
A COMPARATIVE STUDY OF SOFTWARE DESIGN METHODOLOGIES

by

Michael Tzu-cheng Yeh

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREES OF

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1982

Michael Tzu-cheng Yeh 1982

Signature of Author

Certified by

Department of EtctricalifrgIneering and
Computer Science, May 7, 1982

Stuart E. Madnick
Academic Supervisor, Department of Management

Certified by
Paul A. Szulewski

Company Supervisor, C. S. Draper Laboratory

Accepted by
A. C. Smith, Chairman

Department Committee on Graduate Students

,Jl /

- - I

A COMPARATIVE STUDY OF SOFTWARE DESIGN METHODOLOGIES

by

Michael Tzu-cheng Yeh

Submitted to the Department of Electrical Engineering and
Computer Science on May 7, 1982 in partial fulfillment

of the requirements for the Degrees of
Bachelor of Science and Master of Scie'nce in

Computer Science

ABSTRACT

A comparative study -was carried out using four
software design methodologies to design an experimental
stream editor. The resulting designs were evaluated in
terms of module strength and module coupling.
Documentation of the designs were done with a design aid
system called Design Aids for Real-Time Systems (DARTS).

The goal of this study is to examine one methodology
in particular - the Systematic Design Methodology (SDM).
SDM was one of the methodologies used in the above
experiment, and through the evaluation of the editor
designs several weaknesses in SDM were discovered. Also,
as a result of the experiment, several extensions for SDM
were found.

Thesis Supervisor: Professor Stuart E. Madnick

Title: Professor of Management

Thesis Supervisor: Mr. Paul A. Szulewski

Title: Member of Technical Staff,

C. S. Draper Laboratory

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my supervisors,
professor Stuart Madnick (MIT), Mr. Paul Szulewski
(CSDL), and Dr. Barton DeWolf. Professor Madnick, to
whom I owe the original idea for this thesis, has been
the most delightful person to work with. Paul has been
most helpful both technically and spiritually throughout
the project. I especially owe Paul a warm thanks for
correcting the numerous errors in my thesis. To Bart I
owe an extra special thanks for taking me on as a VI-A
student, and arranging for me to work on a topic of my
own choice.

A sincere note of thanks also goes to Jim Lattin for
the use of his SDM package. Also, I wish to thank Mei,
Rich and Tarak (PhD candidates at the Sloan School) for
the many fruitful discussions.

During the course of the research I had the priviledge
to obtain the servicen of the CSDL library staff, without
whose help this thesis would not be possible. Therefore
I wish to thank the librarians for their efforts. I also
had the priviledge to have my thesis proofread by Natalie
Lozoski who corrected my numerous grammatical errors.

I wish to thank Susan Wang as well. Towards the end
of the project when things became hectic, Susan provided
me with encouragements and spiritual support. Her help
is deeply appreciated.

Finally I would like to thank the Charles Stark Draper
Laboratory for providing the financial support. Funding
for this project has been most generously provided by the
Internal Research and Development program.

I hereby assign the copyright of this thesis to the
Charles Stark Draper Laboratory, Inc., Cambridge,
Massachusetts.

Michael Tzu-cheng Yeh

Permission is hereby granted by the Charles Stark

Draper Laboratory, Inc. to the Massachusetts Institute of

Technology to reproduce any or all of this thesis.

CONTENTS

Chapter pacre

I. INTRODUCTION 1

II. DESIGN THEORIES 4

Design Theories 5
Discovering the Structure 5
Problem Solving 7
Reducing the Difference 8

Software Design and the System Life-cycle . . . 9

III. THE DESIGN METHODOLOGIES 11

Hierarchical Development Methodology (HDM) . . . 13
The Decision Model 14
The Procedure 17

Jackson Methodology 20
The Procedure 21
Data Structure Definition 21
Program Structure Definition 22

> Unique Features 24
Structured Design (SD) 25

The Procedure 26
Data Flow Graph (DFG) 27
Select a Technique 29
Transform Analysis 29
Transaction Analysis 30

Systematic Design Methodology (SDM) 31
Requirements Specification 32
Interdependency Assessment of Requirements 33
Graph Modelling of Requirements 35
Graph Decomposition Techniques 35

Other Design Methodologies *..... 36
Event-based Design Methodology (EDM) 36

Higher Order Software (HOS) 38
Logical Construction of Programs (LCP) . . . 40
WELLMADE 42

IV. AN EXPERIMENT IN SYSTEM DESIGN 45

Requirements for a Stream Editor 46
Data Structures 49

Internal Buffer 50
Buffer Position Indicator 52

Simulated Screen 52
Screen Position Indicator 53
The Package Structure 53

Design Representation 53
DARTS Call Graph 54
DARTS Trees 55
Functional Description 57

Editor Designs 57
Hierarchical Development Methodology 58
Jackson Methodology 83
Structured Design . *....... 111
Systematic Design Methodology 121

Design Evaluation 130
Module Strength 130
Module Coupling 131
Summary 142

V. CONCLUSION 145

The Complexity Problem 145
Strategies For Developing A Methodology . . . 147
Modifications for SDM 149
Suggestions For Further Research 152

Appendix pacre

A. SDM INTERDEPENDENCY ASSESSMENTS 154

B. SDM CLUSTERS 156

BIBLIOGRAPHY 158

- ii -

LIST OF FIGURES

e

The System Development Life-cycle.

Sequence of Decisions

Dependencies Among Decisions Form a Tree-like
Structure

The Three Basic Structuring Components

The Mosque Shape of Low-cost Systems (adapted
[YOUR79])

Pacre

. . . 14

. . . 15

. . . 23

. 25

Ficrur

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. 28

. 42

. 51

. 56

. 59

. 59

. 60

. 60

. 60

. 84

. 84

. 85

. 86

. . . . 112

- iii -

An Example of DFG (Adapted from [YOUR791)

Data Structure Definition for LCP

Three Different Buffer Structures

DARTS Tree Components

HDM's Abstract Machines for the Editor . .

EDITOR Machine

BUFFER Machine

SCREEN Machine

HDM Architecture

Jackson's Input and Output Data Structures

Jackson's Input Handler

Jackson's Output Handler

Jackson System Architecture

DFG for the Editor

The Transaction Architecture

21.

22.

23.

24.

25.

26.

27.

28.

29.

- iv -

The Reduced DFG

Structured Design Architecture . . .

SDM Architecture

Evaluation of HDM

Evaluation of Jackson's Methodology

Evaluation of Structured Design . .

Evaluation of SDM

Summary of the Evaluations

3-D Clustering

. 112

. 113

. 123

. 135

. 137

. 139

. 14 1

. 142

. 150

Chapter I

INTRODUCTION

As computer systems become more complex, software devel-

opment and maintainance costs begin to dominate. The prob-

lem is that software has become large and difficult to man-

age, and it is evident that the ad-hoc way of programming

only makes matters worse. What is needed is a disciplined

methodology for software development.

Past research has revealed various phases in the software

development life-cycle (see figure 1).

r--I

User Requirements

System Requirements Specification

Architectural Design

Detailed Design

Programming

Debugging

Testing Operation and Monitoring

Maintainence

Figure 1: The System Development Life-cycle.

L---

- 1 -

2

Furthermore, it has been found that problems arising in

debugging and testing usually have their roots in an earlier

phase. In the case of ad-hoc programming, the cause is the

absence of any architectural design effort.

In recent years, an attempt has been made to attack the

above problem. The result is a body of technology called

"Software Design Methodologies". These methodologies differ

in approach and in specific areas of application. Some pro-

vide techniques with which a design can be mechanically de-

rived. Others merely give guidelines and require the de-

-signer to work out the design. Some can be applied best on

programs of small size, others are meant for large system

designs. However, these methodologies are united in their

final objective - to fill the void between requirements

specification and actual coding.

Essentially, design methodologies attempt ta provide de-

signers with a structural framework for software planning.

The framework is designed to provide a way to manage the

complexity of the design task (usually in the form of a di-

vide-and-conquer tactic). It is also designed to embed de-

sirable qualities in the software under development. But

most importantly, it is designed to allow the designer to

think about the program carefully before he starts the actu-

al coding.

One methodology in particular is the integral part of

this thesis: The Systematic Design Methodology (SDM). SDM

3

is a methodology developed by the MIT Sloan School of Man-

agement. It has been used in the design of a Database Man-

agement System (DBMS), an Operating System, a Budgeting Sys-

tem, and a test program preparation facility. So far the

reports on the methodology have been encouraging. However,

to get a better idea of SDM's potential, it would be benefi-

cial to compare it against other methodologies.

Thus the goals of this thesis are to compare SDM against

other methodologies, develop qualitative as well as quanti-

tative evaluations of methodologies, and to suggest exten-

sions or improvements for SDM.

The project proceeds from an examination of the general

design problem to specific methodologies. Five stages are

identified:

1. Design Theories.

2. Design Techniques,

3. Design Methodologies,

4. Comparing design methodologies through actual design,

5. Extending SDM.

The rest of this thesis is organized in a similar manner.

Chapter II presents a few of the popular views on the nature

of design problems. Chapter III presents a list of design

methodologies. Chapter IV describes an experiment in com-

paring several design methodologies. Finally, the conclud-

ing chapter presents suggestions for modifying and extending

SDM.

Chapter II

DESIGN THEORIES

Before a study of design methodologies can be undertaken,

it is necessary to understand design from a broad perspec-

tive. Peter Freeman speaks of this need [FREE771:

"Without an understanding of broad classes of phenome-
na, one is condemned to understand each new instance by
itself."

Indeed, the essence of science is to discover unifying

characteristics in the environment around us. Having this

knowledge, we can predict the outcome of specific actions.

Furthermore, we can use this knowledge to choose those ac-

tions which yield desired results.

The purpose of this chapter, therefore, is to present

popular views on the nature of design, and how it relates to

software development. The first section describes three

different viewpoints on design. These viewpoints are col-

lected from three different disciplines - Architecture, Civ-

il Engineering, and Artificial Intelligence. The second

section puts design in perspective with software develop-

ment.

- 4 -

2.1 DESIGN THEORIES

Although software design is a recent development, the

subject of design in general has been around for a long

time. Consider the Egyptian Pyramids and Roman Cathedrals,

these are all complex structures which required careful

planning and design. Therefore it is logical to expect a

significant understanding of design from the fields of Ar-

chitecture and Civil Engineering. In fact, the first two

views on the nature of design are taken from these fields.

Christopher Alexander is an architect who received his edu-

cation from MIT and Harvard. His views on design [ALEX64]

have become the backbone of SDM. Marvin Manheim is a pro-

fessor of Civil Engineering at MIT. Professor Manheim's

work in Urban Planning [MANH64,67] also represents an unique

view on design.

A third area from which interesting results have emerged

is Artificial Intelligence. Professor Herbert Simon of Car-

negie Mellon looks at design from a psychological perspec-

tive. His views can be found in [SIM069J.

2.1.1 Discovering the Structure

The first approach to design presented here is advocated

by Christopher Alexander [ALEX64J. It is of special inter-

est because it is the basis for the SDM approach.

In Alexander's view, the major difficulties in design are

caused by the complexity of the design problems. The number

6

of competing factors a designer must consider has become so

large that it is not possible to keep track of all of them.

Therefore, it is necessary to have a systematic way of re-

ducing the design problem into manageable pieces. These

separate pieces can then be attacked one by -one and a more

satisfactory solution to the original problem can be pro-

duced.

Before proceeding further, it is necessary to understand

what causes complexity. It is not merely the size of the

problem, for surely we can solve a thousand arithmetic prob-

lems easily; when each problem has nothing to do with the

others. Alexander points out that the real culprit is the

interaction among requirements. In other words, the solu-

tion to one requirement is often dependent on the solutions

to many of the other requirements.

Thus, Alexander proposes a way to model the interactions

between requirements, and extract the optimal decomposition

from that model. The basic idea is to model the situation

with a graph. The requirements are the nodes, and the in-

teraction between requirements are the links. The designer

can then apply an algorithm to the graph and find the decom-

position which minimizes the interaction among the resulting

components. This decomposition allows the designer to deal

with each component independently, thus reducing the com-

plexity faced by the designer. This process is, in effect,

the search for the problem structure, where structure is de-

7

fined to be the underlying components and their, interac-

tions.

2.1.2 Problem Solving

Manhiem [MANH64,67] expressed the view that complexity

management is the major difficulty in design. The variety

of options open to a designer are so numerous that it is

difficult just to list them exhaustively. To find the opti-

mal solution is somewhat an unrealistic goal.

Manheim proposes a model called the Problem Solving Pro-

cess (PSP). The basic activities of'the PSP are search and

select. Search generates a set of alternatives and select

makes a decision on which alternative to follow.

The search and select procedures are used repetitively,

until a satisfactory solution is found. More specifically,

the search procedure generates a set of options which it

feeds into the select procedure. Select then employs some

evaluation techniques to assign a priority ordering to the

options. The option with the highest priority is pursued

further, and the search-select process is repeated until a

solution is found. The designer must decide when the op-

tions provide a sufficient decision space and the solution

is satisfactory.

Manheim also suggests that a computer be used in PSP, es-

pecially the graphic capabilities because the human mind can

work much better with a picture than with senteng;es. Fur-

8

thermore, the entire PSP can be automated to increase its

efficiency as well as its effectiveness. Moreover, Manheim

asserts that the complexity of design problems precludes a

provably optimal solution. Nevertheless, one can still de-

velop an optimal design process.

2.1.3 Reducing the Difference

In yet another view, Herbert Simon [SIM069] defines de-

sign as a process of reducing the difference between the

present state and the desired state. At every stage of the

design, some sensors (e.g., human or machine) describe the

state of the world, then the state is compared to the de-

sired state. A set of differences is generated, and solu-

tions are devised to resolve the differences.

Simon models the above process as a General Problem Sol-

ver (GPS). At any moment in the design, the GPS asks the

question, "What shall I do next?". To answer this question,

the GPS stores information in its memory about states of the

world and about actions. It also stores associations be-

tween changes in states and the actions that bring about

these changes. Now the GPS's question can be answered by

searching for a series of actions which produce the desired

changes in the state of the world.

The difficulty in the above scheme lies in the search

procedure. Simon suggests a breadth-wise search. The GPS

starts with a set of alternative actions, and assigns a val-

9

ue to each. The value corresponds to the relative likeli-

hood that the desired state can be reached through that

path. The GPS investigates several of the most promising

actions in parallel. An alternative is eliminated as more

information is gathered, and the path begins to look less

promising than others. In effect, the GPS is building up a

decision tree in its memory. It gathers more and more in-

formation about the design as decisions are explored. This

process continues until a path to the desired state is

found.

Note that Simon does not incorporate any notion of opti-

mization in his model. In fact he believes that design can

be best described by the word "satisficing". In other

words, most designs are merely a satisfactory solution to

the problem. Optimization is not possible because of the

enormous complexity of most design problems.

2.2 SOFTWARE DESIGN AND THE SYSTEM LIFE-CYCLE

Early in the growth of software engineering research, it

was found that typical software systems go through 9 differ-

ent phases:

1. User requirements specification,

2. System requirements specification,

3. Architectural design

4. Logical design (or detailed design),

5. Programming.,

6. Debugging,

7. Testing,

8. Operation and monitoring,

9. Maintainence.

Further research revealed that the greatest costs were

incurred when components are put together and debugged.

This phenomenon is caused by the lack of overall system

planning or architectu'ral design. Thus, software design can

be effectively defined as the bridge between requirements

specification and programming. It is the activity of look-

ing ahead and planning out the organization of the program.

Software design can be further divided into architectural

design and logical design. Architectural design deals with

the entire system. It usually involves decomposition, set-

ting up communication between components, and making deci-

sions that have global effects (e.g., creating a module to

handle file I/0, or an executive module to do dispatching).

In effect, the architectural design is analogous to the bone

structure in the human body. Logical design, on the other

hand, deals with local issues. It involves the details of

each component (e.g., how data is taken out of the file and

put into a buffer, or what to do when the input is the num-

ber 0). This subphase can be thought of as the flesh which

envelops the framework of bones. Together the flesh and the

bones perform the functions of the system.

Chapter III

THE DESIGN METHODOLOGIES

The last chapter identified the basic issues in software

design. This chapter looks at the technology which address-

es these issues. The technology is called "Software Design

Methodology".

Formally, a software design methodology has the following

properties (see also [HUFF79]):

1. A structured approach. This property requires the

methodology to have a definite view on how the design

should proceed. It may be top-down, bottom-up, or a

mixture of the two. The important thing is that the

methodology provides the designer with a direction.

It can be thought of as a compass, a top level strat-

egy, or an overall plan.

2. A procedure. The procedure specifies the detailed

steps in carrying out the structured approach. It

adds a sense of mechanization to the design process.

More specifically, the procedure provides clear in-

structions and specifies well defined tasks. In es-

sence, the procedure is like an assembly line, and

the designers are the workers who actually put the

parts together.

- 11 -

12

3. Tools. Tools are mechanical helpers for the design-

er. They may vary from simple graphic representa-

tions of design to design languages, or even programs

which produce programs.

The rest of the chapter describes a collection of method-

ologies. The first 4 sections describe methodologies that

are used in the experiment (chapter 4). The final section

contains descriptions of 4 other methodologies, briefly

overviewed and included for completeness.

3.1 HIERARCHICAL DEVELOPMENT METHODOLOGY (HDM)

HDM ([LEVI80, [ROBI791, [SILV791) is primarily an aid

in structuring and recording decisions made during the de-

sign process. Based on a decision model, HDM employs sever-

al different software engineering concepts for the structur-

ing and the grouping of decisions. HDM also emphasizes the

need for flexibility in a design methodology. Citing in-

stances where an error in early decisions produced cata-

strophic results, HDM proposes that some methodologies force

designers to make premature decisions. Therefore HDM

strongly emphasizes flexibility in its proceduralized ver-

sion.

The basic idea in HDM is the decomposition of a program

into levels of abstract machines. The machines are linearly

ordered, and each machine can only communicate with the ma-

chines directly above and below itself. Within each ab-

stract machine further decomposition takes place. Each ma-

chine also has its own abstract data structure and a set of

abstract operations. These operations are implemented on

the machine of the next lower level. The data structure of

each machine cannot be accessed from the outside, except

through the defined operations of that machine.

3.1.1 The Decision Model

HDM views software design as a process of decision mak-

ing. At any stage of its development, the software results

from a sequence of decisions. Each decision depends only on

the decisions occurring before it. Although decisions occur

linearly in time, as in figure 2, in reality each decision

depends only on a subset of the decisions occurring before

it. This can be thought of as partial sequences, possibly

intersecting at some point (see figure 3).

r-- -----------------------

d 1 m. d 2 .. d3 mm-m d4... =em.d n

Figure 2: Sequence of Decisions

L---

Two issues of importance in the decision model are the

time when decisions are made, and the dependency between de-

cisions. Organizing the decision-making process to address

these issues, HDM uses the following concepts as guidelines-

1. Abstraction - Abstraction is defined as the process

of isolating a subset of the properties characteriz-

ing a system, such that the system can be understood

do-

d , d

d3 d4 d5 d6

d d d

d10 d d12

Figure 3: Dependencies Among Decisions Form a Tree- I
like Structure

L --- --------------------------

niore easily and the system can be used as if it poss-

essed only that subset of properties. The concept of

levels of abstraction provides a way to describe the

interdependence between decisions (i.e., each level

only depends on the level before it), and to minimize

that dependence (i.e., abstract only the necessary

features of decisions on the level below).

2. Hierarchies of Abstract Machines - The next step in

applying the idea of abstraction is the concept of

hierarchy. Any programming problem can be thought of

as a set of instructions to an abstract machine. The

---------------------------- ------------ ----------------

16

abstract machine is in turn realized by another ab-

stract machine, and so on. The design eventually

reaches a level where the abstract machine can be re-

alized by a physical machine (e.g., a programming

language processor). In HDM, an abstract machine has

the following properties.

a) A set of internal data structures which define the

state of the machine.

b) A set of operations by which the data structures

can be manipulated and changed.

c) A data structure internal to each machine which

can be accessed only through the defined opera-

tions of that machine.

The hierarchy of abstract machines provides a

structure for decision making. It also enables the

grouping of decisions into individual machines.

3. Modularity - As defined by HDM, modules are parts of

a system which can be easily replaced. In order to

be easily replaceable, HDM requires a module to have

a well-defined external interface. This allows an-

other module satisfying the requirements of the in-

terface to replace the original module without any

knowledge of internal details. Modularity is used to

localize the. effect of decisions and to minimize de-

pendencies between decisions of different modules.

17

4. Formal Specification - Formal specification in HDM

is meant to provide a complete documentation of all

decisions made during design. Each module is pre-

cisely described by a specification language called

SPECIAL (SPECIfication and Assertion Language). A

further goal of formal specification is machine-

checked consistency and well-formedness.

5. Formal Verification - Formal verification refers to

techniques whereby programs can be mathematically

proven correct. HDM employs the inductive assertion

technique developed by Floyd ([LEVI801). The purpose

of verification is to provide a means for determining

the consistency among decisions.

6. Data Representation - Many situations arise in pro-

gramming where mathematical concepts are modelled by

data structures. Verification of the model is often

difficult, therefore a technique called "data repre-

sentation function" is used. This function defines a

mapping between mathematical concepts and data struc-

tures. Verification can be performed by examining

the mappings.

3.1.2 The Procedure

HDM warns against strict step-by-step procedures. An er-

roneous decision made in an early step often did not get

discovered until it became too costly to change that deci-

18

sion. Instead, HDM provides guidelines for decision-making

and a seven stage development scheme. The development

scheme is meant to provide a series of milestones by which

progress can be measured. Although the seven stages appear

ordered in time, HDM emphasizes that it is not necessary to

carry out the design in that order. In fact HDM encourages

the designer to follow the natural course of the decision

making process.

The seven stage scheme is as follows:

1. Conceptualization - Conceptualization is the process

of identifying the design problem, and stating the

problem as requirements. This is also known as re-

quirements specification.

2. External Interface Definition - Defining the abstract

machines that interact with the outside world. This

consists of the top-most machine in the hierarchy and

the bottom-most machine in the hierarchy. Also done

during this step is the decomposition of these ma-

chines into modules.

3. System Structure Definition - Defining the intermedi-

ate abstract machines and decomposing them into mod-

ules. Intermediate machines can be defined in three

different directions: Top-down, bottom-up, or middle-

out.

4. Module Specification - This step is carried out using

SPECIAL (SPECIfication and Assertion Language). Pre-

19

cise and explicit descriptions of decisions made in

stages 2 and 3 are recorded in SPECIAL.

5. Data Representation - Define the data structures of

every non-primitive machine (i.e., every machine ex-

cept the bottom most machine) in terms of the data

structures of the machine on the next lower level.

6. Abstract Implementation - Implement operations of

each non-primitive machine as an abstract program

running on the machine of the next lower level. The

abstract programs are written in ILPL (Intermediate

Level Programming Language).

7. Concrete Implementation - Translate abstract pro-

grams, written in stage 6, into executable code.

This can be done by translating ILPL programs into a

modern programming' language, or directly compile ILPL

into machine code.

3.2 JACKSON METHODOLOGY

The Jackson Methodology [JACK75] is based on the philoso-

phy that the program structure should match the problem

structure as closely as possible. To discover the problem

structure, Jackson theorizes that the data structure re-

flects the problem structure very accurately. Once the in-

put and output data structures are found, a program can be

created to transform input data into output data. Further-

more, data structures can be expressed with the same kinds

of components as those used for the program structure (i.e.,

the sequence component, the iteration component, and the se-

lection component). This observation enables the designer

to build the data structure out of components which can be

directly translated into program components.

However, anomalies between input and output data give

rise to situations where it is impossible to irectly trans-

late data structure into program structure. Jackson identi-

fies two typical situations: structure clash and backtrack-

ing.

Structure clash occurs when an input data structure does

not match the output data structure. This mismatch can be

caused by a different ordering among components, by a many-

to-one mapping, or by a one-to-many mapping. For example,

if the input data are rows of a matrix, and output data are

columns of the matrix, then a structure clash occurs.

21

Backtracking problems arise when execution of a task is

dependent upon a condition, but the condition cannot be

checked unless the task is executed. For example, when per-

forming a table lookup, the condition for retrieving the

value of an entry is that the entry should actually exist.

However, one cannot determine whether the entry exists or

not unless a lookup is performed. In this case, one would

have to perform the task first, then determine the value of

the condition. If the condition is false then backtrack to

a point before the task was performed, and take another

path.

3.2.1 The Procedure

Jackson's methodology can be divided into three stages:

1. Define the input and output data structures.

2. Create the program structure from the data struc-

tures. In other words, transform data structure com-

ponents into program modules.

3. List the program tasks as executable operations, and

allocate each task to a program component.

3.2.2 Data Structure Definition

Jackson's methodology provides a graphical representation

of the three structuring components. They are given in fig-

ure 4. The components are represented in a hierarchical fa-

shion. This implies that the program structure is also hi-

22

erarchical, because program structure is expressed with the

same components.

3.2.3 Program Structure Definition

Jackson also provides a general heuristic for solving

each of the problems caused by data anomalies. Structure

clash is solved by program inversion. Recall that structure

clash is caused by inconsistencies between input and output

data structures. The program inversion technique breaks in-

put data into elementary components, then recombines them to

form the output data. For .example, in the matrix problem

considered earlier, the rows could be broken into individual

elements, then recombined later to form the columns.

Backtracking problems are solved by a three step process:

1. Structure the problem as a sequence, ignoring the im-

possibility of evaluating the condition, and execute

one branch of the conditional. Recall that a back-

tracking problem arises when the condition cannot be

evaluated without first performing a task whose exe-

cution depended on the condition. This step is

equivalent to executing the then-clause.

2. Determine whether an incorrect choice has been made,

then either proceed or do a conditional transfer to

the else-clause.

3. Consider the side effects caused by execution of the

then-clause, and make appropriate corrections before

the original else-clause is executed.

The Iteration Component

The Selection Component

Figure 4: The Three Basic Structuring Components I

L--

The Sequence Component

------------------------------------ ------------------

3.2.4 Unique Features

Jackson makes several claims about the methodology.

First, the methodology provides a simple criterion by which

to judge whether a program structure is correct. More spe-

cifically, if the program structure matches the correct data

structure, then the program structure leads to a "good" pro-

gram (but the critical step of constructing the data struc-

tures is not at all trivial). Second, the methodology has a

unifying principle, and every aspect of the methodology can

be validated from that principle. The principle is: Data

structure reflects problem structure, and a good solution

should reflect the problem structure. Third, the methodolo-

gy is easy to learn, easy to use, and does not depend on an

individual designer's ability. That is, the process of dis-

covering data structures and transforming them into a pro-

gram structure is very mechanical, therefore requires little

ingenuity. Finally, the methodology produces a hierarchi-

cally structured program. According to Jackson this is syn-

onymous to good design.

3.3 STRUCTURED DESIGN (SD)

The SD [YOUR791 approach is inspired by a study of the

morphology of systems. It is found that low-cost systems

are usually shaped like a mosque (see figure 5).

r--

Figure 5: The Mosque Shape of Low-cost Systems
(adapted from [YOUR791)

L--

Furthermore these low-cost systems are centered around

various aspects of the system functions. Most important of

the different types of centers are the transform center and

the transaction center. The transform center consists of

those modules which transform the input data stream into the

output data stream. The transaction center refers to places

in the system where the data stream is split into many sub-

streams.

To identify these centers, SD uses the Data Flow Graph

(DFG). The DFG is a pictorial way to describe the transfor-

mation of input data into output data.

26

Having identified these centers, SD provides two techni-

ques for constructing a system architecture: Transform

Analysis and Transaction Analysis. These techniques will be

discussed in the following sections.

3.3.1 The Procedure

1. Translate the design problem into a DFG. (See

[YOUR791 chapter 10 for examples of DFG)

2. If the DFG represents a sequence of transforms each

of which must be performed, then use Transform Anal-

ysis. If the DFG represents a selection among many

alternative routes then use Transaction Analysis.

Transform Analysis:

1. Identify the input stream and the output stream.

These elements of the DFG are also called afferent

data elements and efferent data elements respective-

ly.

2. Identify the transform center. The transform center

consists of one or more transform elements.

3. Translate the DFG into a system structure as follows:

COORDINqA'IOR ; TPNSFO141

CENTER

AFFERENT EFFERENT
ELEMENTS ELEMENTS

27

4. Go back to step 1 and apply the procedure to each

module in the system.

Transaction Analysis:

1. Identify the transaction center.

2. Translate the DFG into a system structure as follows:

DISPATCE TRANSACTION

. KOPACENTER

ALTERNATE
PATHS

3. Go back to step 1 and apply the procedure to each

module.

3.3.2 Data Flow Graph (DFG)

The DFG can be thought of as a decomposition tool. It

allows the designer to describe the processing of input data

in terms of well defined transformations. For example, fig-

ure 6, shows the processing of inputs from a medical monitor

device.

However, it is not always easy to translate a design

problem into a DFG. SD does not provide a systematic way to

ADM S'IORE FIND NTF

FACIORS FACTORS UNSAFE NURSE
FACIOPS

Figure 6: An Example of DFG (Adapted from [YOUR791) I

solve this problem. Instead, a set of guidelines are given.

They are summarized below:

1. Work from different d irections: Input to output, out-

put to input, middle out. When one approach fails,

switch to another.

2. Do not show control logic. In other words, just show

what needs to be done to the data, not how it is

d one .

3. Ignore initialization and termination.

4. Label data elements.

5. Use * (AND) and + (OR) symbols to indicate the type

of data stream splitting.

6. Do not show unnecessary details, but if in doubt,

show more detail rather than too little.

3.3.3 Select a Technique

The difference between Transform Analysis and Transaction

Analysis can be viewed in another way. Transform Analysis

is applied whenever the DFG represents an AND relationship

between the bubbles in the DFG. Transaction Analysis, on

the other hand, is applied when the DFG represents an OR re-

lationship between the bubbles in the DFG.

3.3.4 Transform Analysis

The identification of afferent, efferent and transform

elements is not a clearly defined task. When and where the

input data becomes output data depend a great deal on the

taste of the designer. SD offers the following definitions

toward the resolution of the above problem:

1. Afferent data elements are those high-level elements

of data that are furthest removed from physical in-

put, yet still constitute inputs to the system.

2. Efferent data elements are those high-level elements

of data that are furthest removed from physical out-

put, yet still constitute outputs to the system.

3. The transform elements are everything in between the

afferent elements and the efferent elements.

The translation of the DFG into a system structure is a

mechanical process. Each bubble in the DFG becomes a module

and a coordinate module is created to manage them.

30

3.3.5 Transaction Analysis

The transaction center is much easier to identify than

the transform center. The unmistakable characteristic of a

transaction center is the two or more "OR" branches extend-

ing from a bubble.

Having identified the transaction center, it is a simple

step to create the system structure. A dispatch module is

created to perform the selection among the alternative

paths.

3.4 SYSTEMATIC DESIGN METHODOLOGY (SDM)

SDM's philosophy is adopted from Alexander's work on de-

sign theory [ALEX64]. Essentially, this approach views de-

sign as a process of discovering the inherent structure of

the problem. Structure being the set of underlying sub-

problems and how the sub-problems interact with each other.

This idea of structure can be applied to each sub-problems

as well. In other words, the sub-problems themselves can

have sub-problems.

Looking at it from a software perspective, the SDM phi-

losophy involves discovering a decomposition of the design

problem into modules, or sub-problems. These modules are

themselves decomposed into still smaller modules, and this

process could be carried to any degree of detail.

To carry out the top-down decomposition, SDM uses a graph

model (see [HUFF79]). The idea is to model individual re-

guirements as nodes, and interactions between nodes as

links. However, because interactions can be weak or strong,

every link is given a weight between 0 and 1.

Having translated the design problem into a graph decom-

position problem, the next step is to formulate the decompo-

sition criteria. The SDM approach is to maximize the fol-

lowing conditions:

1. Strong interdependencies between members of a group.

2. Weak interdependencies between members of different

groups.

In summary, SDM's procedure can be divided into 4 steps:

1. Specification of the functional requirements,

2. Determine the degree of interdependency between all

pairs of requirements,

3. Represent the requirements as nodes and the interde-

pendencies as links between nodes,

4. Apply a decomposition algorithm to the graph.

Each of these steps is further expanded upon in the fol-

lowing subsections.

3.4.1 Requirements Specification

Requirements specification is capability oriented, not

process oriented. Put another way, specifications should be

non-procedural, it should not state how something is to be

done, merely what is to be done.

Specifications must have the following three characteris-

tics

1. Unifunctionality - Each statement describes a single

function to be incorporated in the target system.

2. Implementation Independence - Each statement should

be non-procedural. In other words, each statement

should specify what needs to be done, not how it is

to be done.

3. Common Conceptual Level - All requirements should be

on the same level of generality.

A set of seven requirement statement templates was devel-

oped to meet the above criteria, and also to ease the trans-

33

lation of requirements stated in other forms/languages. A

list of the templates is given below (adapted from

[HUFF79]).

The 7 Templates:

1. Existence

There (can/will) be <mod> <obj>

2. Property

<mod> <obj> (can/will) be <mod> <property>

3. Treatment

<mod> <obj> (can/will) be <mod> <treatment>

4. Timing

<mod> <obj> (can/will) <timing relationship> <mod>

<obj>

5. Volume

<mod> <obj> (can/will) be <order statement>

<index> <count>

6. Relationship (Subsetting)

<mod> <obj> (can/will) contain <mod> <obj>

7. Relationship (Independence)

<mod> <obj> (can/will) be independent of <mod>

<obj>

3.4.2 Interdependency Assessment of Requirements

The next step is the determination of interdependencies

between all pairs of requirement statements. These interde-

pendencies are expressed as weights. A weight is a number

34

between 0 and 1. The smaller the number the weaker the in-

terdependence, while a larger number has the opposite ef-

fect. Therefore the value of 0 means absolute independence,

while a value of 1 means absolute dependence.

Through experience, SDM users have discovered that most

interdependency assessments fall into three categories:

Strong(0.8), average(0.5) and weak(O.2). This three way

breakdown is much easier to use while still providing a

meaningful measure of interdependency.

There still remains the question of how interdependencies

are determined. SDM does not provide a systematic method to

meet this need. However, SDM offers the following points as

guidelines:

1. The designer must have in mind at least some idea of

how to implement related requirements. From this im-

plementation scheme, the designer can then give an

assessment of interdependency. If it is possible to

develop several schemes for implementation, then the

designer can evaluate the different schemes and as-

sign weights according to how important a pair of re-

quirements is within each of the schemes. In other

words, if a pair of requirements seem to be related

in all the schemes, then a weight of 0.8 should be

assigned to it.

2. In other cases, trust intuition.

3.4.3 Graph Modelling of Requirements

Each requirement stated using the template method can be

represented by a node, and the interdependencies can be rep-

resented by links between nodes. The weights can be record-

ed in a square matrix, and the square matrix can then be

used in the decomposition process.

3.4.4 Graph Decomposition Techniques

Several different clustering algorithms have been devel-

oped in connection to SDM. Among them are the Interchange

Algorithm and the Hierarchical Clustering Techniques. De-

tailed discussion of the algorithms are found in [HUFF79],

[WONG80] and [LATT801.

3.5 OTHER DESIGN METHODOLOGIES

In this section we describe 4 other methodologies. These

methodologies were not chosen for the design experiment for

various reasons. However, they still provide interesting

insights to software design.

3.5.1 Event-based Design Methodology (EDM)

EDM [RIDD79] is a methodology based on the top-down de-

sign approach, and it is particularly good for the architec-

tural design phase. The methodology consists of iteratively

applying four basic steps. These steps form a stage of the

design. The input to a stage is a partial design, corre-

sponding to the current state of the design effort.

The four steps are as follows:

1. Identify events occurring in the part of the system

which is being considered in the present stage. An

event could be a "happening" in the system which re-

quires the system to respond in some specified fa-

shion. Or an event could be an action taken by the

system in response to some stimuli. In other words,

events definition is specification of the input and

required system behavior in response to these inputs.

2. Establish constraints on the occurrences of events.

This step is basically the specification of correct

system behavior in response to stimuli. The differ-

ence between this step and step 1 lies in the scope

37

of consideration. In step 1, desired system behav-

iors are stated in term of what needs to be done. It

does not consider how it is done nor does it consider

interactions with other parts of the system. There-

fore by establishing constraints such as the sequence

in which events (i.e., system responses) should take

place, the designer can gradually evolve requirements

into functional modules.

3. Define components which would perform tasks specified

by the events. This step defines a module for each

of the events that correspond to a desired system be-

havior. The defined module can be completely new or

it can be an existing module created during a previ-

ous stage.

4. Define the necessary interactions between modules.

The interactions would be subject to the constraints

of step 2. The developers of this methodology plan

to provide verification capabilities based on this

step. That is, if during this step within every

stage, the designer can prove he has satisfied all

the constraints, then it could be the basis for a

proof of correctness.

This methodology presents a variation to the strictly

top-down approach described earlier. The basic decomposi-

tion procedure has been extracted from the top-down ap-

proach, and given more freedom in its use. The four step

38

procedure, described above is actually a formalization of the

basic decomposition process in the top-down approach. More-

over, this formalized procedure can be treated as a basic

building block with which a complete design procedure can be

constructed.

A direct consequence of the above is the increased flexi-

bility over a strictly top-down approach. In a top-down ap-

proach, the design problem is decomposed in an orderly way,

but in this methodology the desomposition step can be ap-

plied to any subproblem at any time. This is true because

the only input to the four step procedure is a partial de-

sign. This partial design need not be the result of a se-

ries of decomposition steps, because it could be indepen-

dently defined. This feature is especially useful in

combining the top-down approach with other approaches.

3.5.2 Higher Order Software (HOS)

HOS [HAMI76] was born out of many years of experience in

designing and implementing NASA projects. The methodology

is oriented toward large real-time systems. Because of the

complexity usually associated with such systems, HOS is sup-

ported by a system of tools called the Integrated Software

Development System (ISDS). The designer interacts with ISDS

to produce a specification of the target system. Then the

specification is fed into the Design Analyzer and the Struc-

turing Executive Analyzer. The output of the Analyzers is a

39

complete system specification. Given this specification the

designer can perform architectural design.

The HOS procedure can be split into three phases:

1. Specify requirements according to a set of axioms.

2. Feed specifications into the Designer Analyzer and

Structuring Executive Analyzer.

3. Produce architectural layers.

HOS provides a metalanguage called AXES with which to

specify the requirements. The metalanguage is based on six

axioms to which the designer must adhere. They are as fol-

lows:

1. A given module controls the invocation of the set of

valid functions on its immediate, and only its imme-

diate, lower level.

2. A given module is responsible for elements of only

its own output space.

3. A given module controls the access rights to each set

of variables whose values define the elements of the

output space for each immediate, and only each imme-

diate, lower level function.

4. A given module controls the access rights to each set

of variables whose values define the elements of the

input space for each immediate, and only each immedi-

ate, lower level function.

5. A given module can reject invalid elements of its

own, and only its own, input set.

40

6. A given module controls the ordering of each tree for

the immediate, and only the immediate, lower levels.

After the requirements are specified in AXES, they are

fed into the analyzers. The analyzers check for violation

of the axioms in the specifications. The Design Analyzer

checks for static consistency, and the Structuring Executive

Analyzer checks for dynamic consistency.

In addition to consistency checks, study can be done in

the following areas: Fault tolerance, error detection, tim-

ing and accuracy, security requirements, system reliability.

Having the analyzed specifications, the designer can be-

gin the architectural design. In this phase the designer

develops a system architecture and allocates the available

resources. The architecture is constructed in layers, simi-

lar to the concept of a hierarchy of abstractions. Then the

resources are allocated to the system components using the

Resource Allocation Tool (RAT). The RAT uses the architec-

tural form to analyze the target system in terms of time and

memory optimization. An optimal module configuration is

produced by the RAT.

3.5.3 Logical Construction of Programs CLCP)

The LCP philosophy [WARN74] is that program structure

should be derived from the input and output data structures

(similar to Jackson's methodology). The data structures are

constructed from three basic elements: Sequence, Iteration,

41

and Selection. Furthermore, the data structures are ex-

pressed in a hierarchical format called the data structure

diagram.

Having defined the data structures, the designer con-

structs a flow chart. The flow chart would express the log-

ical sequence of actions to be performed. The chart is then

translated into an instruction list, which finally gets

translated into code.

LCP does not provide a step by step procedure, however,

the following steps are implied:

1. Define input and output data structures.

2. Construct a flow chart based on the data structures.

3. List operations to be performed by each part in the

flow chart.

4. Translate the list of operations into code.

The LCP data structure diagram is based on the building

blocks shown in figure 7.

The data structure diagrams can be directly translated

into a flow chart. The sequence element becomes a sequence

of nodes. The iteration element becomes a loop and the se-

lection element becomes a decision box.

Finally, the designer generates a list of operations for

each node in the flow chart. The list of operations is in-

tended to be a buffer from the confusion which may occur if

the designer had translated the flow chart directly into

code. By listing all the operations for each box of the

item lItem litem l

Item 2 (n timves)

Item 2
Item 1 -tn -tn

.SEQUENCE ITERATION SELETION

Figure 7: Data Structure Definition for LCP

L---

flow chart, the designer can take the design one step lower

in detail without being tied down by the details of a pro-

gramming language.

3.5.4 WELLMADE

The primary goal of WELLMADE is to add a mathematical di-

mension to the conventional top-down approach. The design-

ers of WELLMADE [BOYD78] claim that the major difficulty in

software development is the lack of mathematical discipline.

Therefore, WELLMADE has focused on proving the correctness

of a program.

- The general approach to proof of correctness is based on

Dijkstra's idea of predicate transformer [BOYD781. Basical-

ly, a program can be regarded as a transformation of input

43

into output. From this point of view, one can then work

backwards from the output states and derive all the possible

inputs under the transformation. To do this an explicit

statement of all output states and a mathematical statement

of the transforms is needed. If the resulting input state

space, derived from the above process, contains the speci-

fied legal input states, then the program performs correctly

for all legal inputs.

In terms of system architecture, WELLMADE advocates a

layered design. The concept is similar to the idea of step-

wise refinement. The design begins from a highly abstract

machine with abstract data and abstract program declaration.

Then the modules in the abstract machine are decomposed in

greater detail. Often the decomposition results in another

abstract machine. The decomposition continues in this fa-

shion until a level of detail is reached where coding is

possible.

There are only two phases in the WELLMADE methodology.

They are applied repetitively until the design is finished.

1. Requirement Specification,

2. Program Design.

WELLMADE does not have its own specification language.

However, the following features are needed in the specifica-

tion in order to prove correctness:

1. Be able to represent assertions, predicates, program

states, invariant relationships and requirements.

44

2. Include first-order predicate calculus.

3. Include notations for describing data types.

4. Be able to record performance information.

WELLMADE does not provide a method to decompose the de-

sign. There is, instead, a program design language for rep-

resenting detailed procedural logic and data structures.

.Chapter IV

AN EXPERIMENT IN SYSTEM DESIGN

In this chapter, four different designs of a text editor

produced by four different design methodologies are present-

ed. The purpose of this exercise is twofold. First, it is

a learning experience intended to increase one's insight

into design. Secondly, the experiment provides a way to

compare different methodologies in a concrete manner.

The target system for the experiment is a stream editor.

In this system, text is considered as a sequence (or stream)

of characters. In other words, carriage return and line-

feed are just characters which produce a special effect on

the screen.

The rest of the chapter is organized as follows: Section

one is a list of user requirements for the editor. Section

two specifies the data structures. Section three explains

documentation of the designs. Section four contains the ac-

tual designs. Finally, section five is a comparative evalu-

ation of the methodologies.

- 45 -

4.1 REQUIREMENTS FOR A STREAM EDITOR

The following requirements were derived for an experimen-

tal system. That is, the target system does not have real-

time interaction with a terminal. Instead, the terminal is

simulated by a matrix of characters. Also, the target sys-

tem is intended to be device independent, therefore we did

not include any specific operating system considerations.

Lastly, PL/I was thosen as a model language for the design

to provide the necessary data structures.

1. The system should support the view that text is a

stream of characters.

2. The design shall be independent of any particular

system.

3. The programming language is PL/I compatible.

4. The screen is represented by an 80x30 matrix of char-

acters.

5. The editor shall accept the full set of Ascii charac-

ters.

6. A portion of the text is displayed on the screen au-

tomatically.

7. A cursor shall be provided to indicate the current

point of reference.

8. Text is automatically inserted after the cursor,

there is no need to issue an insert command.

9. The editor shall have an internal buffer for storing

the text.

10. Multiple editor commands can be issued in sequence.

11. Text input and command input are separated by a con-

trol character (e.g., i).

12. Multiple editor commands are separated by control

characters. That is, every individual command is

preceeded by a control character.

13. Editor commands are preceeded by a control character.

14. The following commands should be implemented:

a) Read File - Format is "@r <file-name>". This com-

mand will store the content of a file in the in-

ternal buffer of the editor.

b) Write File - Format is "3w <file-name>". This

command will write the content of the editor's in-

ternal buffer onto a file.

c) Character Forward - Format is "@cf". This command

moves cursor to the next character.

d) Character Back - Format is "@cb". This command

moves the cursor back by one character.

e) Character Delete - Format is "@cd". This command

removes the current character from the buffer

(i.e., the character pointed to by the cursor).

f) Word Forward: Format is "awf". This command moves

the cursor to the first character of the next word

(words are delimited by a space).

g) Word Back: Format is "@wb". This command moves

cursor to the last character of the previous word.

48

h) Word Delete: Format is "@wd". This command re-

moves the current word from the buffer beginning

at the cursor.

i) Next Line: Format is "ilf". This command moves

the cursor to the line immediately after the cur-

rent line (lines are delimited by a carriage re-

turn). Cursor is left in the same relative posi-

tion, unless the previous line is too short. In

the latter case the cursor is put at the end of

the previous line.

j) Previous Line: Format is "alb". This command

moves the cursor to the line immmediately before

the current line. Cursor positioning follows the

same rules as alf.

k) Delete Line: Format is "ald". This command re-

moves the current line from the buffer beginning

at the cursor.

1) Top of File: Format is "@t". This command moves

the cursor to the first character in the current

buffer.

m) Bottom of File: Format is "ab". This command

moves the cursor to the last character of the cur-

rent buffer.

n) String Search: Format is "as <String>". This com-

mand will place the cursor at the first character

of the next occurrence of <String>.

49

o) String Replace: Format is "cur <String>

<New-string>". This command will do a String

Search for <String>, then replace <String> by

<New-string>. The cursor is left at the first

character of the replaced string.

p) End: Format is "@e". This command terminates the

editor program.

4.2 DATA STRUCTURES

During this phase of the design process, the data struc-

tures needed by the system are identified. There are two

types of data objects: position indicators and storage ele-

ments. The need for storage elements arise in two parts of

the systems. First, there must be an internal buffer to

store the text. Secondly, the screen must hold a portion of

the text at all times. Therefore the matrix which simulates

the screen is also a storage element.

Each of the storage elements also needs a position indi-

cator. Therefore a cursor is used to indicate to the user

his position on the screen. A cursor is also needed to in-

dicate to the system its position within the buffer.

The specific requirements are stated in the following

subsections.

4.2.1 Internal Buffer

Two issues arise in the design of a buffer. First, the

system must read/write the buffer contents from/to datasets

(or files). Therefore file access facilities available in

PL/I must be considered. Secondly, the kinds of buffer op-

erations used by the system has to be considered. Further-

more, the buffer should be designed in such a way so that

these operations can be performed efficiently.

Two kinds of file access facilities are available in

PL/I: Stream I/O and Sequential I/0. Stream I/O views text

as a sequence of characters. Sequential I/0 is record ori-

ented, which in this case, means that read/write is done

line by line.

The kinds of buffer operations the system will be doing

are insertion and text editing. Insertion does not require

any special treatment because the rate of input from the

terminal would be so slow compared to the computer's pro-

cessing rate. Editing of text, however, requires fast re-

sponse time. Three types of structures are considered for

the buffer: character linked structure, word linked struc-

ture, and line linked structure (see figure 8).

The final selection is the line linked structure for the

buffer. This structure gives a close representation of text

(i.e., a close resemblance to reality). Stream input from

the terminal is selected to support the stream oriented ap-

proach. Sequential I/O is selected for file access func-

tions because the buffer is record oriented.

r --

Character
Linked: T H.--

Lne d : THISE s A BUFFER **

THIS IS A BUFFER
I Line
| Linked:

Figure 8: Three Different Buffer Structures

The basic component of the line linked buffer is the line

structure. The line structure has two pointers, one points

to the previous line structure and the other points to the

next line structure. The storage capacity of the line

structure is 80 characters. This number is chosen to match

the width of the screen. If the user inputs a line of text

longer than 80 characters, then the status bit will be set

and the remainder of the line will be continued on the next

line structure (this is referred to as overflow). In other

words, the status bit indicates whether or not the stored

string of characters ends with a carriage-return character.

4.2.2 Buffer Position Indicator

In order to position the cursor at any point in the buff-

er, two things are necessary: a pointer to the line struc-

ture, and an offset indicating the position of the character

within the text string. Also, for efficiency reasons, two

more pointers are added. The first points to the head of

the buffer and the other points to the tail. Finally, a

three element array is provided to record incremental move-

ments of the position indicator (This will expedite the re-

positioning of the cursor on the screen). The "inc" array

is used only by Jackson's methodology and Structural Design.

The position indicator will be called "BUFFER".

dcl BUFFER

1 line-ptr ptr

1 offset fixed binary

1 head ptr

1 tail ptr

1 inc array(3)

4.2.3 Simulated Screen

The screen is simulated by an 80x30 matrix. In PL/I this

is represented by a string array with 80 elements. Each el-

ement is a string of 30 characters.

4.2.4 Screen Position Indicator

Associated with the screen is a position indicator which

points to the user's current position on the screen. It is

simply 2 integers. The first integer represents the hori-

zontal position (the x-coordinate), and the second integer

represents the vertical position (the y-coordinate).

dcl SCREEN

1 scr string(30) array(80)

1 x-coord fixed binary

1 y-coord fixed binary

4.2.5 The Package Structure

In order to simplify the passing of the above data struc-

tures, the package data structure is creatd. It has 2 ele-

ments: a pointer to a BUFFER structure, and a pointer to a

SCREEN structure.

dcl PACKAGE

1 Buff-ptr ptr

1 Scr-ptr ptr

4.3 DESIGN REPRESENTATION

The system designs are described in three different ways:

DARTS call graph, DARTS trees, and functional descriptions.

DARTS call graphs are used to describe system architecture.

DARTS trees are used to describe the logic with the modules.

Functional description specifies the name of the module, the

parameter and the module's functions.

54

Each of the above design representation techniques will

be discussed in the ensuing subsections. In the remainder

of this introductory section, a general description of DARTS

is presented.

Design Aids for Real-Time Systems (DARTS) is a tool de-

veloped at the C. S. Draper Laboratory. It is used to aid

in the definition of computer systems. It is intended to

increase productivity, and improve quality and efficiency.

In order to accomplish this, DARTS provides diagrams and ta-

bles to document the design, consistency checks, quality me-

trics, and simulations.

DARTS represents systems as trees. These design trees

describe a set of communicating entities called processes,

each of which consists of nested sequential control logic.

This scheme encourages top-down development, and structured

control flow. The hierarchical tree structure also allows

the design to be viewed from different levels of detail.

4.3.1 DARTS Call Graph

A call graph is a graph which describes the communication

between modules. Thus, it also describes the architecture

of the system. The graph consists of interconnected rectan-

gular boxes. Each box represents a module, and inside the

box is the name of the module. Two boxes are connected by a

line if one module calls the other.

55

4.3.2 DARTS Trees

To describe the logic of a module, DARTS provides an hi-

erarchical tree structured technique. Basically, the de-

signer describes his design using three components: the it-

erator, the selector and the sequencer. The functions of

each type of component is self evident. The DARTS tree is

represented graphically by elliptical shapes in figure 9.

14.3

0 0 e *

Sequencer (Do tasks 1 through n sequentially)

142.3

* 0 * 0

Iterator (Do tasks 1 through n repetitively until
the stopping condition is satisfied)

Selector (The if-then-else selector)

Figure 9: DARTS Tree Components

--

---------------- ------------------------ ------ -------

4.3.3 Functional Description

In addition to the graphical representations, each module

is described in terms of its parameters and function. A

freehand format is used, the following is an example:

Module name: Print

Parameter: <filename>

Function: Place a copy of file <filename> in the

printer queue.

4.4 EDITOR DESIGNS

As was mentioned earlier, four different methodologies

are used for this design experiment. They are the Jackson

Methodology, Structured Design, Systematic Design, Systemat-

ic Design Methodology and the Hierarchical Development Meth-

odology.

A problem that is immediately apparent is how to prevent

earlier designs from biasing results of methodologies used

later. Certainly design is a refinement process, therefore,

having thought through a design once would surely improve

the quality and efficiency of the second design. To elimi-

nate this bias would be impossible, but some control can be

maintained by strict adherence to the procedures defined by

each methodology. Furthermore, the order they are used is

HDM, Jackson, SD and SDM, where HDM is the methodology which

is the least mechanical.

58

The following subsections present briefly the design pro-

cess for each methodology. Then a discussion of the evalua-

tion technique and the results of the evaluations are pre-

sented.

4.4.1 Hierarchical Development Methodology

HDM consists of 7 steps. First the requirements are

specified. Then the top and bottom abstract machines are

specified. This is followed by the specification of the in-

termediate machines. Then the data structures for each ma-

chine is determined and- the operations of each machine is

implemented as a program on the next lower machine. Lastly,

the abstract machines are translated into a programming lan-

guage.

First, we identify the abstract machines. HDM does not

provide any guidelines for doing this, therefore a trial and

error method is used to derive the hierarchy of abstract ma-

chines shown in figure 10.

The data representation for each machine is self evident.

Each of the abstract machines is further modularized. The

EDITOR machine consists of 17 modules. A DISPATCH, and one

module for each editor command (see figure 11).

The BUFFER machine consists of modules which operate on

the buffer. They are divided into five types: Constructors,

Selectors, Mutators, Testers, and Cursor Movers. (see fig-

ure 12).

SCPEEN MACHINE

I Figure 10: HDM's Abstract Machines for the Editor I

L--.

Figure 11: EDITOR Machine

The SCREEN machine provides operators to manipulate the

screen (see figure 13). The entire architecture is shown in

figure 14.

The DARTS tree representation for a selected set of mod-

ules is given. Many of the BUFFER machine modules are

straightforward, therefore only functional descriptions are

given for them.

-- I

--

CONSTRUCIORS

CRFATE COPY
LINE BUFF

MUTATORS

PUT ADD
TEXT EMPTY

LINE

LINE CHAR
DLT DLT

TESTERS

BUFF LINE
EMPTY? EMPTY?

HEAD? TAIL?

CURSOR MOVERS

LINE LINE CHAR
EWD BACK FWD

CHAR FIRST LAST
BACK LINE LINE

Figure 12: BUFFER Machine

FILL
SCREEN

Figure 13: SCREEN Machine

CREATE
BUFF

FIX
CURSOR

FILL
LINE

I -- I

--

--

--- -------------

SF'TEC'IOPS

61

Module Name: EDITOR

Parameter: none

Function: Get a word from the input stream, and dispatch.

Module Name: DISPATCH

Parameter: PACKAGE, WORD

Function: Dispatch WORD to the appropriate subroutine.

52J2-2

63

.Module Name: INSERT

Parameter: PACKAGE, WORD

Function: Insert WORD before the cursor.

Module Name: READ

Parameter: PACKAGE, FILENAME

Function: Insert contents of file FILENAME before the cur-

sor.

Module Name: WRITE

Parameter: PACKAGE, FILENAME

Function: Copy the entire buffer into a file under FILENAME.

A.

Module Name: CHeAR-FWD

Parameter: PACKAGE

Function: Move cursor forward one character (Just call

BUFF-CHAR-FWD).

Module Name: CHAR-BACK

Parameter: PACKAGE

Function: Move cursor back one

BUFF-CHAR-BACK).

character (Just

Module Name: CHAR-DLT

Parameter: PACKAGE

Function: Delete character pointed to by the cursor (Just

call BUFF-CHAR-DLT).

call

67

Module Name: WORD-BACK

Parameter: PACKAGE

Function: Move cursor to the tail of the previous word.

68

Module Name: WORD-FWD

Parameter: PACKAGE

Function: Move PACKAGE's cursor to the head of the next

word. Uses buffer machine operators.

69

Module Name: WORD-DLT

Parameter: PACKAGE

Function: Delete everything between the cursor and the next

space.

Module Name: LINE-FWD

Parameter: PACKAGE

Function: Move cursor to the next line. If next line is too

short, the cursor is placed at the tail of the

line.

5a W..3

TP- BUPP-- CALL BUFM- TKMP2- BUFM-
GET-Tr-BEf LINU-FW GEf-TEZ

Module Name: LINE-BACK

Parameter: PACKAGE

Function: Move cursor to the previous line. If previous

line is too short, cursor is placed at the tail of

the line.

0=1O4

TEMP1- BUFF- CALL BUFF- TEMP2- BU2F-
GBT-TEIT-BEF IM-BACK Gfr - TK

5.HA2

Module Name: LINE-DLT

Parameter: PACKAGE

Function: Delete everything from cursor to the end of the

line. If line is empty, remove it from the buff-

er.

5..2

73

Module Name: TOP

Parameter: PACKAGE

Function: Place cursor at the first character of the buffer.

Module Name: BOTTOM

Parameter: PACKAGE

Function: Place cursor at the last character of the buffer.

Module Name: SEARCH

Parameter: PACKAGE, STR

Function: Find first occurrence of STR after cursor.

cursor at the head of STR.

)NJf= CURB==4

) TRMP- BUFFV-

Place

Module Name: REPLACE

Parameter: PACKAGE, STR1, STR2

Function: Replace the first occurrence of STR1 after cursor

by STR2.

Ma=a

Module Name: CREATE-BUFF

Parameter: none

Function: Return a pointer to a buffer structure.

Module Name: COPY-BUFF

Parameter: PACKAGE

Function: Return a pointer to a copy of the buffer struc-

ture.

Module Name: CREATE-LINE

Parameter: none

Function: Return a pointer to a line structure.

Module Name: BUFF-GET-TEXT

Parameter: PACKAGE

Function: Return the contents of the current line.

Module Name: BUFF-GET-TEXT-BEF

Parameter: PACKAGE

Function: Return text string before the cursor.

Module Name: BUFF-GET-TEXT-AFT

Parameter: PACKAGE

Function: Return text string after the cursor.

Module Name: BUFF-PEEK-FWD

Parameter: PACKAGE

Function: Return the next character without moving the cur-

SOX.

Module Name: BUFF-PEEK-BACK

Parameter: PACKAGE

Function: Return the previous character without moving the

cursor.

Module Name: BUFF-PUT-TEXT

Parameter: PACKAGE, STR

Function: Insert STR after the cursor.

Module Name: ADD-EMP-LINE

Paramerter: PACKAGE

Function: Add an empty line after the current line.

Module Name: BUFF-LINE-DLT

Parameter: PACKAGE

Function: Delete the current line of text beginning at the

cursor, then merge with the next line.

Module Nante: BUFF-CHAR-DLT

Parameter: PACKAGE

Function: Remove character at the cursor. Use substring

function and concatenation. Call

SCREEN-FILL-LINE.

Module Name: BUFF-LINE-EMPTY?

Parameter: PACKAGE

Function: Return true if contents of current line is the

null string.

Module Name: BUFF-BUFF-EMPTY?

Parameter: PACKAGE

Function: Return true if there is nothing in the buffer.

Module Name: BUFF-HEAD?

Parameter: PACKAGE

Function: Return true if cursor points to the first charac-

ter in the bufer.

Module Name: BUFF-TAIL?

Parameter: PACKAGE

Function: Return true if cursor points to the last character

of the buffer.

Module Name: BUFF-LINE-FWD

Parameter: PACKAGE

Function: Move cursor to the next line. Cursor offset re-

mains the same unless the next line is too short.

If the latter is true then put cursor at the end

of the next line.

Module Name: BUFF-LINE-BACK

Parameter: PACKAGE

Function: Move cursor to the previous line. Cursor position

follows the same rules as BUFF-LINE-FWD.

Module Name: BUFF-CHAR-FWD

Parameter: PACKAGE

Function: Increment the offset of current line by 1. If re-

sult crosses line boundary, then set offset to

length of previous line, and current line pointer

to previous line. Finally, call

SCREEN-MOVE-CURSOR.

Module Name: BUFF-CHAR-BACK

Parameter: PACKAGE

Function: Decrement the offset. If result crosses line

boundary, then put the cursor at the end of the

previous line. Call SCREEN-MOVE-CURSOR.

Module Name: BUFF-FIRST-LINE

Parameter: PACKAGE

Function: Set current lihe pointer to the pointer to the

first line. Call SCREEN-FILL-SCREEN.

Module Name: BUFF-LAST-LINE

Parameter: PACKAGE

Function: Set current line pointer to the pointer to last

line. Call SCREEN-FILL-SCREEN.

Module Name: SCREEN-CREATE-SCREEN

Parameter: none

Module Name: SCREEN-MOVE-CURSOR

Parameter: PACKAGE, X, Y

Function: Add X to horizontal index, and add Y to vertical

index.

Module Name: SCREEN-FILL-SCREEN

Parameter: PACKAGE

Function: Refill the screen. Place current line at the mid-

dle.

4.4.2 Jackson Methodology

As was stated in chapter 3, Jackson's methodology con-

sists of 3 steps:

1. Define the input and output data structures.

2. Transform the data structures into program struc-

tures.

3. List the program tasks as executable operations, and

allocate each task to a program component.

The input and output data structures for the editor are

as shown in figure 15.

There is a structure clash between the input and the out-

put data structures. However, there is a substructure which

both the input and output share - the text substructure.

This leads us to the buffer structure directly. We can use

the program inversion technique to contruct the architec-

ture: Input Buffer Output

Program Inversion separates the problem into two parts.

The first part deals only with the transformation from input

into the buffer. The second part deals with transforming

the buffer to output.

The input.conversion can be handled by the system struc-

ture shown in figure 16. Notice that it is exactly analo-

gous to the "Command" substructure of the input data struc-

ture.

Jackson System Input Data Structure

Jackson System Output Data Structure

I Figure 15: Jackson's Input and Output Data gtructures

L--

r---I

Figure 16: Jackson's Input Handler

--- n

85

The output handler is contructed from the output data

structure as shown in figure 17.

Figure 17: Jackson's Output Handler

The entire system architecture. is shown in figure 18.

Detailed design is done with DARTS. The logic of each mod-

ule is displayed using DARTS Trees. They are listed in the

following pages.

-- -------------------

L --

Module Name: EDITOR

Parameter: none

Function: Coordinates activities between input and output.

3.L3

Module Name: INPUT-HANDLER

Parameter: PACKAGE, INSTREAM

Function: Dispatch on the type of the input string. If in-

put word is a command then call DISPATCH, other-

wise call INSERT.

3=1

NuT-CffAR--
UAM-4AR

TnAYYAAD

3=22

89

Module Name: INSERT

Parameter: PACKAGE, INSTREAM

Function: Driver-loop for insertion of words one at a time.

90

Module Name: INSERT-WORD

Parameter: PACKAGE, WORD

Function: Add word to the buffer. Put PACKAGE's cursor at

the end of WORD.

3.4

iDTRt-WpiD

WORDT-OR

I--

91

Module Name: DISPATCH

Parameter: COMMAND, PACKAGE, INSTREAM

Function: Dispatch the command to the appropriate command

processor.

Module Name: OUTPUT-HANDLER

Parameter: PACKAGE

Function: Determine whether to refill one line of the

screen or refill the entire screen. Also coordi-

nates the adjustment of the screen cursor.

3.4,

3Aw2

93

Module Name: REFILL-LINE

Parameter: PACKAGE

Function: Copy the current line of text from the buffer

.nto the screen.

94

Module Name: REFILL-SCREEN

Parameter: PACKAGE

Function: Refill the screen array, placing the current line

at the middle of the screen.

95

Module Name: FIX-SCREEN-CURSOR

Parameter: PACKAGE

Function: If refill status is 0 or 1 the adjust the xcoor-

dinate. if it is 2 then set ycoordinate to 15

(middle of the screen), and adjust xcoordinate as

before.

96

Module Name: READ

Parameter: PACKAGE, FILENAME

Function: Copy the contents of the file into the buffer.

Module Name: WRITE

Parameter: PACKAGE, FILENAME

Function: Copy the entire buffer into a file under

FILENAME.

3M-u

__WRITI

*nITPAE LOOP UPUT
I"D OF BUYI

oi'zr nrz, PUT
CUM AT EAD
OF BUFME

-Module Name: CHAR-FWD

Parameter: PACKAGE

Function: Move cursor position forward one character.

~2Z

99

Module Name: CHAR-BACK

Parameter: PACKAGE

Function: Move the cursor position back one character.

100

Module Name: CHAR-DLT

Parameter: PACKAGE

Function: Remove the character pointed to by the cursor.

343

101

Module Name: WORD-FWD

Parameter: PACKAGE

Function: Move cursor position to the head of the next

word.

aWs

102

Module Name:, WORD-BACK

Parameter: PACKAGE

Function: Move the cursor position to the tail of the pre-

vious word.

:us

103

Module Name: WORD-DLT

Parameter: PACKAGE

Function: Remove the string of non-space characters begin-

ning at the current position until the next space

character.

104

Module Name: LINE-FWD

Parameter: PACKAGE

Function: Move cursor to the next line. The offset does not

change unless the length of next line is too

short. In the latter case, the cursor is placed

at the tail of the next line.

131&=

105

-nodule Name: LINE-BACK

Parameter: PACKAGE

Function: Move cursor to the previous line. Offset un-

changed unless text on previous line is too short.

13.19

106

M Nodule Name: LINE-DLT

Parameter: PACKAGE

Function: Deletes text from the cursor to the end of the

line. Cursor is left where it was. Adjoin next

line to the remainder of current line.

107

Module Name: TOP

Parameter: PACKAGE

Function: Place cursor at the head of the buffer.

108

Module Name: BOTTOM

Parameter: PACKAGE

Function: Place cursor at the end of the buffer.

109

Module Name: SEARCH

Parameter: PACKAGE, STRING

Function: Place cursor at the end of the first occurrence

of string oafter the cursor. If not found then

leave cursor alone.

110

Module Name: REPLACE

Parameter: PACKAGE, STR1, STR2

Function: Find STR1 using SEARCH, and replace STR1 by STR2.

If not found then nothing happens, if found, then

cursor is placed at the head of STR2.

1z"*

TBW RIWLAW

"II

111

4.4.3 Structured Design

Structured Design consists of two simple steps. First

translate the design problem into a data flow graph. Sec-

ond, use either Transform Analysis or Transaction Analysis

to create the architecture.

The data flow graph is as shown in figure 19.

This DFG is a selection among different alternatives.

Therefore Transaction Analysis is used to construct the ar-

chitecture.

r.--

MMDY
BUFFER
CUPSOR

INPUT MOVE MODIFY
STREAMl SCREEN SCIEE

CURSOR
MODIFY
BUFFER

Figure 19: DFG for the Editor

L--

The transaction center is the bubble "Input Stream", because

at that point the input data stream branches to three dif-

ferent paths. The three input bubbles can be replaced by

the dispatch architecture in figure 20.

Now the DFG reduces to a sequence of bubbles (see figure

21), and we can use Transform Analysis to derive the archi-

tecture for the remainder of the system. The entire archi-

tecture thus derived is shown in figure 22.

112

Figure 20: The Transaction Architecture

MOVE

BUFFER
CURSOR

IINPUT
STREAM

MOVE ' MODIFY
SCREEN SCREEN

/ CURSOR

s BUFFER

Figure 21: The Reduced DFG

The detailed design of each module is listed in

ing subsection. Many of the modules are similar to

ing modules in Jackson's editor design, therefore

lected group have been illustrated with DARTS Trees.

all of the modules are described functionally.

the follow-

correspond-

only a se-

However,

--- n

--- n

I -- -------------------

114

Module Name: EDITOR

Parameter: none

Function: Input-output driver loop.

.-. .- -. -. -- .. .J

&L3

CA LL I M -
CA LL R OW ,L-

4TRMP-
GE-woUD(IsmR1Jo

115

Module Name: INSERT

Parameter: PACKAGE, WORD, INSTREAM

Function: Read text from instream and insert them into the

buffer, until a command is encountered.

9.3,3U

116

Module Module Name: MODIFY-BUFFER

Parameter: COMMAND, PACKAGE

Function: Dispatch Command to the appropriate subroutine.

117

Name: INSERT-WORD

Parameter: WORD, PACKAGE

Function: Add WORD into existing buffer.

front of the cursor.

WORD is placed in

Module Name: READ

Parameter: PACKAGE, FILENAME

Function: Copy the contents of the file into the buffer.

Module Name: WRITE .

Parameter: PACKAGE, FILENAME

Function: Copy the entire buffer into a file under FILENAME.

Module Name: CHAR-DLT

Parameter: PACKAGE

Function: Remove the character pointed to by the cursor.

Module Name: WORD-DLT

Parameter: PACKAGE

Function: Remove the string of non-space characters beginning

at the current position until the next space charac-

ter.

Module Name: LINE-DLT

Parameter: PACKAGE

118

Function: Deletes text from the cursor to the end of the line.

Cursor is left where it was. Adjoin next line to the

remainder of current line.

Module Name: REPLACE

Parameter: PACKAGE, STR1, STR2

Function: Find STR1 using SEARCH, and replace STR1 by STR2. If

not found then nothing happens, if found, then cursor

is placed at the head of STR2.

Module Name: MOVE-PACKAGE-CURSOR

Parameter: COMMAND, PACKAGE

Function: Dispatch COMMAND to the appropriate subroutine.

Module Name: CHAR-FWD

Parameter: PACKAGE

Function: Move cursor position forward one character.

Module Name: CHAR-BACK

Parameter: PACKAGE

Function: Move the cursor position back one character.

Module Name: WORD-FWD

Parameter: PACKAGE

Function: Move cursor position to the head of the next word.

119

Module Name: WORD-BACK

Parameter: PACKAGE

Function: Move the cursor position to the tail of the previous

word.

Module Name: LINE-FWD

Parameter: PACKAGE

Function: Move cursor to the next line. The offset does not

change unless the length of next line is too short.

In the latter case, the cursor is placed at the tail

of the next line.

Module Name: LINE-BACK

Parameter: PACKAGE

Function: Move cursor to the previous line. Offset unchanged

unless text on previous line is too short.

Module Name: TOP

Parameter: PACKAGE

Function: Place cursor at the head of the buffer.

Module Name: BOTTOM

Parameter: PACKAGE

Function: Place cursor at the end of the buffer.

120

Module Name: SEARCH

Parameter: PACKAGE, STRING

Function: Place cursor at the end of the first occurrence of

string after the cursor. If not found then leave

cursor alone.

Module Name: FIX-SCREEN-CURSOR

Parameter: PACKAGE

Function: Fix the x and y coordinates of the screen's cursor.

Use the information in the status codes.

Module Name: REFILL-SCREEN

Parameter: PACKAGE

Function: Fill the screen with 30 new lines of text. The line

pointed to by buffer's cursor is ilaced in the middle

(i.e., the 15th line).

121

4.4.4 Systematic Design Methodology

SDM can be simplified to 4 basic steps. First specify

the requirements using templates. Then assess the interde-

pendencies between requirements. Next, apply the clustering

algorithm to the interdependencies. Finally, create an ar-

chitecture from the clusters.

The requirements have already been specified in section

4.1. However, in order to use the clustering program, the

requirements are replaced by integers from 1 to 29. The in-

terdependency assessments are given in appendix A.

The resulting clusters are as follows (also see Appendix

B):

Cluster 1:

Cluster 2:

Cluster 3:

Cluster 4:

1,7,16,17,18,19,20,21,22,23,24,25,26,27,28.

8,9,14,15.

10,11,12,13.

2,3,4,5,6.

The sub-clusters of cluster 1 are:

Cluster 1: 16,19 (Char-fwd, Word-fwd).

Cluster 2: 17,20 (Char-back, Word-bacR).

Cluster 3: 18,21 (Char-dlt, Word-dlt).

122

Cluster 4: 22,23,24,25,26,27,28 (Line-fwd, Line-back,

Line-dlt, Top, Bottom, Search, Replace).

After the clusters are determined, the designer must or-

ganize the clusters into a system. Here SDM does not pro-

vide any guidelines for the designer. A choice is arbitrar-

ily made to follow the pipelined architecture of HDM (i.e.,

data goes in one end and comes out the other, unlike Jackson

and SD which have a tree traversal type behavior). The com-

plete architecture is shown in figure 23.

Detailed design is listed in the following pages. How-

ever, only a selected few have been used to illustrate the

general flavor of the design.

124

Module Name: EDITOR

Parameter: none

Function: Driver loop for dispatch. Read a word from in-

stream and send it to dispatch.

C1A" BUFFE TR- Gwr-
scamW WOWDD3RM

V.1=Z

125

Module Name: INSERT

Parameter: WORD, PACKAGE

Function: Add WORD into existing buffer.

front of the cursor.

WORD is placed in

SAME 1S 80 PUT Rnfr DMO fCALL ML-
CHASINW LM CUemm
t (i(RznjiNEWu

126

Module Name: DISPATCH

Parameter: PACKAGE, WORD

Function: Send WORD to the appropriate command processors

Module Name: READ

Parameter: PACKAGE, FILENAME

Function: Copy the contents of the file into the buffer.

Module Name: WRITE

Parameter: PACKAGE, FILENAME

Function: Copy the entire buffer into a file under FILENAME.

Module Name: CHAR-FWD

Parameter: PACKAGE

Function: Move cursor position forward one character.

Module Name: WORD-FWD

Parameter: PACKAGE

Function: Move cursor position to the head of the next word.

Module Name: CHAR-BACK

Parameter: PACKAGE

Function: Move the cursor position back one character.

127

Module Name: WORD-BACK

Parameter: PACKAGE

Function: Move cursor to the tail of the previous word.

Module Name: CHAR-DLT

Parameter: PACKAGE

Function: Remove the character pointed to by the cursor.

Module Name: WORD-DLT

Parameter: PACKAGE

Function: Remove the string of non-space characters begin-

ning at the current position until the next space

character.

Module Name: LINE-FWD

Parameter: PACKAGE

Function: Move cursor-to the next line. The offset does not

change unless the length of next line is too

short. In the latter case, the cursor is placed

at the tail of the next line.

Module Name: LINE-BACK

Parameter: PACKAGE

128

Function: Move cursor to the previous line. Offset unchanged

unless text on previous line is too short.

Module Name: LINE-DLT

Parameter: PACKAGE

Function: Deletes text from the cursor to the end of the

line. Cursor is left where it was. Adjoin next

line to the remainder of current line.

Module Name: SEARCH

Parameter: PACKAGE, STRING

Function: Place cursor at the end of the first occurrence of

string oafter the cursor. If not found then leave

cursor alone.

Module Name: REPLACE

Parameter: PACKAGE, STR1, STR2

Function: Find STR1 using SEARCH, and replace STR1 by STR2.

If not found then nothing happens, if found, then

cursor is placed at the head of STR2.

Module Name: TOP

Parameter: PACKAGE

Function: Place cursor at the head of the buffer.

129

Module Name: BOTTOM

Parameter: PACKAGE

Function: Place cursor at the end of the buffer.

Module Name: REFILL-SCREEN

Parameter: PACKAGE

Function: Fill the screen array with 30 new lines. The line

pointed to by the buffer's cursor is placed at the

15th line.

Module Name: REFILL-LINE

Parameter: PACKAGE

Function: Get the line pointed to by buffer's cursor, and

copy it into the line pointed to by the screen's

cursor.

Module Name: MOVE-CURSOR)

Parameter: X, Y

Function: Replace the x and y coordinate of screen's cursor

by X and Y.

130

4.5 DESIGN EVALUATION

The best way to judge the soundness of a methodology is

to examine its product. Thus it is the object of this sec-

tion to reflect on the design methodologies by evaluating

the designs. The approach taken here is directly aimed at

the Systematic Design. Methodology. SDM employs a graph

clustering algorithm to obtain modules which are strongly

dependent internally, and weakly dependent between modules.

Therefore the strategy is to measure the designs with re-

spect to the above criteria.

More specifically, the evaluation measures the strength

of each module's internal dependency, and the looseness of

dependency between modules. These measures are called mod-

ule strength and module coupling respectively [Myer751.

4.5.1 Module Strength

The basic intent of module strength is to provide a meas-

ure of the cohesiveness of the module. Furthermore, if the

module is considered to be a functional transformation over

some data, then the task can be reduced to an examination of

the functionality and data structures of a module. For ex-

ample, a module which performs a single well defined func-

tion over a single data structure clearly possesses more

strength than one that performs several functions over a

single data structure.

131

Thus the following ranking for classifying modules is at-

tained (see [MYER75] chapter 3). They are listed in order

of increasing strength:

1. Multiple functions related in time. Multiple and un-

related data structures.

2. Multiple functions logically related over multiple

data structures (i.e., functions transforming from

one data structure into another).

3. Single function over multiple data structures.

4. Multiple functions over a single data structure.

5. Single function over a single data structure.

4.5.2 Module Couplina

Module coupling is determined by how much modules know

about one another. In modern programming languages there

are generally three ways that modules can communicate:

global variables, data items (e.g., variables) passed as pa-

rameters, and data structures (e.g., arrays, trees) passed

as parameters. In the editors designed for this thesis

there are no global variables. The only forms of communica-

tion were direct passing of arguments and passing of control

information in the buffer structures.

Again a ranking is achieved by considering typical module

communication techniques (see [MYER75] chapter 4): (In order

of increasing amount of coupling).

132

1. Only data items are used, and they are all passed as

arguments.

2. Data structures (includes data items) are used, and

are all passed as arguments.

3. Control information is used (such as flags, function

code).

4. One module references an internally defined variable

of another module (e.g., free variables in dynamical-

ly scoped Lisp).

The designs are evaluated in terms of module coupling,

and two kinds of analysis are made: average coupling and

couplings per module. Average coupling is the average rank-

ing for the couplings in the design (i.e., sum of coupling

ranks / number of couplings). Couplings per module provides

a measure of the complexity of the design (i.e., number of

couplings / number of modules).

The results of the evaluation are listed in the following

tables.

133

HIERARCHICAL DEVELOPMENT METHODOLOGY

Module Namel Module Strengthl Module Coupling

Editor 1 5 1 2- Dispatch

Dispatch I 2 I 2x16- Each command
processor

Insert I 5 I 2- Buff-get-text-bef
I 2- Buff-get-text-aft
1 2- Buff-put-text
| 2- Buff-add-emp-line
I 2- Buff-line-fwd

Read | 3 1 2- Buff-add-emp-line
I 2- Buff-line-fwd
I 2- Buff-put-text

Write 3 I 2- Buff-copy-buff
2- Buff-top

I 2- Buff-tail?
I 2- Buff-get-text
I 2- Buff-line-fwd

Char-fwd I 5 I 2- Buff-char-fwd

Char-back I 5 1 2- Buff-char-back

-'Char-deletel 5 1 2- Buff-char-delete

Word-fwd | 5 I 2- Buff-peek-fwd
| 2- Buff-char-fwd

Word-back I 5 I 2- Buff-peek-back
I 2- Buff-char-back

Word-deletel 5 I 2- Buff-peek-fwd
1| 2- Buff-char-delete

Line-fwd I 5 I 2- Buff-get-text-bef
I 2- Buff-line-fwd
I 2- Buff-get-text
I 2- Buff-char-back

Line-back I 5 I 2- Buff-get-text-bef
I 2- Buff-line-back
I 2- Buff-get-text
| 2- Buff-char-back

Line-deletel 5 I 2- Buff-line-kill
| 2- Buff-line-empty?
I 2- Buff-get-text-bef

134

1 1 2- Buff-put-text

Top I 5 I 2- Buff-first-line
I 2- Buff-get-text-bef
I 2- Buff-char-back

Bottom- 5 I 2- Buff-last-line
I 2- Buff-get-text-aft
I 2- Buff-char-fwd

Search 5 I 2- Buff-get-text-aft
I 2- Buff-line-fwd
I 2- Buff-get-text
I 2- Buff-tail?

Replace I 4 I 2- Search
I 2- Buff-char-delete
I 2- Insert

Buff- 1 5 1 -
create-buffl I

Buff- I 5 I -

copy-buff I

Buff- 1 5 I -

Create-linel

Buff- I 5 I -

get-text I

Buff-get- I 5 I -

text-bef I

Buff-get- I 5 I -

text-aft I

Buff-put- I 5 I -

text I

Buff-peek- | 5 I -

fwd I

Buff-peek- I 5 I -

back I

Buff-line- I 5 I 2- Screen-move-cursor
fwd I

Buff-line- I 5 I 2- Screen-move-cursor
back I

Buff-line- I 5 I 2- Screen-fill-line
delete I

135

Buff-line- I 5 I -

empty? I

Buff-buff- I 5 I -

empty? I

Buff-head? I 5 I -

Buff-tail? I 5 I -

Buff-char- I 5 1 2- Screen-move-cursor
fwd I

Buff-char- I 5 I 2- Screen-move-cursor
back I

Buff-char- I 5 I 2- Screen-fill-line
delete I

Buff-first-I 5 I 2- Screen-fill-screen
line I

Buff-last- I 5 I 2- Screen-fill-screen
line I

Buff-add- I 5 I 2- Screen-fill-screen
emp-line I

Screen- I 5 I -

Create-scr I

Screen- I 5 I -

move-cursorI

Screen- I 3 I 2- Buff-get-text
fill-line I

Screen- I 3 I 2- Buff-get-text
fill-screenl

Number of Modules = 44
Average Strength = 4.71
Average Coupling = 2
Coupling per Mod. = 1.7

Figure 24: Evaluation of HDM

136

JACKSON METHODOLOGY

Module Namel Module Strengthl Module Coupling

Edit I 1 I 2- Input-Handler
I 2- Output-Handler

Input- I 5 I 2- Dispatch
Handler I I 2- Insert

Insert 1 2 I 2- Insert-Word

Insert-wordI 4 1 3 Output-Handler

Dispatch I 2 I 2x15- Each command
I processor

Output- I 4 I 3x15- Each command
Handler I I processor

Refill-line l 3 I -

Refill- I 3 | -

screen I

Fix-screen-I 3 1 -
cursor I I

Read I 3 I 2- Insert-word

Write 1 3 1 -

Char- 5 5 I -
forward I

Char-back 1 5 I -

Char-deleteI 4 I -

Word- I 5 I -
forward I

Word-back I 5 1 -

Word-deletel 4 1 -

Line- I 5 | -

forward I

Line-back 1 5 1 -

Line-delete 1 4 I -

137

Top I 5 I -

Bottom 1 5 1 -

Search I 5 I -

Replace I 4 I 1 2- Search

Number of Modules = 24
Average Strength = 3.92
Average Coupling = 2.39 (Sum of couplings/

number of couplings)
Coupling per Mod. = 1.71 (Number of couplings/

number of modules)

Figure 25: Evaluation of Jackson's Methodology

138

STRUCTURED DESIGN

Module Namel Module Strength! Module Coupling

Editor 1 I 2- Insert
I 2- Mod-buff
I 2- Move-buff-cursor
I 2- Fix-screen-cursor
I 2- Refill-screen

Insert 1 5 1 2- Insert-word

Insert-word! 4 I 3- Fix-screen-cursor
1 3- Refill-screen

Modify-buffl 2 I 2x6- Each buffer
II modifying command

Char-deletel 4 | -

Word-deletel 4 I -

Line-deletel 4 1 -

Read I 3 I 2- Insert-word

Write - 3 I-

Replace 1 4 1 2- search

Move-buff I 2 | 2x9- Each Cursor
cursor | I moving command

Char-fwd I 5 | -

Char-back | 5 | -

Word-fwd 1 5 | -

Word-back 1 5 | -

Line-fwd 1 5 | -

Line-back | 5 I -

Top I 5 1 -

Bottom I 5 1 -

Search I 5 I -

Fix-screen-I 3 I 3x15- Each command
cursor I | processor

139

Refill- I 3 I 3x15- Each command
screen | I processor
-------- -----------------------------------

Number of Modules = 22
Average Strength = 3.95
Average Coupling = 2.58
Coupling per Mod. = 2.5

Figure 26: Evaluation of Structured Design

140

SYSTEMATIC DESIGN METHODOLOGY

Module Namel Module Strengthl Module Coupling

Editor I 5 I 2- Dispatch

Dispatch I 2 I 2x16- Each command

processor

Insert I 2 I 2- Refill-screen

Read I 3 1 2- Refill-screen

Write I 3 I 2- Refill-screen

Char-fwd I 5~ I 2- Move-cursor

Word-fwd I 5 1 2- Move-cursor

Char-back I 5 I 2- Move-cursor

Word-back I 5 I 2- Move-cursor

Char-deletel 4 1 2- Refill-line

Word-deletel 4 I 2- Refill-line

Line-fwd I 5 I 2- Move-cursor

Line-back 1 5 I 2- move-cursor

Line-deletel 4 I 2- Refill-screen

Search I 5 I -

Replace I 4 I 2- Search

Top I 5 1 -

Bottom I 5 1 -

Refill- I 3 I -

screen |

Refill-linel 3 1 -

Move-cursorI 5 I -

141

Number of Modules = 21
Average Strength = 4.1
Average Coupline = 2
Coupling per Mod. = 1.43

Figure 27: Evaluation of SDM

142

rI - - - - - - - - - - - - - -- - - - - - - - - - - - - - I

I HDM IJacksonl SD I SDM I I
- - - - - - - - - - - - -- - - - - - - - - - - - I
No. of Modulesl 44 I 24 1 22 1 21 | I

-- --------------- I
Avg. Strength 1 4.71 I 3.92 1 3.95 I 4.1 1 I

--- I
Avg. Coupling 1 2 1 2.39 1 2.58 1 2 1

Coupl / Mod I 1.7 1 1.71 1 2.5 I 1.43 I

Figure 28: Summary of the Evaluations

L---.

4.5.3 Summary

After analyzing the designs, two underlying architectures

are discovered. The first one is the pipelined architec-

ture of HDM and SDM. In this organization, the data goes

into the system at the top and the output comes out at the

bottom. There are no coordinator modules to coordinate the

activities in the system. Each module has the responsibili-

ty to pass control to the next module.

The second architecture is a tree organization (e.g.,

Jackson and SD), where the data goes down one branch of the

system, gets returned back up, and then goes down another

branch. In this type of system, activities are controlled

by coordinator modules. For example, in Jackson's design,

the input goes to the INPUT-HANDLER, then gets returned to

the EDITOR module, and finally the EDITOR module passes the

data to the OUTPUT-HANDLER.

143

The pipelined structure proved to be stronger in module

strength (4.71 for HDM and 4.1 for SDM). This can be ex-

plained by the fact that the system is organized in layers.

Each layer deals exclusively with one data structure. For

example, in the HDM design, the EDITOR machine only knows

about the buffer abstractly. It does not know about the

line linked implementation. The BUFFER machine knows about

the line linked structure and it contains modules that ma-

nipulate the structure. The EDITOR machine would then per-

form its tasks by calling on the BUFFER machine modules.

On the other hand, modules in the tree architecture must

manipulate both the BUFFER and the line linked structure.

This caused many of them to have a module strength of 3.

The tree organization is also weaker in module coupling

(2.39 for Jackson and 2.58 for SD). The major cause of the

higher average coupling measure is the control information

passed through the INC array. Recall that the INC array was

used to store incremental movements of the cursor. This in-

formation was passed from the command processors to the out-

put modules.

The coupling problem is inherent in the tree architec-

ture. The only way modules on different branches of the

tree can communicate is by passing control information

through the coordinator. Otherwise a global variable must

be used, but that often leads to high debugging cost.

144

Overall, the HDM design is the best for this particular

case. The strength and coupling rankings for HDM are the

best among the four. It is also easiest to add extra editor

commands to HDM's design. The BUFFER machine modules are

really a meta-language and new commands can be easily com-

posed from it.

Finally, it is worth noting that SDM's clusters could

have been organized into either type of architecture. It

was purely arbitrary that SDM had the pipelined architec-

ture.

Chapter V

CONCLUSION

This chapter presents the insights gathered through the

project. The first section discusses the basic problem in

software design. The second section discusses the various

approaches to develop a methodology. The third section

points out the weaknesses of SDM in comparison to other

methodologies. Finally, this chapter concludes with sugges-

tions for further research.

5.1 THE COMPLEXITY PROBLEM

By far the most dominating difficulty in software design

is complexity. Often the designer knows all the require-

ments but cannot think about all of them simultaneously, or

it might be that the designer has ideas for satisfying indi-

vidual requirements, but can not put all the different solu-

tions into one system. The problem is not the lack of

ideas, but the lack of unity and cohesion.

Where exactly does complexity come from? Through the

study in design theory, it is evident that complexity arises

from the interaction between requirements [Alexander I, and

from the numerous options available as solution iManheiml.

The key word here is interaction. Complexity arises because

- 145 -

146

earlier decisions often add to the requirements of later de-

cisions since decisions interact with each other.

One might think of complexity as a bunch of molecules

tied to each other in some complicated way. Each molecule

is trying to fly off in its own direction, and in doing so,

it alters the flight of all molecules tied to it. The de-

signer's job is to try and get these molecules into a state

of equilibrium, 'or to get the whole network of molecules to

move in one direction.

Thus, the task of architectural design is really a task

in complexity management. Having the architecture, the de-

signer can then devise solutions for each requirement. He

now knows that his solution must somehow fit into the archi-

tecture. Furthermore, he knows that if individual solutions

conform to the conventions of the architecture, then they

will function together. In other words, the problem is

shifted from "dealing with all the other requirements", to

"dealing with the architecture". Therefore, architectural

design is in many ways analogous to providing an organiza-

tional structure. Given such a structure, the designer can

then solve the problem of "How can the solution to a re-

quirement integrate into the structure?", rather than the

much more difficult problem of "How can the solution of this

requirement co-exist with the solutions of other require-

ments?".

147

5.2 STRATEGIES FOR DEVELOPING A METHODOLOGY

There are two basic approaches in designing software

methodologies. The first is to survey existing systems, and

select those systems that are successful. These systems are

then scrutinized to identify similar features. Having iden-

tified the constant factors among successful systems, tech-

niques can be developed to derive system architectures from

those constant factors. For example, Jackson's methodology

derives an architecture from the data structure, and Struc-

tured Design derives an architecture from data flow graphs.

The second approach is to adopt a design theory, upon

which conjectures are made about what constitues good de-

sign. Examples of this approach are Hierarchical Develop-

ment Methodology's decision model and abstract machines;

Systematic Design Methodology's graph model and module de-

composition criteria. In HDM, the design process is mod-

elled by a sequence of interdependent decisions. A hier-

archical abstract machine structure is then provided for

grouping decisions. SDM, on the other hand, models design

as a process of grouping requirements into clusters. These

clusters are formed in a way that maximizes intra-cluster

dependency and minimizes inter-cluster dependency.

It is important to point out that of all the methodolo-

gies surveyed, only SDM provides a -sense of optimality.

Most methodologies suggest one architecture, but do not

claim it to be the best architecture. Whereas SDM provides

the best modularization.

148

Also, methodologies are aiming toward a black box

technology. A methodology is envisioned as a box which.

takes in some kind of data and returns an architecture.

This trend leads to the development of design tools which

will eventually generate programs automatically.

One important strategy that has emerged is that architec-

ture should be constructed to match the problem structure.

This concept has an obvious justification in systems which

have real life interpretations. But even in abstract appli-

cations it also makes sense to construct the system to match

the mental picture. Having this close correspondence be-

tween system architecture and mental picture, the system can

then be modified and debugged with ease. That perhaps is

the reason several methodologies (such as Structured Design)

go through a problem analysis phase before constructing the

architecture.

However, the task of creating a system architecture that

matches problem structure is not trivial. There are con-

straints imposed by the -programming language and the comput-

er hardware. For example, the typical programming language

has three kinds of control flow constructs, sequence, iter-

ate, and branch. Therefore the system architecture must use

these control constructs and nothing else.

149

5.3 MODIFICATIONS FOR SDM

One weakness of SDM arises from the way interdependencies

are assessed. SDM suggests that the designer should have an

idea of how the requirements can be implemented, and assign

weights accordingly. This method is too subjective. Dif-

ferent designers will most assuredly come up with different

wights. Therefore the sense of reproducibility and abso-

luteness is lost.

A way to deal with this problem is to identify data

structures used in the system. Weights can now be assigned

according to whether the requirements deal with the same

data structure.

Another thing to do is to separate requirements into lev-

els of generality. Requirements such as modifiability and

fault tolerance are highly universal in their effects.

Whereas a requirement like "implement a delete command" is a

much more detailed requirement.

To perform this separation, nodes can be linked together

according to their level of generality. If two nodes are

very close in generality, then they are assigned a high

weight, otherwise they are weighed lightly. Then the clus-

tering algorithm can be applied to the graph to obtain clus-

ters which represent different levels of generality.

After grouping requirements this way, the usual SDM pro-

cedures can be performed on each group. This results in

clusters for each level of generality, which can then be

150

treated as a single node. The result is a three dimensional

clustering situation as shown in figure 29

Figure 29: 3-D Clustering

L--

Now the problem is how to describe each cluster-node.

The idea of abstraction can be applied here. Each cluster

would probably have some general characteristic. For exam-

ple the editor commands character-forward and line-back have

the common characteristic of moving the cursor. Therefore

these requirements can be described by a new node called

cursor movement.

Another weakness of SDM is that it does not produce an

architecture. SDM tells'the designer which requirements are

--

151

highly dependent on each other, and therefore must be con-

sidered together. Furthermore, SDM claims that the clusters

should correspond to modules in the system. However, this

still leaves the designer with the difficult task of organ-

izing the modules into a structure.

Other methodologies have largely concentrated on exactly

the above problem. Jackson, Structured Design and HDM, all

these methodologies provide a system architecture. HoTever,

they are weak in the area of problem structure definition.

Therefore, the natural thing to do is to combine SDM with

other methodologies.

One such combination can be made between SDM and Struc-

tured Design. There are two ways to do the combination.

First, SDM can be used to help derive Structured Design's

data flow graph. Weights can be assigned according to

whether or not two requirements are doing the same kind of

data transformation. The resulting clusters would provide

the individual bubbles in the data flow graph. Having the

data flow graph, the designer can proceed according to the

procedure of Structured Design.

The second way to combine SDM and Structured Design is to

use the data flow graph for SDM interdependency assessment.

Weights can be assessed by considering how strongly two

nodes relate to the same bubble in the data flow graph.

This method of weight assessment is implementation indepen-

dent. However, there is a drawback in that the set of clus-

152

ters would probably have a one to one correspondence with

the bubbles of the DFG.

Another combination is HDM and SDM. A hierarchy of ab-

stract machines can be identified, then SDM can be used to

link each requirement to a machine. Otherwise, SDM can be

used to determine the machines themselves. Weights would be

assigned according to whether two requirements should be in

the same machine. Then the resulting clusters would repre-

sent the machines.

5.4 SUGGESTIONS FOR FURTHER RESEARCH

The major weakness of SDM is its one-sidedness. SDM at-

tacks the problem analysis phase but does not provide much

help in constructing the architecture. As was mentioned be-

fore, in the experiment, the SDM clusters could have been

organized into either the Jackson type architecture or the

HDM type architecture. Thus the area of architecture con-

struction definitely needs more attention.

A second weakness of SDM lies in the interdependency as-

sessment phase. A method to assign weights independent of

designers' personal biases is needed. Data structures pro-

vide a promising path in this direction.

Finally, it is worthwhile to consider coupling SDM with

another methodology. SDM is strong in the problem analysis

phase while other methedologies are strong in the architec-

ture construction phase. If used together, each could com-

153

plement the other. The next step in this direction is to

define formal interfaces.

Appendix A

SDM INTERDEPENDENCY ASSESSMENTS

The weights shown on the next page are arranged in a for-

mat recognizable to the clustering program (see [LATT81]).

This is the short form option (the other option is called

regular form).

All of the nodes linked to each node are listed on the

same row but in the second column. Nodes are represented by

three digit numbers. Underneath the list of "neighbor"

nodes are the weights for the corresponding links. For ex-

ample, suppose node 001 is linked to nodes 002 and 003 by

the wights of 2 and 8 respectively, then the following is

the short form representation:

001 002003

2 8

- 154 -

028
001 007

8
002 004005006007

8 5 5 8
003 004005007009

8 2 8 8
004 002003006007008

8 8 8 5 8
005 002003

5 2

006 002004007009014
5 8 5 2 2

007 001002003004006008014016017018019020021022023024025026027028
8 8 8 5 5 2 5 8 8 8 8 8 8 8 8 8 8 8 8 8

008 004007009014
8 2 8 8

009 003006008014015
8 2 8 8 8

010 001011012013
2 8 8 8

011 001010012013
28 8 8

012 001010011013
2 8 8 8

013 001010011012
2 8 8 8

014 006007008009
2 5 8 8

015 009
8

016 007019027028
8 8 8 8

017 007020
8 8

018 007021028
8 8 8

019 007016027028
8 8 8 8

020 007017
8 8

021 007018
8 8

022 007
8

023 007027028
8 a 8

024 007
8

025 007
8

026 007
8

027 007016019023028
8 8 8 8 8

028 007016018019023027
8 8 8 8 8 8

Appendix B

SDM CLUSTERS

The SDM clustering algorithm has been implemented in For-

tran by Jim Lattin (see [WONG80] and (LATT81]). It current-

ly resides under the CMS account LATTINA in MIT. Access to

the program can be obtained from Jim Lattin.

To use the program one must first define the weights as

shown in appendix A, then run the exec program FIDEF4. The

session during which the editor requirements were decomposed

is shown on the next page.

- 156 -

fidef4 mtv4 data
Tu0,16/0.36 14130123
EXECUrION itfoINS...
NODLIM = 900
ARCLIM = 4500
INPUT FORMATI
(1) REGULAR
(2) SHORT
.2
TOTAL NODES =
TOTAL ARCS a
AVERAGE NUMBER

28
53

OF ARCS INCIDENT TO EACH NODE *

26
27
29

DENSITIES CALCULATED IN
TREE FORMED IN
PRINT TREE 101
(1) FILE
(2) T1Y

1.89

3 HUNDREDTHS CPU SECS
I HUNDREDTHS CPU SECONDS

I ---

TREE FORMED IN I HUNDREDTHS CPU SECONDS
PRINT TREE TO
(1) FILE
12) TlY
.2

I 1--
0.076190

2 7-- --- i
0.266666 I 1 1 1

3 28-----------II----------I-------------------III 1 1
0.685714 11 1 11
4 27----------- 11
0,666666 1 I I

5 19--1
0.800000 1
6 16--1--------- I I
0.533333 I

7 23-----------------------I
0.300000 it

9 18-----------------I II I I
0.600000 1 1 1 it

9 21-----------------I-----------------------1
0.179571

10 4--------------------------------I----I----1--I

0.414285 I 1 1 I
It 2---------------------------------I I I II I I I
0.350000 1 I 1 I

12 6-------------------------------------I if
- 0.281250
13 3- --- I I

0.243750
14 9---------------------------- - -------
0.456333 I

15 14-----------------------------I
0.371420

16 9-----------------------------------I it
0.266667 If

17 15--1
0.166667

19 5---I I I
0.114286

19 20---I
0.800000 1

20 17---I- --
0*076190

21 26
0.076190

22 25
0.076190

23 24
0.076190

24 22- ---
0.0

25 13-----------I
0.690000

26 12
0.680000

27 11
0.680000

28 10--

TREE FORMED IN 0 HUNDREDTHS CPU SECONDS
PRINT TREE TO:
(1) FILE
(2) TTY

I 1--
0-076190 -I I

2 7--- I
0.266666 a
3 29-------------a--------I I 1 1
0.695714 1| 1 1

27 11
0.680000

28 ----- I -----------------

TREE FORMED IN 0 HUNDREDTHS CPU SECONDS
PRINT TREE TU:
(1) FILE
(2) TTY
.2

1---
0.076190

2 7---
0.266666
3 28 ----------- I----------
0.685714 1 I

4 27 ----------- I
0.533333
5 23 ----------------------- I--------------------I
0.076190

6 26
0.076190
7 25
0.076190
8 24
0.076190
9 22 ---
0.0

10 21 ------------------ I
0.600000

11 18------------------
0.0

12 20 --- 1
0.000000 I

13 17 --- I
0.0

14 19 -- I
0.800000 1

15 16 -- 1
0.0

16 15 --
0.266667

17 9-----------------------------------I
0.371428 1

19 14 ----------------------------- I
0.458333 I I

19 a --------------------------------- I-------I
0.0

20 13 -----------
0.680000

21 12
0.680000

22 11
0.680000

23 10 ----------- I
0.0

24 6 ------------------------------------I----I---------I
0.350000

25 2--------------------------------- I
0.414285 1

26 4----------------------------------
0.291250

27 3 --- I

0.166667
28 5 -- I------------I

TIME FOR ENTIRE PROCESSt 164 HUNDREDTHS CPU SECS

REACHED OLDPAR
BUILDING PARTITION TOOK 2 HUNDREDTHS CPU SECS

CLUSTER NUMBER 1
1
7

16

0.0
16 15 --
0.266667

17 9 ----------------------------------
0.371428

18 14 ------------------------------ t
0.458333 1

19 6 --------------------------------- I-------I
0.0

20 13 ----------- I
0.680000

21 12 I
0.680000

22 11
0.680000

23 10 ----------- I
0.0

24 6 --
0.350000 I I t

25 2 ---------------------------------I
0.414285

26 4 -------------------------------- ----I
0.281250

27 3 --- I
0.166667

28 5 --I-------------I
TIME FOR ENTIRE PROCESSI 164 HUNDREDTHS CPU SECS
REACHED BLDPAR
BUILDING PARTITION TOOK 2 HUNDREDTH8 CPU BECS
CLUSTER NUMBER 1

1
7

16
17
16
19
20
21
22
23
24
25
26
27
29

CLUSTER NUMBER 2
8
9
14
15

CLUSTER NUMBER 3
10
11
12
13

CLUSTER NUMDER 4

3
4

5'

EVALUATION MEASURE EOUALS 0.105
MINPER a 4

(1) KEEP PARTITION
(2) ENTER DIFFERENT MINPER

ENTER NEU MINPER (IN FMT 13)
.002
REACHED DLDPAR
BUILDING PARTITION TOOK I HUNDREDTHS CPU SECS
CLUSTER NUMBER I

1
7

22

16
17
18
19
20

221

23
24
25
26
27
29

CLUSTER NUMBER
a
9
14
15

CLUSTER NUMBER
10
11
12
13

CLUSTER NUMDER

5'
6

EVALUATION MEASURE EOUALS 0.105
MINPER w 4

(1) KE;.P PARTITION
(2) ENTER DIFFERENT MINPER
92

ENTER NEW MINPER (IN FMT 13)
.002
REACHED DLDPAR
BUILDING PARTITION TOOK
CLUSTER NUMBER I

1
7

22

23
2 4
25
26
37
28

CLUSTER NUMBER 2
18
21

CLUSTER NUMBER 3
17
20

CLUSTER NUMBER 4
16
19

CLUSTER NUMER 5
8
9

14
15

CLUSTER NUMBER 6
10
11
12
13

CLUSTER NUMER 7
2

3
4
5
6

EVALUATION MEASURE EQUALS 0,124
mIMPrR a 2

I HUNDREDTHS CPU SECS

6
EVALUATION MEASURE EQUALS 0.105
MINPER = 4

(1) KEEP PARTITION
(2) ENTER DIFFERENT MINPER

ENTER NEU MINPER (IN FMT 13)
.002
REACHED DLDPAR
BUILDING PARTITION TOOK
CLUSTER NUMBER 1

1
7

23
24
25
26
27
20

CLUSTER NUMBER 2
18
21

CLUSTER NUMBER 3
17
20

CLUSTER NUMBER 4
16
19

CLUSTER NUMBER 5
8
9
14
15

CLUSTER NUMBER 6
10
11
12
13

CLUSTER NUMBER 7
2

6
EVALUATION MEASURE
MINPER a 2

I HUNDREDTHS CPU SECS

EQUALS 0.124

(1) KEEP PARTITION
(2) ENTER DIFFERENT MINPER
.1
CHANGE CURRENT PARTITION?
(1) YES
(2) NO
.2
T=0.76/2.17 14136155
RI

BIBLIOGRAPHY

IATWO78]

[ALEX64]

[BASI8 1

[BATE77]

[BATE78I

[BERG78I

IBERG81 I

[BOYD78]

[BR00771

[BRUG791

- 158 -

Atwood, M.E.; Turner, A.A.; Ransey H.R.; Hooper,
J.N., "An Exploratory Study of the Cognitive
Structures Underlying the Comprehension of Soft-
ware Design Problems"; Science Publications Inc.,
Army Research Institute for the Behavioral and So-
cial Sciences, Alexandria, VA.

Alexander, C.; "Notes On the Synthesis of Form";
Harvard University Press, 1964.

Basili, V.; Reiter, R.W., "A Controlled Experiment
Quantitatively Comparing Software Development Ap-
proaches"; IEEE Transations on Software Engineer-
ing, Vol. SE-7, No. 3, May 1981.

Bate, R.R., "Software Design Procedure";
AIAA/NASA/IEEE/ACM Computer in Aerospace Confer-
ence, Collection of Technical Papers, Published by
AIAA, New York, NY. 1977.

Bate, R.R.; LIgler G.T., "Software Development
Methodology: Issues, Techniques, and Tools"; Pro-
ceedings of 11th Internation Conference on Systems
Science, West Period Co., North Hollywood, CA.
1978.

Bergland, G.D.; Tranter, W.H.; "Software Design
Techniques"; Proceedings of the National Electron-
ic Conference, Vol. 32, Chicago, IL. , Oct, 1978.

Bergland G.D.; "A Guided Tour of Program Design
Methodologies"; IEEE Computer, Oct. 1981.

Boyd, D.L.; Pizzarello, A.; "Introduction to the
WELLMADE Design Methodology"; IEEE Transaction on
Software Engineering, Vol. SE-4, No. 4, July 1978,
pp 276-282.

Brooks, F.P.; "The Mythical Man-month"; IEEE Tuto-
rial on Software Design Techniques, 1977, pp
18-2j.

Bruggere, T.H.; "Software Engineering: Management,
Personnel and Methodology"; Proceedings of 4th In-
ternational Conference on Software Engineering,
1979, pp361-368.

159

[CAIN751

[CAMP80I

[CAMP781

ICHES80 0

[CHOW78]

[CHU75I Chu, Y.; "Methodology for Software Engineering";
IEEE Transactions on Software Engineering, Vol.

SE-1, No. 3, Sept. 1975, pp262-270.

Corner, C.; Halstead M.H.; "A Simple Experiment in
Top-down Design"; IEEE Transactions on Software
Engineering Vol. SE-5, No. 2, March 1979.

Dahl, W.J.; Nunamaker, J.F.; "Interactive Informa-
tion Systems Design Software"; Proceedings of 5th
Annual Pittsburgh Conferecce on Modelling and Sim-

ulation, 1974, pp24-26.

Delfino, A.B.; Begun, R.A.; "Design of a Software
Development Methodology Emphasizing Productivity";
IEEE Applications of MINI and MIcrocomputers,
March 1980.

Dewolf, J.B.; Whitworth, M.; "Methodology Research
Measures"; C.C. Draper Lab. Technical Report 1167,
August 1978.

"Today's Software Tools Point to Tomorrow's Tool
Systems"; Electronic Design, July 23, 1981.

Enos, J.C.; Van Tilburg, R.L.; " Software Design";
Tutorial Series 5, IEEE Computer, February 1981.

Freeman, P.; "The Nature of Design"; IEEE Tutorial
on Software Design Techniques, 1977, pp29-36.

Caine, S.H.; Gordon, E.K.; "PDL - A Tool for Soft-
ware Design"; Proceedings of AFIPS National Com-
puting Conference, May 1975, pp271-276.

Camp, J.W.; "Computer-Aided Design Applied to
Software Engineering"; IEEE Proceedings of Nation-
al Aerospace Electronic Conference, NAECON 1980,
Vol. 1, pp33-37.

Campos, I.M.; Estrin, G.; "SARA Aided Design of
Software for Concurrent Systems"; Proceedings of
AFIPS National Computing Conference, 1973,
pp325-358.

Chester, D.; Yeh, R.T.; " An Integrated Methodolo-
gy and Tools for Software Development"; University
of Texas at Austin, Software and Data Base Engi-
neering Group, TR 411983.

Chow, T.S.; "Analysis of Software Design Modelled
by Multiple Finite State Machines"; Proceedings of
COMPSAC, 1978.

[CORN791

[DAHL741

[DELF80]

[DEW0781

[ELEC81

[ENOS81

[FREE77]

160

[GOMA79]

[GRAH731

[HAMI761

[HAMM78 I

[HUFF79]

[JACK75]

[JENS81

[LATT81 1

[LEVI80]

[MANH64 1

[MANH671

[MAYF77]

Gomaa, H.; "Comparison of Software Engineering
Methods for System Design"; Proceedings of Nation-
al Electron Conference, Chicago, IL., October
1979.

Graham, B.M.; Clancy G.J.; DeVaney, D.B.; "A Soft-
ware Design and Evaluation System"; Communications
of the ACM, Vol. 16, No. 2, February 1973.

Hamilton, M.; Zeldin, S.; "Higher Order Software -
A Methodology for Defining Software"; IEEE Trans-
actions on Software Engineering, Vol. SE-2, No. 1,
March 1976.

Hammond, L.S.; Murphy P.L.; "System for Analysis
and Verification of Software Design"; Proceedings
of COMPSAC '78.

Huff, S.L.; "A Systematic Methodology for Design-
ing the Architecture of Complex Software Systems";
PhD thesis, Sloan School of Management, M.I.T.,
1979.

Jackson, M.A.; "Principles of Program Design"; Ac-
ademic Press, New York, N.Y., 1975.

Jensen, R.W.; "Structured Programming", IEEE Com-
puter, March 1981.

Lattin, J.M.; "Implementation and Evaluation of a
Graph Partitioning Technique Based on a High-den-
sity Clustering Model"; Technical Report #15, Cen-
ter for Information Systems Research, Sloan School
of Management, M.I.T., 1981.

Levitt, K.N.; Newmann, P.G.; Robinson L.; "The' SRI
Hierarchical Development Methodology (HDM) and its
Application to the Development of Secure Soft-
ware"; SRI International, Menlo Park, CA., 1980.

Manheim, M.L.; "Hierarchical Structure: A Model of
Design and Planning Processes"; MIT Report No. 7,
Civil Engineering Dept.

Manheim, M.L.; "Problem-Solving Processes in Plan-
ning and Design"; Professional Paper P67-3; Dept.
of Civil Engineering, MIT.

Mayfield, J.P.; "Software Development Methodology
Selection Criteria"; AIAA/NASA/IEEE/ACM Computer
in Aerospace Conference, Collection of technical
papers, 1977.

161

I McCl75 I

[McG076]

[MYER75]

[PETE77]

[RAMA73]

[RAMS791

IRICH79]

[RICH77]

[RIDD78]

[RIDD79]

[RZEV791

McClure C.L.; "Top-Down, Bottom-Up, and Structured
Programming"; IEEE Transactions on Software Engi-
neering, Bol. SE-1, No. 4, December 1975.

McGowan C.L.; Kelly J.R.; "A Review of Some Design
Methodologies"; Softech TR053, Sept 1976.; Invit-
ed Presentation for Info Tech State of the Art

Conference on Structured Design, October 1976.

Myer, G.J.; "Reliable Software Through Composite
Design"; Petrocelli/Charter, New York, 1975.

Peter, L.; Tripp, L.; "Comparing Software Design

Methodologies"; Datamation, Vol. 23, No. 11, No-

vember 1977.

Ramamoorthy, C.V.; Meeker, R.E.; Turner, J.; " De-

sign and Construction of an Automated Software

Evaluation System"; IEEE Symposium on Software Re-

liability, May 1973, pp28-37.

Ramsey, H.R.; Atwood, M.E.; Campbell, G.D.; "An

Analysis of Software Design Methodologies"; Sci-

ence Application Inc., Army Reseasrch Institute
for the Behavioral and Social Sciences, Alexandria
VA., 1979.

Rich, C.; Shrobe, H.E.; Waters, R.C.; "Computer

Aided Evolutionary Design for Software Engineer-

ing"; MIT Artificial Intelligence Lab., Memoran-
dum, January 1979.

Richards, P.K.; "Developing Design Aids for an In-

tegrated Software Development System";

AIAA/NASA/IEEE/ACM Computing in Aerospace Confer-

ence, Collection of technical papers; published by
AIAA, New York, N.Y., 1977.

Riddle, W.E.; Wilden, J.C.; Sayler, J.H.; "Behav-

ior Modelling During Software Design"; Proceedings
of 3rd International Conference on Software Engi-

neering, 1978.

Riddle, W.E.; Schneider H.J.; "An Event Based De-

sign Methodology Supported by DREAM"; Formal Mod-

els and Practical Tolls for Information Systems

Design, Oxford, England, April 1979.

Rzevski, G.; Adey, R.A.; "On the Design of Engi-

neering Software"; Engineering Software, Southamp-

ton, England, Sept 1979.

162

[SIM069]

[SUTT81]

[WARN74]

[WILL79]

[WONG80]

[YOUR79]

Simon, H.A.; "The Sciences of the Artificial"; MIT
Press, 1969.

Sutton, S.A.; Basili, V.R.; "The Flex Software De-
sign System: Designers Need Languages Too"; IEEE
Computer, November 1981, pp95-102.

Warnier, J.D.; "Logical Construction of Programs";
Van Nostrand Reinhold Co., New York, N.Y., 1974.

Willis, R.R.; Jensen, E.P.; "Computer Aided Design
of Software Systems"; Proceedings of 4th Interna-
tional Conference on Software Engineering, 1979,
pp116-125.

Wong, M.A.; "A Graph Decomposition Technique Based
on A High-density Clustering Model on Graphs";
Technical Report #14, Sloan School of Management,
M.I.T., 1980.

Yourdon, E.; "Structured Design: Fundamentals of
a Discipline of Computer Program and Systems De-
sign"; Prentice-Hall, 1979.

