
Melody Retrieval On The Web

by

Wei Chai

B.S. Computer Science, Peking University,
M.S. Computer Science, Peking University,

1996
1999

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements of the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

Copyright 0 2001, Massachusetts Institute of Technology. All rights reserved.

Signature of Author

IrP-i5ram in Media Arts and Sciences
August 6, 2001

Certified By

Accepted By

Barry L. Vercoe

Professor of Media Arts and Sciences
Massachusetts Institute of Technology

Thesis Supervisor

/ , '.1

Andrew BJ. Lippman

Chair, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

S INSTITUTE Massachusetts Institute of Technology

ROTCH

MASSACHUSETT
OF TECHNC

OCT 1 2 2001

LIBRARIES

Melody Retrieval On The Web

by

Wei Chai

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on August 6, 2001
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

ABSTRACT

The emergence of digital music on the Internet requires new information retrieval
methods adapted to specific characteristics and needs. While music retrieval based on
the text information, such as title, composers, or subject classification, has been
implemented in many existing systems, retrieval of a piece of music based on musical
content, especially an incomplete, imperfect recall of a fragment of the music, has not
yet been fully explored.

This thesis will explore both theoretical and practical issues involved in a web-based
melody retrieval system. I built a query-by-humming system, which can find a piece of
music in the digital music repository based on a few hummed notes. Since an input
query (hummed melody) may have various errors due to uncertainty of the user's
memory or the user's singing ability, the system should be able to tolerate errors.
Furthermore, extracting melodies to build a melody database is also a complicated task.
Therefore, melody representation, query construction, melody matching and melody
extraction are critical for an efficient and robust query-by-humming system. Thus,
these are the main tasks to be addressed in the thesis.

Compared to previous systems, a new and more effective melody representation and
corresponding matching methods which combined both pitch and rhythmic information
were adopted, a whole set of tools and deliverable software were implemented, and
experiments were conducted to evaluate the system performance as well as to explore
other melody perception issues. Experimental results demonstrate that our methods
incorporating rhythmic information rather than previous pitch-only methods did help
improving the effectiveness of a query-by-humming system.

Thesis Supervisor: Barry L. Vercoe
Title: Professor of Media Arts and Sciences

Melody Retrieval On The Web

by

Wei Chai

The following people served as readers for this thesis:

Thesis reader:
Joseph A. Paradiso

Princi esearch Scientist, Media Laboratory
Massachusetts Institute of Technology

Thesis reader:
Christopher Schmandt

Principal Research Scientist, Media Laboratory
Massachusetts Institute of Technology

ACKNOWLEDGEMENTS
I have been very lucky to work in the Machine Listening Group of the Media Laboratory for
the past two years. This allowed me to collaborate with many brilliant researchers and
musicians. My period of graduate study at MIT has been one of the most challenging and
memorable so far in my life. I am happy to have learned about many new technologies, new
cultures, and especially the innovative ways people carry out research at MIT. This thesis work
was funded under MIT Media Laboratory Digital Life Consortium. I would like to thank
everyone who has made my research fruitful and this thesis possible.

I am indebted to my advisor, Professor Barry Vercoe, for giving me the freedom to pursue my
own interests and for his suggestions which inspired my thoughts. Also, I am grateful for the
encouragement, help and insight I have received from current and past members of the
Machine Listening Group, especially Bill Gardner, Ricardo Garcia, Youngmoo Kim, Nyssim
Lefford, Keith Martin, J.C. Olsson, Joe Pompei, Rebecca Reich, Eric Scheirer and Paris
Smaragdis. Additionally, I would like to thank my readers Dr. Joseph Paradiso and Christopher
Schmandt for their advice, and Professor Judy Brown, Connie Van Rheenen and Elizabeth
Marzloff for their help.

I would like to express my sincerest thanks to all the participants in my experiments. They
gave me good suggestions and feedback for improving the system. I would like to especially
thank Donncha 0 Maidin who provided me his music corpus and the handy tool he developed
to process those score data.

My previous advisors and colleagues at the Database Laboratory of Peking University and the
National Laboratory on Machine Perception all gave me their support and help when I was in
China. I would also like to thank them especially Professor Shiwei Tang, Professor Dongqing
Yang, Professor Fang Pei and Jian Pei.

Finally, I would like to thank my family and all my friends for their encouragement.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION...11

1.1 M OTIVATION 11
1.2 METHODOLOGY 12
1.3 ORGANIZATION .. 12

CHAPTER 2 BACKGROUND...15

2.1 MUSIC INFORMATION RETRIEVAL 15
2.2 QUERY-BY-HUMMING SYSTEMS 16

CHAPTER 3 MELODY AS A SIGNIFICANT MUSICAL FEATURE 19

3.1 M ELODY PERCEPTION................................. 19
3.2 M USIC M EMORY........................ 20
3.3 MELODIC ORGANIZATION AND GESTALT PRINCIPLES............. 20
3.4 MELODIC SIMILARITY .. 21
3.5 MELODY AS A FEATURE FOR FOLK MUSIC CLASSIFICATION................ 22

CHAPTER 4 SYSTEM ARCHITECTURE...27

4.1 CLIENT-SERVER ARCHITECTURE 27
4.2 WEB-BASED COMMUNICATION... 29

CHAPTER 5 APPROACHES AND ALGORITHMS...... 31

5.1 MELODY REPRESENTATION AND MATCHING 31
5.1.1 Problem s ... 31
5.1.2 Pitch contour... ... 32
5.1.3 Rhythm ic inform ation... 32
5.1.4 Proposed m elody representation ... 33
5.1.5 M elody matching algorithms... 34
5.1.6 Effectiveness of the representation and matching algorithms.................. 36

5.2 MELODY EXTRACTION ... 40
5.2.1 Problem s .. 40
5.2.2 M anipulating monophonic scores........... 41
5.2.3 Manipulating MIDI files with monophonic melody track... 42
5.2.4 Manipulating MIDI files with polyphonic melody track.......................... 44
5.2.5 Symbolic music corpora ... 46

5.3 QUERY CONSTRUCTION....... 47
5.3.1 N ote segm entation .. 48
5.3.2 tch trackPic.h.... 51
5.3.3 Interfaces for obtaining beat information...................................... 52
5.3.4 Autom atic beat tracking... 53
5.3 5 Q uery representation.. 59

CHAPTER 6 IMPLEMENTATION ISSUES........................... 61

6.1 DATABASE INDEXING.. 61
6.2 QBH SERVER IMPLEMENTATION 61

6.3 QBH CLIENT IMPLEMENTATION...........................62
6.4 AXCLIENT - AXTIVEX IMPLEMENTATION OF QBH CLIENT 63

CHAPTER 7 EXPERIMENTS AND EVALUATION.......................65

7.1 METHOD... 65
7. 1.1 P rocedure ... 65
7.1.2 Q uery data set .. 66
7.1.3 A pp aratus ... 66
7.1.4 Subjects.. 67

7.2 RESULTS... 68
7.2.1 Note segmentation and pitch tracking... 68
7.2.2 Autom atic beat tracking... 68
7.2.3 Statistics of the humm ed queries ... 71
7.2.4 Effectiveness of interfaces and algorithms ... 78

7.3 SUMMARY.. 83

CHAPTER 8 CONCLUSIONS .. 85

REFERENCES.... oo.....oo.......0.000000..0.00000..0..... o............... ... o....oo.... 87

CHAPTER 1 INTRODUCTION

Technology has been changing the world rapidly and dramatically. The recent
controversies surrounding the Napster phenomenon have brought me to believe that people's
strong desire to obtain and share music freely, along with the irresistible trend of technology,
will ultimately break the traditional models of the music industry and even people's music
appreciation habits.

1.1 Motivation
The Internet has become an important source for people to obtain music for entertainment,
education, business, or other purposes. This requires new information retrieval methods
adapted to specific characteristics and needs. Although there are many websites or Internet
based agents for music sale, advertisement and sharing, the interfaces are not as convenient for
finding desired music; only category-based browsing and/or text-based searching are
supported. To find a piece of music, the user needs to know its title, composer, artist or other
text information, so that the search engine can search the database based on that information;
otherwise the user needs to browse the whole category. This procedure might be very time-
consuming. Therefore, developing new methods to help people retrieve music on the Internet is
of great value.

A natural way of searching for music is to identify it by its content (e.g., melody) rather than its
secondary features (e.g., title), because the content is usually more memorable and a more
robust feature of the musical work.

My thesis is to build a query-by-humming system (called the QBH system), which can find a
piece of music in the digital music repository based on a few hummed notes. When the user
does not know the title or any other text information about the music, he is still able to search
for music by humming the melody.

Query-by-humming is a much friendlier interface than existing systems for music searching on
the Internet. In addition, although the system I built is a web-based system, it can certainly be
moved to other application fields, for example, Audio-On-Demand (AOD) or Karaoke systems.

Besides the above application value, the query-by-humming system is also an interesting topic
from a scientific point of view. Identifying a musical work from a melodic fragment is a task
that most people are able to accomplish with relative ease. However, how people achieve this
is still unclear, i.e., how do people extract melody from a complex music piece and convert it
to a representation that could be memorized and retrieved easily and accurately with tolerance
of some transpositions? Although this whole question is beyond the scope of this thesis, we
will build a system that performs like a human: it can "extract" melodies from music; it can
convert the melodies into an efficient representation and store them in its "memory"; when a
user asks for a piece of music by humming the melody, it can first "hear" the query and then
search in its "memory" for the piece that it "thinks" most similar to the query.

Given the application value and the scientific interest of the research, I propose to explore the
melody retrieval problem from two perspectives: as a practical solution to a query-by-humming
system, and as a scientific inquiry into the nature of the melody perception process.

The main features of this system as compared with other existing systems are:

* A new melody representation, which combines both pitch and rhythmic information.

" New approximate melody matching algorithms based on the representation.

" A set of automatic transcription techniques customized for the query-by-humming system
to obtain both pitch and rhythmic information.

" A handy tool to build a melody database from various symbolic representations including
score formats and MIDI format.

" A deliverable query-by-humming system including both the server application and the
client application.

1.2 Methodology
There are several important issues in building such a query-by-humming system. One is that an
input query (hummed melody) may have various errors due to uncertainty of the user's
memory or the user's singing ability. Even if the hummed queries are perfect, it is still difficult
to implement a 100% accurate system for transcribing the hummed signals into musical
symbols, which are needed for melody matching in the next step. To tolerate these errors, we
need effective representation and musically reasonable approximate matching method.
Additionally, extracting melody information from an existing music corpus is not a trivial task.

Therefore, I divide the whole problem into four sub-problems: the melody representation
problem, the melody matching problem, the melody extraction problem and the query
construction problem. I believe the above four problems are the key points for a complete,
robust and efficient query-by-humming system, and thus these are the focuses of my thesis.

To solve the four problems and build the system, several theories, approaches or techniques
will be explored:

" Music psychology, especially related to melody perception.

" Musical signal processing, particularly pitch tracking and beat tracking.

* Pattern recognition, focusing on approximate matching and time-series analysis.

* Other techniques, such as computer networks, database systems and object-oriented
analysis.

1.3 Organization
My thesis is divided into eight chapters. In chapter 2, Background, I review the status,
problems and approaches of music information retrieval in general, and then specifically the
research and approaches of existing query-by-humming systems.

Chapter 3, Melody As A Signficant Music Feature, presents the music psychology principles
and theories that are important for query-by-humming systems, for example, melody

perception, music memory, melodic organization, melodic similarity, etc. An interesting
experiment of classifying folk music from different countries based on their melodies using
hidden Markov models (HMMs), which illustrates that melody itself carries some statistical
features to distinguish the styles of music, is also presented in this chapter. This experiment
also points out some melody representation issues that will be focused on in later chapters.

Chapter 4, System Architecture, presents an overview of the system architecture, the
functionality of each part and the communication between different parts.

Chapter 5, Approaches and Algorithms, presents our solutions to solve the melody
representation problem, the melody matching problem, the melody extraction problem and the
query construction problem respectively. Several new algorithms are proposed in this chapter
and in Chapter 7 will be shown to be more effective than previous algorithms.

Chapter 6, Implementation Issues, presents some technical details to build the system
efficiently.

Chapter 7, Experiments and Evaluation, presents the experiments for evaluating the system and
their results. The effectiveness of different algorithms and interfaces is compared in the
experiments. Several melody perception issues are explored as well.

Chapter 8, Conclusions, summarizes the approaches I used in building the query-by-humming
system, the melody perception issues involved in such a system, and the contribution made in
the thesis. Directions for further research are suggested.

CHAPTER 2 BACKGROUND

This chapter reviews the status, problems and approaches of music information retrieval in
general, and then specifically the research and approaches of existing query-by-humming
systems.

2.1 Music Information Retrieval
With the emergence of digital music on the Internet, automating access to music information
through the use of computers has intrigued music fans, librarians, computer scientists,
information scientists, engineers, musicologists, cognitive scientists, music psychologists,
business managers and so on. However, current methods and techniques for building real-
world music information retrieval systems are far from satisfactory.

The dilemma was pointed out by Huron (2000). Music librarians and cataloguers have
traditionally created indexes that allow users to access musical works using standard reference
information, such as the name of the composer or the title of the work. While this basic
information remains important, these standard reference tags have surprisingly limited
applicability in most music-related queries.

Music is used for an extraordinary variety of purposes: the restaurateur seeks music that targets
certain clientele; the aerobics instructor seeks a certain tempo; the film director seeks music
conveying a certain mood; an advertiser seeks a tune that is highly memorable; the
physiotherapist seeks music that will motivate a patient; the truck driver seeks music that will
keep him alert; the music lover seeks music that can entertain him. Although there are many
other uses for music, music's preeminent functions are social and psychological. The most
useful retrieval methods are those that facilitate searching according to such social and
psychological functions.

In attempting to build systems supporting such retrieval methods, two general questions arise:

" What is the best taxonomic system by which to classify moods, styles, and other musical
characteristics?

* How can we create automated systems that will reliably characterize recordings or scores?

The first question is related to the feature selection problem, which involves defining a
comprehensive set of features including low level and high level features, objective and
perceptual features, that can describe music well for the retrieval purpose. The second question
is related to the feature extraction problem, which involves building computer systems to
compute those features automatically.

Regarding the feature selection question, the features that have been proposed can be
categorized as follows:

* Reference-related features, such as title, composer, performer, genre, country, date of
composition, date of first performance publisher, copyright owner and status, etc.

* Content-related features, such as tonality, contour, meter, tempo, rhythm, harmony,
lyrics, libretti, instrumentation, mood, style, similarity, etc.

Regarding the feature extraction question, current research goes in several directions:

e Extracting content-related features from symbolic musical data. For example, current
query-by-humming systems aim to retrieve symbolic music data based on similarity.
Thus, they belong to this category. How to extract melody (Uitdenbogerd, 1998) or
motive (Liu, 1999) from the polyphonic scores has also been explored. Dannenberg
(1997) built a real-time performance style classifier based on MIDI data. Brown (1993)
presented a way of using autocorrelation to determine the meter of music scores. Chai
(2000) attempted to extract several perceptual features from the MIDI files.

* Extracting content-related features from acoustic musical data. For example, determining
pitch contour of audio signals has been extensively studied (Rabiner, 1976) (Roads,
1994). Tempo and beat tracking from acoustic musical signals has also been explored
(Goto, 1994) (Goto, 1997) (Scheirer, 1998). Music summarization, i.e., attempting to
extract musical themes or hooks from musical recording for identifying or recognizing a
work, has been studied recently (Huron, 2000) (Chu, 2000). Instrument identification is
fully explored by Martin (1999). Automatic music transcription is also widely studied.

e Extracting reference-related features from symbolic musical data. For example, the
project I did for classifying folk music from different countries based on the melodies
belongs to this category. It will be presented in detail in Section 3.5.

e Extracting reference-related features from acoustic musical data. Tzanetakis (2000)
reported a result of 75% classification accuracy to classify classical, modem (rock, pop)
and jazz using different features (FFT, MPEG filterbank, LPC and MFCC) and two
classification techniques (Gaussian Mixture Model and K-NN). Pye (2000) reported a
result of 92% classification accuracy to classify blues, easy listening, classical, opera,
dance (techno) and Indie rock, using two different features (MFCC, MP3CEP) and two
classification techniques (Gaussian Mixture Model and TreeQ).

In applications with symbolic music data, techniques used in text retrieval systems have been
widely adopted. In applications with acoustic musical data, many signal processing techniques
are employed.

General methods that can manipulate both symbolic data and acoustic data have also been
proposed. For example, a new representation called Self-similarity Visualization was proposed
by (Foote, 1999). Both raw audio and symbolic audio can be represented in this way. Doing
music analysis and classification based on this representation is still being studied.

So far there are no standard evaluation criteria for these systems.

2.2 Query-by-humming systems
The query-by-humming system was first proposed by Ghias et al. (1995). Following Ghias et
al., several research groups including the MELDEX project by McNab et al. (1996), the
Themefinder project by Stanford University, the TuneServer project by University of
Karlsruhe, the MiDiLiB project by University of Bonn, etc., are working in this area.

Existing systems use a variety of representations for melody, and usually aim for flexibility in
order to accommodate variations in data and query format. Symbolic music corpora, such as
MIDI, are generally used. The data used in different systems varies greatly, but consists
primarily of classical and folksong repertoires, since the copyright on most of these works has
expired and they are now in the public domain. The data is taken almost exclusively from
Western music, or at least music using the Western tonal system (12 half-steps per octave). The
reasons for this are primarily practical, since MIDI and other machine-based formats for
storing notation were designed for Western tuning, and there are neither standard formats nor
standardized methods of adapting existing formats for non-Western tuning.

The system by Ghias et al. (1995) is the first full query-by-humming system, which included
processing of an audio input signal in order to extract the necessary query information.
However, this system was too simple in its melody representation and matching method. It
used only 3-level contour information (U/D/S indicating that the interval goes up, down or
remains the same) to represent melodies. Baesa-Yates and Perleberg algorithm was adopted for
approximate matching with k mismatches. The size of the melody database and experiments
for evaluating the system based on different human subjects were not reported.

MELDEX is the most well-known query-by-humming system so far besides Ghias' system. It
also implemented a full system and was the first one, as far as we know, whose client
application was put on the web. MELDEX allowed a variety of different contour
representations, such as exact interval or finer (>3-level) contour information. It also attempted
to incorporate rhythmic information (mainly represented as note durations), but the
corresponding matching method was not effective. For example, absolute note durations (e.g.,
a quarter note at 90bpm) were used for melody matching. In practice, almost no users can hum
in such a precise way. And MELDEX attempted to identify only the beginnings of melodies. In
addition, the client-server division of MELDEX was not efficient. The client application only
did the recording and then sent the recorded waveform data to the server side to do
transcription and matching. Dividing in this way cannot employ the computational ability of
the client side machine, while increasing the server side burden. It also increases the network
bandwidth requirement. Two experiments were done according to (McNab et al., 1996). One
was to explore human performance in melody recall; the other was to match perfect queries
(not real hummed queries) of different lengths with some folksong corpora to evaluate
effectiveness of different melody representations. Experiments for evaluating the system based
on real hummed queries were not reported.

Strictly speaking, the Themefmder project is not a query-by-humming system, because it only
supported text format queries, i.e., the users had to manually input the text string using some
predefined format to represent a query. But the Themefinder project is quite famous in its
symbolic data processing and organization.

The TuneServer project also used only 3-level contour information to represent melodies.
Although this system did not propose any new methods, its melody database was quite large,
which was based on a book by Denys Parsons: The Directory of Tunes and Musical Themes,
Spencer Brown, 1975. This book does not only include the full database with 10,370 classical
tunes and musical themes, but also more than 5,000 popular tunes from the time between 1920
and 1975, as well as a list of national anthems.

The MiDiLiB project allowed a variety of different contour representations, such as exact
interval or finer (>3-level) contour information. Similarly, this system did not propose any new

methods, but its melody database was very large, which contained 20,000 MIDI files. Some
sophisticated melody extraction tools and algorithms were used in building this database.

As far as I know, there are no accuracy and effectiveness evaluations of the above systems
reported based on real hummed queries. Since they are not public accessible or not working at
this time (e.g. MELDEX, TuneServer), it is also impossible to evaluate these systems by the
author.

CHAPTER 3 MELODY AS A SIGNIFICANT
MUSICAL FEATURE

This chapter presents the music psychology principles and theories that are important for
query-by-humming systems, for example, melody perception, music memory, melodic
organization, melodic similarity, etc. An interesting experiment of classifying folk music from
different countries based on their melodies using hidden Markov models (HMMs), which
illustrates that melody itself carries some statistical features to distinguish the styles of music,
is also presented in this chapter. This experiment also points out some melody representation
issues that will be focused on in later chapters.

3.1 Melody Perception
How do we understand what we hear? How do we make sense of what we hear as music? One
of the most evident features of music is melody. A definition of melody is that it is a coherent
succession of single pitches. In such a melody, the succession of notes seems to hold together
in a meaningful, interesting way - interesting, and also emotional. Of all music's structures,
melody is the one that moves people the most and seems to evoke human sentiment most
directly. Familiar melodies "register" simple qualities of feeling instantly and strongly.

The most familiar type of melody is a tune - a simple, easily singable, catchy melody such as a
folksong, or a dance. A tune is a special kind of melody. Melody is a term that includes tunes,
but also much else. A motive is a distinctive fragment of melody, distinctive enough so that it
will be easily recognized when it returns again and again within a long composition. Motives
are shorter than tunes, shorter even than phrases of tunes; they can be as short as two notes.
Theme is the most general term for the basic subject matter of longer pieces of music. A single
melodic "line" in time is enough to qualify as music: sometimes, indeed, as great music.

Texture is the term used to refer to the blend of the various sounds and melodic lines occurring
simultaneously in music. Monophony is the term for the simplest texture, a single
unaccompanied melody. When there is only one melody of real interest and it is combined with
other sounds, the texture is called homophony. When two or more melodies are played or sung
simultaneously, the texture is described as polyphony.

Melody is a perceptual feature of music. Sometimes what one person perceives to be the
melody is not what another perceives. What makes melodies interesting and memorable is a
combination of things: the overall shape- what is sometimes called "line" or "melodic contour";
the rhythm; and the type of movement (i.e., leaping or stepwise). In a broader sense, a melody
can be pitched or purely rhythmic, such as a percussion riff. However, our research does not
attempt to address all of these cases and is limited in scope to pitched, monophonic melodies.
We assume that all the pieces in our music corpora have monophonic melodies, which the
users can easily and consistently identify. Furthermore, the user should be fairly familiar with
the melody he wants to query, though perfect singing skill is not required.

Several aspects of melody perception need to be considered when developing the melody
retrieval systems.

(1) What is the type of query that users will present? In the case of someone trying to locate a
half-remembered fragment of music, it is useful to understand how people remember
music, and in particular, how they remember melodies and how accurately people can
produce (e.g., hum) melodies.

(2) Since most music that we hear contains both melody and accompaniment, it is necessary to
determine what would be perceived as melody in an accompanied musical work.

(3) Since many music queries involve finding similar but not exact matches to melodies, we
need to decide what similarity means in terms of music perception.

The first aspect is related to the Melody Representation problem (Section 5.1) and the Query
Construction problem (Section 5.3). The second aspect is related to the Melody Extraction
problem (Section 5.2). The third aspect is related to the Melody Matching problem (Section
5.1).

3.2 Music Memory
There has been much research on how people build mental structures while listening to music
and on how music is remembered. Dowling (1978) discovered that melody contour is easier to
remember than exact melodies. Contour refers to the shape of the melody, indicating whether
the next note goes up, down, or stays at the same pitch. He postulates that contour and scale are
stored separately in memory and that melodies are mapped onto an overlearned scale structure,
so that if presented a melody with an unknown scale, we map it to the scale structure with
which we are familiar.

Edworthy (1985), however, discovered that the length of a novel melody determines whether it
is easier to detect changes in contour or changes in intervals. There are also differences in
terms of short-term and long-term memory for melodies: it is easy for people to reproduce a
well-known melody with exact intervals than to do so for new melodies. In terms of music
database queries, a user's query melody will probably be in long-term memory, so exact
intervals will be important. Memory tasks are generally performed better by experienced
musicians than by those with less experience.

Dowling (1986) presented evidence supporting the notion that schematic representations of
familiar tunes in long-term memory consist of (rhythmically organized) sets of relative pitch
chromas and that such representations can be accessed by means of labels and such global
melodic features as contour. Short-term (episodic) memory, long-term (semantic) memory,
and cognitive development were investigated with respect to the roles played by pitch,
intervals, contour, and tonal scales.

3.3 Melodic Organization and Gestalt Principles
Melody seems to exist as a succession of discrete pitches in time, yet it is likely to be heard as
one thing, one integrated entity, as pitch moving in time. The fact that a melody can be heard
as pitch moving in time when all that a listener is confronted with is a sequence of separate
pitches is something that has perplexed philosophers for centuries.

An answer was hinted by the Gestalt psychologists earlier in this century. They were trying to
account for the perception of visual shape, but their theories seemed also to apply to melody, to

auditory shape. They suggested that certain laws seemed to underlie our perception of form,
laws of proximity, similarity, good continuation and so on. These laws governed our tendencies
to group elements in a visual field so as to constitute shape or form at a larger scale than the
individual elements of the pattern.

Gestalt principles can serve as useful rules of thumb, indicating what sort of pattern
organization will be perceived given certain stimulus features. They are especially amenable to
translation from visual to auditory space where the relatively brief time spans of local stimulus
organization are involved. (Dowling, 1986)

" Proximity: Items placed in close (spatial) proximity tend to be grouped together as a unit.
The importance of pitch proximity in audition is reflected in the fact that melodies all over
the world use small pitch intervals from note to note (this will be shown by the interval
change histogram of our music corpora in Section 5.2). Violations of proximity have been
used in various periods and genres of both Western and non-Western music for a variety
of effects. For example, fission based on pitch proximity was used to enrich the texture so
that out of a single succession of notes, two melodic lines could be heard.

* Similarity: Similar items tend to be grouped together as a unit. For example, similarity of
timbre can be used to group sequences of sounds so that the melody will be perceived.
Similar amplitude or loudness of notes was found to be fairly unimportant in the
perception of musical parts compared to other rules, but is also used for grouping of notes.

" Prdgnanz (Good continuation): In perception we tend to continue contours whenever the
elements of a pattern establish an implied direction. Here, good means symmetrical,
simple, regular, but most importantly familiar. The listener could attend to notes of a
familiar melody even though they are not differentiated from their background on any
other basis than being parts of a meaningful configuration.

Additionally, the listeners usually pay more attention to louder and higher pitch notes as in a
melody line.

The above rules were referred to as local pattern organization by Dowling (1986). The
listener's appreciation of the global aspects of a piece of music is in terms of invariants --
structural constancies underlying surface change in local pattern features. Invariants that might
occur over relatively long-time periods in a piece are regularities of temporal organization such
as the beat, of tonal scale organization such as the key, and of instrumentation and density of
note spacing in pitch and time. One way in which the comprehension of global invariants of the
structure might function as we listen to a piece is by affecting our expectancies from moment
to moment.

Dowling (1986) also proposed that the local features are related to each other and to global
patterns by some hierarchical structure.

3.4 Melodic Similarity
The ability to recognize melodic similarity lies at the heart of many of the questions most
commonly asked about music. It is melody that enables us to distinguish one work from
another. It is melody that human beings are innately able to reproduce by singing, humming,

and whistling. It is melody that makes music memorable: we are likely to recall a tune long
after we have forgotten its text. (Hewlett, 1998)

(Hewlett, 1998) reviews various theories about melodic similarity. In this book, conceptual and
representational issues in melodic comparison are reviewed by Selfridge-Field; different
melody matching methods are proposed, such as Geometrical algorithm, Dynamic
Programming algorithm and other string-matching algorithms.

Uitdenbogerd (1998) suggested the following ordering of factors in music similarity, from
good evidence of similarity to poor. Rhythmic aspect was not considered in this ordered list.

1) Exact transposition in the same key.
2) Exact transposition in a closely related key.
3) Exact transposition in a distant key.
4) Exact transposition except for a chromatically altered note.
5) Exact transposition except for a diatonically altered note.
6) Same contour and tonality.
7) Same contour but atonal.
8) Same note values but different contour.
9) Different contour, different note values.

3.5 Melody as a Feature for Folk Music Classification
There is another perspective from which to think about melodic similarity: melodic
discrimination. That means to use melody as a feature classifying music. One interesting
experiment we did (Chai, 2001) was to classify folk music from different countries based on
their monophonic melodies using hidden Markov models. This section will present our
experiment, which suggests to us that melodic similarity may have statistical explanations and
melody representation is very important for melodic discrimination. Please note that the
methods and the detailed results presented in this section will not be directly related to the rest
of the thesis; readers may skip this section if they want.

Here is the description about our experiment. We chose folk music as our experiment corpus,
because

* Most folk music pieces have obvious monophonic melody lines, which can be easily
modeled by HMM. "Monophonic" here means only one single tone is heard at a time, and
there is no accompaniment or multiple lines going simultaneously.

" Melodies of folk music from different countries may have some significant statistical
difference, which should be able to be captured by an appropriate statistical model.

Bruno Nettl mentioned in his book (Nettl, 1973) that melody is the aspect of music that has
been of the greatest interest to folk music study, but is also probably the most difficult part.

In the classification experiment, 187 Irish folk music pieces, 200 German folk music pieces
and 104 Austrian folk music pieces were used. We don't have specific reasons for choosing
these three countries except for the availability of data. The data were obtained from two
corpora, which are also contained in the QBH melody database:

e Helmut Schaffrath's Essen Folksong Collection which contains over 7,000 European folk
melodies encoded between 1982 and 1994;

" Donncha 0 Maidin's Irish Dance Music Collection.

All pieces have monophonic melodies encoded in either of the two symbolic formats: **kem
and EsAC.

In the experiment, we represented melodies in four different ways.

(A) Absolute pitch representation. A melody is converted into a pitch sequence by normalizing
the pitches into one octave from C4 (Middle C) to B4, that is, pitches in different octaves
but of same chroma are encoded with the same symbol in the sequence and thus there is a
total of 12 symbols.

(B) Absolute pitch with duration representation. To incorporate rhythm information, we make
use of the concept behind the representation for rhythmic sequences employed by
Carpinteiro (1998). Briefly, we simply repeat each note multiple times to represent the
duration, e.g., in our experiment, how many half-beats the note lasts.

(C) Interval representation. A melody is converted into a sequence of intervals. An interval is
the difference of the current note and the previous note in semitones. There are 27 symbols
indicating -13 to 13 semitones (intervals larger than 13 semitones are all indicated by +/-
13).

(D) Contour representation. This is similar to Interval representation, but we quantize interval
changes into five levels, 0 for no change, +/- for ascending/descending I or 2 semitones,
++/-- for ascending/descending 3 or more semitones. Thus, there is a total of 5 symbols.
This representation is fairly compact and fault-tolerant in melody identification
applications (Kim, 2000).

For example,

Ae

Figure 3-1: An example for demonstrating different representations

Given the example in Figure 3-1, the sequence in representation A will be {2,7,9,11,11,9}. The
sequence in representation B will be {2,7,9,11,11,11,9}. The sequence in representation C will
be {5,2,2,0,-2}. The sequence in representation D will be {++,+,+,0,-}.

HMM (Hidden Markov Model) is a very powerful tool to statistically model a process that
varies in time. It can be seen as a doubly embedded stochastic process with a process that is not
observable (hidden process) and can only be observed through another stochastic process
(observable process) that produces the time set of observations. An HMM can be fully
specified by (1) N, the number of states in the model; (2) M, the number of distinct observation
symbols per state; (3) A = {a,}, the state transition probability distribution; (4) B = {bi (k)},

the observation symbol probability distribution; and (5) I = {7r}, the initial state distribution.

(Rabiner, 1989)

Because the number of hidden states and the structure may impact the classification
performance, we use HMMs with different numbers of hidden states and different structures to
do classification, and then compare their performances. Here are the different structures used
and compared in our experiment (Figure 3-2).

a, 2 0 --- 0

0 a2 a23 --- 0

S1 S2 S3 0 0 a3 --- 0

0 0 0 .-- 1
(a)

anl a2 a21 - a.

0 a2 a2 - a2
S1 s2 s 0 0 a3 --- a.

0 0 0 --- a

(b)

an a a'71 ---3 a.,

0 a2 a2 --- a.
Si 2 S3 0O,..~

s1 s2 sa a a .. a .

-a,,, a0 a,, --- a,,,,

(C)
'% 1 2 a,3

Si S2 S3 a3, a3 a33 t73.

.P1 '7. a2,3 *an

(d)

Figure 3-2: HMMs used in the experiment (a) A strict left-right model, each state can transfer
to itself and the next one state. (b) A left-right model, each state can transfer to itself and any
state to the right of it. (c) A variation of the left-right model, additional to (b), the last state can
transfer to thefirst state. (d) A fully connected model.

The Baum-Welch reestimation method was implemented to train a hidden Markov model for
each country using the training set. To identify the country of an unknown melody, the Viterbi
algorithm was used to decode the sequence and compute its log probabilities respectively using
HMMs trained for different countries. We then assign the melody to the country with the
highest log probability.

The results were obtained in this way: All the data were split randomly into training set (70%)
and test set (30%). Each result was cross-validated with 17 trials using the 70%/30% splits.

The classification performances are shown in Figure 3-3 (i) - (iv). The first three figures show
the generalization performances of 2-way classifications. The last figure shows the
generalization performance of the 3-way classification. The X-axis in all the figures indicates
different HMMs, whose corresponding structures are shown in Table 3-1.

The results show that, in general, the state number (2, 3, 4 or 6) didn't impact the classification
performance significantly. The strict left-right HMMs (a) and the left-right HMMs (b)
outperformed the other two HMMs (c/d). The representation C generally performs better than
the representation A, B or D. Performances of the 6-state left-right HMM, for example, are

shown in Table 3-2. It achieved classification accuracies of 75%, 77% and 66% for 2-way
classifications and 63% for the 3-way classification using representation C.

absolute pitch
absolute pitch with duration

* interval
[contour

classification of Iish and German fok music (test set) classification of hish and Austrian folk music (test set)

ELI

09

*El
El

6I

10 12 14 16
HMMs

(i)
classification of German and Austrian fok music (test set)

* K>

El

2 4

K> K

0 a

8 00>

6 8 10 12 14 16
HMMs

(iii)

00 0 P
El EEl

oo0
El

El)K- E

o o

Ko O o l

0 2 4 6 8 10 12 14
HMMs

(ii)
classification of Irish, German and Austrian fok music (test set)

E0

00
*

**
El

0o 0

0 2 4 6 8 10 12 14
HMMs

(iv)

Figure 3-3: Classification performances using different representations and HMMs. (i), (ii)
and (iii) correspond to 2-way classifications. (iv) corresponds to the 3-way classification.

Table 3-1: 16 HMMs with different structures and numbers of hidden states used in the
experiment (see Figure 3-2 for the description of the structures).

HMM 1 2 3 4 5 6 7 8
N 2 2 2 2 3 3 3 3

STRUC a b c d a b c d
HMM 9 10 11 12 13 14 15 16

N 4 4 4 4 6 6 6 6
STRUC a b c d a b c d

2 4

0

El

16

68-

66-

E'64

862

'60-

~58-
'56-

*0

> 52-

50-

48 -
0

E-1

K>
0*

Table 3-2: Classification performances of 6-state left-right HMM using different
representations. The first three rows correspond to 2-way classifications. The last row
corresponds to the 3-way classification. I: Irish music; G: German music; A: Austrian music.

Classes rep. A rep. B rep. C rep. D
I-G 68% 68% 75% 72%
I-A 75% 74% 77% 70%
G-A 63% 58% 66% 58%

I-G-A 56% 54% 63% 59%

The performances of 2-way classifications are consistent with our intuition that it is harder to
discriminate between German music and Austrian music than between German music and Irish
music or between Austrian music and Irish music. Therefore, we expect that the result will
improve if we use a more discriminable data set.

The results suggest to us a new way to think about musical style similarity. Nettl (1973)
pointed out that it is very hard to state concretely just how much difference there is between
one kind or style of music and another. As he suggested, one way of telling that a musical style
is similar to another, which you already recognize, is that this styles also appeals to you. This
has to do with the fact that folk music styles, like languages, exhibit greater or lesser degrees of
relationship. Just as it is usually easier to learn a language that is closely related in structure
and vocabulary to one's own, it is easier to understand and appreciate a folk music style similar
to one that is already familiar. Here we presented a method to measure the musical style
similarity quantitatively. The two styles that are less discriminable in classification are deemed
more similar. The method can be based on the classification accuracy, as was done here, or the
distance of their statistical models directly, for example, the distance of two HMMs (Juang,
1985).

The representation is very important for classification. The interval representation
outperforming the absolute pitch representation is also consistent with humans' perception of
melody. Although the absolute pitch method can represent the original work more objectively,
the interval method is more compatible with humans' perception, since when people memorize,
distinguish or sing a melody, they usually do it based only on the interval information.

The experiment shows that the contour representation was significantly worse than the interval
representation for folk music classification. This indicates that although contour-based
representation is fairly compact for identifying a melody, the quantization procedure may cause
the features for style discrimination to be reduced.

The fact that the representation with duration did not outperform the representation without
duration is not what would be expected. It seems to be inconsistent with humans' perception.
We argue that it doesn't mean rhythmic information is useless for classification; instead, we
suggest that the rhythmic encoding used (through repeated notes) in fact destroyed some
characteristics of the melody, thus reducing the discrimination.

The experiment shows that melody is a significant musical feature. Although melody is not
sufficient for music classification on its own, music in different styles (here, from different
countries) does have significant statistical difference in their respective melodies.

CHAPTER 4 SYSTEM ARCHITECTURE

This chapter presents an overview of our system architecture, the functionality of each part and
the communication between different parts.

4.1 Client-server Architecture
The QBH system adopts the client-server architecture and consists of four main parts (Figure
4-1):

" Music database: This includes the source data and the target data. The source data are the
original music corpora, from which we extract melodies and generate the target data. The
source data are in various symbolic representations (i.e., scores and MIDI files). The target
data are the data that the end user can play back at the client side. The target data in the
system are all in MIDI format.

" Melody description objects: These are binary persistent objects that capsulate the melody
information based on our melody representation and play the role of an efficient indexing
of the music corpus.

" QBH Server: This receives the query from QBH Client, matches it with the melodies in the
melody description objects, and retrieves the target songs with the highest matching scores.

" QBH Client: This computes the pitch contour and beat information from the user's
humming signals, constructs the query, sends the query to QBH Server via CGI, receives
the results and plays them back.

Besides the above four parts, we need to develop some tools to build the whole system. They
include:

e Score to MIDI tool
It converts score files (in .krn, .alm, .esc or .niff formats; see Section 5.2.1 for detailed
description about these formats) into MIDI files for playback.

e Melody extraction tool
It extracts the melody information and constructs the melody description objects.

We have two client implementations: QBH Client and QBH AXClient. QBH Client is a
standalone application, which means that the user needs to install it first. AXClient is an
ActiveX control implementation, which can be embedded in a web page and the user will be
able to run it by clicking the link in the web page without explicitly installing it.

Figure 4-1: QBH system architecture

In our system, the query analysis part, which is also the most computationally complicated
part, is located at the client side. This is different from some other systems, e.g., MELDEX.
There are several advantages to dividing the system in this way:

" It can fully employ the computational ability of the client side machine, while reducing the
server side burden.

" It can reduce the network bandwidth requirement. If we put the query analysis part at the
server side, the humming signals must be transmitted to the server, which requires much
more bandwidth compared with transmitting only the description data of the query, e.g.,
the pitch and rhythmic information in our system.

* It protects the user's privacy, because people may dislike transmitting their hummed
queries to the server in that others might be able to hear them.

The client and server parts need to manipulate and transmit data in real-time, while all the tools
can be used off-line to build the system.

4.2 Web-based Communication
All the communication between client and server uses HTTP protocol, e.g., URL, CGI (Figure
4-2). Its specification will be described in detail in Section 5.3.5. This made the whole system
more flexible and open. With the interface unchanged, we can easily have a different
implementation of either the client or the server without changing the other side. So here we
provide not only an implementation of the system, but also a basis of a standard for such
systems, which can support cross-platform operations.

Figure 4-2: Communication between the client and the server

CHAPTER 5 APPROACHES AND ALGORITHMS

This chapter presents our solutions to solve the Melody Representation problem, the Melody
Matching problem, the Melody Extraction problem and the Query Construction problem
respectively. We propose a melody representation combining both pitch and rhythmic
information. Two new melody matching methods corresponding to this representation are
presented; for comparison, Dynamic Programming Method, which is most widely used in
existing query-by-humming systems, is presented as well. Methods to extract melodies from
various symbolic representations are presented; a handy tool was developed to build our
melody database, which contains more than 8,000 songs currently. We also present our
automatic transcription methods customized for the QBH system, including note segmentation,
pitch tracking, interfaces for obtaining rhythmic information, and algorithmic beat
determination. Our methods will be shown to be more effective in Chapter 7.

5.1 Melody Representation and Matching

5.1.1 Problems

What are the significant features people use to identify a melody or to distinguish between
melodies? How can the melodies be represented sufficiently as well as concisely? Dowling
(1986) proposed that a melody schema is not likely to be a literal mental copy of the melody.
An exact copy would have to be translated - expanded, contracted, and shifted both in time and
in pitch - to fit any actual instance of the melody that might be perceived. Therefore, it seems
likely that a melody schema should represent more general higher-order information than
specific pitches at specific temporal intervals. Previous query-by-humming systems mostly
propose using pitch contours to represent melodies. They seldom use rhythm in their melody
representation. However, rhythm is obviously important, because when identifying a melody,
the listener perceives not only the pitch/interval information in the melody, but also how those
notes correspond to particular moments in time. Rhythm is one dimension in which melodies in
general cannot be transformed intact. A representation combining both pitch and rhythm
information, which we call TPB representation, was proposed by Kim (2000) and adopted in
the QBH system.

Additionally, how do people measure the similarity of melody? Or, how can we retrieve
melody from our mind so easily even after it is transformed in some way? This problem is
closely related to the representation problem. Levitin (1999) described melody as an "auditory
object that maintains its identity under certain transformations ... along the six dimensions of
pitch, tempo, timbre, loudness, spatial location, and reverberant environment; sometimes with
changes in rhythm; but rarely with changes in contour." Although rather broad, this definition
highlights several important properties of melody. People are able to recognize melodies even
when they are played on different instruments, at different volumes, and at different tempi
(within a reasonable range). Based on the TPB representation, we also proposed new
approximate string matching methods to do the melody matching task. The algorithms did not
only take robustness into account but also efficiency.

The following sections present the melody representation and the melody matching methods
we used in the QBH system.

5.1.2 Pitch contour

It is clear that some type of interval information is important for representing melody, since
melodic matching is invariant to transposition. However, instead of representing each interval
exactly (e.g., ascending minor sixth, descending perfect fourth, etc.), the literature suggests that
a coarser melodic contour description is more important to listeners in determining melodic
similarity (Handel, 1989). Experiments have shown that interval direction alone (i.e., the 3-
level +/-/0 contour representation) is an important element of melody recognition (Dowling,
1978).

One possible reason for the importance of melodic contour is that this information is more
easily processed and is at a higher (more general) level than interval information. But as one
becomes more familiar with a melody and gains more musical experience, the specific intervals
have greater perceptual significance (Edworthy, 1985) (Levitin, 1999).

There is, of course, anecdotal and experimental evidence that humans use more than just
interval direction (a 3-level contour) in assessing melodic similarity. When recalling a melody
from memory, most of us (not all!) are able to present information more precise than just
interval direction. In an experiment by Lindsay (1996), subjects were asked to repeat (sing) a
melody that was played for them. He found that while there was some correlation between
sung interval accuracy and musical experience, even musically inexperienced subjects were
able to negotiate different interval sizes fairly successfully. From a practical standpoint, a 3-
level representation will generally require longer queries to arrive at a unique match.

Given the perceptual and practical considerations, we chose to explore finer (5- and 7-level)
contour divisions for our representation.

5.1.3 Rhythmic information

It is first useful to define some terms. Duration is the psychological correlate of time. Beat
refers to a perceived pulse marking off equal durational units. Tempo refers to the rate at
which beats occur, and meter imposes an accent structure on beats (as in "one, two, three, one,
two, three . . . "). Meter thus refers to the most basic level of rhythmic organization and does
not generally involve durational contrasts. Rhythm refers to a temporally extended pattern of
durational and accentual relationships.

In (Kerman, 2000), music is defined as "the art of sound in time". Sound exists in time, and
any sound we hear has its duration - the length of time we hear it in minutes, seconds, or
microseconds. Though duration is not an actual property of sound, like frequency, amplitude,
and other of sound's attributes that are taught in physics courses, it is obviously of central
importance for music. The broad term for the time aspect of music is rhythm. Rhythm is the
driving force in the vast majority of music both popular and classical, music of all ages and all
cultures.

The following simple example illustrates the importance of consistent rhythmic information in
melodic description.

km -4IW i l

Figure 5-1: First four notes of the Bridal Chorus from Lohengrin (Wagner), i.e., Here Comes
the Bride.

-A~I I '

Figure 5-2: First four notes of 0 Tannenbaum.

It is apparent that these are two very distinct melodies, yet the sounding intervals and note
durations are identical. The difference lies not only in the respective meters (time signatures) of
the songs, but also in the position of the notes relative to the metric structure of each piece. The
time signature of the first example is 2/4, and the strong beats occur on the first beat of a
measure, which correspond to the first note of the piece. The second example has a time
signature of 3/4, and the strong beat is on the first beat of a measure, corresponding to the
second note. From this example, we clearly see the advantages of incorporating rhythmic
information in a melodic representation.

5.1.4 Proposed melody representation

We use a triple <T, P, B> to represent each melody, which we will refer to as TPB
representation.

T is the time signature of the song, which can change, but often does not. P is the pitch contour
vector, and B is the absolute beat number vector. The range of values of P will vary depending
on the number of contour levels used, but will follow the pattern of 0, +, -, ++, -- , +++, etc. The
first value of B is the location of the first note within its measure in beats (according to the time
signature). Successive values of B are incremented according to the number of beats between
successive notes. Values of B are quantized to the nearest whole beat. Clearly, the length of B
will be one greater than the length of P because of the initial value.

In case a melody has multiple time signatures, we can break the melody into multiple melody
segments, within each segment the time signature doesn't change. We can then apply the TPB
representation to each melody segment.

Additionally, we use a vector Q to represent different contour resolutions and quantization
boundaries. The length of Q indirectly reveals the number of levels of contour being used, and
the components of Q indicate the absolute value of the quantization boundaries (in number of
half-steps). For example, Q=[O 1] represents that we quantize interval changes into three levels,
0 for no change, + for an ascending interval (a boundary at one half-step or more), and - for a
descending interval. This representation is equivalent to the popular +/-/0 or U/D/R
(up/down/repeat) representation. Q=[0 1 3] represents a quantization of intervals into five
levels, 0 for no change, + for an ascending half-step or whole-step (1 or 2 half-steps), ++ for
ascending at least a minor third (3 or more half-steps), - for a descending half-step or whole-
step, and -- for a descent of at least a minor third.

Thus, given a melody segment M and a resolution vector Q, we can get a unique contour
representation:

getTPB(M,Q) =< T, P,B > (Eq. 5-1)

For example, the TPB representation for the example in Figure 5-1 using Q=[0 1 3] is
<[2 4], [* 2 0 0], [1 2 2 3]>. The TPB representation for the example in Figure 5-2 using Q=[0
13] is <[3 4], [* 2 0 0], [3 4 4 5]>.

In our system, both the symbolic music corpora and hummed queries are converted into the
TPB format, so that the similarity between the song and the query can be measured by
matching the strings in TPB representations. Please note that the beat numbers in the query are
not necessarily to be absolute beat numbers as in the melody segments, but they must be
relatively correct (See Section 5.3.5).

5.1.5 Melody matching algorithms

All the following matching algorithms have been implemented in our QBH system, whose
performances will be compared in Chapter 7.

Dynamic Programming Matching Algorithm (DPM)

Dynamic programming has been used in most existing query-by-humming systems. The
algorithm only uses the pitch information for matching the query with melodies.

Dynamic programming is able to determine the best match of the two strings on a local basis.
For example, using the two melody fragments (typically one is a query and the other is a
melody segment), we would fill a matrix according to the following formula, where c
represents the matrix; q and p represent the query melody string and the piece to match against
respectively; index i ranges from 0 to query length and index] ranges from 0 to piece length:

c[i -1, j]+ d (i 1)

c[i,j-1]+d (j 1)
c[i, j]= min c[i -1, j -1]+ e (q[i]= p[j] and i, j 1) (Eq. 5-2)

c[i -1, j -1]+ m (q[i]# p[j])

0 o.w.

where d is the cost of an insert or delete, e is the cost of an exact match, and m is the cost of a
mismatch. We used d= 1, e = 0 and m = 1.

Melody String

* 0 0 -2 1 0 2 -1

* 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1
Query
String -2 2 1 1 0 1 1 1 2

1 3 2 2 1 1 2 2

2 4 3 3 2 1 1 1 2

0 5 4 3 3 2 1 2 2

Figure 5-3: Dynamic Programming Matching of the melody segment [* 0 0 -2 1 0 2 -1] and
the query [* 0 -2 1 2 0]. The optimal matching is marked by the arrows, which represent how
the value pointed to was calculated and can be followed to determine the parts that have been
aligned.

Figure 5-3 gives an example of using DPM to match the melody segment [* 0 0 -2 1 0 2 -1]
and the query [* 0 -2 1 2 0]. The optimal matching has a minimum cost of 1, which occurs in
one location. Tracing the path that led to the local minima results in the following matches of
the strings:

[* 0 0 -2 1 0 2 -1]
[* 0 -2 1 2 0]

DPM algorithm was evaluated to be the best similarity measure compared with all the other
previous matching methods proposed for the query-by-humming systems including n-gram
counting, the longest common subsequence and the Ukkonen measure. (Uitdenbogerd, 1999)

In our QBH system, to get the similarity score instead of the above cost measure, we simply
invert the sign of cost and normalize it to be between 0 and 1.

score = (-cost + QueryLength) / QueryLength (Eq. 5-3)

TPB Matching Algorithm I (TPBM-I)

This is an algorithm we proposed to compute the similarity score s of a melody segment
m =< T P,,,, B, > and a query q =< Tq, Pq, Bq> to evaluate how well they match. The

main difference between it and the DPM algorithm is that it considers both the rhythmic
information and the pitch information. A higher score indicates a better match. Both the
melody and the query must be converted into the TPB representation using the same
quantization vector Q.

TPBM-I algorithm:

(1) If the numerators of T and Tq are not equal, then return 0.

(2) Initialize the measure number, n = 1.
(3) Align P with P,,, from the nth measure of m.

(4) Calculate the beat similarity scores for each beat (see below).
(5) Average the beat similarity scores over the total number of beats in the query, resulting in

the overall similarity score starting at measure n: s,,.

(6) If n is not at the end of m, then n = n + 1 and repeat step 3.
(7) Return s = max {s, }, the best overall similarity score starting at a particular measure.

Algorithm for calculating the beat similarity score:
(1) Get the subsets of Pq and P that fall within the current beat as Sq and S,.

(2) i=1;j=1; s=0;

(3) while i i and j IS,,j
a. if Sq[i] = Sm [j] then

s=s+1; i=i+1; j=j+1;
b. else

k=j;
if Sq[i] # 0 then j=j+1;

if Sm[k]# 0 then i=i+1;

(4) return s = s jS .

Thus, the beat similarity score is between 0 and 1.

TPB Matching Algorithm II (TPBM-II)

TPBM-II is a generalized version of TPBM-I. Basically it ignores the time signature and meter
information. Only pitch contour and relative beat numbers are used in this algorithm.

TPBM-II algorithm:
(1) Initialize the beat number, n = 1.
(2) Align P with Pm from the n* beat of m.

(3) Calculate the beat similarity score as above.
(4) Average the beat similarity scores over the total number of beats in the query, resulting in

the overall similarity score starting at beat n: s,.

(5) If n is not at the end of m, then n = n + 1 and repeat step 2.
(6) Return s = max {s, }, the best overall similarity score starting at a particular beat.

5.1.6 Effectiveness of the representation and matching algorithms

We first need to propose some measures for evaluating the effectiveness of a melody
representation and a matching algorithm for melody retrieval purpose.

Two measures have been generally used in evaluating retrieval effectiveness in document
retrieval systems.

* Precision is defined as the proportion of retrieved documents which are relevant. Precision
can be taken as the ratio of the number of documents that are judged relevant for a
particular query over the total number of documents retrieved. For instance, if, for a
particular search query, the system retrieves two documents and the user finds one of them
relevant, then the precision ratio for this search would be 50%.

* Recall is defined as the proportion of relevant documents retrieved. Recall is considerably
more difficult to calculate than precision because it requires finding relevant documents
that will not be retrieved during users' initial searches. Recall can be taken as the ratio of
the number of relevant documents retrieved over the total number of relevant documents in
the collection. Take the above example. The user judged one of the two retrieved
documents to be relevant. Suppose that later three more relevant documents that the
original search query failed to retrieve were found in the collection. The system retrieved
only one out of the four relevant documents from the database. The recall ratio would then
be equal to 25% for this particular search.

Figure 5-4 shows the concepts of precision and recall. B={relevant documents}, C={retrieved
documents} and A = B r C. Thus, from the above definition,

Precision = A (Eq. 5-4)
C

A
Recall =- (Eq. 5-5)

B

B A |C

Figure 5-4: Concepts of Precision and Recall.

Theoretically, we would like to minimize C but maximize A to achieve maximum precision
and recall. In practice, however, increasing one measure may cause the other one to decrease.
So there is a trade-off between the two measures. The measures are affected by the matching
algorithm (similarity between the query and the document) and how many documents are
retrieved (similarity threshold).

In our particular case, we can still use the concepts while some special things need to be
considered. Since for our melody retrieval system, our main goal is to retrieve the song that is
exactly the one the user wants to look for and not the songs that sound similar in some sense to
the query, there should be only one song contained in B except that there might be several
copies in the database corresponding to the same song. If the right song is contained in the
retrieved songs, then recall=1. Ideally, the right song and only the song should have the
highest score, so that if we retrieve only one song with highest matching score, we will also get
precision=1.

However, such good performance is hard to achieve in practice. On one hand, we need the
representation and matching method to be strict enough, so that when the query in perfect, it
can guarantee that only the right song will get the matching score 1 and thus precision=]. To
this goal, exact matching is a good choice. On the other hand, we need the representation and
matching method to be loose enough, so that even if there are some errors in the query - it is
typically true - it still can get high matching score with the right song, so that it might be
retrieved and thus recall=1. To this goal, approximate matching is good.

Therefore, to solve the tradeoff, we need a good representation and matching algorithm that
can best characterize melodies and melodic similarity.

In (Kim, 2000), we did a complete evaluation of the TPB melody representation and TPBM-I
matching algorithm based on a small data set. Only perfect queries randomly generated from
the data set were used in the experiment. The results we got include:

Results I: Importance of rhythmic information.

In spite of anecdotal evidence (such as the examples from Section 5.1.3), we wanted to
explicitly verify the usefulness of rhythmic information in comparing melodic similarity. To
test this, we used the simplest contour (3-levels, Q=[0 1]) representations with and without the
rhythmic information. Our results clearly indicate that rhythmic information allows for much
shorter (and thus more effective) queries (Figure 5-5). A fewer number of matches indicates
better performance.

40
-F- no beat

35 ---- e-------- - ----------------------- Wth be

2 0 -------- --- ---------------- - ------------------------------

15 -------- 4 ---------------------- ----------------------------

E
10 ----------...-.----------- ------------------------

20
10 710-

5 7 10 1
query length (notes)

Figure 5-5: Importance of rhythmic information from (Kim, 2000).

Results II: Comparison of different quantization boundaries.

We examined 3-, 5-, and 7-level contour representations. For the 5- and 7-level contours, we
also examined a variety of quantization boundaries (different quantization vectors Q). The
results, in terms of average number of matches vs. query length (number of notes) are
presented below in Figures 5-6. It is clear that the performance of 5-level contours are
generally better than the 3-level contour, and 7-levels is better than that. For quantization
vectors, we limited our search to Qk = [0 1 x ...] cases only. Other values would have caused

repeated notes (no interval change) to be grouped in the same quantization level as some
amount of interval change, which does not make sense perceptually.

2 1.8

1 9 - - - - - - - - - - - - - - ---- --- - --- - --- +-0 1-- 41.9 -- - ---------- ---------- [014
1.7- P [151

1.1- - - - -- - --- - -- - ---------- - - - - - - - - - --- - --18. -0-

1.4. -- - --..... ----------- + -- - -- --- - ---- 1.---\ - ------ ------------------------
0

E E
1.3 ----------------- - --- - ----------------------- E* 1.3 - ---\.. ------------------------------

11.2 --- - -- - - - --- - - - - - 1.2 ---- - -- ------ -------- --------

5 7 10 15 5 7 10 15
query length (notes) query length (notes)

[0 14 6
- [0 2 4 61

E

5 7 10 15
query length (notes)

Figure 5-6: Comparison of different quantization boundaries from (Kim, 2000).

It is an obvious result that greater numbers of levels in general result in more efficient searches.
Clearly, more levels means more information, meaning less notes are needed to converge to a
unique solution. What is more illuminating is that the best 5-level contour was able to equal the
performance of the 7-level contour based on the rather small data set. This suggests that a 5-
level contour may be an optimal tradeoff between efficiency and robustness to query variation
(more levels will cause more variations in queries).

Given our results, it is especially revealing to look at the histogram of interval occurrences in
our data set (Figure 5-7). From this histogram, it is clear why certain quantization levels
perform better than others. An optimal quantizer would divide the histogram into sections of
equal area. Thus, for a 5-level contour we would like each level to contain 20% of the data.
This is approximately true for the Q=[0 1 3] case, which has the best performance. No interval
change (0) occurs about 23% of the time. Ascending half-steps and whole-steps (+1 and +2)
are about 21% of the intervals, whereas descending half- and whole-steps (-1 and -2) represent
approximately 23%. Other choices for quantization boundaries clearly have less-optimal
probability distributions, which is why they do not perform as well.

Histogram of interval changes

20-------------- -----------------------

a) 15 --

a) 10 -------------------------------------
U

-L 5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Figure 5-7: The interval histogram from (Kim, 2000).

2 5 . . . I . I I , I I , , , , . I I I , I I I I I
20 I - . r -----

.- . .I . , ,.

a)15

5 - -----

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Figure 5-8: The interval histogram based on the QBH corpora (same as Figure 5-13-c).

Although the above experimental results were based on a very small data set, the interval
distribution of our current melody database (Figure 5-8) is amazingly similar to the smaller
data set we used in (Kim, 2000). And the statistics of folk music from different countries did
not reveal a significant cultural bias in the distribution of intervals (See Section 5.2.5).
Compared with results in Section 3.5, we may conclude that first-order pitch information
(interval distribution) usually cannot capture the statistical difference between music from
different cultures, while higher-order pitch information (e.g., modeled by HMM) can
significantly do better.

The demonstration of effectiveness of our representation and matching method in (Kim, 2000)
is limited though, because only perfect and randomly generated queries were used.
Experimental results based on much larger data set and real queries will be presented in
Chapter 7.

5.2 Melody Extraction

5.2.1 Problems

What is melody and how do humans perceive melody from a complex piece of music? Is it
possible to extract melodies from existing digital music corpora by machine and use them to
build a melody database for the retrieval purpose?

There could be two kinds of sources from which we extract melodies and build our melody
database: symbolic musical data (e.g., scores and MIDI) or acoustic musical data (i.e.,
waveform representation). In this system, we only use symbolic corpora, because extracting
melody from waveform representation involves the automatic transcription problem, which has
not yet been solved well.

All the source data are in various symbolic formats including NIFF (Notation Interchange File
Format), ALMA (Alphameric Language for Music Analysis), EsAC (Essen Associative Code),
**kem (a subset of Humdrum format) and MIDI (Musical Instrument Digital Interface). They
are widely known in computer music community. (See Table 5-1 for detailed information.)

Table 5-1: Symbolic formats used in the QBH system

FORMATS ASCII/BINARY DEVELOPED BY
NIFF Binary several manufacturers

ALMA Ascii Murray Gould and George Logemann
**kem Ascii David Huron
EsAC Ascii Helmut Schaffrath
MIDI Binary MIDI Manufacturers Association

Extracting melody information from symbolic representations with a separate monophonic
melody track is relatively easy. I have developed a tool to manipulate this kind of corpora.
However, in many cases, a melody is contained in a polyphonic track. Extracting melody
information from such a polyphonic track is quite hard. It involves the melody perception
issue. When humans hear music, which is typically polyphonic, it is easy to identify where the
melody line is and to memorize it instead of the every detail of the music. The role that Gestalt
rules play in melody perception has been discussed in Section 3.3. We can view this problem
as a symbolic version of auditory scene analysis: how should we group the notes together to
construct the melody lines or more generally a perceptual object, once we can successfully
obtain the lower-level note events?

The following sections will describe our methods dealing with different types of symbolic
corpora.

5.2.2 Manipulating monophonic scores

All the score files we used to extract melody and build the melody database are monophonic,
corresponding to the melodies. They are from the same two sources used in Section 3.5:

" Helmut Schaffrath's Essen Folksong Collection which contains over 7,000 European
folk melodies encoded between 1982 and 1994;

" Donncha 6 Maidin's Irish Dance Music Collection.

These source data are in symbolic formats including NIFF, ALMA, EsAC and **kem.

We developed a tool based on the CPN View implemented by University of Limerick (Maidin,
1998) to extract the pitch and duration information from the above various score formats. CPN
View (Common Practice Notation View) is a library for building and manipulating
representations of notated scores in C++. It is designed for use in building end-user software
such as notation systems, music browsing systems and computer aided composition systems. It
is also suitable for building algorithms for music analysis. Currently, CPN View supports
symbolic formats including ALMA, Kern, EsAC and NIFF.

The information we want to extract, as described in Section 5.1, includes time signature, pitch
contour and absolute beat numbers. The algorithm is described in Figure 5-9.

Figure 5-9: Algorithm for extracting melody from monophonic scores.

5.2.3 Manipulating MIDI files with monophonic melody track

Most of the MIDI files we downloaded from the Internet have a separate monophonic melody
track and a special track name e.g., "melody", "vocal", "lead" etc. to identify this track. So
dealing with this kind of corpora is similar to working with monophonic scores. We need to
determine in which track the melody line is located according to the track name, and then
extract the time signature, pitch contour and beat number from it. The only differences are (1)
MIDI representation may not notate the music as accurately as the scores. Thus, to determine
the beat number of each note, we need to quantize the beat. (2) Time signature events are
usually in a different track instead of the melody track. The algorithm is described in Figure 5-
10.

All the MIDI files we deal with are in MIDI format 1. The absolute beat number is quantized in
the following way:

TicksPerBeat = PPQN * 4 / dd (Eq. 5-6)

where dd is the denominator of the time signature.

BeatPosition = TickNumber / TicksPerBeat - TickNumber / TicksPerBeatj
(Eq. 5-7)

T= ickNumber TicksPerBeatj +1; if BeatPosition QuantizeRat

LTickNumber TicksPerBeat]+ 2; if BeatPosition > QuantizeRat

(Eq. 5-8)

where QuantizeRat is a constant, which means the note
position within the beat will be quantized into the next beat.

appearing after the corresponding
It is set to be 15/16 in our system.

Mebody

Get the next event

Yes

Check the time signature
array

Figure 5-10: Algorithm for extracting melody from MIDIfiles with monophonic melody track.

5.2.4 Manipulating MIDI files with polyphonic melody track

In order to extract melodies reliably from polyphonic music files it is necessary to determine
what a person would perceive as the melody when he listens to music. The aspects about
melody perception have been presented in Section 3.3. The rules are rather complicated, while
in practice we have some straightforward methods.

Several papers have explored the way that groups of notes are perceived. Two simple rules are
generally used:

* A melody is heard as the figure if it is higher than the accompanying parts.
* Since melody is only considered as monophonic pitch sequence here, notes within a

melody should have no time overlap and usually be close to each other in time.

Although these rules are far from robust for all kinds of music, for example, if the upper notes
are constant and the lower notes form a more interesting pattern, then the lower notes will be
heard as the figure, it is effective for some music corpus. Uitdenbogerd (1998) and MidiLib
project proposed algorithms based on this simple rule, sometimes called the skyline algorithms,
which extract the highest pitch line as the melody line. The basic algorithm is: For each onset
time (a point on the time axis with at least one note onset) choose the note with the most
distinct feature (e.g., highest pitch). If necessary, this note's duration is shortened such that it
does not exceed the time between the actual and the next onset time. In principle, all variants of
the pitch based skyline algorithm extract sequences from the higher pitched regions of a piece
of music. Frequently, the computed extract jumps between a primary melody and
accompanying notes.

Another algorithm called melody-lines algorithm is also proposed by MidiLib project, which
aims at partitioning the polyphonic piece into a set of monophonic melodies. For this reason,
notes close to each other in time are grouped together. For each onset time, each note is
assigned with this onset time an existing melody line, which is "inaudible" at this time stamp.
In this, inaudible at a time stamp means that the last note of that melody line must have ended
before that time stamp. A basic criterion for the assignment of notes to melody lines is the
minimization of pitch differences of subsequent notes. Notes that cannot be assigned to
existing melody lines form new melody lines. In extending existing melodies, we only append
one note to one melody at one time stamp. Furthermore one has to take care not to introduce
long intervals containing pauses. The problems of this algorithm are: (1) it doesn't work with
homophonic music, in which separate melody lines don't exist at all; (2) local errors (with
regard to certain onset times) sometimes result in very chaotic melody extractions.

The algorithm we developed in our system to extract melody from MIDI files with separate
polyphonic melody track is a variation of the skyline algorithm. The revised skyline algorithm
adds one parameter called time overlap parameter (TOP), which can make the recognized
melody much cleaner than the classical skyline algorithm based on the test set provided by
Uitdenbogerd. The algorithm is described in Figure 5-11.

Identify the melody track according
the the track name

Sort all the notes in this track from
the highest pitch to the lowest

Get the next note n from the sorted
queue

getTOP(n)>T*

Yes Yes

No Remove the note from the track

More notes in queue?

No

The remaining notes in this track
corresponds to the monophonic

melody; call the algorithm for midi
files with monophonic melody track

End

Figure 5-11: The revised skyline algorithm for extracting melody from MIDI files with
polyphonic melody track.

the time overlap between note n and current melody line
getTOP(n) = (Eq. 5-9)

duration of note n

T* is a constant, which means that if the note overlaps too much with the current melody line, it
will not belong to the melody. It is configurable and was set to be 0.5 in our system.

One example of the classical skyline algorithm and the revised skyline algorithm is shown in
Figure 5-12. It is one song from the test set provided by Uitdenbogerd. The figure shows that
without considering the time overlap, the classical skyline algorithm extracted a very chaotic
melody with many accompanying notes.

(b)

Figure 5-12: One example of the classical skyline algorithm (a) and the revised skyline
algorithm (b).

In our system, for the MIDI corpora that might contain polyphonic melody tracks, we simply
use the polyphonic tool to process them first and then use the monophonic tool (as shown in
Section 5.2.3) to extract melody information.

5.2.5 Symbolic music corpora

This section gives some statistics of the symbolic music corpora we used in the QBH system.
The size of the melody database is shown in Table 5-2.

Table 5-2: Music corpora used in current QBH system.

Formats Suffixes Genres Quantity Sources
**kem .krn World folk 5109 Essen; Limerick
EsAC .esc World folk 1816 Essen; Limerick

ALMA .alm World folk 714 Essen; Limerick
NIFF .nif World folk 34 Essen; Limerick
MIDI .mid Classical, pop/rock 399 Internet

TOTAL: 8072 songs >536,181 notes contained in melodies

The histogram of the interval distribution is shown in Figure 5-13.

2 5 I I I I I I I I I I I I I I I I

20 ----- :--

15 --- 4+++- ++ - +
10

.

S0-

0 -12-10-0 -6 -4 -2 0 2 4 6 0 10 12'

(a)

25

20
-0

C15

10S5i-.

U)

0

25

20

D15

o 10
0

(D 1

L5

I I I I I I I I I I I I I I I I i I I I I I I I I I I -

-12 -10- 0 -6 -4 -2 0 2 4 6 8 10 12

(b)

I I I I I I 4 I I -I 4 I I I I I -I I I -I -

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

(c)

Figure 5-13: Interval histograms. (a) The histogram of the world folk music scores (b) The
histogram of the MIDIfiles (c) The histogram of the whole music corpora.

5.3 Query Construction
Query construction here means to obtain the pitch contour and rhythmic information from the
hummed query.

The algorithm to obtain pitch contour must be real-time and quite robust. Human voice is the
stimuli to be tracked. Note segmentation is very important for the effectiveness of the system.
A revised amplitude-based note segmentation algorithm and the autocorrelation pitch tracking
algorithm have been implemented in the QBH system.

47

To obtain rhythm from user's query is more complicated. We developed three different ways to
obtain the rhythmic information from hummed queries. The effectiveness, usability and
friendliness will be compared later in Chapter 7.

All the examples mentioned in the following sections were recorded using 8000Hz sampling
rate and obtained in the experiment that will be described in detail in Chapter 7. The
parameters were set experimentally based on this sampling rate.

5.3.1 Note segmentation

The purpose of note segmentation is to identify each note's onset and offset boundaries within
the acoustic signal. In order to allow segmentation based on the signal's amplitude, we ask the
user to sing using the syllables like da, thus separating notes by the short drop in amplitude
caused by the stop consonant. The following presents our note segmentation algorithm. Its
performance will be reported in Chapter 7.

Amplitude-based Note Segmentation Algorithm (ANS)

The representation used in this segmentation method is similar to the RMS power of the signal.
The amplitude is calculated by computing the spectrogram (e.g., 128 samples window length
for 8kHz sampling rate; 64 samples overlap; hanning window), summing the absolute values of
amplitude within human voice's frequency range (approximately below 1000Hz in our system)
in each window. Thus, we get an amplitude function A[w] where w is the window number
(Figure 5-14, 5-15, 5-16, 5-17).

Query: Over The Rainbow
0.3

0 .2

0.1

0

E
-0.1

-0 .2

-0 .3 --

0 2 4 6 8 1 0 1 2
tim a (s a m p le #) 04

Figure 5-14: The waveform of one query: Over The Rainbow.

Query: Over The Rainbow

Tim e
8 10 12

Figure 5-15: The spectrogram of the query in Figure 5-14.

Q uery: O ver The Rainbow

0 200 400 600 800 1000
tim e (window#)

1200 1400 1600 1800

Figure 5-16: Amplitude function A[w] of the query in Figure 5-14.

Figure 5-17: The score of the query in Figure 5-14.

A main difference of our method compared with previous amplitude based note segmentation
methods is that a set of dynamic thresholds aI[w] instead of one or two fixed thresholds are
used, with a note onset recorded when the power exceeds the threshold and a note offset
recorded when the power drops below the threshold.

In case the amplitude may exceed the thresholds for a short time due to the burst noise coming
from the microphone, we defined another threshold 1 (e.g., 10 windows, 88ms, i.e., a sixteen
note at a tempo of 180 beats per minute). Segments shorter than this threshold are discarded.

The segmentation algorithm is as follows:

4000

3 500

3000

2500

2000

1500

1000

500

0

(1) Compute the global threshold

aG =0.3 - ZA[w] (Eq. 5-10)

(2) Set the dynamic size d (e.g., 125).
(3) Set the current starting point v =1.

(4) From v to |wI, divide A[w] into n fragments, each of which contains d windows (except

the last fragment which may have less than d windows).
(5) Compute the threshold for each fragment i. Assume that it contains di windows.

A 1

aF Ii] =max{. 7 --- ZA[w, aG } (Eq. 5-11)
diw within

segment i

(6) Compute the threshold for each window w. Assume that window w is contained in the
fragment i.

^[w] = aF [i] (Eq. 5-12)

(7) Use d[w] to segment the first note from v to Iwi, with the note onset w recorded when the
power exceeds the threshold and the note offset w2 recorded when the power drops below
the threshold.

(8) Set the current starting point v = w 2 +1. Go to step (4).

The segmentation process is illustrated in Figure 5-18 and Figure 5-19. Thresholds d[w] for
segmenting each note are shown in the Figure 5-18 by horizontal lines.

1 8

16

14

1 2

1 0

8- -

4-

0 200 400 600 800 1000 1200 1400 1600 1800

Figure 5-18: The dynamic segmentation thresholds of the query in Figure 5-14.

Query:Over The Rainbow
250

1Z1

100 ------ - -- - - -- - - --- - - - - -- - --- ------ - - ---

50 -- - - - -- ----- - - -L-- ----------

............ II

0 1 I k. , 1I_

0 200 400 600 800 1000 1200 1400 1600 1800
tim e (window#)

Figure 5-19: The note segmentation and the pitch tracking results of the query in Figure 5-14
using ANS.

This example shows that using one fixed threshold (indicated by the longest horizontal line in
Figure, 5-18) instead of the dynamic thresholds cannot segment all the notes correctly, because
the amplitude may vary during the query; one best threshold for the whole query does not exist.

Amplitude-based note segmentation algorithms have add/drop errors occasionally. For
example, when the amplitude of one note is not stable, which may rise and fall so as to cross
the threshold several times, this note will be segmented into several notes and thus add errors
occur. When drop in amplitude between the consecutive notes is not clear, drop errors occur.
Using dynamic thresholds can significantly reduce add/drop errors, but cannot eliminate all of
them.

5.3.2 Pitch tracking

Pitch is actually a perceptual concept, but in this thesis pitch tracking means to find the
fundamental frequency (f) of the acoustic signals.

Considerations in choosing a pitch tracker include frequency range, frame rate, computation
time, error rate, and resistance to noise. Some system specifications also affect the accuracy of
the pitch tracker, including dynamic range of the microphone, sampling frequency, and
amplitude quantization.

The pitch tracking algorithms can be divided into three categories (Rabiner, 1976) (Roads,
1994):

(1) Time domain algorithms, which operate directly on the waveform to estimate the pitch
period. For these pitch trackers the measurements most often made are peak and valley
measurements, zero-crossing measurements, and autocorrelation measurements. The basic
assumption is that if a quasi-periodic signal has been suitably processed to minimize the
effects of the formant structure then simple time-domain measurements will provide good
estimates of the period. Classical algorithms include zero-crossing periodicity detector,
peak periodicity detector, autocorrelation pitch detector, etc.

(2) Frequency domain algorithms, which use the property that if the signal is periodic in the
time domain, then the frequency spectrum of the signal will consist of a series of impulses

at the fundamental frequency and its harmonics. Thus simple measurements can be made
on the frequency spectrum of the signal (or a nonlinearly transformed version of it as in the
cepstral pitch detector) to estimate the period of the signal. Classical algorithms include
STFT-based pitch detector, adaptive filter pitch detector, tracking phase vocoder analysis,
cepstrum analysis, etc.

(3) Time- and frequency-domain algorithms, which incorporate features of both the time-
domain and the frequency-domain approaches to pitch tracking. For example, a hybrid
pitch tracker might use frequency-domain techniques to provide a spectrally flattened time
waveform, and then use autocorrelation measurements to estimate the pitch period.

Since developing robust and fast pitch tracking algorithm is not the focus of this thesis and a
universal pitch tracking algorithm has not been developed - each algorithm has its own
advantages and disadvantages, we chose a most widely used algorithm Autocorrelation in our
system. The resulting pitch sequence will be quantized for melody matching according to the
quantization vector Q (refer to Section 5.1.4). For example, the frequencies of two consecutive
notes are f, and f 2, and Q = [0 1 3]. The pitch contour between these two notes will be

intv(f1 , f 2) = [12- log 2 (f 2 / f 1) + 0.5 (Eq. 5-13)

0 , intv =0

cont(fi, f 2)= sign(intv(f1 , f 2)) , intv = ±1,±2 (Eq. 5-14)

sign(intv(f1 , f2) .2 , o.w.

Autocorrelation (AUTO)

Autocorrelation is one of the classical pitch trackers. The autocorrelation function is computed
by Equation 5-15:

1 N-d
rN[d] =- x[n]x[n + d] (Eq. 5-15)

Nn=

where N is the frame size,
d is a positive delay,
x[n] is the signal, which is must be zero outside the frame, and

rN[d] is the autocorrelation at delay d.

By calculating the correlation between the signal and an increasingly delayed version of itself,
the highest level of correlation can be found. This maximum in the autocorrelation function
will occur at multiples of the pitch period length, allowing the frequency of the signal to be
calculated. By itself, autocorrelation is prone to be influenced by the strong formant structure
in speech, making it subject to harmonic errors (Hess, 1983). In our system, some simple rules
were used to reduce the harmonic errors.

5.3.3 Interfaces for obtaining beat information

Two interfaces have been implemented to obtain the beat information from hummed queries.

Interface I (INTF-I)

The usage of this interface is as follows:
(1) The user inputs the numerator of the time signature and a proper tempo for a query.
(2) When the user begins to record a query, there will be a drum track playing at the same time

based on the time signature and the tempo. Drum signals on strong beats are different from
those on weak beats, so that the user can easily identify measures based on the rhythmic
pattern.

(3) The user hums the melody with the drum signals. It can start from any measure, not
necessarily from the first measure.

(4) Since most current sound cards support to record only the sound from the microphone, the
recorded queries will not include the drum signals. Ideally, the users can use headphone to
hear the drum signals, so that the drum signals will not be recorded in the hummed queries.
The time when each drum signal occurs will be stored in a separate file for later query
construction.

Thus, we can obtain all the information necessary for melody matching using TPBM-I from the
recorded waveform query and the stored timing information, including

" Meter, which is actually the numerator of the time signature
" Pitch contour
" Relative beat number of each note, which remains the relative position within the

measure

Interface II (INTF-II)

The usage of this interface is as follows. When the user begins to record a query, he needs to
indicate the onset of each beat by clicking the mouse while he is humming. The drum signal
will be played when the user clicks the mouse. It simulates people's habit of using hand or foot
tapping the beat when humming songs. Similarly, the recorded queries will not include the
drum signals. The time when the user clicks each beat will also be stored in a separate file for
later query construction.

By this interface, we can only obtain the pitch contour information and the relative beat
numbers, which may not remain the relative positions within measures, from the recorded
waveform query and the stored timing information. Thus, TPBM-I matching method cannot be
used for queries by interface INTF-II, while only TPBM-II or DPM matching method can be
used.

5.3.4 Automatic beat tracking

The possibility of automatically extracting rhythmic information from the hummed queries was
also explored in the QBH project. An Optimal Alignment Method (OAM) is proposed as
follows.

Previous research on tempo or rhythm analysis of acoustic musical signals or music scores was
mainly based on fairly long music fragments, while rhythm analysis of short hummed queries
has not yet been conducted.

Additionally, building a system that can make rapid judgment about rhythm from a few
hummed notes can help people learn more about humans' perception of rhythm.

The Optimal Alignment Method (OAM) described in the following extracts beat information
that consists of the tempo of the query and the temporal position of each beat. In this thesis, we
call one possible arrangement of temporal positions of beats as an Alignment. It can be fully
specified by two parameters: tempo (r) and the onset of the first beat (p) as shown in Figure
5-20. Please note that the alignment shown in Figure 5-20 is apparently a poor one. Figure 5-21
shows alignments with different r and pa.

Query: Over The Rainbow
60 -

50 -

40 -

30 -

20

10

0
0 200 400 600 800 1000 1200 1400 1600 1800

Figure 5-20: The description of r (the tempo), p (the onset of the first beat) and a (the onset

of the first note).

500 1000 1500

500 1000 1500

500 1000 1500

2000

2000

L0040

20

0L

500 1000 1500

5001L10
500 1000 1500

Figure 5-21: In the first column are three different alignments whose onsets of the first beat
are the same, but tempos are different. In the second column are three different alignments
whose tempos are the same, but onsets of the first beat are different.

Assumptions

The hummed queries are usually very short; they may last for only a few seconds and include
several notes. Since the information is limited, we need some assumptions as our prior
knowledge for solving the problem.

Assumption 1:
Since the query is short, we can assume that the tempo remains constant across the whole
query. That means, r doesn't change.

2000

2000

2000

Assumption 2:
Due to the limitation of humans' singing, the tempo of hummed queries tends not to be too fast
or too slow.

Assumption 3:
The onset of the first note is also the onset of the first beat in the query. Thus, p equals a.

Optimal Alignment Method I (OAM-I)

The basic idea of this method is to find the most likely alignment. In OAM-I, all the three
above assumptions are assumed to be true. Thus, p will be the onset of the first note and we
only need to find the optimal tempo r . The following gives the description of OAM-I.

Step 1: Extract the note onsets from the hummed querv using ANS

Step 2: Calculate the likelihood of each note onset given an aliznment

The key part of our problem is to define the likelihood of an alignment. Given the alignment
and the onset position of one note, we first need to compute which beat and at what point
relatively within that beat the note will fall into and then calculate the likelihood of such a
position. The principle we used for calculating the likelihood is that the note onsets are not
equally likely to occur at any positions within a beat. For example, more notes would occur at
the beginning of the beat than at one-third part from the beginning of the beat. Thus, we
attempted to incorporate this prior knowledge into our method. Empirically, we set the
likelihood L(t) of each position within one beat to be as shown in Figure 5-22. It can be
calculated using Eq. 5-16 to Eq. 5-19.

0.5 -

0
10 0.25 0.5 0.75 1

0.5- L F--- ------- I ------- -- -
0 0.25 0.5 0.75 1

Figure 5-22: Onset likelihoods within one beat. Above: Ld(t) Below: Lc (t)

Lc(t) denotes the onset likelihoods within one beat:

Lc(t) = LA(NN(t)) (Eq. 5-16)

where t e [0,1) is the relative onset position within one beat. It is computed from the onset's
absolute time t., the tempo r and the onset of the first beat p, as shown in Eq. 5-17. Please
note that p here is fixed to be the onset time of the first note a in OAM-I.

t = (t, - P)* r -L(t, - p)* vrJ (Eq. 5-17)

NN(t) is used to find the nearest neighbor of t in T={0, 1/4, 1/3, 1/2, 2/3, 3/4, 9/10, 1}:

NN(t) = arg min(abs(t -s)) (Eq. 5-18)
seT

2

Ld (t) denotes the onset likelihood within one beat at positions in T:

Ld (t)= 1 -(t) + 0.5 -,5(t -1 / 2)

+0.2.5(t -1/4)+0.2 -5(t - 3/4) (Eq. 5-19)

+ 0.1 -(t -1/3) + 0.1 - (t -2/3)

+0 -9(t - 9 /10) +1 -((t -1)

where
t=0

0, t#w

The intuitive meaning of this definition is: notes occur most often at the beginning of beats,
less often the half way positions, then the quarter positions, and rarely the one-third positions
(for triples). We did not divide further because note onsets in hummed queries may not be
obtained precisely and usually hummed queries will not be that complicated. For positions
other than T={0, 1/4, 1/3, 1/2, 2/3, 3/4, 9/10, 1}, we simply find its nearest neighbor in T and
assign its value. Please note that the weights used in Ld (t) were empirically set, but it could

also be computed statistically from some music collections.

Step 3: Calculate the likelihood of an alignment

Here, we want to incorporate our second assumption: the tempo 1 should not be too fast or too
slow. We introduced a tempo preference function, which is shown in Figure 5-23 and Equation
5-20. It is a Gaussian function centered at an average tempo T, e.g., 1.6 beat per second
(96bpm) in our configuration.

0.5-

0
0 0.5 1 1.5 2 2.5 3

Figure 5-23: Tempo preference function L,(r)

L(r) = e~-T (Eq. 5-20)

Now, to calculate the likelihood of the alignment, we can average the likelihood of each onset
we have got in step 2 and then weight it by the tempo preference function, as shown in Eq. 5-
21. The results of this step are shown in Figure 5-24.

ILc (NN(t,)

)= -L,() (Eq. 5-21)
n

where n is the number of notes in the query.

0 .9 [
0 .8

0 .7

0 .6

0 .5

0.4

0 .3

0 .2

0 .1

0 0-

Figure 5-24:
alignment.

likelihood vs tempo

lhood with tempo p referee factor
i.elihood without terpo preference tapftor
te mpo p refterencue

Ii

I 'I

iii I I
a I~.

i 'I

0.5 1 1.5 2 2.5
tempo (beats per second)

Alignment likelihoods L(r) - the maximum corresponds to the optimal

Step 4: Choose the alignment with the maximum likelihood

We can calculate the likelihoods of a set of alignments (here means different tempos) given a
query and then the alignment with the maximum likelihood will be chosen as the optimal
alignment. Figure 5-25 shows the optimal alignment we chose for the example in Figure 5-14,
which corresponds to the maximum in Figure 5-24.

Query: Over The Rainbow

800 1000 1200
tim e (window#)

1400 1600 1800

Figure 5-25: The optimal alignment of the query in Figure 5-14 using OAM-I.

Optimal Alignment Method II (OAM-II)

In Optimal Alignment Method II (OAM-I), the third assumption may not hold (It rarely
happens though). Thus, we need to choose both the optimal tempo (r) and the optimal starting
position (p). The algorithm is similar to OAM-I except that when we try different alignments,
we should not only change the tempos, but also the onset of the first beat.

Y LjNN(t,))

L(r, p)= L (T) (Eq. 5-22)
n

where t, e [0,1) is the relative onset position within one beat. It can also be computed using

1
Eq. 5-17. But p here can vary from a -- to a.

T

The result using OAM-II on the above example is shown in Figure 5-26. Please note that the
likelihoods in the figure at X = 0 = p = a are the same as the results using OAM-I. Thus,
OAM-II is a generalized version of OAM-I. When the onset of the first note is also the onset of
the first beat in the query (it is typically true), the results of OAM-I and OAM-II should be
equal, though OAM-II will be slower. Otherwise, if the assumption is not true (usually because
the onset position of the first note is not determined precisely or the first note in the query does
start in the middle of a beat), OAM-II will get different results.

Te

Maxirum at [-0. 125, 1.4476] value=0.81095

O.8-

0.6,

30.4-

1-i

0.2 -1

0
2'

1.5 '0

-1/4
0.5 518 1/2 -3/8

0-3/4
Starting position

Figure 5-26:
(P - a) *r;

Alignment likelihoods of OAM-II for the above
Y: tempo r.

example. X: starting position

Query:Over The Rainbow

0 200 400 600 800 1000
time (window#)

Figure 5-27: The optimal alignment of the query in Figure 5-14 using OAM-II.

35 -

30 -

25 -

20 -

1200 1400 1600 1800

p' p-

Similar to INTF-I, we can only obtain the pitch contour information and the relative beat
numbers from the recorded waveform queries, which may not remain the relative positions
within measures. Thus, TPBM-I matching method cannot be used for queries by OAM, while
only TPBM-II or DPM matching method can be used.

5.3 5 Query representation

The final query will be converted into ASCII CGI format to be transmitted to the server side
for matching. The information capsulated in this format includes:

(1) Which matching algorithm to be used for this query: 1 for TPBM-I; 2 for TPBM-II; and 3
for DPM.

(2) How many most similar songs should be returned.
(3) Quantization vector Q.
(4) Time signature of the song. For TPBM-II or DPM, this field will be ignored.
(5) Pitch contour vector.
(6) Beat numbers vector. For DPM, this field will be ignored.

For example, the Over The Rainbow query in CGI format would be

http://bop.media.mit.edu/scripts/server.exe?mtype=l&maxnum=10&levels=0 1 3×ig=4
4&pitch=100 2 -1 -2 1 1 1 -2 2 -1&beat=1 3 5 5 6 7 8 9 11 13

which indicates that

(1) TPBM-I algorithm will be used for matching ("mtype=l ");
(2) Ten most similar songs will be returned ("maxnum= 10");
(3) Quantization vector Q = [0 1 3] ("levels=0_1_3");

(4) Time signature is 4/4 ("timesig=4_4");
(5) Pitch contour vector is [100 2 -1 -2 1 1 1 -2 2 -1] where 100 indicates the beginning

("pitch=100_2_-l_-2_1_1_1 -2 2 -1");
(6) Beat numbers vector is [1 3 5 5 6 7 8 9 11 13] ("beat=13_5_5_6_7_8_9_11_13"). The

beat numbers should still remain the relative positions within measures, but not necessarily
to be the same as the absolute beat numbers. That is, beat numbers [1 3 5 5 6 7 8 9 11 13]
or [5 7 9 9 10 11 12 13 15 17] will give the exactly the same results given the meter is 4.

CHAPTER 6 IMPLEMENTATION ISSUES

This chapter presents some technical details to build the QBH system efficiently, including the
database indexing, the server implementation and the client implementation. We also built an
ActiveX control version of QBH Client, so that we can embed our client application into web
pages.

6.1 Database Indexing
To make the system more time efficient, we built a set of persistent objects, melody description
objects, containing all the information needed for matching. Once QBH Client sends a request
to QBH Server, the server will load all the objects into memory first and then do the matching.
Thus, the persistent objects act as an efficient indexing of the song database. Please note,
database in this thesis is in its broader sense -- it means all the target songs and their indices
that are currently stored in the file system, not a strictly speaking database. However, for a
much larger music corpus, using a real database system instead of the file system should be
more efficient and easier to maintain. In that case, we can still use our persistent objects as
indexing by adding one more field pointing to the key of the song in the database; or use the
indexing mechanism supported by some database systems in a similar way.

The structure of the melody description objects is shown in Figure 6-1. The objects were built
using the melody extraction tool we developed in Section 5.2.

Data set object

Melody array Modify flag nmelodiesname

Melody Melody

Melody object

Number of Melody
Melody segment File name Title Genre Country Composer Time Source Annotation

segments array

Melody Melody
segment segment

Melody segment object

arbngflg tINumerator of Denominator Segment Pitch contour Beat number
signature signature length vector vector

Figure 6-1: Persistent melody description objects for database indexing.

6.2 QBH Server Implementation
Both QBH Server and QBH Client were implemented on MS Windows platform and
developed using Microsoft Visual C++.

We are currently using Microsoft Internet Information Server (IIS) as our web server, but other
web servers on Windows platform supporting CGI can certainly be adopted as well. QBH
Server performs as a CGI program, which will be called by the web server. Thus, the web

server obtains the query from QBH Client and passes the query
Server performs as shown in Figure 6-2:

Initialize; load the melody
description objects and the query

Parse the query

Match the query with the melodies
using the matching algorithm

indicated in the query

to QBH Server. Then, QBH

Find the most similar songs and
sort them

Save the query and its results into
the log file

Return the results to the client

Figure 6-2: Procedure of QBH Server.

6.3 QBH Client Implementation
QBH Client (Figure 6-3) records the hummed melodies, constructs queries, sends them to QBH
Server and plays the results. It performs as shown in Figure 6-4. The waveform recording and
playback part was developed using MS DirectSound. The MIDI playback was developed using
Media-player ActiveX control. All the pitch tracking and beat tracking algorithms were
implemented using Matlab; and then the Matlab programs were compiled using Matlab MCC
and embedded into C++ code.

Figure 6-3: Interface of QBH Client.

Figure 6-4: Procedure of QBH Client.

6.4 AXClient - AxtiveX Implementation of QBH Client
We also implemented an ActiveX version of QBH Client - AXClient. AXClient can be
embedded directly into the web page. Users can run AXClient by clicking the link in a web
page using Windows Internet Explorer without installing it in advance (Figure 6-5).

Figure 6-5: The web page embedded with QBH AXClient.

ActiveX controls are the third version of OLE controls (OCX), providing a number of
enhancements specifically designed to facilitate distribution of components over high-latency
networks and to provide integration of controls into Web browsers.

We chose ActiveX instead of Java applet to fulfill the goal of allowing QBH Client to be
embedded into web pages, because a Java applet has more security constraints, which make it
difficult to manipulating client side hardware (sound card) directly and write the temporary
sound files in the local machine. Since sound recording in Java applets is implemented by
JVM, currently, the sound quality recorded by most major JVMs is very poor. On the other
hand, sound recording in ActiveX control is by direct system call, so the recording sound
quality is good. Additionally, ActiveX (executable binary code) runs faster than Java applets
(bytecode interpreted by JVM).

The structure of QBH AXClient is illustrated in Figure 6-6. We built QBH AXClient by
wrapping the standalone QBH Client in the ActiveX control shell. Then we packed QBH
AXClient in a compressed cabinet file ("QBHweb.cab") along with other necessary files, such
as Matlab libraries, and signed the file, so that users can download it faster and verify it before
running.

Figure 6-6: Structure of QBHAXClient.

CHAPTER 7 EXPERIMENTS AND EVALUATION

This chapter presents our experiments and the results for evaluating the system. The
experiment procedure, the data set, apparatus and subjects are described. The accuracy of our
note segmentation, pitch tracking and beat tracking algorithms is presented. The statistics of
the hummed queries, including histograms of pitches, intervals, query lengths and tempi, are
shown. The effectiveness of interfaces and algorithms based on both perfect queries and real
queries is presented at last. Experimental results demonstrate that our methods combining both
pitch and rhythmic information do help improving the effectiveness of the query-by-humming
system.

7.1 Method

7.1.1 Procedure

Ten musically trained and untrained subjects participated in the experiment. There are two
primary goals of this experiment. One is to collect some hummed queries to adjust the
parameters used in the algorithms and to test the QBH system. The other is to explore the
melody perception issues involved in such a system. For example, what is the typical tempo
and length the subjects hum as a query? How accurate can the subjects memorize and hum the
melody in terms of both pitch and rhythm? Are there any significant differences between
professionals and amateurs?

The procedure of the experiment was as follows.

1) The experimenter explained the procedure and the purposes of the experiment,
demonstrated how to run QBH Client, e.g., how to choose different interfaces or
algorithms, record queries and search. At least one practice trial was used to familiarize the
subject with the experimental procedure and to set the amplification at a comfortable
listening level.

2) The subject chose at least 5 familiar songs from a web page including hundreds of well-
known pop or classical songs. Then he wrote down the titles, genres and how well he knew
the songs.

3) For each song, the subject hummed the melody to let the system search the song in the
whole database (about 8000 songs). All the subjects were told to hum the queries with
syllable da. The subject could determine from where and how long he hummed the melody
for each query. In the query process, different algorithms might be used.

4) The computer returned ten songs with highest matching scores. The subject judged which
one was correct. If the correct song was among the returned songs, the subject went on to
the next song in his query list; otherwise, if the correct song was not among the retuned
songs, he could either skip the current song to search the next one in his query list or hum
the current one once more to repeat searching.

5) Finally, the subject was asked to fill in a questionnaire.

The subject was allowed to play the songs linked in the web page before he hummed the
melody to make sure that it was the song he knew, but he was not encouraged to do so. The
subjects were encouraged to proceed at their own pace. All the subjects took one to two hours
to complete the experiment, which depended on the number of queries.

All the hummed queries, constructed ASCII queries and the configurations (algorithms,
interfaces, parameters that were configured in the option dialog) the subjects chose for the
queries correspondingly were stored in the local machine, so that the experimenter can analyze
all the data offline.

All the subjects were randomly divided into two groups with 5 subjects each. Subjects in
Group A participated in the pilot experiments, whose goal was to test the experiment
equipment and the stability of the system. Subjects in Group A were told to use any
combinations of algorithms and interfaces they prefer for each song. The experimenter was
present when the subject did the queries to check the experiment pace and problems involved.

Subjects in Group B participated in the formal experiments. They were told to use four
different combinations of algorithms/interfaces for each song. The four combinations were: (1)
using TPBM-I for matching and INTF-I for obtaining rhythmic information. (2) using TPBM-
II for matching and INTF-II for obtaining rhythmic information. (3) using TPBM-II for
matching and OAM-I for obtaining rhythmic information. (4) using DPM for matching and
thus rhythmic information was not necessary. Therefore, the subjects needed to hum at least
three times for one queried song, corresponding to the first three combinations respectively,
and the last combination can use any of the three queries (say, the third query) by just changing
the matching algorithm without humming once more. The experimenter was not present when
the subject started the queries after the practical trial demonstrating the subject had already
been able to use the software.

7.1.2 Query data set

All the songs linked in the experiment web page were MIDI files downloaded from the
Internet. They were classified into English pop (about 300 pieces), Chinese pop (about 100
pieces), Christmas songs (about 20 pieces) and classical songs (about 10 pieces). The subject
could first go into a specific category through the corresponding link and then browse to find
his familiar songs. All the songs within one category were listed in alphabet order based on the
titles and with a MIDI files linked to each title. Most of the songs were well-known pieces,
especially for subjects from English-speaking countries or Chinese-speaking countries.

All these MIDI files were assumed to have monophonic melody tracks and inserted into the
melody database using the algorithm described in Figure 5-10. Through the experiment, we
found several MIDI files only had polyphonic melody tracks or had no melody tracks at all,
which caused corresponding search failures. But this kind of files were no more than 10% of
all the MIDI files contained in the experiment web page by analyzing the experiment result and
no more than 1% of all the files contained in the melody database because MIDI files
converted from score files (>7000/8000) did not have such errors. In the following, the failures
caused by this kind of score errors will be denoted as SCORE ERR.

7.1.3 Apparatus

Both QBH Client and QBH Server run on the same laptop PC machine for all the experiments.
The client and the server communicated locally. The experiments were done at a soundproof
booth to prevent environmental noise.

All the experiments for Group B were done using exactly the same facilities. The same headset
with microphone for PCs was used for sound recording and playback.
In the pilot experiments for Group A, the subjects were using different microphones. Some of
the subjects used headphones, while others did not.

7.1.4 Subjects

The subjects were recruited with emails. All subjects were from colleges or companies around
Cambridge. Table 7-1 to Table 7-7 show the demographic information about the ten subjects'
profile and musical background. The statistics of the subjects show that most subjects
participating in our experiments did not have special singing training or professional music
background. They were typically amateurs who like singing. We can expect that for future
query-by-humming applications these people will be the major part of the users.

Table 7-1: Subjects'gender.

Male Female
Group A 3 2
Group B 2 3

Table 7-2: Subjects' age.

23-30 31-40 41-50 51-60 >60
GroupA 2 1 1 0 1
Group B 3 0 2 0 0

Table 7-3: Subjects' occupation.

Undergraduate Graduate Professor Other Non-
student student academic academic

GroupA 0 1 2 1 1
GroupB 0 4 0 0 1

Table 7-4: Subjects' native language.

English speaker Chinese speaker Spanish speaker
Group A 3 1 1
Group B 3 2 0

Table 7-5: Subjects' music experience.

Music Amateur who Amateur who only Not a
major likes practicing likes appreciating music fan

Group A 2 1 2 0
Group B 1 4 0 0

Table 7-6: Subjects'singing experience.

Professional Amateur who Amateur who likes Someone who
likes singing and singing but seldom does not like

practices a lot practices singing
Group A 1 1 3 0
Group B 0 3 2 0

Table 7-7: Subjects' score reading experience.

0 (none) 1 2 3 4 (proficient)
GroupA 1 1 1 0 2
Group B 0 0 2 2 1

7.2 Results

7.2.1 Note segmentation and pitch tracking

It is difficult to precisely evaluate the accuracy of the note segmentation and pitch tracking
algorithm, because the procedure cannot be automatic. My method is that I listened to each
query and then compared it with the transcription done by the computer. Thus, the note
segmentation errors and harmonic errors in pitch tracking can be easily found, while the
precision errors in pitch tracking were hard to be found. The main criteria for evaluating the
pitch tracking accuracy is that the relationship between continuous notes (intervals) should be
roughly correct. In this way, the errors that were not detected should be very limited.

Table 7-8 shows the statistics of the note segmentation and the pitch tracking error rate based
on hummed queries by subjects in Group B. The errors are divided into three categories: drop
errors (losing notes or merging notes), add errors (adding notes) and harmonic/pitch errors.
Please note that the drop errors are mainly due to the deficit of the note segmentation
algorithm, but they might also be caused by the pitch tracking errors (especially harmonic
errors), because in our note segmentation algorithm, if the note pitch is detected to be out of
range between 100Hz and 1000Hz, the note will be discarded. It happened rarely that some
subjects hummed notes beyond this frequency range.

Table 7-8: Note segmentation and pitch tracking errors based on hummed queries by subjects
in Group B.

Drop errors Add errors Harmonic/pitch errors Total errors
Sub. 1 2.7% 0.4% 0 3.1%
Sub. 2 7.7% 0.7% 0.5% 8.9%
Sub. 3 3.6% 0 3.6% 7.2%
Sub. 4 1.4% 1.7% 1.4% 4.5%
Sub. 5 2.3% 0.5% 0.6% 3.4%

Average 3.4% 0.9% 0.9% 5.2%

7.2.2 Automatic beat tracking

It is also hard to precisely define and evaluate the accuracy of the beat tracking algorithm. My
method is that I listened to each query, judged the rhythmic structure of the query (where beats
should occur) and then compared it with the beat tracking result computed by the computer.
The beat tracking results were represented in two ways:

(1) Visual representation: The query is represented as horizontal lines indicating notes
obtained from the note segmentation and pitch tracking algorithm, and vertical lines
indicating beats computed by the beat tracking algorithm.

Figure 7-1: The interface for displaying pitch tracking and beat tracking results.

(2) Audio representation: The query can be played back with drum signals added at the
positions where beats occur according to the algorithm, so that the experimenter or users
can easily judge if the beat tracking result is correct.

Table 7-9 shows the statistics of the beat tracking performance using different algorithms based
on hummed queries by subjects in Group B. If there are multiple queries corresponding to one
target song and the beat tracking results of one or more of the queries are correct (may not be
all), then the beat tracking result of the trail for the song is counted as correct. Besides OAM-I
and OAM-II, we also tried OAM-I with simplified Lc (t) (shown in Figure 7-2) and OAM-I

without considering the tempo preference factor. The results demonstrate that both OAM-I and
OAM-II performed above 70% correct, while III and IV performed slightly worse.

Table 7-9: The performances of the algorithms. I: OAM-I; II: OAM-I; III: OAM-I with
simplified onset position likelihood within one beat; IV: OAM-I with equally likely tempos. q:
correct; X: wrong; 2: the tracked tempo is twice faster; %2: the tracked tempo is twice slower;
1/3: the tracked tempo is three times slower.

Note# I II III IV
Subject 1 1 16 4 4 4 4

2 36 % / 1/2 %2
3 18 4 X 4 2
4 19 4 4 1/3 4
5 21 X X X X
6 50 4 X X 4
7 32 % 2 /2

Subject 2 1 21 X 4 2 2
2 22 4 4 4 2
3 22 4 4 4 2
4 31 4 4 4 2
5 18 4 4 4 4
6 14 X 4 X X
7 38 4 4 4 4
8 15 4 4 4 4

9 16 4 4 4 4
10 16 44 4 4
11 15 4 4 4 4

Subject 3 1 22 4 4 4 2
2 9 4 4 4
3 17 X X X X
4 17 4 4 4 4
5 10 4 4 4 4
6 15 X 4 x 4
7 8 4 x 44

Subject 4 1 15 4 4 4 4
2 31 4 x 4 4
3 31 4 4 4 4
4 30 4 4 4 4
5 23 4 4 4 4
6 31 4 x 4 4
7 24 4 4 4 4

Subject 5 1 16 X X X X
2 13 4 4 4 4
3 25 X X 2 X
4 19 4 4 x 4
5 16 X X 4 x
6 15 x 4 4 x
7 14 4 4 4 2
8 16 44 4 4
9 30 44 4 4
10 25 2 X 2 X
11 24 4 4 4 4
12 22 X 4 X 2
13 15 4 4 4 4

Accuracy 71% 71% 69% 62%

1

0.5-1-

0

0 0.25 0.5 0.75 1

0.5

0
0 0.25 0.5 0.75 1

Figure 7-2: Simplfied onset likelihood within one beat.

Please note that the rhythmic patterns of the queries were often but not always consistent with
rhythmic patterns of the queried songs, because the subjects sometimes transformed the rhythm

of the original piece. Later results (Section 7.2.4) will show that some subjects tend to do so
due to inaccuracy of the long-time music memory.

The performance of Optimal Alignment Method (OAM) demonstrates that computer
determination of beat information from hummed queries is feasible.

We have also tried to determine the musical meter from the hummed queries: the time
signature and each beat's position within a measure based on principles that the number of note
occurrences depends upon the meter, the highest number is at the position of the beginning of
the measure, and listeners attempt to place long notes on strong beats (Brown, 1993) (Howell,
1985). However, the results did not turn out to be accurate. One reason is that the query is too
short to accumulate sufficient information for such judgment. This is consistent with humans'
perception: although listeners attempt to establish a metrical analysis as soon as possible
(Howell, 1985), sufficient clues and long enough time are needed.

One interesting thing is that when human listeners listen to hummed queries, they feel easier to
perceive the rhythmic patterns of some queries, while they feel those of others somewhat
ambiguous. This could be determined by the singer's singing ability, the song's rhythm and the
listener's familiarity with the song (music memory). In our experiment, the likelihood L gives a
measure of certainty of the rhythm. The correlation between this measurement and humans'
actual rhythm perception can be explored in the future.

7.2.3 Statistics of the hummed queries

The following statistics is based on the hummed queries by subjects in Group B. All the data
were computed automatically using ANS note segmentation and AUTO pitch tracking
algorithms. The tempo related data were obtained using INTF-I, INTF-II and OAM-I
respectively according to the subjects' options. The error rates of these algorithms have been
presented in Section 7.2.1 and Section 7.2.2.

Pitch histograms (in Hz) of the hummed queries

Since the perceived pitch is a logarithmic transformation of frequency, the bins of the
histogram were not equally spaced, instead, they were divided in this way:

Ci+1 = 21/12 (Eq. 7-1)Ci
where Ci. 1 and Ci are the centers of the (i+1)'h and the ih bins respectively. Thus, the range of
each bin is roughly one semitone.

Pitch histogram of subject I in group B Pitch histogram of subject 2 in group B

120 120

100- 100

80- 80-

60 60

40- 40

20- 6 1 20

50 100 150 200 250 300 350 50 100 150 2 250 300 350
Frequency (Hz) mn=1 85.7599 d=60.7485 Frequency (Hz) m=r245.2327 d=64.159

Pitch histogram of subject 3 in group B
40

35--

30-

25-

20 -

15-

10

5

50 100 150 200 250 300 350
Frequency(Hz) m=182.078 d=81.3316

Pitch histogram of subject 5 in group B
0

80m

70-

60-

50

40

30

20

10-

50 100 150 200 250 300 350
Frequency (Hz) m=240.607 d=62.4629

Pitch histogram of subject 4 in group B

100 150 200 250
Frequency (Hz) m=286.4799 d=85.0638

Pitch histogram of al subjects in group B

An0 k

50 Fe u zu zou
Frequency (Hz) m=r240.0395 d=81.7564

Figure 7-3: Pitch histograms of the hummed queries by subjects in Group B. Subjects 1 and 3
are male. Subjects 2, 4 and 5 are female.

Figure 7-3 shows that usually people do not hum too high or too low for the queries. 100Hz to
350Hz might be the typical range for both female and male users.

Interval histograms (in semitones) of the hummed queries

Interval histogram (in semitones) of subject 1 in group B

150-

0 ' -
-30 -20 -10 0 10

irterval (semitones) m=0.062799 d=2.6242

inerval histogram (in semnitones) of subject 2 in group B
200

180

160

140

120

100

80

60

40

20-

0-
-30 -20 -10 0 10 20 30

interval (semitones) m=-0.058217 d=2.8514
20 30

300 350

300 350

100

hItenl Nstogrm (in semitones) of subject 3 in group 0
90

80-

70-

60-

50-

40-

30-

20-

10-

0 ' - ""
-30 -20 -10 0 10 20 30

intenl (senitones) m=-0.30699 d=3.5529

hIerval hstogrm (in semikones) of subject 5 in group B

kenel Nstogram (in senitones) of suject 4 in group B
300

250-

200 -

150 -

100-

50-

0 -
-30 -20 -10 0 10 20 30

Inlanal (semitones) m=0.094193 d=2.5905

Intenal istograrn (in semitones) of al subjects in group B
200 1000

180- 900-

160- 800-

140- 700-

120 600 -

100- 500-

80- 400-

60- 300-

40- 200-

20- 100-

0 - -"- 0 -
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20

intenal (semitones) m=-0.030598 d=2.4651 Intera (senitones) m=0.0069912 d=2.7025

Figure 7-4: Interval histograms of the hummed queries by subjects in Group B.

Interval histogram (in semitones) of all subjects in group B
20

0

2 5

-2 1 5 -10ii -5 38ii 0 5 10 ei 15 ea 2 0 0

i~~~~~~~~~~~~~I I Is .1 : I

Figure17-0: The average in of th hummed quere by subjects iI t th l i u r i n Figre . 7-)
2 0L 5

Figu""e 7-5: The average interval histogram of the hummed queries bygsubjects in Gru B
(euvln to th lati in Fiur . 7-4). i88itii igi0gae

25

2 0 ---++++-- -,.......r T r- i -++ -++++ -+---a) 154

10

1, 1 .4 . .. - -. . .- - I , , , , . - -T - - -0~

-12 -10 -8 -6 -4 -2 0 2 46 8 10 12

Figure 7-6: The interval histogram of the whole music corpora (same as Figure 5-13-c).

Comparing the interval histogram of the hummed queries with that of the whole music corpora,
it is very interesting to see that the queries tend to have smaller interval changes. The reasons
for this phenomenon might be:

" It is easier for people to memorize the parts of melodies with smaller interval changes,
which should also be the "hook" of the melody.

* People tend to pick the parts with smaller interval changes for query, because it is
easier to sing.

* People tend to compress wide intervals and stretch small ones.

It is not clear though which reason contributes more to this phenomenon.

There are more intervals of minor second (one semitone) appearing in the hummed queries. It
should be caused by the inaccuracies of the users' singing and the pitch tracking algorithm.

Query length histograms (number of notes per query) of the hummed queries

Querylength histogram (in notes) of subject I In grot B Query length histogram (in notes) of subject 2 in group B
68

7-
5-

6-

4
5-

3- 4-

3-
2 -

2-

1 - -

0 | 1[-1- -
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of notes per query m=26.A211 d=10.9486 Number of notes per query m-19.1837 d=8.7623

74

Querylength Nsogram (in notes) of suject 4 in group B

7 0010 20 30 40 50
Number of notes per query m=13.8095 d5.2595

Query length islogram (in notes) of subject 5 in group B

10 20 30 40 50
Nrnberofnotes per query m=22.9032 d=8.1898

Query length Nstogram (in notes) of ai sujects in group B

9-

8- 20.

7 --

6- 15-I-10 -
3-

2- 5 II

0 00 10 2 IL, m
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of notes per query nm=16.5294 d=6.845 Number of notes per query m=20.3484 d=9.2003

Figure 7-7: Query length histograms of the hummed queries by subjects in Group B.

Please note that the queries with no notes correspond to the situations that the subjects clicked
the recording button but hummed nothing. The histograms show that a typical query contains
ten to thirty and often less than twenty notes.

Query length histograms (seconds per query) of the hummed queries

erylenglhistogram On seconds) of subject I In grou B

5 10 15 2 5
Time lengith per query (s) m=14.732 d=6.0938

30 35

Query tengt Nstogram on seconds) of subject2 In group B

all3A
5 10 15 20 25 30 3

Time length per query(s) ,n=1 1.1661 d4G

5

4.5-

4-

3.5

3-

2.5 -

2-

1.5-

0.5-

0-1
-5 0

Query length Nislogram (in notes) of subject 3 in group B

5

4.5

4

3.5

3

2.5

2

1.5

0.5

0
.5

Query length histogram (in seconds) of suject 4 in group BQuery length histogram On seconds) of subject 3 in group B

0 5 10 15uei 20 25 30 35

T n (s) m=6.3802 d2.1025

Query length istogram (in seconds) of subject 5 in group, B

35

8 25

7 --

20-
6-

5 15-

4-

3 - -10 -

2-
5 -

0 ' ' ' 0
-S 0 5 10 15 20 25 30 35 -5 0 5 10 15 20 25 30 35

Time length per query (s) m=9.6125 d=4.1413 Times lenigth per query (s) mr-11.7059 d=5.2604

Figure 7-8: Query length histograms of the hummed queries by subjects in Group B.

Similar to the above, the queries with 0 second correspond to the situations that the subjects
clicked the recording button but hummed nothing. The histograms show that a typical query is
five to twenty and often about ten seconds long.

Note length histograms (milliseconds per note) of the hummed queries

Note length histogram On miliseconds) of subject 1 In group B
200

180-

160-

140

120-

100-

80-

40-

20-

0
-500 0 500 1000 1500 2000 2500 3000

Time length per rote (ms) m=26.4211 d=10.9488

Nole length histogram On minseconds) of subject 2 in group B
140

120-

100-

80

60-

40

20

-600 0 500 1000 1500 2000 2500 3000
Tim length per note (ms) m=19.1837 d=8.7623

i 0 5 10 I1 20 25 30
Time length per query (s) m=13.8038 d=4.5761

Note length histogram (in milseconds) of subject 3 in group B

40 -

20 -

0 '. L AL 'I'
-500 0 500 1000 1500 2000 2500 3000

Time length per note (ms) m=13.8095 d=5.2595

Note length histogram (in millseconds) of subject 5 in group B

00
-500 0

- - -- -

500 1000 1500 2000 2500 3000
Time length per note (ms) m=16.5294 d=6.845

Note length histogram (in rmniseconds) of subject 4 in group B

200 F

01 ' - -"

-500 0 500 1000 1500 2000 2500 3000
Time length per note (ms) m=22.9032 d=8.1898

Note length histogram (in riliseconds) of all subjects in group B
amo

600-

500-

400-

300-

200-

100-

0 '
-500 0 500 1000 1500 2000 2500 3000

Time length per note (ms) m=355.6744 d=288.3478

Figure 7-9: Note length histograms of the hummed queries by subjects in Group B.

Tempo histograms (beats per minute) of the hummed queries

Tempo histogram (in bpm) of subject I in grop B
14

12-

10-

8-

6-

4-

2-

0
-50 0

1 mi-
-50 0 50 100 150 200 250 300

Tempo (bpm) m124.1896 d=32.2762

Tempo histogram (in bpm) of subject 2 In group B

50 100 150 200
Tempo (bpm) m=1 11.3691 d=27.0114

250 300

Tempo histogram (in bpm) of subject 3 in group B

20-
3-

2.5- 15-

2-

1.5- 10-

0.5-

016 -' 01
-50 0 50 100 150 200 250 300 -50 0 50 100 150 200 250 300

Tempo (bpm) m=143A218 d=43.1413 Tempo (bpm) m=106.5608 d=95.5657

Tempo histogram (in bpm) of subject 5 in group B Tempo histogram (in bpm) of al subjects in group B
12 S0

45-
10-

40-

35-
8-

30-

6 25

20-
4

4 15-

10-
2-

5-

0 0 -- -
-50 0 50 100 150 200 250 300 .50 0 50 100 150 200 250 300

Tempo (bpm) m=115.8498 d=44.7891 Tempo (bpm) m=116.3043 d=60.0413

Figure 7-10: Tempo histograms of the hummed queries by subjects in Group B.

The histograms show that a typical query is as fast as about 100 bmp. The shape of the tempo
histogram is roughly a Gaussian distribution, which is consistent with our tempo preference
function (see Section 5.3.4).

7.2.4 Effectiveness of interfaces and algorithms

This section shows the effectiveness of our interfaces and algorithms based on both perfect
queries and real queries. When using perfect queries, we use margin to evaluate the
effectiveness of our methods incorporating rhythmic information compared with the most
widely used method without rhythmic information (DPM matching method). When using real
perfect queries, we usefirst hit rate to evaluate the effectiveness of our methods compared with
the pitch-only method. Both measures indicate that our methods (especially TPBM-I/INTF-I
and TPBM-II/INTF-II) outperform the previous method (DPM).

Using perfect queries

Similar to the method we used in Section 5.1.6, we first use perfect queries to test the precision
of different representations and matching algorithms, but this time the queries were not
randomly generated from any portion of any song, instead, they were actually the seventh
queries by each subject in Group B, thus totally five queries corresponding to five different
songs. The queries were truncated from the corresponding songs starting at the note the
subjects first hummed and ending at different positions in the songs to construct perfect queries
with various lengths. We can still use the number of songs with perfect match (matching score
equals 1) as a measure, but after the query is sufficiently long, the precision will be 1 no matter
which representation and matching method is used. Given that, we propose to use Margin to
measure the precision.

Tempo histogram (in bpm) of subject 4 in group B

Margin = { nI
second highest score

n >1

n =1
(Eq. 7-1)

where n is the number of songs with perfect match. Thus. If there are multiple songs matching
the query perfectly, margin will be less than 1; otherwise, margin will be greater than 1. In
either case, the greater the margin, the more likely the right song will be returned uniquely and,
thus, the better performance.

The margin varying with the query length (notes per query) is shown in Figure 7-11. The
performance of each perfect query is shown first and then the average performance is shown at
last. Please note that although it is generally true that the margin increases when the query
length increases, it does not increase monotonically.

Query My faort Ihing
2

. -- - - - - -

1 1 --
.2 - I

4 1

.6 - - - - - - -- T - - - -~ -

A --
4
-i - --

0- TPBM4
2 -- - -A+-TPBM-I

0 4 DPM

5 10 15 20 25 3
quey engt (nots)

Query: Mr. Sa nun
.8

2 - 44

.6 - - - - - - - - - -

S-- -- -- - -

8 - - - - - - - - - - - - -

.6 - - - - -J- - - - - - r ---------- T -----

8------------------i

2 I 4 I -O-PBMl
DPM

5 10 15 20
qur yng-h(nots)

25 30

Query- Raindrops keep fang

.6 - - - - - ----------------.

. - -- - - -

--- 4-- --- - - - --

.6- - - - - - - - - |-- - - - - - - - - - -

A- - - -~ - - -

+TPBM42- TPBM-1
0 - 'DPM

5 10 15 20 25 3
querylegl (nts)

Qury: Prety woman

I 4

.6 - - - --

1 - - - - - +- - - - -- I - - + - ----

.8 - -

.6-- - ---- 1------ -- -- ------ ---- T -- -

-- - -

FI Ig, _ M
0 1

0 I IDPM

5 10 15 20 25 31
queyl ng(nots-)

1.8 .

1.6 - -- - - - 16

1.4 - - - - - -- - - - - -- 1 - - - - - -4

1.2 -- - - - -12 - - -T - - - - -

S0.8 - - -

0.6 - - - --

0.4 -- - - - - - --- -

TFM- r I I I

02- - - - -- -- -- --

-A F P M_ -I I F P M-

0F -DPM FDPM

5 10 15 20 25 305 10 1 20 25 30
query lenp (notes) qtmryleng (notes)

Figure 7-11: Margin vs query length based on perfect queries.

The experiment shows that on the average, TPBM-I outperforms TPBM-II, and TPBM-II
outperforms DPM, which is the most widely used pitch-only method. And it is almost
impossible to get unique perfect match (precision=]) without considering the rhythmic
information if the query length is shorter than ten notes. We can imagine that the query will
need to be much longer to get unique result if the melody database is ten or even hundred of
times bigger, which would be true for a real commercial system. The users, on the other hand,
would not like to hum too long to get the right song, especially sometimes they can memorize
only very short phrases of the song (say, hooks or motives).

Using real queries

The margin using perfect queries is an important measure describing the effectiveness of a
representation and matching method, but it is not sufficient, because we also need to consider
the fault tolerance issue. For example, the exact matching method (score=] if the query and the
song exactly match; otherwise score=O) can always get the maximum margin performance, but
it is not fault tolerant at all. Therefore, we still need evaluate the system performance based on
real queries. Reports to evaluate other existing query-by-humming systems in this way were
never seen before.

Table 7-10 shows the statistics of query performance using different algorithms based on
hummed queries by subjects in Group B. If there are multiple queries corresponding to one
target song and the best result among the trails for the song is reported in the table. In the table,
(n, in) indicates that the right song appeared Wthin the resulting songs sorted by matching scores
from high to low and songs from the ne to the mthgot the same scores. So we want both n and
m to be as small as possible and ideally (1, 1), indicating the right song and only the right song
got the highest matching score, which is called first hit. FHR (First Hit Ratio) in this table
means how many of the queried songs got first hits. If the right song did not show up in the top
ten songs with highest matching scores, it is indicated by Score errors (See Section 7.1.2)
are indicated by SCORE ERR. The songs with score errors were not counted in computing
FHR.

Query Yesterday once morm average of the five queries

Table 7-10: Query performance by subjects in Group B.

Subject I 1
2
3
4
5
6
7

FHR

Subject 2 1
2
3
4
5
6
7
8
9

DPMTPBM-I
INTF-I

(1,1)
(2,2)
(1,1)
(1,1)
(1,1)
(2,4)
(1,1)
71%

(1,1)
(1,1)

(1,1)
(1,1)

(1,1)
(1,1)

TPBM-II
INTF-II

(2,2)
(1,1)
(1,1)
(1,1)
(1,1)

(1,1)
71%

(1,1)

(1,1)

(1,1)

TPBM-II
OAM-I

(1,1)

(1,1)
(1,1)

(1,1)

(1,1)

11 (1,1)
FHR 70%

(1,1)

40%

(1,5)

(3,10) -
30% 30%

(8,10) (7,10)
- (1,4)

(1,1) - - -

(1,1) - - (1,1)

50% 0 17%

Subject 4 1
2
3

7
FHR

Subject 5

(1,1)
(1,1)

17%

(1,2)
(1,1)
(2,3)

(8,8)
(1,1)
(1,1)

17%

(1,1)
(1,1)
(1,1)

-1,1
(1,1)
(1,1)

- (1,1)
(1,3) (1,1)

- (1,1)
(1,1) (1,1)

- (1,1)

(1,1) (1,1)
33% 100%

(1,1)

(1,2)
(2,6)

(1,1)

(1,1)
(1,1)

(1,1)

(2,10)
(2,2)
(1,1)
(1,1)
(1,1)

(1,1)
57%

(1,1)

(1,1)
(1,1)

SCORE ERR
(2,4)

Subject 3

5
6
7

FHR

SCORE ERR

SCORE ERR

8 (1,1) (1, 1) (1, 1) (1,1)
9 (1,1) (1, 1) (1,1) (1, 1)
10 - - - (1,1)

11 (1,1) (1,1) (1,1) -
12 (1,1) (1,1) - -

13 (1,1) (1,1) (1,1) (1,1)
62% 85% 46% 54%

The performance shows that most subjects (subjects 1, 2, 3 and 5) did improve their query
effectiveness using some method incorporating rhythmic information (TPBM-I/INTF-I or
TPBM-II/INTF-II). The combination of TPBM-II and OAM did not perform as well as it was
estimated (compare the beat tracking performance shown in Table 7-9), because sometimes
even the beat tracking result is correct according to the query, it does not mean that the subject
hummed the query in a rhythmic pattern same as the original song. This might have two
reasons: some songs have different versions with different rhythmic patterns; the subjects could
not memorize the rhythm of the song accurately.

Additionally, pitch tracking errors impact the performance of every combination.

Only one subject in Group B did better using pitch-only method, because this subject hummed
the queries very accurately in pitch but always transformed the rhythms of the original songs.

Actually, from the experiments, we found the difference between musically trained and
untrained people is significant in terms of long-term musical memory. For very familiar and
frequently heard songs, e.g., Christmas songs, all users can hum very accurately both in pitch
and in rhythm, while for songs that have not been heard for a long time, musically trained
people usually still can hum very accurately, but musically untrained people hum with large
transformation both in pitch and in rhythm.

We also found that by using different interfaces to obtain rhythmic information, the subjects
may change the way they hummed. For example, some subjects tended to hum slower when
they used 1NTF-II, but hum faster when they used the algorithmic beat tracking method.

According to the questionnaire from the subjects in Group A and Group B, the preferences of
using rhythmic information for query and the methods for obtaining those rhythmic
information are shown in Table 7-11 and Table 7-12.

Table 7-11: Subjects' opinion with regard to using the rhythmic information for query.
Question: "Did you feel it useful to add beat information for query?"

0 (useless) 1 2 3 4 (very useful)
The number of subjects who chose 1 0 1 5 3

the corresponding scale

Table 7-12: Subjects' preference regarding the interfaces for obtaining the rhythmic
information. Question: "Which beat tracking interface do you prefer?"

INTF-I INTF-II OAM-I
The number of subjects who preferred 4 1 5

the corresponding interface

Although INTF-I or INTF-II performed better than OAM-I, many users preferred the
algorithmic beat tracking method for obtaining rhythmic information, because they wanted the
interface for obtaining rhythmic information to be more natural and friendlier; in that case,
automatic beat tracking is the best choice. Most users did not like INTF-II because they felt it
hard to get used to the interface of indicating beats by clicking the mouse, although it is natural
for people to clap hands along with music.

On the whole, most users felt the rhythmic information useful and experimental results
demonstrate that rhythmic information did help improving the effectiveness. We found that
properly incorporating the rhythmic information will not only narrow down the search, but also
make the system more fault tolerant to the pitch related errors due to the users' singing skill
and the deficiency of the pitch tracking algorithm.

7.3 Summary
This chapter presents our experiments and the results for evaluating the QBH system. Most
subjects had no special singing training or professional music background. Normal instead of
professional apparatus was used for recording and running the system. Thus, the experiments
were designed to simulate the real-world task of searching for music on the Internet with a
query-by-humming interface.

The statistics of the hummed queries, including histograms of pitches, intervals, query lengths
and tempi, give us an overview of typical hummed queries. This information will be very
helpful for adjusting parameters, refining algorithms or even developing personalized
interfaces so as to improve the effectiveness of a query-by-humming system. Additionally, it
gives us some observations about humans' melody perception process, e.g., what is the typical
tempo, length or portion of a song the subjects hum as a query? How accurate can the subjects
memorize and hum the melody in terms of both pitch and rhythm? Are there any significant
differences between professionals and amateurs?

We also give statistics of the effectiveness of our algorithms, the interfaces and the system as a
whole. Two measures are proposed to evaluate the performance of a query-by-humming
system: margin based on perfect queries and first hit rate based on real queries. We expect
greater margin and first hit rate, which corresponds to better precision and recall (concepts
mostly used in text-retrieval systems). Experimental results show that both of the measures
improve significantly using our methods incorporating rhythmic information compared with
previous pitch-only method (refer to Figure 7-11 and Table 7-10). Therefore, for most users
using our methods will improve their chance to find the songs that they search for, even if they
cannot sing perfectly. The experiments based on real queries as in this thesis were not reported
before.

CHAPTER 8 CONCLUSIONS

This thesis has explored the melody retrieval problem from two perspectives: as a practical
solution to a query-by-humming system, and as a scientific inquiry into the nature of the
melody perception process.

A new melody representation, which combines both pitch and rhythmic information, and new
approximate melody matching algorithms were proposed and shown to be more effective than
previous pitch-only methods. A set of practical and real-time automatic transcription
techniques customized for the query-by-humming system to obtain both pitch and rhythmic
information were adopted in the system. A useful tool to build a melody database from various
symbolic representations including score formats and MIDI format was developed. A
deliverable query-by-humming system including both the server application and the client
application has been built and is accessible online.

In our experiment, the melody representation and the melody matching methods with rhythmic
information outperformed the method without rhythmic information for most users. This result
demonstrates that incorporating rhythmic information properly can significantly improve the
effectiveness of query-by-humming systems. Meanwhile, users want the interface for obtaining
rhythmic information to be more natural and friendlier; in that case, automatic beat tracking is
the best choice. Although algorithmic beat tracking proposed in this thesis for automatically
obtaining rhythmic information from hummed queries did not perform as well as INTF-I or
INTF-II, its accuracy is still promising and at least it should work very well for musically
trained users.

We also have other interesting findings from our experiments, though the quantitative statistics
are not shown in the thesis. For example, the difference between musically trained and
untrained people is significant in terms of long-term musical memory. For very familiar and
frequently heard songs, e.g., Christmas songs, all users can hum very accurately both in pitch
and in rhythm, while for songs that have not been heard for a long time, musically trained
people usually still can hum very accurately, but musically untrained people hum with large
transformation both in pitch and in rhythm. These findings suggest to us that a query-by-
humming system may use different matching methods customized to different users according
to their music background and singing skill to achieve best performance.

Finally, I would like to answer the question asked by one subject, "When will the system be
available in music stores so you can easily find the music you have in mind?" To make query-
by-humming systems commercialized and practical, the main difficulty is how we can extract
and tag the melodies of existing songs in waveform, which may be located anywhere over the
web, and build efficient indices pointing to these songs based on the melodic information.
While automatically extracting melodies from songs in waveform is still too hard, we can
manually tag the melodies of songs by music providers and/or record companies using some
standard format, so that search engines can easily understand the melody description
information and use the techniques described in this thesis to find music for the users. Actually,
the standardization task is in process by the MPEG-7 committee; I sincerely hope commercial
systems will show up and serve all music lovers very soon.

References
Brown, Judith C. "Determination of the meter of musical scores by autocorrelation". J. Acoust.
Soc. Am. 94:4, Oct. 1993.

Chai, Wei and Vercoe, Barry. "Using user models in music information retrieval systems." Proc.
International Symposium on Music Information Retrieval, Oct. 2000.

Chai, Wei and Vercoe, Barry. "Folk music classification using hidden Markov models." Accepted
by International Conference on Artificial Intelligence, June 2001.

Chen, J. C. C. and Chen, A. L. P. "Query by rhythm: an approach for song retrieval in music
databases" Proc. Eighth International Workshop on Reasearch Issues In Data Engineering, 1998.

Chou, T. C.; Chen, A. L. P. and Liu, C. C. "Music database: indexing techniques and
implementation." Proc. International Workshop on Multimedia Database Management Systems,
1996.

Chu, Stephen and Logan, Beth. "Music Summary Using Key Phrases". CRL Technical Report,
2000.

Dannenberg, Roger B., Thom, Belinda, and Watson, David. "A Machine Learning Approach to
Musical Style Recognition". International Computer Music Conference, 1997, pp. 344-347.

Dowling, W. J. "Scale and contour: Two components of a theory of memory for melodies."
Psychological Review, vol. 85, no. 4, pp. 341-354, 1978.

Dowling, W. J. and Harwood, D.L. Music Cognition. Academic Press, 1986.

Edworthy, Judy. "Melodic contour and musical structure." Musical Structure and Cognition.
Academic Press, 1985.

Foote, Jonathan. "Methods for the automatic analysis of music and audio". FXPAL Technical
Report FXPAL-TR-99-038.

Foote, Jonathan. "An overview of audio information retrieval". In Multimedia Systems, vol. 7 no.
1, pp. 2-11, ACM Press/Springer-Verlag, January 1999.

Ghias, A.; Logan, J.; Chamberlin, D. and Smith, B. C. "query by Humming: musical information
retrieval in an audio database." Proc. ACM Multimedia, San Francisco, 1995.

Goto, Masataka and Muraoka, Yoichi. "A beat tracking system for acoustic signals of music."
ACM Multimedia 94 Proceedings (Second ACM International Conference on Multimedia),
pp.365-372, October 1994.

Goto, Masataka and Muraoka, Yoichi. "Real-time Rhythm Tracking for Drumless Audio Signals --
Chord Change Detection for Musical Decisions." Working Notes of the IJCAI-97 Workshop on
Computational Auditory Scene Analysis, pp.135-144, August 1997.

Handel, S. Listening. Cambridge, MA: MIT Press, 1989.

Hewlett, Walter B. and Selfridge-field, Eleanor. Melodic Similarity: Concepts, Procedures, and
Applications. MIT Press, 1998.

Howell, Peter; Cross, Ian and West, Robert. Musical Structure and Cognition. Academic Press,
1985.

Huron, David. "Perceptual and cognitive applications in music information retrieval." International
Symposium on Music Information Retrieval, October 23-25, 2000.

Juang, B. and Rabiner, L. "A Probabilistic Distance Measure for Hidden Markov Models ". The
Bell System Technical Journal, vol. 64, pp. 391--408, 1985.

Kerman, Joseph. Listen. Brief 4th ed., c2000.

Kim, Youngmoo; Chai, Wei; Garcia, Ricardo and Vercoe, Barry. "Analysis of a contour-based
representation for melody". Proc. International Symposium on Music Information Retrieval, Oct.
2000.

Kosugi, N.; Nishihara, Y.; Kon'ya, S.; Yamamuro, M. and Kushima, K. "Music retrieval by
humming-using similarity retrieval over high dimensional feature vector space." Proc. IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing, 1999.

Lee, C.S. "The rhythmic interpretation of simple musical sequences: towards a perceptual model."
Musical Structure and Cognition. Academic Press, 1985.

Levitin, D. J. "Memory for Musical Attributes" from Music, Cognition, and computerized Sound,
ed. Perry R. Cook. Cambridge, MA: MIT Press, 1999, 214-215.

Lindsay, A. T. Using contour as a mid-level representation of melody. MS thesis. MIT Media Lab,
1996.

Liu, C. C.; Hsu, J. L. and Chen, A. L. P. "Efficient theme and non-trivial repeating pattern
discovering in music databases", Proc. 15th International Conference on Data Engineering, 1999.

Maidin, Donncha 6. "Common practice notation view users' manual". Technical Report UL-CSIS-
98-02, University of Limerick.

Martin, Keith D. Sound-Source Recognition -- A Theory and Computational Model. PhD
dissertation. MIT Media Lab, 1999.

McNab, R. J.; Smith, L. A.; Witten, I. H.; Henderson, C. L. and Sunningham, S. J. "Toward the
digital music library: tune retrieval from acoustic input." Proc. ACM Digital Libraries, Bethesda,
1996.

MiDiLiB, University of Bonn, http://leon.cs.uni-bonn.de/forschungprojekte/midilib/english.

Nettl, Bruno. Folk and Traditioanl Music of the Western Continents. 2d ed. Prentice-Hall, 1973.

Pollastri, E. "Melody-retrieval based on pitch-tracking and string-matching methods." Proc.
Colloquium on Musical Informatics, Gorizia, 1998.

Pye, David. "Content-based methods for the management of digital music." International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2000.

Rabiner, L. R.; Cheng, M. J.; Rosenberg, A. E. and McGonegal, C. A. "A comparative
performance study of several pitch detection algorithms", IEEE Trans. on Acoustics, Speech and
Signal Processing, vol. ASSP-24, no.5, 1976, 399-418.

Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech
recognition". In Proc. of the IEEE Volume: 77 2 , Feb. 1989 , Page(s): 257-286.

Roads, Curtis. The Computer Music Tutorial. Cambridge, MA: MIT Press, c1994.

Scheirer, E. D. Music-Listening Systems. PhD dissertation. MIT Media Lab, 2000.

Scheirer, Eric D. "Tempo and beat analysis of acoustic musical signals." J. Acoust. Soc. Am.
103:1, pp 588-601. Jan 1998.

Selfridge-Field, Eleanor. "Conceptual and representational issues in melodic comparison". In
Melodic Similarity, Concepts, Procedures, and Applications, MIT Press, 1998.

Sloboda, John A. and Parker, David H. H. "Immediate Recall of Melodies." Musical Structure and
Cognition. Academic Press, 1985.

Talupur, Muralidhar; Nath, Suman and Yan, Hong. "Classification of music genre." Technical
Report, 2001.

Themefinder, Stanford University, http://www.ccarh.org/themefmder.

Tseng, Y. H. "Content-based retrieval for music collections." Proc. Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 1999.

TuneServer, University of Karlsruhe, http://wwwipd.ira.uka.de/tuneserver.

Tzanetakis, George and Cook, Perry. "A framework for audio analysis based on classification and
temporal segmentation". In Proc. Euromicro, Workshop on Music Technology and Audio
processing, Milan, September 1999.

Tzanetakis, George and Cook, Perry. "Audio Information Retrieval (AIR) Tools". In Proc.
International Symposium on Music Information Retrieval, Oct. 2000.

Uitdenbogerd, A. L.and Zobel, J. "Manipulation of music for melody matching." Proc. ACM
International Conference on Multimedia, 1998.

Uitdenbogerd, Alexandra and Zobel, Justin. "Melodic Matching Techniques for Large Music
Databases." Proc. ACM International Conference on Multimedia, 1999.

Watkins, Anthony J. and Dyson, Mary C. "On the perceptual organization of tone sequences and
melodies." Musical Structure and Cognition. Academic Press, 1985.

Wold, E.; Blum, T.; Keislar, D. and Wheaten, J. "Content-based classification, search, and retrieval
of audio." IEEE Multimedia Volume: 33, Fall 1996, Page(s): 27 -36.

