
State Estimation for a Holonomic Omniwheel

Robot Using a Particle Filter

by

MASSACHUSETrSiSr--
OF TECHNOLO y

I AUG 2 4 2
Donald S. Eng

S.B., E.E.C.S. M.I.T., 2009 LIBRAR-~

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

ARCHIVES
May 2010

02010 Massachusetts Institute of Technology
All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole and in part in

any medium now known or hereafter created.
n '4l

)

Author
Department of Electrical En eering and Computer Science

May 21, 2010

Certified by

Dr. Leslie Kaelbling Prores!Mr tf Computer Science* ' Engineering
Thesis Supervisor

Accepted by
V . ,rm maer J. Terman

Chairman, Department Committee on Graduate Theses

State Estimation for a Holonomic Omniwheel

Robot Using a Particle Filter

by

Donald S. Eng

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT
The holonomic robot platform designed for the Opera of the Future must perform continuously
on stage in a 10 meter by 20 meter world for one hour. The robot interacts with twelve other
robots, stage elements, and human performers. Fast, accurate, and continuous state estimation for
robot pose is a critical component for robots to safely perform on stage in front of a live
audience. A custom robot platform was designed to use a Particle Filter to estimate state. The
motor controller was developed to control robot vectoring and report odometry, and noise
analysis on an absolute positioning system, Ubisense, was performed to characterize the system.
High frequency noise confounds the Ubisense measurement of 0, but the Particle Filter acts as a
low pass filter on the absolute positions and mixes the high frequency components of the
odometry to determine an accurate estimate of the robot pose.

Thesis Supervisor: Dr. Leslie Kaelbling
Title: Professor of Computer Science and Engineering

Table of Contents
Section Page

1 Introduction
1.1 Fast Real-time State Estimation 7
1.2 Influence of Robot Aesthetics 8
1.3 Overview of Design Work 8
1.4 Designing Experiments 8

2 Robot Drive System Design
2.1 System Overview 12
2.2 Python Joystick Control 12
2.3 Hardware Overview 14

2.3.1 Arduino Mega, Atmega 1280 14
2.3.2 Encoders 15
2.3.3 H-bridges 17

2.4 Motor Controller Firmware 18
2.4.1 Designing Motor Controller Firmware 18
2.4.2 Speed Calculator 20
2.4.3 PID velocity control 20
2.4.4 Velocity Transform Equations 21
2.4.5 Final Event Timing Configuration 22

2.5 Odometry Results 23
2.5.1 Adjusting Odometry Constants 23
2.5.2 Path plots 24
2.5.3 Cross comparisons 25
2.5.4 Analysis of Odometry 25

3 Robot Absolute Positioning
3.1 Introduction to Ubisense 26

3.1.1 Selecting an absolute positioning system 26
3.1.2 Ubisense Technology 28
3.1.3 Ubisense Tag Update Slots 29

3.2 Sensor Network Topology 30
3.2.1 Sensor Network Layout 30
3.2.2 Tag Locations on the Robot 31

3.3 Noise Characteristics 32
3.3.1 Stationary Tags 32
3.3.2 Moving Tags 33

3.4 Filtering Tags 35

3.5 Synchronizing Odometry and Absolute Positioning 38
3.5.1 Adding Offsets 38
3.5.2 Warping Time 39

3.6 Preliminary Combined Results

4 Particle Filter for State Estimation
4.1 Particle Filter or Extended Kalman Filter 41

4.1.1 Advantages and Disadvantages 42
4.1.2 Particle Filter Implementation 42

4.2 Characterizing the filter 43
4.2.1 Representation of Belief 43
4.2.2 Representation of State 44
4.2.3 Selection of Particles 45

4.3 Particle Filter Update 45
4.3.1 Updating cloud from odometry measurements 45
4.3.2 Updating cloud from Absolute Positioning measurements 47
4.3.3 Reselecting Particles 49
4.3.4 Behavior summary 50

4.4 Particle Filter Results 51
4.4.1 Animation of Filter 51
4.4.2 Results Representation 52
4.4.3 Comparing Non-holonomic and Holonomic 54
4.4.4 Analysis of Directionality 57
4.4.5 Analysis of Random Track 59
4.4.6 Issues from Manual Drive 60

5 Conclusions
5.1 Particle Filter Performance 60
5.2 Particle Filter Improvements 61
5.3 Implementation in Real time 61

6 Acknowledgements 62

7 References 62

8 Appendices 63

8.1 Python Joystick Control Code 63
8.2 Firmware Code 68

8.2.] Main Module 68
8.2.2 PID Module 75
8.2.3 Encoder Class Module 78
8.2.4 Motor Assembly Module 81

8.3 Matlab data processing code 83
8.4 Matlab Particle filter code 92

Table of Figures

Figure Title Page

1.1 Picture of the Opera Robots 71

1.2 Robot Base and Omniwheel. 8
113 World and Tracks 9
1.4 Experiment Conditions 10
1.5 Illustrations of Experiments 10

I Robot Controls System Overview 12

22 1 Mapping Joystick Position to Robot Velocity 13
2.3 Velocity Mapping Example and Python Serial Interface 13

2.4 . Odornetry Data Packet Protocol 141

2.5 The Arduino Mega 15

2.6 Image of Encoder and Disc 15

Interrupts for Encoder Sampling Illustrating Counting Techniques 16

2.8 H-bridge and Servo Control Signal. 18

2.9 Overview of Motor Controller Firmware 19

Feedback Control Diagram 19

2.11 1 PID Response Curve 721

2.12 Vector Transform Diagram for Holonomic Drive 21

2.13 Final Event Timing Diagram 22

2.14 Rescaling of Angular Rate 23

[2.15 Odometry Path Plots for Experiments 1-9 24

3.1 Ubisense Noise Model and Reflections 27

3.2 Error Analysis for UWB Signals 27

3.3 Ubisense Operation illustration 28

3.4 Solution Sets 29

3.5 Tag and Sensor Geometries 30

3.6 Linear Tag Interpolation 32

3.7 Ubisense x, y, 0 Histograms for Stationary Tag Noise 33

3.8 Ubisense Absolute Positioning Path Plots for Experiments 1-9 34
3.9 Ubisense Measurement of 0 for Holonomic Circles Unfiltered 35

3.1 Comparison of Ubisense Measurements for Robot Vectors 35

3.11 Histogram for Ubisense Robot Diameter Measurements 36
[3.12 Ubisense Robot Vectors Filtered and Removed for Holonomic CCW Circles 37
3.13 Histograms for Filtered and Removed Ubisense Measured 0 for Holonomic CCW Circles 37

....
3.14 Pre and Post Offsets for Combining Ubisense and Odometry Data 38

3.15 Removing the Odometry Time Warping 39

[.16 Scaled and Offset Ubisense and Odometry Time Courses for Rectangular CW Track 40

3.17 Cross Section of Sin(0) Cos(0) Time Courses (1 00-200s) for Rectangular CW Track 41

4.1 Belief Representation with Particle Cloud 43

4.2 Transition Update with Odometry 45

Adding Process Noise to Odometry Measurements
4.4 Observation Model Based on Measured Robot Diameter 48

4.5 Creating a New Cloud by Reselecting Particles 49
4.6 1 Illustration of Reselection and Addition of Initial Process Noise 50
4.7 Typical Evolution of Belief Distribution 51
4.8 Animations of Odometry, Ubisense, and the Particle Filter. 52
4. Cross Comparison of Path Plots for Experiment 1, Rectangle CW 53
4.1 Cross Comparison of Time Courses for Experiment 1, Rectangle CW 53
4.11 Cross Section of Sin(O) Cos(O) time course (100-200s). 54
4.12 CrossComparison of Path Plots for Experiment 4, Non-holonomic CCW Circles 54
4.13 Cross Comparison of Time Courses for Experiment 4, Non-holonomic CCW Circles (100- 55

150s).
4:14 Cross Comparison of Path Plots for Experiment 6, Holonomic CCW Circles __________ 56
4.15 Cross Comparison of Time Courses for Experiment 6, Holonomic CCW Circles (100-150s). 56
4.16 f Cross Comparison of Path Plots for Experiment 7, Switchback Suboptimal 571
4. 17 . Cross Comparison of Time Courses for Experiment 7, Switchback Suboptimal (100-150s).
4.18 Cross Comparison of Path Plots for Experiment 8, Switchback more Optimal 58
4.19 Cross Comparison of Time Courses for Experiment 8, Switchback more Optimal (100-150s). 58

.20 Cross Comparison of Path Plots for Experiment 9, Random Track. 59
4.21 Cross Comparison of Time Courses for Experiment 9, Random Track 59

5.1 Path Plots for Experiment 6 Varying Particles, Holonomic CW Circles 61

1 Introduction

The Opera of the Future group at the MIT Media lab is conducting a robot opera to be performed

in Monaco in early September 2010. There are many technical components for the visualization

of the opera including: robotic interactive walls, voice modifying devices, a giant musical

chandelier, and a multiagent robot system. The multiagent robot system is composed of twelve

7ft tall robots. This research concerns the design and implementation of a single robot for this

multiagent system.

1.1 Fast Real-time State Estimation

Figure 1.1: Picture of the Opera Robots. (A) The
Opera of the Future will feature walking robots and
several triangular holonomic robots. (B) The control
and state estimation of the holonomic robots are the
focus of this research

The robots will perform on stage for roughly an hour during the opera. Because they will be

operating simultaneously and sharing the stage with actors, robotic walls, and other stage pieces,

accurate localization is a critical component in designing the robots. It is imperative that the

robots maintain a safe distance from the stage boundaries and the audience. There is an obvious

safety concern for the audience and the performers with twelve 300 pound robots dancing around

the stage.

Another issue is the speed of the robots. To maintain the proper aesthetics the robots need to

operate gracefully and quickly around the stage. The robots will drive at roughly walking speed

around the stage. This aspect is another challenge for accurate state estimation. Fast, accurate

state estimation for an extended period of time can be achieved with a combination of odometry

and absolute positioning. Therefore the design of the robots was conducted from the bottom up.

...... :: :: I

1.2 Influence of Robot Aesthetics

At the request of the opera director, the robot mechanics were designed for a holonomic drive

system. This design choice allows the robots to glide around the stage translating in any direction

while performing graceful spins. While aesthetically pleasing, the holonomic drive mechanics

provide another challenge for accurately estimating the robot's location on stage.

Figure 1.2: Robot Base and Omniwheel. (A) The triangular robot based used for experimentation. (B) A
close up of one of the omniwheels

A triangular wheel configuration was implemented using a set of three omniwheels. The

triangular configuration was selected for stability on stage to keep the robot in three points of

contact with the ground at all times. A previous non-holonomic two wheel drive system caused

the robot to oscillate dramatically because of its height. It was decided that the two wheel system

was mechanically unstable and aesthetically undesirable. However, omniwheels are designed to

slip during translation which can cause inconsistencies in the robot odometry.

1.3 Overview of Design Work

The design of the robot drive hardware was carefully considered to report odometry readings.

Custom firmware for controlling the robot drive configuration was designed, written, and

implemented. An appropriate absolute positioning system was researched and selected for robot

M

localization. Finally, these components were integrated into a localization engine for post

processing with a custom Particle Filter for the robot's state estimation.

Because this research serves as a proof of concept for accurate real-time state estimation, post-

processing the odometry and absolute positioning data is an acceptable solution. The success of

this research will support the implementation of a similar state estimation algorithm onboard

each robot to be run in real time. Once implemented onboard, the state estimator should be

directly compatible with the robot odometry hardware and the absolute positioning system

chosen.

1.4 Designing Experiments

(B) 20 m

Figure 1.3: World and Tracks. (A) Image of the warehouse used for running experiments with the
experimental tracks outlined. (B) Illustration of the world and tracks from an aerial view.

The robot was tested in a large empty warehouse. Its world is roughly defined by a lOim by 20m

rectangle. Two tracks were carefully measured and laid out in the robot world: a 7m by 15m

rectangle and a 3m in diameter circle. The robot was run on bare concrete, which represents a

lower bound on the condition of the actual stage. The bare floor is pitted and contains a number

of inclusions and separations where old tiling has not been removed. These floor features

provided a handful of challenges for the robot odometry because of the inevitable wheel slippage

over the uneven surface.

... ------- - - - - '... I I.M.. M

Figure 1.4: Experiment Conditions. (A) Documentation of floor features. (B) The robot base tethered to the

computer via USB for joystick control.

While several test runs were made setting up the localization engine, nine base line experiments

were chosen for post processing. The robot was run tethered to a computer for odometry data

collection and joystick control. The robot was human controlled for the experiments. To

compensate for human error running over the track, several laps were made on each track to see

the effects of odometry slippage and the accuracy of the absolute positioning system over an

extended period of time. While the human error was significant at times during the

experimentation, the tracks were large enough that this should appear as high frequency noise.

(1)t- (7 1(8)

Figure 1.5: Illustrations of Experiments. The robot was driven in experiments 1-9 are as follows 1)

Rectangle CW 2) Rectangle CCW 3) Circle CW 4) Circle CCW 5) Holonomic circle CW 6) Holonomic

circle CCW 7) Switchbacks in suboptimal location 8) Switchbacks in more optimal location 9) Random track

with irregular input.

The nine base line experiments are shown in the figure 1.5. For experiments 1 and 2 the robot

was driven for 10 laps on the rectangular track clockwise (1) and counter clockwise (2) with the

typical non-holonomic drive. For experiments 3 and 4, several laps were run on the circular track

clockwise (3) and counter clockwise (4) as if the robot were a non-holonomic system. For

experiments 5 and 6, several laps were run on the circular track clockwise (5) and counter

clockwise (6) using the robot's holonomics having the robot maintain a constant heading. For

experiments 7 and 8, several quick switch backs were made on the left (7) and again on the right

(8) as if the robot were non-holonomic. Finally for experiment 9, the robot was driven randomly

around the world with a series of non-holonomic and holonomic motions, small rings, and short

switchbacks.

These experiments were chosen because for the variety of motions they capture. Experiments

were run clockwise and counter clockwise to compare any skew in directionality. The

rectangular experiments 1 and 2 test for a mix of long and short distances over a straight line and

sharp turns. Experiments 7 and 8 test repetition, short distances over a long period of time, a high

frequency of change, and extremely sharp turns.

A comparison of non-holonomic and holonomic drives was performed across experiments 3-6.

Again, directionality was considered for analyzing angular drift. The ring experiments also test

longevity with a low frequency input. Finally, experiment 9 combined the motions captured in

each individual experiment. Experiment 9 tests the effectiveness of the state estimator to

transition between non-holonomic and holonomic movements and irregular inputs.

For each experiment, the odometry data was collected from the robot at roughly 10Hz and

written to a data file on the robot control computer with the elapsed time between odometry

measurements. A server running the absolute positioning system recorded robot positions at

exactly 4Hz with time stamps. These two data files were post-processed with the state estimator.

Because these two computers were running independently, there was a combination of clock

skew from the two systems and a slight inaccuracy in the elapsed time between odometry

measurements. Hand pre-processing of the two data files was conducted to line up the two data

sets to run simultaneously. The effects of this hand processing are apparent and discussed more

fully in section 3.5

2 Robot Drive System Design

2.1 System Overview

Joystick Ctoer Cnolr-.219- H-Bridges -1,20 Moor

"jVs Encoders +---"

Figure 2.1: Robot Controls System Overview. The joystick input is parsed by a Python program, x, y, 0
velocities are sent to the motor controller, control signals to the H-bridges change the voltages applied to
each motor, quadrature shaft encoders provide speed measurements for feedback control.

The high level overview of the robot drive system is shown in figure 2.1. The joystick is used for

user input. The joystick then feeds into a Python joystick module to process the joystick

positions. A short Python script was written to convert these joystick positions into x, y, 0

velocities. These velocities are converted into serial commands and using a Python serial module

these desired velocity commands are sent to the robot motor controller for execution at a data

rate less than 50Hz

The robot motor controller is developed on an Arduino Mega, which is running an ATMEGA

1280. The motor controller takes in x, y, 0 velocities and converts them into the three

corresponding motor velocities. A PID control loop is run on the motors for speed control. The

output of the PID control is converted to a servo signal and passed to the three motor H-bridges.

An encoder is attached to each motor and provides a speed measurement for the Arduino motor

controller. Finally, odometry readings calculated by the motor controller are sent back to the

Python joystick control program at roughly 10Hz via serial communication.

2.2 Python Joystick Control

The joystick represents position as a floating point number in the range [-1, 1]. The position on

the x-y axis of the joystick controls the robot velocity along its x-y axis respectively in

proportion to the joystick's position. Twisting the joystick imparts a rotational velocity onto the

12

robot proportional to the position. Throttling the joystick controls the maximum speed of the

robot attenuating the proportionality. The Python module calculates the appropriate x, y, 0

velocities based on the position of the joystick and the throttle. These velocities are converted

into serial commands to be sent to the motor controller.

throttle + 1
Ypo1*41

S x = v -xpos (127)

1

Throttlel= [-1.0, 1.0]

v - ypos (127)

= vO,os (127)

2 bytes 'X': x

2 bytes 'Y':

2 bytes 'T': 6

Figure 2.2: Mapping Joystick Position to Robot Velocity. A 3axis joystick maps axis positions to values [-

1, 1], these values correspond to x, y, 0 velocities and are attenuated by a throttle knob, converted into serial

commands, and sent to the robot. The robot has bounded velocities between [-2, 2] m/s and [-pi/2, pi/2] rad/s.

(0.0, 1.0,0.2) 4

0(1 1.00) A2)
2 bytes
2 bytes

2 bytes

Seal 'D' packtet
-1 Hz 17 bytes

Figure 2.3: Velocity Mapping Example and Python
Serial Interface. (A) Example mappings from joystick

position to desired robot x, y, 0 velocities (B) serial

interface module converts joystick positions into serial
commands (Ibyte precharacter, 1 byte value). The
interface also parses data packets from the motor
controller.

The serial protocol was decided arbitrarily because the motor controller firmware is a custom

program. Two bytes are sent to communicate a desired velocity. A velocity pre-character is sent

in front of a 1 byte velocity command. The precharacter denotes which velocity x, y or 0 is to be

-1 9E

YPOS

xpc,

(B)
To *.at file -

serial interface

byte to float

float to byte

set. The motor controller program checks this pre-character before setting the desired velocity to

verify a valid serial command.

' ' t(106) (,$C)(3)Xgg)(103)

Precharacter Elapsed time since Measured velocity for Desired velocity from

last packet (ps) each motor (mm/s) Python (mm/s)

1 byte 4 bytes 6 bytes

3x(2 bytes) |3x(2 bytes)

Figure 2.4: Odometry Data Packet Protocol. A 'D' is sent as the packet precharacter to validate serial
transmission followed by 4 bytes for the elapses time (in microseconds) since the last packet was sent, three 2
byte signed integers for the velocity (in mm/s) for each of the 3 motors, and three 2byte signed integers for

the desired x, y, 0 velocity at the time this packet was sent.

In addition to sending desired velocities to the motor controller, the Python joystick control

program receives odometry data from the motor controller. The motor controller sends data back

to the Python program at semi-regular intervals at roughly 10Hz. Data is sent in 17 byte packets.

The packet break down is shown in figure 2.4. A packet pre-character is sent as 1 byte , then the

time elapsed in micro seconds from the last packet is sent in 4 separate bytes, followed by 2

bytes for each of the 3 measured motor velocities, and 2 bytes for each of the 3 desired velocities

in terms of x, y, 0 for that time step. Python writes these values to a data file in semi-regular

intervals. These odometry measurements can be integrated during post processing to determine

the robot position based on the measured velocities and elapsed time (dt).

2.3 Hardware Overview

2.3.1 Arduino Mega, Atmega 1280

The Arduino Mega was chosen for the motor controller for its 54 GPIO. The Arduino

Duelmilove has only 12 GPIO. The motor controller requires 6 IO for the encoders (3-AB signal

channels), 6 10 for the H-bridges (3-servo signal, 3-safety signal), and more IO for

miscellaneous safety and status LEDs.

14

Figure 2.5: The Arduino Mega. Off the shelf microcontroller used for the motor controller.. Image taken

from http://arduino.cc/en/Main/ArduinoBoardMega

The native clock on the Arduino Mega can run scheduled interrupts at 32kHz for sampling the

encoder signals. However, at 32kHz the interrupts run too frequently for the Arduino to do any

useful work. Instead the interrupts are run at 15kHz and a lower resolution encoder was chosen

to meet the aliasing requirements.

In general, the Arduino platform was selected to develop the motor controller because of its

flexibility and practical debugging. An off the shelf solution for a 3 motor omniwheel controller

board was not cost effective, and did not give enough freedom for control and data collection.

The available motor control boards were for mixing 4 motors not the desired 3, and these could

not perform the motor vectoring calculations needed for the triangular configuration.

2.3.2 Encoders

Figure 2.6: Image of Encoder and Disc. (A) The encoder mounted on a gear box shaft. (B) a cross

comparison of encoder resolutions at 100ticks/in and 1000ticks/in. The disc with 100ticks/in was used

because of limitations on sampling frequency.

The encoders chosen have 100 ticks per inch, and are relatively low resolution for encoders. To

determine encoder counts and direction, the typical algorithm samples only a quarter of the

available clock edges. A modified algorithm was used to acquire 4 times the native resolution at

a cost of 4 times the computation during interrupts.

This is another reason why the 32kHz interrupt rate could not be implemented. At 32kHz the

sample rate would be well above Nyquist for the predicted wheel velocities. While the sample

quality would be high, the encoder positions would be extremely coarse. It is also impossible to

run the modified algorithm at 32kHz because the interrupts are too short. Operating the interrupts

at 15kHz sacrifices some sampling quality, but the resolution is increased for a small trade off in

computation time.

A_

BI
II F

AH A A4 K
B Bt B B4

X A A AA kA A AA A-AnI
A B Bi El B N T BB B B B BB5 B B 3k:

XAA A A A AB 15 kHz
11 F B BS B IB B B B B

A4 A At

(A)B B9 B Bt (B)

Figure 2.7: Interrupts for Encoder Sampling Illustrating Counting Techniques. (A) corresponding
signals for A, B when counting encoder ticks at every edge signal edge. (B) comparison of interrupt
frequencies 32kHz and 15kHz, identical counts from signals A, B, but 15kHz frees up twice as much time for
other computations.

The typical counting scheme looks only at a single channel for a single type of edge. For

example, the interrupt might only look at channel A for rising edges. If A is rising, and B is low
16

then there is a 'plus' count. If A is rising and B is high then there is a 'minus' count. This is an

extremely fast computation, but only a quarter of the clock edges are being used.

The modified scheme uses rising and falling edges of both channels. If A is rising and B is low

or if A is falling and B is high then there is a plus count or if B is rising and A is high or if B is

falling and A is low then there is also a plus count. The minus count is just a logical negation of

the above calculation. This is implemented in code as the following.

//edge detection then state detection
if (t A != e A){

if (t A)

tick cur += (tB ? 1 -1);
else

tick cur += (tB ? -1 1);

if (t B != e B){
if (t B)

tick-cur += (tA ? -1 1);

else
tick cur += (tA ? 1 -1);

e B t _B;
e A = tA;

Here e A and e B are the previous values of the encoder signals A, B from the last sample. The

variables tA and tB are the current values of the encoder signal A, B, and tickcur is

the current value of the ticks for this encoder. It is reset every time the speed is calculated, and

represents the number of ticks that have transpired.

This actually becomes very expensive because of branching in the if blocks. There are 4

times as many branches which consume a large amount of processing time. The advantage is an

increase in the encoder resolution from 350 ticks per wheel revolution to 1400 ticks per wheel

revolution.

2.3.3 H-bridges

The motors are specified are driven at +-24V DC, and can draw at peak loads 30A. To control

speed and direction of the drive motors off the shelf H-bridges were selected to drive the robot.

The control scheme used for these H-bridges is a standard servo control signal. The typical servo

control signal is a single pulse [1-2]ms every 20ms. With a ims pulse width, the motor runs full

17

reverse (-24v), at 1.5ms the motor is completely stopped (Ov), and at 2ms the motor runs full

forward (+24v). A pulse width in between produces a proportional voltage to the motors in

forward or reverse respectively [-24 to +24v]. A convenient servo library can be found with the

Arduino, and was used to generate these servo pulse widths with the correct timing. The servo

scheme is convenient, because it is low bandwidth, and in a passive on or off state no pulses are

being sent to match the servo control signal so the H-bridges default to off.

++[1-2

20 -

-+- +1 ms -2 -4 - 1 ms Full

20 1

-+ +- 1.5 ms D -+ 4- 1.5 Stopped

++ 2 ms ++ 2 ms Full

(A) (B)

Figure 2.8: H-bridge and Servo Control Signal. (A) a single H-bridge per motor was used to drive the
motor speed and direction. (B) standard servo control every 20ms, maps Ims pulse to -24v in full reverse,
1.5ms pulse to Ov, 2ms to +24v full forward.

The H-bridges also have a number of convenient features to check if they are receiving power

which is an important feedback signal to stop the firmware program when the power is removed.

2.4 Motor Controller Firmware

2.4.1 Designing Motor Controller Firmware

The motor controller firmware begins with a serial interface module. When a new desired x, y, 0

velocity is received from the Python joystick controller, a vector transform module is called to

convert the x, y, 8 velocities into the three respective motor velocities. Floating point conversions

from single bytes from the serial commands are also performed at this point, and the velocity

pre-character check is also made to verify a valid serial command. Once calculated, these three

desired floating point motor velocities are sent to the PID module.

......_::_ : - .. ,

serial interface

- byer *desired dsred
bytes 'X' :yeols * reta'

btsI l transform B MD

2btes 'T' D

measured

0 pacet flst~A
bytes float to byte - -

Figure 2.9: Overview of Motor Controller Firmware. Serial commands are parsed by the motor

controllers serial interface module, the desired floating point x, y, 0 velocities are transformed into motor

velocities by a vector transform module, these transformed velocities for motors A, B, C are turned into the

set points for the PID controller. The measured motor velocities A, B, C are converted put into a data packet

by the serial interface, and returned to the Python joystick controller.

desired

B PID servo signal H bridge
C

measured[-29v,
+29vl

A
B speed calculation : encoders motors
C

Figure 2.10: Feedback Control Diagram. The desired motor velocities A, B, C are the set points for the

PID controller. The PID module calculates the needed motor voltage and changes the servo signal pulse

width that maps to this voltage. The H-bridges send this voltage to the motors. Shaft encoders provide

position measurements to a shaft speed calculator. Measured motor speeds for A, B, C are sent to the PID for

feedback, and to the serial interface to be put into a data packet.

The PID controller makes these new desired motor velocities the set points and controls the

voltage to the H-bridges via servo signal to maintain these velocities to the best of its ability. The

H-bridges use the servo signal from the PID control module to change the voltage sent to each

motor.

A quadrature encoder is attached to the motor shaft to monitor the motor position. The AB

signals from the encoder are fed back into the motor controller, and a speed calculator module

determines the wheel velocity. This calculated wheel velocity is fed back into the PID controller

as the measured wheel velocity. It is also fed back to the serial interface module. Floating point

motor speeds are converted back into serial bytes, and a data packet is constructed to be sent

back to the Python joystick controller.

2.4.2 Speed Calculator

Wheel speed is determined by counting the encoder ticks and direction over a small dt. At

walking speed roughly 1.5 m/s the wheels will rotate roughly 5 times per second. With 1400

encoder ticks per wheel revolution this is roughly 7000 ticks per second. Sampling at 15kHz is

just slightly above the Nyquist sampling criteria. To this degree, recalculating speed for every

count produces and extremely coarse velocity measurement, and is computationally intractable.

A suitable velocity sampling dt is chosen to acquire a higher resolution on the velocity

measurement. Sampling the encoder counts too quickly creates oscillations in the PID controller

because the signal derivative is too high. The velocity measurement approaches a square wave as

the dt shrinks to the sampling period. If the velocity measurement dt is too long, the

measurements are severely delayed, and the PID controller would not operate with the real time

measurements. A suitable dt for calculating speed is every 100 sampling interrupts. This

effectively gives a resolution of 100 discrete values for the speed measurement, which is

appropriate resolution for PID calculations. If the interrupts sample at 15kHz, the speed

calculations occur at 150Hz.

2.4.3 PID velocity control

Figure 2.11: PID Response Curve. The solid

curve is the desired velocity transformed into
motor velocities A, B, C. The dotted line is the
measured motor velocity. Oscillations and a small
1 Oms lag are visible in the response time course.

A standard PID control algorithm was implemented to control each motor's speed. Three PID

controllers and 3 speed calculators run simultaneously. The PID constants were tuned manually

to a desired response minimizing visual oscillation and minimizing settle time. The PID

20

..

controller was tested manually with joystick inputs which attenuate the derivative of a step

response. The PID response curve, for the constants selected, shows small oscillations on manual

step inputs. A small 1Oms delay is also visible in the response time for the wheel velocities.

2.4.4 Velocity Transform Equations

The floating point x, y, 0 velocities are converted into individual motor velocities by a

transformation module. The three motor drive shafts are oriented 120 degrees apart, forming an

equilateral triangle. The omniwheels have rollers that spin orthogonally to their axis of rotation.

Hence, force can only be transferred orthogonally to the rollers. Applying these three force

vectors, a free body diagram can be drawn to represent the robot's motion model.

An input x, y, velocity is transformed into radial coordinates with v and 0. A projection of v is

made onto the 3 motor vectors (120 degrees apart) and 0 is included as the offset for the

projection. This projection transforms the translational x, y velocity into the three motor

velocities. Adding the 0 velocity as an offset to each of the three motor velocities accounts for

the rotational component of velocity.

A v = x72 +2
(A)

0 = tan- (

(B) A=v-cos(-6)+O $=v-cosQ -e)+$ C=v-cos -6) +

Figure 2.12: Vector Transform Diagram for Holonomic Drive. (A) robot free body diagram for the

omniwheels. (B) Transform equations for determining desired motor velocities A, B, C

The serial interface on the motor controller is responsible for maintaining communication with

the Python joystick controller, or any other interface running the same motor control protocol.

While the odometry data packets are sent back at semi-regular intervals (roughly 10Hz), the x, y,

0, velocities set to the serial interface module may be variable. However, if the velocity update

packets are sent faster than 50Hz the serial buffer on the Arduino is flooded and over flow

occurs. For proper operation, velocity commands must be regulated by the control program.

2.4.5 Final Event Timing Configuration

Sample Interrupts
15kHz

Encoder Signal A
Max 7kHz

Encoder Signal B
Max 7kHz

Speed Calculation
150Hz

PID Calculation
150Hz

Set Servo Signal
150Hz

Servo Pulse Width
50Hz

Velocity Command
Max 50Hz

Odornetry Packet
about 1OHz

I I

Figure 2.13: Final Event Timing Diagram. Interrupts operate at 15kHz, the encoders signals have a
maximum frequency of 7kHz, the speed, PID, and servo pulse width are updated at 150Hz, the servo control
signal is at 50Hz, input velocities arrive at < 50Hz, and the odometry data packets are sent at roughly 10Hz.

The final timing schedule is as shown in figure 2.13. Interrupts run on the Arduino at regularly

scheduled intervals, sampling at 15kHz. The encoder signals A and B will have variable

frequency depending on the motor velocity. The maximum frequency should be around 7kHz.

The speed calculator recalculates the rotational speed of each motor every 100 samples.

Therefore, speed is recalculated at 150Hz. After recalculating the speed, the PID values are

recalculated against the new measured speed, also at 150Hz. The servo pulse width is redefined

at this point, again at 150Hz. Finally at 50Hz, the servo signal is sent out to the H-bridges. This

timing scheme allows for some buffering around the PID controller depending on when desired

velocity updates occur.

A faster response time can be achieved for the desired velocity. The maximum wait time for

setting the motor velocity is still 20ms, but the PID controller can settle on a few intermediate

measurements before finalizing a servo pulse width to be sent to the H-bridges. If the speed is

recalculated too fast, then the speed measurements will be extremely coarse and the PID

controller will have large oscillations attempting to stabilize a high frequency signal.

Finally, the input velocities from the Python joystick controller arrive sporadically at less than

50Hz, and at semi-regular intervals, the motor controller reports the measured velocity for each

of the three motors, the current desired x, y, 0 velocities, and an elapsed time from the last report.

This large data packet is sent infrequently to prevent flooding the serial buffer.

2.5 Odometry Results

2.5.1 Adjusting Odometry Constants

. A) (B)' (C)(D(

1- '5

Figure 2.14: Rescaling of Angular Rate. (A-F) Rescaling of Angular rate from 0.5 rad/s to 0.8 rad/s

The odometry velocities reported were not to scale. Small measurement errors in wheel diameter,

robot diameter, and turning rates caused the scalars for angular rate and translational rate to be

slightly off. In figure 2.14 is a plot of small deviations from the correct angular rate by only a

few fractions of rad/s. The odometry quickly twists up when the scalar is slightly off from its true

value. Manual tweaking of this value was made to force the odometry plots to somewhat

resemble the general path taken. Once determined this angular rate constant was used for all 9

experiments.

For real life implementation, the constant determined in post-processing should be similar to the

actual constant. Using this post-processed value should produce desirable results.

........... .

2.5.2 Path plots

The path plots in figure 2.15 were generated by integrating the robot odometry measurements

from the data packets returned by the motor controller. These plots correspond to the 9

experiments laid out in the experimentation description.

Figure 2.15: Odometry Path Plots for Experiments 1-9. (A) Rectangle CW - 1, (B) Rectangle CCW - 2,
(C) Switchback suboptimal - 7, (D) Non-holonomic circles CW - 3, (E) Non-holonomic circles CCW - 4, (F)
Switchback optimal - 8, (G) Holonomic Circles CW - 5, (H) Holonomic Circles CCW - 6, (I) Random Track
-9.

2.5.3 Cross comparisons

The rectangle in the first experiment (clockwise) is semi-regular with very little angular drift as

compared to the counter clockwise rectangle in experiment 2. While part of this phenomenon is

due to an adjustment of the angular rate constant, the simple reason for the inconsistency is an

asymmetry in the robot mechanics or how the encoders read the wheel velocities. This behavior

is, however, consistent with the other odometry plots, the switchback experiments in 7 and 8

have a clockwise skew to them as a result of the odometry considering right turns sharper than

left turns.

The non-holonomic circles in experiments 3 and 4 show a tightening of the ring formation for

making sharper right turns, and an expansion of the ring for making wider left turns. The

holonomic circles in experiments 5 and 6 have a more interesting deviation because with a

maintained heading there should be little angular drift hence an asymmetry in the encoders

causes the paths to be slightly biased.

2.5.4 Analysis of Odometry

In general, the odometry exhibits significant drift. The angular drift is the largest concern

because this causes warping for loop closure. Drift in x, y velocities is not immediately apparent

over the warping of 0. Experiment 9 is especially skewed and does not fit within the confines of

the robot's world. It is apparent that the odometry alone is incapable of accurately representing

irregular motions.

However, the odometry is rather smooth. Human errors in driving the robot manually are

immediately obvious from the plots, and the deviation from one time step to the next is not

severe enough to cause concern. The odometry is accurate over small time steps. There is a low

degree of high frequency noise, and only a large amount of drift over an extended period of time.

An immediate solution to solving the issue of drift is to use an absolute positioning system to

localize the robot in a global sense in its world.

3 Robot Absolute Positioning

3.1 Introduction to Ubisense

3.1.1 Selecting an absolute positioning system

The shortcomings of the odometry established a need for an absolute positioning system. Several

options are available and were considered in the selection process. The most obvious choice

would be using GPS.

GPS can be a convenient off the shelf solution for absolute positioning. Depending on the GPS

module selected, centimeter accuracy can be achieved at an extremely high bandwidth for a

sacrifice in cost. A practical GPS solution for the robot opera would be low bandwidth and likely

low accuracy due to cost restrictions and the need to implement 12 modules. However, using

GPS indoors in an opera house is of some concern. Localizing with satellites indoors cannot be

done reliably and largely depends on the building structure. The opera house in Monaco would

need to be tested for compliance. In addition, the more critical issue is accurately determining the

robot heading, which GPS alone cannot. Using magnetometers on the GPS for 'true north' may

become problematic with 5 large motors onboard each of the 12 robots, and several moving

metallic stage elements weighing over 2000lbs.

For the same reasons GPS is impractical, an Inertial Navigation System is also not ideal. An INS

typically uses a combination of GPS and magnetometers to update an Extended Kalman Filter. A

decent off the shelf INS is also a costly solution. The robot is also holonomic which may need a

custom EKF to be written because most INS are designed for UAVs.

An alternative to GPS and an INS is to use beacons for localization, and run an Extended

Kalman Filter over the beacon locations to estimate the robot location and heading. Using

beacons requires careful setup and installation of several components. Calibration techniques can

be arduous, and depending on the type of beacons being used the implementation of the robot

localization engine may change. Most beacon systems for robotics are custom built, or used over

large areas and are based on ultrasound. Ultrasound has poor reflectance properties, and is

subject to the mechanical noise on stage during the performance.

26

In a similar category with beacons are Ultra Wide Band sensor networks. Radio frequency

sensors that operate in the GHz frequency can send extremely short pulse trains out to avoid

issues with reflectance than would cause issues for ultrasound. Using Angle Of Arrival (AOA)

and Time Difference Of Arrival (TDOA), the sensors can determine the location of a tag.

Advantages for using UWB localization include operation indoors, immunity to magnetic noise,

and avoidance of reflectance. The disadvantages are precision setup, cost, high noise levels, low

bandwidth, line of sight, and localizing tags still does not solve the issue of determining robot

heading.

ConvenionaI U Nura-Wideband
nwrowband raft oeatung near nele foor

Signal

Noise Flr

(A) Requency'

4J 4
direct path
signal reflected

reflected signal
signal

(B)

TXT.....

Figure 3.1: Ubisense Noise Model and Reflections. (A) an UWB signal operates just above the noise floor
(B) Typical RF communications and Ultrasound are confounded by the effects of reflected signals arriving at
the receiver.. Diagrams taken from Ubisense Training Presentation by Chris Doembrack

(A) (B)
Figure 3.2: Error Analysis for UWB Signals. (A) Typical error associated with conventional RF, (B)
Because UWB is high frequency, a very narrow pulse width will capture the full signal. Reflections do not
alias with the actual signal because the delay from the reflection is much larger than the pulse width.
Diagrams taken from Ubisense Training Presentation by Chris Doernbrack

- . - ..: '.

Ubisense makes an off the shelf UWB tracking system and provides renowned tech support for

installation. To fit the strict time constraint, the Ubisense system was chosen because of the rapid

installation process. Localization can be accomplished in a day.

3.1.2 Ubisense Technology

Ubisense uses UWB sensors mounted near the ceiling facing into the area of interest. Ubisense

tags can be localized while in the line of site of 2 or more sensors. Their location is reported in x,

y, z. A master sensor synchronizes the timing around the other slave sensors. Each tag is

assigned a slot to send UWB pulses out to the sensors. Using this time slot, two sensors can

determine the Time Difference Of Arrival (TDOA) for the pulse. The TDOA is the difference in

time of arrival between two sensors for the same tag pulse. The sensor can also determine Angle

Of Arrival (AOA) from the tag using internal geometries. Using AOA and TDOA from multiple

sensors, the network can determine an accurate tag location, and will then wait for the next tag to

send a pulse on the next time slot.

ae SMor
Sensor Sensor

Timin- Cb _ _TinunCable a2

a, .

that is re red by the

I Senstors deteantne loction
by both

Time Ditfetence Of
Aratl TfDOA)
Angle Of AtavaI
(AGA) for both
azitnuth and elvation

(A) lag (B)

Figure 3.3: Ubisense Operation Illustration. (A) A pulse is broadcast by the tag during a specified time slot
and arrives at the master and a slave sensor. (B) The sensors determine AOA using internal geometries, and
the signal's TDOA between the two sensors is determined by the timing cable. Diagrams taken from
Ubisense Training Presentation by Chris Doernbrack

The TDOA creates a manifold of solutions for the intersection point from the AOA vectors

between 2 sensors. Any given sensor produces a set of TDOA manifolds between itself and

neighboring sensors that also picked up the tag pulse. The manifolds from a single sensor are

shown below alongside the manifolds for all the sensors. The intersection of these manifolds and

the AOA vectors from all the sensors create a least squares solution set.

(A) (B) (C)

Figure 3.4: Solution Sets. (A) The TDOA creates a manifold between the two sensors. The AOA for each
sensor creates an intersection on this manifold that is the location of the tag. (B) The set of manifolds for a
single sensor between the other sensors that picked up the tag pulse. (C) The collective group of manifolds
for all the sensors for this tag pulse.

3.1.3 Ubisense Tag Update Slots

The Ubisense tags are assigned specific time slots to send out a localizing pulse. There are only

128 time slots per second. The tag will pulse every 4 time slots, but this means the network can

only localize 4 tags per second which is impractical considering the number of robots and

performers on stage at any given moment. It is more practical to have each tag update every 32

time slots for 4 updates per tag per second, allowing 32 tags on stage at any given time. Updating

4 times per second is a relatively high rate for an absolute positioning system. However, the

noise level on the tag is independent of the update rate. A single measurement updating every 4

time slots has the same noise margins as a single measurement every 32 time slots. Averaging

measurements over a period of time reduces the standard error, but to accommodate for large

number of items on stage at any moment, the rate must be compromised for the number of tags.

....... * - ------- ---- - -

3.2 Sensor Network Topology

3.2.1 Sensor Network Layout

The Ubisense network was setup to simulate the conditions in an actual opera house. Optimal

placements of the sensors for maximal line of sight could not be made. The sensor's viewing

angle is less than 45 degrees. The stage set as shown in figure 3.5 does not provide full coverage

for the regions just below the sensors at close range. A more optimal sensor placement would be

placing a pair of sensors across the vertical division line to acquire a better line of sight near the

edges of the stage.

The rectangle was marked out for experiments 1 and 2 at a location that would pick up a

variation in measurement quality. The left side of the rectangle is located in a sub optimal

location to test the Ubisense performance. The circle for experiments 3-6 is located in a more

optimal location. Experiments 7 and 8 took place on the right and left sides of the rectangle. The

left experiment (7) is in a less optimal location. Experiment 9 took place in the world defined by

the gray polygon. The robot was temporarily driven to the edges of the sensor network to

experiment with the network's performance.

Figure 3.5: Tag and Sensor Geometries. (A) Front and back tag placement on robot canopy, separation is
27cm. (B) Sensor topology in robot world, areas of poor coverage shown in red, portions of experiments
were purposefully run on left side of world where there is suboptimal coverage.

3.2.2 Tag Locations on the Robot

To determine heading on the robot, two tags were attached on the front and back of the robot's

canopy. The robot orientation can then be calculated by taking the arc tangent of the separation

between the two tag locations. The front and back tags are separated by 27cm.

Several issues arise from this configuration. While sound in theory, this two-tag setup has many

setbacks in practice. The first obvious issue is the noise margins on both tags confound the angle

measurement. There is effectively twice the amount of noise on the heading measurement. In a

worst case scenario the front and back tag could even be flipped to produce a completely

erroneous heading measurement. In general, this issue can be solved by taking an average of the

front and back tags. However, this method causes some lag on the update of the robot heading in

proportion to the number of samples used to perform the update.

A more subtle error comes from the tag time-slot assignments. Each tag is assigned a specific

time slot to perform and update. This assignment is made as the network comes online. However,

the updates for the two tags are not simultaneous; there is a lag between the two measurements

equal to the length of the time-slot separation. For one update every 32 time slots this is a

separation of 0.25 seconds. If the robot is moving at 1.5 m/s then a 0.25 second delay is an error

of nearly 40cm, which is greater than the separation between the front and back tag.

In addition, the tags update at regular intervals, but there is a data association problem. Given a

current measurement for the back tag, there is an ambiguity as to whether the corresponding

front tag measurement is the measurement just prior or just after this back tag measurement. In

fact, neither measurement is appropriate because both are out of sync by up to 0.25 seconds.

To solve this issue the measurements can be interpolated, and an update for this back tag

measurement can be performed with a small delay after its arrival. For every new front tag

measurement, a simple linear interpolation is run to the last front tag measurement. The midpoint

of this interpolation (front' [prime]) and the previous back tag measurement are a delayed data

set more closely timed together. This measurement is then used to produce a more accurate

measure of heading.

(A)

(B) (C) (D)

0 1 2 3 4 5 6 1

Figure 3.6: Linear Tag Interpolation. (A) Timing sequence of tag interpolation, delayed by one
measurement. (B) Illustration of timing diagram for robot moving at constant velocity in a non-holonomic
circle. (C) Robot diameters from raw absolute position results. (D) Interpolated robot diameters

3.3 Noise Characteristics

3.3.1 Stationary Tags

The Ubisense noise specifications on tag locations are given as a 15cm error worst case for a still

tag. However, it was quickly discovered that this error changes depending on how optimal the

tag location is. The 2D histograms in figure 3.7 show a sub optimal location and a more optimal

location of the tag standard error. In the sub optimal case, the tag was located in the upper left

corner of the rectangle use in experiments 1 and 2. The range of error was nearly 50cm in either

direction which is far greater than expected. For localizing position, this is of little consequence,

but for a measurement on heading this is far too large for a decent measurement. The front and

back tag separation is half of the noise range.

In a more optimal placement of the tag, in the upper right corner of the rectangle used for

experiments 1 and 2, the tag showed a significant improvement in the error range. The spread

was bounded to roughly 20cm in both x and y.

Unfortunately, the tags will not always be in an optimal location. The histogram below shows the

deviation in initial pose angle of the robot while sitting still in a sub optimal location. The

standard error is less than 4 degrees which is a decent measurement for a stationary tag. For a

stationary tag, the noise margins are largely dependent on the location of the tag in the world.

Areas with weak coverage will have larger noise margins. Over a long period of time for a still

tag, an accurate measurement of heading can be produced. However, for high frequency

sampling of heading, a single measurement of heading may be severely incorrect.

20
0.5

W4 (A) * *..

84

8.35 14 20

8.3 2

R2 1.110 (B) 15-
8,2 3.2 (C)

8.156

8.1 4 3.18 5
I.05 2

1 11 1.2 1.3 1.4 0 15.9 16.1 16 25 1o -3 -296 -29 -2 0 -28 -215 -27 -2 6

Figure 3.7: Ubisense x, y, 0 Histograms for Stationary Tag Noise. (A) Suboptimal tag location with error
range of 0.5m. (B) More optimal tag location with error range of 0.2m (C) The standard error for a stationary
tag is 3.8 degrees. Stationary measurements have narrow error margins.

3.3.2 Moving Tags

Stationary tags produce a very tight bound on the noise margins. The path plots in figure 3.8 are

the results from the 9 experiments using only the Ubisense data.

Over a long period of time and several laps the Ubisense data produces an accurate path taken by

the robot around the different tracks. The drift that occurred from the odometry data is no longer

an issue. There is a high frequency noise component that is difficult to discern with the path plots

shown. Looking carefully at the ring formations, there are a number ofjagged lines and a few

outlying data points from the Ubisense noise. Most of the deviation in the plots is due to human

error driving around the track. This is especially evident in experiment 3 where a learning curve

took place to drive the robot in non-holonomic rings.

Averaging each of the experiment paths together would effectively produce the track used to

generate the path plots. Unfortunately, there needs to be live state estimation for the robot, and it

is unlikely that the robot will repeat a path multiple times to localize itself. A more accurate

representation of a typical robot path would be in experiment 9. Close inspection reveals a

number of sharp edges due to the high frequency noise produced by the Ubisense localization.

Using a low pass filter on this data set may remove some of these high frequency kinks, but there

will be a delay in the localization engine as a result, and some of the sharp edges may not need to
be filtered out.

(A)

6,

4 -1

2-

2 4 6 8 10 12 I416

(C)
65

5

5

35

3 -

-1 1 2 3

75

6,5-

6

55

5

45

3.5

3

13 14 15 16 17 1s 19

2 4 6 8 10 12 14 16 18

Figure 3.8: Ubisense Absolute Positioning Path Plots for Experiments 1-9. (A) Rectangle CW - 1, (B)
Rectangle CCW - 2, (C) Switchback suboptimal - 7, (D) Non-holonomic circles CW - 3, (E) Non-holonomic
circles CCW - 4, (F) Switchback optimal - 8, (G) Holonomic Circles CW - 5, (H) Holonomic Circles CCW -
6, (I) Random Track - 9.

The final histogram in figure 3.9 is an estimate of the heading for the robot driving in holonomic

circles maintaining a constant heading during experiment 5. Comparing this histogram to the

18 -

8 M . ,- -
6

4

2IR

0 1
2 1 1 8 1 12 14 16

.....................

histogram for the stationary measurement of heading, the standard error is 31 degrees, which is

almost a magnitude greater than the standard error of the stationary robot's heading.

.1
(A)

Figure 3.9: Ubisense Measurement of 6 for Holonomic Circles
Unfiltered. While maintaining a constant heading and driving in holonomic
circles, the 0 measurement had a standard error of 31.5 degrees.

6.4

6.2

6

5.8

5.6

4.5 4 k2 4.4 416 418 54

Figure 3.10: Comparison of Ubisense Measurements for Robot Vectors. (A) Non-holonomic CCW
circles have robot vectors roughly tangent to velocity. (B) Holonomic CCW circles with maintained heading
have robot vectors at 0 degrees with significant noise.

Comparing non-holonomic to holonomic circles the sources of error become clearer. In figure

3.10, the robot is plotted as a vector. The front tag is circled in red, and the back tag extends

along the blue line segment. There are several vectors that appear out of angle in the holonomic

circle. In the holonomic circle the robot vectors should all be horizontal at a 0 degree heading.

While the deviations could be an artifact of the tag interpolation described in 3.2.2, this could

also be a more accurate representation of the noise on the robot heading for a moving tag.

Position errors in tag measurements are correlated with the robot x,y velocity. For non-

holonomic circles, the robot heading is always parallel to the velocity. Errors change the distance

between the tags, while in non-holonomic circles the error can directly affect the angle between
tags when the heading is orthogonal to the motion.

3.4 Filtering Tags

A direct solution to the Ubisense noise problem is to filter out poor tag measurements. The
criteria for filtering the tag measurements should be a function of the 'goodness' of a
measurement. The distance between the front and back tag can be used as a measure of

goodness. This known distance of 27cm should be consistent with the distance between the front
and back tag measurements reported by the Ubisense network. The histogram in figure 3.11 is
the distribution of reported robot diameters (distance between the front and back tag) for all 9
experiments using over 20 000 data points.

100 1000-

900- 900

700 - 700

600 00

600- 60

400- 400-

300- 300-

200 - 200 -

100 A) 100 (B)
-22 0 02 04 00 00 1 1 2 122 0 0.2 0.4 0-6 0.0 1 1.2

Figure 3.11: Histogram for Ubisense Robot Diameter Measurements. (A) Diameters from experiments 1-
9, over 20 000 data points, standard deviation 15cm. (B) Illustration of filtering criteria for 'good'
measurements that fall into one standard error from diameter distribution.

A probability distribution function is fit over the diameter distribution and can be used to filter

tag measurements. A good measurement should occur inside one standard deviation (15cm) from

the mean (27cm). Diameter measurements outside this standard error could be erroneous because

the reported diameter is either too large or too small. Bad measurements are thrown out to avoid

incorrectly reporting the robot heading.

The robot vectors shown on the left are the measurements that fell under one standard error of

the expected robot diameter. The vectors on the right are the measurements that were thrown out.

The filtered holonomic circle appears a little tighter, but only 70% of the measurements are used.
36

Figure 3.12: Ubisense Robot Vectors Filtered and Removed for Holonomic CCW Circles. (A) Robot
vectors that were preserved after filtering corresponding robot diameters by one standard error criteria. (B)
Robot vectors that were removed by filtering process

4W

2W

* (A) L

76

20

. (B)
3 16 2 3

Figure 3.13: Histograms for Filtered and Removed Ubisense Measured 0 for Holonomic CCW Circles.

(A) The 0 measurements filtered by the one standard deviation criteria have a standard error of 28.5 degrees.

(B) The 0 measurements that were removed by the filtering criteria have a standard error of 37.9 degrees.

The histograms in figure 3.13 show the improvement in the distribution of the robot heading.

The standard error for heading using unfiltered data was about 31 degrees. Using only filtered

measurements, the standard error shrinks to 28 degrees, and the measurements that were thrown

out have a standard error of 38 degrees. The improvement is minor, but can improve the

observation model giving the Ubisense measurements a little more weight.

3.5 Synchronizing Odometry and Absolute Positioning

3.5.1 Adding Offsets

A transform must be made to make a cross comparison between the odometry and the Ubisense

data. The initial pose for the robot in the odometry setting is unknown. Therefore comparing the

position in x and y over time is not possible because the measurement of 0 is not correct. The

odometry data also has clock skew because it was run on another machine.

15-
10 -

0 50 100 150 0 so 100 150

0- 51-(D

L0 50O 100 1SO 0 to 100 150

Figure 3.14: Pre and Post Offsets for Combining Ubisense and Odometry Data. (A-B) Plot of x position

time course before and after adding initial pose offset for x and 0 and adding clock skew. (C-D) Plot of y

position time course before and after adding initial pose offset for y and 0 and adding clock skew.

To solve these issues, the initial pose from the Ubisense data was used to prime the odometry

localization engine. While this made the initial features of the x and y positions similar, there

was still clock skew that needed to be added in to line up the features. Manual addition of the

clock skew was performed to align the initial data features. The skew was determined by a visual

inspection of the initial features and taking the time difference. Because the odometry tends to

degrade over time, lining up features later in the time course was not effective for synchronizing

the data sets. The plots in figure 3.14 show before and after synchronization of the odometry and

Ubisense data for the first few features in the x, y time course.

3.5.2 Warping Time

Unfortunately, another error in the odometry was discovered when lining up the data sets. The

elapsed time between data packets sent to the Python joystick controller are accumulated as the

event time for the odometry data set. There was a small accumulation error for the time it takes

to write the data packet that was not properly included in the time stamps. This produces the time

warp of the odometry data seen in figure 3.15.

(A)
1410 S" On6 IN 1 S

26 I
r(B)1

In I 1in 216 me6 M 5"N i

Figure 3.15: Removing the Odometry Time Warping. (A) Plot of warped time course for x position
odometry time course faster than Ubisense time course. (B) Rescaling odometry time course by adding 3ms
offset for each odometry measurement

The odometry data features line up for the first few features, but the data set falls short of the

Ubisense data set features because of the time warp incurred by the accumulation error. In post

processing it was determined that this small error in elapsed time is 3ms for each odometry

measurement, and was added into the odometry data set.

In a real-life implementation, this time warping would still be present, but the integration of the

reported velocities would have just been off by 3ms, which is roughly half a centimeter per

odometry update. The data sets would still line up without the need to warp the data because new

odometry and new Ubisense data would arrive at the localization engine at the same time and not

fall out of sync over time.

3.6 Preliminary Combined Results

The results shown are a cross comparison between the odometry data and the Ubisense absolute

positioning data for experiment 1. As mentioned earlier, the first few features of both data sets

line up in the x, y time courses. As time progresses, these features tend to slip out of sync

because of the accumulated error in the estimation of 6 for the robot. As the robot begins to

rotate out of phase, the x and y time courses begin to shift, and the peaks do not line up. For

experiment 1, this is especially apparent in the time course for the y position of the robot.

A more interesting comparison is in the actual measurement of 0. The plots for sin(6) and cos(0)

are shown. The Ubisense 0 measurement is nearly unintelligible because of the high frequency

noise. The odometry measurement appears cleaner, but there is no verification as to whether or

not this measurement is becoming more offset as time progresses.

Figure 3.16: Scaled and Offset Ubisense and Odometry Time Courses for Rectangular CW Track. (A)
x time course. (B) y time course. (C) sin(0) time course. (D) cos(0) time course.

Upon closer inspection for a short time course of 100 seconds, the noise from the Ubisense is

cleaned up a small amount, and the profile of what the 0 measurement should be becomes
40

clearer. High frequency spikes litter the measurement of 0 from tag measurement noise. The

odometry measurement of 0 is much cleaner, but already appears to be shifting slightly out of

phase with the Ubisense measurement from the scaling error described in section 2.5.1.

Figure 3.17: Cross Section of Sin(9) Cos(0) Time Courses (100-200s) for Rectangular CW Track. (A)
sin(0) time course showing Ubisense high frequency noise. (B) cos(0) time course

An ideal solution would be to mix the Ubisense absolute positioning data with the odometry

data. The goal for mixing would be to remove the high frequency noise from the Ubisense

measurements of 0, but use the accuracy of the odometry over short time intervals. The absolute

positioning data from the Ubisense would also be able to remove the drift from the odometry due

to the accumulation of integration errors.

4 Particle Filter for State Estimation

4.1 Particle Filter or Extended Kalman Filter

The two canonical sensor-fusion algorithms used to solve state estimation are the Kalman Filter

and the Particle filter. The obvious choice for solving this particular state estimation problem is

the implementation of an Extended Kalman Filter, but without having the system dynamics and

.......... I

noise characteristics well defined, the EKF can be challenging to implement especially if the

state distribution is highly non-Gaussian. The Particle Filter allows for more flexibility in

adjusting noise parameters for estimating state, and performs better for non Gaussian belief

distributions.

4.1.1 Advantages and Disadvantages

The Particle Filter is a fast straight forward implementation. Increasing the number of particles

used to estimate state quickly augments the filter's performance. An EKF lacks the flexibility to

increase performance by changing a single parameter. More particles will always produce a more

accurate solution. Changing the state model in a Particle Filter is also straight forward. An EKF

would need a recalculation of the Jacobians, which must be done analytically by hand. In terms

of a proof of concept for estimating state, given the Ubisense and odometry inputs the Particle

Filter will perform on par with an EKF with less work. With the time constraints, the Particle

Filter is a faster implementation and easier to debug. The Particle Filter also provides a

visualization of the non-linear belief distribution for the robot state.

The Particle Filter does have a number of shortcomings. It is computationally expensive in

comparison to an EKF. The EKF would only be a handful of states for the estimate of the robot

position, velocity, and sensor biases. The Particle Filter requires several hundred particles to

calculate its belief state. Propagating several hundred states and sampling the distribution several

times per second is computationally expensive. For real life implementation, a Particle Filter

may not be as practical, but again it would be faster to implement without the need for external

BLAS libraries.

The Particle Filter also has unbounded performance criteria. While changing the number of

particles can quickly increase the filter's performance, there is no metric to determine what

number of particles is the right number to model the belief distribution. The Particle Filter is also

a stochastic model, and from one process to the next the same data may not produce the same

traces. An EKF is a far more analytic solution and will produce the same solution set for a given

set of inputs. This makes the Particle Filter performance much more subjective in its analysis.

4.1.2 Particle Filter Implementation

The Particle Filter implemented in this research was written in MATLAB for post-processing of

the odometry and Ubisense absolute positioning data collected in experiments 1-9. The data

updates are slow enough that the filter had no problem running faster than real time even with

3000 particles. This is reassuring if the Particle Filter were to be implemented in real life

onboard the robot. The robots run OLPCs (One Laptop Per Child). The computational power of

the OLPCs is extremely limited, and the trade off for computational complexity may make the

EKF a more practical solution for the final implementation. However, the results from the

Particle Filter are promising in terms of successfully localizing the robot given the current

odometry system fused with the Ubisense absolute positioning.

4.2 Characterizing the filter

4.2.1 Representation of Belief

The Particle Filter models the uncertainty in its state with a belief distribution. This belief

distribution is the cloud of particles. Each particle is a guess for the robot's current state. The

particle's state, like the robot's state, contains three fields: x, y, and 0. Instead of one guess for

where the robot is located and associating an uncertainty with that single guess, hundreds of

guesses are made. These guesses form the particle cloud, which is the belief distribution. The

density of the cloud determines how much the filter believes the robot is in that particular state.

Higher density regions in the cloud represent a higher probability of having one of those

particles' states as the robot's actual state. A low density region, or a single particle one its own

away from the distribution's center of mass, would be a less likely estimate of the robot's state.

Single Particle Figure 4.1: Belief Representation with Particle
(x y, 9) Particle Cloud Cloud. A single particle has fields x, y, 0. Several

Belief Distribution particles represent the belief distribution dense regions
correspond to high probability.

With fewer particles, the belief distribution is very coarse. However, as the number of particles

increases the particle cloud has a higher resolution and can more accurately represent the robot's

belief distribution. With infinite particles, the cloud would be continuous and truly model the

robot's belief distribution as the actual probability distribution function. This is computationally

intractable. Only a few hundred particles are typically needed to estimate the belief distribution

with enough resolution to properly estimate the robot's state.

Pi = (xi, y1, Bi)

k

yx = x

_ sin 0.
yt= tan- (I

k

My = y

By taking the mean of the distribution across the particles' states, the robot's state can be

estimated. While the robot's actual state is a distribution across the particle cloud, the mean of

the cloud across the particles provides a decent representation for quickly visualizing a summary

of the robot's state estimate. These means can be cross referenced with the Ubisense absolute

positions and the odometry to compare the Particle Filter's performance.

4.2.2 Representation of State

One design decision in the implementation of the Particle Filter was the representation of the

robot state. Because the robot is holonomic its x, y, and 0 should be independent states, and

could possibly be each represented as 3 separate particle clouds. This keeps the distributions

independent. Keeping the distributions independent could increase the performance. The belief

distributions on x and y should be tighter than the distribution of 0 for the robot. More particles

can be dedicated to the estimation of 0, and less computational effort can be spent estimating the

robot's x and y.

However, the x, y, and 0 are not independent because of the odometry calculations. The robot's

position in x and y is determined by its orientation 0, and the integration of the velocity with

respect to this 0. The particles must each be a representation of x, y, and 0 together because the

effects of 0 are coupled into the calculation of x and y. To note, a good estimate of 0 will also

produce a good estimate of x and y. Conversely, if x and y are well estimated, but 0 is a poor

estimate, than when propagated this particle will propagate in the wrong direction.

Because the Particle Filter is flexible in its representation of state, both schemes were tested and

the decoupling of x, y and 0 failed to provide a decent estimate of the robot's state. Having the

state with three fields provided a more consistent estimate of the robot's state.

4.2.3 Selection of Particles

As the Particle Filter runs, the number of particles in the filter remains the same. Once the

number of particles has been chosen to reflect the resolution of the belief distribution, the

number of particles in the filter remains constant. The filter adapts to measurements by choosing

to propagate the 'good' particles that accurately represent the belief distribution and throw out

'bad' particles that do not match the measurements. This process of reselection and propagation

is critical to the Particle Filter's update.

4.3 Particle Filter Update

4.3.1 Updating cloudfrom odometry measurements

4% C
(A) (B) (C)
I I I I - I I I I I - I

Figure 4.2: Transition Update with Odometry. (A-C) Odometry updates increase the spread of the belief
distribution.

An initial cloud of particles represents the robot's initial belief distribution. When an odometry

update is received, each particle in the cloud is updated to reflect this transition. Given x, y, and

0 velocities and dt from the odometry, the particle will integrate its current state and move

forward. When all the particles in the cloud have been integrated with dt, the belief state has

performed a transition update.

..

.47 . 27r
S= A cos(0) + B cos(3) + Ccos(3) + N(0, oj)

= A sin(O) + B sin (!) + C sin () + N(0, or)

0~~ = N(0, uo)r

xt = xt- 1 + kt._1dt

Yt = t-1 + p _ 1dt

= tan- sin(0t_1 + $t- 1dt)
cos(Ot_1 + et _1dt))

The odometry data does contain some amount of noise and is far from perfect. To model this

noise, some Gaussian noise is added to every measurement before the transition update occurs.

For each individual particle the x, y and 0 velocities are given a small amount of Gaussian

process noise before performing the integration. From the odometry plots it was evident that the

noise of 0 was larger than the noise from x and y. Therefore, the 0 velocity process noise has a
larger standard deviation than x and y.

X=1.0+ =0.88

y=0.0+ =0.16

(A) 6=0.0+ =0.11 (B) -

Figure 4.3: Adding Process Noise to Odometry Measurements. (A) Gaussian noise is added to the
measured x, y, 0 velocity to model the uncertainty in these odometry measurements. (B) Illustration of
process noise effects on a single particle

As the particle cloud performs more and more transition updates from the odometry, the belief
distribution spreads out. The robot becomes more uncertain about its state. For a small time scale

the odometry is a very good estimate for the robot's state, but over time this estimate degrades

due to drift. The spread of the belief distribution for each odometry update represents this

increase in uncertainty.

The cloud becomes larger due to the process noise. This more accurately reflects the robot's true

belief for its state. The longer the odometry runs, the more uncertain its estimate for the robot

location becomes. After running for several time steps, the belief distribution becomes quite

large. To decrease uncertainty, a measurement must be made.

4.3.2 Updating cloud from Absolute Positioning measurements

The absolute positions from Ubisense give a direct measurement of how well the particles are

estimating the robot's belief distribution. As the cloud increases in size from the odometry, it is

uncertain which of the particles in the cloud are accurately representing the robot's true position.

With an update from Ubisense, the particles that closely match this measurement are the best

estimates of the robot's belief state.

- Pr(Z = ZkI X = xi)Pr(X = xi)
W (x1:k) - Pr(Z = Zk| X = xi)Pr(X = xi)

1
Pr(X = xj) =

W(Xj=l:k) = Pr(Z = ZkI X = xi)

W xPr(Z = zk | X = Xi)

A simplified Bayesian update can be made to give a higher weight to the particles that best

represent the robot's belief distribution. Measurements of x, y, and 0 are evaluated

independently. Each field of the particle state has its own observation model. The weight of a

particular xi (particle's position in x) is determined by a normal distribution with the

measurement z-x (measurement of the real robot's x) as the mean and some standard error.

A particle closer to the observation z will receive a higher weight, because it is a better estimate

of the robot's belief distribution. Particles that are far away from measurements do not accurately

reflect the robot's belief.

One important aspect to the observation model for x, y, and 0 is determining the standard error

for the weight function. A measurement of x and y is more certain than a measurement of 0.

Therefore, it should be probable that a particle's x and y might be close to the measurement.

Particles that are near x and y have accurately modeled the distribution for x, y and 0. However,

the measurement of 0 is not very accurate as seen in the results from the Ubisense experiments.

Particles that have a 0 near the measured 0 are not necessarily correct due to the high frequency

noise on the 0 measurements. Good particles should not be assigned low weights because of a

bad measurement of 0. To account for this, the standard error on the 0 measurement is much

larger than for x and y.

Another factor in determining the 'goodness' of a measurement is to take into account the

measured robot diameter. If a measurement arrives with the front and back tags a few

centimeters apart when they should be 27cm apart, the measurement is not going to be very

robust. The measurement can still be used, but it should not be trusted as much as a good

measurement with the front and back tags at the expected robot diameter. To model this

phenomenon, the standard error for the x, y and 0 weight distributions is inversely proportional

to the weight given to the diameter measurement.

Using the probability density function from section 3.4 a weight can be assigned to the measured

diameter. A large weight implies a good measurement. The standard error on the x, y and 0

weight functions should be smaller. Bad diameter measurements are given low weights that

correspond to a more uncertain weight assigned to x, y, and 0, and a larger standard deviation.

Diameter A, B, C Observation
Measurements A, B, C Models based on Weight

Figure 4. Observation Model Based on
SMeasured Robot Diameter. Weight fromA

ZjPDF Weight robot diameter PDF determines standard
deviation on observation model. Smaller
weight from PDF increases standard deviation
on observation model.

2

Now a new weight is given to each particle as the sum of the x, y, and 0 weights. For the

Bayesian update, this weight is multiplied by the probability of being in this particular state, but

that probability is trivially 1/(number of particles). Normalization of the new weights is similar

to the Bayesian update.

4.3.3 Reselecting Particles

With new weights, the Particle Filter has a better idea of which particles accurately model the

robot's belief distribution. With this information the cloud is sampled, and new particles are

selected based on their weights. The process of sampling is straight forward. A cumulative

distribution is created from the new weights. Each particle is mapped to a range between 0 and 1

based on this distribution from its weight. A particle with a large weight is mapped to a larger

range. Particles with very small weights have a narrow range. Using a uniform distribution

between 0 and 1, a random variable is generated and mapped into the cumulative distribution. If

the random variable falls into a particle's range, then that particle has been selected for the new

cloud. This process is repeated until a new cloud is generated with the same number of particles

as the original cloud. Particles with large weights have wider ranges between 0 and 1 and are

more likely to be chosen multiple times at random with the uniform distribution. Particles with

small weights are likely to be dropped all together and never propagate into the next cloud.

9 psads. with
-0- lw wnts

1 Patide with

bw II""l

I iI2di "h(A) "ig"*'9q' (B)

Figure 4.5: Creating a New Cloud by Reselecting Particles. (A) A cumulative distribution maps the

particle index (x axis) to a range (y-axis). A uniform distribution is used to sample the y axis, these samples

are mapped to the particle index on the x-axis from the cumulative distribution function. Larger ranges on the

y-axis as more likely to be chosen by the uniform distribution. (B) A cumulative distribution where only 15

particles compose the more than 90% of the distribution. These 15 have a high probability of being

reselected.

..................... ..

Once the new cloud has been generated several of the particles may have been chosen more than

once, and several particles that are far from the measurement may have been dropped. The result

is that the cloud has shrunk in size around the measurement, and the belief distribution is tighter

to reflect a higher certainty in the robot's state. Because many of the particles are the same, some

initial process noise is generated to spread the cloud a bit. This initial process noise gives the

belief state more continuity, and the distribution is no longer as coarse.

Measurement

Reselect h Add Initial

(A) (B) (C)

Figure 4.6: Illustration of Reselection and Addition of Initial Process Noise. (A) The Particles near the
measurement are more likely to be reselected. The reselected particles are darkened (B) these particles
compose the new cloud. Many of them may be repeated. (C) Initial process noise is added to the new particle
cloud to distribute the particles for a more continuous belief distribution.

Without initial process noise after sampling, and without process noise from the odometry, the

particle cloud would continue to shrink to a single particle and the belief distribution would not

exist. It is critical to maintain a distribution and some uncertainty.

4.3.4 Behavior summary

The frames in figure 4.7 depict a summary of the update procedure. In frames 1-3, the robot's

belief distribution is increasing in uncertainty. At frame 4, a measurement occurs, but it is not a

very 'good' measurement. The belief distribution shrinks a small amount. In frame 5, the

distribution grows again from an odometry measurement. In frame 6, a decent measurement is

made and the cloud collapses and the belief distribution uncertainty shrinks.

................................

(AY (B) (C) (D) (E) (F) (G)

Figure 4.7: Typical Evolution of Belief Distribution. (A-C) Odometry updates increase the uncertainty of

the belief distribution, the cloud spreads out. (D) A measurement is made, but is of poor quality, the belief

distribution is only slightly more certain. (E) Another odometry measurement spreads the belief distribution

out further. (F) A good measurement is made and the belief distribution collapses and the cloud shrinks to

represent this increase in certainty. (G) The process continues with the next odometry measurement

This process is very similar to the growing and shrinking of the covariance matrix in an EKF.

The covariance increases from process noise and shrinks when a measurement is made. The

belief distribution in the Particle Filter is clearly not Gaussian, and the assumptions made in the

EKF may not be entirely accurate for this reason.

4.4 Particle Filter Results

4.4.1 Animation of Filter

To visualize the Particle Filter and compare the robot traces simultaneously, animations were

created with the robot path history as seen in figure 4.8. The left windows show the path history

for the x, y locations of the robot. The odometry is on the top, absolute positions from Ubisense

in the middle, and the Particle Filter belief distribution is in the bottom frame.

The right panels show a history of the robot heading. The straight line is the current robot

heading at this time step. The arc traced out by the straight line is composed of the previous

headings from the last 100 time steps. At the center of the 0 path history plots is the orientation

from 100 time steps prior. For non-holonomic circles, the path of 0 should be a spiral into the

center of the graph.

In comparing the animations, some results are immediately obvious. The odometry path history

is smooth as expected and free from high frequency noise. However, there is drift. The x, y

location of the robot is slightly off from the Ubisense animation. The 0 measurement from the

--------- -

absolute positioning is nearly unintelligible. There is a large amount of high frequency noise, and

at the moment the robot is facing backwards. The Particle Filter appears to be decent mix of

both. The path history in x, y has a few kinks but is in general smooth. There is no drift on its

current location. More importantly, the plot of the 6 path history is as smooth as the odometry

but accurate without any drift.

6-

5- e"

4-

3 - (A)
2-.

15 2 2 5 3 3.5 4 4.5 5 5.5

7-

6-

5-

4 -

3 . (C)

1.5 2 2.5 3 3.5 4 4.5 5 5.5

8-

7 - ---

(E)
3-

2 2.5 3 3.5 4 4.5 5

0.5

0

-0.5
(D)

-1 0

PF odo= 3285 ubi= 992

Figure 4.8: Animations of Odometry, Ubisense, and the Particle Filter. (A) x, y path plot for the robot
odometry. (B) Heading for the last 100 steps, the most current 6 is represented by the radius, previous
measurements collapse to the origin. (C) x, y path plot for Ubisense measurements. (D) Heading for the last
100 Ubisense measurements, note high frequency noise. (E) x, y path plot for the Particle Filter, and
representation of the belief distribution with particle cloud. (F) Particle Filter heading estimate for the last
100 time steps.

4.4.2 Results Representation

The following results in figure 4.9 are for experiment 1, running the robot clockwise around the

rectangular track. Examining the path plots shows promising results.
52

A 4

2- 2-

2 4 5 16 12 14 16 1) 4 6 S 1$ 12 14 16 (C) 4 6 14 1'2 14 16

Figure 4.9: Cross Comparison of Path Plots for Experiment 1, Rectangle CW. (A) Odometry path plot

contains drift. (B) Ubisense absolute positions. (C) Particle Filter Estimate with some noise.

The odometry on the left has a large amount of radial drift. The Ubisense in the middle appears

extremely accurate to the rectangular track, and the Particle Filter on the right has some high

frequency noise and bumps where the filter may have become momentarily lost.

A more important comparison is between the time course of x, y and 0. The green trace of the

Particle Filter fits snug onto the blue Ubisense traces. The blue Ubisense measurement of 0 still

confounds the visualization.

W63
25

20
(100 2K 3W 406 506 6 6 in 20. 300 4" 50" 0

Figure 4.10: Cross Comparison of Time Courses for Experiment 1, Rectangle CW. Ubisense in blue,

odometry in red, Particle Filter in green (A) x time course top, y time course bottom. (B) sin(0) time course

top, cos(8) time course bottom.

..........

s -Figure 4.11: Cross Section of Sin(6) Cos(0)
0.- time course (100-200s). Ubisense in blue,

-05 I . odometry in red, Particle Filter in green. Sin(O)
___ time course top, cos(O) time course bottom.

100 110 120 130 140 150 160 170 180 190 200

On closer inspection, the Particle filter's estimate for 0 has a much lower noise level than the

measurement of 0 from the absolute positions. There is still a high frequency component to the

noise, but it is significantly attenuated. For these initial features, the estimated 0 is only slightly

out of phase with the odometry 0.

4.4.3 Comparing Non-holonomic and Holonomic

77

66

4,5

(A) (B) (C)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 1.5 2 25 3 3.5 4 45 5 1.5 2 25 3 3.5 4 4.5 5

Figure 4.12: Cross Comparison of Path Plots for Experiment 4, Non-holonomic CCW Circles. (A)
Odometry path plot. (B) Ubisense path plot. (C) Particle Filter path plot using 700 particles.

For experiment 4, the results are shown in figure 4.12 for the robot making several counter

clockwise non-holonomic circles.

It is more evident here that some of the irregular Ubisense measurements have been filtered out.

The Particle Filter path is much smoother than the Ubisense path, but without the drift of the

odometry.

4
0

3-

2

1H 106 110 115 120 126 130 136 140 145 150 100 106 110 115 120 126 130 136 140 145 150

67-

4 A)

100 106 110 115 120 126 130 136 140 145 150 100 106 110 115 120 126 130 136 140 145 150

Figure 4.13: Cross Comparison of Time Courses for Experiment 4, Non-holonomic CCW Circles (100-

150s). Ubisense in blue, odometry in red, Particle Filter in green (A) x time course top, y time course bottom.

(B) sin(0) time course top, cos(0) time course bottom.

The smoother fit in the x, y time courses is illustrated in figure 4.13. The accurate estimate of 0 is

also very clear in a cross comparison of the Ubisense measured 0 and the Particle Filter's

estimated 0. Phase shifting of the odometry is also apparent in the non-holonomic circles. While

smoother, the odometry is slightly out of phase with the measured 0. Small features in the

odometry's 0 measurement are visible in the Particle Filter's estimate. The high frequency

component of the odometry is maintained while the high frequency component of the Ubisense

has been filtered out.

The holonomic results in figure 4.14 are similar to the non-holonomic path plots. The Particle

Filter path has more high frequency features that are also in the odometry path, but it maintains

the general shape as the Ubisense path.

.. -------- ---

Figure 4.14: Cross Comparison of Path Plots for Experiment 6, Holonomic CCW Circles. (A) Odometry
path plot. (B) Ubisense path plot. (C) Particle Filter path plot using 700 particles.

8

0-
100 106 110 115 120 126 130 136 140 145 1

8

6-

4-

(A)

115 120 126 130 136 140 145 150

0.5 -

0

100 106 110 115 120 126 130 136 140 145 150

0

Figure 4.15: Cross Comparison of Time Courses for Experiment 6, Holonomic CCW Circles (100-
150s). Ubisense in blue, odometry in red, Particle Filter in green (A) x time course top, y time course bottom.
(B) sin(8) time course top, cos(O) time course bottom.

Examining just the 0 estimation in figure 4.15, the particle filter has a much lower noise level

than the Ubisense measurements. The constant 0 seems to be maintained as well.

. a 11 admi,

100 105 110

4.4.4 Analysis ofDirectionality

p
(A)

-14 -12 -1 -8 4 -4 -2 1 2 4 G 2 -1 8 1 2 3 4

Figure 4.16: Cross Comparison of Path Plots for Experiment 7, Switchback Suboptimal. (A) Odometry
path plot. (B) Ubisense path plot. (C) Particle Filter path plot using 700 particles.

Directionality and location do not appear to influence the Particle Filter performance. The path

plot in figure 4.16 appears noisier than the Ubisense path, but that is due to the features picked

up by the odometry.

1 15 110 115 120 126 130 136 140 145 15

0 106

: " *,

110 115 120 126 130 136 140 145 1

Figure 4.17: Cross Comparison of Time Courses for Experiment 7, Switchback Suboptimal (100-150s).
Ubisense in blue, odometry in red, Particle Filter in green (A) x time course top, y time course bottom. (B)

sin(O) time course top, cos(8) time course bottom.

As the robot odometry measurements begin to rotate, the 0 measurements quickly become out of

phase, and oscillations begin to appear in the x time course for both experiments 7 and 8. The

-5-

-10-

100 16 10 151N16 10 15 10 15 1

0

10N 106 110 115 120 1IN 13 136 140 145 150

-06

-1
10

4~

...

Ubisense time courses and Particle filter are still tightly associated. Experiment 7 shows a higher
noise level on its measurement of 0 than experiment 8. This is likely caused by the sub optimal
location of experiment 7 which was chosen purposefully. The Particle Filter results appear

unaffected.

Figure 4.18: Cross Comparison of Path Plots for Experiment 8, Switchback more Optimal. (A)
Odometry path plot. (B) Ubisense path plot. (C) Particle Filter path plot using 700 particles.

20

15
100 106 110 116 120 126 130 136 140 146 160

10

-[(A)
100 105 110 115 120 125 130 135 140 145 150

1

0.5

0

-05

1 0 106 110 115 120 126 130 136 140 145 150

Figure 4.19: Cross Comparison of Time Courses for Experiment 8, Switchback more Optimal (100-
150s). Ubisense in blue, odometry in red, Particle Filter in green (A) x time course top, y time course bottom.
(B) sin(9) time course top, cos(0) time course bottom.

-i

(B)

4.4.5 Analysis of Random Track

2 4 6 9 10 12 14 16 i

2
(C)

0 2 4 6 8 10 12 14 16 1t

Figure 4.20: Cross Comparison of Path Plots for Experiment 9, Random Track. (A) Odometry path plot.
(B) Ubisense path plot. (C) Particle Filter path plot using 700 particles.

p 9

05

100 106 110 115 120 126 130 136 140 145 150

20

10-

0

0 (A)
10

6 50 106 150 206 260 366

1

-1
164 106 115 120 126 130 136 140 145 150

Figure 4.21: Cross Comparison of Time Courses for Experiment 9, Random Track. Ubisense in blue,

odometry in red, Particle Filter in green (A) x time course top, y time course bottom. (B) sin(O) time course

top, cos(6) time course bottom for 100-150s.

The Particle Filter demonstrates robust performance mixing non-holonomic and holonomic

drive, mixing directionality, and for longevity. The high frequency features picked up by the

odometry are clearly visible on the Particle Filter's path plot in figure 4.20. The rings are clearly

rings and less polygonal. In experiments 3-6, the sharp corners were not as visible from the

Ubisense measurements because the number of laps occluded these fine details. The hard edges

(B

... - ::::..:: :: :: ::."::: : I ---111- 11- 1

-

from the Ubisense are softened by the odometry. The plot of the x, y time course in figure 4.21

illustrates the disastrous drift for the odometry that is removed with the absolute positioning.

Additionally, the high frequency noise content on the Ubisense measurement of 0 is removed by

the filter. The phase shifting and drift in the odometry's 0 is also evident, but the hard features in

the odometry's 0 measurement appear in the Particle Filter's 0 estimate.

4.4.6 Issues from Manual Drive

Because the robot was driven manually for the experiments, there are a number of irregularities

that appear in the path plots. Jitter in the absolute position and a number of odd outlying points

are due to human error when driving. Driving a holonomic robot with non-holonomic constraint

is very challenging. A number of the non-holonomic experiments have holonomic jumps in them

because of human error.

The most difficult experiment was performing circles while maintaining a constant heading. The

standard deviation is mostly due to human error on this distribution.

5 Conclusions

5.1 Particle Filter Performance

The Particle Filter is a suitable solution for the localization of this particular robot with this

particular sensor network. As a proof of concept, the Particle Filter performed well and showed

that given the current hardware it is possible to localize the robot quickly, accurately, and over a

long period of time.

Determining heading is the most critical aspect for all three cases. For odometry, heading was

especially difficult because the angular drift was not well defined. For the absolute positioning

with Ubisense, heading measurements were subject to the large noise margins from the tags.

Finally, the Particle Filter out performed the Ubisense measurements and the odometry for

determining heading. Whether or not the Particle Filter estimates for x-y locations are more

robust than the Ubisense positions requires more investigation. One advantage to using the

Particle Filter is the odometry superimposes the accurate high frequency features onto the

Ubisense data. This gives smoothness to the paths and incorporates small kinks into the paths

from human drive error.

5.2 Particle Filter Improvements

Figure 5.1: Path Plots for Experiment 6 Varying Particles, Holonomic CW Circles. (A-E) Path plots
generated with 100, 300, 700, 1000, and 3000 particles respectively.

The Particle Filter is computationally intensive. The plots shown in figure 5.lwere from 700

particles. However, the performance can dramatically increase or degrade depending on how

many particles are used. One especially difficult data set to estimate is from experiment 6 where

the robot ran over a small bolt and caused a number of chain reaction mechanical irregularities.

Shown here is a collection of path plots from the particle filter using an increasing number of

particles, from left to right: 100, 300, 700, 1000, and 3000. Localization with 100 particles is

very fast, but there are several inaccuracies. As the number of particles increase, paths become

smoother and the variation in path plots begins to decrease. The plots for 1000 particles and 3000

particles appear very similar. However, because this is a stochastic process, every time the

Particle Filter is run a different path plot will result.

There are a number of parameters to tune in the filter to get the desired results. The process noise

is actually much higher than originally expected producing a much larger belief distribution. To

improve the filter performance, alternative observation models can be tested. The performance

also varies by changing the filter parameters on the Ubisense data. Filtering out 30% of the data

points makes the Particle Filter more heavily reliant on the odometry, but it might be worth

comparing the performance using all the data against filtered data or having a static observation

model not weighted by the diameter measurements.

5.3 Implementation in Real time

.. -

The next step is to implement the filter in real time, in JAVA for the OLPC robot software

modules. The major decision at this point is to continue with the Particle Filter or try an EKF to

compare the performance. With a better understanding of the noise model and robot dynamics

the EKF may be a more viable solution. For the application, a comparison between computation

times and noise level will be critical for determining whether either solution is tractable on the

confines of an OLPC.

Another challenge will be synchronizing the Ubisense engine and the odometry readings to

arrive simultaneously in the JAVA program. While distributed processing of robot localization is

an effective use of resources, it might be more practical to run a localizing engine on a large

machine with one particle filter for each robot or one EKF per robot.

6 Acknowledgements

I would like to thank Tod Machover and Bob Hsiung for allowing me to use their robots and
equipment for my research in the support of Death and the Powers. I also owe a great deal to Dr
Leslie Kaelbling for being patient and understanding my unusual time line for completing my
research work.

In addition, I would like to thank friends and family for their support reading revisions of my

work. My parents showed an enormous amount of sympathy for my situation, but I would

especially like to thank Sophie Wong for encouraging me, and forcing me to stay for a masters.

7 References

http://arduino.cc/en/Main/ArduinoBoardMega

http://eval.ubisense.net/howto/Contents/Contents.html

8 Appendices

8.1 Python Joystick Control Code

#joystickserial.py
import serial
import pygame
import math
import time
import threading

allow multiple joysticks

joy = [1

Arduino USB port address (try "COM5" on Win32)

usbport = "COM15"

define usb serial connection to Arduino

ser = serial.Serial(usbport, 19200, timeout = 1)

v x = 0
v-y = 0
v t = 0
turn = False

iso Y = False
isoX = False

dat file = open("datal.m", w');
dat file.write("%samples\t dTh\tdX \tdY \tMl \tM2 \tM3\n robo=[");

command = '-'

throttle = 0

handle joystick event
def handleJoyEvent(e):

A OFF = 0

B OFF = 0

C OFF = 0

global v-x
global v-y
global v_t
global turn
global iso_Y
global iso_X
global datfile
global throttle
global command

#detects change in axis
if e.type == pygame.JOYAXISMOTION:

axis = "unknown"
str = "Axis: %s; Value: %f" % (axis, e.dict['value'])

if (e.dict['axis'] == 0):
axis = "X"

if (e.dict['axis'] == 1):
axis = "Y"

if (e.dict['axis'] == 2):
axis = "Throttle"

if (e.dict['axis'] == 3):
axis = "Z"

#pump out data to arduino via serial here
if (axis == "X" or axis == "Y" or axis == "Z" or axis "Throttle")

#print axis, e.dict['value']
if (axis == "X"):

if not iso Y:
v x = e.dict['value']*127*throttle
if (abs(v x) > 10):

ser.write("X")
ser.write(chr(int(v x+127)))

else:
ser.write("X")
ser.write(chr(int(127)))

print 'X: ', int(v x)

elif (axis == "Y")
if not iso X:

v-y = -e.dict['value']*127*throttle
if (abs(v-y) > 10):

ser.write("Y")
ser.write(chr(int(v y+l27)))

else:
ser.write("Y")
ser.write(chr(int(127)))

print 'Y: ', int(v-y)

elif (axis == "Z
if (turn):

v t = e.dict['value']*127*throttle
else:

v t 0
if (abs(v t) > 10):

ser.write("T")
ser.write(chr(int(v t+127)))

else:
ser.write("T")
ser.write(chr(int(127)))

print 'T: ', int(v t)

else:
throttle = -(e.dict['value']-l)/2

if not turn and v t != 0:
ser.write("T")
ser.write(chr(int(127)))

#some button logic
elif e.type == pygame.JOYBUTTONDOWN:

str = "Button: %d" % (e.dict['button'])
uncomment to debug
#output(str, e.dict['joy'])
Button 0 (trigger) to quit
b = e.dict['button']
if (b == 0):

turn = True

elif (b == 8):

command = 'H'
print 'comm H'
ser.write(command)
ser.write(command)

elif (b == 3):

iso X = True
ser.write("Y")
ser.write(chr(int(127)))

elif (b == 2):
iso Y = True
ser.write("X")
ser.write(chr(int(127)))

else:

print b, "Bye!\n"
ser.close()
dat file.write("];")
dat file.close()
quit()

elif e.type == pygame.JOYBUTTONUP:
str = "Button: %d" % (e.dict['button'])
uncomment to debug
#output(str, e.dict['joy'])
Button 0 (trigger) to quit
b = e.dict['button']
if (b == 0):

turn = False
ser.write("T")
ser.write(chr(int(127)))

elif (b == 3):

iso X = False

elif (b == 2):

isoY = False

else:
pass

print the joystick position
def output(line, stick):

print "Joystick: %d; %s" % (stick, line)

wait for joystick input
def joystickControl().

global turn
t = time.clock()
ev = pygame.event.poll()
while ev.type != pygame.NOEVENT:

if (ev.type != pygame.NOEVENT and \
(ev.type == pygane.JOYAXISMOTION or ev.type pygame.JOYBUTTONDOWN or ev.type ==

pygame.JOYBUTTONUP)):
handleJoyEvent(ev)

ev = pygame.event.poll()

while True:
"""l t = time.clock()
ser.write("X")

ser.write(chr(int(127)))
ser.write("Y")
ser.write(chr(int(127)))
ser.write("T")
ser.write(chr(int(127)))

serial interface('Data')
print (time.clock() - t)"""

if (time.clock(-t > .01):
t = time.clock()
e list = pygame.event.get()
if (len(e list)):

#process the entire event queue
for ev in e list:

#ignore
if (ev.type pygame.NOEVENT and \

(ev.type == pygane.JOYBUTTONDOWN or \
ev.type == pygame.JOYBUTTONUP or \
(ev.type == pygame.JOYAXISMOTION and (turn or ev.dict['axis'] != 3)))):

handleJoyEvent(ev)
serial interface('Data')

def serial interface(command):
if (command == 'H'):

b = ser.read(2)
print b[0] + b[i]

elif (command == 'Data'):

#if ser.inWaiting() >= 17:
b = ser.read(17)
#else:
b = ['Error']
b = ser.read(17)
if (len(b) != 17):

print 'Restart Arduino - Timeout'
if (len(b) == 17 and b[0] 'D'):

write4BytesToFile(b[4],b[3],b[2],b[1])
for j in range(2, 8):

write2BytesToFile(b[2*j+2], b[2*j+1])

##print (i + 2**15) 216 - 2**15
##i = int(ord(b[13]) + ord(b[12)*256)
##print (i + 2**15) 216 - 2**15
##i int(ord(b[11]) + ord(b[1O])*256)
##print (i + 2**15) 2**16 - 2**15

i = int(ord(b[9]) + ord(b[8])*256)
~ print (i + 2**15) % 2**16 - 2**15,

i = int(ord(b[7]) + ord(b[6])*256)
print (i + 2**15) %2**16 - 2**15,
i = int(ord(b[5]) + ord(b[4])*256)
print (i + 2**15) %2**16 - 2**15,
i = int(ord(b[3]) + ord(b[2])*256)

##print (i + 2**15) 216 - 2**15

dat-file.write(';\n');

ser. flushlnput 0;

def write4BytesToFile(bO, hi, b2, b3):
i = int(ord(bO) + ord(bl)*(2**8) + ord(b2)*(2**16) + ord(b3)*(2**24))# + ord(b2)«<16 +

ord (b3) «<24)
#print ord(bD), ord(bl), ord(b2), ord(b3)
dat file.write(str(i) + '\t');
#dat-file.write(' ' + str((i + 2**15) %2**16 -2**15) + ';\n')

def write2BytesToFile(low, high):
i = int~ord(low) + ord(high)*256)
dat-file.write)' ' + str))i + 2**15) %2**16 -2**15) + '\t')

main method
def main()

initialize pygane
pygame. joystick. into
pygame .display. into
V-x - 0
v-y = 0

if not pygame.joystick.get count))
print "\nPlease connect a joystick and run again.\n"
quit))

print "\n%d joystick(s) detected." %pygame.joystick.get_count))
for i in range(pygame.joystick.get_count))):

myjoy = pygame.joystick.Joystick(i)
nyjoy.imito(
joy. append (myj oy)
print "Joystick %d: " %(i) + joy[i].get_name))

print "Depress trigger (button D) to quit.\n"

run joystick listener loop
joystickControl()

allow use as a module or standalone script
if name == "-main-":

main()

8.2Firmware Code

8.2.1 Main Module

//motass.pde
#include <PID.h>
#include <Encoder.h>
#include <math.h>
#include <SoftwareServo.h>
#include <Motass.h>

#define cbi(sfr, bit) (_SFR BYTE(sfr) &= BV(bit))
#define sbi(sfr, bit) (SFRBYTE(sfr) J= BV(bit))

//CHANGE MASK FOR MEGA AND NEW ENCODERS
//REGISTER L on pins 46, 47 and 48,49

#define
#define
#define
#define
#define
#define

El MASKA
El MASK B
E2 MASK A
E2 MASK B
E3 MASK A
E3_MASK B

B00000001
B00000010
B00000100
B00001000
B00010000
B00100000

//mask for the motor controller
//#define EN M MASK B00010101
#define EN M MASK B00101010

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

ON/OFF check pins

MPIN 3 33
MENA 3 32
MPIN 2 35
MENA 2 34
MPIN 1 37
MENA_1 36

RAD 30 0.523598776
RAD 150 2.61799388
RAD 270 4.71238898
RAD 210 3.6651914//0.523598776
RAD 330 5.75958653
RAD 90 1.57079633

#define RAD 300 5.23598775
#define RAD 60 1.04719755
#define RAD 180 3.14159265

#define
#define
#define

RAD 120
RAD 240
RAD 0

2.09439510

4.18879020
0

/** Adjust these values for your servo and setup,
Motass MA[3] = {Motass(El MASK A, ElMASKB),

Motass(E2 MASK A, E2 MASKB),
Motass(E3_MASKA, E3_MASK B)

if necessary **/

#define do3(fun) MA[0]. fun ; MA[l]. fun ; MA[2]. fun

//#define kP 2.5
//#define kI 1.2
#define kP .5
#define kI 0.1
#define kD 0
#define M MIN 30
#define M MAX 150

#define VELSCALE 3.5

//Safety timeouts
#define WD TIME OUT 500
#define ENTIMEOUT 150

#define START MS 1000
#define START UP 1900
#define INIT ZERO 50

#define PY PRINTMS 50
unsigned long last_serial;
unsigned long last_encoder;

#define LED RUN 26
#define LED SET 24
#define LED ERR 22

int fail n = 0;

volatile unsigned int num = 0;

float v x = 0;

float v y = 0;

float v t = 0;

unsigned long pytime;

void setup({

//setup the status LEDs
pinMode(LEDRUN, OUTPUT);
pinMode(LEDSET, OUTPUT);
pinMode(LEDERR, OUTPUT);

set LED(LED SET);

// Timer2 PWM Mode set to fast PWM

cbi (TCCR2A, COM2AO);
sbi (TCCR2A, COM2Al);
sbi (TCCR2A, WGM20);
sbi (TCCR2A, WGM21);
cbi (TCCR2B, WGM22);

// Timer2 Clock Prescaler to 2
cbi (TCCR2B, CS20);
sbi (TCCR2B, CS21);
cbi (TCCR2B, CS22);

sbi (TIMSK2,TOIE2); // enable Timer2 Interrupt

//set up motorl and PID1

//we need to set the motor enable pins

//and motor output pins we are on register C 7-0 maps 30-37

//input enables are odd 33, 35, 37

//output are 32, 34, 36
DDRC |= B00010101;
DDRC &= B11010101;

//DDRC 1= B00101010; //configure motor outputs

//register = 0 means input
//register = 1 means output
//DDRC &= B11101010; //configure enable inputs

MA[0].attach(MPIN 1);
MA[l].attach(MPIN_2);

MA[2].attach(MPIN 3);
do3(setMinimumPulse(1000)) ;
do3(setMaximumPulse(2000)) ;
do3(setPID(kP, kI, kD)) ;
do3(setlimits(M MIN,M MAX)) ;//limit PID range
do3(fail = false);//initialize the fails to false

Serial.begin(19200); // start serial for output

if ((PINC & EN M MASK) != EN M MASK){
fail n = 4;
Serial.println("H-bridges not powered");

else
Serial.println("H-bridges powered");

//for(int i = 0; i <300 ; i++){
// SoftwareServo::refresh();
// delay(10);

//}

fail n = 0;

num = 0;

vx = 0;

v-y = 0;

v t = 0;

Serial.println("Pulsing Motors");

while (millis) < STARTMS)
delay(3);

//put some innocuous values for the initial motor speeds
do3(write(ESTZERO)) ;

//make sure there is a nominal stop value
do3(setsetpt(0)) ;//set point in ticks per second
do3(setZeroPt(ESTZERO))

SoftwareServo::refresh();
last serial = milliso;
last-encoder = millis();
pytime = millis(;

void loopo)

if(num >= 100){//should run lOx per second
//it is time to calculate the speed
do3(calc vel((float) num))

//we are done
num = 0;

if ((PINC & EN M MASK) != EN M MASK){
fail n = 4;
Serial.println("H-bridges not powered");

/ /***

// FAILURE CHECKS
//checks failure on each speed calculation
/ /********************* * ************* * * *************

//the encoder is stalled if measured vel == 0 and PID is set to a non-zero value
//or we are requesting a non-zero speed and the robot is significantly stalled
//this occurs when the motor controllers are not turned on
//the encoder has become unplugged
//the motors have become disconnected

else {
do3(failruntime()

if (MA[0].fail || MA[1].fail || MA[2].fail){

//now we check if we have timed out yet
if (millis() - last-encoder > EN TIMEOUT))

//clear the PID
do3(clear()) ;
//write our old zero point
do3(writezpt()) ;
//set the failed motor
fail n = MA[0].fail ? 1 : (MA[l].fail ? 2 3);

}

}
//if we are not stalled don't keep track of the time outs
else {

last encoder = millis(;

//after calc print python

//compute the gains for PID
do3(writegain() ;
//refresh the motor controllers
//if we have not failed, if we fail we cut communication
//and the motor controller will power down

while (fail n){
//set LED(LED ERR MASK);
set LED(LED ERR);
delay(5);

}
SoftwareServo::refresh(;

/ /***

// START UP
//gives each motor a kick and sees if the encoders and motors are
//connected properly and working
//can enter initial fail state
/ /***

//store the zero point for each motor
//on start up otherwise, run the normal controller loop

if (millis) < START UP){
last-serial = milliso;

//check kick
if (millis() > START UP-INIT ZERO){

//either encoders or motors are not connected

do3(failstartup() ;

//INITIAL FAIL STATE
//stops communicating with H-bridges
fail n = MA[0].fail ? 1 : (MA[l].fail ? 2 : (MA[2].fail ? 3 0));

if (fail n){

Serial.println("Fail: Encoder or Motor not connected");

//test done save zero points for later

else {
//clear PID
do3(clear()
do3(adjustzpto)
Serial.println("Encoder Checked Passed");

Serial.print(MA[O].gain);
Serial.print (" ");
Serial.print(MA[1].gain);
Serial.print(" ");
Serial.println(MA[2].gain);
setLED(LEDRUN);

/ /***

// NORMAL LOOP
//reads from serial and sets motor speeds appropriately
/ /***

else
//if there is new serial data update the wheel velocities
if (Serial.available() >= 2) {

switch (Serial.read()
case 'X':

v x = -((float) (Serial.reado-127))/127;
last serial = milliso;
break;

case 'Y':
v_y = -((float) (Serial.reado-127))/127;
last serial = millis(;
break;

case 'T':
v t = ((float) (Serial.read()-127))/127;
last serial = millis(;
break;

default:

break;
)//end switch, still in if

/*MA[O].setsetpt(vx);
MA[l].setsetpt(v y);
MA[2].setsetpt(v t);

//calculate speeds for each motor

float v = sqrt(v x*v x+v y*v y);
float theta = atan2(v_x, v_y);
float one-over-denom = VEL SCALE/(l+fabs(v t));//might want to just divide v t

//set the PID speeds
MA[O].setsetpt((v*cos(RAD 270 - theta)+v t)*one over denom);
MA[l].setsetpt((v*cos(RAD_30 - theta)+v t)*one over denom);
MA[2].setsetpt((v*cos(RAD150 - theta)+v t)*one over denom);

)//endif serial available

//make setpoints 0 if no serial data has been received for roughly half a second
//comment out if commands not sent that frequently
/*if (millis(-last serial > WDTIMEOUT){

fail n = 4;

}*/

if (millis(-pytime > PY PRINTMS){
printPython();
pytime = milliso;

delay(2);
}//end loop

void printPython(){

int time = millis(;
uint8 t msb = time && 255 >>
uint8_t lsb = samples & 255;
Serial.print(msb);
Serial.print(lsb);

uint8 t msb = samples >> 8;
uint8_t lsb = samples & 255;
Serial.print(msb);
Serial.print(lsb);

*/
Serial.print('D');
print4byte(millis());

for (int i = 0; i < 3; i++){
print2byte((int) (MA[i].getSpeed(*1000));

print2byte((int) (vx*1000));
print2byte((int) (v y*lco0));
print2byte((int) (v t*1000));
Serial.println(;

void print4byte(unsigned long b){
uint8 t msb = (b >> 24) & 255;
uint8 t lsb = (b >> 16) & 255;
Serial.print(msb);
Serial.print(lsb);

msb = (b >> 8) & 255;
lsb = b & 255;
Serial.print(msb);
Serial.print(lsb);

void print2byte(int b){
uint8 t msb = b >> 8;
uint8 t lsb = b & 255;
Serial.print(msb);
Serial.print(lsb);

}

void set LED(uint8 t led){
digitalWrite(LEDRUN, 0);
digitalWrite(LEDERR, 0);
digitalWrite(LEDSET, 0);

digitalWrite (led, 1);

/ /***

// Timer2 Interrupt Service at 62.5 KHz
// here the audio and pot signal is sampled in a rate of: 16Mhz / 256 / 2 / 2 = 15625 Hz
// runtime : xxxx microseconds

ISR(TIMER2_OVF vect)

num++;

volatile uint8 t tPINL = PINL;

//count encoder ticks
do3(callback(tPINL))

8.2.2 PID Module

//PID. cpp

PID class for Arduino

#ifndef PIDCPP
#define PID CPP
#include "PID.h"

float PID::compute(float input){//find gain based on input
float err = setpt - input;
errint += err;

//bound the error
if(errint > maxerrint){

errint = maxerrint;

if(errint < -naxerrint){
errint = -maxerrint;

P = KP*err;

I = KI*errint;
D = - KD*(err-lasterr);

gain = zeropt + P + I + D;//only for these motors, not generally

//bound the gain
if(gain > max){

gain = max;

}
if(gain < min){

gain = min;

//move on to next run
lastinput = input;
lasterr = err;
return gain;

void PID::setPID(float _KP,
KP = KP;

KI = KI;

KD = KD;

float _KI, float _KD){

void PID::setsetpt(float sp){
setpt = sp;

}

void PID::setZeroPt(float z){
gain = z;

zeropt = z;

float PID::getZeroPt(){
return zeropt;

PID::PID(float _KP, float
setPID(KP, _KI, _KD);
setpt = sp;
lastinput = 0;
lasterr = 0;

errint = 0;

P = 0;

_KI, float _KD, float sp){

I = 0;
D 0;
zeropt = 90;

}
PID::PID(){
KP = 0;

KI = 0;
KD = 0;

P = 0;

I = 0;

D 0;
setpt = 0;

gain = 0;

void PID::setlimits(float lb, float ub){
min = lb;
max = ub;
maxerrint = (ub - lb)/2/KI;

void PID::setmaxerrint(float m){
maxerrint = M;

}

void PID::clear({
setpt = 0;

lastinput = 0;

lasterr = 0;
errint = 0;
P = 0;
I = 0;
D = 0;

#endif

//PID.h

#ifndef PID H
#define PIDH

#include "WProgram.h"

class PID{
public:
float KP;
float KI;
float KD;
float P;
float I;
float D;
float setpt;
float lastinput;
float lasterr;
float errint;
float gain;
float min;
float max;
float maxerrint;
float zeropt;

PID(float _KP, float _KI, float _KD, float sp);
PIDO);
float compute(float input);
void setPID(float _KP, float _KI, float _KD);
void setsetpt(float sp);
void setlimits(float lb, float ub);
void setmaxerrint(float m);
void clearo;
void setZeroPt(float z);
float getZeroPt();

#endif

8.2.3 Encoder Class Module

//Encoder.cpp

Encoder class for Arduino

#include "Encoder.h"

Encoder::Encoder(uint8 t m A, uint8_t mB){
mask A = m A;

mask B = m B;

//setup port register L
DDRL &= !(m A I m B);

e A = false;

e B = false;

tick cur = 0;

tickpre = 0;

speed = 0;

//call this function from the ISR interrupt based on the Arduino

//TIMER2 which should be running at 62.5kHz 31.25 kHz

//this function will increment the ticks for this encoder as necessary

//the encoder ticks can then be read at a later time to determine the

//wheel speed
void Encoder::callback(uint8 t tPINL){

bool t A;
bool tB;

//we should getting roughly 1400 ticks per wheel revolution

//grab the values from the L register
t A = (tPINL & mask A) == mask A;

t B = (tPINL & maskB) == maskB;

//edge detection then state detection
if (t A != e A){

if (t A)
tick-cur += (tB ? 1 : -1);

else
tick cur += (tB ? -1 : 1);

if (t B != e B){
if (t B)

tick cur += (tA ? -1 : 1);
else

tick cur += (tA ? 1 : -1);

e B t _B;
e A = tA;

float Encoder::calc vel(float samples){
speed = ((float) (tickcur - tick-pre)) / samples * SPEEDCONV;

tick pre = tick cur;
return speed;

/*
int8 t EncCallback(Enc* encoder, uint8_t tPINL)

I
uint8_t tA = (tPINL & encoder->mask A) == encoder->mask A;
uint8_t tB = (tPINL & encoder->mask B) ==encoder->maskB;

if (t A != encoder->eA)

78

if (t A)
encoder->ticks += (tB ? 1 -1);

else
encoder->ticks += (t B ? -1 1);

if (tB != encoder->eB)

if (t B)
encoder->ticks += (tA ? -1 1);

else
encoder->ticks += (t A ? 1 -1);

return encoder->ticks;

*/

//Encoder.h

#ifndef ENCODER H
#define ENCODERH

#include "WProgram.h"
#include "wiring.h"

#define WHEEL CIR M 0.37903 //circumference in m

#define SAMPLE FREQ 31250 //sampling frequency [interrupt clock]

#define ENCRESTIC 1400 //encoder resolution ticks per wheel rotation

//converts ticks/samples to m/s
#define SPEEDCONV 8.46055 //WHEELCIRM * SAMPLEFREQ / ENCRESTIC

class Encoder{
protected:

//bit masks for fast processing of PINL
uint8_t maskA, maskB;

//previous encoder values
boolean eA, eB;

//the current tick count and the previous tick count

int tickcur, tick pre;

//calculated speed
float speed;

public:

Encoder(uint8_t mA, uint8 t mB);

//callback for the interrupt
void callback(uint8 t tPINL);
float calc vel(float shft);

inline float getSpeed() const { return speed; }

typedef struct Enc

{
uint8 t mask A, maskB;
uint8 t e A, e B;
int8 t ticks;

int8_t EncCallback(Enc* encoder, uint8 t tPINL);

#endif

8.2.4 Motor Assembly Module

//motass.cpp
#include "Motass.h"

Motass::Motass(uint8_t mA,
//do nothing else

void Motass::writezpt(){
write(zeropt);

void Motass::writegain()
compute (speed);
if(gain != lastpgain){

write (gain);
lastpgain = gain;

void Motass::failruntime()

fail = (speed == 0 && (abs

uint8 t mB): Encoder(mA, mB){

(setpt) > VELZERO 1|

abs(gain-zeropt) > PIDZERO));

void Motass::failstartup()
//not connected

fail = abs(gain - EST ZERO) < THRZERO;
//connected in reverse

fail J= abs(gain - ESTZERO) > THRMAX;

void Motass::adjustzpt()
setZeroPt(gain);

}

//motass.h

#ifndef MOTASS H
#define MOTASSH

#define EST ZERO 75
//startup zeros to motor from -90 to 90
#define THR ZERO 3 //an acceptable zero (too small)
#define THR MAX 30 //too large

//runtime zero's in air
//#define PID ZERO 8 //from -90
//#define VEL ZERO .5 //in m/s

to 90

//on ground
#define PID ZERO 20 //from -90 to 90
#define VELZERO 1.5 //in m/s

#include "WProgram.h"
#include <PID.h>
#include <Encoder.h>
#include <SoftwareServo.h>

//This is a Motor assembly class
//an encoder, and a PID object.

class Motass: public PID, public
public:
float lastpgain;
boolean fail;

Motass(uint8 t m A, uint8 t m E
void writezpt();
void writegain();
void failruntime();
void failstartup();
void adjustzpt();

#endif

that includes a motor,

SoftwareServo, public Encoder{

8.3Matlab data processing code

8.3.1 crossscript.m

%plot both odo and ubi for cross reference

%close all;
clear all;

exps = 1:12;

plotodo = 0;

odo ubi script;
plotubi = 0;

ubi odo script;
% plotpart = 0;

% sim script;

%figure(10);
% title('Odometry');
% figure(20);
% title('Ubisense');
% figure(20+13);
% title('Histogram - Distance between paired tags');
% figure(20+14);
% title('Full Histogram - Distance between paired tags');

for i = exps

plot ubi = 0;

if (plot ubi)

figure (20+2*i);
subplot (2, 1, 1);
hold off;
title(['ubi ' robot data{i}.odo.fname(17:(end-2)) ' ' num2str(i)]);

%now connect all of the front points to see the path
plot(robotdata{i}.ubi.event time-robot data{i}.ubi.t shft,

robotdata{i}.ubi.pos-front(:,l), 'b-');

subplot (2, 1, 2)
hold off;
title(['ubi ' robot data{i}.ubi.fname(17:(end-2)) ' num2str(i)]);

%now connect all of the front points to see the path
plot(robotdatali}.ubi.event time-robot data{i}.ubi.t shft,

robotdata{i}.ubi.posfront(:,2), 'b-');

d = (robotdatali}.ubi.pos_front(:,1:2)+robotdatali}.ubi.pos-back(:,1:2))./2;
pose = mean(d(1:100,:),l);
size (pose)
d = (robotdata{i}.ubi.pos_front(:,1:2)-robotdata{i}.ubi.pos-back(:,1:2));
theta = atan2(d(:,2), d(:,l))-pi/2;

figure (20+2*i+l);
subplot (2, 1, 1)
hold off;
title(['ubi ' robot data{i}.ubi.fname(17:(end-2)) ' ' num2str(i)]);

%now connect all of the front points to see the path
plot(robotdata(i}.ubi.event time-robot datali}.ubi.t shft, sin(theta), 'b:');%,

'MarkerSize', 1);

subplot(2,1,2);
hold off;
title(['ubi ' robot data{i}.ubi.fname(17:(end-2)) ' num2str(i)]);
plot(robotdata{i}.ubi.event time-robot data(i}.ubi.t shft, cos(theta), 'b:');%,

'MarkerSize', 1);

figure(50+3*i+l);
%subplot(1,3,2);
hold on;
x-pos = robotdata{i}.ubi.pos-front(:,l);
y_pos = robotdata{i).ubi.posfront(:,2);
rainbowplot(xpos(1:6:end)', ypos(1:6:end)');

% rainbowplot(xpos', ypos');
plot(xpos(l)', ypos(l)', 'ro');
plot(x pos(end)', ypos (end)', 'bo');

%axis([0 20 0 12]);
axis equal;

end

plotodo = 0;

if (plot odo)

warp t = cumsum(robotdata{i}.odo.dt);
figure(20+2*i);
subplot(2,1, 1);
hold on;
title(['odo ' robot data{i}.odo.fname(17:(end-2)) ' num2str(i)]);
plot(warp t', robotdata{i).odo.pose(:, 1)', 'r-');

% rainbowplot(x pos', ypos');
subplot(2,1, 2);
hold on;

plot(warp-t', robotdata{i).odo.pose(:, 2)', 'r-');

figure (20+2*i+l);
subplot(2,1, 1)
hold on;

plot(warpt', sin(robotdata{i}.odo.pose(:, 3))', 'r-');

subplot(2,1,2);
hold on;
plot(warpt', cos(robotdata{i}.odo.pose(:, 3))', 'r-');

figure(50+3*i);
%subplot(1,3,1);
hold on;
x_pos = robotdata{i).odo.pose(:,l);
y_pos = robotdata{i).odo.pose(:,2);
rainbowplot(x_pos(1:6:end)', ypos(1:6:end)');

% rainbowplot(x pos', ypos');
plot(xpos(l)', y pos(l)', 'ro');
plot(x pos(end)', ypos(end)', 'bo');

axis equal;
% plot(robot data{i).odo.pose(l, 1), robotdata{i).odo.pose(l, 2), 'ro');
% plot(robot_data{i}.odo.pose(end, 1), robot data{i}.odo.pose(end, 2), 'bo');

end

plotpart = 1;

if (plotpart)

figure(20+2*i);
subplot(2,1, 1);
hold on;
title(['part ' num2str(i)]);

plot(robotdata{i}.part.eventtime, robot data{i}.part.mean(:, 1)', 'g-');
a = axis;
axis([0 robot data{i}.part.event time(end) a(3) a(4)]);
%axis([100 150 a(3) a(4)]);

% rainbowplot(x pos', y pos');
subplot(2,1, 2);
hold on;

plot(robotdata{i}.part.event time, robotdata{i}.part.mean(:, 2)', 'g-');
a = axis;
axis([0 robotdata{i}.part.eventtime(end) a(3) a(4)]);
%axis([100 150 a(3) a(4)]);
figure(20+2*i+1);
subplot (2,1,1);
hold on;

% plot(robotdata{i}.part.eventtime, sin(robotdata{i}.part.mean(:, 3))./...
% cos(robot data{i}.part.mean(:, 3)), 'g-');

plot(robot data{i}.part.event time, sin(robot data{i}.part.mean(:, 3)), 'g-');
a = axis;

% axis([0 robot_data{i}.part.event time(end) a(3) a(4)]);
axis([100 150 a(3) a(4)]);

subplot(2,1,2);
hold on;
plot(robotdata{i}.part.event time, cos(robotdata{i}.part.mean(:, 3)), 'g-');
a = axis;

axis([100 150 a(3) a(4)]);

figure(50+3*i);
%subplot(1,3,3);
hold on;
x_pos = robotdata{i).part.mean(:,1);
y_pos = robotdata{i}.part.mean(:,2);
rainbowplot(x pos(1:6:end)', ypos(1:6:end)');

% rainbowplot(x pos', y pos');
plot(xpos(1)', ypos(l)', 'ro');
plot(x pos(end)', ypos(end)', 'bo');

axis equal;
%axis([0 20 0 12]);

end

end

8.3.2 odoubiscript.m

%open all the files and store their data into the workspace under

%a nice struct for data 01-data 12

if (plot_odo)
close all;
clear all;
plot_odo = 1;

end

%my_path = 'C:\\Documents and Settings\\Donald\\My Documents\\School\\6.021\\dophie\\Exp_1_88-
126\';
my-path = 'C:\\Users\\Donald\\Documents\\Opera\\Particle Filter\\Data\Ubi with Odometry\';

robot data{1}.odo.fname
robot data{2}.odo.fname
robot data{3}.odo.fname
robot data{4}.odo.fname
robot data{5}.odo.fname
robot data{6}.odo.fname
robot data{7}.odo.fname
robot data{8}.odo.fname
robot data{9}.odo.fname
robot data{10}.odo.fname
robot data{11}.odo.fname
robot data{12}.odo.fname

'data 01 odo ubi 2 laps.m';
'data_02_odoubi_6_laps.m';
'data_03_odoubi_10_laps.m';
'data_04_odoubi_10_lapsCCW.m';
'data 05 odo ubi CW.m';
'data 06 odo ubi CCW.m';
'data 07 odo ubi sw R.m';
'data 08 odo ubi sw L.m';
'data 09 odo ubi fun.m';
'data 10 odo ubi slip.m';
'data_11_odo ubi CCW head.m';
'data 12 odo ubi CW head.m';

robotdata{l}.odo.init_pose = [1.3760
robotdata{2}.odo.init_pose = [1.4456
robotdata{3}.odo.init_pose = [1.3883
%robot data{3}.odo.init pose = [0 0 0];

robot data{4}.odo.init pose = [1.3508
robot data{5}.odo.init pose = [2.1030
robotdata{6}.odo.init_pose = [2.0154
robotdata{7}.odo.init_pose = [1.2656
robotdata{8}.odo.init_pose = [15.9271
robot data{9}.odo.init pose = [15.9523
robot data{l0}.odo.init pose = [1.3229
robotdata{11}.odo.init pose = [2.7558
robotdata{12}.odo.initpose = [2.9281

robot data{l}.odo.opt axis
robotdata{2}.odo.optaxis
robotdata{3}.odo.optaxis
robotdata{4}.odo.optaxis
robotdata{5}.odo.optaxis
robot data{6}.odo.optaxis
robotdata{7}.odo.optaxis
robotdata{8}.odo.optaxis
robotdata{9}.odo.optaxis
robot data{10}.odo.opt axis
robotdata{ll}.odo.optaxis
robotdata{12}.odo.opt axis

= [0 16 -10 5];
-[0 18 -7 10];
=[-5 18 -10 10];

* [-1 20 -10 10];
*[-2 4 -3 3];
[-1 4 -3 2];
[-5 4 -7 1];
[-2 6 -6 2];
[-20 10 -15 12];
=[-1 6 -6 0];
=[-1 7 -1 5];
-[-4 3 -6 4];

%theta dot = linspace(.51, .59, 36);

%theta scale - .55;
theta scale - .62;
vel scale = 6;

%theta dot linspace(.5, .8, 6);

for i = exps

odo = fopen([mypath robot data{i}.odo.fname]);

7.9280
8.0662
7.9931

8.0761
6.3474
5.6828
7.9257

8.1824
8.0676
8.0212
6.7934
7.0528

0.1089];
-1.9427];
-1.1729];

-3.4069];
-0.5358];
-3.3234];
-3.3197];
-3.1329];
-2.8924];
-3.4180];
-1.4680];
-1.5415];

data = fscanf (odo, ['%i' '%i' '%i' '%i' '%i' '%i' '%i' '%*s' '\n'], [7, inf])';
fclose(odo);

data(:,l) = data(:,l)/lOO;
data(:,2) = data(:,2)/lOO/vel scale;
data(:,3) = data(:,3)/1000/vel scale;
data(:,4) = data(:,4)/lOO/vel scale;
y_dot = (data(:,2)*cos(0)+data(:,3)*cos(120/180*pi)+data(:,4)*cos(240/180*pi));
x_dot = (data(:,2)*sin(0)+data(:,3)*sin(120/180*pi)+data(:,4)*sin(240/180*pi));
t dot = -(data(:,2)+data(:,3)+data(:,4))/theta scale;

%now integrate odometry
dt = diff([0; data(:,1)]);

x_pos = robotdata{i}.odo.initpose(l);
y_pos = robotdata{i}.odo.initpose(2);
t_pos = robotdata{i}.odo.initpose(3);
for j = 2:length(dt)

% for j = 2:(length(dt)/3)
t_pos = [t pos; tpos(end)+dt(j)*tdot(j)];
x-pos = [xpos; x pos(end) + dt(j)*ydot(j)*cos(tpos(j)) +

dt(j)*x-dot(j)*sin(tpos(j))];
y_pos = [ypos; ypos(end)+dt(j)*ydot(j)*sin(tpos(j)) +

-dt(j)*x dot(j)*cos(tpos(j))];
end

robot data{i}.odo.dt = dt+.003;
robot data{i).odo.event time = cumsum(robot data{i}.odo.dt);
robotdata{i}.odo.pose = [x-pos y-pos t-pos];
robot data{i}.odo.robot vel = [x dot y dot t dot];

if (plot odo)
figure(10);
subplot(3,4, i);
hold on;
axis equal
rainbowplot(x pos(1:6:end)', y-pos(1:6:end)');

% rainbowplot(x-pos', y pos');
plot(xpos(l)', ypos(l)', 'ro');
plot(xpos(end)', y-pos(end)', 'bo');

end
end

8.3.3 ubiodoscript.m

%open all the files and store their data into the workspace under
%a nice struct for data 01-data_12

if (plotubi)
close all;
clear all;
plot ubi = 1;

end
%my path = 'C:\\Documents and Settings\\Donald\\My Documents\\School\\6.021\\dophie\\Exp_1_88-
126\';

mypath = 'C:\\Users\\Donald\\Documents\\Opera\\Particle Filter\\Data\Ubi with Odometry\';

robot data{l}.ubi.fname =
robot data{2}.ubi.fname
robot data{3}.ubi.fname =
robot data{4}.ubi.fname
robot data{5}.ubi.fname =
robot data{6}.ubi.fname
robot data{7}.ubi.fname =
robot data{8}.ubi.fname =
robot data{9}.ubi.fname
robot data{l0}.ubi.fname
robot data{11}.ubi.fname
robot data{12}.ubi.fname

'data 01 ubi odo 2 laps.txt';
'data 02 ubi odo 6 laps.txt';
'data_03 ubi odo_10_laps.txt';
'data 04_ubiodo_10 laps CCW.txt';
'data 05 ubi odo CW.txt';
'data 06 ubi odo CCW.txt';
'data 07 ubi odo sw R.txt';
'data 08 ubi odo sw L.txt';
'data 09 ubi odo fun.txt';
'data_10_ubiodoslip.txt';
'data 11 ubi odo CCW head.txt';
'data 12 ubi odo CW head.txt';

robot data{l}.ubi.t shft = 69;
robot data{2}.ubi.t shft = 47;
robot data{3}.ubi.t shft = 32.5;
%robot data{3}.ubi.t shft = 0;
robot data{4}.ubi.t shft = 44;
robot data{5}.ubi.t shft = 33;
robot data{6}.ubi.t shft = 22;
robot data{7}.ubi.t shft = 35;
robot data{8}.ubi.t shft = 92;
robot data{9}.ubi.t shft = 52;
robot data{l0}.ubi.t shft = 57;
robot data{ll}.ubi.t shft = 18;
robot data{l2}.ubi.t shft = 68;

tag back = '020-000-139-058';
tag front = '020-000-139-059';
all dist = [];
for i = exps

%PARSE THE UBISENSE DATA INTO A STRUCT

if (i == 6)

robot data{i}.ubi.skip = 600;
else

robot data{i}.ubi.skip = 20;
end

%get the tags
ubi = fopen([mypath robotdata{i}.ubi.fname]);
robot data{i}.ubi.tags = fscanf(ubi, ['%s' '%*s' '%*s' %*s' %*s' '%*s' '%*s' '%*s' '\nI',

[15, infl)';
fclose (ubi);

%get the positions for each tag
ubi = fopen([my path robotdata{i}.ubi.fname]);
robot data{i}.ubi.pos = fscanf(ubi, ['%*s' '%*s' '%f' '%f' '%f' '%*s' '%*s' '%*s' '\n'], [3,

inf])';
fclose (ubi);

%filter the data so that we don't have tags that don't match
robot data{i}.ubi.pos back = [];

robotdata{i}.ubi.pos_front = [];
on-front = 1;
interp tag = 1;

if (interptag)
for j = robotdata{i}.ubi.skip:length(robotdata{i}.ubi.tags)-l

%this is the front tag we will just store it, but we must
%interp the nearest back tags
if (strcmp(robot_data{i}.ubi.tags(j,:), tag_front))

robotdata{i}.ubi.posfront = ...
[robotdata{i}.ubi.pos front; robot_data{i}.ubi.pos(j,:)];

%our neighbor tags are back tags which is good
if (strcmp(robot data{i}.ubi.tags(j-l,:), tag back) &&

strcmp(robot data{i}.ubi.tags(j+l,:), tag-back))
robotdata{i}.ubi.pos back = [robotdata{i}.ubi.pos back;

(robotdata{i}.ubi.pos(j-l,:)+robotdata{i}.ubi.pos(j+l,:))./2];
else

%[robot data{i}.ubi.tags(j-l,:), robot data{i}.ubi.tags(j+l,:)]
robotdata{i}.ubi.pos back = [robotdata{i}.ubi.pos back;

robotdata{i}.ubi.posback(end,:)];
end

end
end

else
for j = robotdata{i}.ubi.skip:length(robotdata{i}.ubi.tags)

if (onfront && strcmp(robot_data{i}.ubi.tags(j,:), tagfront))
robotdata{i}.ubi.posfront = [robotdata{l}.ubi.pos_front;

robotdata{i}.ubi.pos(j,:)];
on front = -on front;

elseif (-onfront && strcmp(robot data{i}.ubi.tags(j,:), tagback))
%append back tags
robotdata{i}.ubi.pos back = [robotdata{i}.ubi.pos back;

robotdata{i}.ubi.pos(j,:)];
on-front = -on-front;

end
end

end

%assign a time stamp from 0
%we will put in an offset later
%ignore the first 7 entries
%we get roughly 8 per second so take the length and div by 8
%we get 2 tag updates at the 'same time' so lets assume they are at the

%same time step
samples = length(robotdata{i}.ubi.pos front);
robot data{i}.ubi.event time = linspace(O, samples/4, samples);
robotdata{i}.ubi.dt = diff(robot data{i}.ubi.event time);

robot data{i}.ubi.diameter = [];
for j = 2:min(length(robot_data{i}.ubi.posback),length(robotdata{i}.ubi.pos_front))

dis = [robotdata{i).ubi.pos back(j,l)-robotdata{i}.ubi.posfront(j,l)
robotdata{i).ubi.pos-back(j,2)-robotdata{i}.ubi.pos-front(j,2)];

robot data{i}.ubi.diameter(j) = sqrt(sum(dis.*dis));
end
all dist = [all dist; robot data{i}.ubi.diameter'];

if (plot ubi)
theta = [];
if (1)

figure(10+i)
%subplot(3,4,i);
hold on;
%plot the robot as a vector
for j = 2:min(length(robotdata{i}.ubi.pos back),length(robotdata{i}.ubi.posfront))

%if (abs(robotdata{i}.ubi.diameter(j)-.29) < .10)
plot([robotdata{i}.ubi.posback(j,l) robotdata{i}.ubi.pos front(j,l)],

[robotdata{i}.ubi.posback(j,2) robotdata{i}.ubi.pos-front(j,2)], 'b-

plot(robotdata{i).ubi.pos front(j,l),
robotdata{i}.ubi.pos-front(j,2), 'ro');

d = (robotdata{i}.ubi.pos front(j,1:2)-robotdata{i}.ubi.pos-back(j,1:2));
theta = [theta; atan2(d(:,2), d(:,l))];

%end
end

%now connect all of the front points to see the path
rainbowplot(robotdata{i}.ubi.posfront(:,l)',...

robotdata{i}.ubi.posfront(:,2)');

axis equal;
%keep it all boxed but our fun plot

if (i ~- 9)

% axis([0 18 2 10]);
end

end
%plot the histograms on a subplot

figure(20+13)
subplot (3,4, i)

% hist(min(robot data{i).ubi.diameter, 1), 20)
end

end

[pdf, binsk] = ksdensity(min(alldist, 1), 'width', .02);
for i=l:12

robot data{i}.ubi.pdf = [pdf', bins k'];
end
%plot the entire histogram on a main plot
%plot ubi = 1;

if (plot ubi)
% figure (20+17)
% hist(theta, 20);
% [mean(theta) std(theta)]

figure(20+15)
hist(min(all dist, 1), 100);
[counts, bins h] = hist(min(all dist, 1), 100);
hold on;
plot(binsk, pdf*max(counts)/max(pdf), 'r-', 'linewidth', 2);

end

%robot data{1}.ubi = load([my path 'data 01_ubi odo_2_laps.txt']);

%mystr = ' 000-000-000-004 ULocationIntegration::Tag 5.73 5.77 1.21 5/1/2010 11:29:32
PM';
%mystr = 000-000-000-004 ULocationIntegration::Tag 5.73';% 5.77 1.21 5/1/2010 11:29:32
PM'
%tag = sscanf(tags, [], [15, infl)'

%pos = sscanf(mystr, ['%*s' '%*s' '%f' '%f' '%f' '%*s'])

8.3.4 sim_script.m

%run simulator script

%first run both the scripts but don't plot anything!

% plotodo = 0;

% odo ubi script;
% plot ubi = 0;
% ubi odo script;

% This stores the data into robot date{i}

% now run our simulator on a set of robot data

for i = exps
robot data{i}.part = [];
robot data{i}.part = simulator(robotdata{i},0);

if (plotpart)
figure(20+i);
subplot(3,1, 1);
hold on;
title(['part ' num2str(i)]);
plot(robotdata{i}.part.event_time, robotdata{i}.part.mean(:, 1)', 'g-');

% rainbowplot(xpos', y-pos');
subplot(3,1, 2);
hold on;

plot(robotdata{i}.part.event_time, robotdata{i}.part.mean(:, 2)', 'g-');

subplot(3,1, 3);
hold on;

% plot(robotdata{i}.part.event time, sin(robot data{i}.part.mean(:, 3))./...

% cos(robotdata{i}.part.mean(:, 3)), 'g-');

plot(robotdata{i}.part.event_time, sin(robot data{i}.part.mean(:, 3)), 'g-');

plot(robotdata{i}.part.event time, cos(robotdata{i}.part.mean(:, 3)), 'g:');

end
end

8.3.5 simulator.m

%Robot Simulator
%run through the simulated data one point at a time and then update the
%robot position with the odometry and the absolute positioning data.
%Assume the robot data set ha-s been created and parsed into robot data

%now lets run a simulation on this data. Basically lets grab this robot
%data. So sim dat = robot data{i)

%what is in robot data?
%robot data{i} is the ith robot run
%robotdata{i}.odo is a reference to all the odometry data for this ith run
%robot data{i}.ubi is a reference to all the ubisense data for this ith run

%odo.fname string l the file name for this odometry set
%odo.init pose [x'y't] 1x3 the initial pose for this odometry set
%odo.dt Nxl the do between this odometry

% measurement and the last odometry
% measurement Edt_1, ... dt ml

%odo.pose [xytl Nx3 The raw robot pose as calculated by
n l straight odometry integration

odorobotvel [xdot ydot dot] The velocity at this current time
[Nx3 Measured from the encoders y8/second

mrobot animator draw this robot clear last robot
mclear last particles.

function results = simulatrr(real data, animate)
%ststres all rf our goodies in hirn
global G;
G =[;
%setup our global variables here
fnit eglobals(realdata, animate);
stepPF(O); %initializes particles

if (G.Params.animate)
init animation();

end

while (G.Odometry.event time(end-1) > G.Params.last event)
ubi now = next measurement();
%if (~ubi now 11 ...
% ubi now && abs(G.Ubisense.diameter(G.Ubisense.cur index)-.28) < .15)

step PF(ubi now);
%end

end

%clear the zero entries
grab=logical(sum(abs(G.Particles.mean),2) ~- 0);
G.Particles.mean=G.Particles.mean(grab,:);
G.Particles.std=G.Particles.std(grab,:);
G.Particles.eventtime=G.Particles.eventtime(grab,:);
results = G.Particles;
end

function is ubi = next measurement()
global G;
o_i=G.Odometry.cur index;
u i=G.Ubisense.cur index;
last time = G.Params.last time;
last event = G.Params.last event;

%increment our index to the next odometry reading
if (G.Odometry.eventtime(oi) < ...

G.Ubisense.event time(u i)-G.Ubisense.t shft)
G.Odometry.cur index=o-i+1;
if (-mod(G.Odometry.cur index, G.Params.skip))

if (G.Params.animate)
pause((G.Odometry.event_time(o i)-last event-etime(lasttime, clock))/...

G.Params.time warpscale);
runanimation('odo', 1);
last time = clock;

end

end
last-event = G.Odometry.event time(o i);

is ubi = 0;

%increment to the next ubisense
else

G.Ubisense.cur index=u i+l;
if (~mod(G.Ubisense.curindex, ceil(G.Params.skip/4)))

if (G.Params.animate)
pause((G.Ubisense.eventtime(ui)-G.Ubisense.tshft -...

last event-etime(last time,clock))/G.Params.time warpscale);
run-animation('ubi', 2);
%if (u i > 961)
% pause;
%end
last time = clock;

end

end
last event = G.Ubisense.event time(u i)-G.Ubisense.t shft;
is ubi = 1;

end

G.Params.last time = last time;
G.Params.last event last-event;

end

function initglobals(realdata, animate)
global G;

figure(l); clf;
%G.Params declared here
G.Params.time warpscale = 50;
G.Params.path_plot hist = 200;
G.Params.last time = clock;
G.Params.last event = 0;
G.Params.skip = 8;
G.Params.parthasinit = 0;
G.Params.animate = animate;

%G.Odometry data stored here
G.Odometry = realdata.odo;
G.Odometry.curindex = 1; %cur data index
G.Odometry.curtime = 0;
G.Odometry.FIG = subplot(3,3,[l 2]);
G.Odometry.tfig = subplot(3,3,3);
G.Odometry.hRobot=[]; %handle to the robot figure
G.Odometry.hPath=[];
G.Odometry.tPath=[];
G.Odometry.path_color = [1 0 1];
G.Odometry.animate = 1;

%G.Ubisense data stored here
G.Ubisense = real data.ubi;
G.Ubisense.cur index = find(G.Ubisense.event time-G.Ubisense.t shft>0, 1);
G.Ubisense.cur time = 0;
G.Ubisense.FIG = subplot(3,3,[4 5]);
G.Ubisense.t_fig = subplot(3,3,6);
G.Ubisense.hRobot = [;
G.Ubisense.hPath=[];
G.Ubisense.tPath=[];
G.Ubisense.path_color = [1 0 1];
G.Ubisense.animate = 1;

%cur data index

%G.FIG stuff for drawing pretty figures
G.FIG.axis=[0 18 0 10];
G.FIG.hRobot=[]; %handle to the robot figure
G.FIG.hObs=[];
G.FIG.hBeacons=[];
G.FIG.hPath=[];
G.FIG.hTitle=[];
G.FIG.path cur co = 1;
% G.FIG.clrs.beaconstl}=[0 0 0];
% G.FIG.cirs.beacons(2}=[.4 .4 .4];
% G.FIG.clrs.robot{l}=[0 0 1];
% G.FIG.clrs.robot{2}=[0 1 1];
% G.FIG.clrs.path{l}=[0 1 0];
% G.FIG.clrs.obs{l}=[l 0 0];
G.FIG.prevtime=[];
end

function init animation()
global G;
%figure (1);
%get(G.Odometry.FIG, 'type')
subplot(G.Odometry.FIG),hold on;
set(gcf,'DoubleBuffer', 'on');
%axis(G.Odometry.opt axis);
axis(G.FIG.axis);
%axis equal

subplot(G.Odometry.t fig),hold on;
set(gcf,'DoubleBuffer','on');
axis([-1 1 -1 1]);
axis square

%get(G.Ubisense.FIG, 'type')
subplot(G.Ubisense.FIG),hold on;
set(gcf,'DoubleBuffer','on');
axis(G.FIG.axis);
%axis equal

subplot(G.Ubisense.tfig),hold on;
set(gcf,'DoubleBuffer', 'on');
axis([-l 1 -1 1]);
axis square

subplot(G.Particles.FIG),hold on;
set(gcf,'DoubleBuffer','on');
%axis(G.Odometry.opt axis);
axis(G.FIG.axis);
%axis equal

subplot(G.Particles.tfig),hold on;
set(gcf,'DoubleBuffer','on');
axis([-l 1 -1 1]);
axis square

end

95

8.3.6 run animation.m

%animation functions
%all the things we need to animate our robot is stored in here
function runanimation(animate what, animateopt)

animate title();
if (strcmp(animate what, 'odo'))

animaterobotodometry();
if (animate opt)

animatepath odometry(;
end

elseif (strcmp(animate what, 'ubi'))
animate robot ubisense();
if (animateopt)

animatepath ubisense(animateopt);
end

elseif (strcmp(animate what, 'part'))
animaterobotparticles(animateopt);
animate_pathparticles();

end

end

%update the robot animation in the G.FIG.hRobot
%draw with the current pose based on the current index
function animaterobot_odometry)
global G;
%figure(l);
t=pi*(.5+linspace(0,1));
cs=[cos(t);sin(t)];
rr=.15;
rl=.35;
rs=[[rl 0]' rr*cs [rl 0]'];

subplot(G.Odometry.FIG)
pose = G.Odometry.pose(G.Odometry.cur index,:);
rs=transform_points([pose(l) pose(2) pose(3)+l*pi/2],rs);
if isempty(G.Odometry.hRobot)

G.Odometry.hRobot=patch(rs(l,:),rs(2,:),'r');
%get(G.FIG.hRobot);
%plot([0 10], [0 10]);

else
set(G.Odometry.hRobot,'XData',rs(l,:));
set(G.Odometry.hRobot,'YData',rs(2,:));

end

end

function animatepathodometry()
global G;
%figure(1);
idx=G.Odometry.cur index;
i0=max([1 idx-G.Params.pathplot hist+l]);
il=idx;
% x=G.EKF.X(l,iO:il);
% y=G.EKF.X(2,iO:il);
x=G.Odometry.pose(iO:il,l);
y=G.Odometry.pose(iO:il,2);

if isempty(G.Odometry.hPath)
h=plot(x,y, 'LineStyle','-.');
set(h, 'Color',G.Odometry.pathcolor);
G.Odometry.hPath{l}=h;

else
set(G.Odometry.hPath{l},'XData',x);
set(G.Odometry.hPath{l},'YData',y);

end

subplot(G.Odometry.tfig)
t = G.Odometry.pose(iO:il,3);

x = (linspace(0, 1, length(t)).*cos(t+pi/2)' 0];
y = (linspace(0, 1, length(t)).*sin(t+pi/2)' 0];
if isempty(G.Odometry.tPath)

h=plot(x,y,'LineStyle','-');
set(h,'Color', [0 0 1]);
G.Odometry.tPath{l}=h;

else
%x = reshape([x;zeros(l,length(x))], 1, 2*length(x));
%y = reshape([y;zeros(l,length(y))], 1, 2*length(y));
set(G.Odometry.tPath{l},'XData',x);
set(G.Odometry.tPath{l), 'YData',y);

end

end

function animate robot ubisense()
global G;
%figure(1);
t=pi*(.5+linspace(0,1));
cs=[cos(t);sin(t)];
rr=.15;
rl=.35;
rs=[[rl 0]' rr*cs [rl 0]'];

subplot(G.Ubisense.FIG);
pose = get ubipose(G.Ubisense.posfront(G.Ubisense.curindex,:),

G.Ubisense.pos back(G.Ubisense.curindex,:));
rs=transformpoints([pose(l) pose(2) pose(3)+l*pi/2],rs);
if isempty(G.Ubisense.hRobot)

G.Ubisense.hRobot=patch(rs(l,:),rs(2,:),'r');
%get(G.FIG.hRobot);
%plot([0 10], [0 10]);

else
set(G.Ubisense.hRobot,'XData',rs(l,:));
set(G.Ubisense.hRobot, 'YData',rs(2,:));

end

end

function animatepath ubisense(animateopt)
global G;
%figure(l);
idx=G.Ubisense.cur index;
i0=max([1 idx-G.Params.path plot hist/8+1]);
il=idx;
x=G.Ubisense.pos front(iO:il,l);
y=G.Ubisense.pos-front(i0:il,2);

usei = logical(abs(G.Ubisense.diameter(iO:il)-.28) < .15);
if isempty(G.Ubisense.hPath)

h=plot(x,y,'LineStyle','-.');
set(h,'Color',G.Ubisense.path color);
G.Ubisense.hPath{1}=h;

else

if (animateopt == 2)

x = x(usei);
y = y(use i);

end

set(G.Ubisense.hPath{l},'XData',x);
set(G.Ubisense.hPath{l},'YData',y);

end

subplot(G.Ubisense.tfig)
p = get ubi-pose(G.Ubisense.posfront(iO:il,:),G.Ubisense.pos-back(iO:il,:));

x = linspace(0, 1, length(p)).*cos(p(:,3)+pi/2)';
y = linspace(0, 1, length(p)).*sin(p(:,3)+pi/2)';
if isempty(G.Ubisense.tPath)

h=plot(x,y, 'LineStyle','-');

set(h,'Color', [0 0 1]);
G.Ubisense.tPath{l}=h;

else
if (animateopt == 2)

x = x(use i);
y = y(use i);

end
%x = reshape([x;zeros(l,length(x))], 1, 2*length(x));
%y = reshape([y;zeros(l,length(y))], 1, 2*length(y));
set(G.Ubisense.tPath{l},'XData',[x 0]);
set(G.Ubisense.tPath{l},'YData',[y 0]);

end
end

function animate robotparticles(animate opt)
global G;

t=pi*(.5+linspace(0,1));
cs=[cos(t);sin(t)];
rr=.15;
rl=.35;
rs=[[rl 0]' rr*cs [rl 0]'];

subplot(G.Particles.FIG)
%figure (3);
pose = G.Particles.mean(G.Particles.cur index,1:3);
rs=transform points([pose(l) pose(2) pose(3)+l*pi/2],rs);
if isempty(G.Particles.hRobot)

G.Particles.hRobot=patch(rs(l,:),rs(2,:),'r');
%get(G.FIG.hRobot);
%plot([0 10], [0 10]);

else
set(G.Particles.hRobot,'XData',rs(l,:));
set(G.Particles.hRobot,'YData',rs(2,:));

end

if (animateopt)
x=G.Particles.for x(:,l);
y=G.Particles.for y(:,1);

if isempty(G.Particles.hPart)
G.Particles.hPart=plot(x, y, '.','MarkerSize', 4);
%get(G.FIG.hRobot);
%plot([0 10], [0 10]);

else
set(G.Particles.hPart,'XData',x);
set(G.Particles.hPart,'YData',y);

end

end

end

function animatepathparticles()
global G;

idx=G.Particles.cur index;
iO=max([1 idx-G.Params.pathplot-hist+l]);
il=idx;
% x=G.EKF.X(1,iQ:il);
% y=G.EKF.X(2,ie:il);
x=G.Particles.mean(iO:il,1);

y=G.Particles.mean(i0:il,2);

if isempty(G.Particles.hPath)
h=plot(x,y,'LineStyle','-.');

set(h,'Color',G.Particles.pathcolor);
G.Particles.hPath{l}=h;

else
set(G.Particles.hPath{l1,'XData',x);
set(G.Particles.hPath{l1,'YData',y);

end
%figure(l);
subplot(G.Particles.tfig)
t=G.Particles.mean(iO:il,3);

x = [linspace(O, 1, length(t)).*cos(t+pi/2)' 0];

y = [linspace(0, 1, length(t)).*sin(t+pi/2)' 0];

if isempty(G.Particles.tPath)
h=plot(x,y,'LineStyle','-');
set(h,'Color', [0 0 1]);
G.Particles.tPath{l}=h;

else
%x = reshape([x;zeros(l,length(x))], 1, 2*length(x));

%y = reshape([y;zeros(l,length(y))], 1, 2*length(y));

set(G.Particles.tPath{l},'XData',x);
set(G.Particles.tPath{l,'YData',y);

end

end

function animate title)
global G;

%d=[idx G.EKF.t(idx) G.EKF.X(1:2,idx)' G.EKF.X(3,idx)*180/pi];
d = [G.Odometry.cur index G.Ubisense.cur index];

sFmt='PF odo=%5d ubi=%5d';
sTitle=sprintf(sFmt,d);
if isempty(G.FIG.hTitle)

figure(1);
G.FIG.hTitle{l}=title(sTitle);

else
set(G.FIG.hTitle{l},'String',sTitle);

end

end

function pose = get ubipose(front, back)
d = (front(:,l:2)+back(:,1:2))./2;
pose = d;

d = front(:,1:2)-back(:,1:2);
theta = awrap(atan2(d(:,2), d(:,l))-pi/2);

pose = [pose theta];
end

function [al]=awrap(a)
% function [al]=awrap(a);
% Wrap angles (radians) to -pipi

% Argument a must be a vector
al=a;
tran=0;
[n,d] = size (al);
if and(n==l,d>l)

tran=l;
al=al';

end
ia=find(~isnan(al));
al(ia)=atan2(sin(al(ia)),cos(al(ia)));
if tran==1
al=al';

end
end

%transform the points in p0 by Tab = [a, b, theta]
%used for animating the robot shape into the global
%coordinate frame by the REAL robot pose
function [pl]=transform_points (Tab,pO);
c=cos(Tab(3));s=sin(Tab(3));
M=[c -s;s c];
if size(pO,1)>2

pl=pO*M';
pl=pl+repmat([Tab(l) Tab(2)],size(pO,1),1);

else
pl=M*p0;
pl=pl+repmat([Tab(l) Tab(2)]',l,size(pO,2));

end
end

100

8.3.7 stepPF.m

%particle filter step

function step_PF(ubi_now)
global G;

if (-G.Params.part has init)
initparticles(;
return;

end

o_i=G.Odometry.cur index;

u i=G.Ubisense.cur index;
p_i = G.Particles.cur index;

if (ubi now)
updateubisenseo;

else
updateodometry(;

end

p-i = p -i+1;
G.Particles.event_time(p i) = G.Params.last event;
G.Particles.mean(pi,:) = get meanstate));
G.Particles.std(p_i,:) = getstdstate();

G.Particles.curindex = pi;

if (G.Params.animate)
run animation('part', 1);

end

%increment our index to the next odometry reading

end

function update ubisense)
global G;
u i = G.Ubisense.cur-index;

z = [getubipose(G.Ubisense.pos front(ui,:), G.Ubisense.pos-back(ui,:)),...

G.Ubisense.diameter(u i)];
obsprob = getobsprob(z);
%new weights = get weights_from_prob(obs prob);
%make new particles(newweights);

newweights = getcomb weights(obsprob);
makecombparticles(new-weights);

end

%z is the observation [x, y, t, diameter] diameter is the spacing between the

%two tags. We use this as a measure of how good this measurement is

function obs_prob = getobsprob(z)
global G;
d std = 1/interpl(G.Ubisense.pdf(:,2), G.Ubisense.pdf(:,l), z(4));

%d std = 1;

x prob = normpdf(G.Particles.for_x(:,l), z(l), G.Particles.obs_x_std*dstd);

y_prob = normpdf(G.Particles.for_y(:,l), z(2), G.Particles.obs_y_std*dstd);

%we calculate the std for our obs model based on the 'goodness' of our

%observation

t prob = normpdf(awrap(z(3)-G.Particles.for t(:,l)), 0, G.Particles.obs t std*d std);

101

obsprob = [x prob yprob t-prob];
end

function newweights = get weights fromprob(obs prob)
new-weights = [obsprob(:,1)/sum(obs-prob(:,1)),...

obsprob(:,2)/sum(obsprob(:,2)),...
obsprob(:,3)/sum(obs prob(:,3))];

end

function makenewparticles(new_weights)
global G;
oldp = [G.Particles.forx(:,1) G.Particles.fory(:,l) G.Particles.fort(:,1)];
newp = zeros(G.Particles.num,3);

cum = cumsum(new weights);%./repmat(sum(new weights),G.Particles.num,1);
noise = [G.Particles.pro_x_std G.Particles.pro_y_std G.Particles.pro t std];
for i = 1:G.Particles.num

for j = 1:3
%new p(cur i(j):(cur_i(j)+numInew(i,j)-1),j) =repmat(oldp(i,l),numnew(i,j),1);
%cur i(j) cur i(j)+numnew(i,j);
ind = find(rand(1)<=cum(:,j),1);
if (~length(ind)), ind=1; end
new-p(i,j)=old p(ind,j);

end
end
newp = makenoisy(new p, noise);
G.Particles.for x(:,l) = new p(:,1);
G.Particles.for-y(:,l) = newp(:, 2

);
G.Particles.fort(:,l) = awrap(newp(:,3));

end

function new weights = get comb weights(obs prob)
new-weights = sum(obsprob,2);
new weights = new weights./sum(new weights);
end

function makecombparticles(newweights)
global G;
oldp = [G.Particles.forx(:,l) G.Particles.fory(:,l) G.Particles.for t(:,l)];
new p = zeros(G.Particles.num,3);

cum-w = cumsum(new weights);%./repmat(sum(new weights),G.Particles.num,l);
noise = [G.Particles.pro x std G.Particles.pro y std G.Particles.pro_tstd];
for i = 1:G.Particles.num

ind = find(rand(l)<=cum w,1);
if (~length(ind)), ind=1; end
new_p(i, :)=old_p(ind,:);

end
newp = makenoisy(newp, noise);
G.Particles.forx(:,l) = new p(:,1);
G.Particles.for y(:,l) = new p(:,2);
G.Particles.for t(:,l) = awrap(newp(:,3));

end

102

function pose = getubipose(front, back)
d = (front(:,1:2)+back(:,1:2))./2;
pose = d;

d = front(:,1:2)-back(:,1:2);
theta = awrap(atan2(d(:,2), d(:,l))-pi/2);

pose = [pose theta];
end

function update odometry)
global G;
o i = G.Odometry.cur_index;

%propagate the particles forward by the odometry readings

%no resampling here

v = repmat(G.Odometry.robotvel(oi,:), G.Particles.num,l);
noise = [G.Particles.pro_xdotstd,...

G.Particles.pro_y dot std,...
G.Particles.pro_tdotstd];

%v = make noisy(v, noise);

dt = G.Odometry.dt(o i);

G.Particles.for t = [awrap(G.Particles.fort(:,l)+v(:,3)*dt), v(:,3)];

G.Particles.for x = [G.Particles.for x(:,l)+...

v(:,2).*dt.*cos(G.Particles.fort(:,l))+v(:,l).*dt.*sin(G.Particles.fort(:,l)), v(:,l)];

G.Particles.fory = [G.Particles.fory(:,l)+...
v(:,2).*dt.*sin(G.Particles.fort(:,l))-v(:,l).*dt.*cos(G.Particles.for_t(:,l)), v(:,2)];

end

%make all of our particles
function initparticles()
global G;
figure(1);
%admin stuff here
G.Particles.cur index = 1;
G.Particles.num = 100;
G.Particles.t fig = subplot(3,3,9);
G.Particles.FIG = subplot(3,3,[7 8]);

G.Particles.hRobot = [1;
G.Particles.hNoise = [];
G.Particles.hPath = [];
G.Particles.tPath = [];
G.Particles.hPart = [;
G.Particles.path color = [1 0 1];

%particles for x and x dot

G.Particles.pro_x_std = .15;
%G.Particles.pro_xdotstd = .02;
G.Particles.pro_x_dot std .05;

G.Particles.obs x std = .15;

G.Particles.obs x dot std = .1;

G.Particles.for x = make noisy(repmat([G.Odometry.initpose(1) 0], G.Particles.num, 1),...

[G.Particles.pro_x-std, G.Particles.pro-x_dotstd]);

103

%particles for y and y dot
G.Particles.pro y std = .15;
%G.Particles.pro y dot std .02;
G.Particles.pro y dot std = .05;
G.Particles.obs y std = .15;
G.Particles.obs-y_dot std = .1;
G.Particles.fory = makenoisy(repmat([G.Odometry.initpose(2) 0], G.Particles.num, 1)

[G.Particles.pro_y_std, G.Particles.pro y dot std]);

%particles for t and t dot
G.Particles.pro_t_std = .15;
G.Particles.pro t dot std = .15;
G.Particles.obs t std = 1.5;
G.Particles.obs t dot std = .1;
G.Particles.fort = makenoisy(repmat([G.Odometry.init pose(3) 0], G.Particles.num, 1),...

[G.Particles.pro t std, G.Particles.pro-t_dot std]);

%time stamps for these particles at this index
%mean x, y, t and xdot, y dot, t dot
%preallocate the mean for speed
G.Particles.mean = zeros(length(G.Ubisense.pos front)+...

length(G.Odometry.pose)-1, 6);
G.Particles.mean(G.Particles.curindex,:) = get mean state();

G.Particles.eventtime = zeros(length(G.Ubisense.pos front)+...
length(G.Odometry.pose)-1, 1);

G.Particles.std = zeros(length(G.Ubisense.pos front)+...
length(G.Odometry.pose)-l, 6);

G.Particles.std(G.Particles.cur index,:) = get std state));

%std x, y, t and xdot, y dot, t dot
%no history of particles just our x, y, t

%we are initialized
G.Params.part has init = 1;
end

%we are expecting the input particles to be of the form
% [xO x dotO; xl x dotl; x2 x dot2; ...]
function noisy = makenoisy(particles, stds)
global G;

noisy = particles + ...

repmat(stds,length(particles),1).*randn(length(particles),length(stds));
end

function all-mean = getmeanstate)
global G;

x = mean(G.Particles.for x, 1);
y = mean(G.Particles.for-y, 1);
t = atan2(sum(sin(G.Particles.for t)),sum(cos(G.Particles.for t)));

allmean = [x(l) y(l) t(l) x(2) y(2) t(2)];
end

function allstd = get stdstate)
global G;

x s = std(G.Particles.for x, 1);
y s = std(G.Particles.fory, 1);
t s = std(G.Particles.for t, 1);

allstd = [x-s(l) ys(l) t_s(l) x-s(2) y s(2) t s(2)];
end

function [al]=awrap(a)
% function [al]=awrap(a);
% Wrap angles (radians) to -pi,pi
% Argument a must be a vector

104

al=a;
tran=O;
[n, dl = size (al);
if and(n==l,d>l)

tran=l;
al=al';

end
ia=find(-isnan(al));
al(ia)=atan2(sin(al(ia)),cos(al(ia)));
if tran==l
al=al';

end
end

105

106

