodology. Citing in-
stances where an error in earxrly decisions produced cata-
strophic results, HDM proposes that some methodologies force
designers to make premature decisions. Therefore HDM
strongly emphasizes flexibility in its proceduralized ver-
sion.

The basic idea in HDM is the decomposition of a program
into levels of abstract machines. The machines are linearly
ordered, and each machine can only communicate with the ma-
chines directly above and below itself. Within each ab-
stract machine fuxrther decomposition takes place. Each ma-
chine also has its own abstract data structure and a set of
abstract operations. These operations are implemented on
the machine of the next lower level. The data structure of
each machine cannot‘be accessed from the outside, except

through the defined operations of that ﬁachine.
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3.1.1 The Decisiqn Model
HDM views software design as a process of decision mak-
ing. At any stage of its development, the software results
from a sequence of decisions. Each decision depends only on
the decisions occurring before it. Although decisions occur
linearly in time, as in figure 2, in reality each decision
depends only on a subset of the decisions occurring before
it. This can be thought of as partial sequences, possibly

intersecting at some point (see figure 3 ).

§

dl»dz»dg»d[llll‘dn

Figure 2: Sequence of Decisions
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Two issues of importance in the decision model are the
time when decisions are made, and the dependency between de-
cisions. Organizing the decision-making process to addzress
these issues, HDM uses the following concepts as guidelines*

1. Abstraction - Abstraction is defined as the process

of isolating a subset of the properties charactexiz-

ing a systenm, such that the system can be underxstood
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Figure 3: Dependencies Among Decisions Form a Tree-
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éore easily and the system can be uSed as if it poss-
essed only that subset of properties. The concept of
levels of abstraction provides a way to describe the
interdependence between decisions (i.e., each level
only depends on the level before it), and to minimize
that dependence (i.e., abstract only the necessary
features of decisions on the level below).
Hierarchies of Abstract Machines - The next step in
applying the idea of abstraction is the concept of
hierxrarchy. Any programming problem can be thought of

as a set of instructions to an abstract machine. The
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abstract machine is in turn realized by another ab-
stract machine, and so on. The design eventually
reaches a level where the abstract machine can be re-
alized by a physical machine (e.g., a programming
language processor). In HDM, an abstract machine has
the following properties.

a) A set of internal data structures which define the
state of the machine.

b) A set of operations by which the data structures
can be manipulated and changed.

¢) A data structure internal to each machine which
can be accessed only through the defined opera-

tions of that machine.

The hierarchy of abstract machines provides a
structure for decision making. It also enables the

grouping of decisions into individual machines.

Modularity - As defined by HDM, modules are parts of
a system which can be easily replaced. In oxrder to

be easily replaceable, HDM requires a module to h;ve
a well-defined external interface. This allows an-
other module satisfying the requirements of the in-
terface to replace the original module without any
knowledge of internal details. Modularity is used to
localize the effect of decisions énd to minimize de-

pendencies between decisions of different modules.
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Formal Specification - Formal specification in HDM
is meant to provide a complete documentation of all
decisions made during design. Each module is pre-
cisely described by a specification language called
SPECIAL (SPECIfication and Assertion Language). b4
further goal of formal specification is machine-
checked consistency and well-formedness.

Formal Verification - Formal verification refers to
techniques whereby programs can be mathematically
proven corrxect. HDM employs the inductive assertion
technique developed by Floyd ([LEVI80]). The purpose
of verification is to provide a means for determining
the consistency among decisions.

Data Representation - Many situations arise in pro-
gramming whexre mathematical concepts are modelled by
data structures. Verification of the model is often
difficult, therefore a technique called "data repre-
sentation function"™ is used. This function defines a
mapping between mathematical concepts and data struc-
tures. Verification c¢an be performed by examining

the mappings.

The Procedure

HDM warns against strict step-by-step procedures. An er-

roneous decision made in an early step often did not get

discovered until it became too costly to change that deci-
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Instead, HDM provides guidelines for decision-making

a seven stage development scheme. The development

scheme is meant to provide a series of milestones by which

progress can be measured. Although the seven stages appear

ordered in time, HDM emphasizes that it is not necessary to

carry out the design in that order. In fact HDM encourages

the designexr to follow the natural course of the decision

making process.

The seven stage scheme’is as follous:

1.

Conceptualization - Conceptualization is the process
of identifying the design problem, and stating the
problem as requirements. This is- also Known as re-
quirements specification.

External Interface Definition - Defining the abstract
machines that interact with the outside world. This
consists of the top-most machine in the hierarchy and
the bottom-most machine in the hierarchy. Also done
during this step is the decomposition of these ma-
chines into modules.

System Structure Definition - Defining the intermedi-
ate abstract machines and decomposing them into mod-
ules. Intermediate machines can be defined in thxee
different directions: Top—down, bottom-up, or middle-
out.

Module Specification - This step is carried out using

SPECIAL (SPECIfication and Assertion Language). Pre-
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cise and explicit descriptions of decisions made in
stages 2 and 3 are recorded in SPECIAL.

Data Representation - Define the data structures of
every non-primitive machine (i.e., every machine ex-
cept the bottom most machine) in texrms of the data
structures of the machine on the next louwer level.

Abstract Implementation - Implement operations of
each non-primitive machine as an abstract program
running on the machine of the next lower level. The
abstract programs are written in ILPL (Intermediate
Level Programming Language).

Concrete Implementation - Translate abstract pro-

grams, wWwritten in stage 6, into executable code.
This can be done by translating ILPL programs into a
modern programming language, or directly compile ILPL

into machine code.
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3.2 JACKSON METHODOLOGY
The Jackson Methodology [JRCK75] is based on the philoso-
phy that the program structure should match the problem
structure as closely as possible. To discover the problem
structure, Jackson theorizes that the data structure re-
flects the problem structure very accurately. Once the in-
put and output data structures are found, a program can be
created to transform input data into output data. Further-
more, data structures can be expressed with the same Kinds
of components as those used for the program structure (i.e.,
the sequence component, the iteration component, and the se-
lection component). This observation enables the designer
to build the data stxructure out of components which can be
directly translated into program components.
However, anomalie; betuween input and output data give

rise to situations where it is impossible to directly trans-

late data structure into program structure. Jackson identi-
fies two typical situations: structure clash and backtrack-
ing.

Structure clash occurs when an input data structure does
not match the output‘data structure. This mismatch can be
caused by a different ordering among components, by a many-
to-one mapping, or by a one-to-many mapping. For exanmple,
if the input data are rouws of a matrix, and output data are

columns of the matrix, then a structure clash occurs.
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Backtracking problems arise when execution of a task is
dependent upon a condition, but the condition cannot be
checked unless the task is executed. For example, when per-
forming a table lookup, the condition for zretrieving the
value of an entry is that the entry should actually e=xist.

However, one cannot determine whether the entry exists orx

not unless a lookup is perfotmed. In this case, one would
have to perform the task first, then determine the value of
thé condition. If the condition is false then backtrack to

a point before the task was performed, and take another

path.

3.2.1 The Procedure

Jackson's methodology can be divided into three stages:

1. Define the input and butput data structures.
2. Crxeate the program structure from the data struc-

tures. In othexr words, transform data structure com-
ponents into program modules.
3. List the program tasks as executable operations, and

allocate each task to a program component.

3.2.2 Data Structure Definition

Jackson's methodology provides a graphical representation
of the three structuring components. They are given in #fig-
ure 4. The components are represented in a hierarchical fa-

shion. This implies that the program structure is also hi-
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erarchical, because program structure is expressed with the

same components.

3.2.3 Program Structure Definition

Jackson also provides a genexral heuristic for solving
each of the problems caused by data anomalies. Structure
clash is solved by program inversion. Recall that stxuctu;e
clash is caused by inconsistencies between input and output
data structures. The program inversion technique breaks in-
put data into elementary components, then recombines them to
form the output data. For .example, in the matrix problenm
considered earlier, the rows could be broken into individual
elements, then recombined later to form the columns.

Backtracking problems are solved by a three step process:

1. Structure the problem as a sequence, ignoring the im-

possibility of evaluating the condition, and execute
one branch of the conditional. Recall that a back-
t:acking‘problem arises when the condition cannot be
evaluated without first performing a task whose exe-
cution depended on the condition. This step 1is
equivalent to executing the then-clause.

2. Determine whether an incorrect choice has been made,
then eithexr proceed oxr do a conditional transfer to
the else-clause.

3. Consider the side effects caused by execution of the

then-clause, and make appropriate corrections before

the original else-clause 1is executed.
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3.2.4 Unique Features
Jackson makes several c¢laims about the methodology.
First, the methodology provides a simple criterion by which
to judge whether a program structure is correct. More spe-

cifically, if the program structure matches the correct data

structure, then the program structure leads to a "good"™ pro-
gram {(but the critical step of constructing the data struc-
tures is not at all txivial). Second, the methodology has a
unifying principle, and every aspect of the methodology can
be validated from that principle. The principle is: Data
structure reflects problem structure, and a good solution
should reflect the problem structure. Third, the methodolo-
gy is easy to learn, easy to use, and does not depend on an
individual designex's ability. That is, the process of dis-
covering data structures and transforming them into a pro-
gram structure is very mechanical, therefore requires little
ingenuity. Finally, the methodology produces a hierarchi-
cally structured program. According to Jackson this is syn-

onymous to good design.
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3.3 STRUCTURED DESIGN (SD)
The SD [YOUR79] approach is inspired by a study of the

morphology of systems. It is found that low—cost systems

are usually shaped like a mosque (see figure 5).

Figure 5: The Mosgque Shape of Low-cost Systems
(adapted from [YOUR791])
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Furthermore these louw~cost systems are centered axound
various aspects of the system functions. Most important of
the different types of centers are the transform center and
the transaction center. The transform center consists of
those modules which transform the input data stream into the
output data stream. The transaction center refexrs to places
in the system where the data stream is split into many sub-
streams.

To identify these centers, SD uses the Data Flouw Graph
(DFG). The DFG is a pictorial way to describe the transfor-

mation of input data into output data.
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Having identified these centers, SD provides two techni-

ques

for constructing a system architecture: Transform

Analysis and Transaction Analysis. These techniques will be

discussed in the following sections.

The Procedure
Translate +the design problem into a DFG. (See
[YOUR79] chapter 10 for examples of DFG)

If the DFG represents a sequence of transforms each
of which must be performed, then use Transform Anal-

ysis. If the DFG represents a selection among many

alternative routes then use Transaction Analysis.

Transform Analysis:

1.

Identify the input stream and the output stream.
These elements of the DFG are also called afferent
data elements and efferent data elements respective-
ly.

Identify the transfoxrm center. The transform centerx
consists of one or more transform elements.

Translate the DFG into a system structure as follows:
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4. Go back to step 1 and apply the procedure to each

module in the systen.

Transaction Analysis:

1. Identify the transaction centex.
2. Translate the DFG into a system structure as follows:
DISPATCH -pmm TRANSACTION

CENTER

ALTERNATE
PATHS

3. Go back to step 1 and apply the procedure to each

module.

3.3.2 Data Flow Graph (DEG)

The DFG can be thought of as a decomposition tool. It
allows the designer to describe the processing of input data
in terms of well defined transformationg. For example, fig-—
ure 6, shows the processing of inputs from a medical monitor
device.

Howevexr, it 1is not always easy to translate a design.

problem into a DFG. SD does not provide a systematic way to
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solve this problem. Instead, a set of guidelines are given.
They are summarized belou:

1. Woxrk from different directions: Input to output, out-
put to input, middle out. When one approach fails,
swuitch to another.

2. Do not show control logic. In other words, just shou

what needs to be done to the data, not how it is
done.

3. Ignore initialization and termination.

4. Label data elements.

5. Use X (AND) and + (OR) symbols to indicate the type
of data stream splitting.

6. Do not show unnecessary details,  but if in doubt,

show more detail rathexr than too little.
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3.3.3 Select a Technique
The difference between Transform Analysis and Transaction
Analysis can be viewed in another way. Transform Analysis
is applied whenever the DFG represents an AND relationship
between the bubbles in the DFG. Transaction Analysis, on
the other hand, is applied when the DFG represents an OR re-—

lationship between the bubbles in the DFG.

3.3.4 Transform Analysis

The identification of afferent, efferent and transform
elements is not a clearly defined task. When and where the
input data becomes output data depend a great deal on the
taste of the designer. SD offers the following definitions
toward the resolution of the above problem:

1. Afferent data elements are those high-level elements
of data that are furthest removed from physical in-
put, yet still constitute inputs to the systen.

2. Efferent data elements are those high-level elements
of data that are furthest zremoved from physical out-
put, yet still constitute outputs to the system.

3. The transform elements are evexrything in between the
afferent elements and the efferent elements.

The translation of the DFG into a system structure is a

mechanical process. Each bubble in the DFG becomes a module

and a coordinate module is created to manage them.
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3.3.5 Transaction Analysis
The transaction center is much easier to identify than
the transform center. The unmistakable chafacteristic of a
transaction center is the two or more "OR" branches extend-
ing frxrom a bubble.
Having identified the transaction centexr, it is a simple
step to create the system structure. R dispatch module is
created to perform the selection among the alternative

paths.
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3.4 SYSTEMATIC DESIGN METHODOLOGY (SDM)

SDM's philosophy is adopted from Alexander's work on de-
sign theory [RLEX64]. Essentially, this approach views de-
sign as a process of discovering the inherent structure of
the problem. Stxructure being the set of undexlying sub-
problems and how the sub-problems interact with each other.
This idea of structure can be applied to each sub-problems
as well. In other words, the sub-problems themselves can
have sub-problems.

Looking at it from a software perspective, the SDM phi-
losophy involves discovering a decomposition of the design
prbblem into modules, or sub-problems. These modules are
themselves decomposed into still smaller modules, and this
process could bhe carried to any degree of detail.

To carry out the top—-doun decomposition, SDM uses a graph

model (see [HUFF791). The idea is to model individual re-
quirxements as nodes, and interactions between nodes as
links. However, because interactions can be weak or strong,

every link is given a weight between 0 and 1.

Having translated the design problem into a graph decom-
position problem, the next step is to formulate the decompo-
sition criteria. The SDM approach is to maximize the fol-

lowing conditions:

1. Strong interdependencies between members of a group.
2. Weak interdependencies between members of different
groups.

In summary, SDM's procedure can bhe divided into 4 steps:
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1. Specificat;on of the functional requirements,
2. Determine the degree of interdependency between all
pairs of requirements,
3. Represent the requirements as nodes and the interde-
pendencies as links between nodes,
4. Apply a decomposition algorithm to the graph.
Each of these steps is further expanded upon in the fol-

lowing subsections.

3.4.1 Requirements Specification

Requirements specification is capability oriented, not
process oriented. Put another way, specifications should be
non-procedural, it should not state how something is to be
done, merely what is to be done.

Specifications must have the following three characteris-

tics

1. Unifunctionality - Each statement describes a single
function to be incorporated in the target system.

2. Implementation Independence - Each statement should
be non-procedural. In other words, each state@ent
should specify what needs to be done, not how it is
to be done.

3. Common Conceptual Level - All requirements should be

on the same level of generality.
A set of seven requirement statement templates was devel-

oped to meet the above criteria, and also to ease the trans-
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lation of regquirements stated in other formss/languages. A
list of the templates is given belou (adapted from
[HUFF79 1).

The 7 TIemplates:
1. Existence
There (can/will) be <mod> <obj>
2. Property
<mod> <obj> (can/will) be <mod> <propexty>
3. Treatment
<mod> <obj> (can/will) be <mod> <treatment>
u, Timing
<mod> <obj> (cans/will) <timing rzelationship> <mod>
<obj>
5. Volume

<mod> <obj> (cans/will) be - <ordexr statement>

we

<index> <count>
6. Relationship (Subsefting)
<mod> <obj> (can/will) contain <mod> <obj>
7. Relationship (Independence)
<mod> <obj> (cans/will) be independent of <mod>

<obj>

3.4.2 Interdependency Assessment of Requirements

The next step is the determination of interdependencies
betueen all pairs of requirement statements. These intexde-

pendencies are expressed as weights. A weight is a number
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between 0 and 1. The smaller the number thé weaker the in-
terdependence, while a larger number has the opposite ef-
fect. Therefore the value of 0 means absolute independence,
while a value of 1 means absolute dependence.

Through experience, SDM users have discovered that most
interdependency assessments fall into three categories:
Strong(0.8), average(0.5) and weak(0.2). This three way
breakdown is much easier to wuse while still providing a
meaningful measure of interdependency.

There still remains the question of hoﬁ interdependencies
are determined. SDM does not provide a systematic method to
meet this need. However, SDM offers the following points as
guidelines:

1. The designexr must have in mind at least some idea of
hou to implement related requirements. From this im;
plementation schene, the designer can then give an
assessment of interdependency. If it is possible to
develop several schemes for implementation, then the
designexr can evaluate the different schemes and as-
sign weights accoxrding to how important a pair of re-
gquirements is within each of the schemes. In othex
words, if a pair of requizemenfs seem to be related
in all the schemes, then a weight of 0.8 should be
assigned to it.

2. In other cases, trust intuition.
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3.4.3 Graph Modelling of Requirements
Each requirement stated using the template method can be
represented by a node, and the interdependencies can be rep-
resented by links between nodes. The weights can be record-
ed in a square matrix, and the square matrix can then be

used in the decomposition process.

3.4.4 Graph Decomposition Techniques

Several different clustering algorithms have been devel-
oped in connection to SDM. Among them are the Intexchange
Algorithm and the Hierxarchical Clustering Technigques. De-
tailed discussion of the algorithms are found in [HUFF791},

[WONG80] and [LATTS80].
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3.5 OTHER DESIGN METHODOLOGIES
In this section we describe U4 other methodologies. These
methodologies were not chosen for the design experiment for
various reasons. Houwever, they still provide interesting

insights to software design.

3.5.1 Event-based Desigqn Methodology (EDM)

EDM [RIDD79] is a methodology based on the top-down de-
sign approach, and it is particularxly good for the architec-
tural design phase. The methodology consists of iteratively
applying four basic steps. These steps form a stage of the
design. The input to a stage is a partial deéign, corxre-—
sponding to the current state of the design effort.

The four steps are as follows:

1. Identify events occurring in the part of the system
which is being considered in the present stage. An
event could be a "happening" in the system which re-

quires the system to respond in some specified fa-
shion. Or an event could be an action taken by the
system in response to some stimuli. In other words,
events definition is specification of the input and
required system behavior in response to these inputs.
2. Establish constraints on the occurrences of events.
This step 1is basically the specification of correct
system behavioxr in response to stimuli. The differxr-

ence between this step and step 1 lies 1in the scope
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of consideration. In step 1, desired system behav-
iors are stated in texrm of what needs to be done. It
does not consider how it is done nor does it consider
interactions with other parts of the system. There-
fore by establishing constraints such as the sequence
in which events (i.e., system responses) should take
place, the designer can gradually evolve requirements
into functional modules.

3. Define components.uhich would pexrform tasks specified
by the events. This step defines a module for each
of the events that correspond to a desired system be-
havior. The defined module can be completely new or
it can be an existing module created during a previ-
ous stage.

4. Define the necessary interactions between modules.
The intexactions would be subject to the constraints
of step 2. The developers of this methodology plan
to provide verification capabilities based on this
step. That is, if during +this step within every
stage, the designer c¢an prove he has satisfied all
the constraints, then it could be the basis for a
proof of correctness.

This methodology presents a variation +to the strictly

top-dowun approach described earlier. The basic decomposi-
tion procedure has been extracted from the top-down ap-

‘proach, and given more freedom in its use. The four step
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procedure described above is actually a formalization of the
basic decomposition process in the top-down approach. More-
over, this formalized procedure can be treated as a basic
"building block with which a complete design procedure can be
construdted.

A direct consequence of the above is the increased flexi-
bility over a strxictly top-down approach. In a top-down ap-
proach, the design problem is decomposed in an orderly way,
but in this methodology the desomposition step can be ap-
plied to any subproblem at any time. This is true because
the only input to the four step procedurxe is a partial de-
sign. This partial design need not be the result of a se-
ries of decomposition steps, because it could be indepen-
dently defined. This feature is especially useful in
combining the top-d;wn approach with othexr approaches.

>

3.5.2 Higher Order Software (HOS)

HOS [HAMI76] was born out of many years of experience in
designing and implementing NASAR projects. The methodology
is oriented towazrd lazée real-time systems. Because of the
complexity usually associated with such systems, HOS is sup-
ported by a system of tools called the Integrated Softuware
Development System (ISDS). The designer interacts with ISDS
to produce a specification of the target system. Then the
specification is fed into the Design Analyzer and the Struc-

turing Executive Analyzer. The output of the Analyzers is a
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complete system specification. Given this specification the

designer can perform architectural design.

The HOS procedure can be split into three phases:

1.

2.

3.

Specify requirements according to a set of axioms.
Feed specifications into the Designer Analyzer and
Structuring Executive Analyzer.

Produce architecturél layerxs.

HOS provides a metalanguage c¢alled AXES with which to

specify the requirements. The metalanguage is based on six
axioms to which the designer must adhere. They are as fol-
lows:

1.

A given module controls the invocation of the set of
valid functions on its immediate, and only its imme-
diate, lowexr level.

A given module is responsible for elements of only
its own output space.

A given module controls the access rights to each set
of variables whose values define the elements of the
output space for each immediate, and only each imme-
diate, lowexr level function.

A given module controls the access rights to each set
of variables whose values define the elements of the
input space for each immediate, and only each immedi-
ate, lower level function.

A given module can reject invalid elements af its

oun, and only its ouwn, input set.
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6. A given module controls the ordering of each tree for

the immediate, and only the immediate, lowexr levels.

After the iequirements are specified in AXES, they are
fed into the analyzers. The analyzers check for violation
of the axioms 1in the specifications. The Design Analyzex

checks for static consistency, and the Structuring Executive
Analyzer checks for dynamic consistency.

In addition to consistency checks, study can be done in
the following areas: Fault tolerance, error detection, tim-
ing and accuracy, security requirements, system reliability.

Having the analyzed specifications;,; the designer can be-
gin the architectural design. In this phase the designexr
develops a system architecture and allocates the available
resources. The architecture is constructed in layers, simi-
lar to the concept of a hiexrarchy of abstractions. Then the
resources are allocated to the system components using the
Resource Allocatiﬁn Tool (RAT). The RAT uses the architec-
tural form toianalyze the target system in texms of time and
memory optimization. An optimal module configuration is

produced by the RAT.

3.5.3 Logical Construction of Programs (LCP)

The LCP philosophy [WARN74] is that program structure
should bé derived from the input and output data structures
(similar to Jackson's methodology). The data structures are

constructed from three basic elements: Sequence, Iteration,
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and Selection. Furthermore, the data structures are ex-
pressed in a hierarchical format called the data strxucture
diagram.

Having defined +the data structures, the designer con-
structs a flow chart. The flow chart would express the log-
ical sequence of actions to be pexrformed. The chart is then
translated into an instruction list, which f£inally gets
translated into code.

LCP does not provide a step by step procedure, houever,’

the following steps are implied:

1. Define input and output data structures.

2. Construct a flow chart based on the data structures.

3. List operations to be performed by each part in the
flow chart.

4. Translate the list of operations into code.

The LCP data structure diagram is based on the building
blocks shown in figure 7.

The data structure diagrams c¢an be directly translated
into a flow chart. The sequence element becomes a sequence
of nodes. The iteration element becomes a loop and the se-
lection element becomes a decision box.

Finally, the designer generates a list of operations for
each node in the flow chart. The list of operations is in-
tended to be a buffer from the confusion which may occur if
the designer had transiated the flow chaxrt directly into

code. By 1listing all the operations for each box of the
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flow chart, the designer can take the design one step lower
in detail without being tied down by the details of a pro-

gramming language.

3.5.4 WELLMADE
The primary goal of WELLMADE is to add a mathematical di-
mension to the conventional top-down approach. The design-
ers of WELLMADE [BOYD78] c¢laim that the major difficulty in
softwuare development is the lack of mathematical discipline.
Therefore, WELLMADE has focused on proving the correctness
of a program.
- The general approach to proof of correctness is based on
Dijkstra's idea of predicate transformer [BOYD78]. Basical-

ly, a program can be regarded as a transformation of input
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into output. From this point of viewuw, one can then work
backwards from the cutput states and derive all the possible.
inputs under the transformation. To do this an explicit
statement of all output states and a mathematical statement
of the transforms is needed. If the resulting input state
space, derived from the above process, contains the speci-
fied legal input states, then the program performs corxrectly
for all legal inputs.

In terms of system architecture, WELLMADE advocates a
layexred design. The concept is similar to the idea of step-
wise refinement. The design begins from a highly abstract
machine with abstract data and abstract program declaration.
Then the modules in the abstract machine are decomposed in
greater detail. Often the decomposition results in another
abstract machine. The decomposition c¢ontinues in this.fa—
shion until a lével of detail is reached where coding is
possible.

There are only two phases in the WELLMADE methodology.
They are applied repetitively until the design is finished.

1. Requirement Specification,

2. Program Design.

WELLMADE does not have its owun specification language.
However, the following features are needed in the specifica-
tion in oxrder to prove correctness:

1. Be able to represent assertions, predicates, progranm

states, invariant relationships and requirements.
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2. Include first-oxder predicate calculus.
3. Include notations for describing data types.
4. Be able to recoxrd performance information.

WELLMADE does not provide a method to decompose the de-
sign. There is, instead, a program design language for rep-

resenting detailed procedural logic and data structures.



Chaptexr IV

AN EXPERIMENT IN SYSTEM DESIGN

In this chaptex, fouxr different designs of a text editor
produced by four different design methodologies are present-
ed. The purpose of this exercise is twofold. First, it 1is
a learning experience intended to increase one's insight
into design. Secondly, the experiment provides a way to
compare different methodologies in a concrete manner.

The target system for the experiment is a stream editor.
In this system, text is considered as a sequence (or stream)
of characters. In othexr words, carriage return and line-
feed are just charactexrs which produce a special effect on
the screen.

The rest of the chapter is organized as follows: Séction
one is a list of usexr requirements for the editor.‘ Section
two specifies the data structures. Section three explains
documentation of Fhe designs. Section four contains the ac-—
tual designs. Finally, section five is a comparative evalu-

ation of the methodologies.
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4.1 REQUIREMENTS FOR A STREAM EDITOR
The following requirements were derived for an experimen-—
tal system. That is, the target system does not have real-
time interaction with a terminal. Instead, the terminal is
simulated by a matrix of éharacters. Also, the target sys-
tem is intended to be device independent, therefore we did
not include any specific operating system considerations.
Lastly, PL/I was thosen as a model language for the design
to provide the necessary data structures.
1. The system should support the view that text is a

stream of characters.

2. The design shall be independent of any particular
system.

3. The programming language is PL/I compatible.

4. The screen is represented by an 80x30 matrix of char-
acters.

5. The editor shall accept the full set of Ascii charac-

ters.

6. A portion of the text is displayed on the screen au-
tomatically.

7. A cursor shall be provided +to indicate the current

point of reference.

8. Text 1is automatically insexrted aftexr the cursor,
there is no need to issue an insert command.

9. The editor shall have an internal buffer for storing

the text.
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11.

12.

13.

14.
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Multiple editor commands can be issued in sequence.

Text input and command input are separated by a con-

trol character (e.g., d).

Multiple editoxr commands are separated by control

characters. That is, every individual command is

preceeded by a control character.

Editor commands are preceeded by a contxol character.

The following commands should be implemented:

a) Read File - Format is "dr <file-name>"., This com-
mand will store the content of a file in the in-
ternal buffer of the editor.

b) Write File - Format is "duw <file-nanmed>". This
command will write the content of the editox's in-
ternal buffer onto a file.

¢) Character Forward - Format is "dcf". This command
moves cursor to the next character.

d) Character Back - Format is "dcb". This command
moves the cursor back by one characterx.

e) Character Delete - Format is "dcd". This command
removes the c¢urrent character fxrom the buffex
(i.e., the character pointed to by the cursor).

£) Word Foruward: Format is "dwf". This command moves
the cursor tovthe first character of the next woxrd
(words are delimited by a space).

g) Word Baqk: Format is "duwb". This command moves

cursor to the last character of the previous worxd.
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i)

i)

k)

1

m)

n)
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Woxrd Delete: Format is "dud". This command re-
moves the current word from the buffer beginning
at the cursor.
Next Line: Format is "d1lf". This command moves
the cursor to the line immediately after the cuzr-
rent line (lines are delimited by a carriage re-
turnd. Cursor is left in the same relative posi-
tion, unless the previous line is too short. In
the latter éase the cursoxr is put at the end of
the previous line. |
Previous Line: Format is "dlb"™. This c¢ommand
moves the cursor to the line immmediately before
the current line. Cursor positioning follows the
same rules as dlf.
Delete Line: Format is ‘"ald". This command re-
moves the current line from the buffer beginning
at the cursor.
Top of File: Format is "at". This command moves
the cursor to the first character in the current
buffer.
Bottom of File: Format is "ab". This command
moves the cursor to the last éharacter of the cur-
rent buffer.
Strine Search: Format is "ds <String>". This com-
mand will place the cursor at the first character

of the next occurrence of <String>.
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o) String Replace: Format is "Jr <String>

<New—-string>". This command will do a String

Searxrch for <String>, then zreplace <String> by

<New-string>. The cursor is left at the first
character of the replaced string.

p) End: Format is "de"™. This command terminates the

editoxr progranm.

4.2 DATAR STRUCTURES

During this phase of the design process, the data struc-
tures needed by the system are identified. There are tuwo
fypes of data objects: position indicators and storage ele-
ments. The ﬁeed for storage elements arise in two parts of
the systems. First, there must be an internal buffer to
store the text. Secondly, the screen must hold a portion of
the text at all times. Therefore the matrix which simulates
the screen is also a storage element.

Each of the storage elements also needs a position indi-
cator. Therefore a cursor is used to indicate to the userx
his position on the screen. A cursor is alsoc needed to in-
dicate to the system its position within the buffer.

The specific requirements are stated in the following

subsections.



50
4.2.1 Internal Buffex
Two issues arise in the design of a buffer. First, the

system must reads/urite the buffer contents fromsto datasets

(oxr files). Therefore file access facilities available in
PL/I must be considered. Secondly, the kinds of buffer op-
erations used by the system has to be considered. Further-

more, the buffer should be designed in such a way so that
these operations can be performed efficiently.

Two Kkinds of file access facilities are available in
PL/I: Stream I/0 and Sequential I/O. Stream I/0 vieus text
as a sequence of characters. Sequential I/0 is record ori-
ented, which in this case, means that =read/write is done
line by line.

The kinds of buffer operations the system will be doing
are insertion and text editing. Insertion does not require
any special treatment bgcause the rate of input Zfxom the

terminal would be so slow <compared to the computer's pro-

cessing rate. Editing of text, howevexr, requires fast re-
sponse time. Three types of structures are considered for
the buffer: character linked structure, word linked struc-

ture, and line linked structure (see figure 8).

The final selection is the 1line linked structure for the
buffer. This structure gives a close representation of text
(i.e., a close resemblance to reality). Stream input from
the terminal is selected to support the strxeam oriented ap-
proach. Sequential I/O.'is selected for file access func-

tions because the buffer is record oriented.
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The basic component of the line linked buffer is the line
structure. The line structure has two pointers, one points

to the previous line structure and the other points to the

next line structure. The storage capacity of the 1line
structure is 80 characters. This number is chosen to match
the width of the screen. If the user inputs a line of text

longexr than 80 characters, then the status bit will be set
and the remainder of the line will be continued on the next
line structure (this is referred to as overflow). In other
words, the status bit indicates whether or not the stored

string of characters ends with a carriage-return character.
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4.2.2 Buffer Position Indicatox
In order to position the cursoxr at any point in the buff-
er, two things are necessary: a pointer to the line struc-—

ture, and an offset indicating the position of the character

within the text string. Also, foxr efficiency reasons, tuo
more pointers are added. The first points to the head of
the buffer and the other points to the tail. Finally, a

three element array is provided +to record incremental move-
ments of the position indicator (This will expedite the re-
positioning of the cursor on the screen). The "inc" array
is used only by JacKkson's methodology and Structural Design.

The position indicator will be called "BUFFER".

dcl BUFFER

1 line-ptr ptr

1 offset £fixed binary
1 head ptr

1 tail ptz

1 inc arxrray(3)

4.2.3 Simulated Screen
The screen is simulated by an 80x30 matrix. In PL/I this
is represented by a string array with 80 elements. Each el-

ement is a string of 30 charactezrs.
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4.2.4 Screen Position Indicatox

Associated with the screen is a position indicator which
points to the usexr's current position on the screen. It is
simply 2 integers. The first integer represents the hori-
zontal position (the x-coordinate), and the second integer
represents the vertical position (the y-coordinate).

dcl SCREEN
1 scr string(30) array(80)
1 #-coord fixed bina;y

1 y—cooxd fixed binary

4.2.5 The Package Structure

In order to simplify the passing of the above data struc-
tures, the package data structure is creatd. It has 2 ele-
ments: a pointexr to a BUFFER structure, and a pointer to a

SCREEN structure.

dcl PACKAGE
1 Buff-ptr ptr

1 Scr-ptxr ptr

4.3 DESIGN REPRESENTATION

The system designs are described in three different ways:
DARTS call graph, DARTS tzrees, and functional descriptions.
DARTS c¢all graphs are used +to describe system architecture.
DARTS trees are used to describe the logic with the modules.
Functional description specifies the name of the module, the

parameter and the module's functions.
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Each of +the above design representation techniques will
be discussed in the ensuing subsections. In the remainder
of this introductory section, a general description of DARTS
is presented.

Design Aids foxr Real-Time Systems (DARTS) is a tool de-
veloped at the C. S. Draper Laboratory. It is used to aid
in the definition of computer systems. It is intended to
increase productivity, and improve quality and efficiency.
In oxrdexr to accomplish this, DARTS provides diagrams and ta-
bles to document the design, consistency checks, quality me-
trics, and simulations.

DARTS represents systems as trees. These design trees
describe a set of communicating entities <c¢alled processes,
each of which <consists of nested sequential contrecl logic.
This scheme encourages top-down development, and structured
control flou. The hierarchical tree structure also allous

the design to be viewed from different levels of detail.

4.3.1 DARTS Call Graph

A call graph is a graph which describes the communication

between modules. Thus, it also describes the architecture

of the system. " The graph consists of intexrconnected rectan-
gular boxes. Each box represents a module, and inside the

box is the name of the module. Tuwo boxes are connected by a

line if one module c¢alls the otherx.
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4.3.2 DARTS Trees

To describe the logic of a module, DARTS provides an hi-

erarchical tree structured technique. Basically, the de-
signer describes his design using three components: the it-
erator, +the selector and the sequencer. The functions of
each type of component is self evident. The DARTS tree is

represented graphically by elliptical shapes in figure 9.
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Sequencer (Do tasks 1 through n sequentially)

1421

Iterator (Do tasks 1 through n repetitively until
the stopping condition is satisfied)

°

Selector (The if-then-else selector)

Figure 9: DARTS Tree Components
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4.3.3 Functional Description
In addition to the graphical representations, each module.
is described in texms of its pazamete:s and function. A
freehand format is used, the following is an example:
Module name: Print
Parameter: <filename>
Function: Place a copy of file <filename> in the

printer queue.

4.4y EDITOR DESTIGNS

As was mentioned earlier, four different methodologies
are used for this design experiment. They are the Jackson
Methodology, Structured Design, Systematic Design, Systemat-
ic Design Methodology and the Hierarchical Development Meth-
odology.

A problem that is immediately apparent is how to prevent
earlier designs from biasing results of methodologies used
later. Certainly design is a refinement process, therefore,
having thought through a design once would surely improve
the quality and efficiency of the second design. To elimi-
nate this bias would be impossible, but some control can be
maintained by strict adherence to the procedures defined by
each methodology. Furthexrmore, the order they are used is
HDM, Jackson, SD and SDM, where HDM is the methodology which

is the least mechanical.
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The following subsections present briefly the design pro-
cess for each methodology. Then a discussion of the evalua-
tion technique and the results of the evaluations are pre-

sented.

y.4.1 Hierxarchical Development Methodology

HDM consists of 7 steps. First the requirements are
specified. Then the top and bottom abstract machines are
specified. This is followed by the specification of the in-
termediate machines. Then the data structures for each ma-

chine is determined and. the operations of each machine is
implemented as a program on the next lower machine. Lastly,
the abstract machines are translated into a programming lan-
guage.

First, we identify the abstract machines. HDM does not
provide any guidelines for doing this, therefore a trial and
error method is.used to derive the hierarchy of abstract ma-
chines shouﬁ in f£igure 10.

The data representation for each machine is self evident.
Each of the abstract machines is further modularized. The
EDITOR machine consists of 17 modules. A DISPATCH, and one
module for each editor command (see figure 11).

The BUFFER machine consists of modules which operate on
the buffer. They are divided into. five types: Constructors,
Selectors, Mutators, Testers, and Cursor Movers. (see fig-

uxre 12).
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The SCREEN machine provides operators to manipulate the
screen (see figure 13). The entire architecture is shown in
figure 14.

The DARTS tree representation for a selected set of mod:
ules 1is given. Many of the BUFFER machine modules are
straightforward, tlierefore only functional descriptions are

given for them.
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Module Name: EDITOR

Parameter: none
Function: Get a word from the input stream, and dispatch.
- ¥8
EDITOR
3 Sz 513
TEMP= GET-
Pk Ao
%‘I’B BUFFER,
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Module Name: DISPATCH
Parametexr: PACKAGE, WORD

Function: Dispatch WORD to the appropriate subroutine.

G
b




.nodule Name: INSERT
Parameter: PACKAGE, WORD

Function: Insert WORD before the cursor.

33
INSERT
532
CONCAT WORD IF LNTH
WITH CURRENT EXCEEDS ONE
TEXT LINE
4324

ADD BMPTY LINR
UBING BUFF-ADD-
BMP-LINE

63
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Module Name: RERAD
Parameter: PACKAGE, FILENAME
Function: 1Insert contents of file FILENAME before the cur-

sSox.

54
REBAD
S4d a4z nes
LOOP UNTIL
END OF PILE CALL BUFF—ADD~ CALL BUFF—PUT.
Tm'ls.mo)
GET NEXT

CALL BUPF
RECORD FROM LINE-PORWARD

TEMP= NEXT RECORD



Module Name: WRITE

Parametezr:

Function:

PACKAGE, FILENAME

65

Copy the entire buffer into a file under FILENAME.

543
LOOP UNTIL
END OP BUPFER
USE BUFP-TALZ
34331 5532
TEMPL= BUYP- INSERT DYTO CALL BUPP-
aET- FILE LINB-PWD

WRITE BUFFER
LINE BY LINE



Module Name: CHAR-FWD
Parametexr: PACKAGE
Function: Move cursoxr Fforuard

BUFF-CHAR-FWD) .

Module Name: CHAR-BACK
Parametexr: PACKAGE
Function: Move cursor back

BUFF-CHAR-BACK).

Module Name: CHAR-DLT

Parameterx: PACKAGE

one

one

characterx

character

Function: Delete character pointed to by the

call BUFF-CHAR-DLT).

(Just

(Just

CUursor

©e

66

call

call

(Just



Module Name: WORD-BACK

Parameter: PACKAGE

Function: Move cursoxr to the tail of the previous

FIND PREVIOUS
NON BALNK CHAR

LOOP UNTIL BUFY-—
PEEK-BACK/= BLANK

CALL BUFP-—
CHAR-BACK

CALL BUFF-
" CHAR-BACK

3821

CALL BUFP-

CHAR-BACK
PUT CURSOR AT
TAIL OF PREVIOUS
WORD

word.

67



Module Name: WORD-FWD

Parametex: PACKAGE

Function: Move PACKAGE'SsS cursor

to the head of the

word. Uses buffer machine operators.

WORD-FWD

a7.11

CALL BUPF-
CHAR-FWD

68

next
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Module Name: WORD-DLT
Parameter: PACKAGE
Function: Delete everything between the cursor and the next

space.
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-Module Name: LINE-FWD
Parameter: PACKAGE
Function: Move cursor to the next line. If next line is too

short, the cursor is placed at the tail of the

line.
39
LINB-FWD
391 392 533
TEMPi=~ BUFF— CALL BUPP- TEMP2= BUFF-
GET-TEXT-BEF LINE-PWD GET-TEXT

CHAR-BACK
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Module Name: LINE-BACK
Parameter: PACKAGE
Function: Move cuxrsor +to the previous line. If previous
line is too short, cursor 1is placéd at the‘tail of

the line.

21041 31042
THEN MOVE
CURSOR TO THE
TAIL
Dot 10
D Ry
310411

CALL BUFY-
CHAR-BACK
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Module Name: LINE-DLT
Parameter: PACKAGE

Function: Delete everything <£from cursor to the end of the

line. If line is enmpty, remove it from the buff-
er.

)14 BOPFP-L m_

EMP?= TRUR

BUFP-LINE-DLT
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Module Name: TOP

Parameter: PACKAGE.

Function:

Place cursor at the first character of the buffer.
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Module Name: BOTTOM
Parametexr: PACKAGE

Function: Place cursor at the last character of the buffer.

e g
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Module Name: SEARCH
Parameter: PACKAGE, STR
Function: Find firxst occurrence of STR after cursor. Place

cursoi at the head of STR.

14

=

3144 D142

!
|
TEMP~ BUFF-— FLAG= TRUR l
GET-TEXT-AFT
{
-—— —
t
@
DO UNTIL
) PALSE
—-—t
a3l 51432 '
|
IF STR IS A
SUBSTRING OF ADVANCE CURSOR l
|
i
314318 214312 314324 314322
‘THEN PUT ELSE CONTINUR CALL BUFP-
CURSOR AT LINE-FWD E;F-"l-'m

AND SET FLAG TO

{

|

HEAD OF STR !
PALSE !
|

|
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Module Name: REPLACE
Parameter: PACKAGE, STRI1, STR2

Function: Replace the first occurrence of STR1 after cursor

by STR2.

RLS®
POUND

1822
-
15221 sun222
DELETE STRL
(==
s |



Module Name: CREATE-BUFF
Parametex: none

Function: Return a pointer to a buffer structure.

Module Name: COPY-BUFF
Parameter: PACKAGE
Function: Return a pointer to a <c¢opy of the buffer

turxe.

Module Name: CREATE-LINE
Parametexr: none

Function: Return a pointer to a line structure.

Module Name: BUFF-GET-TEXT
Parametexr: PACKAGE

Function: Return the contents of the current line.

Module Name: BUFF-GET-TEXT-BEF
Parameter: PACKAGE

Function: Return text string before the cursor.

Module Name: BUFF-GET-TEXT-AFT
Parametexr: PACKAGE

Function: Return text string after the cursor.

77

struc-



Module Name: BUFF-PEEK-FWD
Parameter: PACKAGE
Function: Return the next character

sSor.

Module Name: BUFF-PEEK-BACK

Parameter: PACKAGE

78

without moving the cur-

Function: Return the previous charactexr without moving the

cursor.
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Module Name: BUFF-PUT-TEXT
Parameter: PACKAGE, STR

Function: Insert STR after the cursor.
i

Module Name: ADD-EMP-LINE
Paramexrter: PACKAGE

Function: Add an empty line after the current line.

Module Name: BUFF-LINE-DLT
Parameter: PACKAGE
Function: Delete the current 1line of text beginning at the

cursor, then merge with the next line.

Module Nante: BUFF-CHAR-DLT

Parameter: PACKAGE

Function: Remove character at the cursor. Use substring
function and concatenation. Call
SCREEN—FILL*LIHE.

Module Name: BUFF-LINE-EMPTY?

Parametexr: PACKAGE

Function: Return true if contents of current line is the

null string.

Module Name: BUFF-BUFF-EMPTY?

Parametexr: PACKAGE
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Function: Return true if there is nothing in the bhuffex.

Module Name: BUFF-HEAD?
Parameter: PACKAGE
Function: Return true if cursor points +to the first charac-

texr in the bufer.

Module Name: BUFF-TAIL?
Parameter: PACKAGE
Function: Return true if cursor points to the last character

of the buffer.

Module Name: BUFF~-LINE-FWD

Parameter: PACKAGE

Function: Move cursor to the next 1line. Cursor offset re-
mains the same unless the next line is too short.
If the latter is true then put cursor at the end

of the next line.

Module Name: BUFF-LINE-BACK
Parametexr: PACKAGE
Function: Move cursoxr to the previous line. Cursor position

follows the same rules as BUFF-LINE-FWD.

Module Name: BUFF-CHAR-FWD
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Parameter: PACKAGE
Function: Increment the offset of current line by 1. If re-
sult crosses line boundary, then set offset to
length of previous line, and current line pointer
to previous line. Finally, call

SCREEN-MOVE-CURSOR.

Module Name: BUFF-CHAR-BACK

Parameter: PACKAGE

Function: Decrement the offset. If result crosses 1line
boundary, then put the cursor at the end of the

previous line. Call SCREEN-MOVE-CURSOR.

Module Name: BUFF-FIRST-LINE
Parameter: PACKAGE
Function: Set current lihe pointer to the pointer to the

first line. Call SCREEN-FILL-SCREEN.

Module Name: BUFF-LAST-LINE
Parameter: PACKAGE
Function: Set current line pointer to the pointexr +to last

line. Call SCREEN-FILL-SCREEN.

Module Name: SCREEN-CREATE-SCREEN

Parametexr: none
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Module Name: SCREEN-MOVE-CURSOR
Parameter: PACKAGE, X, Y
Function: Add X to horizontal index, and add Y to vertical

index.

Module Name: SCREEN-FILL—SCkEEN
Parametexr: PACKAGE

Function: Refill the screen. Place current line at the mid-

dle.
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b.4.2 Jackson Methodology
As was stated in chaptexr 3, Jackson's methodology con-

sists of 3 steps:

1. Define the input and output data structures.

2. Transform the data structures into program struc-
tures.

3. List the program tasks as executable operations, and

allocate each task to a program component.
The input and output data structures for the editor are
as shown in figuxe 15.

There is a structure c¢lash between the input and the out-

put data structures. Houwever, there is a substructure which
both the input and output share - the text substructure.
This leads us to the buffer structure directly. We can use

the program inversion technique +to contruct the architec-
ture: Input Buffer 'Output

Program Inversion separates the problem into two parts.
The first part deals only with the transformation from input
into the buffer. The second part deals  with transforming
the buffexr to output.

The input .conversion can be handled by the system struc-
ture shown in figure 16. Notice that it is exactly analo-
gous to the "Command"™ substructure of the input data struc-.

ture.
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Figure 15: Jackson's Input and Output Data §tructures
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The output handler is contructed from the output data

structure as shoun in figure 17.

OUTPUT-HANDLER

— \

FIX FILL

CURSOR SCREEN
FIIL
LINE

Figure 17: Jackson's Output Handler

- — e o — — — — - — — —— ——t ——
L s e o e e e = o = — =

The entire system architecture is shouwn in figure 18.
Defailed design is done with DARTS. The logic of each mod-
ule is displayed using DARTS Trees. They are listed in the

following pages.
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Module Name: EDITOR

Parameter:

Function:

CREATE BUFFIR &

none

Coordinates activities between input and output.

u
EDIT
3z a3
o ORT FLAC= LOOP WHILE
FALSE FLAG/= @END
3Ly 3432 3133
CALL INPUT- CALL OUTPUT- RESET FLAC
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Module Name: INPUT-HANDLER
Parameter: PACKAGE, INSTREAM
Function: Dispatch on the type of the input string. TIf in-
put word is a command then call DISPATCH, other-

wise call INSERT.
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Module Name: INSERT

Parameter: PACKAGE, INSTREAM
Function: Driver-loop for insertion of words one at a time.
33
INSERT
A3l 32 33
G R e Shhros 02

IF PEEK-
=9

THEN SET FLAG
TO FALSR
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Module Name: INSERT-WORD
Parameter: PACKAGE, WORD
Function: Add word to the buffer. Put PACKAGE's cursor at

the end of WORD.

INSERT-WORD
-£
SET TEMP VARS S¥T TEMP VAR IF NEW-LNTH=< |
@
NEW-LNTH= LAST-CHAR= LAST
0 CHAR OF NEW-WORD

3431 34.32
CONCAT OLD~ . ELSE CREATR
LINE & NEW-—

- — — > — i o o

i
{
|
]
(T
344 345
IF LAST-CHAR- SET STATUS TO
SCREEN
bl 3442
PUT CURSOR AT ELSE CURSOR
HEAD OF IS AT TAIL QP
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-Module Name: DISPATCH
Parameter: COMMAND, PACKAGE, INSTREAM
Function: Dispatch the command +to the appropriate command

Processor.

344 352
THEN CALL READ KISE 1P
COMMAND=
OWRITE

THEN CALL AND 30 ON _
WRITE
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Module Name: OUTPUT-HANDLER
Parameter: PACKAGE
Function: Determine whether +to refill one 1line of the
screen or refill the Fntire screen. Also coordi-

nates the adjustment of the screen cursor.

38
OQUTPUT-HANDLER
364 282
Ir STATUS I3 0 CALL FIX-
/Lt 3842
IF STATUS 1S 1
38121 30122
THEN CALL BLS® IF
BEFILL-LINR STATUS I3 2

ABL221
--
REPILL—SCREEN
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Module Name: REFILL-LINE
Parameter: PACKAGE
Function: Copy the current line of text from the buffer

~.nto the screen.

374 72
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Module Name: REFILL-SCREEN
Parameter: PACKAGE
Function: Refill the screen array, placing the currxent line

at the middle of the screen.

38
REPFILL-SCREEN
384 382
TRACE BACR 15 CALL REPILL-
LINES LINE 30 TIMBES
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Module Name: FIX-SCREEN-CURSOR
Parameter: PACKAGE
Function::@ If refill status is 0 or 1 the adjust the xcoorx-
dinate. if it is 2 then set ycoordinate to 15
(middle of the screen), and adjust xcoordinate as

hefore.

39
FIX—SCREEN-
CURSOR
391 392
IF STATUS B8 2 XOOORDINRATE=
LNTH(TEXT)
3844 3042



Module Name: READ
Parameter: PACKAGE, FILENAME

Function: Copy the contents of the file into the buffer.

340
READ
3404 3402
DO UNTIL END SET STATUS T0
OF FILR 2
34044 34042 34043

CREATE ENPTY RD
(o ) (a T
O
DO IT

96



Module Name: WRITE

Parameter: PACKAGE, FILENAME

Function: Copy the entire buffer’
FILENAME.
au
WRITE
3aLr
INITIALIZR LOCP UNTIL

into a file

312

END OF BUFFER

i
E

97

underx



‘Module Name: CHAR-FWD
Parametexr: PACKAGE

Function: Move cursor position forward one character.

cm.m

98



Module Name: CHAR-BACK

Parameterx:

Function:

PACKAGE

Move the cursor position back one character.

99
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Module Name: CHAR-DLT
Parametexr: PACKAGE

Function: Remove the character pointed to by the cursor.

Aled 3142

SET TEMP1=
SET TEMP= APTER
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Module Name: WORD-FWD
Parameter: PACKAGE
Function: Move cursoxr position to the head of the next

word.
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Module Name: WORD-BACK
Parameter: PACKAGE
Function: Move the cursor position to the tail of the pre-

vious word.

WORD—-BACK

FIND PREVIOUS

USE CHAR-BACK
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Module Name: WORD-DLT
Parameter: PACKAGE
Function: Remove the string of non-space charactexrs begin-
ning at the current position until the next space

character.

o4
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Module Name: LINE-FWD
Parameter: PACKAGE
Function: Move cursor to the next line. The offset does not
change unless the length of next line 1is too
short. In the latter case, the cursor is placed

at the tail of the next line.

LINN-FWD

IF OFFaET>
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‘Module Name: LINE-BACK
Paramefer= PACKAGE
Function:  Move cursor to the previous line. Offset un-

changed unless text on previous line is too short.

CEL]
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Module Name: LINE-DLT
Parametexr: PACKAGE
Function: Deletes text from the cursor to the end of the
line. Cursor is left where it was. Adjoin next

line to the remainder of current line.

LINE-DLT

13204 13208 13204
oF . SET TEMP- PTR MERCE THE
%‘3& TO NEXT LINE DISCARDED LINE

CURSOR

CALL INSERT ON
THE TEXT OF TEMP.




Module Name: TOP

Parameter:

Function:

PACKAGE

Place cursor at the head of the buffer.

107
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Module Name: BOTTOM
Parameter: PACKAGE

Function: Place cursor at the end of the buffer.

e
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Module Name: SEARCH
Parameter: PACKAGE, STRING
Function: Place cursor at the end of the first occurrence
of string oafter the cursor. If net found then

leave cursor alone.

IF STRING NOT
FOUND

CHECK THR
REST OF THIY
LINE




Module Name: REPLACE

Parametexr: PACKAGE, STR1, STR2

- Function: Find STR1 using SEARCH, and replace STR1 by STR2.
If not found then nothing happens, if found, then

cursor is placed at the head of STR2.

1324
REPLACE

~

: 1

13244 13242 1243 {

|

=) ey )

|

v o ey |

|

|

|

|

NOT FOUND, ELSE CONTINUR |

|

|

|

|

I-————————--—————.-——--——..-——--—-..—————

!
|
!
|
l
!
L




4.4.3 Structured Design

Structured Design consists of two simple steps. First
translate the design problem into a data flow graph. Sec-
ond, use either Transform Analysis or Transaction Analysis
to create the architecture.

The data flow graph is as shown in figure 19.

This DFG is a selection among different alternatives.
Therefore Transaction Analysis is used to construct the ar-

chitecture.

MODIFY
SCREEN

Figure 19: DFG for the Editor
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The transaction center is the bubble "Input Stream"™, because
at that point the input data stream branches to three dif-
fexrent paths. The three input bubbles can be replaced by
the dispatch - -architecture in figure 20.

Now the DFG reduces to a sequence of bubbles (see figure
21, and we can use Transform Analysis to derive the archi--
tecture for the remainder of the system. The entire archi-

tecture thus derived is shown in figure 22.
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Module Name: EDITOR
Parameter: none

Function: Input-output driver loop.

st
EDITOR
sad 942 i
CRRATE BUFFER TEMP= GET- |
& SCREEN WORIXINSTREAM) |
l
r—-- S |
L3
q
@END
8131 .
IF 1ST CHAR
OF TEMP/= ® CALL FIX- CALL REFILL- TEMP= GET-
SCRERN VoRD(
94311 L1342
THEN CALL rise ¥ 20D
INSERT CHAR= D/R/W
CALL MODIFY- ELSE CALL
BUFFER MOVE-BUFFER

134



Module Name: INSERT
Parameter: PACKAGE, WORD, INSTREAM
Function: Read text from instream and insert them into the

buffer, until a command is encountered.

3
l

K34 932 933
CALL DeSERT- TEMP=- GBT- DO UNTIL iST
. T

>
9331 9332
CALL INSERT- TEMP= CET-



Module Module Name: MODIFY-BUFFER
Parameter: COMMAND, PACKAGE

Function: Dispatch Command to the appropriate subroutine.
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Name: INSERT-WORD
Parameter: WORD, PACKAGE
Function: Add WORD into existing buffer. WORD is placed in

front of the cursor.

Module Name: READ
Parameter: PACKAGE, FILENAME

Function: Copy the contents of the file into the buffer.

Module Name: WRITE
Parametexr: PACKAGE, FILENAME

Function: Copy the entire buffer into a file undexr FILENAME.

Module Name: CHAR-DLT
Parxameter: PACKAGE

Function: Remove the character pointed to by the cursor.

Module Name: WORD-DLT

Parameter: PACKAGE

Function: Remove the string of non-space characters beginning
at the current position until the next space charac-

ter.

Module Name: LINE-DLT

Parameter: PACKAGE
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Function: Deletes text from the cursor to the end of the line.
Cursor is left where it uwas. Adjoin next line to the

remaindexr of current line.

Module Name: REPLACE

Parameter: PACKAGE, STR1, STR2

Function: Find STR1 using SEARCH, and replace STR1 by STR2. If
not found then nothing happené, if found, then cursor

is placed at the head of STR2.

Module Name: MOVE-PACKAGE-CURSOR
Parameter: COMMAND, PACKAGE

Function: Dispatch COMMAND to the appropriate subroutine.

Module Name: CHAR-FWD
Parametexr: PACKAGE

Function: Move cursor position forward one character.

Module Name: CHAR-BACK
Parameter: PACKAGE

Function: Move the cursor position back one character.

Module Name: WORD-FWD
Parameter: PACKAGE

Function: Move cursor position to the head of the next worxd.



Module Name: WORD-BACK
Parameter: PACKAGE
Function: Move the cursor position to the tail of the previous

woxd.

Module Name: LINE-FWD

Parameter: PACKAGE

Function: Move cursoxr to the next 1line. The offset does not
change unless the length of next line 1is too short.
In the latter case, the §ursor is placed at the tail

of the next line.

Module Name: LINE-BACK
Parameter: PACKAGE
Function: Move cursor to the previous line. Offset unchanged

unless text on previous line is too short.

Module Name: TOP
Parameter: PACKAGE

Function: Place cursor at the head of the buffer.

Module Name: BOTTOM
Parameter: PACKAGE

Function: Place cursor at the end of the buffer.
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Module Name: SEARCH
Parameter: PACKAGE, STRING
Function: Place cursor at the end of the first occurrence of
string after the cursor. If not found then leave

cursor alone.

Module Name: FIX-SCREEN-CURSOR
Parameter: PACKAGE
Function: Fix the % and y coordinates of the screen's cursoxr.

Use the information in the status codes.

Module Name: REFILL-SCREEN
Parameter: PACKAGE
Function: Fill the screen with 30 new lines of text. The line

pointed to by buffer's cursor is placed in the middle

(i.e., the 15th line).
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b.4.4 Systematic Design Methodology

SDM can be simplified to 4 basic steps. First specify
the requirements using templates. Then assess the interde-
pendencies between requirements. Next, apply the clustering
algorithm to the interdependencies. Finally, create an ar-
chitecture from the clusters.

The requirements have already been specified in section
4.1. However, in order to use the clustering program, the
requirements are replaced by integers from 1 to 29. The in-
terdependency assessments are given in appendix A.

The resulting clusters are as follows (also see Appendix

B):

Cluster 1: 1,7,16,17,18,19,20,21,22,23,24,25,26,27,28.

Cluster 2: 8,9,14,15.

Clusterxr 3: 10,11,12,13.

Cluster 4: 2,3,4,5,6.

The sub-clusters of cluster 1 are:

Cluster 1: 16,19 (Char-fwd, Word-fwd).

Clustexr 2: 17,20 (Char-back, Word-back).

Cluster 3: 18,21 (Char-dlt, Word-dlt).
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Clustexr 4: 22,23,24,25,26,27,28 (Line-fwd, Line-bhack,

Line-d4lt, Top, Bottom, Search, Replace).

After the clusters are determined, the designer must or-
ganize the clusters into a system. Here SDM does not pro-
vide any guidelines for the designer. R choice is arbitrar-
ily made to follow the pipelined architecture of HDM (i.e.,
data goes in one end and comes out the other, unlike Jackson
and SD which have a tree traversal type behavior). The com-
plete architecture is shown in figure 23.

Detailed design is listed in the following pages. Hou-
ever, only a selected few have been used to illustrate the

general flavor of the design.
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Module Name: EDITOR
Parameter: none
Function: Drivexr loop for dispatch. Read a word <from in-

stream and send it to dispatch.

CALL DISPATCH TEMP= GET—
WORD(INSTREAM)
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Module Name: INSERT
Parameter: WORD, PACKAGE

Function: Add WORD into existing buffer. WORD is placed in

front of the cursor.

TEMP= LNTH
OPF(LINE +
'WORD)

38

:
g
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Module Name: DISPATCH
Parameter: PACKAGE, WORD

Function: Send WORD to the appropriate command processors

Module Name: READ
Parameter: PACKAGE, FILENAME

Function: Copy the contents of the file into the buffer.

Module Name: WRITE
Parameter: PACKAGE, FILENAME

Function: Copy the entire buffer into a file undexr FILENAME.

Module Name: CHAR-FWD
Parameter: PACKAGE

Function: Move cursor position forward one character.

Module Name: WORD-FWD
Parameter: PACKAGE

Function: Move cursor position to the head of the next word.

Module Name: CHAR-BACK
Parameter: PACKAGE

Function: Move the cursor position back one character.
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Module Name: WORD-BACK
Parameter: PACKAGE

Function: Move cursor to the tail of the previous word.

Module Name: CHAR-DLT
Parametexr: PACKAGE

Function: Remove the character pointed to by the cursor.

Module Name: WORD-DLT

Parametexr: PACKAGE

Function: Remove the string of non-space characters begin-
ning at the current position until the next space

character.

Module Name: LINE-FWD

Parameter: PACKAGE

Function: Move cursor to the next line. The offset does not
change unless the length of next line is too
short. ~ In the latter case, the cursor is placed

at the tail of the next line.

Module Name: LINE-BACK

Parameter: PACKAGE
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Function: Move cursor to the previous line. Offset unchanged

unless text on previous line is too sheort.

Module Name: LINE-DLT

Parameter: PACKAGE

Function: Deletes text <£from the cursor to the end of the
line. Cursor is left where it was. Adjoin next

line to the remainder of current line.

Module Name: SEARCH

Parametexr: PACKAGE, STRING

Function: Place cursor at the end of the first occurrence of
string oafter the cursor. If not found then leave

cursor alone.

Module Name: REPLACE

Parameter: PACKAGE, STR1, STR2

Function: Find STR1 using SEARCH, and replace STR1 by STR2.
If not found then nothing happens, if found, then

cursor is placed at the head of STR2.

Module Name: TOP
Parametexr: PACKAGE

Function: Place cursor at the head of the buffer.
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Module Name: BOTTOM
Parametexr: PACKAGE

Function: Place cursor at the end of the buffer.

Module Name: REFILL-SCREEN

Parameter: PACKAGE

Function: Fill the screen array with 30 new lines. The line
pointed to by the buffer's cursor is placed at the

15th line.

Module Name: REFILL-LINE

Parameter: PACKAGE

Function: Get the line pointed to by buifer'é cursor, and
copy it into the line pointed to by the screen's

cCursor.

Module Name: MOVE-CURSOR J
Parameter: X, Y
Function: Replace the % and y c¢oordinate of screen's cursor

by X and Y.
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4.5 DESIGN EVALUATION

The best way to judge the soundness of a methodology is
to examine its product. Thus it is the object of this sec-
tion to reflect on the design methodologies by evaluating
the designs. The approach taken here is directly aimed at
the Systematic Design . Methodology. SDM employs a graph
clustering algorithm tq obtain modules which are strongly
dependent internally, and weakly dependent between modules.
Therefore the strategy is to measure the designs with re-

spect to the above criteria.

More specifically, the evaluation measures the strength
of each module's internal dependency, and the looseness of
dependency betuween modules. These measures are called mod-

ule strength and module coupling respectively [Myexr75].

4.5.1 Module Strength

The basic intent of module strength is to provide a meas-
ure of the cohesiveness of the module. Furthermoxre, if the
module is considered to be a functional transformation over
some data, then the task can be reduced to an examination of
the functionality and data s*ructures of é module. For ex-
ample, a module which performs a single well defined func-
tion over a single data structure clearly possesses more
strength than one that performs several functions ovexr a

single data structure.
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Thus the following ranking for classifying modules is at-

tained (see [MYER75] chaptex 3). They are listed in oxrder

of increasing strength:

1. Multiple functions related in time. Multiple and un-
related data structures.

2. Multiple functions logically <related over multiple

data structures (i.e., functions transforming from

one data structure into another).

3. Single function over multiple data structures.
4. Multiple functions over a single data structure.
5. 8Single function over a single data structure.

4.5.2 Module Coupling

Module coupling is determined by how much modules Kknow
about one another. In modexrn programming languages there
are generally three ways that modules can communicate:
global variables, data items (e.g., variables) passed as pa-
rameters, and data structures (e.g., arrays, trees) passed
as parameters. In the editors designed <forxr this thesis
there are no global variables. The only forms of communica-
tion were direct passing of arguments and passing of control
information in the buffer structures.

Again a ranking is achieved by considering typical module
communication techniques (see [MYER75] chapter #): (In order

of increasing amount of coupling).
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1. Only data items are used, and they are all passed as
arguments.
Q@
2. Data structures (includes data items) are used, and

are all passed as arguments.

3. Control information is used (such as flags, Zfunction
code) .
4. One module references an internally defined variable

of another module (e.g., free variables in dynamical-
ly scoped Lisp).

The designs are evaluated in +terms of module coupling,
and two Kinds of analysis are made: average coupling and
couplings per module. Average coupling is the average rank-
ing for the couplings in the design (i.e., sum of coupling
ranks 7/ numbex of couplings). Couplings pexr module provides
a measure of the complexity of the design (i.e., number of

couplings / number of modules).

The results of the evaluation are listed in the following

tables.
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HIERARCHICAL DEVELOPMENT METHODOLOGY

Module Namel| Module Strengthl| Module Coupling

Editor | 5 | 2- Dispatch
Dispatch | 2 | 2x16- Each command

| | processor
Insext 5 2— Buff-get—-text-bef

|
| 2- Buff-get-text-aft
| 2- Buff-put-text
| 2- Buff-add-emp-line
| 2- Buff-line-fuwd
Read | 3 | 2- Buff-add-emp-line
| | 2- Buff-line-fud
| | 2- Buff-put-text
| 2- Buff-copy-buff
| 2- Buff-top
] 2- Buff-tail?
| 2- Buff-get-text
| 2= Buff-line-fuwd

- - . —— - —_ —— ———— — ———— — —— — —— —— ———— —————— —— — v ————— - —
- —————— — - o —————— — ——— —— — — ——— — " — - = e e T — - - " ———— -
- — ——————— - - ——— — —— ——— . > P W > S W ——————

Word—-fwd | 5 | 2- Buff-peek-fud
| | 2= Buff-char-fud
Word-back | 5 | 2- Buff-peek-back
] ; | 2- Buff-char-back
Word—-deletel 5 | 2- Buff-peek-fud
] ] 2- Buff-char-delete
| 2- Buff-get-text-bef
| 2= Buff-line-fud
| 2- Buff-get-text
| 2- Buff-char-back
| 2- Buff-get-text-bef
| 2- Buff-line-back
| 2- Buff-get-text
| 2- Buff-char-back
Line-deletel 5 | 2- Buff-line-kill
| | 2- Buff-line-empty?
] | 2- Buff-get-text-bef



| | 2- Buff-put-text
Top ] 5 | 2- Buff-first-line
| | 2- Buff-get-text-bef
| ' | 2- Buff-char-back
Bottom | 5 | 2- Buff-last-line
| | 2—- Buff-get-text-aft
| | 2- Buff-char-fud

Search ] 5 ] 2- Buff-get-text-aft
| | 2- Buff-line-fud
| | 2- Buff-get-texnt
] | 2- Buff-tail?
Replace | 4 | 2- Search
| | 2- Buff~char-delete
| | 2- Insert
Buff- ] 5 I -
create-buffl |
Buff- | 5 | -
copy-buff | |
Buff- | 5 | -
Create-linel |
Buff- | 5 | -
get-text | |
Buff-get- | 5 I -
text-bef | l
Buff-get- | 5 | -
text-aft | |
Buff-put- | 5 | -
text | |
Buff-peek- | 5 1 -
fud | |
Buff-peek- | 5 | -
back | |
Buff-line- | 5 | 2- Screen-move-cursor
fud ! |
Buff-line~ | 5 | 2- Screen-move-cursor
back | |
Buff-line- | 5 | 2- Screen-£fill-line

delete | |
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Buff-line- | 5 I -

empty? | |

Buff-buff- | 5 | -

empty? | |

Buff-head? | 5 | -

Buff-tail? | 5 | -

Buff-char—- | 5 | 2- Screen-move-cursor
fud | [

Buff-char—- | 5 | 2- Screen-move—-cursor
back ] ]

Buff-char— | 5 | 2- Screen-fill-line
delete | ]

Buff-first—| 5 | 2- Screen-fill-screen
line | |

Buff-last- | 5 | 2- Screen-fill-screen
line | |

Buff-add- | 5 | 2- Screen-fill-screen
emp-line | |

Screen- | 5 | -

Create-scr | |

Screen- | 5 | -

move-cursorl |

Screen- | 3 ] 2- Buff-get-text
fill-line | |

Screen- | 3 ] 2- Buff-get-text
fill-screenl ]

Number of Modules = 4y
Average Strength = 4.71
Average Coupling = 2
Coupling per Mod. = 1.7

Figure 24: Evaluation of HDM
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JACKSON METHODOLOGY

Module Namel

Input- |

Output- l

Refill- |
screen |

cursor [

—— - ————— ———— —— T —— —— - — " - - — — — —— — — — ————

Module Strengthl

Module Coupling

2—- Input-Handlex
2- Output-Handlex

2- Dispatch
2- Inserxrt

2815- Each command
processor

3x15- Each command
pProcessor

Char- |

Word- |

Line- !
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Top ] 5 I -

Bottom 1 s -
seazech 1 s -
Replace | 4 | 2- seazch

24

3.92

2.39% (Sum of couplings/
numbexr of couplings)

1.71 (Number of couplings/
number of modules)

Number of Modules
Average Strength
Average Coupling

Coupling per Mod.

Figure 25: Evaluation of JacKkson's Methodology
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STRUCTURED DESIGN

Module Name| Module Strengthl| Module Coupling

Editor ! 1 | 2- Insert
] | 2- Mod-buff
| | 2- Move-buff-cursor
| | 2- Fix-screen-cursor
] | 2- Refill-screen
Insert | 5 | 2~ Insext-uwozxd
Insert-uwoxdl 4 | 3- Fix-screen-cursor
| | 3- Refill-screen
Modify-buffl 2 | 2%6~ Each buffer
| ] modifying command
Char-deletel 4 | -
Word~deletel 4 | -
Line~deletel 4 | -
Read | 3 | 2= Insexrt-word
Write | 3 I -
Replace | 4 | 2- seaxch
____________________________________ e — ———— ——————
Move-buff | 2 | 2%9- Each Cursor
cursor | | moving command
Char-fud ] 5 | -
Char-back | 5 | -
Word-fud ] 5 | -
Word-back | 5 | -
Line-fud ] 5 | -
Line-back | 5 | -
Top ] 5 | -
Bottom ] 5 [
Search ] 5 | -
Fix-screen-| 3 | 315~ Each command

cursor | ] processor



——— — . ————— — ——— ———— - —— o — ———— - —— - G - — - — - ——

Refill- | 3 | 3%x15- Each command
screen | | processor

- = - — - - - - . . e Y SRS e M e - — . - G G S S W —— T — e

Number of Modules = 22

Average Strength = 3.95
Average Coupling = 2.58
Coupling pexr Mod. = 2.5

Figure 26: Evaluation of Structured Design
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SYSTEMATIC DESTIGN METHODOLOGY

Module Namel| Module Strengthl Module Coupling

Editox | 5 | 2- Dispatch
pispateh | 2 | zx16- Each command
I | processor

nsezt 1| 2 | 2- Refill-screen
Read 13 1 2- Refill-screem
write | 3 | 2- Refill-screem
chaz—fwd | 5 | 2- Move-cursor
word-fud | 5 1 2- Move-cuzsor
Chaz-back | 5 | 2- move-cursor
Word-back 1 5 | z- Move-cursor
Char-deletel & | 2- Refill-line
Word-deletel & | 2- Refill-line
Line—fwd | 5 | 2- Move-cursor
Line-back | 5 | 2- move-cursor
line-deletel & | z- Refill-screem
seazen 1 s -
Replace 1 & | 2- seaxen
roo 1 s -
sottom 1 s -
Refill- | 3 V-
screen | |
Retili-line! 3 -



Number of Modules
Average Strength
Average Coupline
Coupling perxr Mod.

Figure 27:

Evaluation of SDM

11
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r |
| , l
| I HDM |Jacksonl sp | spm | I
] mmmmmemmm e |
] No. of Modules| 4y | 24 | 22 | 21 | |
| e L |
| Avg. Strength | 4.71 | 3.92 | 3.95 | 4.1 | ]
I e LT |
| Avg. Coupling | 2 1 2.39 | 2.58 1 2 ] |
| bt e D et DL DL |
| Coupl 7/ Mod P 1.7 1 1.7 2.5 | 1.43 | |
| e |
| ]
| |
| Figure 28: Summary of the Evaluations |
| |

4.5.3 Summary

After analyzing the designs, two underlying architectures
are discovered. The first one is the pipelined arxrchitec-
ture of HDM and SDM. In this organization, the data goes
into the system at the top and the output comes out at the
bottom. There are no coordinator modules to coordinate the
activities in the system. Each module has the responsibili-
ty to pass contrxol to the next module.

The second architecture is a tree organization (e.g.,

Jackson and SD), where the data goes down one branch of the

system, gets returned back up, and then goes down another
branch. In this type of systen, activities arxe controlled
by coordinator modules. For example, in JacKkson's design,

the input goes to the INPUT-HANDLER, then gets returned to
the EDITOR module, and finally the EDITOR module passes the

data to the OUTPUT-HANDLER.
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The pipelined strxucture provedvto be strogger in module
strength (4.71 for HDM and 4.1 foxr SDM). This c¢an be ex-
plained by the fact that the system is organized in layérs.
Each layer deals exclusively with one data structure. For
example, in the HDM design, the EDITOR madhine only kKnous
about the buffer abstractly. It does not know about the
line linked implementation. The BUFFER machine Knows about
the line linked structure and it contains modules that ma-
nipulate the structure. The EDITOR machine would then per-
form its tasks by calling on the BUFFER machine modules.

On the other hand, modules in the tree architecture must
manipulate both the BUFFER and the line 1linked structure.
This caused many of them to have a module strength of 3.

The tree organization is also weaker in module coupling
(2.39 for Jackson and 2.58 for SD). The major cause of the
higher average coupling measure is the control information
passed through the INC array. Recall that the INC array was
used to store incremental movements of the cursor. This in-
formation was passed from the command processors to the out-
put modules.

The coupling problem is inherent in the +tree axchitec-—
ture. The only way modules on different branches of the
tree can communicate 1is by passing <c¢ontrol information
through the coordinator. Otherwise a global variable must

be used, but that often leads to high debugging cost.
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Overall, +the HDM design is the best for this particular

case. The strength and coupling rankings for HDM are the
best among the foux. It is also easiest to add extra editorx
commands to HDM's design. The BUFFER machine modules are

really a meta-language and new commands can be easily com-
posed from it.

Finally, it is worxth noting that SDM's c¢lusters could
have been oxganized into either type of architecture. It
was purely arbitrary that SDM had the pipelined architec-

ture.



Chaptexr V

CONCLUSION

This chaptexr presents the insights gathered through the

project. The first section discusses the basic problem in
software design. The second section discusses the various
approaches to develop a methodology. The third section

points out the weaknesses of SDM in comparison to other
methodologies. Finally, this chapter concludes with sugges-

tions for further research.

5.1 THE COMPLEXITY PROBLEM

By far the most dominating difficulty in software design
is complexity. O0ften the designer knows all the require-
ments but cannot think about all of them simultaneousiy, or
it might be that the designexr has ideas for satisfying indi-
vidual requirements, but can not put all the different solu-
tions into one §ystem. The problem is not the lack of
ideas, but the lack of unity and cohesion.

Where exactly does complexity come from? Through the
study in design theory, it is evident that complexity arises
from the interaction between requirements [Alexander!, and
from the numerous options available as solution :Manheim].

The key word here is interaction. Complexity arises because

- 145 -
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earlier decisions often add to the requirements of later de-
cisions since decisions interact with each other.

One might think of complexity as a bunch of molecules
tied to each othexr in some complicated way. Each molecule
is trying to £1ly off in its oun direction, and in doing so,
it alters the f£light of all molecules tied to it. | The de-
signexr's job is to try and get these molecules into a state
of equilibrium, “or to get the whole network of molecules to
move in one direction.

Thus, the task of architectural design is really a task
in complexity management. Having the architecture, the de-
signer can then devise solutions for each requirement. He

now knows that his solution must somehow f£it into the archi-

tecture. Furthermore, he Kknows that if individual solutions
conform to the <conventions of the architecture, then they
will function together. In other words, the problem is

shifted from "dealing with all +the other requirements", to
"dealing with the architecture". Therefore, architectural
design is in many ways analdgous to providing an organiza-
tional structure. Given such a structure, the designer can
then solve the problem of "How can the solution to a xe-
gquirement integrate into the structure?”, rather than the
much more difficult problem of "How can the solution of this
requirement co-exist with the solutions of other require-

ments?".
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5.2 STRATEGIES FOR DEVELOPING A METHODOLOGY

There are tuwo basic approaches in designing software
methodologies. The first is to survey existing systems, and
select those systems that are successful. These systems are
then scrutinized to identify similax features.v Having iden-
tified the constant factors among successful systems, tech-
niques can be developed to derive system architectures from
those constant factors. For example, Jackson's methodology
derives an architecture from the data structure, and Struc-
tured Design derives an architecture from data flow graphs.
| The second approach is to adopt a design theory, upon
which conjectures are made about what constitues good de-
sign. Examples of this approach are Hierarchical Develop-
ment Methodology's decision model and abstzacf machines;
Systematic Design Methodology's Qraph model and module de-
composition criteria. In HDM, the design process is mod-
elled by a sequence of interdependent decisions. A hier-
archical abstract machine structure is then provided for
grouping decisions. SDM, on the other hand, models design
as a process of grouping requirements into c¢lusters. These
clusters are formed in a way that maximizes intra-clustex
dependency and minimizes inter-cluster dependency.

It is important to point out that of all the methodolo-

gies surveved, only SDM provides a - sense of optimality.
Most methodologies suggest one architecture, but do not
claim it to be the best architecture.: Whereas SDM provides

the best modularization.
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Also, methodologies are aiming towaxrd a ‘black boxr
technology. A methodology is envisioned as a box which.
takes in some Xkind of data and <returns an architecture.
This trend 1leads to the development of design tools which
will eventually generxrate programs automatically.

One important strategy that has emerged is that architec-
ture should be constructed to match the problem structure.
This concept has an obvious justification in systems which
héve real life iﬁterpietations. But even in abstract appli-
cations it also makes sense to conétruct the system to match
the mental picture. Having this ¢lose <correspondence be-
tween system architecture and mental picture, the system can
then be modified and debugged with ease. That perhaps is
the reason several methodologies (such as Structured Design)
go through a problem analysis phgse before constructing the
architecture.

Howeverx, the task of creating a system architecture that
matches problem structure is not trivial. There axe con-
straints imposed by the programming language and the comput-
er hardware. For example, the typical programming language
has three kinds of control flow constructs, sequence, itexr-
ate, and branch. Therefore the system architecture must use

these control constructs and nothing else.
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5.3 MODTIFICATIONS FOR SDM |

One weakness of SDM arises from the way interdependencies
are assessed. SDM suggests that the designexr should have an
idea of how the requirements can be implemented., and assign
weights accoxrdingly. This method is too subjective. Dif-
ferent designers will most assuredly c¢ome up with different
wights. Therefore the sense of reproducibility and abso-
luteness is lost.

A way to deal with this problem is to identify data
structures used in the system. Weights can now be assigned
according to whether the zrequirements deal with the same
data structure.

Another thing to do is to separate requirements into lev-
els of generality. Requirements such as modi?iability and
fault tolerance are highly univexsal in +their effects.
Whereas a requirement like "implement a delete command™ is a
much more detailed requirement.

To perform this separation, nodes can be linked together

according to their level of generality. If +two nodes are
very close in generality, then they are assigned a high
weight, otherwise they are weighed lightly. Then the c¢clus-

tering algorithm can be applied to the graph to obtain c¢lus-
ters which represent different levels of generality.

After grouping requirements this way, .the usual SDM pro-
cedures can be performed on each group. This results in

clusters for each level of genexrality, which can then be
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treated as a single node. The result is a three dimensional

¢lustering situation as shown in figure 29

Figure 29: 3-D Clustexing
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Now the problem is how to describe each cluster-node.
The idea of abstraction can be applied here. Each cluster
would probably have some general characteristic. For exam-—
ple the editor commands character-forward and line-back have
the common charactexristic of moving the cursor. Therefore
these requirements c¢an be described by a new node called
cursor movement.

Another weakness of SDM is that it does not produce an

architecture. SDM tells the designer which requirements axe
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highly dependent on each other, and therefore must be con-
sidexed together. Furthermore, SDM claims that the clusters
should correspond to modules in the system. However, this
still leaves the designer with the difficult task of organ-
izing the modules into a structure.

Other methodologies have largely concentrated on exactly
the above problem. Jackson, Structured Design and HDM, all
these methodologies provide a system architecture. Houwever,
they are weak in the area of problem structure deéfinition.
Therefore, the natural thing to do is to combine SDM with
othexr methodologies.

One such combination <¢an be made between SDM and Struc-
tured Design. There are two ways to do the combination.
First, SDM can be used to help derive Structured Design's
data flow graph. Weights can be assigned according to
uhé%her or not two regquirements are doing the same Kind of
data transformation. The resulting c¢lusters would provide
the individual bubbles in the data flow graph. Having the
data f£low graph, the designer c¢an proceed according to the
prxocedure of Structured Design.

The second way to combine SDM and Structuxred Design is to
use the data flow graph for SDM interdependency assessment.
Weights c¢an be assessed by <considering how strongly tuo
nodes relate to the same bubble in the data flow graph.
This method of weight assessment is implementation indepen-

dent. However, there is a drauback in that the set of clus-



ters would probably have a

the bubbles of the DFG.

Another combination is HDM and
stract machines can be identified,
link each requirement to a machine.

used to determine the machines themselves.

assigned according to whether
the same machine.

sent the machines.

5.4

The major weakness of SDM is its one-sidedness.

tacks the problem

help in constructing the architecture.

fore, in the experiment,
organized into either

HDM type arxchitecture. Thus

one to one

analysis phase but does

the

the Jackson type architecture
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correspondence with

SDM. A hierarchy of ab-

then SDM can be used to

Otherwise, SDM can be

Weights would be

two requirements should be in

Then the resulting clusters would repre-

SUGGESTTONS FOR FURTHER RESEARCH

SDM at-
not provide much
As was mentioned be-
SDM clusters could have been
or the

the area of architecture con-

struction definitely needs more attention.

A second weakness of SDM
sessment phase.
designers' pexrsonal biases is
vide a promising path in this

Finally, it is worthwhile

another methodology. SDM is

phase while other methedologies are

ture construction phase. If

A method to

lies in the interdependency as-

assign weights independent of
needed. Data structures pro-
direction.
to consider coupling SDM with
strong in the problem analysis
strong in the architec-

used together, each c¢ould com-
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plement the other. The next step in this dirxection is to

define formal interxrfaces.



Appendix A

SDM INTERDEPENDENCY ASSESSMENTS

The uweights showun on the next page are arranged in a for-
mat recognizable +to the ¢lustering program (see [LATTS811]).
This is +the short form option (the other option is called
regular form).

All of the nodes linked tob each node are listed on the

same row but in the second column. Nodes are rxepresented by
three digit numberxs. Underneath the 1list of "neighbor"
nodes are the weights for the corresponding links. For ex-

ample, suppose node 001 is linked to nodes 002 and 003 by
the wights of 2 and 8 respectively, then the following is

the short form representation:

001 002003

2 8
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028
001 007
8
002 004005006007
8 5 5 8
003 004005007009
8 2 8 8
004 002003006007008
8 8 8 5 8
0035 002003
5 2
006 002004007009014
5 8 5 2 2
007 0010020030040060080140160170180190200210220:
8 8 8 3 & 2 % 8 8 8 8 8 8 8
008 004007009014
8 2 8 8
0092 003006008014015
8 2 8 8 8
010 001011012013

2 8 8 8
011 001010012013
2 8 8 8
012 001010011013
2 8 8 8
013 001010011012
2 8 8 8
014 006007008009
2 S 8 8
015 009 Do T
8
016 0070192027028
8 8 8 8
017 007020
8 8
018 007021028
8 8 8
019 007016027028
8 8 8 8
020 007017
8 8
021 007018
g 8
022 007
8
023 007027028
8 8 8
024 007
8
025 007
8
026 007
8

027 007016019023028
8 8 8 8 8
028 007016018019023027
& 8 2 8 8 8



Appendix B

SDM CLUSTERS

The SDM clustering algorithm has been implemented in For-
tran by Jim Lattin (see [WONG80] and [LATT811]1). It current-
ly resides undexr the CMS account LATTINA in MIT. Access to
the program can be obtained from Jim Lattin.

To use the program one must first define the weights as
shown in appendix A, then run the exec program FIDEFY4. The
session during which the editor requirements were decomposed

is showun on the next page.

i» e
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fidef4 ntud data
T=0,14/70.36 14130123

EXECUTION BFGINS. oy

NODLIN = 900

ARCLIN = 4500

INPUT FORMAT!?

(1) REGULAR .
(2) SHORT

2

TOTAL NODES = 28 .

TOYAL ARCS = S3

AVERAGE NUMBER OF ARCS INCIDENT TO EACH NODE = 1.89

28
DENSITIES CALCULATED IN 3 HUNDREDTHS CPU SECS
TREE FORMED IN 1 HUNDREDTHS CPU BECONDS
PRINT TREE YOI
(1) FILE
(2) Ny
.2

1




TREE FORMED IN
PRINY TREE YOI
(1) FILE
2y Ty
‘2
1 1
0.,074190

2
0.266666
3 28
0.485714
4
0.646666
0,800000
0.3533333
0.300000
0.600000

0.,128371

o < o ~ o 2]
»n
(>

1
0,414285

0.350000

1
. 0281250
13 3
0.243750
14 -]
0.458333
135 14
0.371420
16 14
0.2646647
4

0.186667

0.800000
[
0.076190

21
0.074190

22 25
0.076190

23 24
0.076190

24 2
0.0

25 13
0.680000

26 12
0.,480000

27 11
0.680000

289 10

TREE FORMED IN
PRINT TREE TO:

(1) FILE
() TIY
l2
1 1
0.076190
2 7
0.266666
3 28

0.485714

1 HUNDREDTHS CPU BECONDS

............... Ly L JuNpuuy DU

" ——————- cemcccmanmamas| |

l
!
|
----------------------- e bl | 1
|
|

0 HUNDREDTHS CPU SECONDS




27 11
0,680000
28 10

TREE FORMED IN
PRINT TREE TO:
(1) FILE
(2y TYY

2

1 1
0.074190
a

2
0.266666
3 28
0.485714
4

0.533333

S . 23
0.0761%90

[ 28
0.076190

7 235
0.074190

8 24
0.076190

? 22
0.0

10 21
0.,4600000

14 18
0.0

12 20
0.800000

13 17
0.0

14 19
0.800000

13 16
0.0

16
0.286667

17 9
6.371428

18 14
0.458333

19 [:]
0.0

20 13
0.680000

21 12
0.480000

22 11
0,680000

23 10
0.0

24 é
0.350000

0.414283

26 4
0.281250

2?7 3
0.1488667

28 S

0 HUNDREDTHS CPU SECONDS

t

!

t

|

|

'

!

---------------- R T ]
!

1

!

|

|

|

I

----------------- B et LT LIRS R '
I

................. |
1

................. "
---‘ '
! 1
---1 1
- 1
! ]
--' .
------------------- e I
I I

--------------- -1 ! |
I 1 '

------------- et R | 1 1 1
] ] ] ]

-------------------- B ] LT e T PR ]
----------- 1 1
! 1

] 1

| ]

] 1

! !
----------- ! ]
!

--------------- lmemm | mmm—————] !
i | H {

--------------------- e LY 1 | 1 1
| ! | 1 i

------------------- ettt EEE Y ] ! '
I ! ]

------------------ —m————] I 1
1 1

------ ——-- - ] Bt E L ey

TIHE FOR ENTIRE PROCESS!

REACHED BLDPAR

BUILDING PARTITION TOOK

CLUSTER NUMBER
1

?

16

1

164 HUNDREDTHS CPU EECS

2 HUNDREDTH8 CPU BECS



0.0
1e
0.264667

17 9 mmmmemmmmemeeemeen

0,371428

18 14 —oommm oo

0.458333

19 B —mmmememmemcoean

0.0

2

0
0.4680000 |
21 12 |

0.480000 |
22 11 |

0.480000 |
23 10 --=-==cw=w- |
0.0

24 b =vmmmmmca—— -

0,350000

25 2 memmmemmmemmmm—en

0,414283

26 4 mmececme—acaccaa——

0.281250

27 L TR e

0.166647
28

TINE FOR ENTIRE PROCESS!
REACHED BLDPAR
BUILDING PARTITION TOOK
CLUSTER NUMBER 1

1

?

16

17

18

19

20

2K

22

23

24

23

26

27

28
CLUSTER NUMBER 2

8

9
14
13
CLUSTER NUMBER 3
10
11
12
13
CLUSTER NUMPER 4

A »LM

&
EVALUATION MEASURE EQUALS 0,103
RINPER = 4

(1) KEEP PARTITION
(2) ENTER DIFFERENT MINPER

lz

ENTER NEW HMINPER (IN FHT 13)
1002

REACHED BLDPAR

BUILDING PARTITION TOOA
CLUSTER NUMBER 1

1
7
22
o2

164 HUNDREDTHS CFU SECS

2 HUNDREDTHB CPU BECS

1 HUNDREDTHS CPU SECS



14 .
17 E
10
19 g
20
21
22
23
24
2s
26
27
28
CLUSTER NUMBLR 2
8

9

14

13
CLUSTER NUMPER 3

10

1

12

13
CLUSTER NUMBER 4

oL rLM

EVALUATION HEASURE EQUALS 0,103
NRINPER = 4 °

(1) KE:.P PARTITION
(2) ENTER DIFFERENT MINPER
-

ENTER NEW MINPEK (IN FHNT IY)

1002

REACHED BLDPAR

RUILDING PARTITION TOOK 1 HUNDREDTHS CPU SECS
CLUSTER NUMBER 1

28

CLUSTER NUMBER 2
18
21

CLUSTER NUMBER 3
17
20

CLUSTER NUMBER q
14

19
CLUSTER NUHKER S
8

?

13
CLUSTER NUMBER é

CLUSTER NUMRER 7

[N I NP ]

EVALUATION MEASURE EQUALS 0.124
MINPFR = 2




é
EVALUATION MEASURE EQUALS 0.10%
RINPER = 4

(1) KEEP PARTITION
(2) ENTER DIFFERENT MINPER
b d

ENTER NEW MINPER (IN FHT 13}
1002

REACHED BLDPAR

RUILDING PARTITION TOOK
CLUSTER NUMBRER 1

20
CLUSTER NMUMBER
18

(5]

CLUSTER NUMBER 3
17
20
CLUSTER NUMBER L]
14
19
CLUSTER NUMEER S
8

9

13
CLUSTER NUMBER é

CLUSTER NUHPRER K4

N a2

)
EVALUATION MEASURE EQUALS 0.124
HINPER = 2

(1) KEEP PARTITION

(2) ENTER DIFFERENT MINPER
o1

CHANGE CURRENT PARTITION?

(1) YES
(2) NO
2

T20,78/2,17 14136153
Ri

1 HUNDREDTHS CPU SECS
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