
OPTIMIZING INFORMATION RETRIEVAL FROM

DISPARATE MENU DRIVEN SYSTEMS

by

Howard L. Gerber

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Science and Engineering

at the Massachusetts Institute of Technology

May 1989

Copyright Howard L. Gerber 1989

The author hereby grants to M.I.T. permission to reproduce

and to distribute copies of this thesis document in whole or in part.

Author
Department of Electrical Engineering and Computer Science

May 22, 1989

Certified by
Professor Stuart E. Madnick

Thesis Supervisor

Accepted by
Leonard A. Gould

Chairman, Department Committee on Undergraduate Theses

OPTIMIZING INFORMATION RETRIEVAL FROM
DISPARATE MENU DRIVEN DATABASES

by

Howard L. Gerber

Submitted to the

Department of Electrical Engineering and Computer Science

May 22, 1989

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Science and Engineering

ABSTRACT

Menu driven database systems provide a user friendly interface to
their stored information, though they are not easily accessed in a
preprogrammed manner. This is a problem for the composite information
system designer, whose goal is to interface with a large number of
disparate databases. This thesis proposes a solution to this problem,
based on a model developed for Reuters DATALINE service and
theoretically extended to Reuters TEXTLINE.

The research done on Dataline yielded the necessity of installing some
degree of intelligence about a remote menu driven system in a Local
Query Processor(LQP). This intelligence consists of a representation
of the output format of the DBMS, which enables the LQP to select the
most cost effective menu choices available. An information filter
which handles standardly formated data well is also necessary, since
the output received from a menu driven system is often in the form of
a table. As long as these two issues are kept in mind during the
design of the LQP's abstract local query's column and condition lists,
most other concepts can be derived from the LQP model developed for
SQL type databases.

Thesis Supervisor: Stuart E. Madnick
Title: Professor of Management Science

-3-

Dedication

To Stu Madnick, who always understood how long a design would really take to
implement...

To Rich Wang, who helped me iron out the real meat and potatoes of my thesis...

To Mia Paget, who always had a clear view of the issues I was confronting, and who put up
with my impatient phone calls and meeting requests...

To Jean-Eloi Dussartre, who helped with the AWK coding...

And finally, to Mom and Dad, Jeff and Nat. Thanks for the support and all the help you've
provided, enabling me to reach this momentous occasion in my life...

Table of Contents

Abstract 2
Dedication 3
Table of Contents 4

List of Figures 6

1. Introduction to Information Systems 7

2. The Local Query Processor 10

2.1 Overview 10
2.2 Interface to CIS/TK 10
2.3 The Abstract Local Query 11
2.4 Structure of the LQP 13

3. THE IMPLEMENTATION OF DATALINE'S RETRIEVAL MODULE 18
3.1 Menu System Converter 18

3.1.1 SEARCH-LIST 20
3.2 The Partial Condition List Parser 23
3.3 The Communication Module 24

4. IMPLEMENTING DATALINE'S FILTERING MODULE 27

4.1 Overview 27
4.2 The Condition List 27

4.2.1 Design Goals 28
4.2.2 Implementation 29

4.2.2.1 Low-level Condition Parsing 30
4.2.2.2 Upper-level Condition Parsing 32

4.3 Filtering the Data 33
4.3.1 Programming with AWK 34
4.3.2 Filtering Dataline with AWK 35

4.4 Reading the Results 39

5. Extension to Another Menu Driven System 40

5.1 Overview 40
5.2 Reuters Textline 40

5.2.1 Intelligence Required 41
5.2.2 The Abstract Local Query 42
5.2.3 Filtering Textline's Output 43

6. Conclusion 44

6.1 Summary 44
6.2 Future Work 45

7. Demo Run 47

Appendix A. Common LISP Files 52

A.1 File DATALN.LSP 52
A.2 File ABSTQ.LSP 53

A.3 File DOIT.LSP 56
A.4 File PARSER.LSP 59
A.5 File LNKPARSAWK.LSP 65
A.6 File READER.LSP 66
A.7 File LOADFILES.LSP 67
A.8 File LOADDEMO.LSP 67

Appendix B. UNIX Script Files 68
B.1 File COMMTEST 68
B.2 File CX 68
B.3 File CXMENU 69
B.4 File AWKCALL 70

Appendix C. AWK Files 71
C.1 File FILTER2.NAWK 71
C.2 File READFORMAT.AWK 74

Appendix D. Other Files Used 76
D.1 File COLUMN-SEARCH 76
D.2 File FILTER 77
D.3 File READFILE 77

-6-

List of Figures

Figure 2-1: The CISf/K Query Processor Architecture 12
Figure 2-2: The Structure of the Abstract Local Query 13
Figure 2-3: The Structure of the LQP 14
Figure 2-4: The Menu Driven System LQP 16
Figure 3-1: The Structure of Search-list 21
Figure 3-2: Calculating the Optimal Menu Selections 23
Figure 3-3: The Current Communication Implementation 26
Figure 4-1: The Structure Used to Resolve the Condition List 30
Figure 4-2: Dataline Filter's State Diagram 37
Figure 4-3: Searching Dataline's Output With AWK 38

Chapter 1

Introduction to Information Systems

Information systems have existed in different forms since the beginning of human

enterprise. Histories of governments and battles provide numerous examples of systems

established to ensure a proper flow of information to decision makers. This need for

complete and accurate information has evolved along with the growing complexity of society

and technology. Modem managers need to make decisions involving larger numbers of

factors with far greater numbers of outcomes, and it is the computer age and particularly the

development of Database Management Systems(DBMSs) that have made this possible. 1

Prior to the existence of Database Management Systems, companies had to rely on

manual retrieval of the information they needed, which was a costly, time consuming and

inefficient process. Data was maintained by individuals who organized it to suit their own

personal needs. In most sizable corporations now, however, the corporate division is the

smallest unit to keep its own databases. Although information is now being kept for a larger

unit of a firm, this still presents a large problem to the manager, who desires to integrate all

important data into a composite solution. The modem manager has to cope with even more

complex data acquisition problems due to the globalization of the world economy, whereby

firms have expanded beyond their traditional geographic boundaries. In order to compete on

an international level, these fmins need accurate and complete information on all markets in

which they compete. Research is being done to alleviate these problems, and Composite

Information Systems(CIS), which allow a user to access multiple disparate databases from a

single system, appear to be the way of the future.2

'For fiurther information, refer to [Radford 73].

2Refer to [Champlin 88].

-8-

There are many problems involved in overcoming the discrepancies between different

databases. One point of major importance is that databases are set up in a number of different

formats. For example, ORACLE is a relational system which is accessed through SQL type

queries. On the other hand, Reuters DATALINE and TEXTLINE databases are accessed

through menu driven interfaces, providing a more user-friendly design for the non-technical

user. In either case, the person trying to extract information from a database has to know the

specific inputs each system requires. For example, to terminate the current selection and

revert to a higher level menu selection in Reuters services, a '\" must be selected. I.P. Sharp,

another menu driven system, requires the word "back" instead. It is apparent that a

Composite Information System would need to incorporate the specifics of all databases it

accesses so that these fine points would be transparent to the CIS user.

The unit within the Composite Information System(CIS[IK) being developed at MIT's

Sloan School which deals with overcoming these connection and input format problems is

the Local Query Processor(LQP). LQPs are necessary for each database system to be

accessed by CISfTK, but up until this point, had only been available for SQL type systems.

This thesis introduces a theoretical approach for creating an LQP for a menu driven system,

namely any with a format similar to Reuters Dataline. Although many of the concepts

developed here are extendible to other types of menu driven systems, a careful analysis of

each system and its corresponding abstract local query is necessary.

This paper progresses from the discussion of what an LQP is through the extendibility

of the LQP for a menu driven system designed here. Chapter 2 introduces the LQP and

juxtaposes the LQP structure for an SQL system with the one developed in this thesis. The

idea of breaking a menu driven system LQP into retrieval and filtering modules is also

presented. Chapter 3 discusses the retrieval module, focusing on developing a scheme for

mapping the columns specified to the alphanumeric menu selections available. Chapter 4

studies the filtering module, which consists of the condition list parser, the filter and the

-9-

result reader. An analysis of how to approach condition list parsing is stepped through, and

AWK is introduced as a good filter for data in table form. Chapter 5 extends the concepts

developed to Reuters Textline system and lays out potential future work on menu driven

system LQPs.

-10-

Chapter 2

The Local Query Processor

2.1 Overview

The Local Query Processor(LQP) is the module within the CIS architecture which

establishes the physical connection between the host and the appropriate remote machines

where information is stored. Using its programmed intelligence, the LQP performs all

functions necessary to extract information from a selected database, enabling the common

user to avoid having to learn the specifics of all the machines he desires to access. In this

sense, the LQP acts as a virtual driver of the remote machine, indistinguishable to the

machine from the users of real terminals. This is a very powerful approach since very few, if

any, changes need to be made to existing systems for physical or logical connections. 3

2.2 Interface to CIS/TK

The Local Query Processor is defined as an object in the CIS/TK framework. An LQP

object exists for each database which is to be integrated into the system. For each of these

LQP objects, four methods are supported: self-info, get-tables, get-columns and get-data. The

LQP is called into action by the get-data method sent from the Global Query Processor,

which is one level up in the CISf/K architecture(refer to figure 2-1). This method provides

the LQP with an abstract local query, which contains enough information for the LQP to

know where to find the desired data and what specifically is desired.

-- >SELF-INFO provides the CIS/TK user with information about the
database being accessed. This method requires no arguments.

-- >GET-TABLES returns a list of tables associated with an LQP for

3Refer to [Wang 88].

-11-

an SQL type system. Since menu driven systems do not work directly
(although in some cases implicitly) with tables, this method is only
used in this thesis to display which system(i.e. Dataline or Textline)
is currently being accessed.

-- >GET-COLUMNS returns a list of the columns available for use
with an LQP. On an SQL type system, these columns can be read
directly, though they must be placed on the local machine when dealing
with a menu driven system.

-- >GET-DATA calls the LQP into action. It expects an abstract
local query as its argument and returns a list of the data requested.

2.3 The Abstract Local Query

An abstract local query consists of a list of three sublists, each of which contains a

different aspect of how to find the information desired by the CIS user(see figure 2-2). The

first sublist has the name of the table the user wants to draw data from. On an SQL based

system like ORACLE, the actual name of the table would be placed here. However, menu

driven systems work with alphanumeric inputs specifying hidden databases, rather than overt

tables. Therefore, this sublist of the abstract local query can be used to identify which menu

driven system is being accessed, namely DATALINE or TEXTLINE in this thesis.

The second sublist of the abstract local query is a list of the columns desired from the

selected table/menu driven system. The term columns actually refers to the columns in an

SQL system, so the definition is being extended in this analysis. The column list is

responsible for specifying the information to be returned by a system, which in Dataline's

case is dependent on receiving a proper company code. The columns supported should have

the most practical value to potential users of the system, like code, sales, current assets and

earnings within Dataline. It is sensible that columns like these will be requested more often

than one like net cash surplus. The columns should also stand for values which are applicable

to any call to a DBMS, reserving the specific requests(i.e. for a company) for the condition

list.

-12-

Application
Model

Global
Schema

Dictionary

Executable
Local

Queries

Application
Instance

Application Objects
Model Query

Application
.4 Query Processor

Global
Schema
Query

+--
-. 4

Global
Schema
Manager

Abstract
Local

Query

Joined
Table

Global Query
Processor

Tables

Query
Results

Figure 2-1: The CIS/TK Query Processor Architecture

The final sublist of the trio is called the condition list, which specifies how to filter the

-13-

information acquired based on the columns selected in the column list. The condition list is

designed to work with boolean expressions, enabling compound searches to be requested in a

logical format.

ABSTRACT LOCAL QUERY

'(<TABLE-NAME> <COLUMN-LIST> <CONDITION-LI T>)

'FINSBURY
'DATA

'(CODE YR EFO SALES)
'(CODE COMPANYNAME)

'(OR (= CODE "HOND") (= CODE "RENAULT"))

(OR (= COMPANYNAME "HONDA MOTOR CO
LTD") (= CODE "HOND"))

(AND (= YR1985) (= CODE "IHG"))

Figure 2-2: The Structure of the Abstract Local Query

2.4 Structure of the LQP

The Local Query Processor transforms an abstract local query received from the CIS

Global Query Processor(GQP) into appropriate executable commands for a remote system

and receives and transforms the results into a standard format required by the GQP. In order

to conquer these tasks, the LQP has been designed for SQL type databases as a four module

system, with modules for translating the given abstract local query, communicating with the

-14-

external system, filtering the information received and formatting the results properly(see

figure 2-3).

Figure 2-3: The Structure of the LQP

LQPs for any type of database system have to incorporate these four basic

components, but not necessarily in the same general format. Unlike SQL type systems,

-15-

extracting information from menu driven systems only requires knowing the proper sequence

of numbers or characters for the data needed. This enables the designer of a virtual driver to

install just enough intelligence into programs to make educated and efficient selections about

which menu choices are optimal. This intelligence can be in any form, as long as it ensures

that at a minimum, all requested information will be returned to the local host. It is likely that

a substantial amount of extra data will come along with that which is necessary, but this can

be filtered from a file while off line. This effectively separates the problems of removing

information from the foreign host from the specifics of the information desired. The retrieval

module involves working with the foreign host on menu driven system and communications

problems. Once the retrieval module has accurately completed its tasks, extracting the user

requested information can be done on the local machine. This requires knowledge of the

output format of the menu driven system, which is programmed into the filtering module.

Refer to figure 2-4 for a diagram of the menu driven system LQP.

The Retrieval Module

-- >The Partial Condition List Parser scans through the condition
list for any information which is necessary during the call to
the menu driven system. Some systems may not need this section,
depending on the setup of the abstract local query.

-- >The Menu System Converter module produces the proper sequence
of numbers or characters necessary to request the information
from the external database. It is ideal to have this work
exclusively from the column list, although it may not be possible
with some systems.

-- >The Communication Module is in charge of sending the sequence
of commands generated by the abstract local query converter to
the remote database and receiving a file containing the returned
information ready for filtering. This module is generally
implemented in shell.

The Filtering Module

-- >The Full Condition List Parser recurses through the condition

-16-

GLOBAL QUERY
PROCESSOR

abstract local query IN(I

f ilteringre trieC7-val no0du e

Menu System
Converter

Part ial Condition
List Parser

menu system
access sequence

CONNUNICA TION

NODULE

rno du7

RESULT

READER

filtered
file

INFORNA T ION
FIL TER

Full Condition
List Parser

menu driven
dbms

Figure 2-4: The Menu Driven System LQP

list to generate the proper terms for filtering the file received
from the retrieval module.

-- >The Information Filter extracts the information actually needed
by CIS/TK from the local file, based on the rules determined in
the full parser.

list

C
/ IN

resttit

file

-17-

-- >The Result Reader is responsible for taking the filtered data
and reading it back into the format used by the GQP.

-18-

Chapter 3

THE IMPLEMENTATION OF DATALINE'S RETRIEVAL MODULE

The Retrieval Module is made up of the menu system converter, the partial condition

list parser and the communication module. It's job is to use a minimum of information from

the abstract local query to retrieve the minimum possible amount of data from the table being

used. Thus, it is applied before the query is sent to the foreign host. A key for the success of

the retrieval module is a simple design for mapping the information needed to specific menu

selections.

3.1 Menu System Converter

The first step in determining the simplest method for working with a menu driven

system involves examining the menu setups and output format. Dataline's menu system

functions in a hierarchical sense, with progressive menus providing more and more complex

data on the company in question. After a proper company code has been selected, two levels

of menu choices are presented. The first level provides options for the type of data desired.

Options available are to display:
1. Income statement
2. Balance sheet
3. Financing table
4. Accounting ratios
5. All four statements

It is possible that from an accountant's standpoint, every piece of data provided by the

options above is equally valuable. However, most users only need specific information on a

company, so a logical method for retrieving data from the system would revolve around a

single option like the income statement or balance sheet. It is highly unlikely that any query

to Dataline would require information from all four options, so making this feature available

-19-

in an LQP would be more expensive(through programming and run time) without much

benefit. It is for this reason that option 5, "all four statements", is not supported.4 Options 3

and 4 in the above menu are supported by the Dataline LQP, although they might not be used

as much as options 1 and 2. It is necessary to include them, however, in case a manager

needs a specific piece of information not available on the income statement or balance sheet.

The second level menu within Dataline enables a user to choose how much

information about the previously selected option is to be returned. The following is its

format:

Is the tabulation to be a:
1. Summary
2. Basic analysis
3. Detailed analysis

Selecting the most detailed analysis for every scenario is possible, and it would

certainly reduce some of the intelligence logic necessary for the Dataline LQP. The benefit of

having this reduced logic(less up front programming, an almost unnoticeably faster logic

code run-time) is more than offset, however, by the cost of the retrieval of the extra

information. First of all, Reuters charges a certain amount of money for each data request,

with prices increasing proportionally with the amount of information returned. A basic

analysis and a detailed analysis cost three and eight times, respectively, what a summary

does. A detailed analysis costs almost three times what a basic analysis does. This does not

even factor in the costs of being attached via phone lines to the system or the extra connect

time required to retrieve more information.

The forces driving a theoretical design of the retrieval module are thus apparent. A

clever implementation of intelligence for this unit will provide substantial time(during data

filtering in the filtering module) and financial savings to users, as this is where the most cost

could be accrued.

4Even if all four options were required by a single query, the procedures implemented in this thesis would
properly choose the most efficient menu selections for each of the options.

-20-

3.1.1 SEARCH-LIST

The key problem in selecting the proper menu options for Dataline involves taking a

column specified and figuring out where it is located on the system. SEARCH-LIST is the list

structure in lisp which was set up as Dataline's intelligence unit for this purpose. It contains

enough information about the Dataline system to enable other procedures to efficiently and

accurately select menu options, yet is designed in a very simplistic manner.

Search-list is implemented with four primary sublists, one for each of the options

supported by Reuters. The sublists are placed in the same order within search-list as they are

numerically available in Dataline, enabling the positioning of sublists to represent option

numbers. These four sublists are broken down a step further in order to incorporate the

tabulation selection. Three sublists thus exist for each primary sublist of search-list, which

are also numerically related to Dataline's menu format. The first sublist stands for data being

present in a summary, the second for data being present in a basic analysis and the third for

anything only available in a detailed analysis(see figure 3-1).

Columns are placed in each of the primary sublists in which they can be found for

reasons which will soon become obvious. They are only loaded into one subsublist, though,

that which is of the least detail. For example, if a column is available in a summary, it will

also be available in both basic and detailed analyses. This knowledge of the output format is

built into the procedures which use search-list, so putting the column into each of the three

subsublists would merely slow down the traversal of search-list's theoretical data tree.

Calculating the most efficient menu selections for Dataline is the direct result of a

traversal of search-list. Each column specified in the column list is looked for in each sublist

of search-list(each of which represents an option number). A list of two integer elements is

returned for each sublist in which the column is present, the first specifying the sublist in

which it was found, and the second representing which list(1-3, for the tabulation number)

within that sublist(the subsublist). In actuality, the retumed list is just a representation of

-21-

1 2 3

forbopion 3 forbopion 43 subsub Jis-ts in subhist 1 iib15-t_ uls

standing for the 3 tabulation numbers for option 3 for option 4

Figure 3-1: The Structure of Search-list

which numbers would have to be selected from Dataline's menu to retrieve the column's

value with the least possible amount of detail(lowest tabulation number) selected. These lists

are in the form (option-num, tabulation-num). When all of the possible combinations of

option and tabulation numbers have been calculated for a specific column, a list of these two

element lists is returned. This process is followed for each column in the column list,

resulting in a series of lists of two element lists. Within figure 3-2, the results of this step can

be seen directly below the "Form lists" heading, as lists of two element lists have been

formed for currency and GFA.

At this point, one optimization feature is implemented. The number of occurrences of

specific option numbers for all columns(no option number will be present twice for any

column, since the least detailed tabulation is used) is summed, the maximally used one being

the most profitable menu selection. If two or more option numbers are tied as the maximally

used, the lowest number option will be selected.

-22-

The individual column representations are then scanned for any occurrences of two

element lists without the maximally used option in a grouping with a list for the maximally

used one. If they do exist, they are discarded, as the only remaining two element list for each

column representation should be the most profitable selection. If a list of lists does not have

the option which was used maximally, nothing will be deleted.5

The lists of two element lists still remaining are then appended together into one large

list, setting the stage for the second optimization feature. This involves forming a list of two

element lists with all option numbers still remaining represented, but only paired with the

highest associated tabulation number remaining. This is because information available in a

summary is necessarily available in a basic or detailed analysis, and retrieving more than one

would be a waste. The list returned from this processing has the optimal menu selections for

Dataline.6

A major benefit of the design of search-list is its flexibility. Since the whole scheme of

menu selection is based on where columns are located in search-list, any changes in

Dataline's supported columns or output format could easily be implemented in the LQP

without modifications to any code. 7

5ft is possible, though not likely with this system, that subsequently performing this same technique on the
second most used option(and then the third, etc.) would result in further optimization. Though this concept has
not been implemented here, it may be of substantial value for other menu driven systems.

6Refer to figure 3-2 for an example of this process.

7A change in the format of Dataline's output may throw off the filtering routine since it scans for specific
patterns.

-23-

Columns Requested: currency, GFA

(1,1) (2,1) (23) (3,1)
Take search-list as: (((currency)()()) ((currency)()(GrA))((currency)()())

Form lists (option-num, tab-num)
currency -- > ((3 1) (2)(1))
GFA ------- > ((2 3))

ONE:Add all option numbers up -- > option 2 is most used

TWO: Delete all groupings in list with max. grouping

((2 1)) ((2 3))

THREE: Search for highest tabulation number

3
<OPTION 2 = Balance Sheet

TABULATION 3 = Detailed Analysis

Figure 3-2: Calculating the Optimal Menu Selections

3.2 The Partial Condition List Parser

The concept of isolating the parsing of conditions from anything dealing with the

retrieval module depends a lot on how a system and its LQP's abstract local query are

designed. If a database system is in a reasonable format, it is a good idea to limit the menu

system converter to working with the column list. In the case of Dataline, it is necessary to

specify a valid company before being able to retrieve information on it. Since the condition

-24-

list is the only part of the abstract local query set up which receives the actual names and

codes of companies to be queried by a CISITK user, these names must be retrieved prior to

calling Reuters.

A routine in the retrieval module scans through the condition list and sets up a list of

all company names and codes. All duplicate company names or codes are removed from

these lists, as it is only necessary to test one for its validity(using the Dataline "names"

option). Any invalid codes or names must be specified as "nil" values in the condition list,

signifying an inability to process information on the company. If this process causes the

condition list to have a "nil" value overall, Dataline should also not be accessed.

3.3 The Communication Module

Communicating with Dataline is performed by sending a series of unix shell

commands through a pipe. The menu system converter and partial condition

parser(implemented in lisp) determine what needs to be sent, and pass the values through

procedure unix-format to shell code. The partial condition parser uses file cx to establish the

proper name testing sequence, while the menu system converter sends the menu selections to

file cxmenu. Values from both of these files are appended to communicate, which is the

actual file sent to Reuters. Prior to the former two file's values being sent, commtest, which

contains the access codes necessary for dialing up and entering Reuters services, is copied

into communicate.

When the pipe to Reuters is closed, tfile contains the extracted information. Tfile is

piped through filter in order to remove any "AM"'s, setting it up for the filtering module.

While the communication module is currently implemented by piping communicate to

Reuters, this method does not have the capability of any on-line interaction. Thus, the LQP

can not determine whether a name tested in Dataline's names routine is valid until after the

pipe has been closed. Unfortunately, this means that the Dataline LQP can currently accept

-25-

only valid names. A future goal of this thesis is to support a new communication server

developed by Francis Gan which would enable on-line interaction. 8

;rF inrther information, refer to [Gan 89].

-26-

FILE COMMTEST

STANDARD REUTERS
ENTRY
COMMANDS ARE STORED
HERE.

ECHOED FIRST

Figure 3-3: The Current Communication Implementation

FILE COMMUNICATE

ALL PROPER SEQUENCES ARE
ECHOED INTO THIS FILE, WHICH
IS EVENTUALLY SENT TO
REUTERS VIA "CU"

CALL IN FORM OF:

communicate I cu -t
92920662 | tee file

FILE CX

HOLDS CODE TO VERIFY
COMPANY CODES AND
NAMES.

ECHOED SECOND

FILE CXMENU

SENDS CALCULATED BEST
MENU SELECTIONS TO
SYSTEM

ECHOED LAST

-27-

Chapter 4

IMPLEMENTING DATALINE'S FILTERING MODULE

4.1 Overview

After the retrieval module has performed its tasks, newtfile exists on the local host,

containing all the information extracted from the remote system. In the case of most database

systems, but especially menu driven ones, there will be a lot of information returned which is

not needed by the system's user. The key is to isolate the most important pieces of

information and filter the local file accordingly. Some of the rules for filtering used by the

CIS/T'K system are taken directly from the condition list sent within the abstract local query,

but other important decisions must be made with respect to the nature of the data returned.

One such issue for Dataline is whether the column period ending or year should be returned

under certain circumstances. Issues of this sort are tackled when the abstract local query is

set up.

The filtering module is broken down into three sections: parsing the condition list,

filtering the data, and reading the results back into a format suitable for the Global Query

Processor. The parsed condition list provides the basis for filtering the data, and if the

filtering is done cleverly, the result reader should be fairly easy to implement.

4.2 The Condition List

The main condition list parser would ordinarily be within the query converter module

for an SQL type database system. This is because the conditions specified are used to form a

query sent directly to the SQL system. While some parsing(extracting company codes and

testing for at least one valid one) is done in the retrieval module for Dataline, the majority

can be put off for the filtering module. For the Dataline model developed here, the parser is

-28-

considered a major part of the filtering module, though this theory's extendibility to other

menu driven systems is dependent on the design of each system's abstract local query.

4.2.1 Design Goals

Virtually all information available on Dataline can be requested in the column list,

making it is reasonable to keep the condition list as simple as possible. The only columns

which have to be supported by the condition list are code and company name, so any others

which are included would need to have substantial value to justify their addition.9 This is the

case with the year column. Users may want to focus in on a specific time frame rather than

get information on a whole range of years. Implementing this column, which would work

nicely in the existing boolean framework, will usually reduce the amount of data returned by

the filtering routine. On the other hand, a column like earned for ordinary(efo) is not as

generally useful(eg. (and (= code "HOND") (> efo 100000))). This example represents a

specification for returning values for the company Honda in all years in which its earned for

ordinary value is greater than 100,000. While this feature may be useful at times, being able

to specify data retrieval terms based on year would on average help more users. Thus, the

marginal benefit of the year column's being supported by the condition list is greater than

that for efo. A similar argument can be applied to most other columns with respect year.

Since adding the ability to support each extra column in the condition list increases

complexity substantially, only the year column has been implemented in this thesis. It may

be useful at some future point(or for users with specific needs), however, to support other

columns in the condition list.

Once the decisions about which columns to support in the condition list have been

made, the next step is to determine which are the most practical boolean operators. An

9Dataline only constrains on the column code (company names are translated into codes). As long as a code is
properly selected, numerical menus specify any further data selection.

-29-

analysis of all possible boolean combinations of the columns which are to be supported

should generally yield the practicality of the operators "AND" and "OR". Depending on the

circumstances, operators like "NOT", "NAND", "XOR" and "NOR" may also be useful.

4.2.2 Implementation

Dataline's condition list is implemented for the columns year, code and

company-name with the boolean operators "AND" and "OR", as shown in the table below.

The operator "NOT" is not currently supported, though it may be useful to add it in

conjunction with the year column at a later time.

YEAR CODE COMPANY-NAME

and and and

or or or

not? -

Although company-name is supported by the condition list, all names are converted

into their respective codes for ease of processing. If a given code is not valid, the value "nil"

is replaced in its spot in the condition list. It is thus possible that an entire condition list could

be reduced to a "nil" value, and the call to Reuters would not be necessary.

SUMMARY OF CONDITION LIST IMPLEMENTATION

1. CODE and COMPANY-NAME columns supported
Required by Dataline

2. YEAR column supported
Likelihood that user would want information on a
certain time period

3. Other columns not supported
Filtering potential is not enough to justify
implementation

4. AND and OR boolean operators employed
Other operators are not as useful as these, though NOT
may be good to implement for the YEAR column

-30-

Once a design for the condition list has been laid out, it is necessary to analyze every

possible scenario that could be encountered during parsing and how to deal with them.

During the development of the Dataline LQP, a number of methods were considered. It was

determined that the easiest structure to work with would be a nested list, in which the outer

parenthesis enclose the entire list of values, the next inner parenthesis enclose each

company/year combination requested and the most inner parenthesis enclose the respective

second list's company code. The yearlist is positioned within the first parenthesis after the

list of the company code.

((("code") yearlist) (("code") yearlist))

4/ No duplicate years
Representation of one company

The outer parenthesis enclose the entire set of lists of codes and yearlists.
In this example, 2 companies and their yearlists are presented, though this
structure can include as many corporation representations as is necessary.

Figure 4-1: The Structure Used to Resolve the Condition List

4.2.2.1 Low-level Condition Parsing

The following is a run down on scenarios encountered during parsing Dataline's

condition list:

Case 1: OR' ing two companies

Any two codes or company names can be ORed together. Data is being requested for either

-31-

or both companies. If the same company is specified twice, it is only represented once since

both codes request the same information.

eg. (OR (= code "HOND") (= code "RNLTL"))
==>((("HOND")) (("RNLTL"l)))

(OR (= code "HOND") (= companyname "Honda Motor Co"))
==>((("HOND")) (("HOND"))) ==>((("HOND")))

Case 2: OR'ing years or codes and years

The only way in which a year can be ORed is if it is combined with another year. Dataline

requires having a company code to process a request, so asking for all information with year

= 1986(which would be specified by the format "CODE OR YR") would not be practical. In

essence, the literal meaning of this boolean expression would necessitate returning

information on every company during the year specified.

ORing two years together establishes a yearlist, which subsequently will have to be

ANDed with code/name for it to have any practical value.

eq. (OR (yr 1985) (yr 1986)) ==>((NIL 1985 1986))

(OR (= yr 1987) (= code "HOND")) =>ERROR

Case 3: ANDing two codes/names

Although it may seem logical to be able to request data for "Honda AND Renault", from a

boolean standpoint it is not reasonable. Thus, the only way that two codes/names can be

ANDed without a nil value being generated is if the codes/names stand for the same firm

during the same time period(AND signifies that everything is identical).

eq. (AND (= code "HOND") (= companyname "Honda Motor Co"))
==>((("HOND")))

(AND (code "HOND") (= code "RNLTL")) ==>ERROR

Case 4: ANDing a code/name with a year

-32-

It is logically valid and actually quite beneficial to AND a code/name with a year or a

list of years(generated by ORing the years together). This is the primary way to use the year

filtering feature to request a more focused range of data.

eg. (AND (= code "HOND") (= yr 1986)) ==>((("HOND") 1986))

(AND (= code "HOND") (OR (= yr 1986) (yr 1985)))
==>((("HOND") 1986 1985))

Case 5: ANDing years together

Two years can not be ANDed together unless they are identical.

eg. (AND (= yr 1986) (= yr 1985)) ==>ERROR
(AND (= yr 1986) (yr 1986)) ==>((NIL 1986))

4.2.2.2 Upper-level Condition Parsing

These list structures developed during parsing build on themselves as more and more

conditions are applied. This is where the true value of this scheme comes into play. It is

designed in such a way that LISP code can easily manipulate the structures as necessary

during a recursion through all the boolean conditions. This ability to handle nested recursions

should be built into condition list parsers for all LQPs. The system memory limitation for

nesting, around nine levels deep, should not be a factor except in the unlikely case that the

conditions on a single company are extremely specific.

A compound list is one of the structures set up in the lower-level parser which can be

combined with other compound lists or lower-level expressions. The following are some of

the possible parsing scenarios encountered when at least one element is a compound list. A

shortened form is used for demonstration purposes.

Case 1: ADing a compound list with a code or a year

eg. ((("HOND"))) AND (= code "RNLTL") ==>ERROR
(((("ONDI"))) AND (= code "HOND") ==>((("HOND ")))
((('"HOND"))) AND (yr 1982) ==>((("HOND") 1982))

-33-

ORing a compound list with a code or a year

(("HOND"))) OR (code "RNLTL")
==>((("1HOND"1)) (("1RNLTL"1)))

(("HOND"))) OR (yr 1983) ==>ERROR
(NIL 1983)) OR (yr 1984) ==>((NIL 1984 1983))

Case 2:

eg. (

(
(

Case 3:

eg .(

(C

(C

lists

((("HOND") 1984)) ==>ERROR
((("HOND") 1983))

==>((("HOND") 1983))
((NIL 1983 1984))
==>((("HOND") 1983 1984))

Case 4: ORing two compound lists

eg. ((("HOND") 1983)) OR ((("HOND") 1984))
==>((("HOND") 1983) (("HOND") 1984))

==>((("HOND") 1983 1984))
((("HOND") 1983)) OR ((("RNLTL ") 1982))

==>((("HOND") 1983) (("RNLTL") 1982))
((("HOND ") 1982)) OR ((NIL 1983 1984)) ==>ERROR
((NIL 1982 1983)) OR ((NIL 1983 1984))

==>((NIL 1982 1983 1984))

4.3 Filtering the Data

Selecting the proper method for filtering data requires a careful analysis of the type of

data being received and the format it is in. Filtering routines generally incorporate string

searches of one type or another, so a language like lisp, which is weak in this aspect, is

virtually useless. This is a problem for the CISiTK system(which is mostly implemented in

lisp) since a new language must be incorporated, and the proper variable passing between

languages must be worked out.

Reuters' Dataline database system produces information on companys in a tabular

form. Some general company information is at the top of each report(eg. Name, country,

ANDing two compound

(("HOND") 1983)) AND
(("HOND") 1983)) AND

(("HOND") 1983)) AND

-34-

currency, etc.), and the financial data follows in a standard format. Since reports are in a

standard format using standard keywords, the AWK language within shell was chosen for

implementing Dataline's filter. AWK works on the basis of pattern-action statements,

searching for a standard pattem(or keyword) and performing the associated action when it is

found. AWK is also programmable, supporting many "C" style commands. This provides

great flexibility, and enables one to make use of some good string processing features.

4.3.1 Programming with AWK

AWk is best at processing data which is a mixture of words and numbers separated

into fields by blanks and tabs. The output of Dataline is of this form, making AWK

particularly valuable in this instance. AWK provides programmable field separators(eg.

blank, tab), which mark how to break up the columns of data in a record. Once the fields

have been distinguished, the different columns of data can be accessed by merely using a

dollar sign followed immediately by the number of the desired column, as in $2 for the data

in the second column. $0 stands for the request of an entire record. Thus, this scheme enables

one to do a quick calculation of a large column of data(through summing certain columns,

etc).

Being able to reference specific columns of data in this format creates an opportunity

to exploit AWK's pattern statement, as a specific column can be tested to see if it matches(~)

a given pattern(/pattem/). For example, if a file of data is known to have the phrase "Mets" in

a record(one line) with the user's desired data in the record following that one, a pattern $0 ~

/Mets/ is specified to find the string. Subsequently, a jump to the next record can be made.

Dataline, as another example, returns actual column names in its output, which serve as fine

patterns to attempt to match.

AWK provides a number of string functions which simplify the processing of

data(performing an action after a pattern has been matched). These are similar to "C"

-35-

language string functions, but are more geared towards working with columns in the

discussed format. The more general functions include length and substring, available with

most string packages. The useful new functions include sub, gsub and split. Sub and gsub

substitute a parameter they are passed for a specified string in a record, either on the first

finding of the string(sub) or globally in the current record(gsub). Split splits a passed

value(eg. a record) into an array, based on either the field separator or a given parameter.

This function was useful, for example, in breaking up the date term(of the form xx-xx-xx) in

Dataline, by specifying "-" as the value separator.

AWK supports a variety of control flow statements, many of which are similar to "C"

type looping commands. If-else, while, do-while and for statements are some of the standard

commands available. A couple of other functions also prove very useful, namely break and

next. The break statement causes an immediate exit from an enclosing while or for loop. The

next statement causes AWK to skip immediately to the next record and begin matching

patterns from the first pattern-action statement. This is very useful when a record has

matched a specified pattern and processing should then be done in subsequent records.

AWK also has some SHELL-like capabilities. It can interact reasonably well with both

pipes and files. The function most useful in the work on Dataline was the ability to print

output into files instead of to the standard output. This is performed within an action

statement by using the > and >> redirection operators, where > overwrites original file

contents and >> appends. For example, print $3 > "bigpop" writes what is in the current

record's third field into file bigpop. The name of a file can be constructed(eg. to attach a path

name) by enclosing the juxtaposed name terms in parenthesis(eg. print $3 > (path "bigpop")).

4.3.2 Filtering Dataline with AWK

AWK programs read through given files trying to match every pattern specified to

each line in sequence. Even if AWK has matched one pattern to a line, it will still attempt to

-36-

match the remaining ones. It is for this reason that complex programming in AWK(trying to

match more than one type of pattern in a file) should be done with states. A state diagram of

Dataline's filter is shown in figure 4-2. It can be seen that typical states for Dataline are

before any data of value has been found, after a long string of -'s, and while looking for a

valid company name. In an AWK program, the state is kept as a variable which is ANDed

with some pattern statements, enabling the state to turn on or off the ability to match a

pattem(eg. $0 - /Period ending/ && (STATE == 1)). Once the scheme for finding patterns in

a standard output has been established, the processing of the data can be done with AWK's

comprehensive string package.

Filter2.nawk is the main filtering program for Dataline, actually implemented in the

NAWK language. 10 It scans through the file set up by the call to Dataline, looking first for a

series of -'s(#1 in figure 4-3). This signifies the start of a new output record. The company

code is then tested, to see if the current record is the proper one(#2). If it is, relevant values

are saved(eg. years), and the program continues on to see if the desired column is in this

specific record(#3). If a column is not found, filter2.nawk will scan for a new line of -'s, thus

overlooking any other garbage in the file it is reading. Obviously, there may be more than

one record for a company on a given use of the retrieval module. This routine is repeated

until the desired column is found.

It must be emphasized that a program like AWK is most useful when the format of a

file or incoming data is in a known tabular form. If the incoming information were arbitrary,

one would not know what specific patterns to look for, thus defeating AWK's purpose.

10NAWK is very similar to AWK, though it has a few extra features. The most important one used here was
the ability to work with procedures. The GAWK language is also available.

-37-

Go to End of
Record

Bad Name

Valid Ne

) 4 garbage

find 80 -'s

Beginning of record
2+-

Read company name

Test Name

NOT FOUND End of Record

Keep Period
Line

Test for Column FOUND

Figure 4-2: Dataline Filter's State Diagram

-38-

INTERNATIONAL HOSPITALS GROUP LTD IHG 4 9 see : cek ' ,br tc c. y -> U. K.
----- ---

INCOME STATEMENT C-rrecy-t Pounds (0OOs)

Period ending l 12 31-12-83 31-12-84 31-12-85 31-12-86

SALES
TRADING PROFIT

PRE-TAX PROFITS 6fbUmnv\S to
PROFIT AFTER TAX

EARNED FOR ORDINARY
ORDINARY DIVIDENDS

65051. 88641. 84007. 75961. 56948.
1869. 2736. 2728. 2301. 1867.

1994. 3055. 3148. 2597. 2541.
944. 1479. 1728. 1533. 1564.

944.
661.

1479. 1728. 1533. 1564.
500. 1213. 0. 0.

fAe I"v 6f .L F1 kp_ -

INTERNATIONAL HOSPITALS GROUP LTD IHG U.K.
----- --

BALANCE SHEET Pounds (000s)

Period ending 31-12-82 31-12-83 31-12-84 31-12-85 31-12-86

CAPITAL AND RESERVES
DEFERRED LIABILITIES
TOTAL CAPITAL EMPLOYED

NET FIXED ASSETS
INVESTMENTS
OTHER ASSETS
TOTAL NET CURRENT ASSETS
TOTAL ASSETS EMPLOYED

472. 1451.
86. 86.

558. 1537.

313.
350.
283.

-388.
558.

Figure 4-3: Searching Dataline's Output With AWK

1971.
46.

2017.

170.
59.

1235.
553.

2017.

252.
250.
214.
821.

1537.

3504.
27.

3531.

122.
137.

1894.
1378.
3531.

5022.
10.

5032.

107.
2726.

0.
2199.
5032.

-39-
4.4 Reading the Results

The result reader takes data from a file set up by the information filter, changes it into

the format accepted by the GQP, and subsequently returns it. It has been implemented for the

Dataline LQP with both the AWK program readformat.awk, which groups the data into a

format suitable for easy reading into lisp, and the lisp routine read.lsp, which actually

performs this reading. The output from the information filter(which was left in file readfile)

was organized with Column, New Company and EOF flags in order to provide a set of

patterns easily recognized by readfornat.awk. Readformat.awk establishes FINALFILE,

from which the routine in read.lsp can directly read the values back into LISP. Performing

this function with only LISP code would have been rather difficult, so the AWK

programming has been used to remove this burden.

-40-

Chapter 5

Extension to Another Menu Driven System

5.1 Overview

The LQP model developed in this thesis has been designed for extension of its basic

issues to a broad range of menu driven systems. The key goal driving this model is to

minimize system cost and maximize potential usefulness by determining which features of a

system should be incorporated into an LQP and how flexible the data specifying conditions

should be made. These concepts are implemented through the design of the abstract local

query, the structure and contents of the LQP's intelligence unit and the nature of the filtering

routine. Once the aforementioned have been sorted out, the more general problems like

communication and programming specifics can be tackled.

One problem of all LQPs is developing the communications format necessary to drive

a database. For example, it is necessary to send a "/r/c" at the end of each line piped to

Reuters, as this system needs a return without a line feed. One must also figure out how to

gain entry into a system in-a preprogrammed way, echoing shell scripts through a pipe in the

proper format. Since communication problems for the Reuters system providing both

Dataline and Textline were solved during the development of the Dataline LQP, Textline is a

good model for extending many theoretical concepts not related to communication.

5.2 Reuters Textline

Reuters Textline provides important news on a wide range of companies, industries

and products. Since it is logical to assume that a user may at some point need information on

any of these topics, restraint is necessary before excluding anything supported by Textline

from an LQP. The following theoretical design incorporates most of Textline's options in a

-41-

format consistent with the generic LQP developed in chapters two through four. The three

major design issues are covered, leaving the implementation and other general LQP topics

for future work.

5.2.1 Intelligence Required

An analysis of Textline revealed that three of its features need to be represented as

intelligence in an LQP: the names of the geographic and industry databases available, the

indexing codes and the general codes for increased precision which are presented in

Textline's full search facility. These are the three sets of specifications that a search can be

constructed of. In order to use Textline's built in searching capabilities most efficiently, it is

ideal to narrow down the amount of data to be scanned as much as possible. All these

specifications must be supported, so that whenever possible, any applicable item can be used

to increase searching precision.

It can be argued that since these options are available interactively on Textline, an LQP

which scans them on line could be developed. This would reduce the amount of memory

taken up on the local system(through stored intelligence) and guarantee that a database or

code is currently supported by Textline(eg. It is likely that Reuters will add or delete specific

indexing codes at times. Thus, a fixed set of codes loaded into an LQP is not necessarily

accurate at a given time.). These factors are far overshadowed by the benefits of establishing

local intelligence. Most importantly, it is very expensive to be connected to a Reuters system.

By bringing relevant information onto the local system, the proper searching format can be

determined while costs are not being accrued. Second, an LQP operates in a preprogrammed

sense, so in order to select databases or indexing codes on line, there must be interaction

between Textline and the LQP.11 Although the new communication server developed by

Francis Gan should enable interaction, it has not been properly tested yet.

I This is the same type of problem encountered in Dataline's Names option.

-42-

5.2.2 The Abstract Local Query

The two key parts of the abstract local query which have to be designed are the column

list and the condition list. The column list should support only items general to any type of

query to a database system, while the condition list must support specific requests(i.e. the

necessary input to the system, like a code in Dataline). Since the constraining part of this

design is the condition list, it should be laid out first.

Textline needs to receive a word/phrase or indexing code in order to have a specific

condition to search on. 12 The condition list has been designed for menu driven system LQPs

to hold this system required input, which basically specifies the current company/topic to

deal with. Thus, the condition list should support the column PHRASE, which specifies what

term(s) to look for based on what has been selected in the column list. The condition list

must also support those items which have substantial value when used in a boolean

combination with the system required term(and can not generally stand alone in the column

list). In the case of Textline, both the indexing codes and the general codes from the full

search facility should be supported. This design will enable a user to specify a term to look

for and directly narrow down the search's range. For example, PHRASE "ALASKA" can be

ANDed with the code for a company, so that articles on companies like Alaska Airlines

would be returned without topics related only to the state, like the Exxon Oil spill(eg. (and (=

phrase "ALASKA") (= companyname "Alaska Airlines"))). 13

The design of the column list must be considered next. The only source of intelligence

not supported in the condition list, the search narrowing databases, can be represented here.

The names of the available databases can displayed by a get-columns request, enabling a user

to make reasonable selections for narrowing down geographical and industry ranges for

12If only databases were selected, Textline would not know which articles from this domain to return.

13It must be noted that the ideas presented here provide just one possible method of attack.

-43-

searching. Using these databases in the column list provides great flexibility in the event that

more than one phrase is desired in a particular query. Assume that two different topics,

cellular radio and the New York Mets, were specified as phrases. Databases related to either

of these phrases could be selected in the column list without adding too much overlap

searching. The slight loss in efficiency is more than compensated for by the ability to make a

single call to Textline for multiple PHRASES within a particular query.

5.2.3 Filtering Textline's Output

Textline's output presents a major problem for the filtering module of an LQP.

Systems like Dataline retrieve records with specific values and their related headings, like

sales of a number of dollars. This type of format is ideal for a filtering program like AWK,

which can search for a specific string of text which is always available under a given menu

option. Textline, however, merely returns the articles which matched the search conditions it

was sent. These articles have no specific format, as what is included is only relative to what

the article is about. Thus, only three options for filtering this output file seem sensible.

The first option involves just returning an entire article to the user. While this

guarantees not missing any relevant information within that specific article, it can be a

burden to a user who is looking for a specific piece of data but matched a large number of

articles. Second, a short summary can be removed from Textline(or generated somehow from

each retrieved article), which would enable the user to quickly determine if the article were

truly of value to him. The last option available is to scan the retrieved articles for an input

string of some sort, though this search would probably be performed better directly by

Textline.

-44-

Chapter 6

Conclusion

6.1 Summary

The importance of integrating multiple, disparate database systems is increasing

rapidly with the growth and globalization of large firms. The CIS/TK system at MIT's Sloan

School seeks to overcome the integration problems by providing a modular framework

suitable for implementing Local Query Processors without making many changes to existing

systems. Thus, one goal for the CISfIK group may be to make the LQP's design simple

enough that a new one could be implemented in a day.

Many of the important LQP issues were discussed by Alec Champlin in the context of

SQL type DBMSs [Champlin 88]. The goal of this thesis has been to extend his findings to a

different type of DBMS format, those using menus. Working with Reuters Dataline and

Textline systems, a theoretical model of an LQP for a menu driven system has been

developed. Many concepts have remained similar to those for an SQL DBMS, though

research has yielded two important features exclusive to menu driven systems. First of all,

there is a necessity to install some degree of intelligence about a DBMS in an LQP in order

to make educated menu selections. This enables the LQP to remove the proper information

from the remote system without doing any filtering or any analyzing of the condition list,

effectively separating a retrieval module and afiltering module. Second, a powerful filtering

program is needed in order to process the data retrieved. AWK, developed at Bell Labs, is a

valuable tool when the output representation of data is known.

There are many types of DBMSs available today, of which menu driven systems are by

far the most used. Thus, the model developed here should serve as a major step towards

reaching the ultimate CIS1TK goal of being able to communicate with ALL DBMSs.

-45-

6.2 Future Work

One major problem encountered in the work on Dataline involves getting interaction

between Dataline and the LQP driving it. In order to determine if a name or code in the

condition list is valid, it has to be tested within Dataline's 'Names' program. The results of

this test, which must be retrieved prior to continuing a query, are currently unaccessible until

the pipe to Reuters is closed. This may be overcome through the LQPs integration with

Francis Gan's communication server. One other possible solution involves teeing the call to

Reuters into two files and closing one of the files after the 'Names' routine, thus making it

readable. This method may be practical for Dataline(since there is only one situation

requiring interaction), but would present trouble with other systems in which more

interaction is necessary. It is not practical to tee a large number of files in order to close the

pipes to them sequentially(as each bit of interaction is needed).

Once the problem with interaction has been sorted out, changes to the existing code

will be necessary. Most importantly, since Dataline works primarily with company codes, the

LQP must be able to test the company names in a query's condition list and convert the valid

ones into codes. Codes must be replaced for valid company names in order to both request

information from Dataline and parse the condition list. Thus, the current implementation of

Dataline's LQP will not function correctly if it is sent company names through a condition

list.

This thesis provides a framework for tackling the problems associated with generating

LQPs for menu driven type databases. The process of extending the model developed in this

thesis can begin with an implementation of Reuters Textline service. The design laid out in

chapter five should act as a foundation for the work, though more specific problems are

certain to become apparent as the implementation is carried out. The concepts in this research

have been developed with an eye towards application to any type of menu driven system,

although the work has generally focused on systems similar to Reuter's Dataline. Therefore,

-46-

Textline, which is of a substantially different format from Dataline, will present its own

unique problems. It is likely that adding any new LQP will present some new types of

problems, though these problems should be able to be dealt with within the framework

established here. More generally, the theories developed in this thesis must be extended to a

wide variety of menu driven systems in order to determine an overall generalization of this

LQP mechanism.

-47-

Chapter 7

Demo Run

>(print-frame 'finsbury)

FINSBURY:
MACHINE-NAME:

(VALUE foreign)
TYPE-OF-DBMS:

(VALUE menu)
LOCAL-DBMS?:

(VALUE NIL)
DATABASE-DIRECTORY:

(DEFAULT IRRELEVANT)
DATABASE:

(DEFAULT datalinedb)
LQP-COMMON-DIRECTORY:

(DEFAULT /usr/cistk/demo/v2/lqp)
(VALUE /USR/CISTK/DEMO/V2/LQP/FINSBURY)

LQP-SPECIFIC-DIRECTORY:
(DEFAULT /usr/cistk/demo/v2/lqp/finsbury)
(VALUE /USR/CISTK/DEMO/V2/LQP/FINSBURY)

COMM-SERVER-DIRECTORY:
(DEFAULT /usr/cistk/demo/v2/lqp/dev)
(VALUE /USR/CISTK/DEMO/V2/LQP/DEV)

COMMUNICATIONS-SCRIPT:
(VALUE communicate)

EFFICIENT-COMM-SCRIPT:
(VALUE irrelevant)

PHONE-NUMBER:
(DEFAULT 92920662)

ACCOUNT:
(DEFAULT c202430)

PASSWORD:
(DEFAULT rna *325250)

METHODS:
(MULTIPLE-VALUE-F T)
(VALUE (SELF-INFO DISPLAY-DATALINE-SELF-INFO)

(GET-TABLES GET-DATALINE-TABLES)
(GET-COLUMNS GET-DATALINE-COLUMNS)
(GET-DATA GET-DATALINE-DATA))

NIL

>(print-frame 'datalinedb)

DATALINEDB:
SUPERIORS:

(MULTIPLE-VALUE-F T)
(VALUE INFORMIX-2C)

INSTANCE-OF:
(MULTIPLE-VALUE-F T)
(VALUE INFORMIX-2C)

DATABASE:
(VALUE dataline)

DATABASE-DIRECTORY:
(VALUE /usr/pagetm/cis)

NIL

>(send-message 'finsbury :self-info)

>Do you want to see a description of the Dataline system? (Y or N)

-48-

REUTERS DATALINE

Reuters' Dataline is a menu driven system which provides information
on a wide range of corporations, concentrating on those in the United
Kingdom. The data available includes what is on typical, condensed
balance sheets, income statements, financing tables and accounting
ratio summaries.

Dataline is a menu-driven database system, so it does not operate with
tables as the standard SQL database would. Currently, the table name
location within the abstract local query call is being called 'data
or 'finsbury, although it does not serve a purpose. Perhaps it will
eventually in distinguishing between Dataline and Textline, for
example.
Hit return to continue.

->(send-message 'finsbury :get-tables)
(("data"))

->(send-message 'finsbury :get-columns)
(("Column name") ("CODE") ("COMPANYNAME") ("YR") ("CURRENCY")
("COUNTRY") ("SALES") ("TOT-SALES") ("EFO") ("TOT-CURR-ASSETS")
("TOT-ASSETS-EMP") ("NET-FIXED-ASSETS") ("TOT-STOCK")
("CURR-LIABILITIES") ("TOT-DEF-LIABILITY") ("CAPITAL-RESERVES")
("ADJ-EARN-SHARE") ("ROSE") ("MIN-INTEREST") ("TOTTAX"))
->(send-message 'finsbury :get-data '(data (code sales) (and (= code "rnitl")
yr 1987))))

Your selection is being formatted for Reuters...
converting to string
converting to string

("rnltl")
("rnltl")
T
0
("rnltl")
NIL
("CODE" "SALES")
"curr-column-list"
(CODE SALES)
"curr-column-list"
(SALES)
"curr-column-list"
NIL

TELENET
617 113E

TERMINAL=

c 202430

202 430 CONNECTED

-49-

>hello rnal32*325250

REUTER TEXTLINE

1. TEXTLINE
Articles for the period 1-1-80 to 19-5-89

2. NEWSLINE
News headlines for the period 13-5-89 to 19-5-89

3. ACCOUNTLINE & DATALINE
Company accounts - published and standardised formats

4. ADDITIONAL SERVICES

5. TEXTLINE INTERNATIONAL LANGUAGE SERVICES

6. BULLETIN
New UK Company Annual Reports Service from Reuter Textline

Enter code number for service required: 3

ACCOUNTLINE Published Formats

1 UK Company Accounts Service

DATALINE Standardised Formats

2 Last five years accounts
3 Internally generated forecast
4 User generated forecast

DATALINE NAMES Company mnemonics

Enter code number required or NAMES: names

COMPANY MNEMONICS LIST

Is the requirement to enter:
1. a company name to find a mnemonic?
2. a company mnemonic to find a name?

Enter code number required: 2

* = Company available for use with DATALINE 2 and 3

Enter characters for company mnemonic: rnltl

Code Company Name Last Accts Count

RNLTL RENAULT (31-12-87) (FRAN

ry

CE)

-50-

ACCOUNTLINE Published Formats

1 UK Company Accounts Service

DATALINE Standardised Formats

2 Last five years accounts
3 Internally generated forecast
4 User generated forecast

DATALINE NAMES Company mnemonics

Enter code number required or NAMES: 2

DATALINE - LAST FIVE YEARS ACCOUNTS

Company required: rnltl

RENAULT
The data is now being collated.

Options available are to display:
1. Income statement
2. Balance sheet
3. Financing table
4. Accounting ratios
5. All four statements

Enter code number required: 1

Is the tabulation to be a:
1. Summary
2. Basic analysis
3. Detailed analysis

Enter code number required: 1

RENAULT RNLTL FRANCE

INCOME STATEMENT Francs (m

Period ending 31-12-83 31-12-84 31-12-85 31-12-86 31-12-87

SALES 101714. 106911. 111382. 134935. 147510.
TRADING PROFIT 434. -11363. -8007. -1237. 5701.

PRE-TAX PROFITS -1674. -12803. -12255. -5210. 3562.
PROFIT AFTER TAX -1576. -12555. -10925. -5858. 3689.
ADJUSTMENTS 227. 166. -28. 176. 433.

EARNED FOR ORDINARY -1803. -12721. -10897. -6034. 3256.

Options available are to display:
1. Income statement
2. Balance sheet
3. Financing table
4. Accounting ratios
5. All four statements

Enter code number required: \

-51-

DATALINE - LAST FIVE YEARS ACCOUNTS

Company required: \

ACCOUNTLINE Published Formats

1 UK Company Accounts Service

DATALINE Standardised Formats

2 Last five years accounts
3 Internally generated forecast
4 User generated forecast

DATALINE NAMES Company mnemonics

Enter code number required or NAMES: \

REUTER TEXTLINE

1. TEXTLINE
Articles for the period 1-1-80 to 19-5-89

2. NEWSLINE
News headlines for the period 13-5-89 to 19-5-89

3. ACCOUNTLINE & DATALINE
Company accounts - published and standardised formats

4. ADDITIONAL SERVICES

5. TEXTLINE INTERNATIONAL LANGUAGE SERVICES

6. BULLETIN
New UK Company Annual Reports Service from Reuter Textline

(AND (= CODE "rnltl") (= YR 1987))
(CODE "rnltl")
(= YR 1987)CODE RNLTL 1987
CODE RNLTL
SALES RNLTL 1987
CODE RNLTL
STATE 1
Yearlist Period ending
-12-87
made match
147510.000000
got here
Result : 0

RNLTL 147510.

RNLTL
147510
((CODE SALES) ("RNLTL" "147510"))

31-12-83 31-12-84 31-12-85 31-12-86 31

-52-

Appendix A

Common LISP Files

A.1 File DATALN.LSP

++++++++++ ++++++++++++++++++++++

; +++++++++++DATALN. LSP+++++++++++++++

;++++++++++++++++++++++++++++++++++++

(defun display-DATALINE-self-info ()
(if (y-or-n-p "Do you want to see a description of the Dataline system?")

(progn (format t "-%

REUTERS DATALINE
---------------- ~%

Reuters' Dataline is a menu driven system which provides information
on a wide range of corporations, concentrating on those in the United
Kingdom. The data available includes what is on typical, condensed
balance sheets, income statements, financing tables and accounting
ratio sunnaries. ~%

Dataline is a menu-driven database system, so it does not operate with
tables as the standard SQL database would. Currently, the table name
location within the abstract local query call is being called 'data
or 'finsbury, although it does not serve a purpose. Perhaps it will
eventually in distinguishing between Dataline and Textline, for
example.~% ")

(format t "Hit return to continue.-%")
(read-char))))

(defun get-DATALINE-tables ()
' (("data")))

(defun get-DATALINE-columns ()
(("Column name") ("CODE") ("COMPANYNAME") ("YR") ("CURRENCY")

("COUNTRY") ("SALES") ("TOT-SALES") ("EFO") ("TOT-CURR-ASSETS")
("TOT-ASSETS-EMP") ("NET-FIXED-ASSETS") ("TOT-STOCK")
("CURR-LIABILITIES") ("TOT-DEF-LIABILITY") ("CAPITAL-RESERVES")
("ADJ-EARN-SHARE") ("ROSE") ("MIN-INTEREST") ("TOTTAX")))

(defun get-DATALINE-data (abstract-local-query)
(format t "Your selection is being formatted for Reuters...~%")
(setq menu-list ' ())
(menu-choice (get-current-object) abstract-local-query))

-53-

A.2 File ABSTQ.LSP

(defun menu-choice (DBMS-obj abstract-local-query)
;;this procedure controls access

(setq code-list '() ;;to Reuters
(setq company-list '())
(let* ((lqpdir (get-object DBMS-obj 'lqp-specific-directory))

(devdir (get-object DBMS-obj 'coam-server-directory))
(script (get-object DBMS-obj 'conmunications-script))
(phone (get-object DBMS-obj 'phone-number))
(account (get-object DBMS-obj 'account))
(passwd (get-object DBMS-obj 'password))
(columns-needed (parse-columns (cadr abstract-local-query)))
(conditions (name-codelists (caddr abstract-local-query))))

(print code-list)
(setq comtest (nstring-downcase (format nil "-A/comNtest" lqpdir)))
(setq communicate (nstring-downcase (format nil "-A/-A" devdir script)))
(setq readfile (nstring-downcase (format nil "-A/readfile" lqpdir)))
(setq tfile (nstring-downcase (format nil "-A/tfile" lqpdir)))
(setq filter (natring-downcase (format nil "-A/filter" lqpdir)))
(setq newtfile (nstring-downcase (format nil "-A/newtfile" lqpdir)))

;; (setq finalfile (nstring-downcase (format nil "-A/finalfile" lqpdir)))
(setq readformat.awk (nstring-downcase (format nil "-A/readformat.awk"

lqpdir)))
(setq awkcall (nstring-downcase (format nil "-A/awkcall" lqpdir)))
(setq cx (nstring-downcase (format nil "-A/cx" lqpdir)))
(setq cxmenu (nstring-downcase (format nil "-A/cxmenu" lqpdir)))
(system (unix-format "rm -A" communicate))

;;clear file of previous routines
(system (unix-format "cat -A > -A" coumtest communicate))

;;dump standard dialup routine
(system (unix-format "chmod +x -A" communicate))

; ;make file executable
(setq no-dup-list '());;return list which has no duplicate codes

;;remove-duplicates doesn't work since names are within " "(need equal)
(print code-list)
(print conditions)
(setq code-list (remove-duplic-names code-list));;all distinct codes
(print code-list);;remove does not work
(setq no-dup-list '());;return list with no duplicate company names
(setq company-list (remove-duplic-names company-list));;distinct comps.
(commun code-list '2 company-list);;send all codes through cx
;;companylist is sent to trip the code '1' out of names routine
(print company-list)
(commun company-list '1 '());;send all companies through cx
(print columns-needed)
(menu-slot (cadr abstract-local-query));;using columns-needed would

;;give strings in capitals--if the elements in search-list
;;were strings, they would be treated as lower case
;;thus, no changing letters for this

(menu-choice-format-call final-list code-list)
(system (unix-format "-A I cu -t -A I tee tfile"

communicate phone));;the call to Reuters
(system (unix-format " rm -A" readfile))

-54-

(system (unix-format "zm 'A" finalfile))
(system "rm finalfile")
(system (unix-format "cat -A I -A > -A" tfile filter newtfile))
(link-parser-to-filter (cadr abstract-local-query)

(parse-conditions (caddr abstract-local-query)))
(system (unix-format "awk -f -A -A" readformat.awk readfile))
(read-values "finalfile" columns-needed)

(defun parse-columns (column-list);;unquoted column will be capitalized
(cond ((null column-list) ;; quoted column remains as given

(system "echo 'no list of columns present' ")
'ZRROR)

((atom column-list)
(if (stringp column-list) ; ;if format of "column" [double quotes]

(list column-list) ;;this prevents error
(progn (system "echo 'converting to string'")

(list (format nil "-'A" column-list)))));;put column in

((listp column-list)
(cond ((equal 1 (length column-list))

(parse-columns (car column-list)))
(t (append (parse-columns (car column-list))

(parse-columns (cdr column-list))))))))

(defun name-codelists (condition-list);;form lists of codes & companies
(cond ((or (equal (car condition-list) 'and)

(equal (car condition-list) "AND")
(equal (car condition-list) 'or)
(equal (car condition-list) "OR"))

(name-codelists (cadr condition-list))
(name-codelists (caddr condition-list)))

((relation-p (car condition-list))
(cond ((equal (second condition-list) 'code)

(setq code-list (cons (third condition-list) code-list)))

((equal (second condition-list) 'companyname)
(setq company-list (cons (third condition-list)

company-list)))

(t)))))

(defun relation-p (relation);;test for a relation
(or
(eq relation '

(eq relation '>)
(eq relation '<)
(eq relation '>=)
(eq relation '<=)
(eq relation '<>)))

-55-

(defun remove-duplic-names (code-or-name-list)
(cond
((null code-or-name-list)
no-dup-list)
(t (setq flag 0)

(print flag)
(let ((test (car code-or-name-list)))

(defun check-rest-of-list (name rest-of-list)
(cond ((null rest-of-list)

(if (eq flag 0)
(setq no-dup-list (cons name no-dup-list))))

(t (if (equal name (car rest-of-list))
(setq flag 1))

(check-rest-of-list name (cdr rest-of-list)))))
(check-rest-of-list test (cdr code-or-name-list)))

(remove-duplic-names (cdr code-or-name-list)))))

(defun commun (send-list num next-list)
;;send codes and names through cx to Dataline
(cond
((null send-list)
)
((null (cdr send-list))
(if (null next-list)

(system (unix-format "-A -A ~A -A" cx num
(string (car send-list)) "yes"))

(system (unix-format "-A -A -A -A" cx num
(string (car send-list)) "no")))

(commun (cdr send-list) num next-list))
(t (system (unix-format "-A -A -A -A" cx num

(string (car send-list)) "no"))
(commun (cdr send-list) num next-list))))

(defun menu-choice-format (best-list-for-menu code first-pass?)
(cond ((null (car best-list-for-menu))

)
(t (system (unix-format "-A -A -A -A -A -A" cxmenu

(string first-pass?) (string code) "true"
(caar best-list-for-menu) (cadar best-list-for-menu)))

(setq first-pass? '"no")
(menu-choice-format (cdr best-list-for-menu) code first-pass?))))

(defun menu-choice-format-call (best-list code-list)
(cond ((null (car code-list))

(system (unix-format "-A -A -A -A" cxmenu "false" 0 0)))
(t (menu-choice-format best-list (car code-list) '"first")

(menu-choice-format-call best-list (cdr code-list)))))

-56-

A.3 File DOIT.LSP

(defun unix-format(str &rest args)
;;enables passing values from lisp to shell

(setq args (mapcar #' (lambda (x) (format nil "~.C~A~C" #\" x #\))
args))

(apply #'format (cons nil (cons str args))))

(setq search-list '(((code country currency periodending sales companyname
efo yr)

(tot-def-liability) (adj-earn-share tottax))
((companyname code net-fixed-assets yr tot-assets-emp currency

country capital-reserves)
(curr-liabilities) (tot-curr-assets tot-stock))

((yr code companyname currency country) () ())
((rose code country companyname) ()())))

;;this is the prototype list set up to get the
;; correct number code for Dataline

(defun menu-slot (column-list) ; jump through column-list to get most
(setq elem-list '() ;effective calls in Reuters Dataline menu
(print "curr-column-list")
(print column-list)
(setq return-list '())
(setq zap-same-column '()
(setq found 0)
(setq option-num 0)
(setq tab-num 0)
(cond ((null column-list);;when done

(setq final-list (pick-best (remove-extras menu-list
(which-called-max menu-list)))))

(t (setq some-list (find-options (car column-list) search-list))
(if (not (null some-list))

(setq menu-list (cons some-list menu-list)))
(menu-slot (cdr column-list)))))

(defun find-options (column-name sch-lst);;find which option in Dataline
(setq tab-num 0)
(setq option (car sch-lst))
(setq option-num (+ 1 option-num))
(cond ((null option)

return-list)
(t (find-tabs column-name option)

(if (not (null elem-list))
(progn

(setq return-list (cons elem-list return-list))
(setq elem-list '()

(setq found 0)))
(find-options column-name (cdr sch-lst)))))

-57-

(defun find-tabs (column-name option);;find correct tabulation
(setq tab-type (car option))
(setq tab-num (+ 1 tab-num))
(cond ((null tab-type)

)
(t (element? column-name tab-type)

(if (equal found 0)
(find-tabs column-name (cdr option))))))

(defun element? (column-name tab-type) ; ; sees if column-name is in
(cond ((null tab-type) ;; this tabulation

)
(t (if (equal (car tab-type) column-name) ; ; ; found

(progn
(setq elem-list (list option-num tab-num))

;;mark position
(setq found 1)) ;;;flag set

(element? column-name (cdr tab-type))))));;try next

(defun pick-best (m-slot-list)
(setq crunched-list '())
(setq do-list m-slot-list)
(do ((counter 1)

(max 0))
((> counter 4) crunched-list)
(cond ((null do-list)

(if (> max 0)
(setq crunched-list (cons (list counter max) crunched-list)))

(setq counter (+ counter 1))
(setq do-list m-slot-list)
(setq max 0))

((equal (caar do-list) counter)
(if (> (cadar do-list) max)

(setq max (cadar do-list)))
(setq do-list (cdr do-list)))
(t (setq do-list (cdr do-list))))))

(defun which-called-max (bulk-menu-list);;determine option called most
(setq do-list bulk-menu-list)
(setq running-tot 0)
(do ((counter 1)

(max 1)
(tot 0))

((> counter 4) max)
(cond ((null do-list)

(if (> running-tot tot)
(progn

(setq tot running-tot)
(setq max counter)))

(setq running-tot 0)
(setq do-list bulk-menu-list)
(setq counter (+ counter 1)))
(t (setq running-tot (scan-list (car do-list) counter

-58-

running-tot))
(setq do-list (cdr do-list))))))

(defun scan-list (find-max-list counter running-tot)
(cond ((null find-max-list)

running-tot)
(t (if (equal (caar find-max-list) counter)

(setq running-tot (+ running-tot 1)))
(scan-list (cdr find-max-list) counter running-tot))))

(defun remove-extras (extra-calls-list max) ;sets up for extra-crunch
(setq work-list (car extra-calls-list)) ;one column-list at a time
(cond ((null extra-calls-list) ;procedure eliminates duplicate calls

zap-same-column) ;for a single column name (in most cases)
(t (if (max-in-list? work-list max)

(extra-crunch work-list max)
(setq zap-same-column (append work-list zap-same-column)))

(remove-extras (cdr extra-calls-list) max))))

(defun max-in-list? (test-list max) ;Find if the column-list has the max #
(cond ((null test-list)

nil) ; Not there, return false
(t (if (equal (caar test-list) max)

t ;If so, return true
(max-in-list? (cdr test-list) max)))))

(defun extra-crunch (zap-list max) ;routine to crunch all in column list
(cond ((null zap-list)

zap-same-column)
(t (if(equal (caar zap-list) max) ;which aren't of maximum value

(setq zap-same-column (cons (car zap-list) zap-same-column)))
(extra-crunch (cdr zap-list) max)))) ;check next element

-59-

A.4 File PARSER.LSP

;This file will contain the routines for parsing the condition list
; so that the proper format is sent to the awk filter file for analysis.
; It will establish lists with years specified, along with code names
; to be sent. Columns will also be sent to awk, but perhaps from routine
; menu-choice.

(defun parse-conditions (condition-list)
(print condition-list)
(cond ((equal condition-list 'ERROR)

'ERROR)
((null condition-list)

condition-list)
((or (equal (car condition-list) 'and)

(equal (car condition-list) "AND")
(equal (car condition-list) "and")
(equal (car condition-list) "And"))

(link-and (parse-conditions (cadr condition-list))
(parse-conditions (caddr condition-list))))

((or (equal (car condition-list) 'or)
(equal (car condition-list) "OR")
(equal (car condition-list) "or")
(equal (car condition-list) "Or"))

(link-or (parse-conditions (cadr condition-list))
(parse-conditions (caddr condition-list))))

((equal (car condition-list) '=)
condition-list)

((not (equal (car condition-list) '=))
condition-list)))

;; next version(t 'error)))

(defun link-and (list-one list-two)
(cond
((or (equal list-one 'ERROR)

(equal list-two 'ERROR))
'ERROR)
((or (equal list-one '() (equal list-two '())

;;either list nil, return nil
'())
((and (equal (car list-one) ') (equal (car list-two) '=))
(cond;;rework this
((and (not (null (member (cadr list-one) '(code company-name))))

(not (null (member (cadr list-two) '(code company-name)))))
;;test if names are different
;; if same company, proceed
(if (equal (caddr list-one) (caddr list-two));;same name, return one

(list (list (list (caddr list-one))))

-60-

(progn
(format t "You can not 'and' two different companies-%")
'ERROR)))

((and (not (null (member (cadr list-one) '(code company-name))))
(equal (cadr list-two) 'yr))

;;test for bad name
(list (list (list (caddr list-one)) (caddr list-two))))

((and (equal (cadr list-one) 'yr)
(not (null (member (cadr list-two) '(code company-name)))))

;;test for bad name
(list (list (list (caddr list-two)) (caddr list-one))))

((and (equal (cadr list-one) 'yr)
(equal (cadr list-two) 'yr))

;;test later to see if all lists have codes!!!!?
(if (equal (caddr list-one) (caddr list-two))

(list (list (list) (caddr list-one)))
(progn

(format t "You can not 'and' 2 different years~%")
'ERROR)))

(t (format t "Use only columns 'code', 'company-name' and 'yr'.~'%")
'ERROR)));;Make code more rigorous to avoid future problems

((and (not (equal (car list-one) '=)) (equal (car list-two) '=))
;;first is compound list, second is not
(cond
((or (equal (cadr list-two) 'code)

(equal (cadr list-two) 'company-name))

(if (null (caar list-one));;want to 'and' code with just yearlist
(list (append (list (list (caddr list-two))) (cdar list-one)))

(progn
(if (equal (look-for-code list-one (caddr list-two)) 'notvalid)

;;routine to test if all codes in list one
;;are same as that in list-two--if false,error
(progn
(format t "Can not 'and' another company here.. .use 'or'~%")
'ERROR)

list-one))))
((equal (cadr list-two) 'yr)
(if (null (caar list-one));;only years in compound list--yr && yr

(if (member (caddr list-two) (cdar list-one)); same yr in both?
(list (list (list) (caddr list-two)));yes-return list of yr

'()) ;;no, return nil

;;make sure year is in each sublist of list one
(progn
(setq return-list '())
(attach-year list-one (caddr list-two))
return-list)))

(t (format t "Codes available are 'code', 'company-name' and 'yr'-%")
'ERROR)));;rigorous code

((and (equal (car list-one) '=) (not (equal (car list-two) '=)))
(cond
((or (equal (cadr list-one) 'code)

(equal (cadr list-one) 'company-name))
(if (null (caar list-two));;want to 'and' code with yearlist

-61-

(list (append (list (list (caddr list-one))) (cdar list-two)))
(progn

(if (equal (look-for-code list-two (caddr list-one)) 'notvalid)
,;see if all codes in list2 are same as new code,f-err
(progn
(format t "Can not 'and' another company here..use 'or'-%")
'ERROR)

list-two)))).
((equal (cadr list-one) 'yr);;just a year
(if (null (caar list-two));;just yearlist

(if (member (caddr list-one) (cdar list-two));yr in yearlist??
(list (list (list) (caddr list-one)));yes-return list of yr

'());;no, return nil
;;make sure year is in each sublist of list two
(progn

(setq return-list '())
(attach-year list-two (caddr list-one))
return-list)))

(t (format t "Available columns -> 'code', 'companyname' and 'yr' ~%")
'ERROR)));;rigorous code

((and (not (equal (car list-one) '=)) (not (equal (car list-two) '=)))
;;test if any 2 names in either list are different---then error
;;if names are the same, perform logical and on their yearlists
(if (or (null (caar list-one));;if either is list of just years, error

(null (caar list-two)))
(progn

(format t "You can not 'and' two lists if any has just years~%")
'ERROR)

(progn
(if (equal (test-double-compounds list-one list-two) 'notvalid)

(progn
(format t "Can not 'and' these two lists here.. .use 'or'~%")
'ERROR)

;;;perform and on the yearlists

(defun look-for-code (which-list which-code)
(cond ;;this procedure tests for the occurence of any code other than

;;the specified one(in the current working list for return)
;;if there is, it returns "notvalid", otherwise "valid"

((null which-list)
'valid)
(t ;;Only one code per sublist, so recursing it is not necessary
(if (not (equal (caaar which-list) which-code))

'notvalid
(look-for-code (cdr which-list) which-code)))))

(defun test-double-compounds (list-one list-two)
(cond ;;this recurses through list-two, as look-for-code takes care of
((null list-two) ;; list-one
'valid) ;;did not find two unequal codes in lists
(t (if (equal (look-for-code list-one (caaar list-two)) 'notvalid)

'notvalid ;;most probable---found unequal codes in lists

-62-

(test-double-compounds list-one (cdr list-two))))))

(defun attach-year (which-list year-to-attach);;AND year onto compound list
(cond
((null which-list)
return-list)
(t (if (not (member year-to-attach (cdar which-list)));yr not in sublist

(setq return-list (cons (append (list (caar which-list)) (cons
year-to-attach (cdar which-list))) return-list))

;;attach on the newly binded year
(setq return-list (cons (car which-list) return-list)))

;;do not bind the year, it's already there
(attach-year (cdr which-list) year-to-attach))))

;;this used to
(defun link-or

(cond
((or (equal

(equal
'ERROR)

((and (null
list-two)

((and (not
list-one)
((and (null

' 0)

be link-and, shall be turned into link-or
(list-one list-two);take 2 sublists & join by boolean or

list-one 'ERROR)
list-two 'ERROR))

list-one) (not (null list-two)))

(null list-one)) (null list-two))

list-one) (null list-two))

(cond
((and (equal (car list-one) '=) (equal (car list-two) '=))

;;both are smallest
(cond ;units sent from original cond. list-eg.(= code "hond")
((and (not (null (member (cadr list-one) '(code company-name))))

(not (null (member (cadr list-two) '(code company-name)))))
;; both are codes or company-names
;test for validity of names of companies
(if (equal (caddr list-one) (caddr list-two));repetition of company

(list (list (list (caddr list-one))));;return only one
(list (list (list (caddr list-one)))

(list (list (caddr list-two))))))
;;2 distinct codes
;;returned in form ((("hond")) (("renlt")))

((and (not (null (member (cadr list-one) '(code company-name))))
(equal (cadr list-two) 'yr));2nd list is a year

(format t "you can not 'or' a year with a code~%")

-63-

'ERROR)

((and (equal (cadr list-one) 'yr)
(not (null (member (cadr list-two) '(code company-name)))))

(format t "you can not 'or' a year with a code-%")
'ERROR)

((and (equal (cadr list-one) 'yr) (equal (cadr list-two) 'yr))
(if (equal (caddr list-one) (caddr list-two))

(list (list (list) (caddr list-one)))
(list (list (list) (caddr list-one)- (caddr list-two)))))

;;list has only years, no code---look back at 'and' code due to this
(t (format t "Only columns available are 'code'

'company-name' and 'yr'~%")
'ERROR)));;more rigorous code

((and (not (equal (car list-one) '=)) (equal (car list-two) '))
;;list-one is a compound list, list 2 is in original format
(cond
((null (caar list-one));;a list of only years or'ed
(if (or (equal (cadr list-two) 'code);try to 'or' code with yrlist

(equal (cadr list-two) 'companyname));;return code in list
(progn

(format t "Can not 'or' a yearlist with a code[use and]-%")
'ERROR)

(if (member (caddr list-two) (cdar list-one))
list-one

(list (append (list '() (cons (caddr list-two)
(cdar list-one)))))))

;;this establishes a new list of just years
((or (equal (cadr list-two) 'code) ;;'or' a code with compound list

(equal (cadr list-two) 'company-name))
(union list-one (list (list (list (caddr list-two))))));'OR' code

(t ;;try to 'or' a year with list which has'codes
(format t "you can not 'or' a year in here--try 'and'-%")

'ERROR)))
((and (equal (car list-one) '=) (not (equal (car list-two) ')))
;;list-two is a compound list, list 1 is in original format
(cond
((null (caar list-two));;just compound yearlist--no code associated

(if (or (equal (cadr list-one) 'code)
(equal (cadr list-one)'company-name))

(progn
(format t "Can not 'or' a code with a yearlist[use and]~%")
'ERROR)

(if (member (caddr list-one) (cdar list-two))
list-two

(list (append (list '() (cons (caddr list-one)
(cdar list-two)))))))

((or (equal (cadr list-one) 'code);;'or' compound list with code
(equal (cadr list-one) 'company-name))

(union list-two (list (list (list (caddr list-one))))));'OR' code
(t (format t "you can not 'or' a year in here--try 'and'-%")

'ERROR)))

-64-

((and (not (equal (car list-one) '=)) (not (equal (car list-two) ')))
;;both lists are compound
(cond ((and (null (caar list-one));;both are yrlists, so perform 'or'

. (null (caar list-two)))
(return-one-year-list (cdar list-one) (cdar list-two)))

((or (null (caar list-one));;only one is yearlist, so error
(null (caar list-two)));;***Should this be so?????

(format t "You can not or a compound list of just years~%")
'ERROR)
(t (union list-one list-two))))))));;neither is a yearlist

(defun return-one-year-list(list-one list-two)
(cond ((null list-two)

(list (cons '() list-one)))
(t (if (not (member (car list-two) list-one))

(setq list-one (cons (car list-two) list-one)))
(return-one-year-list list-one (cdr list-two)))))

-65-

A.5 File LNKPARSAWK.LSP

;;This program will contain the necessary call to provide the interface
;; between the condition parser and the filter written in awk.

(defun link-parser-to-filter (column-list parsed-list)

(if (equal (car parsed-list) '=);;takes care of parsing for case
;;with no boolean operator

(if (not (null (member (cadr parsed-list) '(code companyname))))
(setq parsed-list (list (list (list (caddr parsed-list)))))

(progn
(format t "You must use only code or companyname")
(break)
'ERROR)))

(print parsed-list)
(cond

((null parsed-list)
(system (unix-format "echo EOF >> -A" readfile))
)

;;This sends a string of the column lists, the company code
;; and a string of the yearlist to shell file awkcall to specify
;; the filtering terms

(t
(system (unix-format "echo New company >> -A" readfile))
(loop-through-columns column-list parsed-list)
(link-parser-to-filter column-list (cdr parsed-list)))))

(defun loop-through-columns (column-list parsed-list) ; ; sequentially
;; provide columns

(cond
((null column-list)
) ;; ; sends shell program awkcall proper values

(t (system (unix-format "echo Column >> -A" readfile))
(system (unix-format "-A -A -A -A" awkcall

(string (car column-list))
(string (caaar parsed-list)) (form-string

(cdar parsed-list))))
(loop-through-columns (cdr column-list) parsed-list))))

(defun form-string (yearlist) ;;This will turn a company's yearlist and
;;column list into a string for easier processing in shell & AWK

(cond
((null (cdr yearlist))
(format nil "-A" (car yearlist)))
(t (format nil "-A -A" (car yearlist) (form-string (cdr yearlist))))))

-66-

A.6 File READER.LSP

;;this program will perform the reading of values from readfile
;; back into the form needed by the GQP

(defun read-values (file columns-needed)
(if (not (probe-file file))

(format t "file does not exist, so results can not be read-%")
(progn

(setq tmp '()
(setq info ' ()
(with-open-file (data file)

(loop (let ((line (read data nil 'EON)))
(cond ((equal line 'EOF)

(return (cons columns-needed
(reverse info))))

((equal line 'blank)
(setq info (cons (reverse tmp) info))
(setq tmp '0))

(t (print line)
(setq tmp (cons (format nil "-A" line)

tmp))))))))))

-67-

A.7 File LOADFILES.LSP

;This is the file which is called to load all the other files
; necessary for the DATALINE LQP

(if (not (probe-file "/usr/cistk/demo/v2/lqp/finsbury/abstq.lsp"))
(format t "/usr/cistk/demo/v2/lqp/finsbury/ABSTQ.LSP is missing!! ~%"))

(if (not (probe-file "/usr/cistk/demo/v2/lqp/finsbury/doit.lsp"))
(format t "/usr/cistk/demo/v2/lqp/finsbury/DOIT.LSP is missing!!!! ~%"))

(if (not (probe-file "/usr/cistk/demo/v2/lqp/finsbury/parser.lsp"))
(format t "/usr/cistk/demo/v2/lqp/finsbury/PARSER.LSP is missing!!!! ~%"))

(if (not (probe-file "/usr/cistk/demo/v2/lqp/finsbury/dataln.lsp"))
(format t "/usr/cistk/demo/v2/lqp/finsbury/DATALN. LSP is missing! !! ! ~%"))

(if (not (probe-file "/usr/cistk/demo/v2/lqp/finsbury/lnkparsawk.lsp"))
(format t "/usr/cistk/demo/v2/lqp/finsbury/LNKPARSAWK. LSP is

missing!!!! ~%"))

(if (not (probe-file "/usr/cistk/demo/v2/lqp/finsbury/reader. lsp"))
(format t "/usr/cistk/demo/v2/lqp/finsbury/READER.LSP is missing!!!! ~%"))

(load "/usr/cistk/demo/v2/lqp/finsbury/abstq.lsp")
(load "/usr/cistk/demo/v2/lqp/finsbury/doit.lsp")
(load "/usr/cistk/demo/v2/lqp/finsbury/parser.lsp")
(load "/usr/cistk/demo/v2/lqp/finsbury/dataln.lsp")
(load "/usr/cistk/demo/v2/lqp/finsbury/lnkparsawk.lsp")
(load "/usr/cistk/demo/v2/lqp/finsbury/reader.lsp")

;system can then be called with just get-DATALINE-data

A.8 File LOADDEMO.LSP

(load "/usr/cistk/demo/v2/cis-tk")
(load "/usr/cistk/demo/v2/lqp/finsbury/loadfiles.lsp")

;;(put-object 'finsbury 'lqp-specific-directory '/usr/cistk/hgerber)
;;(put-object 'finsbury 'con-server-directory '/usr/cistk/hgerber)
;; (put-object 'finsbury 'lqp-common-directory '/usr/cistk/hgerber)

(put-object 'finsbury 'lqp-specific-directory
'/usr/cistk/demo/v2/lqp/finsbury)

(put-object 'finsbury 'comm-server-directory
'/usr/cistk/demo/v2/lqp/dev)

(put-object 'finsbury 'lqp-comnon-directory
'/usr/cistk/demo/v2/lqp/finsbury)

-68-

Appendix B

UNIX Script Files

B.1 File COMMTEST

sleep 20
echo ""

sleep 2
echo ""

sleep 2
echo ""

sleep 2
echo "1c 202430\r\c" #account should eventually be passed as
sleep 5 # parameter $1
echo "\r\c"
sleep 5
echo "hello rnal32*325250\r\c" #password should be passed as $2
echo "\r\c"
sleep 10
echo "3\r\c"
sleep 8

B.2 File CX

DATALINEDIR=/usr/cistk/demo/v2/lqp/dev ## path .name independency

echo echo ' "'names' \\' r' \\' c'"' >> $DATALINEDIR/conuunicate
echo -"sleep 6" >> $DATALINEDIR/comnunicate
echo echo '"'$1' \\'r' \\'c' "' >> $DATALINEDIR/communicate
echo "sleep 5" >> $DATALINEDIR/conummunicate
echo echo ' "'$2' \\'r' \\'c'"' >> $DATALINKEDIR/communicate
echo "sleep 10" >> $DATALINEDIR/communicate
echo echo \' '\\\\'\' '"\\r\\c"' >> $DATALINEDIR/communicate
first \ guards first quote, then quotes send 2 \'s
another quote is guarded, then regular \r\c is sent
echo "sleep 7" >> $DATALINEDIR/communicate
if test $3 = "yes"

then
echo echo '"2\\r\\c"' >> $DATALINEDIR/communicate
echo "sleep 5" >> $DATALINEDIR/communicate

-69-

B.3 File CXMENU

path name -dependency

DATALINEDIR=/usr/cistk/demo/v2/lqp/dev

if test "$1" = first
then

echo echo ' "'$2' \\'r'\\'c' "' >> $DATALINEDIR/communicate
echo "sleep 8" >> $DATALINEDIR/communicate

l

if $3 = "true"
then

echo echo ' "'$4'\\'r'\\'c' "' >> $DATALINEDIR/communicate
echo "sleep 5" >> $DATALINEDIR/communicate
echo echo '"'$5' \\' r' \\' c'"' >> $DATALINEDIR/commaunicate
echo "sleep 25" >> $DATALINEDIR/communicate
echo echo \' '\\\\'\' ' "\\r\\c"' >> $DATALINEDIR/communicate
echo "sleep 7" >> $DATALINEDIR/communicate

else
echo echo \' '\\\\'\'' "\\r\\c"' >> $DATALINEDIR/communicate
echo "sleep 4" >> $DATALINEDIR/communicate
echo echo \''\\\\'\''"\\r\\c"' >> $DATALINEDIR/communicate
echo "sleep 4" >> $DATALINEDIR/communicate
echo echo \''\\\\'\''"\\r\\c"' >> $DATALINEDIR/communicate
echo "sleep 4" >> $DATALINEDIR/communicate
echo echo \''\\\\'\''"\\r\\c"' >> $DATALINEDIR/communicate
echo echo ~. >> $DATALINEDIR/communicate

fi

-70-

B.4 File AWKCALL

This shell file links the conditions parser to the filter.
It is called awkcall, as the filter it calls is written in awk.
$1 is the column list string
$2 is the company code string
$3 is the year list string

for path name independency

DATALINEDIR=/usr/cistk/demo/v2/lqp/finsbury

temp='echo $1 1 tr [a-z] (A-Z]'
#turn column into all capital letters

COL='awk '$1 ~ /^'"$temp"'/{tot column = "";
take columns 2->NF as column name

for (loop = 2; loop < NF; loop++)
tot column = tot column $loop "

totcolumn = totcolumn $loop;
#do not want extra space

print totcolumn;)' column-search'
#print sets COL

COMP='echo $2 | tr [a-z] [A-Z]'
#turn company name into all capital letters

nawk -f $DATALINEDIR/filter2.nawk -v YEAR="$3" COMPANY="$COMP"
COLUMN=" $COL " $DATALINEDIR/newt file

##File newtfile must be the version which is filtered free of AM
##This is accomplished by form---- cat tfile I filter > newtfile
##Filter is the file in this directory

-71-

Appendix C

AWK Files

C.1 File FILTER2.NAWK

Use nawk to run this awk program
3 variables are expected from the call to awk
YEAR : string of years requested
COMPANY a code for a company (usually less than 4 char.)
COLUMN column name of the information you are looking for.
(This file is called one time for each 3 variable combination)

STATE VARIABLES :
STATE : 0 -> ignore input, wait for 80 '-' . Once you get it test

company code. If interredsting record set state to 2
STATE : 1 -> I am in a relevant record waiting for the period line
when I get this line I keep it and switch to state 2
STATE : 2 -> I am in a relevant record waiting for the line
the field I am looking for
INTERNAL VARIABLES :
YEARLIST This is the line for the years to select
a particular item
COLUMN1 Pattern to test the column name.
Remark : The input file lets control-M appear.

To suppress these, pass through shell file filter
(sed type commands)

FUNCTION LIBRARY .

getvalue : Selector function-look for year y in array y_arr
and then return the corresponding value from v arr.

function getvalue (y, y_array, varray)

y specific year you are looking for.
y_array year list
varray value list
(if (y != "NIL")(

2 cases--if y = "NIL" return all years, else those asked.
for (loop = 1; loop < length(y); loop = loop + 3)
#loop through all years
#needed--only last 2 digits to represent each year (eg. "86 87")

(FLAG = 0
for (i in y_array)

#go through all years available-1 year could have
#two period endings

if (match(y_array [i], (substr(y, loop, 2))))#found year
{ printf ("%f\n", v_array [i]);
print "19" (substr(y, loop, 2)), varray[i] >>

-72-

(DATALINEDIR "readfile");
FLAG = 1;
printf ("got here\n")

if (FLAG == 0) {
The proposed date is not in the date array

printf ("Error 101: Unable to get value-bad year\n");
print (substr(y, loop, 2)), 0 >> (DATALINEDIR "readfile");

} #print 0 value for bad yr
}; # for end

return;
)#matches y!= "NIL"
else (#return all years

for (i in yarray)
#put last 2 digits of year & value in readfile

print substr(y_array[i],7), varray[i] >>
(DATALINEDIR "readfile");

end of getvalue
#
PROLOGUE
#
BEGIN {

DATALINEDIR = "/usr/cistk/demo/v2/lqp/finsbury/";
printf("%s %s %s\n",COLUMN, COMPANY, YEAR)
Defensive programming
if (YEAR = "") {

YEAR = "NIL");
if ((COLUMN == "") || (COMPANY == ""))
{ #printf("%s %s %s\n",COLUMN, COMPANY, YEAR)
printf("Error: must define company, column and year!\n");

exit 1;
};
Initialization for variables.
gsub (/19/, "", YEAR)
COLUMN1 = COLUMN "[\\ \\t]+[0-9\\.\\-\\+N*]";

#Added N condition 4 N/A
#in case of new firm/little info available
#star for missing period ending
#also took out "^"II at beginning since field may be
#indented in output from Reuters

STATE = 0;
} # end of begin

#
MAIN LOOP
#
/^------------------------------------/ (

Found a record to start with.
SKIP LINE TO GET COMPANY NAME.
getline;
GET THE CURRENT COMPANY CODE
#2 spaces separate fields properly
FS = " []+";#Field Separator is minimum of 2 spaces
printf ("CODE %s\n", $2);
CODE = $2;
COMPNAME = $1;

-73-

COUNTRY = $3;
TEST IF PROPER COMPANY
getline; # Skip the next line--> it's 80 '-'
if (CODE != COMPANY)
{ # ASSUME REST OF RECORD IS GARBAGE

STATE = 0
next;

if (COLUMN == "CODE") (
print CODE >> (DATALINEDIR "readfile");
exit)

if (COLUMN = "COMPANY NAME") {
print COMPNAME >> (DATALINEDIR "readfile");
exit)

if (COLUMN == "COUNTRY") {
print COUNTRY >> (DATALINEDIR "readfile");
exit)

WE GET A POSSIBLE RECORD FOR OUR SEARCH
STATE = 1;
getline;
if (COLUMN = "CURRENCY")

if ($1 != "ACCOUNTING RATIOS") {
#currency not in accounting

print $3 >> (DATALINEDIR "readfile");#Not $2?
exit)#May be error here

printf ("STATE %d\n", STATE);
) # end of pattern

$0 /APeriod ending/ && (STATE == 1) (
#took A out of beginning of pattern
Get the year list for this record.
YEARLIST = $0;
printf ("Yearlist %s\n",YEARLIST)
STATE = 2;
) # end of pattern

($0 - COLUMN1) && (STATE = 2) {
printf ("made match\n");
I am on the right line. I have to get the right
year now. Create the arrays and call getvalue.
gsub (/Period ending/, "", YEARLIST);
split (YEARLIST , y_arr, " ") ;
#form yarr from spaces in YEARL.

VALUELIST = $0;
gsub (COLUMN, "", VALUELIST);
split (VALUELIST, varr, " ");
printf ("Result : %s\n", getvalue(YEAR, y_arr, varr));
exit;
} # end of pattern
H A

-74-

C.2 File READFORMAT.AWK

This file formats the data in "READFILE", which is output by filter2.nawk
(and has all relevant values to be returned), so that the information
can be read back into lisp in the exact format necessary for the GQP.

PROLOGUE #

BEGIN (
DATALINEDIR = "/usr/cistk/demo/v2/lqp/finsbury/";
CURRENT SLOT = 1;
NUMBER OFYEARS = 0;
TOTAL_NUMBER OFYEARS = 0;

#end of BEGIN

MAIN LOOP

$1 /A[A-Za-z]+/(#match a pattern of text

if ((NUMBEROFYEARS > 0) && (TOTALNUMBEROFYEARS= 0))
TOTAL_NUMBER_OF_YEARS = NUMBER OFYEARS;

NUMBER OF YEARS = 0;

if (($0 ~ /New company/) || ($0 /EO/)) {
if (CURRENTSLOT != 1) { #not first code used -- must process

counter = 0; #keep track of how many years returned
while (counter < TOTALNUMBER_OF_YEARS) {

for (loop = 1; loop < CURRENT_SLOT; loop++) {
if (RETURNARRAY[loop] !~ /([0-9]+IN\/A)/)(#number

RETURNSTRING = RETURNSTRING " " RETURNARRAY loop];
}

else {
RETURN STRING = RETURN STRING" "RETURNARRAY[loop+counter];
loop = loop + TOTAL_NUMBER OF YEARS - 1;

);

counter = counter + 1;
print RETURNSTRING;
print RETURNSTRING >> (DATALINEDIR "finalfile");
print "blank" >> (DATALINEDIR "finalfile");
RETURN STRING = "'";

for (i=1; i <= CURRENTSLOT; i++) #this is not working????

-75-

delete RETURNARRAY[i]; #clear array for new company
CURRENTSLOT = 1;
TOTAL NUMBER_OF_YEARS = 0;
})

}

else {
if ($0 ~ /Column/) {

next;

else{
RETURNARRAY[CURRENTSLOT] = $0;
CURRENTSLOT = CURRENTSLOT + 1;
next;

#match number dependent pattern(check \-)

RETURN ARRAY [CURRENTSLOT] = $NF ;
CURRENTSLOT = CURRENTSLOT + 1;

#add value in field 2(last field) to array for return
NUMBER OFYEARS = NUMBEROF YEARS + 1;

$1 ~ /^[0-9*]+/(

-76-

Appendix D

Other Files Used

D.1 File COLUMN-SEARCH

The term in column 1 matches the exact representation of the column
in Dataline(which is stored in column 2).

PERIODENDING
CODE
COMPANYNAME
YR
CURRENCY
COUNTRY
SALES
TOT-SALES
EFO
TOT-CURR-ASSETS
TOT-ASSETS-EMP
NET-FIXED-ASSETS
TOT-STOCK
CURR-LIABILITIES
TOT-DEF-LIABILITY
OTHER-LOANS
CAPITAL-RESERVES
ADJ-EARN-SHARE
ROSE
MIN-INTEREST
TOTTAX

Period ending
CODE
COMPANY NAME
YR
CURRENCY
COUNTRY
SALES
TOTAL SALES
EARNED FOR ORDINARY
TOTAL CURRENT ASSETS
TOTAL ASSETS EMPLOYED
NET FIXED ASSETS
TOTAL STOCK + WORK IN PROGRESS
CURRENT LIABILITIES
TOTAL DEFERRED LIABILITIES
OTHER LOANS
CAPITAL AND RESERVES
ADJ.EARNINGS PER SHARE
RETURN ON SHAREHOLDERS EQUITY
MINORITY INTERESTS
TOTAL TAXATION

-77-

D.2 File FILTER

sed s/\//g

D.3 File READFILE

The flags in this file are for the benefit of file RzADFORMAT.AWK.
They serve as patterns which readformat.awk has been programmed
to look for. A "New company" will be flagged whenever output is
related to a new code which was input. "Columns" are flagged
within any company' s output section wherever a new column' s
representation is to begin. "EOF" marks the end of the data.

These flags are put into this file within function
link-parser-to-filter in lnkparsawk.lsp.

Request in this example is for columns country, code and sales
for the Wellcome Foundation, without any specified year.

New company
Column
U.K.
Column
WELCOM
Column
19** N/A
1986 1005400.
1987 1132400.
1988 1250500.
19** N/A
New company
EOF

**Flag a new company
**Flag a new column

**Flag a new column

**Flag a new column

**New company?
**No, end.

-78-

References

[Cardenas 89]

[Champlin 88]

[Gan 89]

[Murdick 71]

[Radford 73]

[Wang 88]

[Winston 84]

Cardenas, Alfonso F.
-Data Base Management Systems, 2nd Ed.
Wm. C. Brown Publishers, 1989.

Champlin, Alec R.
Interfacing Multiple Remote Databases in an Object-Oriented Framework.
May, 1988.

Gan, Francis C.K.
An Architecture Design and Implementation of a Communication Server

to Access Disparate Databases.
May, 1989.

Murdick, Robert G. and Ross, Joel E.
Information Systems for Modern Management.
Prentice-Hall, Inc., 1971.

Radford, K.J.
Information Systems in Management.
Reston Publishing Company, Inc., 1973.

Wang, Richard and Madnick, Stuart.
Evolution Towards Strategic Applications of Databases Through

Composite Information Systems.
Connectivity Among Information Systems, 1988.

Winston, P.H. and Hom, K.P.H.
LISP.
,1984.

