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ABSTRACT 
 
Numerous therapeutics, such as viral gene therapy vectors, have unintended toxicity in 
part due to interactions with inflammatory cytokine signaling to elicit hepatocyte death, 
thus limiting their clinical use.  Although much is known about how cytokines and 
certain therapeutics individually induce hepatotoxicity, there is little understanding of 
how they jointly regulate the complex cellular signaling network governing 
hepatocellular death.  In this thesis, we explored the signaling mechanisms governing the 
cytokine-induced hepatocellular death in the context of adenoviral vector (Adv) infection 
and pharmaceutical compounds with idiosyncratic hepatotoxicity. 

Initially, we examined the role of autocrine and intracellular signaling pathways 
in governing the synergistic induction of hepatocyte apoptosis by the cytokine tumor 
necrosis factor-α (TNF) in the presence of Adv infection in a primary rat hepatocyte cell 
culture model.  We demonstrated that Adv/TNF-induced hepatocyte apoptosis is 
regulated by a coupled and self-antagonizing autocrine signaling cascade involving the 
sequential release of anti-apoptotic transforming growth factor-α (TGF-α), pro-apoptotic 
interleukin-1α/β (IL-1α/β), and anti-apoptotic IL-1 receptor antagonist (IL-1ra).  This 
three-part autocrine cascade regulates multiple intracellular signal pathways, including 
ERK and JNK, that serve to integrate TNF- and Adv-induced signals and govern the 
resultant hepatocellular death response. 
 Following this, we demonstrated that numerous idiosyncratic hepatotoxins, whose 
hepatotoxicities are not evident in standard cell preclinical screening models, elicit 
synergistic induction of hepatocellular death upon multi-cytokine co-stimulation in 
primary rat and human hepatocyte cell culture models.  We showed that this drug-
cytokine co-treatment model could be usefully scaled to the high-throughput demands of 
pharmaceutical screening while maintaining idiosyncratic hepatotoxicity prediction 
accuracy.  To identify the signaling mechanisms regulating these drug/cytokine 
hepatocellular death synergies, we collected multi-pathway signal-response data 
compendia from two human hepatocyte donors.  Through the use of partial least-squares 
regression modeling, we showed that hepatocytes integrate signals from four pathways -- 
ERK, Akt, mTOR, and p38 -- to specify their cell death responses to toxic drug/cytokine 
conditions and that accurate prediction of hepatocellular death responses can be made 
across human hepatocyte donors. 
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Together, these findings demonstrate that cytokine-induced hepatocellular death 
in the context of hepatotoxic therapeutics is governed by integrated network activity of 
multiple autocrine and intracellular signaling pathways. 
 
Thesis Supervisor: Linda G. Griffith 
Title: School of Engineering Professor of Biological and Mechanical Engineering 
 
Thesis Supervisor: Douglas A. Lauffenburger 
Title: Whitaker Professor of Biological Engineering, Biology, and Chemical Engineering 
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CHAPTER 1 

 
Introduction 

 
This thesis investigates the cellular signaling mechanisms governing the relationship 

between inflammatory cytokine signaling and therapeutics with inflammation-associated 

hepatotoxicities, such as adenoviral vectors and idiosyncratic hepatotoxic drugs through 

the use of quantitative experimental and computational cell biology approaches. This 

chapter contains background and motivating information pertaining to liver biology, 

hepatocyte culture methods, inflammatory cytokine signaling, drug hepatotoxicity, and 

systems biology methods and models fundamental to this thesis. 

 

1.1. Liver organization, function, and cell types 

The liver is a vascularized organ composed of multiple cell types in a highly ordered 

three-dimensional structure.  Important liver functions include xenobiotic, protein, 

steroid, and fat metabolism; blood detoxification; secretion of blood and bile components 

such as albumin, bile salts, and cholesterol; and storage of vitamins and sugars [1].  

Hepatocytes, or parenchymal cells, form single-layer cell plates of the liver lobule and 

are the key function cell of the liver.  Hepatic plates extend from the portal vein to the 

central vein and are separated by capillary-like sinusoidal spaces [2].  Tissue organization 

and extra-cellular matrix (ECM) molecules maintain hepatocyte polarity, as defined by 

three functionally different cellular domains.  The hepatic sinusoidal domain contacts 

ECM molecules and sinusoidal endothelial cells in the Space of Disse that lines the liver 

sinusoid.  The Space of Disse contains the primary hepatic ECM molecules types I-IV 

collagen, tenascin, laminin, fibronectin, and proteoglycans (heparan sulfate, heparin, 

chondroitin sulfate, dermatan sulfate).  The hepatic lateral domain consists of cell-cell 

adhesions that are mediated by homotypic E-cadherin associations and are important for 

cell-cell communication via desmosomes and gap junctions.  The hepatic canalicular 

domain contains bile canaliculi, which serve as functional conduits for bile secretion.  
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The maintenance of hepatocyte polarity is essential for biliary excretion and xenobiotic 

elimination. 

The non-parenchymal liver cells (NPC’s) are comprised of bile duct epithelial 

cells, sinusoidal endothelial cells (SEC’s), Kupffer cells, and stellate cells.  Sinusoidal 

endothelial cells line the sinusoidal space and contain fenestrations, which allow for the 

transfer of solutes between the hepatic blood and the Space of Disse [2].  Kupffer cells, 

the resident liver macrophages, are attached to the sinusoidal wall, have phagocytotic 

activity, and, upon activation, secrete proteases and cytokines.  Hepatic stellate cells 

reside in the Space of Disse and synthesize and secrete ECM components (and their 

proteases) and the growth factors epidermal growth factor (EGF), hepatocyte growth 

factor (HGF), and transforming growth factor beta-1 (TGF-β1).  Aberrant ECM 

regulation by stellate cells can lead to liver fibrosis or cirrhosis [2].   

 

1.2. Hepatocyte differentiation  

Differentiated hepatocytes are characterized by many specific functions including, but 

not limited to, urea and albumin synthesis; xenobiotic metabolizing activity via phase I 

and II enzymes, especially the family of inducible cytochrome P450 enzymes; bile acid 

transport and secretion via canalicular networks; and morphological hepatic polarity [1].  

This functional specialization is a consequence of precise transcriptional regulation of a 

cohort of liver-specific genes through the cooperation of multiple families of hepatocyte-

enriched DNA-binding proteins, promoters, and enhancers [3].  These hepatocyte-

enriched regulatory proteins include the hepatocyte nuclear factor (HNF) family 

consisting of HNF1α/β, HNF3α/β/γ, HNF4α, and HNF6; the CAAAT/enhancer binding 

protein (C/EBP) family.  Differentiated hepatocyte function and gene transcription is 

regulated by a combination of soluble (hormones, growth factors, cytokines) and 

insoluble (ECM adhesion, heterotypic and homotypic cell-cell contacts) factors (which 

are regulated, in part, by non-parenchymal cells), cellular morphology, and biophysical 

stimuli [1]. 
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1.3. Hepatocyte culture systems 

1.3.1. Two-dimensional culture systems 

Long-term primary hepatocyte cultures on two-dimensional (2D) surfaces have limited 

ability to retain liver-specific function and have albumin secretion and cytochrome P450 

expression levels below those of isolated hepatocytes [1].  The nature of hepatocyte-ECM 

interactions are thought to determine both cell shape, cytoarchitecture, and expression of 

liver-specific families of transcription factors [4, 5].  Many approaches have been studied 

for the culture of primary hepatocytes on 2D surfaces modified with ECM components.  

Typical approaches use either coated or gelled type I collagen and/or Matrigel, either in a 

monolayer or a “gel sandwich” configuration [5].  Matrigel (BD Biosciences) is 

reconstituted basement membrane from an acid-urea extract from Engelbreth-Holm-

Swarm tumor tissue consisting of ~60% laminin, ~30% type IV collagen, and ~3% 

heparin sulfate proteoglycan and trace other ECM components. 

On collagen-coated tissue culture polystyrene (TCPS) surfaces, primary 

hepatocytes exhibit a rapid loss of albumin section and cytochrome P450 expression and 

rapid increase on non-specific genes such as actin and tubulin, leading to a flattened, 

stretched cellular morphology that displays focal adhesion and actin stress fibers [6].  

Primary hepatocytes cultured on monolayer gels of type I collagen maintain a cuboidal 

shape and a cortical distribution of actin filaments and have better retention of liver-

specific gene expression [6].  Primary hepatocytes cultured on Matrigel monolayer gels 

form aggregated clusters, while retaining albumin secretion rates, cytochrome P450 

expression and inducibility levels, and C/EBP, HNF1, and HNF4 expression levels near 

to those in isolated hepatocytes [4, 5].  Primary hepatocytes cultured in between two 

layers of gelled type I collagen show enhanced cuboidal morphology and the formation 

of gap junctions and functional bile canalucilar networks and have improved bile acid 

transport and cytochrome P450 inducibility compared with monolayer collagen gel 

cultures.  Similarly, Matrigel overlay aids in the restoration and maintenance of long-term 

function of primary hepatocytes in regards to inducibility of cytochrome P450 enzymes, 

albumin secretion, and cellular morphology [7].  Matrigel and type I collagen gel overlay 

cultures exhibit no substantial differences in cytochrome P450 inducibility in long-term 

cultures [1].  Currently, type I collagen gel sandwich cultures serve as the standard long-
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term primary hepatocyte culture system for study of xenobiotic metabolism and toxicity, 

even considering their inability to retain in vivo expression levels of liver-specific 

transcriptional factor and cytochrome P450 enzymes [8]. 

 

1.3.2. Three-dimensional culture systems 

Scaffold- and capillary-based three-dimensional (3D) bioreactor culture systems have 

been developed to better retain the tissue structure and function of primary hepatocytes in 

long-term cultures [9].  The retention of in vivo-like hepatic function in long-term 

hepatocytes cultures is important for the development of high throughput tools for 

accurate prediction of xenobiotic metabolism and toxicity and other liver-specific 

functions [8].  Three-dimensional hepatocyte culture systems are proposed to enable 

primary hepatocytes to form hierarchical tissue structures and cell-cell interactions more 

closely resembling in vivo hepatic tissue than 2D culture systems.  In addition, these 

systems are capable of media perfusion similar to in vivo sinusoidal blood flow.  Long-

term culture (>7 days after cell isolation) of primary hepatocytes in this 3D perfused liver 

bioreactor has been shown to maintain constant albumin and urea secretion rates and to 

retain expression levels of HNF and C/EBP families of liver-specific transcription factors 

and cytochrome P450 enzymes at levels closer to those of freshly isolated hepatocytes 

than standard 2D collagen gel sandwiches [8-10].  It is hypothesized that the retention of 

more in vivo-like regulation of liver-specific gene expression in this 3D culture system 

compared to 2D collagen gel sandwich cultures is caused by differences  in  signaling 

pathways mediated by soluble paracrine signals, cell-ECM interactions, cell-cell 

interactions, and biophysical stresses. 

 

1.4. Inflammatory cytokine signaling in hepatocytes 

In the liver, inflammatory cytokines are primarily released by the resident liver 

macrophages, or Kupffer cells, following viral infection and/or injury.  These 

inflammatory cytokines include tumor necrosis factor-α (TNF), interleukin-1α/β (IL-

1α/β), interferon-γ (IFN-γ), and interleukin-6 (IL-6).  These cytokine binds to their 

cognate receptors on hepatocytes, activating a diversity of intracellular survival, stress, 
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and apoptosis pathways (see Figure 1-1).  The following section summarizes key features 

of their intracellular signaling pathways.  

 

1.4.1. Caspase cascade and NF-κB signaling 

TNF is a proinflammatory cytokine secreted macrophages that binds to two different 

transmembrane receptors, TNFR1 and TNFR2.  TNFR1 trimerization leads to the 

recruitment of TRADD (TNFR1 associated death domain protein) which further recruits 

FADD (Fas-associated death domain protein) and TRAF-2 (TNFR-associated factor-2) 

through binding with their death domains [11].  FADD binding leads to cleavage and 

activation of caspase 8, triggering both intrinsic and extrinsic apoptosis cascades.  

Caspase 8, through BID, induces a mitochondria membrane permeability changes leading 

to cytochrome c release and subsequent activation of caspase 9 and, finally, the effector 

caspase 3.  Caspase 8 can also directly activate caspase 3.  Activated caspase 3 cleaves 

many intracellular protein targets including cytokeratins and PARP.  TRAF-2 binding 

leads to the activation IKK proteins.  IKK-α phosphorylates IκB-α, targeting it for 

ubiquination and degradation by proteosomes, disassociating it from the transcription 

factor NF-κB thus allowing NF-κB to translocate to the nucleus [12].  Once translocated, 

NF-κB promotes the transcription of various anti-apoptotic (e.g. Bcl-2 and XIAP) genes.  

TRAF-2 also mediates c-Jun N-terminal kinase (JNK) activity leading to AP-1 promotion 

of the cell cycle. 

 

1.4.2. STAT3 and Akt signaling 

The pleotropic cytokine IL-6 (interleukin-6) binds to a complex of the transmembrane 

receptor gp130 (glycoprotein 130) and IL-6R (IL-6 receptor) to activate a variety of 

proinflammatory, pro- and anti-apoptotic, and acute-phase immune response pathways 

[13].  IL-6-bound gp-130 activates Janus kinase (JAK) via tyrosine phosphorylation.  

Phosphorylated JAK and gp-130 subsequently phosphorylates both STAT3 (signal 

transducer and activator of transcription-3) and SHP2 (SH2-domain-containing protein 

tyrosine phosphatase-2).   Phosphorylated STAT3 (at Y705) dimerizes and translocates to 

the nucleus, where it activates many “immediate-early” genes associated with liver 

regeneration, acute-phase response, and hepato-protection.  Activated SHP2 interacts 
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with Grb2 (growth factor receptor-bound protein-2) leading to downstream activation of 

the Ras–Raf–MEK–ERK pathway.  Also, activated gp130 is thought to lead to PI3K 

(phosphatidylinositol 3-kinase) activation via lipid phosphorylation [13].  This results in 

recruitment of PDK1 and Akt/protein kinase B (Akt), a serine/threonine kinase, via their 

Pleckstrin homology (PH) domains, to the plasma membrane, where PDK1 

(phosphoinositide-dependent kinase-1) phosphorylates Akt on T308 and Akt S473 is 

auto-phosphorylated [14].  Active Akt dimerizes and phosphorylates intracellular targets 

regulating pro-survival (Bad, caspase 9) and transcription (Forkhead transcription factor) 

regulators.  It has also been suggested that active PI3K can also lead to activation of JNK 

and p38 and their downstream stress/apoptotic pathways [15].  IL-6R/gp130 signaling is 

inhibited by SOCS3 (suppressor of cytokine signaling-3), which is expressed following 

STAT3 dimer translocation, forming a negative feedback loop [13].   JNK-mediated 

activation of AP-1 also contributes to the expression of “immediate-early” genes, 

including the c-Fos, c-Jos, and c-Myc [16]. 

 

1.4.3. p38 and JNK signaling 

The p38 mitogen-activated protein kinase (p38) and JNK pathways are activated by 

proinflammatory cytokines (TNF, IL-1) and cellular stresses (UV radiation, 

hyperosmolarity) [17].  Both pathways are controlled by multiple upstream MAP3K’s 

including MEKK1 and ASK1.  JNK phosphorylates the proto-oncogene c-Jun, a 

component of the transcription factor AP-1, which binds and activates transcription.  JNK 

mediates apoptosis through the phosphorylation of Bcl-2 family proteins.  p38 affects 

downstream effectors such as transcription factors MK2, ATF-2 and HSP27 and 

ultimately activates the caspase cascade [17]. 

 

1.4.4. Apoptosis: programmed cell death 

Apoptosis is a form of programmed cell death characterized by nuclear and cellular 

fragmentation and loss of plasma membrane polarity.  Apoptosis is an important 

physiological process in maintaining epithelial cell biology and is implicated in liver 

disease, response to injury, and fibrosis [18]; dysregulation of hepatocyte apoptosis 

occurs in hepatocellularcarcinoma.  Apoptosis occurs via two distinct pathways that 
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converge to activate the effector cysteine protease caspase 3: (1) the extrinsic pathway, 

extracellular ligands bind to death receptors (e.g. TNF/TNFR1) and activate a cascade of 

intracellular signals, leading to the activation of the initiator caspase 8; and (2) the 

intrinsic pathway, in which dysfunction of intracellular organelles (e.g. mitochondrial 

cytochrome c release) due to various cellular stresses leads to activation of the initiator 

caspase 9 [19]. 

 

1.5. Inflammation-related hepatotoxicity of therapeutics 

1.5.1. Adenoviral vectors 

Recombinant adenovirus vectors (Adv) are widely used as transfection tools for gene 

therapy and cell biology.  The liver is an important organ for Adv-based gene therapy due 

to the fact that a variety of human disorders originate from genetic defects in hepatocytes 

and that liver cells are exposed to systematically delivered viral vectors due to portal 

circulation.  In the liver, Kupffer cells readily uptake Adv via phagocytosis and, through 

an innate immune response, release the proinflammatory cytokines TNF, IL-1α/β and IL-

6 into the surrounding liver [20, 21].  Consequently, Adv administration as liver-directed 

gene therapy is confounded by hepatotoxicity through programmed cell death.   

Using a replication-deficient E1/E3-deleted adenovirus vector serotype 5, Miller 

et al demonstrated that Adv sensitizes multiple human epithelial cell lines (including the 

C3A hepatoblastoma cell line) to TNF-mediated apoptosis [22].  Adv and TNF both 

upregulate pro-survival (PI3K–Akt) and stress (p38–HSP27) signaling pathways [22, 23].  

Adv infection of epithelial cells is mediated by viral entry dependent of coxsackie- and 

adenovirus-receptor (CAR) and integrin docking and endocytosis [24].  Adv infection 

renders epithelial cells unable to generate sufficient survival signals (Akt activity 

becomes saturated) to overcome to TNF-mediated apoptosis [22]. Demonstrating another 

mechanism of virus-sensitization to TNF-mediated cell death, Wang et al have shown 

that hepatitis B virus X protein activates p38 kinase/JNK stress pathways leading to the 

upregulation of the death receptors TNFR1 and FasL and increased sensitivity to TNF-

mediated apoptosis [25].  These results have significant implications for our 

understanding of viral vector-induced hepatotoxicity and demonstrate that viral gene 

therapy vectors sensitize cells to cytokine-induced cell death. 
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1.5.2. Inflammation-associated idiosyncratic drug hepatotoxicity 

Idiosyncratic drug hepatotoxicity is defined as drug-induced liver injury that occurs in a 

very small fraction of human patients, is unrelated to the pharmacologic target of the 

drug, and exhibits no apparent relationship to dose or duration of drug exposure [26-28].  

Multiple hypotheses have been suggested to explain the mechanisms underlying 

idiosyncratic drug hepatotoxicity.  These include (i) variations in drug metabolism, 

particularly associated with alterations in the expression and/or activities of the 

cytochrome P450 family enzymes, due to variable environmental conditions and/or 

genetic polymorphisms in the human population [29]; and (ii) a relationship with 

concomitant liver inflammation associated with viral or bacterial infection or liver or 

inflammatory disease [26]. 

A number of preclinical models have been developed in attempts to predict 

idiosyncratic drug hepatotoxicity, including the assessment of reactive metabolites 

through glutathione (GSH) conjugation assays and the evaluation of animals models by 

toxicogenomic and metabolonomic approaches to identify common idiosyncratic 

hepatotoxicity-associated biomarkers, with little overall predictive success [27, 30, 31].  

Rodent models administered with bacterial lipopolysaccharide (LPS) have been recently 

developed to assess inflammation-associated idiosyncratic drug hepatotoxicity.  In these 

rodent models, LPS exposure induces a mild inflammatory response that has been 

demonstrated to synergistically induce hepatotoxicity in the presence of a number of 

idiosyncratic hepatotoxic drugs, including diclonfenac, sulindac, trovafloxacin, ranitidine, 

chlorpromazine, but not non- or less-toxic control drugs [32-35].  In rats, LPS 

administration upregulates plasma concentrations of the cytokines tumor necrosis factor-

α (TNF), interferon-γ (IFNγ), interleukin-1α and -1β (IL-1α/β), interleukin-6 (IL-6), and 

the chemokine interleukin-10 (IL-10) [36].  Of these, TNF, IFNγ, IL-1α/β, IL-6, and LPS 

itself all stimulate hepatocyte signaling responses.  In LPS-administered rat models, 

synergistic induction of hepatocellular death in the presence of the idiosyncratic 

hepatotoxins ranitidine and trovafloxacin has been reported to be dependent on TNF 

signaling [35, 37]. 

The observations in LPS-administered rodent models suggest that idiosyncratic 

drug hepatotoxicity can arise when mild drug-induced hepatocellular stress synergizes 
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with LPS-induced inflammatory cytokine signaling to elicit acute hepatocellular death 

[27, 38].  These stresses may be idiosyncratic in nature in human patients due variations 

in drug metabolism, exposure, and/or clearance.  The sensitizing role of hepatocellular 

stress is supported by the fact that drug-induced depletion of glutathione is known to 

sensitize hepatocytes to TNF-induced apoptosis [39].  Furthermore, both LPS and 

inflammatory cytokine signaling can alter hepatocyte expression of cytochrome P450 

enzymes and thus lead to dysregulated drug metabolism and clearance in conditions of 

LPS-induced liver inflammation [40, 41]. 

 

 
 
Figure 1-1. A schematic hepatocyte signaling network demonstrating the intersection of inflammatory 
cytokine signaling and hepatotoxic therapeutics, such as replication-deficient adenovirus and idiosyncratic 
hepatotoxic drugs. 
 

1.6. Systems biology models of cell behaviors 

Systems biology seeks a deep quantitative understanding of complex biological processes 

through the integration of multivariate molecular-level measurement and modeling 

approaches, and thus differs from proteomic and genomic efforts that aim to catalogue a 

broad listing of biological components and their functions [42, 43].  Advances in high-

throughput and multiplex techniques for quantifying the abundances and activities of the 

molecular components involved in gene expression [44], metabolism [45], and signal 

transduction [42] make it feasible to collect large data sets of diverse cellular processes.  
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Large-scale quantitative studies of complex biomolecular processes are difficult to 

interpret by inspection and intuition alone.  Computational modeling allows 

simplification of large-scale biological data sets and can suggest mechanistic insights and 

enable quantitative predictions of cellular processes [43, 46]. 

 

1.6.1. System-level measurement of cell signaling and behavioral phenotypes 

In systems biology, the collection of experimental data sets is organized and conducted 

with regard to intended modeling efforts and practical limitations.  Systems models 

largely require dynamic, highly multivariate, and quantitative data of protein activities 

and cell behavioral phenotypes collected in specific cell types subjected to defined, and 

often diverse, stimuli.  A wide variety of high-throughput and multiplex experimental 

techniques are utilized to collect data sets for systems models.  These include mass 

spectrometry [47], kinase activity assays [48, 49], immunoblotting [50], “in-cell 

westerns” [51], bead-based protein arrays [52], protein microarrays [53, 54], and 

multicolor flow [55, 56] and image [57, 58] cytometry. 

 In selecting appropriate measurement techniques, one often considers the identity 

and number of simultaneously measureable signals (whether assays can be 

“multiplexed”), the amount of sample required per assay, and whether single-cell or 

population-level behavior is measured [42].  Mass spectrometry can be used to quantify 

the relative abundance of hundreds of regulatory protein phosphorylation sites across 

multiple biological samples, but requires 105-107 cells per sample due to the fractionation 

required to detect low abundance peptides in a complex cellular lysate [59].  Kinase 

activity assays directly measure the enzymatic activity of kinases to phosphorylate 

substrates via radiochemical [48] or fluorescence [49] readouts and are multiplexible but 

require ~105 cells per kinase assayed.  In-cell westerns are a form of immuno-

fluorescence microscopy that measures protein levels or states in fixed cells still adherent 

to culture surfaces [51]; this method is not currently multiplexible but requires only 104-

105 cells per protein assayed.  Bead-based arrays utilize flow cytometric quantification of 

bead-conjugated, fluorescently-labeled antibody sandwich assays [52].  A number of 

commercial vendors provide well-validated, highly multiplexible reagents for 

phosphoprotein quantification in a cell lysate using the Luminex platform.  In practical 
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applications, ~10-20 phosphoproteins can be quantified in a lysate from 104-105 cells.  

Protein microarrays allow detection of binding avidities of cellular proteins to hundreds 

of printed protein and/or substrate features and can be conducted with a lysate from 104-

105 cells [54].  Multicolor flow and image cytometry can assess phosphoprotein levels 

and cellular phenotypes (such as proliferation, apoptosis, and migration) at a single-cell 

level.  Using well-validated antibodies and stains, multiplexing ~10 and ~4 parallel 

measurements are typical current practical upper limits for flow [55] and image [58] 

cytometry, respectively, but informative data sets can be collected in as few as 102-103 

cells per condition.  

 As no individual measurement technique can capture the full diversity of protein 

signals important to the operation of cell signaling networks, systems biology models of 

cell signaling and responses are increasingly relying on data compendia assembled from 

heterogeneous assay types [50].  Assembly of such data compendia requires careful 

consideration to data fusion, normalization, and scaling when applied to quantitative 

models (see [42, 50]). 

 

1.6.2. Data-driven modeling of cell signaling and behavioral phenotypes 

A wide spectrum of computational modeling approaches for studying cell signaling and 

its regulation of behavioral phenotypes is available [60].  Because the mechanisms 

connecting disparate cell signaling pathways to each other and to integrated cell 

behaviors are largely unknown, approaches such as differential equation-based 

physicochemical models [61] that require substantial mechanistic knowledge are 

currently limited in their practical applicability for analyzing relationships between 

regulatory network activities and downstream cell phenotypic behavior.  Accordingly, 

this discussion focuses on a set of more abstract modeling approaches more suitable for 

characterizing the operational relationships, influences, and logic of cell signaling 

networks as they relate to cell functions: partial least-squares regression, decision trees, 

and Bayesian network inference.  
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1.6.3. Partial least-squares regression 

Partial least-squares regression (PLSR) models are based on the hypothesis that, across 

multiple treatment conditions, cell behavioral phenotypes (“responses”) are inherently 

dependent on quantitative combinations of a subset of measureable activities or states of 

key signaling molecules (“signals”) [46, 62].  Measured signaling variables (including 

both protein activities at multiple time points and extracted time-dependent metrics) and 

measured cell behaviors are cast into two separate data matrices: an independent block of 

signaling variables (X) and a dependent block of response variables (Y), both arrayed 

across multiple cellular conditions.  Since the number of cellular conditions measured 

often is exceeded by the number of signaling variables, PLSR is necessary to calculate a 

unique regression solution to the hypothesized relationship Y = f (X).  PLSR identifies a 

linear solution to the signaling-response relationship within a reduced-dimensionality 

data space defined by a set of orthogonal principal components [63].  (It should be noted 

that nonlinear relationships can be readily modeled through inclusion of nonlinear 

combinations of variables and/or nonlinear variable transformations.)  The calculation of 

principal components-based regression weights is biased towards those signaling 

variables that most strongly correlate with the responses and to optimize prediction 

accuracy of the responses in cross-validation. 

 PLSR models can be used to elucidate an integrative model of network operation 

that can identify key combinations of signaling activities governing measured cell 

behaviors.  Moreover, they can be used to quantitatively and accurately predict responses 

of cells to additional treatments, such as pharmacologic perturbations, a priori using 

newly measured and/or estimated signaling data.  To generate a model capable of 

accurate a priori predictions, the conditions used to train a PLSR model need to strongly 

and differently activate the breadth of measured cell signaling activities and behaviors 

[50, 64].  PLSR models have been generated using cell signaling and response data from 

a number of the aforementioned measurement techniques, and have been successful at 

interpreting and predicting cell signaling-response relationships in varied contexts such as 

ECM-regulated embryonic stem cell self-renewal and differentiation [65], cytokine- and 

pathogen-induced epithelial cell apoptosis-survival [50, 62, 64], receptor agonist-induced 
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T-cell and B-cell cytokine release [66, 67], and growth factor-induced mammary 

epithelial cell proliferation and migration [68]. 

 

1.6.4. Decision trees 

Decision tree (DT) models can be useful as network-function models to interpret and 

predict cell signal-response relationships in terms of logical combinations of multiple 

signal activity levels.  Decision tree models are generated from a learning algorithm that 

approximates a cellular output by constructing a “tree” where the “branches” classify 

logical combinations of signals based on their measured or estimated levels, and the 

“leaves” at the end of the branches predict the cellular output.  The idea behind DT 

modeling is to recursively split signal-response data into successively smaller branches in 

order to end up with a tree in which signal combination branches are obtained that can 

classify response behavior as correctly as possible.  A decision tree model is usually 

obtained via a two-step process [69, 70].  The first step, tree growing, is done until all 

response observations are classified correctly.  The second step, tree pruning, is done in 

order to avoid over-fitting.  In generally, decision tree models have several properties that 

are appealing in biological research [69]: (a) they can be effectively applied to broad 

classes of data, in particular to discrete, continuous or mixed data; (b) they are capable of 

good prediction accuracy for highly nonlinear prediction problems; (c) their prediction 

rules are easy to visualize and interpret; and (d) they are very robust against outliers.  

Additionally, a DT model provides quantitative predictions to guide interventions, such 

as using pharmacologic inhibitors, even when such interventions only partially diminish 

the signal.  Moreover, the DT approach facilitates incorporation of nonlinear behavior 

more readily through its alternative inclusions of qualitatively diverse model branches 

characterizing different logical relationships among the signaling nodes.  Successful 

decision tree models have been developed for growth factor- and ECM-induced fibroblast 

migration [70, 71] and Fas-mediated T lymphoma apoptosis [72].  

 

1.6.5. Bayesian networks 

Bayesian networks offer a modeling technique for identifying causal relationships among 

multiple signals as well as from signals to responses.  Bayesian network models illustrate 
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the interactions of pathway components in the form of influence diagrams that can 

contain both direct molecular interactions (e.g. kinase-substrate phosphorylation) and 

indirect influences that proceed through unobserved intermediates [56].  Models are 

inferred through probabilistic calculations of covariations in activities of multiple 

signaling species, usually sparsely distributed across different signaling pathways, 

collected from single cells [56] or populations of cells [73] exposed to diverse 

combinations of extracellular stimuli and genetic and/or pharmacologic pathway 

interventions, with effective inference requiring many observations.  As such, flow 

cytometry data containing simultaneous measurement of multiple phosphoproteins of 

thousands of individual cells under a variety of treatment conditions are well-suited for 

Bayesian inference and have resulted in accurately inferred influence networks [56].  In 

comparison, Bayesian models based on population-based multivariate signaling data [56, 

73] require more diverse treatments and have reduced network inference accuracy, in part 

due to the obfuscation of informative heterogeneity at the single-cell level.  Inferred 

influence networks can suggest novel signal transduction hypotheses [56] but also could 

be useful in identifying context-specific signaling network structures.  This kind of model 

can also be used to make predictions about how interventions in the network influence 

downstream cell phenotypic behaviors, as demonstrated for the example of embryonic 

stem cell self-renewal and differentiation responses to combinations of cytokine and 

extracellular matrix cues [56].  Bayesian network modeling efforts to date have been 

restricted to static models, but the feedback loops inherent in cell signaling networks will 

likely often require dynamic Bayesian network models adapted to handle cyclic 

connectivities [74]. 

 

1.7. Thesis overview 

This work utilizes quantitative experimental and computational cell biology approaches 

to explore the relationship between inflammatory cytokine signaling and therapeutics 

with inflammation-associated hepatotoxicities, such as adenoviral vectors and 

idiosyncratic hepatotoxic drugs.  Initially, the role of autocrine signaling in governing the 

synergistic induction of rat hepatocyte cell death following adenoviral vector infection 

and TNF signaling is examined.  Subsequently, a multi-cytokine in vitro model of 
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inflammatory cytokine-associated idiosyncratic drug hepatotoxicity is developed and 

analyzed in primary rat and human hepatocytes and HepG2 cells.  Through the use of 

data-driven modeling, it is demonstrated that the synergistic induction of hepatocellular 

death by idiosyncratic hepatotoxins and inflammatory cytokines is governed through the 

network-level interaction of four key phosphoprotein signaling pathways. 

 

 
Figure 1-2. A schematic overview of the biological questions investigated in this thesis. In general, this 
work applies quantitative experimental and computational cell biology approaches to study hepatocyte 
responses to diverse inflammatory cytokine stimuli in the context of hepatotoxic therapeutics, such as 
replication-deficient adenovirus and idiosyncratic hepatotoxic drugs. 
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CHAPTER 2 

 
Autocrine signaling control of hepatocyte proliferation and apoptosis 

responses to tumor necrosis factor-α 

 
Note:  The content of this chapter is based on the published article: Cosgrove BD, Cheng 

C, Pritchard JR, Stolz DB, Lauffenburger DA, Griffith LG. Hepatology 2008, 48(1):276-

288.  This article is © 2008 American Association for the Study of Liver Diseases, and its 

content is reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & 

Sons, Inc. 

 

2.1. Introduction 

2.1.1. TNF-mediated hepatocyte signaling and responses 

Tumor necrosis factor-α (TNF) can stimulate multiple disparate hepatocyte responses –

proliferation, survival, or apoptosis – depending on the cellular context.  In the liver, TNF 

is secreted by Kupffer cells, the resident macrophages, following partial hepatectomy 

(PHx) and during inflammatory responses [75, 76].  Secreted TNF binds to and activates 

its receptor TNFR1, leading to downstream activation of the NF-κB, JNK, and p38 

MAPK signaling pathways and the cascade of caspase proteases [76] (see also Figure 1-

1).  The modulation of these and other intracellular signaling pathways by concomitant 

synergistic and antagonistic cytokine stimuli, viruses, and/or pharmacological treatments 

determine specific cell responses to TNF [11, 22, 77]. 

In the PHx model of liver regeneration, normally quiescent hepatocytes are 

stimulated to proliferate in a process regulated by multiple redundant signaling pathways 

and molecules [75].  Following PHx, Kupffer cells are activated and secrete TNF and IL-

6.  These cytokines stimulate the transcription of a set of “immediate early” genes and a 

G0–G1 cell cycle progression in hepatocytes [78, 79].  TNF signaling primes hepatocytes 

for DNA replication through subsequent stimulation by hepatocyte growth factor (HGF) 

and epidermal growth factor receptor (EGFR) ligands [75, 79-81].  In primary hepatocyte 

cultures, TNF not only potentiates growth factor-stimulated proliferation, but acts as a 
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mitogen itself [78, 82] through the induced release of autocrine transforming growth 

factor-α (TGF-α) and its activation of Akt and ERK signaling [83, 84].  The functionally 

similar interleukin-1 receptor (IL-1R) agonists IL-1α and IL-1β antagonize, through 

iNOS activation and nitric oxide production, hepatocyte proliferation when produced by 

non-parenchymal cells in vivo during liver regeneration and when added exogenously to 

mitogenic factors in vitro [85-87]. 

Hepatocytes are resistant to apoptosis stimulated by TNF alone as it activates both 

pro- and anti-apoptotic signaling pathways [11, 76].  Consequently, pharmacologic or 

genetic interference with anti-apoptotic signaling is commonly used to examine TNF-

induced hepatocyte apoptosis [11].  In diseased and/or virus-infected hepatocytes, TNF 

signaling contributes to apoptotic and necrotic cell death [11, 25].  Recently, we have 

shown that infection with a replication-deficient adenoviral vector (Adv) potently 

sensitizes human epithelial cell lines, including the C3A hepatocarcinoma cell line, to 

TNF-induced apoptosis [22].  In these human epithelial cell lines, Adv infection 

potentiates TNF-induced apoptosis through the activation of both pro-apoptotic p38 

MAPK signaling and anti-apoptotic NF-κB and Akt signaling [22].  Further, Adv 

infection saturates pro-survival signaling effectors downstream of Akt and thus limits 

insulin-mediated rescue of TNF-induced apoptosis [22].  Adenoviral gene therapy vectors 

targeting the liver and other organs are often compromised due to hepatocyte death 

induced by both the viral vector itself and cytokines of the innate immune response such 

as TNF and IL-1β [20].  Therefore, Adv infection might provide a physiologically 

relevant environment to potentiate TNF-induced apoptosis in primary hepatocytes and 

could lead to insights in liver adenoviral gene therapy. 

Hepatocyte death responses to TNF and other inflammatory cytokines can be 

antagonized by many of the same growth factors that stimulate hepatocyte proliferation 

[81, 88] or by naturally occurring inhibitors of cytokine signaling such as IL-1 receptor 

antagonist (IL-1ra) [89].  While many of the factors, such as TNF, that affect hepatocytes 

during injury or stress arise primarily from exogenous sources, hepatocytes themselves 

secrete numerous growth factors and cytokines that act in autocrine fashion to enhance or 

oppose exogenous stimuli [80, 81, 83, 84, 88, 90].  Recently, we have demonstrated that 

the response of IFN-γ-sensitized human epithelial cell lines to TNF involves release of 
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TGF-α, IL-1α, and IL-1ra, which provide conflicting and interlinked autocrine feedback 

signals governing apoptotic responses to TNF [62, 77].  Furthermore, this multi-ligand 

autocrine circuit can self-limit apoptosis when anti-apoptotic autocrine TGF-α and IL-1ra 

signaling outweigh pro-apoptotic signaling by exogenous TNF and autocrine IL-1α [77].  

Whether a similar multi-ligand autocrine circuit influences the disparate possible 

hepatocyte responses to TNF stimulation is unknown.  However, hepatocytes express 

TGF-α, IL-1α, IL-1β, and IL-1ra and their receptors but it is unknown whether these 

ligands operate via interlinked autocrine circuits to modulate hepatocyte proliferation and 

apoptosis responses to TNF [82, 83, 90-92]. 

 

2.1.2. Chapter overview 

Here we show that rat hepatocyte proliferation and apoptosis responses to TNF 

are both mediated by an inducible, coupled, and self-antagonizing TGF-α–IL-1α/β–IL-

1ra autocrine cascade.  The net effect of this coupled autocrine cascade is pro-

proliferative as induced by TNF alone but pro-apoptotic when induced by TNF in Adv-

infected hepatocytes.  Moreover, elucidation of this self-antagonizing autocrine cascade 

is a useful paradigm that helps rationalize the diverse landscape of hepatocyte phenotypic 

responses to TNF and TGF-α co-stimulation and their induction of autocrine IL-1α/β 

signaling. 

 

2.2. Experimental procedures 

2.2.1. Primary rat liver cell isolation 

Primary hepatocytes were isolated from 150-230 g male Fisher rats using a modified two-

step collagenase perfusion using Blendzyme 3 (Roche, Indianapolis, IN), essentially as 

described previously [8, 93, 94].  Following isolation, cells were suspended in 

Dulbecco’s Modified Eagle’s Medium (DMEM; Invitrogen, Carlsbad, CA) supplemented 

with 2 mg/ml bovine serum albumin (BSA) and 50 μg/ml gentamicin and centrifuged at 

50g for 2 minutes twice.  All non-sedimented cells from the 50g centrifugation were 

combined as the non-parenchymal cell (NPC)-enriched isolate, which was subsequently 

resuspended in red blood cell lysing buffer (NH4Cl 150 mM, KHCO3 1 mM, Na2EDTA 

0.1 mM, pH ~7.4) to remove red blood cells.  The remaining hepatocyte-enriched cell 



 36

pellet was resuspended to a concentration of 5×106 cells/ml in supplemented DMEM and 

then mixed with Percoll (45% final) and 10× Hank’s Balanced Salt Solution (HBSS; 5% 

final) and centrifuged at 50g for 10 minutes.  Final cell viability of the hepatocyte-

enriched isolates was assessed by trypan blue exclusion using a Vi-Cell instrument 

(Beckman-Coulter, Fullerton, CA) and was routinely 90-95%.  Flow cytometric analysis 

of immunostained cells (see below) showed that purified hepatocyte isolates comprised 

~97% hepatocytes (albumin+-cytokeratin-18+ cells), ~0.4% Kupffer cells (ED2+), ~0.4% 

stellate cells (GFAP+), and ~0.2% sinusoidal endothelial cells (SE-1+) (see Chapter 2.2.5, 

Figure 2-1, Table 2-1).  Unless noted, all products were obtained from Sigma (St. Louis, 

MO). 

 

2.2.2. Adenoviral vector 

A replication-deficient recombinant adenovirus type 5 vector with E1 and E3 regions 

deleted and expressing Escherichia coli β-galactosidase under a cytomegalovirus 

enhancer/promoter was obtained from Puresyn, Inc. (Malvern, PA).  This Adv vector has 

a ratio of 1 infectious viral particle (v.p.) per 6.6 total v.p. as determined by the 

manufacturer in a fluorescent focus assay.  The multiplicity of infection (MOI) is defined 

as the number of infectious Adv particles per seeded hepatocyte.  Storage buffer (10% 

glycerol in PBS) was used for mock infection controls. 

 

2.2.3. Rat hepatocyte cell culture and stimulation 

For all studies, rat hepatocyte isolates from after the Percoll purification step were 

cultured on single-layer collagen type I (BD Biosciences, Franklin Lakes, NJ) gels in 

HGM at 37°C and 5% CO2.  Collagen gels were made in 6-well tissue culture-treated 

polystyrene plates (BD Biosciences) by adding 600 μl/well of collagen type I (BD 

Biosciences) diluted to 1.6 mg/ml in PBS containing 2 mg/ml glucose and 3.7 mg/ml 

sodium bicarbonate (pH ~7.8) for 2 hours at 37°C [1, 8].  Collagen gels were blocked 

with 1% bovine serum album (BSA) in PBS for 2 hours at 37°C to inhibit cytokine 

binding.  Hepatocytes were maintained in a modified, serum-free hepatocyte growth 

medium (HGM; [95]) comprising DMEM supplemented with 2 mg/ml BSA, 100 nM 

dexamethasone, 2.25 mg/ml glucose, 2 mg/ml galactose, 110 μg/ml sodium pyruvate, 30 
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mg/ml L-proline, 100 μg/ml L-ornithine, 305 μg/ml niacinamide, 1 mM L-glutamine 

(Invitrogen), 5 μg/ml sodium selenite, 5 μg/ml transferrin (Roche), 54.4 ng/ml ZnCl2, 75 

ng/ml ZnSO4, 20 ng/ml CuSO4, 25 ng/ml MnSO4, 50 μg/ml gentamicin, and 5 μg/ml 

insulin.   

For proliferation studies, hepatocytes were seeded at 40,000 cells/cm2 and media 

were changed 4 hours post-seeding.  Twenty four hours after seeding, hepatocytes were 

stimulated with 0 or 100 ng/ml TNF (recombinant rat TNF; R&D Systems, Minneapolis, 

MN) and 0, 1, 10, or 100 ng/ml TGF-α (recombinant human TGF-α; R&D Systems) as a 

40× stock solutions in HGM.  After 24 hours of cytokine stimulation, 10 μM 5-bromo-2’-

deoxyuridine (BrdU; Invitrogen) was added as a 40× stock solution in HGM to label S-

phase cells.  After 24 hours of BrdU incubation, hepatocytes were harvested and fixed for 

flow cytometry.  Conditioned medium samples were collected at 0, 12, 24, 36, and 48 

hours following cytokine stimulation to assay cytokine release.  Lysates were collected at 

0, 0.25, 2, 12, and 24 hours following cytokine stimulation to assay phosphoprotein 

signaling. 

For apoptosis studies, hepatocytes were seeded at 50,000 cells/cm2 and media 

were changed 4 hours post-seeding.  Twenty four hours after seeding, hepatocytes were 

infected with 0, 12.5, 25, 50, or 100 MOI (0, 1.1, 2.2, 4.3, or 8.7×107 infectious v.p./ml) 

Adv in fresh media.  To remove non-infectious particles, Adv infection medium was 

removed after 6 hours and was replaced with fresh medium following a PBS wash.  

Twenty four hours after the start of Adv infection, hepatocytes were stimulated with 0, 1, 

5, 20, 100, or 200 ng/ml TNF and 0, 1, 5, 20, or 100 ng/ml TGF-α as a 40× stock 

solutions in HGM.  After 24 hours of cytokine stimulation, hepatocytes were harvested 

and fixed for flow cytometry.  Conditioned medium samples were collected at 0, 6, 12, 

18, and 24 hours following cytokine stimulation to assay cytokine and lactate 

dehydrogenase (LDH) release.  Lysates were collected at 0, 0.25, 2, 6, 12, and 24 hours 

following cytokine stimulation to assay phosphoprotein signaling. 

For both proliferation and apoptosis studies, 10 μg/ml anti-TGF-α neutralizing 

antibody (R&D Systems), 10 μM CI1033 (a pan-EGFR/ErbB receptor tyrosine kinase 

inhibitor; Pfizer, New York, NY), 10 μg/ml IL-1ra (recombinant rat IL-1ra; R&D 

Systems), 10 μg/ml anti-IL-1α neutralizing antibody (R&D Systems), or 10 μg/ml anti-
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IL-1β neutralizing antibody (R&D Systems) were added as 40× stock solutions one hour 

before cytokine stimulation to perturb autocrine ligand activity.  For analysis of cell types 

in hepatocyte cultures, hepatocyte-enriched isolates from both before and after the Percoll 

purification step were seeded and treated as described above for apoptosis studies with 

the treatments indicated in Table 2-1. 

 

2.2.4. Flow cytometry analysis of proliferation and apoptosis 

After 24 (apoptosis studies) or 48 hours (proliferation studies) of cytokine treatment, 

culture medium was collected and 0.12 mg/ml Blendzyme 3 in PBS was added to the 

culture wells to partially digest the collagen gel for ~6 minutes at 25°C.  Hepatocytes 

were then removed by adding PBS with 0.1% Tween-20 (PBS-T) and pipetting 

vigorously and then were combined with the culture media to ensure collection of both 

floating and adherent cells from each well.  Collected cells were centrifuged, fixed in 2% 

paraformaldehyde (PFA) for 20 minutes, washed in PBS-T, and then fixed in 100% 

methanol at -20°C for up to 1 week.  After centrifugation to remove excess methanol, 

cells were washed once in PBS-T.  For proliferation staining, cells were then incubated 

for 20 minutes in 2 M HCl to denature DNA and expose the BrdU epitope.  After 

centrifugation to remove excess HCl, cells were washed three times in PBS-T and then 

stained with anti-albumin (rat-specific polyclonal; MP Biomedicals, Solon, OH) and anti-

BrdU (clone PRB-1; Invitrogen) antibodies in PBS-T with 1% BSA (PBS-TB) for 1 hour.  

Cells were washed twice with PBS-TB and stained with AlexaFluor 488-conjugated goat 

anti-rabbit and AlexaFluor 647-conjugated goat anti-mouse secondary antibodies 

(Invitrogen) in PBS-TB for 1 hour.  Cells were then washed once with PBS-T, 

resuspended in PBS, and 30,000 cells from each biological replicate were analyzed by 

flow cytometry using a FACS-Calibur instrument (BD Biosciences) and FlowJo software 

(Tree Star, Ashland, OR).  Proliferating hepatocytes were reported as BrdU+ cells within 

the albumin+ population.  For apoptosis studies, cells were stained and analyzed as 

described for proliferation studies with the omission of the DNA denaturation step and 

were stained with an anti-cleaved caspase 3 primary antibody (clone C92-605; BD 

Biosciences) and an AlexaFluor 488-conjugated goat anti-rabbit secondary antibody 

(Invitrogen).  Apoptotic hepatocytes were reported as cleaved caspase 3+ cells. 
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2.2.5. Flow cytometry analysis of cell type markers 

Cell type markers were analyzed in freshly isolated NPC and hepatocyte fractions (from 

both immediately before and after the Percoll step) and in cultured hepatocytes (harvested 

as described above).  For both perfusion isolates and cultured hepatocytes, collected cells 

were centrifuged, fixed in 2% PFA for 20 minutes, washed in PBS-T, and then fixed in 

100% methanol at -20°C for up to 1 week.  After centrifugation to remove excess 

methanol, cells were washed once in PBS-T.  Cells were immunostained with anti-

albumin (rat-specific polyclonal; MP Biomedicals, Solon, OH), anti-cytokeratin-18 

(clone CY-90; Sigma), anti-CD163/ED2 (clone ED2; Serotec, Raleigh, NC), anti-GFAP 

(clone 4A11; BD Biosciences), and/or anti-SE-1 (clone SE-1; IBL America, Minneapolis, 

MN) primary antibodies in PBS-T with 1% BSA (PBS-TB) for 1 hour.  Cells were 

washed twice with PBS-TB and stained with AlexaFluor 488-conjugated goat anti-rabbit 

and AlexaFluor 647-conjugated goat anti-mouse secondary antibodies (Invitrogen) in 

PBS-TB for 1 hour.  Cells were then washed once with PBS-T, resuspended in PBS, and 

30,000 cells from each biological replicate were analyzed by flow cytometry using a 

FACS-Calibur instrument (BD Biosciences) and FlowJo software (Tree Star, Ashland, 

OR).  Cell populations were reported as follows: hepatocytes, albumin+-cytokeratin-18+ 

cells [95, 96]; Kupffer cells, ED2+ cells [97]; stellate cells, GFAP+ cells [98]; and 

sinusoidal endothelial cells, SE-1+ cells [94, 99]. 

 

2.2.6. Enzyme-linked immunoabsorbant assays 

Cytokines in culture supernatants were quantified using human TGF-α, rat IL-1α, rat IL-

1β, and mouse IL-1ra ELISA kits according to manufacturer’s recommendations (R&D 

Systems).  The human TGF-α ELISA kit was validated with a recombinant rat TGF-α 

standard (Phoenix Pharmaceuticals, Burlingame, CA), which showed a 26% cross-

reactivity relative to recombinant human TGF-α and linearity from 5-500 pg/ml (R2 = 

0.99; data not shown).  The mouse IL-1ra ELISA kit was validated with a recombinant 

rat IL-1ra standard (R&D Systems), which showed a 65% cross-reactivity relative to 

recombinant mouse IL-1ra and linearity from 100-1500 pg/ml (R2 = 0.97; data not 

shown). 
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Figure 2-1.  Representative flow cytometry scatter plots of cell population analysis of liver perfusion 
isolates and cultured hepatocytes. See Table 2-1 for a summary of cell type fractions in each perfusion 
isolate and in multiple cell culture conditions relevant to this study. 



 41

 
Table 2-1.  Flow cytometry analysis of liver cell populations in perfusion isolates and cell culture 

conditions related to TNF-induced hepatocyte proliferation and apoptosis studies. 
 

Cell isolate1   Cell culture treatment2 
 

Flow cytometry analysis of cell 
population3 

Isolate 
fraction Percoll   Adv 

MOI 
TNF 

(ng/ml) 
TGF-α 
(ng/ml)   

%  
Alb+-    

Ck-18+ 
cells 

% 
ED2+ 
cells 

% 
GFAP+ 

cells 

%  
SE-1+ 
cells 

NPC n/a   perfusion isolate4   22.3 20.4 16.0 44.8 

Hepatocyte Pre   perfusion isolate   94.9 1.49 1.40 1.85 

Hepatocyte Post   perfusion isolate   96.5 0.41 0.39 0.24 

Hepatocyte Pre  0 0 0  86.0 0.27 2.25 0.05 

Hepatocyte Pre  0 0 20  86.4 0.68 2.62 0.04 

Hepatocyte Pre  0 5 0  80.7 0.40 1.24 0.05 

Hepatocyte Pre  0 5 20  79.4 0.28 1.18 0.02 

Hepatocyte Pre  50 0 0  79.0 0.21 0.89 0.03 

Hepatocyte Pre  50 0 20  76.4 0.17 0.96 0.01 

Hepatocyte Pre  50 5 0  78.3 0.16 0.67 0.02 

Hepatocyte Pre   50 5 20   73.7 0.14 0.63 0.02 

Hepatocyte Post  0 0 0  88.9 0.64 2.28 0.07 

Hepatocyte Post  0 0 20  81.1 0.47 1.80 0.07 

Hepatocyte Post  0 5 0  79.0 1.06 2.41 0.16 

Hepatocyte Post  0 5 20  82.9 0.44 2.23 0.11 

Hepatocyte Post  50 0 0  72.0 0.42 1.15 0.09 

Hepatocyte Post  50 0 20  87.4 0.32 1.09 0.06 

Hepatocyte Post  50 5 0  89.2 0.27 0.63 0.06 

Hepatocyte Post   50 5 20   88.9 0.24 0.80 0.09 

 
1Cell fractions from liver perfusions were isolated as described in Chapter 2.2.1.  Non-parenchymal cell 
(NPC)-enriched and hepatocyte-enriched isolates (before and after the Percoll isolation step) were analyzed 
for cell type population distribution by flow cytometry. 
2Hepatocyte-enriched perfusion isolates from both pre- and post-Percoll isolation steps were cultured as 
described in Chapter 2.2.3. Briefly, cells were seeded on collagen gel monolayers for 24 hours, infected 
with either 0 or 50 MOI Adv for 24 hours, and then stimulated with combinations of 0 or 5 ng/ml TNF and 
0 or 20 ng/ml TGF-α for 24 hours. 
3Cell type markers were analyzed by flow cytometry (see Chapter 2.2.5) using the gating presented in 
Figure 1-1. Hepatocytes are reported as albumin+-cytokeratin-18+ cells, Kupffer cells are reported as ED2+ 
cells, stellate cells are reported as GFAP+ cells, and sinusoidal endothelial cells are reported as SE-1+ cells. 
Mean values of duplicate biological samples are reported. Median SEM values were 4.4% for albumin+-
cytokeratin-18+, 0.18% for ED2+, 0.70% for GFAP+, and 0.03% for SE-1+. 
4Cell fractions from a Seglen 2-step collagenase isolation have previously been reported to be comprised of 
~98% hepatocytes and ~2% non-parenchymal cells including bile duct epithelial cells [93]. Bile duct 
epithelial cells, which immunostain positive for cytokeratin-19, were not quantified in this study. 



 42

2.2.7. Multiplexed phosphoprotein assays 

Phosphoprotein signaling was quantified using multiplexed bead-based Luminex assays.  

Cells were plated and treated as described above and lysates were collected at 0, 0.25, 2, 

6, 12, and 24 hours following cytokine stimulation.  Cells were placed on ice and culture 

medium was removed and centrifuged at 1000g for 4 minutes at 4°C to pellet non-

adherent cells.  Adherent cells and pelleted non-adherent cells were lysed with 

Phosphoprotein Lysis Buffer (Bio-Rad, Hercules, CA) for 20 minutes at 4°C.  Lysates 

were clarified by centrifugation at 16,000g for 15 minutes at  4°C.  Clarified lysates were 

analyzed using a bicinchonicic assay (Pierce, Rockford, IL) to determine the total protein 

concentration.  In each culture plate, a well without cells was maintained, lysed, and 

analyzed to calculate the protein contribution from the collagen gel alone and estimate 

the cellular protein concentration.  Bio-Plex assays (Bio-Rad) were used to quantify the 

following phosphoproteins: p-Akt (Ser473), p-c-Jun (Ser63), p-GSK-3α/β (Ser21/Ser9), p-

IκB-α (Ser32/Ser36), p-ERK1/2 (Thr202/Tyr204, Thr185/Tyr187), p-HSP27 (Ser78), p-JNK 

(Thr183/Tyr185), p-MEK1 (Ser217/Ser221), and p-p38 (Thr180/Tyr182).  Each phosphoprotein 

assay was individually validated using multiple positive control treatments over a range 

of cellular protein loading concentrations.  Optimal protein loading concentrations that 

maintained robust fold-change consistency across the positive control treatments were 

selected as follows: 5 μg/well for multiplexing p-Akt, p-c-Jun, and p-ERK1/2, and 10 

μg/well for multiplexing p-GSK-3α/β, p-IκB-α, p-HSP27, p-JNK, p-MEK1, and p-p38.  

Bio-Plex multiplexed phosphoprotein assays were conducted per manufacturer’s 

recommendations on a Luminex 200 instrument (Luminex, Austin, TX).  Multiple 

positive control treatments were loaded on each assay plate to scale raw fluorescence data 

to self-consistent relative values.  For each phosphoprotein assay, relative fluorescence 

data were then normalized to the minimum and maximum value observed across all 

conditions and time points.  See Appendix B for additional details. 

 

2.2.8. Lactate dehydrogenase assay 

Lactate dehydrogenase (LDH) activity in culture supernatants was quantified using the 

CytoTox-ONE Homogeneous Membrane Integrity Assay according to manufacturer’s 

recommendations (Promega, Madison, WI).  All LDH measurements were fold-change 
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normalized to the mock infection/mock treatment control at 24 hours post-cytokine 

stimulus. 

 

2.2.9. Statistical analysis 

For comparing two individual means, a Student’s t test was used.  For comparing two 

time courses or two dose-response curves, two-way analysis of variance (ANOVA) was 

used.  All tests were performed at a significance level of α = 0.05 with a false discovery 

rate correction for multiple comparisons of cytokine release and phosphoprotein signaling 

time courses.  False discovery rate-corrected P-values were calculated as:  

P = α·(N+1)/(2N), where N is the number of comparisons. 

 

2.3. Results 

2.3.1. TNF-induced hepatocyte proliferation is regulated by a set of coupled, self-

antagonizing autocrine circuits involving TGF-α, IL-1α/β, and IL-1ra 

Rat hepatocytes were cultured on a collagen gel monolayer for 24 hours then stimulated 

with TNF and other co-treatments for 48 hours, with BrdU added from 24 to 48 hours to 

capture maximal cytokine-induced hepatocyte DNA synthesis [78, 82, 84].  Cells were 

harvested and analyzed by flow cytometry for intracellular albumin and BrdU to quantify 

the fraction of proliferating hepatocytes (Figure 2-1A).  Proliferation of non-parenchymal 

cells (NPC’s) was negligible across all treatments as measured by BrdU+-albumin- cells 

(Figure 2-1A and data not shown) and by assaying changes in abundance of NPC’s by 

flow cytometry (Table 2-1). 

TNF modestly stimulated hepatocyte proliferation compared to basal media alone 

(Figure 2-1B).  Pretreatment with an antibody neutralizing TGF-α activity (Figure 2-1B-

C) or the EGFR kinase inhibitor CI1033 (Figure 2-1C) reduced hepatocyte proliferation 

stimulated by TNF to basal levels, demonstrating that autocrine TGF-α is necessary for 

TNF-induced hepatocyte proliferation in accordance with previous reports [83, 84].  

Pretreatment with IL-1ra, an inhibitor of IL-1α/β binding to IL-1R, slightly increased 

hepatocyte proliferation stimulated by TNF (Figure 2-1B), showing that autocrine IL-

1α/β inhibits TNF-induced hepatocyte proliferation.  Pretreatment with isoform-specific 

neutralizing antibodies for IL-1α and IL-1β showed that IL-1β contributes a larger anti-
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proliferative autocrine effect (Figure 2-1C).  Moreover, the increased proliferation 

observed under IL-1α/β inhibition was not evident when TGF-α was also inhibited 

(Figure 2-1B), indicating that the anti-proliferative effects of autocrine IL-1α/β are 

contingent on autocrine TGF-α activity.  TNF stimulated a slight increase in TGF-α 

release (Figure 2-1C) and more substantial increases in IL-1α (Figure 2-1E), IL-1β 

(Figure 2-1F), and IL-1ra (Figure 2-1G) release over 48 hours of treatment compared to 

untreated controls.  TNF-induced autocrine IL-1α and IL-1β release, at 24 hours post-

stimulus, were both completely inhibited by neutralizing autocrine TGF-α activity 

(Figure 2-1H-I), in accordance with previous reports in mammary and colonic epithelial 

cells [77].  TNF-induced IL-1ra release was not dependent on autocrine TGF-α or IL-

1α/β activity (data not shown).  Thus, TNF-induced hepatocyte proliferation is regulated 

by a set of coupled and self-antagonizing autocrine circuits involving pro-proliferative 

TGF-α, anti-proliferative IL-1α/β, and IL-1ra, with the release and anti-proliferative 

effects of autocrine IL-1α/β contingent on TNF-induced autocrine TGF-α signaling 

(Figure 2-4G). 

 

2.3.2. Autocrine TGF-α and IL-1α/β contribute to multiple signaling pathways 

related to TNF-induced hepatocyte proliferation 

To investigate how autocrine TGF-α and IL-1α/β signaling contributes to TNF-induced  
 

Figure 2-2.  (Following page) Coupled and self-antagonizing autocrine TGF-α, IL-1α/β, and IL-1ra circuits 
regulate TNF-induced hepatocyte proliferation. Primary rat hepatocytes were isolated, treated, and assayed 
as described in Chapter 2.2 for proliferation studies. (A) Representative scatter plots of BrdU+ flow 
cytometry assays for cells stimulated with carrier only (left) or 100 ng/ml TNF (right). The proliferative 
fraction of cultured hepatocytes is reported as percentage of BrdU+ cells within the albumin+ (hepatocyte) 
population. (B-C) Regulation of TNF-induced hepatocyte proliferation by autocrine TGF-α and IL-1α/β. 
Autocrine ligand inhibitors were added 1 hour before mock or 100 ng/ml TNF treatment. Autocrine TGF-α 
ligand activity was perturbed with 10 μg/ml anti-TGF-α or 10 μM CI1033 (a pan-EGFR/ErbB receptor 
tyrosine kinase inhibitor) pretreatment. Autocrine IL-1 activity was perturbed with 10 μg/ml IL-1ra, 10 
μg/ml anti-IL-1α, or 10 μg/ml IL-1β pretreatment. In panel (C), dashed red line indicates proliferation 
induced by 100 ng/ml TNF alone. (D-G) Conditioned media samples were collected from 0-48 hours 
following mock or 100 ng/ml TNF treatment and were assayed for autocrine TGF-α (D), IL-1α (E), IL-1β 
(F), and IL-1ra (G) release by quantitative ELISA. Differences between each pair of ligand release time 
courses were assessed using two-way ANOVA (TGF-α: P < 0.022; IL-1α: P < 0.032; IL-1β: P < 10-4; IL-
1ra: P < 0.005). (H-I) Perturbation of TNF-induced IL-1α and IL-1β release at 24 hours post-stimulus in the 
presence of 10 μg/ml anti-TGF-α. In panels (B), (C), (H), and (I), differences between mock and TNF 
treatments are labeled as significant (*) if P < 0.05. Differences between pairs of uninhibited and inhibitor 
treatments are labeled as significant (‡) if P < 0.05. In panel (C), the difference between TNF and TNF + 
IL-1ra is slightly less than significant (‡‡; P = 0.06). Data are presented as the mean ± SEM of three 
biological samples in panels (B), (C), (H), and (I) and six biological samples in (D) to (G). 
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hepatocyte proliferation, we quantified phosphoprotein signaling in multiple pathways 

associated with TNF signaling and hepatocyte proliferation.  TNF-induced hepatocyte 

proliferation in vitro is dependent on autocrine TGF-α and its activation of EGFR and 

downstream signaling through the pro-proliferative Akt and ERK pathways [83, 84].  

Here, TNF-induced activation of the Akt–GSK-3α/β and MEK–ERK signaling, on both 

transient and sustained time scales, was dependent on autocrine TGF-α (Figure 2-3A-D).  

IL-1 ligands activate multiple pathways downstream of IL-1R that are shared by TNF 

signaling, including JNK, IKK–NF-κB, and p38, but it is uncertain how these pathways 

contribute to IL-1’s antagonism of hepatocyte proliferation, which is largely attributed to 

nitric oxide (NO) signaling [87, 100].  TNF-induced activation of JNK–c-Jun and IKK– 

NF-κB (as measured by p-IκB-α) signaling at 2-12 hours post-stimulus were partially 

dependent on autocrine IL-1α/β signaling (Figure 2-3E-G).  These signaling pathways 

were similarly perturbed upon inhibition of autocrine TGF-α, again demonstrating that 

autocrine IL-1α/β signaling is contingent on autocrine TGF-α activity.  While both JNK 

and IKK–NF-κB signaling are activated by TNF immediately following partial 

hepatectomy and are associated with pro-proliferative functions, these pathways are not 

absolutely necessary for hepatocyte proliferation [11, 75, 76, 78, 101].  Sustained 

signaling via autocrine stimulation can govern cellular behaviors in counterintuitive 

manners, as has been observed in mammary epithelial cells in which TNF-induced 

autocrine IL-1α signaling contributes to sustained activation of IKK–NF-κB signaling, 

which is associated with a pro-apoptotic function rather than its canonical anti-apoptotic 

role [62, 77].  Similarly, the JNK and IKK–NF-κB pathways could function, through 

their sustained activation, to antagonize hepatocyte proliferation through mechanisms 

such as accumulation of reactive oxygen species (ROS), which is associated with JNK 

signaling [76] and inhibits hepatocyte proliferation [102]. 

Phosphoprotein signaling data can provide evidence of autocrine ligand activities 

with greater temporal resolution than can be inferred from their accumulation in culture 

media alone (Figure 2-2D-G).  The transient (15 minutes post-stimulus) activation of the 

MEK–ERK pathway (Figure 2-3C-D) depends on autocrine TGF-α, indicating that TGF-

α release and activity immediately follows TNF stimulation.  Similarly, the prolonged (2 

hours post-stimulus) activation of the JNK–c-Jun (Figure 2-3E-F) and IKK–NF-κB 
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Figure 2-3.  Autocrine TGF-α and IL-1α/β contribute to TNF-induced phosphoprotein signaling regulating 
hepatocyte proliferation. Primary rat hepatocytes were isolated, treated, and assayed as described in 
Chapter 2.2 for proliferation studies. Lysates were collected from 0, 0.25, 2, 12, and 24 hours following 
100 ng/ml TNF treatment with mock, 10 μg/ml anti-TGF-α, or 10 μg/ml IL-1ra pretreatments to perturb 
autocrine ligand activity. Lysates were analyzed using multiplexed phosphoprotein assays for p-Akt (A), p-
GSK-3α/β (B), p-MEK1 (C), p-ERK1/2 (D), p-JNK (E), p-c-Jun (F), p-IκB-α (G), p-p38 (H), and p-HSP27 
(I). In (A) to (D), IL-1ra inhibition treatments were unchanged from uninhibited treatments and thus not 
shown. Differences between uninhibited and inhibited phosphoprotein signaling time courses were assessed 
using two-way ANOVA and P values are shown in each panel for anti-TGF-α (red) and IL-1ra (blue) 
pretreatments. For phosphoproteins that did not demonstrate significant differences by ANOVA between 
uninhibited and inhibition treatment time courses for both autocrine ligands, individual time points that did 
demonstrate significant differences in both comparisons are labeled (*) if P < 0.05. Data are presented as 
the mean ± SEM of three biological samples. 
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(Figure 2-3G) pathways depends on autocrine IL-1α/β, indicating the early release and 

activity of IL-1α/β.  Lastly, the inability of exogenously added IL-1ra to perturb late-

phase JNK and IKK–NF-κB signaling (at ~24 hours) indicates the on-set of detectable 

autocrine IL-1ra activity.  Together, these data suggest that TGF-α, IL-1α/β, and IL-1ra 

operate in a coupled and time-varying autocrine “cascade”; TNF stimulates the 

immediate release of TGF-α and its activation of Akt and ERK signaling, the slightly 

delayed release of IL-1α/β and its activation of JNK and IKK–NF-κB signaling, and the 

late-phase release of IL-1ra, which antagonizes IL-1 signaling (Figure 2-9). 

 

2.3.3. TNF-TGF-α cooperation in inducing hepatocyte proliferation is self-limited by 

release of autocrine IL-1α/β 

Exogenous TGF-α stimulated a dose-dependent increase in hepatocyte proliferation in the 

absence of TNF and co-treatment with TNF did not elicit additional hepatocyte 

proliferation (Figure 2-4A) in discordance with previous reports demonstrating 

cooperation between TNF and EGFR ligands in stimulating hepatocyte proliferation in 

vitro under some media formulations [78, 82, 103].  We note that exogenous TNF and 

TGF-α exhibited slightly cooperative stimulation of hepatocyte proliferation when insulin 

was removed from the culture media (Figure 2-4B).  We were motivated to ask whether 

cooperation between exogenous TNF and TGF-α in the presence of insulin could be 

limited by anti-proliferative autocrine IL-1α/β. 

 
Figure 2-4.  (Following page) Exogenous TGF-α has limited effect in synergizing with TNF-induced 
hepatocyte proliferation due to an anti-proliferative IL-1α/β autocrine circuit. Primary rat hepatocytes were 
isolated, treated, and assayed as described in Chapter 2.2 for proliferation studies. (A) Hepatocyte 
proliferation induced by 0, 1, 10, or 100 ng/ml exogenous TGF-α with either mock or 100 ng/ml TNF co-
treatment. (B) TNF and TGF-α stimulate cooperative induction of hepatocyte proliferation in the absence, 
but not presence, of insulin. Rat hepatocytes were isolated, treated and assayed as referenced above, except 
5 μg/ml insulin was either excluded from or included in the culture and stimulation medium for all steps 
after the 4 hours post-seeding medium change. In medium containing either 0 or 5 μg/ml insulin, cells were 
stimulated with 0 or 100 ng/ml TNF and 0 or 10 ng/ml TGF-α. (C) “Cue-response landscape” plot of 
hepatocyte proliferation and autocrine IL-1α/β release induced by multiple combinations of TNF and TGF-
α stimuli. Mean values of three biological samples are plotted for BrdU+ hepatocytes (lines and vertices; z-
axis) and total autocrine IL-1α/β concentration at 24 hours post-stimulus (interpolated surface colormap) 
for multiple concentrations of exogenous TNF and either inhibited, autocrine (uninhibited), or exogenous 
TGF-α. See Table 2-2 for details of treatment conditions and measured values plotted. (D-E) IL-1α (D) and 
IL-1β (E) release at 24 hours post-stimulus induced by 0, 1, 10, or 100 ng/ml exogenous TGF-α with either 
mock or 100 ng/ml TNF co-treatment. Dashed red lines indicate ligand release level in the absence of 
exogenous TGF-α stimulus for clarity. (F) Hepatocyte proliferation induced by 100 ng/ml TNF, 1 ng/ml 
TGF-α, or TNF + TGF-α in the absence or presence of 10 μg/ml IL-1ra. (G) A molecular “logic” model of 
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the effects of autocrine TGF-α, IL-1α/β, and IL-1ra ligands in regulating TNF-induced hepatocyte 
proliferation. Exogenous TNF stimulates the release of anti-proliferative autocrine IL-1α and IL-1β ligands 
contingent of the activity of autocrine TGF-α, a pro-proliferative ligand itself, and the release of IL-1ra 
independent of activity of other autocrine ligands. Thus, this coupled autocrine circuit is self-antagonizing 
in its control of hepatocyte proliferation. In panels (A), (B), and (D) to (F), differences between pairs of 
treatments connected by brackets are labeled as significant (*) if P < 0.05. Data are presented as the mean ± 
SEM of three biological samples in panels (A), (B), and (D) to (F). 
 
 

 



 50

Table 2-2.  Measured values of proliferation and autocrine IL-1α/β release in TNF- and TGF-α-treated 
hepatocytes1. 

 

Exogenous 
TNF 
conc. 

(ng/ml) 

TGF-α 
conc.  

(ng/ml) 

TGF-α 
category 

% BrdU+ 
hepatocytes 

Autocrine    
IL-1α 
conc. 

(pg/ml) 

Autocrine 
IL-1β 
conc. 

(pg/ml) 

Total 
autocrine 
IL-1α/β 

conc. 
(pg/ml)2 

0 0 Inhibited3 17.8 55.4 67.2 122.6 

0 0.0068 Autocrine4 17.9 68.9 68.6 137.5 

0 1 Exogenous5 35.6 71.9 67.6 139.5 

0 10 Exogenous 41.0 76.4 70.4 146.7 

0 100 Exogenous 56.0 69.3 62.7 132.0 

5 0 Inhibited 24.7 61.0 71.2 132.2 

5 0.0071 Autocrine 32.5 86.4 96.3 182.7 

5 1 Exogenous 38.0 95.5 107.8 203.3 

5 10 Exogenous 42.1 88.4 94.1 182.5 

5 100 Exogenous 51.5 81.1 86.0 167.0 

100 0 Inhibited 25.6 61.0 71.2 132.2 

100 0.0072 Autocrine 37.7 82.5 98.4 180.9 

100 1 Exogenous 38.2 98.5 110.6 209.1 

100 10 Exogenous 41.1 84.9 94.0 178.8 

100 100 Exogenous 51.3 82.7 94.4 177.0 

 
1See Figure 2-4C for a surface plot of hepatocyte proliferation and autocrine IL-1α/β release induced by 
these combinations of TNF and TGF-α stimuli. 
2Total autocrine IL-1α/β concentration was calculated by adding the measured IL-1α and IL-1β 
concentrations and is an estimate of their net activity. 
3Endogenous TGF-α activity inhibited by 10 μg/ml anti-TGF-α and, accordingly, TGF-α is plotted as 
having an effective concentration of zero. 
4Autocrine TGF-α concentration measured by ELISA (in the absence of TGF-α neutralizing antibody). 
5Exogenous TGF-α concentration set by the addition of recombinant TGF-α. 

 

To examine whether autocrine IL-1α/β could affect TNF-TGF-α cooperativity in 

inducing hepatocyte proliferation, hepatocyte IL-1α/β release and proliferation were 

assayed under multiple combinations of exogenous TNF and autocrine/exogenous TGF-α 

stimuli and were plotted in a multivariate “cue-response landscape” (Figure 2-4C).  In 

this perspective, the two hepatocyte responses (IL-1α/β release and proliferation) show 

disparate dependences on the two stimulatory cues (TNF and TGF-α).  That is, the 

conditions that lead to maximal IL-1α/β release (100 ng/ml TNF + 1 ng/ml TGF-α; 

Figure 2-4C-E) are different than those associated with maximal proliferation (100 ng/ml 

TNF + 100 ng/ml TGF-α; Figure 2-4A,C).  This suggested that autocrine IL-1α/β could 
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serve as a negative regulator of hepatocyte proliferation under certain exogenous TNF-

TGF-α co-stimuli conditions – in particular, those with intermediate exogenous TGF-α 

concentrations.  Following this, IL-1ra pretreatment elicited a slight increase in 

proliferation stimulated by 100 ng/ml TNF and a more substantial increase upon 100 

ng/ml TNF + 1 ng/ml TGF-α co-stimulation, but not a significant increase in proliferation 

stimulated by 1 ng/ml TGF-α only (Figure 2-4F).  Moreover, TNF + TGF-α + IL-1ra 

treatment significantly increased hepatocyte proliferation compared to both TNF + IL-1ra 

and TGF-α + IL-1ra treatments (Figure 2-4F), demonstrating TNF and TGF-α can 

stimulate additive induction of hepatocyte proliferation, even in the presence of insulin, 

but this cooperation is inhibited by their induction of anti-proliferative autocrine IL-1α/β 

release.  Thus, induced autocrine IL-1α/β release not only antagonizes hepatocyte 

proliferation stimulated by exogenous TNF, contingent on its induced autocrine release of  

TGF-α, but also potently self-limits hepatocyte proliferation induced by exogenous TNF-

TGF-α co-stimulation (Figure 2-4G). 

 

2.3.4. Adenoviral vector infection synergistically sensitizes hepatocytes to TNF-

induced apoptosis 

Common models of TNF-induced hepatocyte apoptosis require non-physiological 

interference with anti-apoptotic signaling pathways [11, 76].  Here, we examined TNF-

induced hepatocyte apoptosis in the context of adenoviral infection because of the 

relevance of this condition to physiological and therapeutic applications and because we 

have found it to be an important modulator of TNF-induced apoptosis in other epithelial 

cell types [22, 64].  Rat hepatocytes were cultured on collagen gel for 24 hours, then 

infected with a replication-deficient adenovirus expressing a β-gal transgene at 0-100 

MOI.  Twenty four hours post-Adv infection, hepatocytes were stimulated with TNF and 

other co-treatments for 24 hours.  Cells were harvested and analyzed by flow cytometry 

for the cleaved form of the effector caspase 3 (Figure 2-5A) and LDH release (an 

indicator of loss of plasma membrane integrity in necrotic and apoptotic cell death) was 

measured in culture supernatants.  Over a range of infection levels, Adv potently 

sensitized TNF-induced apoptosis as measured by both LDH release (Figure 2-5B) and 

cleaved caspase 3+ cells (Figure 2-5C) with the sensitization effect plateauing at ~50 MOI  
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Figure 2-5.  Replication-deficient adenoviral vector infection synergistically sensitizes hepatocytes to 
TNF-induced apoptosis. Primary rat hepatocytes were isolated, treated, and assayed as described in Chapter 
2.2 for apoptosis studies. (A) Representative scatter plots of a cleaved caspase 3+ flow cytometry assay for 
cells infected with 50 MOI Adv and stimulated with carrier only (left) or 100 ng/ml TNF (right). (B-C) 
Effect of Adv infection level on TNF-induced (B) total cell death as assayed by relative LDH release and 
(C) apoptosis as assayed by the cleaved caspase 3+ cells. Cells were infected with storage buffer only or 
12.5, 25, 50, or 100 MOI Adv and then stimulated with mock or 100 ng/ml TNF for 24 hours. LDH release 
values were normalized to mock treatment condition at 24 hours post-stimulus and in (B) and (D). (D-E) 
Effect of TNF concentration on Adv infection-sensitized (D) total cell death and (E) apoptosis. Cells were 
infected with storage buffer only or 50 MOI Adv and then stimulated with 0, 1, 5, 20, 100, or 200 ng/ml 
TNF for 24 hours. Differences between all pairs of cell death and apoptosis dose-response curves in (B) to 
(E) were assessed using two-way ANOVA and were all statistically significant (P < 10-4). Data are 
presented as the mean ± SEM of three biological samples in panels (B) to (E). 
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Adv, which was used for all subsequent Adv infections.  At time points later than 24 

hours post-cytokine stimulation, hepatocyte death induced by Adv infection alone 

increased significantly, reducing the level of observed synergy between Adv and TNF in 

inducing hepatocyte death (data not shown).  In hepatocytes infected with 50 MOI Adv, 

TNF induced apoptosis as measured by both LDH release (Figure 2-5D) and cleaved 

caspase 3+ cells (Figure 2-5E), with half-maximal and maximal responses induced at ~5 

ng/ml and ~100 ng/ml TNF, respectively.  Thus, Adv infection potently sensitizes 

hepatocytes to TNF-induced apoptosis and provides a physiologically relevant model to 

examine the role of autocrine ligands in regulating TNF-induced apoptosis. 
 

2.3.5. TNF-induced apoptosis in Adv-infected hepatocytes is regulated by a coupled, 

pro-apoptotic TGF-α–IL-1α/β–IL-1ra autocrine cascade 

Because we found that a coupled TGF-α–IL-1α/β–IL-1ra autocrine cascade regulates 

hepatocyte proliferation induced by TNF, and a similar autocrine mechanism operates in 

determining apoptotic responses of colonic epithelial cells [62, 77], we investigated 

whether this autocrine cascade regulates TNF-induced apoptosis in Adv-infected 

hepatocytes.  In hepatocytes infected with 50 MOI Adv, TNF treatment significantly 

upregulated the release of autocrine TGF-α, IL-1α, IL-1β, and IL-1ra as measured over 

24 hours (Figure 2-6A-D).  Adv infection alone induced an increased release of TGF-α 

but not IL-1α, IL-1β, or IL-1ra compared to uninfected control cells (Figure 2-6E-G and 

data not shown).  Inhibition of autocrine TGF-α reduced the release of IL-1α induced by 

both Adv infection alone and Adv infection followed by 5 or 100 ng/ml TNF treatment 

(Figure2-6H) but only reduced the release of IL-1β upon Adv + 5 ng/ml TNF treatment 

(Figure 2-6I) and did not perturb the release of autocrine IL-1ra (data not shown).  

Pretreatment with anti-TGF-α, IL-1ra, or both inhibitors significantly reduced TNF-

induced apoptosis in Adv-infected hepatocytes treated with 5 ng/ml TNF, but did not 

perturb apoptosis in a statistically significant manner under 0 or 100 ng/ml TNF 

treatments (Figure 2-6J).  In Adv-infected hepatocytes, pretreatment with CI1033 and 

anti-IL-1β also reduced apoptosis induced by 5 ng/ml TNF (Figure 2-6K). 

Thus, in Adv-infected hepatocytes, TNF-induced apoptosis is regulated by the 

coupled activity of autocrine TGF-α and IL-1α/β.  At sub-saturating TNF concentrations  
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Figure 2-6.  (Previous page) Autocrine TGF-α, IL-1α/β, and IL-1ra regulate TNF-induced apoptosis in 
Adv-infected hepatocytes in a coupled autocrine circuit. Primary rat hepatocytes were isolated, treated, and 
assayed as described in Chapter 2.2 for apoptosis studies. (A-D) Conditioned media samples were collected 
from 0-24 hours following mock, 5 ng/ml (D) or 100 ng/ml (A-C) TNF treatment in hepatocytes infected 
with 50 MOI Adv and were assayed for autocrine TGF-α (A), IL-1α (B), IL-1β (C), and IL-1ra (D) release 
by quantitative ELISA. Differences between each pair of ligand release time courses were assessed using 
two-way ANOVA and were all statistically significant (P < 10-3). (E-G) Effect of both Adv infection and 
TNF treatment on hepatocyte autocrine TGF-α and IL-1α/β release. Rat hepatocytes were infected with 
storage buffer only (uninfected) or 50 MOI Adv and then stimulated with mock or 100 ng/ml TNF 
treatment. Conditioned media samples were collected at 24 hours following TNF stimulus and were 
assayed for autocrine TGF-α (E), IL-1α (F), and IL-1β (G) release by quantitative ELISA. (H-I) 
Perturbation of IL-1α (H) and IL-1β (I) release induced by 0, 5, or 100 ng/ml TNF treatment at 24 hours 
post-stimulus in 50 MOI Adv-infected hepatocytes in the presence of 10 μg/ml anti-TGF-α. (J-K) 
Regulation of TNF-induced apoptosis in Adv-infected hepatocytes by autocrine TGF-α and IL-1α/β. 
Autocrine ligand inhibitors were added 1 hour before 0, 5, or 100 ng/ml TNF treatment in 50 MOI Adv-
infected hepatocytes. Autocrine TGF-α ligand activity was perturbed with 10 μg/ml anti-TGF-α or 10 μM 
CI1033 pretreatment. Autocrine IL-1 activity was perturbed with 10 μg/ml IL-1ra, 10 μg/ml anti-IL-1α, or 
10 μg/ml IL-1β pretreatment. In panel (K), the dashed red line indicates apoptosis induced by Adv + 5 
ng/ml TNF alone. In panels (E) to (G), differences between uninfected and 50 MOI Adv infection 
treatments are labeled as significant (*) if P < 0.05. Differences between mock and 100 ng/ml TNF 
treatments are labeled as significant (‡) if P < 0.05. In panels (H) to (K), differences between mock and 
TNF treatments are labeled as significant (*) if P < 0.05 and differences between pairs of uninhibited and 
inhibitor treatments are labeled as significant (‡) if P < 0.05. Data are presented as the mean ± SEM of six 
biological samples in (A) to (D) and three biological samples (E) to (K). 
 

(5 ng/ml), the induced release of IL-1α and IL-1β is contingent on autocrine TGF-α, the 

induced release of IL-1ra is independent of autocrine TGF-α or IL-1α/β, and the net 

effect of the coupled TGF-α–IL-1α/β autocrine circuit in Adv-infected hepatocytes is pro-

apoptotic.  At saturating concentrations (100 ng/ml), TNF induces TGF-α and IL-1α/β 

release in Adv-infected hepatocytes, but these mediators only provide a negligible 

contribution to apoptosis and the requirement of autocrine TGF-α activity for IL-1β 

release is not apparent.  Taken together, the observations across all treatment conditions 

imply that autocrine TGF-α can act paradoxically as a pro-apoptotic signal in Adv-

infected hepatocytes by coupling TNF treatment to release of pro-apoptotic autocrine IL-

1α/β (Figure 2-8G). 

 

2.3.6. Autocrine TGF-α and IL-1α/β contribute to multiple signaling pathways 

related to TNF-induced apoptosis in Adv-infected hepatocytes 

To investigate how autocrine TGF-α and IL-1α/β signaling contributes to TNF-induced 

hepatocyte apoptosis, we quantified phosphoprotein signaling in hepatocytes infected 

with 50 MOI Adv and stimulated with TNF at 5 ng/ml, a sub-saturating concentration  
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Figure 2-7.  Autocrine TGF-α and IL-1α/β contribute to TNF-induced phosphoprotein signaling regulating 
hepatocyte apoptosis. Primary rat hepatocytes were isolated, treated, and assayed as described in Chapter 
2.2 for apoptosis studies. Lysates were collected 0, 0.25, 2, 6, 12, and 24 hours following 5 ng/ml TNF 
treatment of 50 MOI Adv-infected hepatocytes with mock, 10 μg/ml anti-TGF-α, or 10 μg/ml IL-1ra 
pretreatments to perturb autocrine ligand activity. Lysates were analyzed using multiplexed phosphoprotein 
assays for p-Akt (A), p-GSK-3α/β (B), p-MEK1 (C), p-ERK1/2 (D), p-JNK (E), p-c-Jun (F), p-IκB-α (G), 
p-p38 (H), and p-HSP27 (I). In panels (A) to (D), IL-1ra inhibition treatments were unchanged from 
uninhibited treatments and thus not shown. Differences between uninhibited and inhibited phosphoprotein 
signaling time courses were assessed using two-way ANOVA and P values are shown in each graph for 
anti-TGF-α (red) and IL-1ra (blue) pretreatments. For phosphoproteins that did not demonstrate significant 
differences by ANOVA between uninhibited and inhibition treatment time courses for both autocrine 
ligands, individual time points that did demonstrate significant differences in both comparisons are labeled 
(*) if P < 0.05. Data are presented as the mean ± SEM of three biological samples. 
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that showed dependence on autocrine signaling in its induction of apoptosis.  In Adv-

infected hepatocytes, TNF activated anti-apoptotic MEK–ERK signaling, dependent on 

autocrine TGF-α, but did not significantly activate Akt–GSK-3α/β signaling (Figure 2-

7A-D).  Adv infection itself strongly activates Akt signaling [22, 23], which can be 

observed by comparing basal Akt activation in uninfected (Figure 2-3A) and Adv-

infected (Figure 2-7A) cells.  TNF-induced activation of pro-apoptotic JNK–c-Jun and 

p38–HSP27 signaling (at ~6-12 hours post-stimulus) were both dependent on autocrine 

IL-1α/β signaling, as observed by direct inhibition with IL-1ra or through the inhibition 

of autocrine TGF-α (Figure 2-7E-F,H-I).  In contrast to uninfected hepatocytes (Figure 2-

3G), TNF-induced IKK–NF-κB signaling in Adv-infected hepatocytes was only 

marginally dependent on autocrine signaling (Figure 2-7G).  As observed in uninfected 

hepatocytes, TGF-α, IL-1α/β, and IL-1ra operate in an autocrine cascade that contributes 

to multiple signaling pathways related to TNF-induced apoptosis signaling in Adv-

infected hepatocytes (Figure 2-9). 

 

2.3.7. TGF-α biphasically regulates apoptosis/survival in Adv-infected, TNF-treated 

hepatocytes mediated by autocrine IL-1α/β 

To further investigate the paradoxical roles of TGF-α in regulating TNF-induced 

apoptosis in Adv-infected hepatocytes, we treated Adv-infected hepatocytes with 

multiple combinations of exogenous TNF and autocrine/exogenous TGF-α stimuli and 

assayed IL-1α/β release and apoptosis.  In examining the “cue-response landscape” of 

autocrine IL-1α/β release and apoptosis induced by these TNF-TGF-α co-stimuli in Adv-

infected hepatocytes, we observed that both IL-1α/β release and apoptosis responses were 

maximally stimulated at intermediate concentrations of exogenous TGF-α for both 5 and 

100 ng/ml TNF treatments (Figure 2-8A).  This indicated that exogenous TGF-α could 

induce increased apoptosis in Adv-infected, TNF-treated hepatocytes through the 

correlated release of additional autocrine IL-1α/β.  In Adv-infected hepatocytes treated 

with 100 ng/ml TNF, exogenous TGF-α co-treatment increased apoptosis at 1 and 5 

ng/ml TGF-α and a decreased apoptosis at 20 and 100 ng/ml TGF-α (Figure 2-8B).  In 

comparison, release of autocrine IL-1α (Figure 2-8C) and IL-1β (Figure 2-8D) was 
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Figure 2-8.  Exogenous TGF-α biphasically regulates apoptosis/survival in Adv-infected, TNF-treated 
hepatocytes through an autocrine IL-1α/β circuit. Primary rat hepatocytes were isolated, treated, and 
assayed as described in Chapter 2.2 for apoptosis studies. (A) “Cue-response landscape” plot of apoptosis 
and autocrine IL-1α/β release induced by multiple combinations of TNF and TGF-α stimuli in 50 MOI 
Adv-infected hepatocytes. Mean values of three biological samples are plotted for cleaved caspase 3+ cells 
(lines and vertices; z-axis) and total autocrine IL-1α/β concentration (interpolated surface colormap) at 24 
hours post-stimulus for multiple concentrations of exogenous TNF and either inhibited, autocrine 
(uninhibited), or exogenous TGF-α. See Table 2-3 for details of treatment conditions and measured values 
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plotted. (B) Apoptosis induced by 0, 1, 5, 20, or 100 ng/ml exogenous TGF-α with 100 ng/ml TNF co-
treatment in 50 MOI Adv-infected hepatocytes. Dashed red lines indicate apoptosis level in the absence of 
exogenous TGF-α stimulus for clarity. (C-D) IL-1α (C) and IL-1β (D) release at 24 hours post-stimulus 
induced by 0, 1, 5, 20, or 100 ng/ml exogenous TGF-α with 100 ng/ml TNF co-treatment in 50 MOI Adv-
infected hepatocytes. Dashed red lines indicate ligand release level in the absence of exogenous TGF-α 
stimulus for clarity. (E) Apoptosis induced by 100 ng/ml TNF only treatment or 100 ng/ml TNF + 5 ng/ml 
TGF-α co-treatment in the absence or presence of 10 μg/ml IL-1ra in 50 MOI Adv-infected hepatocytes. 
(F) Autocrine and sub-saturating exogenous levels of TGF-α both have a negligible anti-apoptotic effect in 
regulating TNF-induced apoptosis in Adv-infected hepatocytes. Apoptosis was measured by the fraction of 
cleaved caspase 3+ cells for Adv-infected hepatocytes treated with TNF alone; TNF + 10 μg/ml IL-1ra + 10 
μg/ml anti-TGF-α; TNF + IL-1ra; or TNF + IL-1ra + 5 ng/ml exogenous TGF-α. (G) A molecular “logic” 
model of the effects of autocrine TGF-α, IL-1α/β, and IL-1ra ligands in regulating TNF-induced apoptosis 
in Adv-infected hepatocytes. Exogenous TNF stimulates the release of pro-apoptotic autocrine IL-1α and 
IL-1β contingent of the activity of autocrine TGF-α, which is an anti-apoptotic ligand at saturating 
exogenous concentrations but not at autocrine concentrations, and the release of IL-1ra independent of 
activity of other autocrine ligands. In panels (B) to (E), differences between control treatments and 
treatments with exogenous TGF-α are labeled as significant (*) if P < 0.05. In panel (E), differences 
between pairs of control treatments and IL-1ra treatments are labeled as significant (‡) if P < 0.05. In panel 
(F), no differences were statistically significant. Data are presented as the mean ± SEM of three biological 
samples in panels (B) to (F). 
 

upregulated for TNF co-treated with TGF-α at 5 ng/ml but not other concentrations.  

Therefore, at high concentrations, exogenous TGF-α rescued TNF-induced apoptosis, in 

agreement with the recognized anti-apoptotic role of EGFR ligands [81, 88], but, at 

intermediate concentrations, exogenous TGF-α contributed to TNF-induced apoptosis, 

mirroring its role as a pro-apoptotic autocrine mediator in Adv-infected, TNF-treated 

hepatocytes.  A similar biphasic TGF-α synergism and antagonism in regulating 

apoptosis has been observed in interferon-γ-sensitized, TNF-treated human colonic 

epithelial cells [77].  Furthermore, the upregulation of apoptosis in Adv-infected, TNF-

treated hepatocytes by 5 ng/ml exogenous TGF-α, which coincided with increased IL-

1α/β release, was completely attenuated in the presence of IL-1α/β inhibition, confirming 

that autocrine IL-1α/β act as signaling mediators of the increased apoptosis stimulated by 

exogenous TGF-α (Figure 2-8E). 

Given that exogenous TGF-α at saturating concentrations acted as anti-apoptotic 

stimulus, we asked if autocrine or sub-saturating exogenous TGF-α could be serve as an 

anti-apoptotic stimulus when de-coupled from its induction pro-apoptotic IL-1α/β release.  

In Adv-infected hepatocytes pretreated with IL-1ra, then stimulated with 100 ng/ml TNF, 

TGF-α at autocrine or sub-saturating exogenous (5 ng/ml) concentrations induced a 

slight, but not statistically significant, reduction in apoptosis compared to treatment with 

anti-TGF-α (Figure 2-8F).  The negligible anti-apoptotic effect of autocrine and sub- 
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Table 2-3.  Measured values of apoptosis and autocrine IL-1α/β release in TNF- and TGF-α-treated, Adv-
infected hepatocytes1. 

 

Adv 
MOI 

Exogenous 
TNF 
conc. 

(ng/ml) 

TGF-α 
conc. 

(ng/ml) 

TGF-α 
category 

% 
cleaved 
caspase 
3+ cells 

Autocrine 
IL-1α 
conc. 

(pg/ml) 

Autocrine 
IL-1β 
conc. 

(pg/ml) 

Total 
autocrine 
IL-1α/β 

conc. 
(pg/ml)2 

50 0 0 Inhibited3 27.3 4.1 43.4 47.5 

50 0 0.030 Autocrine4 28.9 7.7 44.7 52.3 

50 0 1 Exogenous5 33.2 6.9 43.1 50.1 

50 0 5 Exogenous 26.8 7.1 43.1 50.2 

50 0 20 Exogenous 26.3 8.9 43.4 52.3 

50 0 100 Exogenous 23.9 7.0 40.7 47.7 

50 5 0 Inhibited 43.4 5.1 60.4 65.5 

50 5 0.032 Autocrine 57.7 8.7 97.5 106.2 

50 5 1 Exogenous 61.4 6.8 114.0 120.8 

50 5 5 Exogenous 60.7 6.0 66.1 72.0 

50 5 20 Exogenous 54.6 5.1 64.3 69.4 

50 5 100 Exogenous 46.8 7.8 72.3 80.1 

50 100 0 Inhibited 73.3 7.2 123.0 130.2 

50 100 0.041 Autocrine 70.5 10.0 121.5 131.4 

50 100 1 Exogenous 84.0 10.2 147.7 157.9 

50 100 5 Exogenous 78.8 13.2 160.4 173.5 

50 100 20 Exogenous 59.2 11.1 113.8 124.9 

50 100 100 Exogenous 53.8 12.6 105.8 118.5 

 
1See Figure 2-8A for a surface plot of apoptosis and autocrine IL-1α/β release induced by these 
combinations of TNF and TGF-α stimuli in Adv-infected hepatocytes. 
2Total autocrine IL-1α/β concentration was calculated by adding the measured IL-1α and IL-1β 
concentrations and is an estimate of their net activity. 
3Endogenous TGF-α activity inhibited by 10 μg/ml anti-TGF-α and, accordingly, TGF-α is plotted as 
having an effective concentration of zero. 
4Autocrine TGF-α concentration measured by ELISA and in the absence of TGF-α neutralizing antibody. 
5Exogenous TGF-α concentration set by the addition of recombinant TGF-α. 
 

saturating exogenous TGF-α are likely due to its limited ability to further supplement 

anti-apoptotic Akt signaling in the presence of Adv infection  and insulin (Figure 2-7A); 

and, instead, saturating concentrations of TGF-α are required to exert a substantial anti-

apoptotic effect.  Thus, an integrated balance of signaling by exogenous TNF, autocrine 

and exogenous TGF-α, and autocrine IL-1α/β determines hepatocyte apoptosis responses 

in the presence of Adv infection.  At autocrine and sub-saturating exogenous 
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concentrations, TGF-α exerts a negligible anti-apoptotic stimulus that is overwhelmed by 

pro-apoptotic signaling from exogenous TNF and induced autocrine IL-1α/β, which are 

antagonized by released IL-1ra.  But, at saturating exogenous concentrations, TGF-α 

effectively antagonizes pro-apoptotic signaling by these factors (Figure 2-8G). 

 

 
 
Figure 2-9.  A TGF-α–IL-1α/β–IL-1ra autocrine cascade contributes to TNF-induced hepatocyte 
proliferation and Adv-infection sensitized apoptosis through the regulation of multiple shared signaling 
pathways. TNF activates the Akt, ERK, JNK, IKK–NF-κB, and p38 signaling pathways both directly 
downstream of TNFR [11, 76] and indirectly through this autocrine cascade. Replication-deficient Adv 
infection can activate Akt, NF-κB, and p38 pathway signaling  [22, 23]. TNF induces TGF-α release, which 
activates Akt, ERK, and JNK signaling over a time scale of 0.25-24 hours. Induced IL-1α/β release is 
contingent on both TNF and autocrine TGF-α. Autocrine IL-1α/β activates JNK, IKK–NF-κB, and p38 
signaling over a time scale of 2-24 hours. Independent of autocrine TGF-α or IL-1α/β, TNF also induces 
the release of IL-1ra, which antagonizes IL-1α/β ligand activity and accumulates over a time scale of 12-24 
hours. These signaling pathways have diverse function in regulating hepatocyte proliferation and apoptosis 
[11, 75, 76, 84]. 
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2.4. Discussion 

We have demonstrated that hepatocyte responses to TNF are regulated by an inducible, 

coupled, and self-antagonizing TGF-α–IL-1α/β–IL-1ra autocrine cascade.  This autocrine 

cascade promotes both TNF-induced apoptosis in hepatocytes infected with Adv -- a 

therapeutically and physiologically relevant sensitization for hepatocyte apoptosis 

induced by TNF developed herein -- and TNF-induced proliferation in the absence of 

viral infection.   

 

2.4.1. Autocrine signaling control of adenovirus- and TNF-induced intracellular 

signaling pathways 

TNF-induced autocrine TGF-α and IL-1α/β contribute to multiple intracellular signaling 

pathways that govern both hepatocyte proliferation and apoptosis (Figure 2-9).  Autocrine 

TGF-α regulates pro-proliferative/anti-apoptotic signaling through the ERK and, in the 

absence of Adv infection, Akt pathways [83, 84].  Autocrine IL-1α/β regulates pro-

apoptotic signaling through JNK and p38 pathways.  From our results, it is unclear how 

autocrine IL-1α/β signaling antagonizes hepatocyte proliferation, but one possibility is 

through the sustained activation of JNK signaling and its association with anti-

proliferative ROS accumulation [102].  When added exogenously, IL-1 antagonizes 

hepatocyte proliferation through its induction of NO signaling [87], which was not 

assayed in our study.  NO has been shown to impair DNA synthesis through its activation 

of ribonucleotide reductase [87], but could also inhibit DNA synthesis, and effector 

caspase activation, through its S-nitrosylation and deactivation of initiator caspases [104], 

whose cleavage and activation is necessary for both DNA synthesis [38] and apoptosis.  

Thus, autocrine-dependent signaling modulates diverse signaling pathways and further 

investigation is necessary to identify how the pathways assayed herein and other 

signaling mechanisms interact to govern hepatocyte responses to TNF. 

 

2.4.2. Regulation of autocrine ligand expression and release 

Although not mechanistically investigated here, the expression and/or post-translational 

processing and shedding of TGF-α, IL-1α/β, and IL-1ra ligands are regulated by a 

number of signaling pathways activated by TNF and Adv infection, including JNK, IKK–
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NF-κB, and p38 [84, 90, 105-107].  TGF-α expression is regulated by ERK-, NF-κB-, 

and JNK–AP-1-related transcription factor activity [90, 108].  Post-translational 

processing, mediated by the protease ADAM17 (as known as TACE), is required for 

mature TGF-α release.  ADAM17 is activated by ERK and p38 signaling in mammary 

epithelial cells [107] and downstream of TNF stimulation in the AML-12 hepatocyte cell 

line [84].  Moreover, ADAM17 processes the EGFR ligands HB-EGF and amphiregulin 

and TNF itself, which were not examined in this study but are produced by hepatocytes 

under certain conditions [81, 109] and could provide additional autocrine feedback 

signals to exogenous TNF treatment.  Thus, NF-κB, JNK, and p38 signaling could 

mediate TNF-stimulated TGF-α transcription and processing in hepatocytes, with release 

of TGF-α leading to transactivation of ERK signaling and its further stimulation of TGF-

α release.  IL-1α and IL-1β maturation and release are also controlled by both 

transcriptional and post-translational mechanisms.  Although less is known about these 

mechanisms, both IL-1 transcription and processing, involving the proteases caspase-1 

and MMP-3, can be activated by signaling mediators downstream of toll-like receptors 

and TNFR1 [106]. 

The time courses of TGF-α, IL-1α, and IL-1β ligand accumulation reported here 

indicate that, in the absence of Adv infection, TNF-induced hepatocyte shedding of these 

ligands requires transcriptional activation, which could be further modified by post-

translational processing (Figure 2-2D-F).  In Adv-infected hepatocytes, TNF-induced 

release of TGF-α was upregulated earlier (by 4 hours post-TNF treatment; Figure 2-6A) 

and release of IL-1β was dramatically increased at later times (12-24 hours after TNF 

treatment; Figure 2-6C).  This suggests that Adv infection sensitizes TNF-treated 

hepatocytes to release TGF-α on time scales consistent with post-translational rather than 

transcriptional regulation.  The earlier and more pronounced IL-1β release suggests that 

Adv similarly potentiates TNF-induced IL-1β transcription and/or processing possibly 

due to shared activation of the NF-κB signaling by Adv and TNF (see Figures 2-3G and 

2-7G to compare TNF-induced NF-κB signaling in uninfected and Adv-infected 

hepatocytes).  Moreover, these results suggest that signaling activation via autocrine 

TGF-α is necessary for TNF-stimulated IL-1α/β release in hepatocytes in the presence 

(Figure 2-2H-I) or absence of Adv (Figure 2-6H-I). 
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During liver regeneration following PHx, both TNF and IL-1α/β levels in the liver 

peak within 24 hr post-PHx with IL-1α/β levels rising again at 48-96 hr post-PHx, 

coinciding with cessation of growth factor-stimulated hepatocyte proliferation [86, 110].  

Following this, the initial phase of IL-1α/β-mediated growth inhibition following PHx 

could be contributed by TNF-stimulated autocrine release and the later phase could be 

due to through Kupffer cell paracrine release.   

 

2.4.3. Interpretation of autocrine signaling mechanisms is context-dependent 

Our results also underscore the challenges in unraveling the complexities of context-

dependent cues such as TNF, and we note several factors that should be considered in 

interpretation of these results.  In this study, we inferred the activity of autocrine factors 

by assaying their accumulation in culture medium and their control of multiple 

phosphoprotein signaling pathways and resultant cellular responses.  The rate of ligand 

accumulation in culture medium does not, however, completely reflect activity of 

autocrine factors, especially when receptor-mediated ligand consumption is significant 

compared to production [111].  The outcome of autocrine effects can be influenced by 

cell density, which differed in the proliferation and apoptosis studies here, through the 

modulation of local ligand concentrations achieved by the net effects of ligand production 

and uptake [112].  Cell density could similarly influence hepatocyte autocrine signaling 

in physiological processes such as liver regeneration, in which hepatocyte cell density 

varies in different microenvironments and time points following PHx [75].  Further, 

ligand-dependent receptor degradation, prolonged culture duration, and viral infection 

can all modulate receptor expression levels in hepatocytes [25, 113], which in turn could 

lead to amplification and/or attenuation of the exogenous and autocrine ligand activities 

observed here.  Finally, autocrine factors not examined in this study might also be 

involved in hepatocyte responses to TNF.  These could include other ligands that are 

processed by ADAM17 in hepatocytes such as the EGFR ligands HB-EGF and 

amphiregulin and even TNF itself [81, 109].   
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2.4.4. Importance of autocrine signaling in hepatocyte biology 

Results herein, and those previously reported, collectively illustrate the integral role of 

autocrine factors in hepatocyte proliferation, apoptosis, survival [114], and 

transformation [88] responses to exogenous cytokine stimuli and implicate diverse 

autocrine signaling connections between cytotoxic, inflammatory, and mitogenic ligands 

in hepatocytes.  Integration of opposing positive and negative feedback mechanisms, 

such as those observed here, has previously been proposed to confer robustness in the 

control of cell phenotypic responses [115].  The disruption of self-limiting control 

mechanisms present in the TNF-induced TGF-α–IL-1α/β–IL-1ra autocrine cascade could 

provide means by which hepatocyte pathophysiological responses to inflammatory 

cytokine stimuli arise and lead to oncogenic transformation and hepatocellular carcinoma 

[100, 116].  Our results also suggest ways that manipulation of autocrine loops may 

influence therapeutic interventions in liver disease.  For example, targeted interference 

with IL-1 signaling has been shown to reduce hepatotoxicity and improve efficacy of 

Adv gene therapy in vivo [20], positive effects that may arise in part by disruption of 

autocrine IL-1 signaling.  Our findings that TGF-α is pro-apoptotic at, and slightly above, 

concentrations associated with autocrine secretion imply that adenoviral gene therapies 

might be especially hepatotoxic under conditions in which both TNF and TGF-α (or other 

EGFR ligands) are mildly upregulated, as is observed following PHx [75]. 

Clearly, the delicate balance between opposing signals requires careful 

examination using quantitative experimental models in order to achieve desired 

outcomes.  Moreover, further development of animal models will be critical to parse the 

complex autocrine and paracrine signaling mechanisms regulating TNF signaling in 

hepatocytes and other liver cell types in vivo and to validate any therapeutic interventions 

directed towards the autocrine control mechanisms identified in this study. 
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CHAPTER 3 

 
Development and analysis of an in vitro drug-cytokine hepatocellular 

death synergy model for the study of inflammation-associated 

idiosyncratic drug hepatotoxicity 

 
3.1. Introduction 

3.1.1. Idiosyncratic drug hepatotoxicity 

Idiosyncratic drug hepatotoxicity is defined as drug-induced liver injury that occurs in a 

very small fraction of human patients, is unrelated to the pharmacologic target of the 

drug, and exhibits no apparent relationship to dose or duration of drug exposure [26-28].  

Idiosyncratic drug hepatotoxicity is poorly predicted by standard preclinical cell culture 

and animal models as well as in clinical trials, and, consequently, most idiosyncratic drug 

hepatotoxicities are not evident until after approval for human use.  Due to the inability to 

predict idiosyncratic hepatotoxicities in the drug development process, idiosyncratic drug 

hepatotoxicity frequently leads to drug withdrawal or “black box” warnings and accounts 

for more than 10% of acute liver failure cases [27, 117].  Multiple hypotheses have been 

suggested to explain the mechanisms underlying idiosyncratic drug hepatotoxicity.  

These include (i) variations in drug metabolism, particularly associated with alterations in 

the expression and/or activities of the cytochrome P450 family enzymes, due to variable 

environmental conditions and/or genetic polymorphisms in the human population [29]; 

and (ii) a relationship with concomitant liver inflammation associated with viral or 

bacterial infection or liver or inflammatory disease [26].  Moreover, it is likely that 

multiple factors -- both genetic and environmental -- contribute, at relative degrees which 

are not predictable at the present time, to a drug’s hepatotoxicity idiosyncrasies [31]. 

 

3.1.2. In vitro and in vivo models of idiosyncratic drug hepatotoxicity 

A number of preclinical models have been developed in attempts to predict idiosyncratic 

drug hepatotoxicity, including the assessment of reactive metabolites through glutathione 

(GSH) conjugation assays and the evaluation of animals models by toxicogenomic and 
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metabolonomic approaches to identify common idiosyncratic hepatotoxicity-associated 

biomarkers, with little overall predictive success [27, 30, 31].  Rodent models 

administered with bacterial lipopolysaccharide (LPS) have been recently developed to 

assess inflammation-associated idiosyncratic drug hepatotoxicity.  In these rodent 

models, LPS exposure induces a mild inflammatory response that has been demonstrated 

to synergistically induce hepatotoxicity in the presence of a number of idiosyncratic 

hepatotoxic drugs, including diclonfenac, sulindac, trovafloxacin, ranitidine, 

chlorpromazine, but not non- or less-toxic control drugs [32-35].  In rats, LPS 

administration upregulates plasma concentrations of the cytokines tumor necrosis factor-

α (TNF), interferon-γ (IFNγ), interleukin-1α and -1β (IL-1α/β), interleukin-6 (IL-6), and 

the chemokine interleukin-10 (IL-10) [36].  Of these, TNF, IFNγ, IL-1α/β, IL-6, and LPS 

itself all stimulate hepatocyte signaling responses through the activation of a diversity of 

intracellular signal transduction pathways, including the IKK–NF-κB, p38, and JNK 

pathways (associated with TNF, IL-1α/β, and LPS signaling) and the STAT1 and STAT3 

pathways (associated with IFNγ and IL-6 signaling, respectively), which all are 

implicated in hepatocellular death in liver diseases and injuries (reviewed in [76, 118-

120]).  In LPS-administered rat models, synergistic induction of hepatocellular death in 

the presence of the idiosyncratic hepatotoxins ranitidine and trovafloxacin has been 

reported to be dependent on TNF signaling [35, 37]. 

The observations in LPS-administered rodent models suggest that idiosyncratic 

drug hepatotoxicity can arise when mild drug-induced hepatocellular stress synergizes 

with LPS-induced inflammatory cytokine signaling to elicit acute hepatocellular death 

[27, 38].  These stresses may be idiosyncratic in nature in human patients due variations 

in drug metabolism, exposure, and/or clearance.  The sensitizing role of hepatocellular 

stress is supported by the fact that drug-induced depletion of glutathione is known to 

sensitize hepatocytes to TNF-induced apoptosis [39].  Furthermore, both LPS and 

inflammatory cytokine signaling can alter hepatocyte expression of cytochrome P450 

enzymes and thus lead to dysregulated drug metabolism and clearance in conditions of 

LPS-induced liver inflammation [40, 41].  Although they offer promise for improved 

predictability of idiosyncratic hepatotoxicity in preclinical screening, LPS-administered 

rodent models lack sufficient throughput for preclinical screening of candidate 
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pharmaceuticals.  Moreover, it has been shown that animal models are in general not 

highly predictive of human drug hepatotoxicity, as combined preclinical testing in 

rodents, dogs, and monkeys can only identify ~50% of known human hepatotoxins [121]. 

Recent advances in the maintenance and characterization of in vitro hepatocyte 

culture systems offer substantial promise for their more wide-spread utilization in high-

throughput preclinical screening approaches for the prediction of both non-idiosyncratic 

and idiosyncratic drug hepatotoxicity in humans.  Amongst hepatocyte culture systems 

that are commonly employed for high-throughput preclinical studies, primary human 

hepatocytes are considered the “gold standard” for evaluating drug metabolism, transport, 

and toxicity [122, 123].  In comparison, primary rat hepatocytes, while more readily 

available and similarly capable of maintaining differentiated hepatic function in time-

scales of a few days in vitro, do not reproduce some aspects of human drug metabolism 

[8, 124].  Immortalized and transformed human cell lines (e.g. HepG2 cells) are also 

frequently employed but have poor maintenance of liver-specific functions and are 

relatively insensitive to human hepatotoxins in simple cytotoxicity assays [124, 125].  A 

small number of hepatocyte cell culture models have been recently developed to assess 

idiosyncratic drug hepatotoxicity.  Of note, Xu et al utilized human hepatocyte cell 

culture models to assay four sub-lethal hepatotoxicity injuries with high-throughput live-

cell microscopy for over 300 drugs, including many that cause idiosyncratic liver toxicity 

in humans [126].  Using a well-calibrated random forest prediction model of the imaging 

data, they were able to predict drug hepatotoxicity with a ~50% true-positive rate and 

~5% false-positive rate.  A rat hepatocyte-Kupffer cell co-culture model has been 

developed and shown to successfully predict chlorpromazine idiosyncratic hepatotoxicity 

through its synergistic induction of hepatocellular death following LPS treatment [127].  

The further development and validation of hepatocyte cell culture models would provide 

much-needed tools for the preclinical evaluation of idiosyncratic drug hepatotoxicity and 

could offer greater predictive ability and higher throughput than LPS-administered 

animal models. 
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3.1.3. Chapter overview 

Here, we describe a model of inflammatory cytokine-associated idiosyncratic 

drug hepatotoxicity in three standard hepatocyte cell culture systems amenable to high-

throughput preclinical screening -- primary rat and human hepatocytes and the HepG2 

human hepatoblastoma cell line.  We initially validate this model to demonstrate that a 

number of idiosyncratic hepatotoxic drugs (ranitidine, trovafloxacin, nefazodone, 

nimesulide, clarithromycin) synergistically induce hepatocellular death in vitro when co-

administered with a cytokine mix containing the LPS-upregulated cytokines TNF, IFNγ, 

and IL-1α, and LPS itself.  We then collect a hepatotoxicity data compendium comprised 

of combinations of drug and cytokine mix co-treatments covering ~1500 experimental 

conditions and analyze it to identify informative cytokine mix treatments and hepatocyte 

cell systems for predicting inflammation-associated idiosyncratic drug hepatotoxicity.  

Using this data compendium, we show that in vitro drug-cytokine synergies are 

predominantly potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine 

mixes and that patterns of drug-cytokine mix synergies across a landscape of multi-

cytokine environments can be shown to correlate to drug-induced sub-lethal hepatocyte 

injuries.  Lastly, we demonstrate the predictive utility of this drug-cytokine mix co-

treatment model by screening a set of 90 drugs in human hepatocytes and show that a 

significantly larger fraction of idiosyncratic hepatotoxins synergize with a single cytokine 

mix at physiologically relevant dosing concentrations than do non-toxic drugs.  Our 

results indicate promise for employing our approach for efficient in vitro investigation of 

inflammation-associated idiosyncratic drug hepatotoxicity. 

 

3.2. Experimental procedures 

3.2.1. Drugs and cytokines 

Most drugs were obtained from Sigma (St. Louis, MO) or Sequoia Research Products 

(Pangbourne, UK).  Trovafloxacin was obtained from Pfizer’s chemical sample bank 

(Groton, CT).  Unless otherwise noted, the following drug concentrations were used: 450 

μM ranitidine, 450 μM trovafloxacin, 70 μM nefazodone, 450 μM nimesulide, 175 μM 

clarithromycin, and 175 μM telithromycin.  TPCA-1, an IKK-2 inhibitor, was obtained 

from Tocris Bioscience (Ellisville, MS).  All drugs were suspended in 0.25% final 
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DMSO.  Recombinant rat or human cytokines were obtained from R&D Systems 

(Minneapolis, MN) and were used at the following concentrations: 100 ng/ml tumor 

necrosis factor-α (TNF), 100 ng/ml interferon-γ (IFNγ), 20 ng/ml interleukin-1α (IL-1α), 

and 20 ng/ml interleukin-6 (IL-6).  Lipopolysaccharides (LPS) serotype 1 from E. coli 

0111:B4 was used at 10 μg/ml.  Unless noted, all reagents were obtained from Sigma. 

 
Table 3-1.  Drug-induced liver injury (DILI) categories. 

 

DILI categories (sorted by hepatotoxicity level) 

Group Category Description 

P1 associated with drug-induced liver injury, type 1:  
hepatotoxic in animals and/or humans in a dose-dependent manner 

O1 hepatotoxic in animals, untested in humans hepatotoxic 

P2 
associated with drug-induced liver injury, type 2:  
hepatotoxic in animals and/or humans in a dose-independent manner, 
generally regarded as idiosyncratic hepatotoxicity 

O2 elevated liver enzymes in humans, but generally regarded as safe 

N3 sporadic cases of liver injury in humans, but generally safe 

N2 not known to cause liver injury, but known to cause other organ injury 

minimally 
or not 

hepatotoxic 

N1 not known to cause liver injury 

 

3.2.2. Drug hepatotoxicity classifications and pharmacokinetic properties 

Drug hepatotoxicity classifications were made according to a drug-induced liver injury 

(DILI) scale (see Table 3-1) based on clinical data collected from PubMed searches, as in 

[126].  For select drugs, idiosyncratic hepatotoxicity classifications were assigned 

according to literature references (see Table 3-2).  Therapeutically appropriate drug 

exposure levels were defined by average plasma maximum concentration (Cmax) values 

observed in humans upon single- or multi-dose administration at commonly 

recommended therapeutic doses.  Cmax values were obtained from a combination of 

literature searches and available databases, as in [126], and are reported in Table 3-3.  

Unless noted otherwise, a concentration of 100-fold Cmax, encompassing a scaling factor 

to account for human population pharmacokinetic and toxicodynamic variabilities, was 
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considered as a therapeutically relevant dosing limit for each drug, as previously 

discussed [126]. 

 

3.2.3. Hepatocyte cell isolation, culture, and stimulation 

Primary rat hepatocytes were isolated from male Fisher rats using a modified collagenase 

perfusion and Percoll isolation, routinely yielding >90% viability and >97% purity, as in 

Chapter 2.2.1.  Rat hepatocytes were seeded on collagen type I-coated 96-well plates (BD 

Biosciences, Franklin Lakes, NJ) at 1×105 cells/cm2 in insulin-containing, serum-free 

hepatocyte growth medium (HGM; as in Chapter 2.2.3, but supplemented with 1 μM 

trichostatin A).  One day post-seeding, rat hepatocytes were overlayed with 0.25 mg/ml 

Matrigel (growth factor-reduced; BD Biosciences) in fresh HGM.  One day following 

Matrigel overlay, primary rat hepatocytes were stimulated with drugs and/or cytokines in 

fresh HGM.  For rat and human hepatocyte studies, multiple donors were used 

throughout this work, with a single donor used for each self-consistent data set.

 Primary human hepatocytes were obtained in suspension from CellzDirect 

(Durham, NC).  Human hepatocytes were seeded on collagen type I-coated 96-well plates 

at 1.5×105 cells/cm2 in “plating medium” consisting of Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 5% fetal bovine serum (FBS; Hyclone, Logan, 

UT), 100 U/ml penicillin, 100 μg/ml streptomycin, 0.58 mg/ml L-glutamine, 1 μM 

trichostatin A, 0.5 μM dexamethasone, and 5 μg/ml insulin.  One day post-seeding, 

human hepatocytes were overlayed with 0.25 mg/ml Matrigel in “culturing medium” 

consisting of William’s E medium (WEM) supplemented with 15 mM HEPES, 100 U/ml 

penicillin, 100 μg/ml streptomycin, 0.29 mg/ml L-glutamine, 1 μM trichostatin A, 0.1 μM 

dexamethasone, 5 μg/ml insulin, 5 μg/ml transferrin, and 5 ng/ml sodium selenite.  One 

day following Matrigel overlay, human hepatocytes were stimulated with drugs and/or 

cytokines in “dosing medium” (consisting of “culturing medium” but without transferrin 

and sodium selenite).   

 HepG2 cells were obtained from ATCC (Manassas, VA) and were maintained per 

ATCC recommendations.  HepG2 cells were seeded on collagen type I-coated 96-well 

plates at 1×105 cells/cm2 in Eagle’s minimum essential medium (EMEM; ATCC) 

supplemented with 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin.  One day 
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after seeding, medium was changed to fresh EMEM without FBS.  One day after medium 

change, HepG2 cells were stimulated with drugs and/or cytokines in fresh EMEM 

without FBS.  All cells were maintained at 37°C and 5% CO2. 

 

3.2.4. Quantitative cell death assays 

At 12, 24, or 48 hours post-drug and/or cytokine treatment, conditioned medium samples 

were collected to assay lactate dehydrogenase (LDH) release (indicator of necrotic and 

apoptotic cell death) and cells were assayed for caspase 3/7 activity (indicator of 

apoptotic cell death).  LDH activity in culture supernatants was quantified using a 

CytoTox-ONE Homogeneous Membrane Integrity Assay (Promega, Madison, WI) 

according to manufacturer’s recommendations.  Cellular caspase 3/7 activity was 

quantified using a Caspase-Glo 3/7 Assay (Promega) according to manufacturer’s 

recommendations.  For each cell system and time-point, LDH and caspase 3/7 activity 

assay results were fold-change normalized to the average DMSO control/no cytokine 

treatment value from four or more biological samples from the same 96-well culture 

plate. 

 

3.2.5. Quantitative sub-lethal hepatotoxicity imaging assays 

Drug-induced sub-lethal hepatotoxicity phenotypes were quantitatively imaged in human 

hepatocytes in the absence of cytokine co-treatment, essentially as described previously 

[126].  Briefly, human hepatocytes at 24 or 48 hours post-treatment were stained with 

four fluorescent probes: DRAQ5 (Biostatus, Shapshed, UK) to stain nuclei and lipids, 

CM-H2DCFDA (Invitrogen, Carlsbad, CA) to stain reactive oxygen species (ROS), 

TMRM (Invitrogen) to stain mitochondrial membrane potential (MtMP), and mBCl 

(Invitrogen) to stain glutathione (GSH).  Automated live-cell, multi-color image 

acquisition was performed on a Kinetic Scan Reader (Cellomics, Pittsburgh, PA) using a 

20× objective and a XP93 filter set (Omega Optical, Brattleboro, VT).  Quantitative 

image analysis was performed using ImagePro Plus software (Media Cybermetrics, 

Bethesada, MD).  In each image, five features were quantified: nuclei count and 

intracellular lipid (non-nuclear DRAQ5 stain), ROS, MtMP, and GSH contents.  For each 

feature, the summed intensity value from each well was normalized by the total nuclei 
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count (~500 imaged per well), and then the intensity-per-cell values were fold-change 

normalized to the average DMSO control value from eight or more biological samples 

from the same 96-well culture plate. 

 

3.2.6. Factorial analysis 

The drug-cytokine mix hepatotoxicity compendium was collected such that a full 

factorial design of the five cytokine or LPS treatments (25 = 32 mixes) was included for 

each drug co-treatment in each cell system.  For each drug/cell system, the fold-change 

normalized toxicity assay values were subjected to factorial analysis.  One-, two-, three-, 

four-, and five-factor effects and their associated errors were calculated according to 

standard factorial analysis formulae [128]. 

 

3.2.7. Hierarchical clustering 

The drug-cytokine mix combinatorial hepatotoxicity compendium was fused across all 

cell systems and assay types to generate a hepatotoxicity matrix spanning 192 

“experimental conditions” (i.e., combinations of cell type, assay readout, and cytokine 

treatment) and 8 drug treatments.  For each combination of cell system and assay type, 

the fold-change normalization values were linearly mapped to a scale from the minimum 

observed value (set to 0) and the maximum observed value (set to 1).  The fused data 

compendium was subjected to two-way clustering using the unweighted pair group 

method with arithmetic mean and a Pearson distance metric. 

 

3.2.8. Statistical analysis 

To identify drug-cytokine mix co-treatment conditions that elicited supra-additive 

hepatotoxicity synergies, additive projections of drug-cytokine mix co-treatments were 

estimated by adding mean values of drug-only and cytokine mix-only toxicities and 

propagating their associated variances.  Supra-additive synergies were identified for 

conditions in which the observed drug-cytokine mix co-treatment results exceeded the 

additive projections as assessed by two-sample, one-tailed (Student’s) t test with a false 

discovery rate correction for multiple comparison testing for multiple drug doses or 

multiple cytokine mixes.  The statistical significance of each factorial effect and its 
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associated error was assessed using one-sample, two-tailed t test with a false discovery 

rate correction for multiple cytokine mixes.  Statistical significance of drug-induced sub-

lethal hepatotoxicities was assessed by a Student’s t test.  In the 90-drug study, a 

threshold two-fold above the additive projection was used instead of a Student’s t test to 

identify supra-additive drug-cytokine mix synergy due to the limited number of replicate 

samples.  The statistical significance of the observed number of synergistic drugs in the 

each hepatotoxic group was assessed using a hypergeometric test (see Table 3-4 for 

details).  All tests were performed at a significance level of α = 0.05.  False discovery 

rate-corrected P-values were calculated as: P = α·(N+1)/(2N), where N is the number of 

comparisons. 

 

3.3. Results 

3.3.1. Several idiosyncratic hepatotoxic drugs, but not their control-paired 

compounds, exhibit drug-cytokine mix hepatotoxicity synergies in vitro 

We developed an in vitro model of inflammation-associated idiosyncratic drug 

hepatotoxicity by co-administering drug compounds with known idiosyncratic 

hepatotoxicities in humans with a variety of inflammatory cytokines mixtures (comprised 

of the cytokines TNF, IFNγ, IL-1α, and IL-6, along with LPS) in multiple hepatocellular 

cell culture systems (primary human and rat hepatocytes and HepG2 human 

hepatoblastoma cells).  For each drug compound associated with idiosyncratic 

hepatotoxicity, a less- or non-hepatotoxic “comparison” control compound was used.  In 

this study, the term "comparison” compound was applied to drugs with similar molecular 

target and clinical indication and, were possible, similar chemical structure.  Initially, this 

in vitro drug-cytokine mix co-treatment model was applied to primary rat hepatocytes 

and HepG2 cells treated with five pairs of drug compounds in the presence or absence of 

a single cytokine mix containing TNF, IFNγ, IL-1α, and LPS and assayed for LDH 

release as a marker of both apoptotic and necrotic cell death (Figure 3-1).  In developing 

this model, we investigated drug-cytokine mix hepatotoxicity synergies for the following 

idiosyncratic hepatotoxic drugs (in conjunction with corresponding control compounds): 

ranitidine and its control compounds cimetidine and famotidine (histamine H2-receptor 

antagonists); trovafloxacin and its non-toxic control levofloxacin (fluoroquinolone  
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Figure 3-1.  Identification of drug dose-dependent hepatotoxicity synergies between a cytokine mix and 
multiple idiosyncratic hepatotoxic drugs in primary rat hepatocytes (A-E) and HepG2 cells (F-J). Primary 
rat hepatocytes and HepG2 cells were cultured, treated, and assayed for LDH (at 24 or 48 hours post-
treatment) as described in Chapter 3.2. Drugs were dosed at varying concentrations in the presence or 
absence of a cytokine mix containing 100 ng/ml TNF, 100 ng/ml IFNγ, 20 ng/ml IL-1α, and 10 μg/ml LPS. 
LDH release values were fold-change normalized to DMSO/no cytokine control samples from the same 
cell system. (Note that LDH release axes are separately scaled for each plot.) Drugs from similar chemical 
class and/or molecular target are plotted together, with the less or non-hepatotoxic drug in blue and the 
more idiosyncratic hepatotoxic drug in red. Data are presented as mean ± SEM of four biological samples. 
For results from additional time points, with drug doses plotted with respect to both molecular 
concentrations and drug Cmax values, see [129]. 
 

antibiotics); nefazodone and its non-toxic control buspirone (serotonin receptor 

inhibitors); nimesulide and its non-toxic control aspirin (non-steroidal anti-inflammatory 

drugs); and telithromycin and the less idiosyncratic control compound clarithromycin 

(ketolide and macrolide antibiotics, respectively, binding to bacterial ribosomal subunit 

50S).  For additional information on these drugs, see Table 3-2 and [27, 31, 130, 131].  

Synergistic induction of hepatocellular death was assessed by a supra-additive synergy 

criterion that compares the experimentally observed cell death induced by drug and 

cytokine co-treatment to the additive projection of cell death observed for drug-only and 

cytokine mix-only treatments (Figure 3-2). 

 In this co-treatment model, we observed drug-cytokine mix synergies for 

ranitidine but not cimetidine or famotidine (data not shown) in rat hepatocytes (but not 

HepG2 cells), matching similar observations in a LPS-administered rat model [34].  We 
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observed drug-cytokine mix synergies for trovafloxacin but not levofloxacin in both rat 

hepatocytes and HepG2 cells, again matching similar observation in a LPS-administered 

mouse model [35].  For drugs not previously examined in LPS-administered animal 

models, we observed drug-cytokine mix synergies for nefazodone (but not buspirone) and 

clarithromycin in both rat hepatocytes and HepG2 cells, and nimesulide (but not aspirin) 

and telithromycin in only HepG2 cells.  In this initial study, drug-cytokine mix synergies 

were only observed for the more idiosyncratic hepatotoxic drugs, except for 

clarithromycin and telithromycin, which both have associated idiosyncratic 

hepatotoxicity with telithromycin having a greater incidence (see Table 3-2 and [31, 

132]).  Drug-cytokine mix hepatotoxicity synergies were observed within 24 hr following 

co-treatment except for ranitidine in rat hepatocytes, which required 48 hr of co-treatment 

to elicit hepatotoxicity synergy, demonstrating that, at the drug and cytokine treatment 

concentrations used, this in vitro model captures acute, rather than chronic, hepatotoxicity 

responses.  The delay in ranitidine-cytokine mix synergy compared to other compounds, 

in concert with the observation that it only occurs in rat hepatocytes and not HepG2 cells, 

indicates that a more prolonged mechanism (e.g. requiring significant accumulation of 

ranitidine metabolites) may be required to potentiate ranitidine-cytokine hepatotoxicity 

synergy. 

Specific concentrations and time-points for each drug were selected for further 

investigation (see summary in Table 3-2) based on the criteria that the concentration 

induce robust supra-additive hepatotoxicity synergy with this representative cytokine mix 

(see Figure 3-2) and elicit minimal drug-only hepatotoxicity.  This selection criteria 

allowed for identification of drug concentrations within a physiologically relevant dosing 

limit of 100-fold its Cmax value (see Chapter 3.2.2 for additional explanation) for all 

cytokine-synergizing drugs except ranitidine, for which a dose of 450 μM or 317*Cmax 

was used. 
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Figure 3-2.  Identification of drug dosing concentration ranges that elicit supra-additive drug-cytokine 
hepatotoxicity synergies. Primary rat hepatocytes and HepG2 cells were cultured, treated, and assayed for 
LDH release (24 or 48 hours post-treatment) as described in Chapter 3.2. LDH release values were fold-
change normalized to DMSO/no cytokine control samples. Drug concentrations are plotted with respect to 
molar concentration (μM) on the bottom axis and each drug’s Cmax value on the top axis. Optimal drug 
dosing concentrations for combinatorial studies were selected by identifying drug concentrations that 
elicited supra-additive drug-cytokine hepatotoxicity synergies for a single cytokine mix (TNF, IFNγ, IL-1α, 
and LPS).  Projections of drug-cytokine mix co-treatments were estimated by adding mean values of drug-
only and cytokine mix-only toxicities and propagating their associated variances. Observed drug and 
cytokine mix co-treatment toxicity results that exceeded the additive projections in a statistically significant 
manner (P < 0.029, as assessed by a false discovery rate-corrected Student’s t test) are overlayed with a 
gray coloring. Drug concentrations that demonstrated robust supra-additive drug-cytokine mix 
hepatotoxicity synergy and minimal drug-only hepatotoxicity were selected by inspection for additional 
combinatorial cytokine mix studies and are indicated on each graph and in Table 3-2. Data are presented as 
the mean ± SEM of four biological samples. 
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Table 3-2.  Drugs examined in initial drug-cytokine mix co-treatment model studies. 

 

 
1Idiosyncratic hepatotoxin classification based on published reports and reviews [27, 31, 130-132]. 
2Drug hepatotoxicity synergy with LPS administration in rodent models ranitidine but not famotidine has 
been reported in [34] and trovafloxacin but not levofloxacin has been reported in [35]. 
3Observed drug-cytokine supra-additive hepatotoxicity synergy using a cytokine mix containing TNF, 
IFNγ, IL-1α, and LPS in primary rat hepatocytes and/or HepG2 cells (see Figures 3-1 and 3-2).   
4The listed conditions were selected, as shown in Figure 3-2, for further investigation in combinatorial 
cytokine co-treatment experiments. Abbreviations: DILI, drug-induced liver injury; Cmax, average plasma 
maximum drug concentration in human use; n.r., not reported in the literature; n.s., not selected; NSAID, 
non-steroidal anti-inflammatory drug. 
 

Synergy with 
cytokine mix cell 
culture model3 

 

Conditions 
selected for 

combinatorial 
cytokine 

experiments4 Drug DILI 
category 

Drug 
class 

Idiosyn-
cratic 

hepato-
toxin1 

Synergy 
with 

LPS in 
animal 
models2 

 

Primary 
rat 

hepat-
ocytes 

Hep
G2 

cells 
 

Conc. 
(μM, 
Cmax) 

End 
point 

Famotidine N3 - -  - -  n.s. n.s. 

Cimetidine  N3 - n.r.  - -  n.s. n.s. 

Ranitidine N3 

histamine 
H2-

receptor 
antagonist 

++ +  + -  450 μM 
317*Cmax 

48 hr 

Levofloxacin N3 - -  - -  n.s. n.s. 

Trovafloxacin P2 

fluoro-
quinolone 
antibiotic ++ +  + +  450 μM 

59*Cmax 
24 hr 

Buspirone N1 - n.r.  - -  n.s. n.s. 

Nefazodone P2 

serotonin 
receptor 
inhibitor ++ n.r.  + +  70 μM 

73*Cmax 
24 hr 

Aspirin O2 - n.r.  - -  n.s. n.s. 

Nimesulide P2 
NSAID 

++ n.r.  - +  450 μM 
21*Cmax 

24 hr 

Clarithromycin N1 + n.r.  + +  175 μM 
52*Cmax 

24 hr 

Telithromycin P2 

macrolide 
and 

ketolide 
antibiotic ++ n.r.  - +  175 μM 

63*Cmax 
24 hr 
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3.3.2. Collection of a combinatorial drug- and cytokine mix-induced hepatotoxicity 

compendium from multiple hepatocyte cell systems 

To characterize drug-cytokine mix synergies in a more diverse set of cytokine 

environments and to make comparisons across hepatocyte cell culture systems, we 

collected a multi-cue data compendium from all combinations of six idiosyncratic 

hepatotoxic drugs from the initial study, each at one concentration and time-point, and a 

DMSO control, and the 32 combinatorial mixtures of TNF, IFNγ, IL-1α, IL-6, and LPS.  

(Note that IL-6, not included in the initial study due to its presumed pro-survival effects 

[133], was included in this combinatorial study.)  Experiments were performed in rat 

hepatocytes, human hepatocytes, and HepG2 cells and then assayed for both LDH release 

and caspase 3/7 activity, a marker specific to apoptotic cell death (Figure 3-3).  For rat 

and human hepatocyte studies, multiple donors were used throughout this work, with a 

single donor used for each self-consistent data set (i.e. each cell system’s data 

compendium in Figure 3-3 represents a single donor).  For rat hepatocytes, donor-to-

donor variability was assessed by comparing two drug- and cytokine mix-induced 

hepatotoxicity data compendia (each consisting of the same 256 treatment conditions) 

collected from two separate primary rat hepatocyte isolations.  The two separate data 

compendia showed a high degree of reproducibility (R = 0.98; see Figure 3-4). 

The hepatotoxicity data compendium, comprised of ~1500 combinations of cell system, 

assay type, and drug-cytokine treatment, was observed to contain a diverse array of drug-

cytokine synergy patterns not clearly interpretable by inspection alone, so we subjected it 

to three analytical approaches.  (i) We discretized the hepatotoxicity data compendium 

into conditions that did or did not elicit supra-additive drug-cytokine mix synergy (Figure 

3-5).  (ii) We subjected the hepatotoxicity data compendium to factorial analysis to 

identify which underlying cytokine treatment factors potentiate cell death across the 

entire combinatorial landscape of cytokine environments (Figure 3-6).  (iii) We employed 

hierarchical clustering of the hepatotoxicity data compendium with respect to both drug 

treatments and “experimental” conditions (i.e., combinations of cell type, assay readout, 

and cytokine treatment; Figure 3-8). 
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Figure 3-3.  A drug- and cytokine mix-induced hepatotoxicity data compendium.  Primary rat hepatocytes 
(left), primary human hepatocytes (center), and HepG2 cells (right) were cultured, treated, and assayed for 
caspase 3/7 activity (top) or LDH release (bottom) at 24 or 48 hours post-treatment as described in Chapter 
3.2. Caspase 3/7 activity and LDH release values were both fold-change normalized to DMSO/no cytokine 
samples from the same cell system. Mean toxicity assay values of three to six biological samples are 
plotted in the heatmaps using linear color-scales indexed separately to the minimum and maximum 
observed value for each combination of cell system and assay type. The cytokine mix (TNF, IFNγ, IL-1α, 
and LPS) used in Figure 3-1 is noted as “Mix”. Abbreviations: Cla, clarithromycin; Tel, telithromycin; Nef, 
nefazodone; Tro, trovafloxacin; Nim, nimesulide; Ran, ranitidine. 



 81

 
 
 
 
 
 

 
 
Figure 3-4.  Evaluation of reproducibility in collection of drug-cytokine mix hepatotoxicity data 
compendium in primary rat hepatocytes. From two separate rat liver cell isolations conducted on different 
days, primary rat hepatocytes were cultured, treated with multiple drug and cytokine co-treatments, and 
assayed for LDH release (24 or 48 hours post-treatment) as described in Chapter 3.2. LDH release values 
were fold-change normalized to DMSO/no cytokine samples at the same time-point from the same 
isolation. (A) Mean LDH release assay values, of three to six biological samples per condition, from each 
individual drug-cytokine data compendium experiment are plotted in heatmaps. (B) LDH release assay 
values from the two compendium collections are plotted as mean ± SEM. Across all conditions, these two 
experiments had a Pearson correlation coefficient (R) of 0.98. Abbreviations: Cla, clarithromycin; Tel, 
telithromycin; Nef, nefazodone; Tro, trovafloxacin; Nim, nimesulide; Ran, ranitidine. 
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Figure 3-5.  Drug-cytokine mix supra-additive synergy classifications in combinatorial treatment 
compendium. The drug-cytokine mix hepatotoxicity compendium (see Figure 3-3 for experimental details) 
was analyzed to identify cytokine mix co-treatment conditions that demonstrated supra-additive 
hepatotoxicity synergy for each drug in each combination of cell system (primary rat hepatocytes, primary 
human hepatocytes, and HepG2 cells) and toxicity assay (caspase 3/7 activity and LDH release). Drug-
cytokine mix supra-additive synergy was assessed by comparing the observed drug-cytokine mix co-
treatment result and an additive projection of the drug-only and cytokine mix-only results. (A) Discretized 
synergy classifications. All conditions which demonstrated supra-additive synergy with a statistical 
significance of P < 0.026 in a false discovery rate-corrected Student’s t test are presented in white. The 
cytokine mix (TNF, IFNγ, IL-1α, and LPS) used in Figure 3-1 is noted as “Mix”. Conditions used for the 
large-scale primary human hepatocyte toxicity study (assayed by LDH release; see Figure 3-9) are noted: 
(1) no cytokines and (2) TNF, IL-1α, IL-6, and LPS. (B-C) Cytokine treatment synergy efficacy. (B) The 
fraction of observed synergies from possible synergies across all 32 combinations of cell system, toxicity 
assay, and drug co-treatment for each cytokine mix are presented. (C) The fraction of possible synergies are 
presented (mean ± SEM) grouped by number of cytokines in the treatment. Abbreviations: Cla, 
clarithromycin; Tel, telithromycin; Nef, nefazodone; Tro, trovafloxacin; Nim, nimesulide; Ran, ranitidine; 
n.a., not applicable. 
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3.3.3. Discretization of the drug-cytokine mix data compendium into synergistic 

toxicity conditions 

From the first analysis approach, examining discretized drug-cytokine synergy 

classification (Figure 3-5), it is evident that higher-order (four- or five-factor) cytokine 

environments were more efficient at identifying possible drug synergies (~50% of 

possible synergies across combination of all cell systems and drugs) than were lower-

order (one-, two-, or three-factor) environments (~15-35% of possible synergies).  Of 

note, there are higher-order cytokine mixes other than the mix of TNF, IFNγ, IL-1α, and 

LPS (which was used in the initial study) that are more efficient at synergizing with these 

idiosyncratic drugs in human hepatocytes.  This is in part due to the fact that the initial 

cytokine mix is mildly toxic by itself for human primary hepatocytes, limiting its ability 

to synergize with drug co-treatments in a supra-additive manner.  Instead, slightly less-

toxic five-factor mixes (in particular, the five-factor mixes that instead do not contain 

either TNF or IFNγ [the latter noted as “2” in Figure 3-5A]) are far more efficient at 

eliciting supra-additive hepatotoxicity synergies with these six idiosyncratic drugs in 

human hepatocytes, and therefore would likely serve as a more predictive cytokine 

environment for assessing drug-cytokine synergies in human hepatocytes. 

 

3.3.4. Factorial analysis of drug-cytokine mix hepatotoxicity identifies TNF and IL-

1α as key cytokine factors potentiating inflammation-associated idiosyncratic drug 

hepatotoxicity 

We applied factorial analysis to the hepatotoxicity data compendium (which 

contained a full factorial design of 25 = 32 cytokine combinations) to identify underlying 

cytokine effects potentiating drug-cytokine hepatotoxicity synergies across the entire 

landscape of cytokine environments.  As applied here, factorial analysis calculates the 

effect of the addition or removal of component treatment “variables”, each containing 

one-to-four cytokines and/or LPS, from all treatment conditions in which they are present 

or absent, and, as such, summarizes the average effect of each cytokine treatment 

“variable” within each data set in which it is applied [128].  Factorial analysis was 

applied separately to each combination of hepatocyte cell system, hepatotoxicity assay,  
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Figure 3-6.  Factorial analysis of the drug-cytokine mix hepatotoxicity compendium. Each combination of 
cell system, toxicity assay type, and drug treatment from the drug-cytokine mix hepatotoxicity 
compendium (see Figure 3-3) was subjected to factorial analysis (see Chapter 3.2.6 for details). Factorial 
effects are plotted as heatmaps organized by assay type (top, caspase 3/7 activity; bottom, LDH release) 
and drug co-treatment to compare effects across cell systems (left) and as bar plots (with ± factorial error) 
for only DMSO control and ranitidine treatments in primary rat hepatocytes at 48 hours post-treatment 
(right). The factorial effect color-scales used in these heatmaps are indexed separately for each toxicity 
assay type to capture the full range of factorial effects in each assay type (±3.4 fold-change for the caspase 
v3/7 activity assay effects and ±8.7 fold-change for the LDH release assay effects). Statistical significance 
of each effect was assessed by a false discovery rate-corrected one-sample, two-tailed t test. In the bar 
plots, factorial effects are labeled as significant (*) if P < 0.026. Abbreviations: Cla, clarithromycin; Tel, 
telithromycin; Nef, nefazodone; Tro, trovafloxacin; Nim, nimesulide; Ran, ranitidine; RH, primary rat 
hepatocytes; HH, primary human hepatocytes; G2, HepG2 cells. 
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and idiosyncratic drug co-treatment, and factorial effects were interpreted by comparing 

the calculated effects between drug and DMSO control treatments for each combination 

of cell system and assay type (Figure 3-6). 

Across all three hepatocytic cell types, higher-order factorial effects (those 

containing more than two cytokine variables) are generally modest, indicating that there 

is minimal cytokine-cytokine synergy in these multi-cytokine treatment environments.  

Instead, one- and two-cytokine factorial effects dominate the observed drug- and cytokine 

mix-induced hepatotoxicities, with the most significant effects arising from the single-

cytokine treatment variables of TNF and, to a lesser extent, IL-1α and LPS.  LPS yielded 

significant factorial effects predominantly in human hepatocytes.  Some drugs appear to 

potentiate hepatotoxicity synergy with cytokines by amplifying the effects of the 

cytokines alone, and thus magnifying but not altering the pattern of the factorial effects 

(compare DMSO control to clarithromycin in human hepatocytes).  By contrast, other 

drugs dramatically altered the pattern of cytokine synergies and their calculated factorial 

effects (compare DMSO control to telithromycin in human hepatocytes).  Whereas some 

drugs (e.g. clarithromycin) had very similar patterns of factorial effects across all three 

cell types, drugs such as trovafloxacin had dramatically altered patterns of factorial 

effects among them, indicating a significant degree of cell type-specificity in certain 

drug-cytokine hepatotoxicity responses.  This high degree of cell type-specificity to 

particular cytokine effects is in agreement our recent findings that primary human 

hepatocytes and HepG2 cells, in response to numerous inflammatory cytokine treatments, 

utilize dramatically different intracellular signaling mechanisms and secrete different 

patterns of cytokines and chemokines [134]. 

In LPS-administered rodent models, the induction of hepatotoxicity upon both 

ranitidine and trovafloxacin treatment has been shown to be partially dependent on TNF 

[35, 37].  In concordance with those reports, we observed that TNF contributed a 

significant factorial effect in potentiating the toxicity of both ranitidine and trovafloxacin 

in rat hepatocytes (Figure 3-6).  It should be noted that the treatment of TNF alone did 

result in the induction of supra-additive hepatotoxicity synergy in trovafloxacin- but not 

ranitidine-treated rat hepatocytes (Figure 3-5), indicating that higher-order combinations 

of TNF with other cytokine co-treatments were necessary to potentiate TNF’s 



 86

 
 

Figure 3-7.  Quantitative imaging assays of drug-induced sub-lethal hepatotoxicities. Primary human 
hepatocytes were cultured and treated with drugs (but no cytokines) as described in Chapter 3.2. The 
following drug doses were used: 175 μM Cla, 175 μM Tel, 70 μM Nef, 175 μM Tro, 450 μM Nim, and 450 
μM Ran. At 24 or 48 hours post-treatment, cells were stained with multiple fluorescence probes and imaged 
on a four-color, live-cell Cellomics instrument (see Chapter 3.2.5 for additional details). Representative 
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images from DMSO control wells (A-D) and nimesulide treatment (E-H) are shown for: DRAQ5 stain 
(nuclei and lipid content; A,E), CM-H2DCFDA probe (ROS content; B,F), TMRM stain (mitochondrial 
membrane potential; C,G), and mBCl stain (GSH content; D,H). Image insets are 2.5× magnified from the 
remainder of the image. Quantitative image analysis was performed as described in Chapter 3.2.5. Intensity 
of each stain was normalized to the number of nuclei counted in each sample then fold-change normalized 
to the DMSO/no cytokine control samples at 24 hr post-treatment. Increases in intracellular lipid (I) and 
ROS (J) content and decreases in mitochondrial membrane potential (K) and intracellular GSH (L) are 
indicative of sub-lethal hepatotoxicity. In panels (I) to (L), data are presented as mean ± SEM of five 
biological samples. Treatments significantly different from the DMSO control at the same time point are 
labeled as significant (*) if P < 0.05 by a Student’s t test. Abbreviations: Cla, clarithromycin; Tel, 
telithromycin; Nef, nefazodone; Tro, trovafloxacin; Nim, nimesulide; Ran, ranitidine; ROS, reactive 
oxygen species; GSH, glutathione. 
 

synergizing effect, as elucidated by factorial analysis, with ranitidine in rat hepatocytes. 

 

3.3.5. Clustering of the drug-cytokine mix hepatotoxicity compendium identifies 

correlations between drug-cytokine mix hepatocellular death synergies and drug-

induced sub-lethal hepatocyte injuries 

Factorial analysis of the hepatotoxicity data compendium suggested a significant degree 

of variability in cytokine factors potentiating idiosyncratic drug hepatotoxicity synergies 

in different drug backgrounds and cell systems.  To further assess these differences, we 

fused the hepatotoxicity data compendium into a single data matrix of 192 

“experimental” conditions (comprised of all combinations of three cell systems, two 

assay types, and five cytokine/LPS treatment variables) by eight “drug” conditions (six 

idiosyncratic drugs and two DMSO controls).  This hepatotoxicity data matrix was 

subjected to two-way hierarchical clustering using a Pearson correlation metric to group 

similar patterns of drug-cytokine synergies across both the 192 experimental conditions 

and the 8 drug or DMSO backgrounds (Figure 3-8). 

Pearson clustering yielded the most distinct separation with respect to assay 

readouts due to the fact that they are poorly correlated (R = 0.18) across the entire data 

set.  A second notable grouping was that of the different cell types, with large sections of 

each assay type cluster consisting solely of the conditions from each cell system, showing 

that there was little overlap between the three hepatocyte cell systems.  Within the LDH 

data cluster, human hepatocytes clustered closer to rat hepatocytes, but within the caspase 

data cluster, human hepatocytes clustered closer to HepG2 cells, suggesting that neither 

rat hepatocytes nor HepG2 cells were distinctly better correlated with human hepatocytes  
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Figure 3-8.  Hierarchical clustering of the drug-cytokine mix hepatotoxicity compendium allows 
comparison of drug- and cytokine-induced hepatotoxicities between different cell systems and with sub-
lethal hepatotoxicities in human hepatocytes. The drug-cytokine mix combinatorial hepatotoxicity 
compendium was fused across all cell systems and assay types into a single data matrix, which was then 
subjected to two-way Pearson clustering (top left; see Chapter 3.2.7 for additional details). First, this 
clustering was used to re-sort a matrix of 192 “experimental” conditions, comprised of combinations of 
three cell systems, two assay types, and five cytokine treatment variables (top right). Second, this clustering 
was used re-sort to a sub-lethal hepatotoxicity data matrix of eight drug conditions and four drug (only)-
induced sub-lethal hepatotoxicities (bottom). The sub-lethal hepatotoxicities (measured by quantitative 
imaging in primary human hepatocytes; see Figure 3-7) are plotted in the bottom heatmap using linear 
color-scales indexed separately to the minimum and maximum observed toxicity value for each assay type. 
(Note that the MtMP and GSH assay scales are inverted compared to Figures 3-7K-L.) Conditions used for 
the large-scale primary human hepatocyte toxicity study (assayed by LDH release; see Figure 3-9) are 
noted: (1) no cytokines and (2) TNF, IL-1α, IL-6, and LPS. Abbreviations: RH, primary rat hepatocytes; 
HH, primary human hepatocytes; G2, HepG2 cells; Cla, clarithromycin; Tel, telithromycin; Nef, 
nefazodone; Tro, trovafloxacin; Nim, nimesulide; Ran, ranitidine; ROS, reactive oxygen species; MtMP, 
mitochondrial membrane potential; GSH, glutathione.  
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in this drug-cytokine data compendium.  This indicated it would be difficult to make 

accurate predictions of drug- and cytokine-induced hepatotoxicities in primary human 

hepatocytes (generally considered as the most predictive cell culture system for 

evaluating acute human hepatotoxicity [123, 135]) from primary rat hepatocyte and/or 

HepG2 data, especially when the comparison is dependent on only a few cytokine 

treatment conditions. 

It has been hypothesized that a conserved mechanism of inflammation-associated 

idiosyncratic toxicity is that sub-lethal hepatocellular injuries (e.g. oxidative stress, GSH 

depletion) induced by idiosyncratic drugs and/or their metabolites sensitize hepatocytes 

to undergo cytokine-stimulated cell death [27].  To investigate this hypothesis for the six 

idiosyncratic drugs in this study, we examined the correlations between the patterns of 

drug-cytokine mix lethal hepatotoxicities across all cell systems and assay types and a set 

of four drug-induced sub-lethal hepatocyte injury measurements.  Drug-induced sub-

lethal hepatocyte injuries were measured in human hepatocytes, in the absence of any 

cytokines, using a high-throughput live-cell microscopy approach [126], which quantifies 

lipid content, reactive oxygen species (ROS), mitochondrial membrane potential (MtMP), 

and glutathione (GSH) depletion (see Figure 3-7).  Nimesulide induced a substantial ROS 

and lipid accumulation and depletion of both MtMP and GSH, in concordance with 

previous reports that it can induce oxidative stress and mitochondrial injury in 

hepatocytes [136].  Clarithromycin induced mild ROS and lipid accumulation and mild 

MtMP depletion.  Nefazodone induced mild lipid accumulation and substantial MtMP 

and GSH depletion, in concordance with previous reports that it depletes GSH and causes 

mitochondrial injury in hepatocytes [137, 138].  Telithromycin and trovafloxacin induced 

mild depletions of MtMP. 

Pearson clustering with regards to the idiosyncratic drugs yielded three groups of 

drug/DMSO backgrounds.  One group contained the DMSO controls and ranitidine, 

which induced only mild MtMP depletion in the sub-lethal assays.  A second group 

contained nefazodone and trovafloxacin, and a third group contained nimesulide, 

telithromycin, and clarithromycin.  The sub-lethal injuries induced by the second group 

of drugs are largely MtMP and GSH depletion and notably absent of ROS accumulation, 

whereas the third group of drugs similarly induced MtMP depletion but notably induced 
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ROS accumulation.  While these correlations are not statistically verifiable due to the 

limited number of drugs and sub-lethal injuries assayed, these comparisons nonetheless 

strongly suggest that drugs that induce similar sub-lethal injuries also make hepatocytes 

susceptible to the induction of apoptosis by similar combinations of cytokine treatments. 

 

3.3.6. Large-scale screen in primary human hepatocytes demonstrates predictive 

utility of cytokine co-treatment synergy model as a tool for identifying idiosyncratic 

hepatotoxic drugs 

To test the drug-cytokine mix hepatotoxicity synergy model as a tool for predicting 

inflammation-associated idiosyncratic drug hepatotoxicity, we assayed drug-cytokine mix 

synergy for 90 drugs in human hepatocytes.  This set of 90 drugs included 53 hepatotoxic 

drugs from DILI classes P1, O1, and P2 and 36 non-hepatotoxic drugs from DILI classes 

O2, N3, N2, and N1 (see Tables 3-1 and 3-3 for additional details).  DILI class P2 is 

substantially comprised of drugs with idiosyncratic hepatotoxicities in humans and 

therefore assumed for analysis purposes here and previously [126] to represent 

idiosyncratic drugs.  The non-hepatotoxic group (DILI O2, N3-N1) is used to provide 

corresponding non-toxic control compounds, although we note that the idiosyncratic 

drugs clarithromycin and ranitidine used in the initial study here are in DILI classes N1 

and N3, respectively.  In this ninety drug screen, comparisons were made by examining 

the differences between the idiosyncratic group (DILI P2) and the non-hepatotoxic group 

(DILI O2, N3-N1) as not all idiosyncratic drugs could be individually paired with 

“comparison” control drugs.  This has the effect of neglecting the idiosyncratic 

hepatotoxicity signature of drugs such as ranitidine in order to provide a simplified 

comparison. 

Due to practical limitations in conducting medium-to-high-throughput screens in 

primary human hepatocytes, we assessed drug-cytokine mix synergy only for a single 

cytokine mix (TNF, IL-1α, IL-6, and LPS), which was equally effective at inducing 

hepatotoxicity synergies across the six idiosyncratic drugs as the full set of cytokine 

mixes in the initial drug-cytokine mix data compendium (see Figure 3-5A, mix noted as 

“2”).  Human hepatocytes were treated with one of 90 drugs, each dosed between 0 and 

150 μM, in the presence or absence of TNF, IL-1α, IL-6, and LPS and assayed for LDH  
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Table 3-3.  Drugs used in the large-scale human hepatocyte study. 
 

Drug name DILI 
category 

Cmax 
(μM)  Drug name DILI 

category 
Cmax 
(μM) 

Acetaminophen P1 75.1  Nimodipine P2 0.13 
Benzbromarone P1 5.79  Fluvoxamine P2 0.12 
Didanosine P1 4.43  Bumetanide P2 0.11 
Demeclocycline HCl P1 3.89  Nortriptyline HCl P2 0.10 
Azathioprine P1 3.19  Mebendazole P2 0.09 
Amiodarone P1 1.86  Busulphan P2 0.07 
Retinoic acid P1 1.13  Estrone P2 0.02 
Albendazole P1 0.91  Norgestrel P2 0.01 
Danazol P1 0.03  Aspirin O2 8.72 
Menadione O1 102  Tacrine O2 0.04 
Cyclophosphamide P2 247  Levofloxacin N3 12.9 
Nimesulide P2 20.5  Erythromycin N3 8.84 
Fluconazole P2 17.7  Cimetidine N3 6.03 
Bromfenac P2 16.4  Ranitidine N3 4.00 
Lomefloxacin P2 12.1  Pioglitazone N3 3.48 
Trovafloxacin P2 11.9  Rosiglitazone N3 1.43 
Trazodone HCl P2 11.0  Glyburide N3 0.94 
Phenacetin P2 9.83  Bupropion HCl N3 0.79 
Diclofenac P2 9.77  Benazepril N3 0.54 
Erythromycin estolate P2 9.49  Amoxapine N3 0.20 
Quinine P2 9.26  Famotidine N3 0.18 
Telithromycin P2 7.30  Maprotiline N3 0.18 
Troglitazone P2 5.27  Amitriptyline HCl N3 0.11 
Chlorzoxazone P2 2.77  Paroxetine N3 0.07 
Captopril P2 2.62  Fluoxetine N3 0.04 
Labetalol P2 2.49  Colchicine N3 0.01 
Bepridil HCl P2 2.34  Moxifloxacin N2 6.39 
Pyrimethamine P2 2.29  Citalopram N2 0.16 
Diethylcarbamazine P2 2.12  Bupivacaine N2 0.14 
Methotrexate P2 1.50  Memantine N2 0.06 
Quinapril P2 1.39  Phenelzine N2 0.05 
Nefazodone P2 1.34  Clarithromycin N1 3.34 
Chlorpromazine P2 1.11  Dexamethasone N1 0.37 
Riluzole P2 1.07  Nadolol N1 0.28 
Tamoxifen P2 1.06  Pindolol N1 0.25 
Hydrochlorothiazide P2 0.95  Pyridostigmine bromide N1 0.25 
Mexiletine HCl P2 0.88  Propranolol N1 0.23 
Methimazole P2 0.86  Clotrimazole N1 0.10 
Nifedipine P2 0.76  Promethazine HCl N1 0.06 
Flutamide P2 0.40  Brompheniramine maleate N1 0.05 
Progesterone P2 0.23  Nalmefene N1 0.04 
Spironolactone P2 0.19  Oxybutynin HCl N1 0.03 
Nomifensine P2 0.19  Loperamide HCl N1 0.01 
Nicardipine HCl P2 0.16  Buspirone N1 0.01 
Clomipramine P2 0.13  TPCA-1 (IKK inhibitor) n.a. unknown 
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Figure 3-9.  (Previous page) Large-scale drug-cytokine mix hepatotoxicity study in primary human 
hepatocytes demonstrates utility of cytokine co-treatment approach for identifying idiosyncratic 
hepatotoxic drugs. Primary human hepatocytes were cultured, treated, and assayed for LDH release (at 24 
hours post-treatment) as described in Chapter 3.2. Ninety drugs (see Table 3-3) were each dosed at seven 
non-zero concentrations (2.5× serial dilutions from a high concentration of 150 μM) in the presence (left) 
or absence (middle) of a cytokine mix containing TNF, IL-1α, IL-6, and LPS. The differential between + 
and - cytokine mix co-treatment for each drug dose was calculated and plotted (right). Note that DILI 
classes P1, O1, and P2 are hepatotoxic, with DILI class P2 is substantially comprised of drugs with 
idiosyncratic hepatotoxicities in humans, and DILI classes O2, N3, N2, and N1 are not or minimally 
hepatotoxic (see Table 3-1). Within each DILI class, drugs are sorted in order of 100*Cmax value (a 
physiologically relevant dosing limit). Drug 100*Cmax values are plotted in an overlayed line plot, with 
values exceeding 150 μM not shown. Individual drug doses that exhibited supra-additive drug-cytokine mix 
synergy (see Chapter 3.2.8 and Table 3-4) at concentrations less than their drug’s 100*Cmax limit are 
highlighted with gray boxes. Drugs with one or more dose exhibiting drug-cytokine mix supra-additive 
toxicity synergy at less than their 100*Cmax concentration are listed in red font. A representative DILI P2 
drug (chlorpromazine) displaying drug-cytokine mix synergy at dosing concentrations less than 100*Cmax is 
shown in the expanded plot at the bottom right (data presented mean ± SEM of two biological samples). 
TPCA-1, a small molecule IKK inhibitor (IKKi), was used (at ten-fold lower concentrations than are noted 
by the axis labels for the other drugs) as a positive control for drug-cytokine mix synergy, as inhibition of 
pro-survival IKK–NF-κB signaling sensitizes hepatocytes to apoptosis induced by TNF [139], but is not 
labeled in red as its Cmax is unknown. 
 

release at 24 hr post-treatment (Figure 3-9).  Supra-additive drug-cytokine synergy was 

assessed with regards to two different methods of defining a physiologically relevant 

dosing limit: (i) using each drug’s own 100*Cmax concentration, or (ii) using multiples 

(33× or 100×) of the median Cmax concentration for all drugs in this study (0.91 μM) as an  

general estimate of physiological exposure limit, which may be a necessary 

approximation if clinical human pharmacokinetic data is unavailable.  For doses less than 

each drug’s own 100*Cmax concentration, drug-cytokine mix synergy was observed for 

the P1 compounds benzbromarone, demeclocycline, azathioprine, amiodarone, retinoic 

acid; the O1 compound menadione; the P2 compounds trovafloxacin, diclofenac, quinine, 

chlorpromazine, riluzole, mexiletine, clomipramine, nortriptyline; and the N1 compound 

clarithromycin (which has reported idiosyncratic hepatotoxicity in humans [31, 132] and 

was used as a test idiosyncratic hepatotoxin in the initial study here).  Among these 

cytokine mix synergy compounds, three of the six overtly hepatotoxic drugs (P1 

compounds benzbromarone and azathioprine and the O1 compound menadione) and two 

of the eight idiosyncratic hepatotoxic drugs (P2 compounds quinine and chlorpromazine) 

also induced significant drug-only hepatotoxicity at doses less than each drug’s own 

100*Cmax concentration (Figure 3-9).  In this data set, drug-only hepatotoxicity was 

defined as greater than two-fold increase in LDH release.  Using this approach to  
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Table 3-4.  Drug-cytokine hepatotoxicity synergies in the large-scale human hepatocyte toxicity study 
evaluated by DILI class and physiological dosing limit. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1DILI categories are described in Table 3-1.   
2Hepatotoxicity in this large-scale primary human hepatocyte study was assayed by LDH release (see 
Figure 3-9). Drug-cytokine synergies that were at least two-fold (with respect to the LDH release, reported 
as fold-change compared to the DMSO/no cytokine control condition) greater than the calculated supra-
additive synergy threshold were characterized as synergistic. This “rule-of-thumb” threshold was used 
instead of a supra-additive Student’s t test (see Chapter 3.2.8 and Figure 3-2) as two or three biological 
samples per condition were used due to the screening nature of this large-scale study, thus limiting the 
ability to satisfy statistical significance tests. Drug-cytokine synergy was assessed with regards to two 
different methods of defining a physiologically relevant dosing limit: (i) using each drug’s own 33*Cmax or 
100*Cmax concentration, or (ii) using the median 33*Cmax (30 μM) or 100*Cmax (91 μM) concentration for 
all drugs in this study (as an general estimate of physiological exposure limit). If a drug demonstrated 
cytokine synergy at one or more dosing concentration within the physiological dosing limit applied, it was 
included in the aggregate for its hepatotoxicity class. See Figure 3-9 for a list (those drugs in red font) of 
the drugs that satisfied synergy condition using each drug’s 100*Cmax concentration limit. 
3The statistical significance of the observed number of synergistic drugs in the idiosyncratic hepatotoxic 
class was assessed using a hypergeometric test with a null hypothesis that synergistic drugs would not 
preferentially populate either of the hepatotoxicity groupings. 
 

physiological concentration limit, a significantly larger fraction of the idiosyncratic 

hepatotoxic drugs (8 of 43 = 19%) demonstrated hepatotoxicity synergy with the cytokine 

mix than did the non-hepatotoxic drugs (1 of 36 = 3%; see Table 3-4).  In contrast, using 

100-fold the median Cmax concentration (91 μM) as an general estimate of physiologically 

relevant dosing limit, the idiosyncratic hepatotoxic drugs (9 of 43 = 21%) did not elicit 

more frequent hepatotoxicity synergy then the non-hepatotoxic drugs (7 of 36 = 19%).  

But in using 33-fold the median Cmax concentration (30 μM), the idiosyncratic 

hepatotoxic drugs (7 of 43 = 16%) did elicit more frequent hepatotoxicity synergy then 

the non-hepatotoxic drugs (0 of 36 = 0%). 

  Drugs with one or more dose with cytokine synergy 
within the applied physiological dosing limit2 

Using each drug’s  
Cmax value 

Using the median  
Cmax value 

Drug hepatotoxicity 
classification by  
DILI categories1 

 
N 

100*Cmax 33*Cmax 100*Cmax 33*Cmax 

Idiosyncratic hepatotoxic 
(DILI P2) 43 8 (19%) 7 (16%) 9 (21%) 7 (16%) 

Not or minimally hepatotoxic 
(DILI O2, N3-N1) 36 1 (3%) 0 (0%) 7 (19%) 0 (0%) 

Hypergeometric test P-value3 0.028 0.011 0.55 0.011 
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This demonstrates that synergistic induction of hepatotoxicity with a cytokine 

mix, even when limited to a single hepatocyte cell system and cytokine mix, can be 

utilized as a predictive tool for evaluating inflammation-associated idiosyncratic drug 

hepatotoxicity.  As implemented here, optimized prediction requires knowledge of the 

drug’s Cmax value, which necessitates human clinical pharmacokinetic data, but a reduced 

set of idiosyncrasies can be predicted with a more conservative estimate of liver exposure 

(33*Cmax rather than 100*Cmax) based on a generalized Cmax estimate calculated from 

many drugs.  Moreover, idiosyncratic hepatotoxic drugs (P2 compounds) largely induce 

drug-cytokine mix synergies in the absence of drug-only hepatotoxicities, which are more 

often evident for synergizing drugs that associated with overt hepatotoxicity (P1 and O1 

compounds).  This dependency on Cmax to optimally calibrate the drug-cytokine mix 

synergy model to distinguish between drugs with idiosyncratic hepatotoxicity and those 

with either no or overt hepatotoxicity is in concert with Paracelsus’ concept that 

“exposure makes a poison”. 

 

3.4. Discussion 

3.4.1. In vitro drug-cytokine mix synergy as a model for inflammation-associated 

idiosyncratic drug hepatotoxicity 

Hepatotoxicity is a major cause of failures in both the clinical and post-approval stages of 

drug development and thus represents a major challenge for the pharmaceutical industry 

[140, 141].  Furthermore, drug hepatotoxicity represents a serious public health problem, 

as it is the leading cause of acute liver failure in the United States [142].  Idiosyncratic 

drug hepatotoxicity -- a hepatotoxicity subset that occurs in a very small fraction of 

human patients (~1 in 10,000) and accounts for ~10% of acute liver failure cases -- is 

poorly predicted by standard preclinical models and in clinical trials and frequently leads 

to post-approval drug failure [27].  Thus, the development and validation of novel 

preclinical tools that demonstrate successful prediction of idiosyncratic drug 

hepatotoxicity is a paramount need for the pharmaceutical industry and the public health.  

Recent findings in LPS-administered rodent models suggest that idiosyncratic drug 

hepatotoxicity can arise when mild drug-induced hepatocellular stresses synergize with 
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inflammatory cytokine signaling to elicit hepatocellular death, but these models lack 

sufficient throughput for preclinical hepatotoxicity screening [26, 27].   

In this work, we develop and evaluate in vitro hepatocyte cell culture models of 

idiosyncratic drug hepatotoxicity, which are more suitable to the high-throughput 

demands of preclinical pharmaceutical screening.  We demonstrate that numerous 

idiosyncratic hepatotoxic drugs, but not comparison non-toxic control compounds, 

synergistically induce death in multiple hepatocyte cell systems when co-administered 

with multi-cytokine mixes associated with LPS-induced liver inflammation (Figure 3-1).  

These drug-cytokine synergies, depending upon the cell system, appear to be both drug 

dose-independent (above some dose threshold; Figures 3-1A,B,G,H,I), matching the 

characteristic that idiosyncratic drug hepatotoxicity is poorly correlated with dose [27], 

and drug-dose dependent (Figures 3-1C,J), agreeing with a recently published report that 

certain idiosyncratic hepatotoxins can exhibit dose-dependent toxicity [143].  In primary 

rat and human hepatocyte cultures in particular, drug-cytokine mix synergies were most 

frequently observed for higher-order (containing four or five cytokines or LPS) cytokine 

mixes (Figure 3-5), whose hepatotoxicity was potentiated in a drug- and cell system-

specific manner by the additive combination of the single-factor effects of TNF, IL-1α, 

and/or LPS (Figure 3-6).  Potentiation of drug-cytokine synergy by TNF, IL-1α, and LPS, 

more so than by IFNγ or IL-6, suggests that intracellular signal transduction pathways 

that are similarly activated by these factors, namely IKK–NF-κB, p38, and JNK, are 

likely critical components of hepatocellular toxicity responses to idiosyncratic drug-

inflammatory cytokine co-exposure. 

 

3.4.2. Drug-induced sub-lethal injury as a sensitizing stress for drug-cytokine 

hepatocellular death synergy 

Idiosyncratic hepatotoxins are hypothesized to induce a diversity of sub-lethal injuries 

that sensitize hepatocytes to inflammatory cytokine-induced cell death [27].  This 

hypothesis is supported by the demonstration that acetaminophen (APAP), at high doses, 

can elicit an idiosyncratic-like hepatotoxicity that is dependent on cytokine signaling as 

part of the innate immune response [27].  At high doses, accumulation of a cytochrome 
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P450-dependent APAP metabolite leads to depletion of GSH in hepatocytes, which is 

known to sensitize hepatocytes to TNF-induced apoptosis [39].  

Here, we implemented hierarchical clustering of a drug-cytokine hepatotoxicity 

data compendium to identify if particular drug-induced sub-lethal injuries sensitize 

hepatocytes to specific combinations of cytokine-induced death (Figure 3-8).  It was 

difficult to discern clear correlations between sub-lethal injuries (measured in human 

hepatocytes) and cytokine synergy patterns (across all three hepatocyte systems) for 

nimesulide, clarithromycin, and nefazodone due to the numerous sub-lethal 

hepatotoxicities induced by these drugs, and thus synergy correlations possibly reflect the 

convolution of multiple sub-lethal injury-cytokine synergy mechanisms.  In contrast, the 

only sub-lethal injury induced by both telithromycin and trovafloxacin that was 

statistically significant was MtMP depletion (Figure 3-7).  In human hepatocytes, 

telithromycin and trovafloxacin elicited markedly similar patterns of cytokine synergy as 

assayed by caspase 3/7 activity and represented through factorial analysis (Figure 3-6).  

For both drugs, cytokine synergy effects were evident, in decreasing magnitude, for LPS 

and IL-1α but not other treatment variables.  This pattern of cytokine synergy effects was 

not shared by any other drugs at 24 hours post-treatment in human hepatocytes.  This 

unique and specific sub-lethal injury-cytokine synergy relationship suggests that drug-

induced mitochondrial injury may sensitize hepatocytes to apoptosis induced by LPS and 

IL-1α, as has been similarly hypothesized for alcoholic hepatitis-induced mitochondrial 

injury in hepatocytes [144]. 

 

3.4.3. Cytokine mix-specific hepatotoxicity synergizes suggest personalized 

administration of idiosyncratic hepatotoxic drugs 

The cytokine mix-specific responses evident in the hepatotoxicity data compendium 

collected here (Figures 3-3 and 3-5) suggest that inflammation-associated idiosyncratic 

drug hepatotoxicities might be avoided by limiting drug treatments to patients that do not 

have plasma cytokine signatures (due to pre-existing inflammatory episodes, for 

example) corresponding to known synergizing inflammatory environments.  Further 

investigation of drug-cytokine mix synergies over across greater number of drug 

compounds and cytokine environments, beyond those  associated with LPS-induced 
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inflammation, would have to be conducted to more thoroughly capture the diversity of 

patient-specific drug-cytokine interactions in humans.  This suggestion of “personalized” 

or “stratified” drug treatment [145] to avoid toxicity would likely be necessitated only for 

drugs for which comparably efficacious compounds are not available and could be 

combined with pharmaco-metabolonomic phenotyping approaches [146] to avoid both 

inflammation- and metabolism-associated idiosyncratic hepatotoxicities in a patient-

specific manner. 

 

3.4.4. Applying drug-cytokine hepatotoxicity synergy model to high-throughput 

pharmaceutical screening 

In a ninety-drug screen in human hepatocytes, ~20% of idiosyncratic hepatotoxins (those 

compounds associated with DILI category P2; see Table 3-1) elicited hepatocellular 

death synergy with a cytokine mix compared to only 3% of non-hepatotoxic drugs when 

using each drug’s 100*Cmax concentration as a physiological dosing limit (Figure 3-9, 

Table 3-4).  Using a generalized physiological dosing limit of 30 μM (based on 33-times 

the median Cmax concentration across all drugs in the study), ~15% of idiosyncratic 

hepatotoxins and none of non-hepatotoxic drugs elicited synergy.  This demonstrates that, 

given drug pharmacokinetic parameters to define a physiologically relevant dosing 

window (ideally individually defined for each drug), in vitro drug-cytokine hepatocellular 

death synergy can be utilized as a much-needed preclinical tool for assessing 

inflammation-associated idiosyncratic drug hepatotoxicity in a high-throughput manner.  

As conducted here, successful prediction of inflammation-associated idiosyncratic drug 

hepatotoxicity based on in vitro hepatocellular models depends on human 

pharmacokinetic data and would be most reasonably used within an iterative preclinical-

clinical toxicity assessment paradigm.  Furthermore, this work demonstrates the utility of 

a physiologically relevant drug dosing limit of 100*Cmax as many non-hepatotoxic drugs 

synergistically induced human hepatocyte death at concentrations exceeding 100*Cmax 

(see Figure 3-9).  Hence the application of a 100*Cmax limit was critical to obtain a low 

false-positive rate. 

At least for a subset of six drugs, this study demonstrates that, in addition to 

human hepatocytes, both rat hepatocytes and HepG2 cells can be useful hepatocellular 
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systems for identifying idiosyncratic drug hepatotoxicities in humans.  This unexpected 

success in using hepatocellular systems more amenable to high-throughput screening 

suggests that cytokine mix synergy screens may be implementable to the demands of 

preclinical drug evaluation.  The utility of rat hepatocytes and HepG2 cells for screening 

inflammation-associated idiosyncratic drug hepatotoxicity will need to be evaluated for a 

greater diversity drug compounds to generate more confidence in their predictive ability.  

We also employed an information theoretic technique to identify a subset of ~15 cytokine 

co-treatment conditions that maintains the “information” contained in the full set of 32 

cytokine conditions across the three hepatocytic cell types (B.D.C., B. M. King, B. Tidor, 

unpublished observations).  Further, we showed that these “informative” condition sets 

can act as better training sets for predicting drug- and cytokine-induced hepatotoxicities 

in primary human hepatocytes from observations in primary rat hepatocytes and HepG2 

cells (B.D.C., B.M.K., B.T., unpublished observations). 

The in vitro cytokine synergy model developed herein and other complementary 

cell culture [126] and animal models [32, 34, 35] offer much-needed preclinical tools for 

the assessment and prediction of idiosyncratic drug hepatotoxicity.  This cytokine 

synergy model would be most useful simply for its ability to identify likely idiosyncratic 

hepatotoxicity phenomenologies, although particular trends in cytokine mix synergy and 

identification of important cytokine factor effects can suggest the underlying mechanistic 

relationships between the drug-induced hepatocellular injuries and possible points of 

signal transduction convergence with inflammatory cytokine signaling.  As such, 

screening drug-cytokine mix hepatotoxicity synergies in cell culture may allow for 

suggestion of more detailed follow-up experiments to parse the mechanisms of particular 

candidate idiosyncratic hepatotoxins to help guide drug compound development. 

This work suggests numerous improvements in the further development of high-

throughput cell culture models used to predict inflammation-associated idiosyncratic drug 

hepatotoxicity.  In the large-scale screen conducted here (Figure 3-9), the limited number 

of cytokine synergies with idiosyncratic hepatotoxins (8 of 43 = 19%) was likely due to 

the use of only one cytokine environment and one hepatocyte cell system and the fact that 

not all DILI P2 drugs have idiosyncratic hepatotoxicities associated with inflammation.  

More accurate prediction of idiosyncratic drug hepatotoxicity could be obtained using a 
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multi-variate predictive model [126] calibrated from expanded measurements of drug-

cytokine synergies at multiple doses (up to the 100*Cmax limit) across multiple hepatocyte 

cell systems, additional cytokine environments, and/or toxicity assays.  Additionally, 

hepatocyte cell culture models, such as three-dimensional microreactor cultures using 

primary rat hepatocytes, that better maintain hepatic drug metabolism and biliary 

transport characteristics over a chronic time-scale (more than 7 days) and are scalable to 

medium-throughput screening demands [8, 10] could be utilized to develop more 

physiologically relevant models of inflammation-associated idiosyncratic drug 

hepatotoxicity.  These systems could better capture the mix of chronic and acute 

hepatocyte responses to drugs and inflammatory cytokines [26].  This is particularly 

motivated by the observation that ranitidine-cytokine mix synergy was delayed compared 

to other compounds and was only observed with high frequency in rat hepatocytes and 

not human hepatocytes or HepG2 cells (Figures 3-1 and 3-3).  These observations suggest 

that a more prolonged mechanism, perhaps requiring significant accumulation of 

ranitidine metabolites that only occurs in the rat hepatocyte cultures, is necessary to 

potentiate ranitidine-cytokine hepatotoxicity synergy and therefore future screening 

would benefit from a hepatocyte cell culture system that maintains in vivo-like 

metabolism over a chronic time-scale. 

Nonetheless, the work presented here validates the use of synergistic induction of 

hepatocellular death by idiosyncratic hepatotoxins and an inflammatory cytokine 

environment as a much-needed in vitro tool for predicting inflammation-associated 

idiosyncratic drug hepatotoxicity and provides a framework for further development of 

such in vitro models to capture a greater complexity of and to elucidate the mechanistic 

basis of inflammation-associated idiosyncratic drug hepatotoxicity.   
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CHAPTER 4 

 
Signaling network modeling of drug- and cytokine-induced 

hepatotoxicity 

 
4.1. Introduction 

4.1.1. Signaling control of inflammatory cytokine-induced idiosyncratic drug 

hepatotoxicity. 

Recent findings in animal [26, 27, 35, 37] and cell culture models (see Chapter 3 and 

[127]) suggest that a subset of idiosyncratic drug hepatotoxicities are caused by 

synergistic interactions with inflammatory cytokine signaling.  These findings have led to 

the proposal of model that suggests idiosyncratic hepatotoxins induce mild hepatocellular 

stresses that synergize with cytokine signaling to elicit hepatocellular death in a context-

specific manner [27], but there is little experimental evidence demonstrating the 

hepatocellular signaling mechanisms underlying this drug-cytokine synergy model. 

Supporting this model is the example of acetaminophen (APAP), which, at high 

doses, can elicit an idiosyncratic-like hepatotoxicity that is dependent on cytokine 

signaling as part of the innate immune response [27].  At high doses, accumulation of a 

cytochrome P450-dependent APAP metabolite leads to depletion of glutathione (GSH) in 

hepatocytes, which is known to sensitize hepatocytes to TNF-induced apoptosis [39].  

Recent findings suggest that APAP toxicity is controlled by JNK pathway signaling 

[147], but it is unclear how the hepatocyte signaling network integrates multiple survival, 

stress, and apoptosis signaling pathways to elicit a death response even for the well-

studied case of APAP toxicity.  Further complicating this model, most idiosyncratic 

hepatotoxins induce a diversity of hepatocellular stresses, ranging from GSH depletion to 

reactive oxygen species (ROS) accumulation to mitochondrial injury, with individual 

compounds inducing unique spectrums of these and other cellular stresses [126].   

The inflammatory cytokines identified as potentiating inflammation-associated 

idiosyncratic drug hepatotoxicity (TNF, IL-1α, IFN-γ, IL-6, and LPS; see Chapter 3.1) 

stimulate a diversity of intracellular signaling pathways related to cell survival, 
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Figure 4-1.  A schematic of the drug- and cytokine-induced hepatocellular death signaling network. 
Cytokines bind to their cognate receptors and activate shared downstream phosphoprotein signaling 
pathways regulating cell death. Drugs lead to various cellular stresses (e.g. ROS accumulation) that are 
integrated into stress-related phosphoprotein signaling (such as the JNK pathway) and mitochondrial 
control of apoptosis. Experimentally measured phosphoproteins and cell death phenotypes are indicated. 
 

survival, stress, and apoptosis (reviewed in [35, 37, 76, 118-120]; see also Chapter 1-4 

and Figure 4-1).  Many of the complex signaling mechanisms activated by these 

individual cytokines are well-studied.  For example, TNF activates numerous signaling 

pathways in hepatocytes including the MEK–ERK, IKK–NF-κB, JNK, and p38–HSP27 

pathways and the caspase cascade (reviewed in [76, 148]), whose integrated activities 

specificity hepatocyte responses to TNF in a context-sensitive manner.  Moreover, 

physiologically relevant growth factor co-stimuli such as insulin can provide activation of 

survival signaling pathways that antagonize cytokine-induced apoptosis [62, 77].  

Similarly, drug-induced hepatocellular stresses can induce activation of many of the 

signaling pathways stimulated by inflammatory cytokine and/or growth factors.  GSH 

depletion can perturb cellular nutrient levels, possibly leading to attenuation of mTOR 

signaling [149, 150], and can alter mitochondrial redox potentials, increasing 

susceptibility to mitochondria-mediated apoptosis [151].  ROS accumulation can activate 

the JNK and p38–HSP27 stress-response signaling pathways [76].  Clearly, investigation 

of the signaling mechanisms governing hepatocyte cell death responses to idiosyncratic 
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hepatotoxins and inflammatory cytokines requires a broad, network-level examination of 

multiple intracellular signaling pathways in a physiologically complex context. 

 

4.1.2. Chapter overview 

 To gain greater mechanistic understanding of the signaling mechanisms 

regulating inflammatory cytokine-associated idiosyncratic drug hepatotoxicity, we 

collected a “cue-signal-response” (CSR) drug- and cytokine-induced hepatotoxicity data 

compendium in primary human hepatocytes.   In this data compendium, human 

hepatocytes were treated with 66 different combinations of 11 “drug” conditions (six 

idiosyncratic hepatotoxins, four corresponding control-paired [or “comparison”] 

compounds, and a DMSO control condition) and six “cytokine” conditions (no cytokine, 

IL-1α, LPS, TNF, IL-6, and a mix containing all three cytokines plus LPS) in the 

presence of insulin to capture a diverse physiological complexity.  This multi-cytokine 

mix was selected based on previous observations that it serves as a highly efficient 

inflammatory environment for the potentiation of idiosyncratic drug hepatotoxicities in 

human hepatocytes (see Figure 3-5A).  We quantitatively assayed the dynamic activation 

of 17 phosphoproteins mechanistically connected to eight key signaling pathways 

(including the MEK–ERK, mTOR–p70 S6K, Akt, IKK–NF-κB, JNK, p38–HSP27, 

STAT3, and STAT6 pathways), cell cycle regulatory pathways, and DNA damage 

pathways that are plausibly induced by these combinations of drug-cytokine co-stimuli 

(see Figure 4-1).  Inspection of this multivariate data set identified multiple signaling 

network features that were reasonably correlated with, but poorly predictive of, the 

measured hepatotoxicities.  So, we subjected the CSR data compendium to orthogonal 

partial-least squares regression (OPLSR), a data-driven modeling approach useful for 

suggesting relationships between intracellular signals and cell phenotypes without 

requiring a priori mechanistic knowledge [46, 62, 64, 66, 68].  An OPLSR model 

suggested that hepatocytes integrate signals from four key pathways -- Akt and mTOR–

p70 S6K signaling, associated with pro-survival function by the model, and MEK–ERK 

and p38–HSP27 signaling, associated with pro-death function by the model -- to specify 

their cell death responses to toxic drug/cytokine conditions.  The model-suggested pro-

death signaling contributions from MEK–ERK and p38–HSP27 signaling were 
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confirmed using small molecule kinase inhibitors.  Furthermore, an OPLSR model 

focused on the four informative signaling pathways (together, comprising a useful and 

simplified signaling network “gauge”) demonstrated quantitatively accurate predictions 

of drug- and cytokine-induced hepatotoxicities in a second human hepatocyte donors and 

qualitatively accurate predictions of the effects of MEK and p38 inhibitor treatments in a 

third human hepatocyte donor.  This signaling network approach suggests that 

inflammatory cytokine-associated idiosyncratic drug hepatotoxicity is governed at the 

hepatocellular level through the integration of four key signaling pathways -- MEK–

ERK, Akt, mTOR–p70 S6K, and p38–HSP27 -- and allows for accurate prediction of 

hepatocellular death responses across human hepatocyte donors and drug/cytokine 

treatment conditions. 

 

4.2. Experimental procedures 

4.2.1. Human hepatocyte cell culture and stimulation 

Primary human hepatocytes were obtained in suspension from CellzDirect (Durham, 

NC).  Human hepatocytes from multiple donors were used in this study, and donor 

identification is noted for each data set.  Detailed donor information is provided in 

Appendix C.  Human hepatocytes were seeded on collagen type I-coated 12- or 96-well 

plates (BD Biosciences) at 1.5×105 cells/cm2 in medium containing 5% FBS (Hyclone) 

and 5 μg/ml insulin (Sigma), as described in Chapter 3.2.3.  One day post-seeding, 

human hepatocytes were overlayed with 0.25 mg/ml Matrigel (BD Biosciences) in 

medium containing insulin but not FBS, as described in Chapter 3.2.3.  One day 

following Matrigel overlay, fresh culture medium containing insulin but not FBS was 

added.  For kinase and autocrine ligand inhibition studies, this medium contained 

inhibitors at 2× final concentration.  One hour later, an equal volume of medium 

containing drugs and/or cytokines at 2× final concentration was added.   

 

4.2.2. Drug, cytokines, and inhibitors 

Hepatotoxic and corresponding “comparison” drugs were obtained from Sigma 

(cimetidine, ranitidine, levofloxacin, buspirone, nefazodone, aspirin, nimesulide, 

chlorpromazine, nortriptyline, clomipramine, mexiletine, and riluzole), Sequoia Research 
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Products (clarithromycin and telithromycin), or Pfizer’s chemical sample bank 

(trovafloxacin).  All drugs were dosed at 100*Cmax concentrations, corresponding to the 

following molecular concentrations: 1.5 mM cimetidine, 142 μM ranitidine, 1.6 mM 

levofloxacin, 770 μM trovafloxacin, 0.46 μM buspirone, 86 μM nefazodone, 552 μM 

aspirin, 2.1 mM nimesulide, 334 μM clarithromycin, 277 μM telithromycin, 111 μM 

chlorpromazine, 10 μM nortriptyline, 13 μM clomipramine, 88 μM mexiletine, and 107 

μM riluzole.  Additional information on the relevance of 100*Cmax dosing concentrations 

and the drug-induced liver injury classifications of these drugs can be found in Chapter 

3.2.2 and Table 3-3, respectively.  All drugs were suspended in 0.25% final DMSO.   

Recombinant human cytokines were obtained from R&D Systems and were used 

at the following concentrations: 100 ng/ml tumor necrosis factor-α (TNF), 20 ng/ml 

interleukin-1α (IL-1α), and 20 ng/ml interleukin-6 (IL-6).  Lipopolysaccharides (LPS) 

serotype 1 from E. coli 0111:B4 (Sigma) was used at 10 μg/ml. 

The MEK kinase inhibitors PD98059, U0126, and MEK inhibitor I were obtained 

from EMD Biosciences (San Diego, CA).  The p38 kinase inhibitors SB202474 (inactive 

control), SB202190 and SB203580 were obtained from EMD Biosciences.  The MEK 

kinase inhibitor PD325901 and p38 kinase inhibitors PHA-460448 (inactive control), SC-

80036A, PF-04334950-00, PHA-666859, and PHA-818637 were obtained from Pfizer’s 

chemical sample bank.  All inhibitors were suspended in 0.1% final DMSO.  To perturb 

autocrine EGFR ligand activity, 5 μg/ml anti-TGF-α neutralizing antibody (R&D 

Systems) or 10 μg/ml c225 monoclonal antibody (a generous gift of H. S. Wiley) were 

used.  To perturb autocrine IL-1 activity, 10 μg/ml recombinant human IL-1ra (R&D 

Systems) was used. 

 

4.2.3. Multiplexed phosphoprotein assays 

Phosphoprotein signaling was quantified using multiplexed bead-based Luminex assays.  

Cells were plated and treated as described above.  Cell lysates were collected at 0 and 20 

minutes and 4, 24, and 48 hours following drug and/or cytokine stimulation.  At the 

desired time point, cells were placed on ice and culture medium was removed.  Matrigel 

overlays were partially dissolved by adding ice cold PBS for 15 minutes at 4°C.  PBS 

was removed and cells were lysed with Phosphoprotein Lysis Buffer (Bio-Rad) for 20 



 106

minutes at 4°C.  Lysates were collected by scrapping and vigorous pipetting.  Lysates 

were clarified by centrifugation at 16,000g for 15 minutes at 4°C.  Clarified lysates were 

analyzed using a bicinchonicic assay (Pierce) to determine the total protein concentration.  

In each culture plate, a well without cells was maintained, lysed, and analyzed to 

calculate the protein contribution from the Matrigel overlay alone and estimate the 

cellular protein concentration in the other wells.  Bio-Plex bead-based assays (Bio-Rad) 

were used to quantify the following 17 phosphoproteins: p-Akt (Ser473), p-CREB (Ser133), 

p-c-Jun (Ser63), p-GSK-3α/β (Ser21/Ser9), p-IκB-α (Ser32/Ser36), p-IRS-1 (Ser636/Ser639), 

p-ERK1/2 (Thr202/Tyr204, Thr185/Tyr187), p-Histone H3 (Ser10), p-HSP27 (Ser78), p-JNK 

(Thr183/Tyr185), p-MEK1 (Ser217/Ser221), p-STAT3 (Ser727), p-STAT6 (Tyr641), p-p38 

(Thr180/Tyr182), p-p53 (Ser15), p-p70 S6 kinase (Thr421/Ser424), and p-p90 RSK 

(Thr359/Ser363).  Bio-Plex assays were conducted per manufacturer’s recommendations on 

a Luminex 200 instrument (Luminex) with protein lysates loaded at 10 μg/well in 

technical duplicate.  Multiple positive control treatments were loaded on each assay plate 

to scale raw fluorescence data to self-consistent relative values.  See Appendix B for 

more details. 

 

4.2.4. Lactate dehydrogenase cell death assay 

At 20 minutes and 4, 24, and 48 hours post-drug and/or cytokine treatment, conditioned 

medium samples were collected to assay lactate dehydrogenase (LDH) release (indicator 

of necrotic and apoptotic cell death) using a CytoTox-ONE Homogeneous Membrane 

Integrity Assay (Promega) according to manufacturer’s recommendations. 

 

4.2.5. Collection and normalization of signal-response data compendia 

We collected a cue-signal-response (CSR) data compendia in human hepatocytes from 

two separate donors.  In the initial data compendium (donor #1), human hepatocytes were 

treated with 66 different combinations of 11 “drug” conditions (six idiosyncratic 

hepatotoxins, four “comparison” compounds, and a DMSO control condition) and six 

“cytokine” conditions (no cytokine, IL-1α, LPS, TNF, IL-6, and a mix containing all 

three cytokines plus LPS).  To broadly measure a diverse set of key phosphoprotein 

activities mechanistically connected to numerous drug- and/or cytokine-induced signaling 
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pathways, we quantitatively assayed the aforementioned 17 phosphoproteins at both early 

(0 and 20 minutes) and delayed time-points (4, 24, and 48 hours) following drug and/or 

cytokine stimulation.  In this initial data compendium, single biological replicates were 

used for both phosphoprotein and LDH assays.  The total number of individual 

phosphoprotein signaling measurements in the initial compendium was 4488 (= 66 

conditions × 17 phosphoproteins × 4 time-points × 1 biological replicate). 

 In the second data compendium (donor #2), human hepatocytes were treated with 

18 different combinations of nine “drug” conditions (three idiosyncratic hepatotoxins 

used in initial compendium, five idiosyncratic hepatotoxins not used in the initial 

compendium, and a DMSO control condition) and two “cytokine” conditions (no 

cytokine and the 3-cytokine/LPS mix).  In this second compendium, quantitative 

phosphoprotein assays were focused on a reduced set of six highly informative signals (p-

MEK1, p-ERK1/2, p-Akt, p-70 S6K, p-p38, p-HSP27).  These phosphoproteins were 

assayed at the same time-points as in the CSR from donor #1, but with some 

drug/cytokine co-treatment conditions (all those containing the DMSO control, 

trovafloxacin, nefazodone, or clarithromycin) also assayed at 1 and 12 hours post-

stimulation.  Biological triplicates were used for both phosphoprotein and LDH assays.  

The total number of individual phosphoprotein signaling measurements in the second 

compendium was 1296 (= 18 conditions × 6 phosphoproteins × 4 time-points × 3 

biological replicates). 

 Phosphoprotein data was fold-change normalized to untreated samples (at 0 

minutes) for each phosphoprotein assay and separately for each hepatocyte donor.  LDH 

release data was fold-change normalized to untreated samples at 48 hours post-drug 

and/or cytokine stimulation separately for each hepatocyte donor. 

 

4.2.6. Metric extraction and scaling 

For each phosphoprotein signaling time-course, two time-dependent signaling “metrics” 

were extracted: (i) the integral, or area-under-the-curve, for the entire time-course, and 

(ii) the average of the late time-points (4-48 hr), reflecting the steady-state signaling level 

[62].  These were added to the four time-points (20 minutes and 4, 24, and 48 hours) to 

yield six signaling metrics for each assayed phosphoprotein.  For each compendia, the 
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signaling metrics from all measured phosphoproteins were then fused into a signaling 

network data matrix (X).  Separately, the toxicity response data were cast into a vector 

(Y), with both X and Y arrayed across all treatment conditions.   In the compendium from 

donor #1, X was a matrix of 66 rows of treatments and 102 columns (= 17 phospho-

proteins × 6 metrics) of signaling metrics, and Y was a vector of 66 rows of treatments 

and single column (LDH release measured at 48 hours).  Before modeling, all columns in 

the signaling data matrix and response vector were separately mean-centered and scaled 

to unit variance to non-dimensionalize different assay measurement dynamic ranges [50].  

In modeling test data sets not present in model training, scaling parameters from the 

training data set were used to scale the test data. 

 

4.2.7. Signal-response modeling through orthogonal partial-least squares regression  

To relate the measured signaling and cell death response data, we assumed a linear 

relationship between the two data sets, such that: 

( ) BXXfY ⋅== , 

where X is the signaling network data matrix, Y is the cell death response vector, and B 

is a vector of regression coefficients that reflect how each phosphoprotein signaling 

metric contributes to cell death.  Framed as such, the signaling matrix X is a block of 

independent variables and the response vector Y is a block of dependent variables.  Since 

the number of signaling metrics (columns of X) exceeds the number of treatment 

conditions (rows of X), an unique solution to this linear regression problem cannot be 

identified.  Thus, we implemented partial least-squares regression (PLSR) to solve this 

regression problem.  Instead of performing the linear regression in the original multi-

dimensional data space, PLSR casts the problem in a principal-component space and 

regresses principal components-based coefficients associated with independent and 

dependent variables [63].  The calculation of principal components-based regression 

coefficients (or, “loadings”) is biased towards those signaling variables that are most 

covariant with the response data and to optimize prediction accuracy of the response data 

in cross-validation. 

We implemented PLSR using the NIPALS algorithm in SIMCA-P software 

(Umetrics, Inc., Kinnelon, NJ) following standard methods [62-64, 152, 153].  All PLSR 
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models were generated using four principal components under standard optimization 

criteria [63].  All calibrated PLSR models were subjected to a principal-component space 

linear transformation by rotating the projection of the single cell death response variable 

completely into the first principal-component, thus yielding an “orthogonal” PLSR 

(OPLSR) model (see Appendix D and [154]), to allow for simplified interpretation of 

model loadings and scores.  Signaling metric model loadings were calculated using the 

mean-centered regression coefficients wa*ca from the a-th OPLSR principal-component 

[62].  Model calibration was conducted using leave-one-out cross-validation, and model 

uncertainties were calculated by jack-knifing [155].  The accuracy of model predictions 

for both training and test data were assessed using the model fitness parameter R2 [50]: 
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where Predictedi is the predicted cell death value of the i-th treatment condition, 

Observedi is the experimentally observed cell death value of the i-th treatment condition, 

and n is the total number of treatment conditions.  This assessment of model fitness 

postulates a one-to-one equivalence between observed and predicted response values, and 

is more stringent than a simple correlation assessment that does not penalize for 

quantitatively inaccurate predictions that are nonetheless qualitatively correlative [153].  

An R2 value of 1 corresponds to a perfect fit between observed and predicted responses.  

An R2 value of 0 corresponds a model break-point [153].  Negative R2 values imply 

highly inaccurate model predictions. 

 To interpret the contributions of various signaling pathways to drug- and/or 

cytokine-induced hepatotoxicity, an initial OPLSR model was trained on the 17-phospho-

protein, 66-condition CSR data compendium from human hepatocyte donor #1, and 

demonstrated good model fitness (R2 = 0.92) of cross-validated predictions.  All models 

were regressed against the LDH release data measured at t = 48 hours, as models of the 

LDH release response at earlier time-points were poorly fit (data not shown). 
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4.2.8. Model reduction 

To identify the relative importance of individual phosphoprotein signaling metrics, the 

information content of each signaling metric was assessed by its variable importance of 

projection (VIP) score [156]: 
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where K is the total number of signaling metrics, wa,k is the weight of the k-th metric for 

principal component a, A is the total number of principal components, and SSa is the sum 

of squares explained by principal component a.  Signaling metrics with a VIP > 1 have 

significant importance in the model and metrics with a VIP << 1 significantly lack unique 

information in the model [50, 156].   

To reduce the initial 17-phosphoprotein model, phosphoproteins and all six of 

their associated signaling metrics were removed from the model step-wise in order of the 

lowest average VIP score across all six metrics.  This model reduction approach yielded a 

set of 4-to-6-phosphoprotein models (R2 = 0.87-0.91) that retained the model fitness of 

the full 17-phosphoprotein model (R2 = 0.92; see Figure 4-5).  The robustness of this 

model reduction approach was examined by testing the ability of a reduced 6-phospho-

protein model, trained on CSR data from human hepatocyte donor #1, to accurately 

predict signal-response relationships in a 18-condition, 6-phosphoprotein CSR data 

compendium collected from human hepatocyte donor #2. 

 

4.2.9. Kinase inhibitor evaluation and selection 

Kinase inhibitors were evaluated for efficacy and toxicity in human hepatocytes (from 

donor #3) over a range of concentrations at seven 8× serial dilution concentrations from 

20 μM (20 μM, 2.5 μM, 0.31 μM, 39 nM, 4.9 nM, 0.61 nM, 76 pM).  To evaluate MEK 

kinase inhibitor efficacy, human hepatocytes were pretreated with inhibitor for one hour 

before treatment with 100 ng/ml TGF-α for 15 minutes and then were assayed for p-

ERK1/2 activation.  To evaluate p38 kinase inhibitor efficacy, human hepatocytes were 

pretreated with inhibitor for one hour before treatment with 100 ng/ml TNF for 15 
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minutes and then were assayed for p-HSP27 activation.  To evaluate MEK and p38 

kinase inhibitor toxicity, inhibitors were added at 1× final concentrations in fresh medium 

for 48 hours, then medium samples were assayed for LDH release.  LDH results were 

normalized to wells from the same culture plate lysed in 1% Triton X for 10 minutes, and 

values were reported as % cell death (with the lysed samples assumed to represent 100% 

cell death).  The following kinase inhibitors/concentrations were selected for their potent 

signaling inhibition and minimal toxicity and were used to perturb kinase activities in 

drug- and cytokine co-treatment experiments: 10 μM U0126, 1 μM PD325901, 1 μM 

PHA-666859, and 1 nM PHA-818637. 

 

4.2.10. Model predictions of kinase inhibitor effects on drug- and cytokine-induced 

hepatotoxicity 

To make a priori predictions of kinase inhibitor perturbation of drug- and/or cytokine-

induced hepatocellular death responses, a set of “computationally inhibited” signaling 

time-courses was generated by reducing the activation levels of the specific 

phosphoprotein signaling molecules targeted by the kinase inhibitor of interest.  These 

time courses were generated for the treatment conditions of DMSO ± cytokine mix and 

nortriptyline ± cytokine mix, in the presence or absence of 10 μM U0126, 1 μM 

PD325901, 1 μM PHA-666859, and 1 nM PHA-818637.  To generate the uninhibited 

time-courses, mean values across donor #1 and #2 (DMSO ± cytokine mix) or from 

donor #2 only (nortriptyline ± cytokine mix) were used.  For a phosphoprotein signals 

targeted by an inhibitor, the mean observed level at each time-point was reduced by a 

fraction equivalent to the percent signal reduction observed for that inhibitor in the 

signaling inhibition studies in donor #3 (as in [64, 66]; see Chapter 4.2.9).  For MEK 

inhibitors, the phosphoprotein levels of both MEK and ERK at all time-points were 

reduced by 70% (U0126) and 99% (PD325901), but all other signaling proteins were not 

changed.  For p38 inhibitors, the phosphoprotein levels of both p38 and HSP27 at all 

time-points were reduced by 93% (PHA-666859) and 99.5% (PHA-818637), but all other 

signaling proteins were not changed.  After computationally inhibiting the time-point 

data, the integral and late average metrics were re-calculated.  Predictions of kinase 

inhibitor effects based on these “computationally inhibited” signaling metric sets were 
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generated from two different 6-phosphoprotein OPLSR models (featuring either non- or 

log-scaled LDH release response data) trained on a fused CSR data compendium from 

both donors #1 and #2.  Logarithmic transformation of response data can provide a more 

accurate OPLSR model prediction of low response level observations, especially for non-

uniformly distributed response data sets (B.D.C., unpublished observations).  Prediction 

accuracy was assessed by comparing to experimental observations collected in human 

hepatocytes from donor #4 using the model fitness metric. 

 

4.2.11. Statistical analysis 

Supra-additive drug-cytokine synergy was assessed as described in Chapter 3.2.8.  For 

comparing two individual means, a Student’s t test was used.  All tests were performed at 

a significance level of α = 0.05. 

 

4.3. Results 

4.3.1. Drug and cytokine co-treatments elicit shared regulation of multiple 

phosphoprotein signaling pathways 

We collected a cue-signal-response (CSR) drug- and cytokine-induced hepatotoxicity 

data compendium in primary human hepatocytes to examine the signaling mechanisms 

regulating inflammatory cytokine-associated idiosyncratic drug hepatotoxicity (Figure 4-

2).  Human hepatocytes (donor #1) were treated with 66 different combinations of 11 

“drug” conditions (six idiosyncratic hepatotoxins, four corresponding “comparison” 

compounds, and a DMSO control condition) and six “cytokine” conditions.  Rigorously 

quantitative bead-based phosphoprotein (see Appendix B) and cell death assays were 

utilized to allow for investigation of the quantitative relationships between signaling 

pathway activation and cell death measurements.  Seventeen phosphoproteins, 

mechanistically associated with the MEK–ERK, mTOR–p70 S6K, Akt, IKK–NF-κB, 

JNK, p38–HSP27, STAT3, STAT6, cell cycle regulatory, and DNA damage signaling 

pathways, were measured at both early (0 and 20 minutes) and delayed time-points (4, 

24, and 48 hours) following drug and/or cytokine stimulation to capture a diversity of 

intracellular signaling pathways and dynamics.   
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Figure 4-2.  A cue-signal-response (CSR) drug- and cytokine-induced hepatotoxicity data compendium for 
model training.  Primary human hepatocytes (from donor #1) were cultured, treated, lysed, and assayed for 
phosphoproteins and LDH release as described in Chapter 4.2. Human hepatocytes were treated with 66 
different combinations of 11 “drug” conditions (six idiosyncratic hepatotoxins, four corresponding 
“comparison” compounds, and a DMSO control condition) and six “cytokine” conditions (no cytokine, 20 
ng/ml IL-1α, 10 μg/ml LPS, 100 ng/ml TNF, 20 ng/ml IL-6, and a mix containing all three cytokines plus 
LPS). All drugs were dosed at 100*Cmax concentrations, corresponding to the following molecular 
concentrations: 1.5 mM cimetidine (CIM), 142 μM ranitidine (RAN), 1.6 mM levofloxacin (LEV), 770 μM 
trovafloxacin (TRO), 0.46 μM buspirone (BUS), 86 μM nefazodone (NEF), 552 μM aspirin (ASP), 2.1 mM 
nimesulide (NIM), 334 μM clarithromycin (CLA), and 277 μM telithromycin (TEL). Idiosyncratic 
hepatotoxins (listed in red font) and corresponding “comparison” compounds are placed in vertical 
juxtaposition in the ordering of treatment conditions. (Note: clarithromycin serves as a less, but still 
idiosyncratic hepatotoxic, “comparison” compound to telithromycin.) To broadly measure a diverse set of 
key phosphoproteins mechanistically connected to numerous drug- and/or cytokine-induced signaling 
pathways, we quantitatively assayed the 17 phosphoprotein levels (and LDH release levels) at both early (0 
and 20 minutes) and delayed time-points (4, 24, and 48 hours) following drug and/or cytokine stimulation. 
Single biological replicates were used for both phosphoprotein and LDH assays. The total number of 
individual phosphoprotein signaling measurements in this CSR compendium is 4488 (= 66 conditions × 17 
phosphoproteins × 4 time-points × 1 biological replicate). Phosphoprotein levels were fold-change 
normalized to untreated samples at 0 minutes and are plotted on a log2-scaled colormap to capture both up- 
and down-regulated signaling levels. LDH release data were fold-change normalized to untreated samples 
at 48 hours post-stimulation and are plotted on a linearly-scaled colormap. 



 114

 
 
Figure 4-3.  The most correlative signaling metrics are poorly predictive of the observed hepatotoxicity 
response. In the CSR compendium from donor #1, the single signaling metrics most positively (p-HSP27 at 
t = 4 hr; A) and negatively (p-Akt at t = 24 hr; B) correlated with the observed cell death response (LDH 
release at t = 48 hr) are plotted. One-to-one correlation lines shown for clarity. Pearson correlation 
coefficients (R) are shown in the insets. 
 

Across this CSR compendium (Figure 4-2), it was evident that cytokine-only 

treatments induced early activation of multiple signals, including p-MEK1, p-STAT3, p-

IκB-α, and p-p38, and many toxic drug-only treatments induced a late-phase down-

regulation of certain pro-survival signals (e.g. p-Akt) and sustained activation of some 

stress signals (e.g. p-HSP27).  Moreover, multiple drug-cytokine co-treatments elicited 

synergistic induction of sustained p38–HSP27 signaling.  For the treatment conditions of 

trovafloxacin ± the 3-cytokine/LPS mix, this synergistic induction of sustained p38–

HSP27 pathway signaling was correlated with synergistic induction of cell death, as 

measured by LDH release (Figures 4-2 [donor #1], 4-6B-C [donor #2]).  This paired 

synergy suggested that perhaps a single phosphoprotein signal could be well-correlated 

with the observed cell death responses and yield a highly predictive readout of cell death 

across the entire data compendium.  We then calculated Pearson correlation coefficients 

for the relationship between the observed cell death at 48 hours post-drug/cytokine 

treatment and all 17 phosphoprotein signal levels at each of the four time-points.  Even 

the most positively (p-HSP27 at t = 4 hr, R = 0.78) and negatively (p-Akt at t = 24 hr, R = 

-0.74) correlated single phosphoprotein signaling features were poorly predictive of the 

measured cell death (Figure 4-3).   These poorly predictive individual signaling 

relationships to the measured cell death responses suggested the need for a multivariate 

modeling approach to interpret the signal-response relationships present in this drug- and 

cytokine-induced hepatotoxicity data compendium. 
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4.3.2. Multipathway OPLSR modeling of a cue-signal-response data compendium 

identifies key molecular signals regulating drug- and cytokine-induced 

hepatotoxicity 

To generate a multipathway model relating the observed signaling activities and cell 

death responses, we subjected the initial CSR data compendium to orthogonal partial-

least squares regression (OPLSR), a data-driven modeling approach useful for suggesting 

relationships between intracellular signals and cell phenotypes without requiring a priori 

mechanistic knowledge (see Chapter 4.2.7 and [46, 62, 64, 66, 68]).  The 102-signaling 

metric (17 phosphoproteins × 6 time-dependent metrics) OPLSR model demonstrated 

good model fitness (R2 = 0.92) for cross-validated predictions of the observed cell death 

responses for all 66 drug/cytokine coo-treatment conditions (Figure 4-4A).  An 

examination of the OPLSR model scores projections (Figure 4-4B) demonstrated the 

model’s ability to distinguish between toxic and non-toxic treatment conditions by their 

scores in the first principal component (PC), which represents pro-death model 

contributions.  The second PC of this OPLSR model captures remaining, orthogonal 

variation in the CSR data compendium, but is not used for prediction of the LDH release 

response. 

An examination of OPLSR model loadings (w1*c1; Figures 4-4C, 4-5A) and 

variable importance of projection (VIP) scores (Figures 4-4C, 4-5B) identified four 

signaling pathways (MEK–ERK, Akt, mTOR–p70 S6K, and p38–HSP27) with 

phosphoproteins having informative model contributions at multiple time-points.  

Positive model loadings imply signaling metrics with pro-death contributions, and 

negative model loadings imply pro-survival contributions.  p-ERK1/2, p-p38, and p-

HSP27 were all identified as having significant pro-death contributions from multiple 

metrics, and p-Akt and p-p70 S6K were identified as having significant pro-survival 

contributions from multiple metrics.  For all 17 phosphoprotein signals, the early time-

point (20 min) metrics were uniformly uninformative (as assessed by VIP scores), likely 

due to these signaling activities being similarly activated by cytokines in the both the 

presence and absence of drug co-stimuli causing them to be minimally covariant with the 

measured cell death responses. 
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The distinct importance of these four signaling pathways suggested that many of 

the phosphoproteins in the full CSR data compendium were unnecessary for the model 

predictions and consequently the model could be reduced to a more interpretable set of 

protein signals.  To reduce the complexity of the original 17-phosphoprotein model, 
 

 
 
Figure 4-4.  An OPLSR model trained on the CSR data compendium from human hepatocyte donor #1 
identifies key molecular signals regulating drug- and/or cytokine-induced hepatotoxicity. An OPLSR 
model was trained on the 66-condition CSR data compendium from human hepatocyte donor #1 to relate 
the activities of 102 time-dependent phosphoprotein signaling metrics (17 phosphoproteins × 6 metrics) to 
the observed cell death response (LDH release at t = 48 hr), as described in Chapter 4.2. (A) A correlation 
plot relating the observed and model-predicted LDH release responses for all 66 drug/cytokine co-treatment 
conditions shows good model fitness (R2 = 0.92) [50, 153]. A one-to-one correlation line demonstrating 
perfect model fitness (R2 = 1) is shown for clarity. (B) A scores plot of the OPLSR model demonstrates the 
model’s ability to distinguish between toxic and non-toxic treatment conditions by their scores in the first 
principal component (PC). The second PC of this OPLSR model captures remaining, orthogonal variation 
in the CSR data compendium, but is not used for prediction of the LDH release response. Conditions 
containing idiosyncratic hepatotoxins are highlighted. (C) Examination of OPLSR model loadings and 
variable importance of projection (VIP) scores identifies MEK–ERK, Akt, p70 S6K, and p38–HSP27 as 
key signaling pathways regulating drug/cytokine-induced hepatotoxicity. Positive model loadings (w1*c1) 
contribute to the predicted cell death, whereas negative loadings antagonize the cell death prediction. VIP 
scores identify the relative importance of individual phosphoprotein signaling metrics. Signaling metrics 
with a VIP > 1 have significant importance in the model and metrics with a VIP << 1 significantly lack 
unique information in the model [50, 156]. Note that VIP scores from the early time-point metric (20 min) 
are uniformly uninformative. 
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phosphoproteins (and all six of their associated signaling metrics) were removed from the 

model step-wise in order of the lowest average VIP score across all six metrics (Figure 4-

5B-C).  Model fitness was maintained until the top ~4-5 phosphoproteins remained (R2 = 

~0.87-0.91).  Further removal of phosphoproteins resulted in the significant losses in 

model fitness (Figure 4-5C).  This emphasized that an equivalently predictive 

multipathway network model could be generated by focusing on representative 

phosphoproteins from four pathways -- MEK–ERK, Akt, mTOR–p70 S6K, and p38–

HSP27 -- and that these representative phosphoproteins (e.g. p-ERK1/2, p-Akt, p-p70 

S6K, and p-HSP27) could serve as a useful signaling network “gauge” [68], whose 

integrated activities accurately specify hepatocellular death responses to drug and/or 

cytokine stimulation (Figure 4-5E). 

 

4.3.3. A multipathway OPLSR model accurately predicts hepatotoxicity signal-

response relationships across human hepatocyte donors 

To test the utility of this reduced multipathway OPLSR model, we collected a second 

drug- and cytokine-induced CSR hepatotoxicity data compendium containing just six 

phosphoprotein signals (p-MEK1, p-ERK1/2, p-Akt, p-p70 S6K, p-p38, and p-HSP27) 

from the four “network gauge” pathways (Figure 4-6A).  p-MEK1 and p-p38 are likely 

redundant measurements to p-ERK1/2 and p-HSP27, respectively, but were necessary to 

test subsequent model predictions pertaining to the effects of MEK and p38 inhibitors.  In 

this second CSR data compendium, human hepatocytes (donor #2) were treated with 18 

different combinations of nine “drug” conditions (three idiosyncratic hepatotoxins used in 

initial compendium, five idiosyncratic hepatotoxins not used in the initial compendium, 

and a DMSO control condition) and two “cytokine” conditions (no cytokine and the 3-

cytokine/LPS mix). 

An OPLSR model trained on the CSR data compendium from donor #1 but 

limited to signaling metrics from these six “network gauge” phosphoproteins was used to 

predict LDH release responses from signaling data collected in a human hepatocytes from 

donor #2 (Figure 4-7A).  Model predictions of cell death responses from donor #2 were 

inaccurate for both the eight drug/cytokine co-treatment conditions present in the training  
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Figure 4-5.  Reduction of the 17-phosphoprotein OPLSR model identifies equivalently predictive 4-to-6-
phosphoprotein models. (A-B) Model loadings (A) and VIP scores (B) are plotted for all 102 
phosphoprotein signaling metrics, with metrics from p-ERK1/2, p-Akt, p-p70 S6K, and p-HSP27 noted. 
Model loadings and VIP scores are presented as the mean values ± cross-validation standard error, 
calculated by jack-knifing [155]. (C) VIP scores for each phosphoprotein signal are shown, with the 
phosphoproteins ordered by the average VIP scores. VIP scores for the 20-minute signaling metrics were 
omitted from the plot and the calculated average as they were uniformly uninformative (<< 1). In (B) and 
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(C), a line indicating the threshold value of 1 for informative VIP scores is shown for clarity. (D) Model 
fitness sensitivity to the removal of phosphoprotein signaling metrics. Model complexity was reduced by 
either (i) step-wise removal of the bottom average VIP phosphoprotein; (ii) from selection of four (p-
ERK1/2, p-Akt, p-p70 S6K, and p-HSP27) or six (those four plus p-MEK1 and p-p38) specific 
phosphoproteins from the highly informative MEK–ERK, Akt, p70 S6K, and p38–HSP27 signaling 
pathways; or (iii) using an equivalent number of signaling metrics as the four- and six-phosphoprotein 
models (24 and 36 metrics, respectively) but selected as the top VIP score metrics across all 17 
phosphoproteins. Model fitness is maintained under phosphoprotein removal until ~4 phosphoproteins 
remain. (E) A comparison of the cross-validated prediction from a full 17-phosphoprotein model and a 
reduced 4-phosphoprotein (p-ERK1/2, p-Akt, p-p70 S6K, and p-HSP27) model. Both models demonstrate 
good model fitness across all 66 conditions (R2 = 0.92 and 0.89 for 17- and 4-phosphoprotein models, 
respectively). A one-to-one correlation line demonstrating perfect model fitness (R2 = 1) is shown for 
clarity. 

 

 
 
Figure 4-6.  A cue-signal-response (CSR) drug- and cytokine-induced hepatotoxicity data compendium for 
model testing. Primary human hepatocytes (from donor #2) were cultured, treated, lysed, and assayed as 
described in Chapter 4.2. (A) Human hepatocytes were treated with 18 different combinations of nine 
“drug” conditions (three idiosyncratic hepatotoxins used in initial compendium, five idiosyncratic 
hepatotoxins not used in the initial compendium, and a DMSO control condition) and two “cytokine” 
conditions (no cytokine and the 3-cytokine/LPS mix) and were assayed for phosphoprotein signaling and 
LDH release. Idiosyncratic hepatotoxic drugs (listed in red font) were dosed at 100*Cmax concentrations, 
corresponding to the following molecular concentrations: 770 μM trovafloxacin (TRO), , 86 μM 
nefazodone (NEF), 334 μM clarithromycin (CLA), 111 μM chlorpromazine (CHL), 10 μM nortriptyline 
(NOR), 13 μM clomipramine (CLO), 88 μM mexiletine (MEX), and 107 μM riluzole (RIL).  
Phosphoproteins assays were focused on a reduced set of six highly informative signals (p-MEK1, p-
ERK1/2, p-Akt, p-70 S6K, p-p38, p-HSP27). These phosphoproteins and LDH release were assayed at both 
early (0 and 20 minutes) and delayed time-points (4, 24, and 48 hours) following drug and/or cytokine 
stimulation. A subset of drug/cytokine treatment conditions (all those containing the DMSO control, TRO, 
NEF, or CLA) were also assayed at 1 and 12 hours post-stimulation (see panel (B) and data not shown).  
Biological triplicates were used for both phosphoprotein and LDH assays. The total number of individual 
phosphoprotein signaling measurements in this CSR data compendium was 1296 (= 18 conditions × 6 
phosphoproteins × 4 time-points × 3 biological replicates). Phosphoprotein levels were fold-change 
normalized to untreated samples at 0 minutes and are plotted on a log2-scaled colormap to capture both up- 
and down-regulated signaling levels. LDH release data were fold-change normalized to untreated samples 
at 48 hours post-stimulation and are plotted on a linearly-scaled colormap. Note that the colormap scales 
are the same as in Figure 4-2. (B-C) Demonstration of drug-cytokine synergy in the sustained activation of 
p-HSP27 (B) and the induction of cell death (C) under conditions of trovafloxacin ± cytokine mix. Data are 
presented as the mean ± SEM of three biological replicates. 
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Figure 4-7.  (Previous page) A 6-phosphoprotein OPLSR model accurately predicts drug/cytokine 
responses across human hepatocyte donors, but only for drug/cytokine treatments present in the training 
data compendium. An OPLSR model of LDH release (t = 48 hr) was trained on the time-dependent 
signaling metrics from six phosphoproteins (p-MEK1, p-ERK1/2, p-Akt, p-70 S6K, p-p38, p-HSP27) using 
the drug/cytokine-induced hepatotoxicity data compendium from donor #1. This trained model was used to 
predict LDH release responses from the same six phosphoprotein signals collected in human hepatocytes 
from donor #2. The CSR data compendium from donor #2 contained 18 different combinations of nine 
“drug” conditions (three idiosyncratic hepatotoxins used in training compendium, five idiosyncratic 
hepatotoxins not used in the training compendium, and a DMSO control condition) and two “cytokine” 
conditions (no cytokine and the 3-cytokine/LPS mix). (A) A correlation plot relating the observed and 
predicted LDH release responses for all 66 drug/cytokine treatment conditions in the training (donor #1) 
CSR compendium (grey, R2 = 0.89), 8 drug/cytokine treatment conditions from the test (donor #2) CSR 
compendium that were also present in the training data (blue, R2 = -0.62), and 10 drug/cytokine treatment 
conditions from the test (donor #2) CSR compendium that were not present in the training data (red, R2 = -
0.26). Quantitatively accurate model predictions have positive R2 values, negative R2 values imply highly 
inaccurate model predictions, and an R2 value of 0 corresponds a model break-point [153]. A one-to-one 
correlation line demonstrating perfect model fitness (R2 = 1) is shown for clarity. Conditions (nefazodone 
[NEF] ± cytokine mix and mexiletine [MEX] + cytokine mix) with highly inaccurate predictions are noted. 
In (A) and (D), experimental data is presented as mean ± SEM of three biological replicates and the model-
predicted responses are presented as the mean prediction ± cross-validation standard error, calculated by 
jack-knifing [155]. Experimental and prediction uncertainties are not shown for the training data. (B-C) 
Closer inspection of the signaling time-course data reveals conditions with highly inaccurate predictions 
have outlying signaling data. (B) NEF ± cytokine mix conditions in donor #2 induced significant p-HSP27 
signal attenuation at late time-points, which was not observed in the training data or the other test data. (C) 
MEX + cytokine mix condition in donor #2 induced significant p-Akt signal activation at the 24 hour time-
point, which was not observed in the training data or the other test data. In (B) and (C), training and test 
data from non-outlier conditions are presented as mean values (of 1-3 biological replicates) only, test data 
from outlier conditions are presented as the mean ± SEM of three biological replicates, and phosphoprotein 
levels are plotted on a log2-scaled axis. (D) Removal of the outlier drug/cytokine treatment conditions from 
donor #2 demonstrates accurate model predictions. A correlation plot relating observed and predicted LDH 
release responses as in (A) but omitting the outlier drug/cytokine conditions from donor #2. After removal 
of outlier conditions, it is evident that the model demonstrates reasonable fitness in predicting cell death 
responses for test data from conditions present in the training compendium (R2 = 0.56), but is not as 
accurate for predictions of conditions not present in the training compendium (R2 = -0.86). Two test 
conditions (chlorpromazine [CHL] ± cytokine mix) not present in the training compendium but nonetheless 
predicted with quantitative accuracy are noted. 
 

data from donor #1 (R2 = -0.62) and the ten drug/cytokine co-treatment conditions not 

present in the training data (R2 = -0.26; Figure 4-7A).  Further inspection of these 

observation-prediction relationships from donor #2 identified that a small subset of 

treatment conditions (nefazodone ± cytokine mix and mexiletine + cytokine mix) resulted 

in substantially inaccurate predictions that skewed the model prediction fitness 

evaluations.  Inspection of individual phosphoprotein signaling time-courses for these 

conditions revealed signaling activities that were significantly outside of both the model 

training data from donor #1 and the remainder of the test data from donor #2 (Figure 4-

7B-C).  Specifically, the nefazodone ± cytokine mix conditions in donor #2 induced 

significant p-HSP27 signal attenuation at late time-points, which was not observed in the 
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training data or the other test data (Figure 4-7B).  A reduced level of sustained p-HSP27 

activation is interpreted by the model as a reduction in cell death due to late p-HSP27 

metrics having highly positive (pro-death) model loadings (Figure 4-4C).  Consequently, 

the model under-predicted cell death for the nefazodone ± cytokine mix conditions in 

donor #2.  The mexiletine + cytokine mix condition in donor #2 induced significant p-

Akt activation at the 24 hour time-point, which was not observed in the training data or 

the other test data (Figure 4-7C).  An increased level of p-Akt activation at t = 24 hr is 

interpreted by the model as a reduction in cell death due to late p-Akt metrics having 

highly negative (pro-survival) model loadings (Figure 4-4C).  Thus, the model under-

predicted cell death for the mexiletine + cytokine mix conditions in donor #2.  

After removal of these outlier drug/cytokine treatment conditions from donor #2, 

the 6-phosphoprotein OPLSR model trained on data from donor #1 demonstrated 

reasonably accurate predictions of cell death responses for test data from conditions 

present in the training compendium (R2 = 0.56; Figure 4-7D).  The model still generated 

inaccurate predictions of conditions not present in the training compendium (R2 = -0.86), 

although two of the test conditions (chlorpromazine ± cytokine mix) not present in the 

training compendium were nonetheless predicted with quantitative accuracy.  This 

demonstrated that the 6-phosphoprotein OPLSR model can accurately predict 

drug/cytokine responses across human hepatocyte donors, but only for non-outlier 

drug/cytokine treatment present in the training data.  It is possible that other signaling 

pathways, such as JNK, play a more substantial role in integrating hepatocellular 

responses drug-cytokine co-stimulation for some of the drugs, such as clomipramine and 

riluzole, not present in the training set.  Inclusion of these additional pathways in might 

enable more accurate cell death predictions for more varied set of drug/cytokine 

treatment conditions. 

The model’s ability to successfully predict hepatotoxicity signaling-response 

relationships across human hepatocyte donors for similar drug/cytokine conditions 

suggests that hepatocytes from multiple human donors share a “common effector” 

processing function [64].  In human hepatocytes from two different human donors, 

specific drug/cytokine treatment conditions (see clarithromycin + cytokine mix in donors 

#1 and 2; Figure 4-8) can elicit significantly different signaling network activation 
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profiles and induce different levels of cell death but the trained OPLSR model can 

accurately predict the cell death responses from both signaling network activity profiles 

by considering all the time-dependent signaling activity variables across the six measured 

phosphoproteins. 

 

 
 
Figure 4-8.  Common-effector processing mediates donor-specific responses to drug and/or cytokine 
stimulation. Signaling and response data from non-outlier conditions present in both human hepatocyte 
donors is shown as in Figures 4-2 and 4-6. An OPLSR model was trained on the 66-condition, 6-
phosphoprotein CSR data compendium from donor #1, as described in Figure 4-7. This OPLSR model 
generated quantitatively accurate predictions of cell death responses in donor #1 (for the conditions shown 
here, R2 = 0.89 and R [Pearson correlation coefficient] = 0.95) and donor #2 (for the conditions shown 
here, R2 = 0.56 and R = 0.96), even though donor-specific signaling network activation profiles and cell 
death responses were observed under the same drug/cytokine treatments. (Compare clarithromycin [CLA] 
± cytokine mix across the two donors.) The predictive accuracy of this OPLSR model suggests that a 
common-effector processing mechanism (f(x) = y) encompassing the integration of the survival and stress 
signaling network (x) yields quantitatively concerted cell death responses (y) to toxic drug/cytokine 
conditions exists and is shared between hepatocytes from different human donors. 
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Figure 4-9.  MEK–ERK and p38–HSP27 pathways at the confluence of drug/cytokine-induced signaling 
and drug efflux transporter regulation. Interpretations from the OPLSR model of hepatotoxicity suggest 
that the MEK–ERK and p38–HSP27 pathways are activated by drug- and/or cytokine treatments and 
positively regulate the resulting cell death response. Experimentally testing these model interpretations 
must be made with a complex cellular context in mind. Whereas the MEK–ERK pathway is generally 
considered pro-survival through its activation of anti-apoptotic effectors such as Bad [157], the p38–HSP27 
pathway is generally considered pro-apoptotic due to its transcription regulation of effector caspases [17]. 
Both pathways have been implicated in the regulation of the translocation of hepatocyte drug efflux 
transporters, including the bile salt export pump (BSEP) and the conjugate export pump (MRP2), to the bile 
canaliculi (BC). Consequently, inhibitors of the kinase activities of MEK [158] and p38 [159, 160] 
decrease drug efflux transporter translocation and activity, leading to cholestasis upon prolonged 
administration. Possibly due to their inhibition of drug efflux transporter activities or, more likely, in the 
case of MEK–ERK, due to their perturbation of apoptosis regulatory mechanisms, MEK [161, 162] and 
p38 [163] inhibitors elicit liver toxicity some cellular and animals models and clinical investigations. 
Moreover, some hepatotoxic drugs (either directly or through their reactive metabolites) such as 
nefazodone inhibit BSEP and/or MRP2 activities [138], which can induce transient activation of ERK and 
p38 signaling and consequently stimulate additional transporter protein translocation to the BC to enable 
recovery of drug efflux capacity. Additionally, ERK signaling has been associated with controlling the 
release of EGFR autocrine ligands such as TGF-α [107, 164]. Following TNF stimulation, autocrine TGF-α 
is contributes to the subsequent release and pro-apoptotic function of autocrine IL-1 in hepatocytes (see 
Chapter 2 and [77, 129]). Thus, the experimental perturbation of the MEK–ERK and p38–HSP27 pathways 
must be made with careful consideration to their complex, and possibly counter-acting, functions in 
response to drug and/or cytokine stimuli. 
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4.3.4. Kinase inhibition reveals pro-death control of drug- and cytokine-induced 

hepatotoxicity by the MEK–ERK and p38–HSP27 signaling pathways 

The initial 17-phosphoprotein OPLSR model suggested that sustained activation of the 

MEK–ERK and p38–HSP27 signaling pathways positively contributes to drug- and 

cytokine-induced hepatocellular death.  Whereas the p38–HSP27 pathway is generally 

considered pro-apoptotic, agreeing with the model predictions, due to its transcription 

regulation of effector caspases [17], the MEK–ERK pathway is generally considered pro-

survival, counter to the model predictions, in hepatocytes through its activation of anti-

apoptotic effectors such as Bad [157].  Moreover, the MEK–ERK and p38–HSP27 

pathways have complex functions as they are involved in not only apoptosis regulation 

but also are necessary signals for the proper maintenance of hepatocyte drug efflux 

transporters such as BSEP (see Figure 4-9 for additional details).  As such, inhibition of 

MEK or p38 kinase activity can perturb drug efflux transporter availability and function 

[158-160], leading to diminished drug efflux capability and a cholestatic hepatocellular 

phenotype.  And since some MEK [161, 162] and p38 [163] inhibitors elicit liver toxicity 

in cellular and animal models and clinical investigations, we selected MEK and p38 

inhibitors from panel of candidate small molecular inhibitors that were examined for their 

ability to potently inhibit phosphoprotein signaling and to induce minimal toxicity in 

human hepatocytes (from donor #3; Figure 4-10).  The MEK inhibitors U0126 (10 μM; 

Figure 4-10B) and PD325901 (1 μM; Figure 4-10D) potently inhibited TGF-α-induced p-

ERK1/2 activation, elicited minimal toxicity, and were selected for additional studies.  

The p38 inhibitors PHA-666859 (1 μM; Figure 4-10K) and PHA-818637 (1 nM; Figure 

4-10L) potently inhibited TNF-induced p-HSP27 activation, elicited minimal toxicity, 

and were selected for additional studies. 

 These selected MEK and p38 inhibitors were used to evaluate the control of 

MEK–ERK and p38–HSP27 signaling pathways in drug- and cytokine-induced 

hepatotoxicity.  In human hepatocytes (from donor #4) treated with the clomipramine + 

cytokine mix both p38 kinase inhibitors, but neither MEK inhibitors, attenuated the 

observed hepatotoxicity (LDH release measured at t = 24 hr; Figure 4-11B).  In human 

hepatocytes treated with nimesulide + cytokine mix (t = 24 hr; Figure 4-11C), cytokine 

mix alone (t = 48 hr; Figure 4-11D), and nortriptyline + cytokine mix (t = 48 hr; Figure 4- 
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Figure 4-10.  Selection of MEK and p38 kinase inhibitors based on potent signaling inhibition efficacy and 
minimal toxicity in human hepatocytes. MEK (A-D) and p38 (E-L) kinase inhibitors were evaluated for 
efficacy and toxicity in human hepatocytes (from donor #3) over a range of concentrations at seven 8× 
serial dilution concentrations from 20 μM (20 μM, 2.5 μM, 0.31 μM, 39 nM, 4.9 nM, 0.61 nM, 76 pM).   
SB202474 is an inactive control for SB202190 and SB203580.  PHA-460448 is an inactive control for the 
p38 inhibitors in (I) to (L). (A-L) To evaluate MEK and p38 kinase inhibitor toxicity, inhibitors were added 
at 1× final concentrations in fresh medium for 48 hours, then medium samples were assayed for LDH 
release. LDH results were normalized to wells from the same culture plate lysed in 1% Triton X for 10 
minutes, and values were reported as % cell death, with the lysed samples assumed to represent 100% cell 
death. (Note that only 20 μM MEKi-1 elicited significant toxicity.) (A-D) To evaluate MEK kinase 
inhibitor efficacy, human hepatocytes were pretreated with inhibitor for one hour before treatment with 100 
ng/ml TGF-α for 15 minutes and then were assayed for p-ERK1/2 activation. (E-L) To evaluate p38 kinase 
inhibitor efficacy, human hepatocytes were pretreated with inhibitor for one hour before treatment with 100 
ng/ml TNF for 15 minutes and then were assayed for p-HSP27 activation. (A-L) Signaling inhibition IC50 
values were manually estimated from the signaling down-regulation curves by identifying the inhibitor 
concentrations that elicited half-maximal phosphoprotein activation. The following kinase inhibitors/ 
concentrations were selected for their potent signaling inhibition and minimal toxicity and were used to 
perturb kinase activities in drug- and cytokine co-treatment experiments: 10 μM U0126, 1 μM PD325901, 
1 μM PHA-666859, and 1 nM PHA-818637. At these concentrations, these inhibitors yield the following 
reductions in phosphoprotein signaling: U0126, 70% reduction, and PD325901, 99%, for MEK–ERK 
inhibition; and PHA-666859, 93%, and PHA-818637, 99.5%, for p38–HSP27 inhibition. 
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Figure 4-11.  Kinase inhibitor perturbation of MEK and p38 signaling demonstrates their pro-death 
signaling control of drug/cytokine hepatotoxicity synergy. Human hepatocytes (from donor #4) were 
cultured as described in Chapter 4.2. Cells were treated with drugs (13 μM clomipramine [B], 2.1 mM 
nimesulide [C], 10 μM nortriptyline [E], or 0.25% DMSO control [A, D]) ± cytokine mix (20 ng/ml IL-1α, 
10 μg/ml LPS, 100 ng/ml TNF, and 20 ng/ml IL-6). After 24 or 48 hours, conditioned medium samples 
were assayed for LDH release. To inhibit MEK kinase activity, cells were pretreated with 10 μM U0126 or 
1 μM PD325901 one hour before drug/cytokine stimulation.  To inhibit p38 kinase activity, cells were 
pretreated with 1 μM PHA-666859 or 1 nM PHA-818637 one hour before drug/cytokine stimulation. Data 
are presented as the mean ± SEM of eight biological replicates. Drug-cytokine mix co-treatment conditions 
that elicited supra-additive hepatotoxicity synergy, evaluated as described in Chapter 4.2.11, are denoted as 
(*).  Differences between uninhibited and kinase inhibitor pretreatments are labeled as significant (‡) if P < 
0.05 by a Student’s t test. Kinase inhibitor pretreatments did not significantly perturb cell death responses 
in the absence of cytokine mix co-stimulation and thus are not shown. 
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11E), one or both of MEK and p38 kinase inhibitors attenuated the observed 

hepatotoxicities.  These results demonstrate that MEK and p38 signaling both contribute 

to the induction of hepatocellular death across multiple drug/cytokine mix and cytokine 

mix-only treatment conditions, confirming the OPLSR model suggestions. 

 

4.3.5. A multipathway OPLSR model predicts MEK and p38 kinase inhibition 

effects on drug- and cytokine-induced hepatotoxicity with qualitative accuracy 

To further test the utility of the reduced 6-phosphoprotein OPLSR model, we asked if it 

could make accurate a priori predictions of kinase inhibitor perturbations of drug- and/or 

cytokine-induced hepatocellular death.  To generate a test signaling data set, we  
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Figure 4-12.  (Previous page) OPLSR model makes qualitatively accurate predictions of the effects of 
MEK and p38 inhibitors in perturbing drug- and cytokine-induced hepatotoxicity. To make a priori 
predictions of a kinase inhibitor perturbation to a drug- and/or cytokine-induced hepatocellular death 
response, “computationally inhibited” signaling time-courses (based on uninhibited signaling data from 
donors #1 and/or #2) were generated by reducing the activation of the specific phosphoprotein signaling 
molecules targeted by a kinase inhibitor by an amount based on the inhibitor’s experimentally measurement 
signaling inhibition (in samples from donor #3; see Figure 4-10). Signaling proteins from pathways not 
targeted by the kinase inhibitor were left unchanged. These time courses were generated for the treatment 
conditions of DMSO ± cytokine mix and nortriptyline ± cytokine mix, in the presence or absence of 10 μM 
U0126, 1 μM PD325901, 1 μM PHA-666859, and 1 nM PHA-818637. After computationally inhibiting the 
time-point data, the integral and late average metrics were re-calculated, and the resultant computationally-
inhibited signaling metric compendium was used to predict cell death responses from trained OPLSR 
models. See Chapter 4.2.10 for additional details. Model fitness of the predicted inhibitor conditions was 
assessed by comparing to experimental measurements collected in human hepatocytes from donor #4 
(Figure 4-11). Two different 6-phosphoprotein OPLSR models were trained on a fused CSR data 
compendium from both donors #1 and #2.  (A) One model was trained using non-scaled cell death response 
data. Although this OPLSR model demonstrated good model fitness for the training data (R2 = 0.83), it 
poorly predicted the inhibitor test data (R2 = -0.19) and led to significantly under-predicted cell death 
responses. (B-D) A second OPLSR model was generated from the fused training compendium by 
regressing log-scaled cell death response data.  Logarithmic scaling of response data can provide a more 
accurate OPLSR model prediction of low response level observations, especially for non-uniformly 
distributed response data sets (B.D.C., unpublished observations). The log-scaled model demonstrated 
reasonable model fitness for the training data (R2 = 0.79) but only qualitatively accurate predictions of the 
test “computationally inhibited” data (R2 = 0.08). Using a less stringent Pearson correlation metric, the log-
scaled model yielded correlated prediction of the training (R = 0.90) and test inhibition (R = 0.63) data sets. 
In (A) to (D), experimental data are presented as mean ± SEM of eight biological replicates. In (A) and (B), 
model-predicted responses are presented as the mean prediction ± cross-validation standard error, 
calculated by jack-knifing [155], and experimental and prediction uncertainties are not shown for the 
training data. In (A) and (B), a one-to-one correlation line demonstrating perfect model fitness (R2 = 1) is 
shown for clarity. 
 

“computationally inhibited” signaling time-courses for the DMSO ± cytokine mix and 

nortriptyline ± cytokine mix conditions using uninhibited signaling data from donors #1 

and/or #2 and signaling inhibition data from donor #3.  See Chapter 4.2.10 and Figure 4-

12 for additional details.  Model fitness of the predicted inhibitor conditions was assessed 

by comparing to experimental measurements collected in human hepatocytes from donor 

#4 (Figure 4-11).  Two different 6-phosphoprotein OPLSR models were trained on a 

fused CSR data compendium from both donors #1 and #2.  One model was trained using 

non-scaled cell death response data (Figure 4-12A).  Although this OPLSR model 

demonstrated good model fitness for the training data (R2 = 0.83), it poorly predicted the 

inhibitor test data (R2 = -0.19) and led to significantly under-predicted cell death 

responses.  A second OPLSR model was generated from the fused training compendium 

by regressing log-scaled cell death response data (Figure 4-12B-D).  Logarithmic scaling 

of response data can provide a more accurate OPLSR model prediction of low response 

level observations, especially for non-uniformly distributed response data sets (B.D.C., 
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unpublished observations).  The log-scaled model demonstrated reasonable model fitness 

for the training data (R2 = 0.79) but only qualitatively accurate predictions of the test 

inhibitor data (R2 = 0.08).  Using a less stringent Pearson correlation metric, the log-

scaled model generated well-correlated predictions of the training (R = 0.90) and test 

inhibitor (R = 0.63) data sets.  This demonstrates that the reduced 6-phosphoprotein 

OPLSR model is capable of qualitatively accurate predictions of kinase inhibitor 

perturbations to drug- and cytokine-induced hepatotoxicity. 

 

4.4. Discussion 

4.4.1. Inflammatory cytokine-associated drug hepatotoxicity is governed by the 

integrated behavior of multiple intracellular signaling pathways 

Through a data-driven modeling approach, we demonstrated that synergistic induction of 

hepatocellular death by idiosyncratic hepatotoxins and physiologically-relevant 

inflammatory cytokine co-stimuli is governed by the integrated behaviors of multiple 

intracellular signaling pathways.  From an initial set of 17 phosphoproteins from 8 

signaling pathways (MEK–ERK, mTOR–p70 S6K, Akt, IKK–NF-κB, JNK, p38–HSP27, 

STAT3, and STAT6), cell cycle regulation, and DNA damage signaling, we identified a 

subset four key signaling pathways that were highly informative to an orthogonal least-

squares regression model calibrated on a drug/cytokine-induced data compendium 

consisting of combinations of 10 drug and 6 cytokine treatments.  This informative subset 

contained two pathways with model-assigned pro-survival  functions -- Akt and mTOR–

p70 S6K, in agreement with their well-documented survival signaling roles [149, 165] -- 

and two pathways with model-assigned pro-death functions -- MEK–ERK and p38–

HSP27, counter to ERK’s canonical role as contributing to survival signaling [157] but in 

agreement with p38’s apoptotic signaling role [17].  Together, these four signaling 

pathways represent a useful “network gauge” [68] capturing the balance between survival 

and death signaling in drug- and cytokine-treated hepatocytes.  Much effort has been 

focused on multivariate analyses of gene expression data to predict overt drug 

hepatotoxicity [166] and inflammation-associated idiosyncratic drug hepatotoxicity 

[167], but little attention has been focused on phosphoproteomic-based prediction models 

of liver toxicity.  This work demonstrates that quantitatively predictive models of drug- 
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and cytokine-induced toxicity in human hepatocyte cultures can be generated using as 

few as four phosphoprotein signals.  Furthermore, it shows that hepatotoxicity can be 

thought of in terms of a “network toxicity”, in which the integrated behavior of multiple 

hepatocellular signaling pathways should be considered in evaluating the hepatotoxicity 

of a given treatment condition (see Figure 4-13). 

 

 
 

Figure 4-13.  Inflammatory cytokine-associated idiosyncratic drug hepatotoxicity as a “network toxicity”.  
The multipathway modeling approach presented here suggests that an integration of multiple intracellular 
signaling pathway -- namely the MEK–ERK, mTOR–p70 S6K, Akt, and p38–HSP27 pathways -- activities 
is necessary for hepatocytes to specify death responses to hepatotoxic drug/cytokine co-treatment 
conditions. This provides motivation of the network-level consideration of multiple survival, stress, and 
apoptosis signaling pathways in evaluating the hepatotoxicity mechanisms of context-dependent 
hepatotoxic drugs.  
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4.4.2. MEK–ERK and p38–HSP27 as pro-death signaling pathways in hepatocytes 

Interpretations from the OPLSR model of hepatotoxicity suggested that the MEK–ERK 

and p38–HSP27 pathways are activated by drug- and/or cytokine treatments and 

positively regulate the resulting cell death response.  In follow up experiments, the 

model-suggested pro-death signaling contributions were confirmed using small molecule 

MEK and p38 kinase inhibitors for a select set of drug/cytokine mix synergy conditions.   

Both the MEK–ERK and p38–HSP27 pathways operate at the confluence of 

drug/cytokine-induced signaling and drug efflux transporter regulation (Figure 4-9).  

Both pathways have been implicated in the regulation of the translocation of hepatocyte 

drug efflux transporters, including the bile salt export pump (BSEP) and the conjugate 

export pump (MRP2), to the bile canaliculi (BC).  Consequently, inhibitors of the kinase 

activities of MEK [158] and p38 [159, 160] decrease drug efflux transporter translocation 

and activity, leading to cholestasis upon prolonged administration.   Possibly due to their 

inhibition of drug efflux transporter activities or more likely, in the case of MEK–ERK, 

due to their perturbation of apoptosis regulatory mechanisms, some MEK [161, 162] and 

p38 [163] inhibitors elicit liver toxicity some cellular and animals models and clinical 

investigations.  Moreover, some hepatotoxic drugs (either directly or through their 

reactive metabolites) such as nefazodone inhibit BSEP and/or MRP2 activities [138], 

which can induce transient activation of ERK and p38 signaling and consequently 

stimulate additional transporter protein translocation to the BC to enable recovery of drug 

efflux capacity. 

Still, it is unclear (and not demonstrated in this work), how ERK signaling might 

potentiate a death response to toxic drug and cytokine co-stimuli conditions.  One 

possibility is through ERK’s regulation of protein phosphatases [168] that may act to 

attenuate signaling in orthogonal, pro-survival pathways.  Although these protein 

phosphatases largely act to dephosphorylate ERK itself and the pro-stress/death kinases 

JNK and p38 [168], they operate within complex, multi-layered feedback loops [169] that 

may act, in net, to serve a pro-apoptotic function.  Additionally, ERK signaling has been 

associated with controlling the release of EGFR autocrine ligands such as TGF-α [107, 

164].  Following TNF stimulation, autocrine TGF-α is contributes to the subsequent 

release and pro-apoptotic function of autocrine IL-1 in hepatocytes (see Chapter 2 and 
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[77, 129]).  Thus, it is possible that drug- and/or cytokine-induced ERK activation leads 

to the release and pro-death activity of autocrine IL-1 ligands.  We preliminarily 

investigated this possible mechanism (see Appendix E), but did not observe any drug-

cytokine cell death synergies controlled by autocrine TGF-α or IL-1 activities.  

Additional investigations in the role of these autocrine ligands under a more well-selected 

set of drug/cytokine treatment conditions may prove fruitful. 

 

4.4.3. Hepatotoxicity predictions across human hepatocyte donors via OPLSR 

modeling 

An OPLSR model using data from six phosphoproteins from the four informative 

“network gauge” pathways demonstrated accurate predictions of hepatotoxicities induced 

by drug/cytokine treatments across two human donors, but only for non-outlier 

drug/cytokine treatments present in the training data.  The model’s ability to successfully 

predict hepatotoxicity signaling-response relationships across human hepatocyte donors 

for similar drug/cytokine conditions suggests that hepatocytes from multiple human 

donors share a “common effector” processing function [64].   This common effector 

processing function is captured in the model regression coefficients and allows for 

quantitatively accurate predictions of donor-specific cell death responses based on donor-

specific signaling network activation (see Figure 4-8).  To generate a model with more 

robust prediction accuracies in additional human hepatocyte donors, especially for 

hepatotoxicity conditions not present in the model training, it is likely that additional 

phosphoprotein signaling pathways, such as the stress- and cytokine-induced JNK 

pathway, will have to be included in the model and the model will have to be trained 

under an even more diverse set of drug/cytokine-conditions.  Increased model utility 

could also be demonstrated by showing that this “common effector” processing function 

is shared across hepatocytic cell systems, such as between primary rat hepatocytes and 

primary human hepatocytes.  If so, this would allow for robust model training in more 

readily available cell systems. 
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4.4.4. Implementation of multipathway modeling in more physiologically relevant 

hepatotoxicity models 

As discussed in Chapter 3.4.4, in vitro studies of drug-cytokine hepatotoxicity 

relationships will likely be benefited by the use of tissue-engineered hepatocyte cell 

culture systems that allow for prolonged maintenance of differentiated hepatocellular 

function and are assessable in reasonably high-throughput manner.  This work presents 

an example of the utility of large-scale cue-signal-response data compendia modeling to 

identify salient phosphoprotein signaling mechanisms governing drug- and cytokine-

induced hepatotoxicities in standard Matrigel-overlay cultures of primary human 

hepatocytes.  Considering the future directions of in vitro hepatotoxicity evaluations 

towards more physiologically relevant tissue-engineered culture systems, our work 

motivates additional efforts to bring the tools and techniques of “systems”-level biology 

to bare on the challenges of investigating physiologically-complex in vitro tissue models.  

This leads to a discussion in Chapter 5.2 how such systems biology approaches might be 

more fully implemented in microenvironmentally complex tissue-engineered culture 

systems.  
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CHAPTER 5 
 
Future directions 

 
5.1. Assaying autocrine signaling in in vivo biology 

In Chapter 2, we demonstrated that hepatocyte responses to TNF are regulated by an 

inducible, coupled, and self-antagonizing TGF-α–IL-1α/β–IL-1ra autocrine cascade that 

contributes to multiple intracellular signaling pathways that govern both hepatocyte 

proliferation and apoptosis.  This autocrine cascade promotes both TNF-induced 

apoptosis in hepatocytes infected with an adenoviral vector and TNF-induced 

proliferation in the absence of viral infection.  These and other recent findings illustrate 

the integral role of autocrine factors in hepatocyte proliferation, apoptosis, survival [114], 

and transformation [88] responses to exogenous cytokine stimuli and implicate diverse 

autocrine signaling connections between cytotoxic, inflammatory, and mitogenic ligands 

in hepatocytes.  Further development of animal models and quantitative in vivo signaling 

tools will be critical to parse the complex autocrine and paracrine signaling mechanisms 

regulating autocrine signaling in hepatocytes and other liver cell types in vivo and to 

validate any therapeutic interventions directed towards the autocrine control mechanisms.  

More generally, such tools would useful to interrogate aberrant autocrine signaling 

mechanisms related to human disease and cancer [170].  This section discusses the 

motivation for and application of non-invasive molecular imaging tools to the study of in 

vivo autocrine signal transduction. 

An increasing array of molecular imaging tools are available to interrogate the in 

vivo activities of specific signaling molecules.  These molecular imaging tools are useful 

not only for use in experimental animal models but also for improved diagnostics in 

human patients.  Ideally, the study of in vivo signal transduction would focus on 

informative signaling molecules governing the key cellular behaviors, such as the 

survival–death decision process.  Amongst these key signaling molecules are a series of 

intracellular kinases, such as Akt and ERK, that serve as signaling hubs that are activated 

by a variety of growth factor and matrix stimulatory cues and promote cell survival and 

migration (see Chapter 4).  A number of molecular imaging methods have been validated 
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to study the activities of these kinases in living cells and animals.  These include 

bioluminescence and fluorescence approaches requiring stably transfected constructs that 

are predominantly activated by the activity of a kinase enzyme of interest through its 

phosphorylation of a consensus peptide sequence present on the expressed peptide [171-

173].  Unfortunately, these methods require either the intracellular delivery of the kinase-

activated peptide sequence or transfection with a vector expressing this peptide; both 

having limited potential to serve as a noninvasive molecular imaging platform for 

imaging cellular signal transduction in human subjects.  Consequently, noninvasive 

molecular imaging approaches to assess in vivo signal transduction have, to date,  focused 

on probing cells via their expression of cell surface receptors of growth factor or adhesion 

ligands associated with disease or cancer.  Amongst these probed receptors are those of 

the ErbB family of receptor tyrosine kinases, whose dysregulated signaling are implicated 

in various mechanisms of cancer progression [174] and whose activities are implicitly 

involved in the TNF–TGF-α–IL-1–IL-1ra autocrine cascade examined in Chapter 2. 

The ligands for EGFR and other ErbB receptors are expressed as membrane-

bound peptides that are proteolytically cleaved for release and eventual receptor binding.  

EGFR ligands are cleaved and released by members of the ADAM family of proteases 

with EGF processed by ADAM10 and TGF-α, HB-EGF, and amphiregulin (and also the 

inflammatory cytokine TNF) processed by ADAM17.  These proteases recognize and 

cleave the transmembrane peptide precursors to the mature ligands at conserved ~15-20 

amino acid sequences in their ectodomain regions [175].  The activity of ADAM 

proteases is controlled by phosphorylation of their intracellular domains, which is 

mediated by ERK and p38 kinase signaling [176].  Consequently, ADAM proteases act in 

part of a positive feedback loop between EGFR stimulation, ERK/p38 activation, and 

EGFR ligand release [177].  As such, ADAM10/17 proteases can serve as extracellular 

readouts of EGFR activity and its downstream signaling.  The release and autocrine 

signaling of the EGFR ligands TGF-α and amphiregulin are activated by G-couple 

protein receptor signaling, the cytokines IL-6 and TNF, and also EGFR ligands 

themselves.  The development of molecular imaging tools to assay autocrine ligand 

production (namely for EGFR and IL-1R ligands) will be an important step for providing 

quantitative assessment of multiple signal transduction pathways in vivo.  Since autocrine 
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ligands are released into circulation in only negligible quantities and receptor expression 

levels do not accurately reflect their signaling activity, the most direct and tractable target 

of noninvasive molecular imaging probes of autocrine ligand production is the activity of 

the transmembrane proteases (such as ADAM17 and ICE) that regulate their release; 

moreover, the development of multiplexible probes will critical to investigate the 

complex, inter-related autocrine signaling mechanisms.   

Initial efforts to develop multiplexible autocrine ligand protease-dependent optical 

imaging probes could focus on the proteases ADAM10 (involved in release of EGF), 

ADAM17 (involved in release of TGF-α, amphiregulin, etc.), and ICE (as known as 

caspase-1; involved in release of IL-1β).  Numerous classes of extracellular proteases 

have been targeted for activity-based optical imaging probes including calpains [178], 

cathepsins [179], MMP’s [180], and caspases [181], but ICE is the only autocrine ligand 

protease that has been previously assayed by molecular imaging [182].  To 

simultaneously interrogate these three autocrine ligand proteases, three multiplexible 

optical imaging probes could be developed: two quenched near-IR peptide-based sensors, 

each containing an NIR emitter (Cy5.5 or AF750), a NIR absorber, and protease-selective 

sequence encoding the consensus cleavage sequence for ADAM10 or ADAM17, and one 

bioluminescence sensor, whose luciferase activity is dependent on peptide cleavage by 

ICE.  These three multiplexed probes could be imaged by multichannel NIRF and would 

have some ability to be imaged in deep tissues of small animals.  The multiplexing ability 

of these probes would have to be validated in vitro using recombinant proteases and cell 

lines expressing each of the proteases (e.g. the breast cancer cell line T4-2).  

Additionally, the specificity of these probes would have to be examined using scrambled 

protease-cleavage sequences and improved specificity from consensus cleavage 

sequences could be obtained by sequence evolution strategies.  Then, these multiplexed 

probes could be evaluated in xenograft models [183], in which they could be used to 

probe not only autocrine protease activity in various stages of cancer progression but also 

be used to directly assay the efficacy of proposed anti-cancer therapies such as autocrine 

ligand protease small molecule inhibitors (e.g. TAPI-2 for ADAM10/17 and Z-VAD-

FMK for ICE) or siRNA.  These studies could be used to parse the mechanistic 
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relationships between autocrine EGFR and IL-1R signaling and cancer progression in 

xenografts and models of liver, colon, and breast cancer. 

In general, molecular imaging probes of autocrine ligand protease activities offer 

the opportunity to assay cell signal transduction via extracellularly accessible proteases 

and could be implemented in a multiplexible and noninvasive manner.  In the future, 

these probes could provide early detection of aberrant autocrine signaling mechanisms 

related to cancer and thus improve disease diagnosis.  More immediately, they will serve 

as a much-needed tool set for interrogating the role of autocrine ligand signaling in 

experiment animal models and generate new insights to its roles in tissue homeostasis 

and pathophysiology.  The improvements to multiplex nature of these probes could bring 

systems biology approaches to noninvasive molecular imaging in whole animals through 

the simultaneous and repeatable quantitative assessment of multiple signal transduction 

pathways and its ability inform interpretive and predictive multivariate models of in vivo 

signal transduction. 

 

5.2. Systems biology approaches for tissue engineering 

As discussed in Chapters 3.4.4 and 4.4.4, in vitro studies of drug-cytokine hepatotoxicity 

relationships will likely be benefited by the use of tissue-engineered hepatocyte cell 

culture systems that allow for prolonged maintenance of differentiated hepatocellular 

function and are assessable in reasonably high-throughput manner.  The findings in 

Chapter 4 present an example of the utility of large-scale cue-signal-response data 

compendia modeling to identify salient phosphoprotein signaling mechanisms governing 

drug- and cytokine-induced hepatotoxicities in primary human hepatocytes.  Considering 

the future directions of in vitro hepatotoxicity evaluations (towards more physiologically 

relevant tissue-engineered culture systems), our work motivates additional efforts to 

bring the tools and techniques of “systems”-level biology to bare on the challenges of 

investigating physiologically-complex in vitro tissue models.  This section contains a 

discussion how such systems biology approaches might be more fully implemented in 

microenvironmentally complex tissue-engineered culture systems.  
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5.2.1. Tissue engineering 

Tissue engineering is a biotechnology centered on developing materials, scaffolds, or 

devices that provide biochemical and biophysical cues to facilitate cell survival, 

proliferation, differentiation, and organization into functional three-dimensional (3D) 

tissues [184].  The field of tissue engineering began decades ago with a focus on in vivo 

therapeutic constructs, but has progressed to now include a substantial emphasis on the 

likely greater impact of providing more effective experimental systems for studying 

complex human tissue physiology and pathophysiology in vitro [185].  This direction 

emerged in part because animal models fail to capture many crucial facets of human 

physiology, notably in the areas of tissue-specific transcriptional regulation [186], drug-

induced liver toxicity [8], pathogenic infection, host immune responses, and cancer [187, 

188].  Further, though human cells cultured in standard formats can be adapted to high-

throughput assays, most scalable cell cultures lack physiologically relevant 

microenvironmental stimuli of native tissues.  Engineered tissues built with human cells 

are thus being developed for a range of application areas, including hepatic drug 

metabolism and toxicity [8, 189, 190], mammary gland morphogenesis and oncogenesis 

[191, 192], lymphoid tissue neogenesis [193, 194], and stem cell differentiation [195], 

and offer promise for scaling to the data collection demands of high-throughput screening 

and systems biology. 

 In tissues, individual cells are stimulated by a diverse set of microenvironmental 

cues that arise from adhesion to extracellular matrix (ECM) components, mechanical 

forces, and soluble signaling factors from adjacent and distant cells [185].  Together, 

these cues activate a system of cell signaling pathways whose integrated operation 

regulates cell behavioral phenotypes [196].  Resultant cell behaviors are dependent not 

only on which microenvironmental cues are present, but also on their quantitative 

amounts, spatial arrangements, and temporal sequences.  A central challenge in tissue 

engineering is to elicit and maintain desired cell behaviors through externally-applied and 

-induced chemical signals and mechanical forces in a predictable fashion.  A tremendous 

diversity of tools – including biomaterials, bioreactors, and microfabricated devices – 

have been developed to manipulate tissue microenvironments [185, 197].  Design 

principles for deploying these tools are likewise emerging, but they are primarily aimed 
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at relating the magnitude of select external cues directly to cell phenotypic behaviors 

through quantitative analysis of molecular diffusion, convection, reaction, binding, and 

consumption [185, 198].  In increasingly complex engineered microenvironments, 

detailed understanding of how the multitude of cell signaling pathways process various 

microenvironmental cues to govern their behaviors will require application of systems-

level approaches.  To this end, systems biology offers a powerful new tool for the design 

and analysis of engineered tissues. 

This discussion focuses on molecular-level models that attempt to relate 

microenvironment stimuli to intracellular signal transduction pathways and their 

regulation of cellular behavioral responses.  (For discussion of systems-level modeling of 

transcription and metabolism, see references [45, 199].)  Although some promising 

systems-level studies [195, 200-202] have been examined in contexts that capture some 

of the physiological complexity of native tissues, systems-level cell signaling-response 

measurements and models, to date, have been largely implemented in simple, 

“prototypical” experimental contexts. Consequently, we focus on how systems biology 

might be more fully integrated into the design and analysis of engineered tissues. 

 

5.2.2. Fusing tissue engineering and multivariate measurement methods 

Systems-level models require experimental data of activities of multiple cell signaling 

molecules and behavioral phenotypes across a diverse combination of treatments, 

perturbations, and time points.  Accordingly, they require cell culture systems that are 

both addressable in a high-throughput manner and amenable to multivariate measurement 

methods.  Recent advances offer promise for parallelizing the culture of 

microenvironmentally complex engineered tissues (in so-called “multicellular arrays” or 

“tissue arrays”) sufficient to meet the data demands of systems biology.  Culture arrays 

have risen out of the desire to screen phenotypes of multicellular structures in a high-

throughput manner, and have been applied to drug discovery [203] and toxicology [190] 

and combinatorial approaches to directing and maintaining cell differentiation [202, 204-

206].  Such combinatorial screens of cell differentiation have provided unexpected 

insights into relationships between multiple microenvironmental cues [205] (e.g. printed 

ECM ligands) or intracellular signals [65, 202] and the maintenance of differentiated 
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phenotypes through multiparameter analyses.  (Note that we refer to culture arrays with 

~102-103 cells per spot or well as “tissue microarrays” and those with ~105-106 cells per 

sample well as “multiwell-format tissue arrays”.)   

 We emphasize that systems biology models to date have focused on responses to 

“acute”, bolus administration of cytokines and growth factors and thus have inferred 

substantial predictive significance to the transient signals and derived time course metrics 

immediately following receptor activation [50].  However, in tissue engineered constructs 

as in physiological contexts, most cell behaviors more likely are governed by longer 

time-scale stimuli, under more “chronic”, quasi-steady-state conditions.  There might 

indeed be significant differences in relationships between cues, signals, and responses for 

chronic as opposed to acute cue treatment, as in a recent report of important 

pathophysiological differences in 2D mammary epithelial migration by autocrine ligands 

or bolus stimulation from exogenously-added ligand [107]. 

  

5.2.3. Tissue microarrays 

Efforts in developing tissue microarrays have been focused on validating consistency of 

cellular phenotypes and assays such as drug-induced hepatocyte toxicity [190, 207], stem 

cell differentiation [204], and epithelial tissue organization [208, 209], and have not been 

used to systematically examine cue- or signal-response relationships.  A tissue microarray 

system well-suited for systems biology approaches is that of mammary epithelial cells in 

microprinted Matrigel cultures [209].  Matrigel culture of mammary epithelial cells 

fosters the establishment of 3D multicellular structures that resemble in vivo mammary 

gland acini, with the development epithelial cell structures that resemble either normal or 

cancerous mammary acini depending on a well-documented variety of both 

microenvironmental cues (such as matrix mechanical stiffness and composition and 

growth factor stimulation) and oncogenic perturbations [191, 192, 210, 211].  As of yet, 

tissue microarrays have not been adapted to allow inclusion of ECM components with a 

combinatorial complexity matching that used in the 2D microprinting methods [205] 

which will be necessary for systematic investigation of cellular cue-signal-response 

relationships. 
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 Although tissue microarrays could be scaled to be amenable to lysate-based 

measurements (requiring ~105 cells), they are nonetheless appropriate for systems 

biology approaches, such as Bayesian network inference, that are based on data from 

single cells or small populations of cells examined over a multitude of conditions.  

Critical will be the adaption of single-cell multivariate measurement techniques of flow 

and image cytometry for use in 3D engineered tissues.  Multicolor flow cytometry for 

quantifying multiple phosphoproteins has been carefully validated [55] and implemented 

[56, 212] for non-adherent cells but not adherent cells.  Multicolor flow cytometry in 

adherent cells, especially from intact 3D tissues, is a significant challenge as single-cell 

isolation methods can elicit stress-related signaling themselves and thus disturb signaling 

network states.  Further, prolonged isolation requirements could restrict the ability to 

measure the highly-informative phosphorylation events that follow within minutes of cell 

stimulation.  In contrast, image cytometry does not require isolation and permits for 

immediate cell fixation, allowing for sufficient temporal resolution to measure immediate 

phosphorylation events.  Instead, it is currently limited in its ability to include more than 

~4 simultaneous single-cell measurements due technical constraints [58].  Multicolor 3D 

imaging (so-called “tissue cytometry” [57]) using confocal microscopy is not yet 

sufficiently high-throughput to capture multivariate single-cell data across hundreds of 

tissue samples in an automated fashion.  Improvements in 3D imaging with respect to 

these limitations could make it a highly attractive approach for system-level, single-cell 

data acquisition, especially in the context of engineered tissues, such as immunological 

synapse arrays [213], whose cellular behaviors are dependent on microscale patterning of 

stimulatory cues thus necessitate spatially-resolved single-cell data. 

 Immunofluorescence methods, such as in-cell westerns, which are reasonably 

high-throughput but not strictly multiplexible, could be used to measure phosphoprotein 

levels or cell phenotypes in small populations of cells (~102-103) within tissue 

microarrays.  In-cell western measurements of arrayed tissues over a large combination 

of treatment conditions, assay targets, and, likely, sample replicates could yield a data set 

sufficient for Bayesian models.  As in-cell western measurements are not multiplexible, 

multivariate data sets will require assembly from multiple independent samples of cells, 

thus obscuring the single-cell covariations of signaling activities that are particularly 
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informative in Bayesian models [56].  Consequently, a substantial set of 

microenvironmental stimuli combinations (~100) might be required for accurate 

Bayesian network inference.  Moreover, care must be taken to insure that the biological 

heterogeneity, due to the small number of cells per sample, and measurement inaccuracy, 

which often arises due to the restrictive dynamic range of in-cell westerns, does not 

confound multivariate measurement fusion.   

  

5.2.4. Multiwell-format tissue arrays 

Multiwell-format tissue arrays [8, 10] are based on 12- or 24-well culture formats and can 

accommodate ~105-106 cells per sample well (sufficient for lysate-based measurements) 

and be scaled to a moderate number of sample conditions (i.e. treatments, time points) 

and thus are suitable for a greater diversity of systems-level modeling approaches than 

tissue microarrays.  A well-developed example of these multiwell-format tissue arrays 

that utilizes a 3D microenvironment is a perfused liver cell microreactor [8, 10].  

Perfused microreactors foster the maintenance of in vivo-like function of primary 

hepatocytes [8] and/or liver sinusoidal endothelial cells [94] over a prolonged culture 

duration (~14 days) in a physiologically-relevant 3D microenvironment.  And, as such, 

have been used examine hepatic drug metabolism and enzyme induction [8] and 

sinusoidal morphogenesis [94] over physiologically-relevant time scales. 

 The larger cell numbers per sample permit lysate methods such as bead-based 

arrays [52] and multiplexed kinase activity assays [48] to be utilized in addition to 

multicolor flow and image cytometry (given the aforementioned improvements) to 

measure cell signaling activities and phenotypes in a multivariate manner.  Bead-based 

phosphoprotein arrays allow for a greater number of measureable signaling molecules as 

they are benefited by an expansive set of validated, multiplexible reagents, while kinase 

activity assays have the advantage of measuring signal transduction activity directly, 

rather than inferred via phosphorylation state.  Consequently, activity data from kinases, 

especially of those thought to be at nodes of signaling networks that integrate multiple 

pathways, are often found to be highly informative signals in PLSR cell signaling-

response models trained on protein signaling data from heterogeneous assays [50, 62].  

Practical limitations on cell material and knowledge of which protein signaling assays 
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have been informative previously [50] together suggest that PLSR models using 

multiwell-format tissue arrays might be best constructed using ~2-3 kinase assays and 

~10 bead-based phosphoprotein measurements (all from a single lysate) of proteins 

distributed across multiple cell signaling pathways.  A challenge in multivariate 

measurement of engineered liver cell co-cultures (usually containing hepatocytes and 

second liver cell type) is the correct attribution of signaling profiles to each of the 

multiple cell types present.  Flow cytometry methods can simply employ one staining 

channel to a cell type marker, but lysate based methods require less straight-forward 

approaches such as those that rely on biomolecular mixture models [214] to infer cell 

type-specific phosphoprotein profiles. 

 

5.2.5. Implementing systems-level modeling for the design and analysis of 

engineered tissues 

In contrast to the fields of genomics and proteomics, a systems biology approach insists 

that knowledge and understanding about biology resides not in databases but instead in 

models – and that given the complexity of multivariate experimental measurements these 

models must be computational in nature.  Thus, the data generated in tissue engineering 

contexts as discussed in the previous section will be most gainfully employed by analysis 

in terms of one or more of the data-driven modeling methods described earlier. 

 Data-driven models of dynamic, multivariate cell signaling and response data can 

suggest hypotheses that relate activities of signaling molecules to behavioral phenotypes 

and can be implemented to generate a priori predictions of responses to new signaling 

network profiles.   Such models are most effectively constructed on the basis of training 

across a broad landscape of conditions, including conflicting or antagonizing cues, that 

stimulate a diversity of signaling network activities and cell responses that might be 

hypothesized to comprehend a range of physiological phenotypic behaviors (see Chapter 

4 and [62, 64, 66, 68]).   Prediction of cell behavior can then be effectively interpolative 

rather than extrapolative.  A priori prediction of cell phenotypes based on signaling 

network states could lead to the identification nonintuitive combinations to signaling 

activities (through computation searches, for example) that optimally produce a desired 

cell phenotype in an engineered tissue.  Design of novel engineered tissue micro-
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environments that generate the optimal signaling network state could be furthermore 

governed by physicochemical models of receptor activation and downstream signaling, 

thus integrating mechanistic and data-driven model approaches [72] to design features for 

fostering desired tissue phenotypes.  Moreover, models of cell behavior within a tissue 

engineered to mimic a particular physiology or pathophysiology could yield models 

capable of predictions of drug efficacy and toxicity in physiologically-relevant, tissue-

specific contexts.  In particular, such approaches could be used to select target pathways 

for interfering with 3D cell migration behaviors critical to cancer metastasis [215, 216] 

and matrix stiffness-induced mammary acinar oncogenesis [210].  For instance, 

successful a priori PLSR model prediction of cell phenotypic changes due to perturbation 

by one or more small molecular inhibitor(s) has been verified for compounds with 

specified kinase targets that lie upstream of protein signal(s) contained in the model and 

implemented by “computationally inhibiting” only the measured signals in a subset of the 

training data and then comparing the predicted results to new experiment observations 

(see [64, 66] and Chapter 4).  Perturbations that affect signaling networks more globally 

(therefore less predictably) such as growth factor receptor overexpression [68], disruption 

of autocrine ligand signaling [62], and RNA interference [67] have been evaluated using 

complete re-collection of signaling data rather than the straightforward estimation 

methods successful for small molecular inhibitors.  When measuring multiple diverse 

kinds of cell phenotypic behaviors, as is desired for understanding complex tissue 

physiology, constructing separate submodels for the various behaviors might allow for 

easier interpretation of the various respective signaling-response relationships.  

Decision tree and Bayesian network models can extend predictive capabilities to 

causality, more strongly indicating molecular mechanisms.  For example, a Bayesian 

network model for the signaling network regulating differentiation versus self-renewal 

processes of mouse embryonic stem cells permitted experimentally validated prediction 

of effects of Raf-1 independent of the canonical Raf–MEK–ERK pathway [217].  

Analogously, one can envision developing a similar predictive capability for signals 

governing lineage specification of mesenchymal stem cells cultured in complex 3D 

microenvironments containing varying adhesion ligands, matrix rigidities, and growth 

factors [217].  Likewise, predicted signaling network influences could suggest 
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microenvironmental cue and pharmacological intervention combinations for influencing 

osteoblast specification for implantable bone regeneration therapies [217].  

 Moreover, Bayesian network inference approaches could ask fundamental 

questions about the perhaps subtle differences in signaling network structure and function 

in cells of varying lineages and disease states and how those networks diverge from 

canonical models [212].  Such understanding could drive clinical therapies that are 

motivated by context-specific cell signaling networks.  Bayesian approaches could be 

employed in the challenging task of investigating the crosstalk between multiple cell 

types in healthy or diseased tissues.  By engineering tissue arrays that contain multiple 

interacting cell types, such as the immune system cells within a lymph node [193] or the 

varied cells within the liver [94], and measuring both cell type-specific phosphoprotein 

signaling and levels of soluble or matrix-related signaling factors, Bayesian network 

inference models can be constructed to provide mechanistic hypotheses for complex 

cellular crosstalk in tissues.  
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Figure 5-1. The scope of measurement and modeling in systems biology and tissue engineering. The 
present and future implementation of systems biology and tissue engineering are depicted with respect to: 
biological context (ranging from prototypical cell lines to engineered and native tissues to whole 
organisms); modeling detail (ranging from statistical models to influence models to mechanistic models); 
and molecular detail (ranging from a single protein to the entire proteome).  To date, tissue engineering has 
been focused on the recapitulation of the physiological complexity of native tissues but has not been 
studied in great molecular detail nor has been fused with systems-level computational modeling efforts.  In 
contrast, systems-level computational models, such as partial least-squares regression (PLSR), decision 
trees (DT), Bayesian networks (BN), and physicochemical (PC) models, can interpret a variety of 
molecular relationships governing cellular behavior but have been studied largely in a prototypical 
biological context (e.g. cell lines).  Future fusion of tissue engineering and system biology will require 
adaption of tissue engineering to the measurement demands systems-level computational models.  
Considering these demands, PLSR, DT, and Bayesian models provide attractive candidates for analysis of 
cell behaviors within engineered tissues in the near future.  More substantial progress in tissue engineering 
and multivariate measurement technologies will be required for implementation of models with more 
mechanistic and molecular detail. 
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Appendix A 

 
Abbreviations 
 

2D   two-dimensional 

3D   three-dimensional 

ADAM  a disintegrin and metalloproteinase protein 

Adv   adenoviral vector 

Akt   serine-threonine protein kinase B (PKB)/Akt  

ANOVA  analysis of variance 

AP-1   activator protein 1 

APAP   acetaminophen 

ASK1   apoptosis signal-regulating kinase 1 

ASP   aspirin 

BC   bile canaliculi 

BCA   bicinchonicic assay 

BID   BH3 interacting domain death agonist 

BN   Bayesian network 

BrdU   5-bromo-2’-deoxyuridine 

BSA   bovine serum albumin 

BSEP   bile salt export pump 

BUS   buspirone 

β-gal   β-galactosidase 

C/EBP   CCAAT-enhancer-binding protein 

CAR   coxsackie- and adenovirus-receptor 

CHL   chlorpromazine 

CIM   cimetidine 

CLA   clarithromycin 

CLO   clomipramine 

Cmax   average plasma maximum drug concentration 
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CM-H2DCDA  5-(and-6)-chloromethyl-2’7’-dichlorodihydrofluorescein diacetate 

    acetyl ester 

CREB   cAMP response element binding 

CSR   cue-signal-response 

DILI   drug-induced liver injury 

DMEM  Dulbecco’s Modified Eagle’s Medium 

DMSO   dimethyl sulfoxide 

DRAQ5  1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-   

    dihydroxyanthracene-9,10-dione 

DT   decision tree 

ECM   extracellular matrix 

EGF   epidermal growth factor 

EGFR   epidermal growth factor receptor 

ELISA   enzyme-linked immunoabsorbant assay 

EMEM  Eagle’s minimum essential medium 

ERK   extracellular signal-regulated kinase 

FADD   Fas-associated death domain protein 

FBS   fetal bovine serum 

G2   HepG2 cells 

gp130   glycoprotein 130 

Grb-2   growth factor receptor-bound protein-2 

GSH   glutathione 

GSK-3α/β  glycogen synthase kinase-3α/β 

HB-EGF  heparin-binding EGF-like growth factor 

HBSS   Hank’s Balanced Salt Solution 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HGF   hepatocyte growth factor 

HGM   hepatocyte growth medium 

HH   primary human hepatocytes 

HNF   hepatocyte nuclear factor 

HSP27   heat shock protein 27 
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ICE   also known as caspase 1 

IFN-γ   interferon-γ 

IKK   inhibitor of nuclear factor-κB (IκB) kinase 

IL-10   interleukin-10 

IL-1R   interleukin-1 receptor 

IL-1ra   interleukin-1 receptor antagonist 

IL-1α/β  interleukin-1α/β 

IL-6   interleukin-6 

IL-6R   interleukin-6 receptor 

iNOS   inducible nitric oxide synthases 

IRS-1   insulin receptor substrate-1 

IκB-α   inhibitor of nuclear factor-κB-α 

JAK   Janus kinase 

JNK   c-Jun N-terminal kinase 

LDH   lactate dehydrogenase 

LEV   levofloxacin 

LPS   lipopolysaccharide 

mBCl   monochlorobimane 

MEK   MAPK-ERK kinase 

MEKK1  MAPK-ERK kinase kinase 1 

MEX   mexiletine 

MMP-3  matrix metalloproteinase-3 

MOI   multiplicity of infection 

MRP2   conjugate export pump 

MtMP   mitochondrial membrane potential 

mTOR   mammalian target of rapamycin 

NEF   nefazodone 

NF-κB   nuclear factor-κB 

NIM   nimesulide 

NIPALS  non-linear iterative partial least-squares 

NO   nitric oxide 



 151

NOR   nortriptyline 

NPC   non-parenchymal cell 

NSAID  non-steroidal anti-inflammatory drug 

OPLSR  orthogonal partial least-squares regression 

p38   p38 mitogen-activated protein kinase (MAPK) 

p70 S6K  p70 S6 protein kinase 

p90 RSK  p90 ribosomal S6 kinase 

PARP   poly(ADP-ribose) polymerase 

PBS   phosphate buffered saline 

PBS-T   PBS with 0.1% Tween-20 

PBS-TB  PBS with 0.1% Tween-20 and 1% BSA 

PC   principal component 

PDK1   phosphoinositide-dependent kinase-1 

PFA   paraformaldehyde 

PH   Pleckstrin homology 

PHx   partial hepatectomy 

PI3K   phosphoinositide 3-kinase 

PLSR   partial least-squares regression 

RAN   ranitidine 

RFU   relative fluorescence units 

RH   primary rat hepatocytes 

RIL   riluzole 

ROS   reactive oxygen species 

SEC   sinusoidal endothelial cell 

SEM   standard error of the mean 

SHP-2   SH2-domain-containing protein tyrosine phosphatase-2 

SOCS3  suppressor of cytokine signaling-3 

STAT3  signal transducer and activator of transcription-3 

TACE   tumor necrosis factor-α-converting enzyme 

TCPS   tissue culture polystyrene 

TEL   telithromycin 
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TGF-α   transforming growth factor-α 

TGF-β1  transforming growth factor-β1 

TMRM  tetramethyl rhodamine ester 

TNF   tumor necrosis factor-α 

TNFR   tumor necrosis factor receptor 

TRADD  TNFR1-associated death domain protein 

TRAF-2  TNFR-associated factor-2 

TRO   trovafloxacin 

v.p.   viral particle 

VIP   variable importance of projection 

WEM   William’s E medium 

XIAP   X-linked inhibitor of apoptosis protein 
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Appendix B 

 
Multiplexed bead-based phosphoprotein assays 

 
B.1. Lysis of primary rat hepatocytes in single-layer collagen gel cultures 

Rat hepatocytes were cultured on single-layer collagen gels and treated as described in 

Chapter 2.2.3.  At the desired time point, cells were placed on ice and culture medium 

was removed and centrifuged at 1000g for 4 minutes at 4°C to pellet non-adherent cells.  

Adherent cells and pelleted non-adherent cells were lysed with Phosphoprotein Lysis 

Buffer (Bio-Rad, Hercules, CA) for 20 minutes at 4°C.  Adherent cell lysates were 

collected by vigorous pipetting but without scrapping to avoid significant removal of the 

underlying collagen gel.  Lysates were clarified by centrifugation at 16,000g for 15 

minutes at 4°C.  Clarified lysates were analyzed using a bicinchonicic assay (Pierce, 

Rockford, IL) to determine the total protein concentration.  In each culture plate, a well 

without cells was maintained, lysed, and analyzed to calculate the protein contribution 

from the collagen gel alone and estimate the cellular protein concentration.  The gel-only 

protein concentration accounted for ~15-25% of the total protein concentration in wells 

containing cells and was subtracted from the protein concentrations from wells contains 

cells in a plate-specific manner to estimate the cellular protein concentration in each 

lysate sample. 

 

B.2. Lysis of primary human hepatocytes in Matrigel-overlay cultures 

Human hepatocytes were maintained in Matrigel-overlay cultures and treated as 

described in Chapter 3.2.3.  At the desired time point, cells were placed on ice and culture 

medium was removed.  Matrigel overlays were partially dissolved by adding ice cold 

PBS for 15 minutes at 4°C.  PBS was removed and cells were lysed with Phosphoprotein 

Lysis Buffer for 20 minutes at 4°C.  Lysates were collected by scrapping and vigorous 

pipetting.  Lysates were clarified by centrifugation at 16,000g for 15 minutes at 4°C.  

Clarified lysates were analyzed using a bicinchonicic assay to determine the total protein 

concentration.  In each culture plate, a well without cells was maintained, lysed, and 
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analyzed to calculate the protein contribution from the Matrigel overlay alone and 

estimate the cellular protein concentration.  The Matrigel-only protein concentration 

accounted for ~10-20% of the total protein concentration in cellular samples containing.  

An average of Matrigel-only protein concentrations from all plates in the same 

experiment was subtracted from the protein concentrations from wells contains cells to 

estimate the cellular protein concentration in each lysate sample.  (Compared to the lysis 

of rat hepatocytes on single-layer collagen gels, lysis of Matrigel-only wells showed less 

plate-to-plate correlation so the average across multiple plate in the same experiment was 

used to minimize error.) 

 

B.3. Lysis of HepG2 cells 

HepG2 cells were cultured and treated as described in Chapter 3.2.3.  At the desired time 

point, cells were placed on ice and culture medium was removed.  Cells were lysed with 

Phosphoprotein Lysis Buffer for 20 minutes at 4°C.  Lysates were collected by scrapping 

and vigorous pipetting.  Lysates were clarified by centrifugation at 16,000g for 15 

minutes at 4°C.  Clarified lysates were analyzed using a bicinchonicic assay to determine 

the total cellular protein concentration.  Adjustments for protein contributions from gel 

substrates (as in Chapters B.1 and B.2) were unnecessary. 

 

B.4. Bead-based phosphoprotein assays 

Bio-Plex bead-based assays (Bio-Rad) were used to quantify the following 

phosphoproteins: p-Akt (Ser473), p-CREB (Ser133), p-c-Jun (Ser63), p-GSK-3α/β 

(Ser21/Ser9), p-IκB-α (Ser32/Ser36), p-IRS-1 (Ser636/Ser639), p-ERK1/2 (Thr202/Tyr204, 

Thr185/Tyr187), p-Histone H3 (Ser10), p-HSP27 (Ser78), p-JNK (Thr183/Tyr185), p-MEK1 

(Ser217/Ser221), p-STAT3 (Ser727), p-STAT6 (Tyr641), p-p38 (Thr180/Tyr182), p-p53 (Ser15), 

p-p70 S6 kinase (Thr421/Ser424), and p-p90 RSK (Thr359/Ser363).  Bio-Plex assays were 

conducted per manufacturer’s recommendations on a Luminex 200 instrument (Luminex, 

Austin, TX) with protein lysates loaded in technical duplicate.  Cellular protein 

concentrations were adjusted by dilution of clarified protein lysates (following any 

necessary subtraction for estimated gel contributions to the total protein concentration) in 

Phosphoprotein Lysis Buffer.  Each phosphoprotein assay was individually validated for 
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each cell type using multiple positive control treatments over a range of cellular protein 

loading concentrations (0-20 μg cellular protein per assay well). 

Whereas some phosphoprotein assays demonstrated robust linearity across all 

protein loading concentrations (Figure B-1A), other assays showed problematic 

saturation effects.  One type of saturation effect was related to saturation of the 

instrument’s fluorescence detector, usually occurring for samples with >20,000 relative 

fluorescence units (RFU).  This detector saturation effect was observed for p-Akt (Figure 

B-1B) and p-HSP27 (data not shown) assays.  To avoid this saturation effect, assays were 

loaded at protein concentrations lower at <10 μg/well and/or under low PMT detector 

mode.   

A second type of saturation effect was related to saturation of the capture and/or 

detection antibody on the bead-based assay.  In this saturation effect, increasing protein 

loading amounts from a given sample biological resulted in a plateauing in assay 

fluorescence detection at fluorescence levels lower than detector saturation.  This 

antibody saturation effect was observed for p-IκB-α (Figure B-1C) and p-ERK1/2 (data 

not shown) assays.  To avoid this saturation effect, assays were loaded at consistent 

protein concentrations as relative phosphoprotein detection levels (i.e. fold-change versus 

the untreated samples) were well-maintained within a given protein loading concentration 

(data not shown). 

A final consideration made for phosphoprotein assay validation was to select a 

protein loading concentration that allowed for robust fold-change consistency and 

maximal assay dynamic range.  In considering this, we found that even for the same 

phosphoprotein assay, different cell types yielded distinctly different optimal loading 

concentrations.  For example, rat hepatocytes (optimal at 5 μg/well) versus HepG2 cells 

(optimal at 10 μg/well) for the p-Akt assay (see Figure B-1D-E).  Using these 

considerations to avoid assay saturation effects and to yield robust fold-change 

consistency and maximal assay dynamic range, we selected the following cellular protein 

loading concentrations: 10 μg/well for all phosphoprotein assays for rat hepatocyte, 

HepG2, and human hepatocyte lysates, except 5 μg/well for p-Akt, p-c-Jun, and p-

ERK1/2 assays for rat hepatocyte lysates. 
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To fuse raw fluorescence data from multiple technical assay plates, multiple (~3-

5) positive control treatments were loaded on each assay plate to scale raw fluorescence 

data to self-consistent relative values (Figure B-1F).  Positive control lysates were used 

from the same cell type as the sample lysates and were selected to contain at least one 

control condition that elicited roughly maximal phosphoprotein activation for every 

multiplexed phosphoprotein assayed simultaneously. 
 

 
 
Figure B-1.  Validation of multiplexed bead-based phosphoprotein assays. Cell lysates were prepared 
under various treatment conditions and assayed as described in Appendix B. (A) Linearity validation of 
bead-based p-GSK-3α/β assay using rat hepatocytes lysates loaded at 0 to 15 μg/well cellular protein. (B) 
Linearity validation of bead-based p-Akt assay using rat hepatocyte lysates loaded at 0 to 20 μg/well 
cellular protein. Note the detector saturation for samples with raw fluorescence values at >20,000 relative 
fluorescence units (RFU). (C) Linearity validation of bead-based p-IκB-α assay using HepG2 lysates 
loaded at 0 to 20 μg/well cellular protein. Note the antibody saturation for samples loaded at >10 μg/well 
cellular protein. (D-E) Linearity of bead-based p-Akt assay using rat hepatocyte (D) or HepG2 (E) lysates 
loaded at 0 to 20 μg/well cellular protein. Note discrepancy between cell types in the p-Akt level for the 
untreated samples and similar detector saturation effects at >15 μg/well for the EGF-treated samples. (F) 
Plate-to-plate normalization standards for bead-based p-JNK assay using rat hepatocyte lysates loaded at 10 
μg/well.  In panels (A) to (F), data is presented as the mean ± standard deviation of two technical replicates.  
In panel (F), the data on the y-axis represents mean ± standard deviation of four assay plates. 



 157

Appendix C 

 
Human hepatocyte donor information 

 
Table C-1.  Human hepatocyte donor information 

 

     
 

Donor information and history 

Donor 
ID Experiment Data 

in 

Culture 
start 
date 

Lot #1 

 

Gender, 
age Obesity2 

Smoking, 
drug, 

alcohol 
use 

Disease, 
viral 

infection 

A 

Drug-cytokine 
compendium, 

sub-lethal 
imaging data 

Figs. 
3-3, 
3-7 

11/08/07 Hu0697 

 

Female, 
64 yrs old 

Not 
obese, 

BMI 24 

None 
known 

None 
known3 

B 90-drug study Fig. 
3-9 04/23/08 Hu0793 

 

Female, 
33 yrs old 

Obese, 
BMI 37 

None 
known 

None 
known 

1 CSR training 
data set 

Fig. 
4-2 05/20/07 Hu4000 

 

Female, 
4 yrs old 

Not 
obese, 
BMI 

unknown 

None 
known 

None 
known 

2 CSR test data 
set 

Fig. 
4-6 10/18/08 Hu0921 

 

Male, 
38 yrs old 

Not 
obese, 

BMI 25 

None 
known 

None 
known 

3 
MEK and p38 
inhibitor IC50 

study 

Fig. 
4-10 10/17/08 Hu0920 

 

Female, 
52 yrs old 

Not 
obese, 

BMI 21 

None 
known 

None 
known 

4 

Kinase and 
autocrine 

inhibitor drug-
cytokine toxicity 

study 

Figs. 
4-11, 
E-1 

11/13/08 Hu0935 

 

Female, 
54 yrs old 

Not 
obese, 

BMI 20 

None 
known 

None 
known 

 
1Lot number assigned by CellzDirect, Inc. 
2BMI = body mass index. A BMI of 30 or greater is generally considered obese. 
3No known history of, or exposure to, Hepatitis B, Hepatitis C, cirrhosis, biliary disease or HIV. Not 
serology-tested. 
 



 158

Appendix D 

 
Generation of an orthogonal partial least-squares regression model 
 
 

 
 
Figure D-1.  Comparison of PLSR and OPLSR models. A partial least-squares regression (PLSR) model 
was generated from the CSR data compendium in Figure 4-2 using the NIPALS algorithm in SIMCA-P 
software (Umetrics, Inc., Kinnelon, NJ) following standard methods [62-64, 152, 153]. The PLSR model 
was generated using four principal components under standard optimization criteria [63], and its model 
scores (A), loadings (B), and cross-validated predictions (C) are plotted. The calibrated PLSR model was 
then subjected to a principal-component-space linear transformation by rotating the projection (in 4-
dimensionl principal-component-space, with only the first two PC’s shown in [A] and [B]) of the single cell 
death response variable completely into the first principal-component to allow for simplified interpretation 
of model loadings (E) and scores (B), thus yielding an “orthogonal” PLSR (OPLSR) model [154]. The 
signal (X) model loadings and model scores were similarly rotated. The OPLSR model demonstrated 
equivalent cross-validated model predictions and model fitness (F) as the original PLSR model (C). 
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Appendix E 

 
Role of autocrine signaling in drug- and cytokine-induced 

hepatotoxicity 
 

Based on the Adv/TNF-induced rat hepatocyte apoptosis findings in Chapter 2, it was 

speculated that autocrine TGF-α and IL-1 ligands may control drug/cytokine synergies.  

An initial examination in human hepatocytes (donor #4) did not show autocrine TGF-α or 

IL-1 ligand control of drug-cytokine hepatotoxicity synergy (Figure E-1).  It is possible 

that autocrine signaling control of drug/cytokine-induced hepatotoxicity can be perturbed 

only under: 

• sub-saturating TNF dosing concentrations (as in Figure 2-6J for Adv/TNF-

induced hepatocyte apoptosis); 

• drug/cytokine dosing conditions showing a greater synergy with TNF co-

treatment (such as trovafloxacin); and/or  

• other cytokine treatments such as TNF + IFN-γ (as in [77]) or TNF + LPS. 
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Figure E-1.  Autocrine ligand and kinase inhibitor perturbations of drug/cytokine hepatotoxicity synergy. 
Human hepatocytes (from donor #4) were cultured as described in Chapter 4.2. Cells were treated with 
drugs (13 μM clomipramine [B], 2.1 mM nimesulide [C], 10 μM nortriptyline [E], or 0.25% DMSO control 
[A, D]) ± 100 ng/ml TNF or a cytokine mix (20 ng/ml IL-1α, 10 μg/ml LPS, 100 ng/ml TNF, and 20 ng/ml 
IL-6). After 24 or 48 hours, conditioned medium samples were assayed for LDH release. To inhibit MEK 
kinase activity, cells were pretreated with 10 μM U0126 or 1 μM PD325901 one hour before drug/cytokine 
stimulation.  To inhibit p38 kinase activity, cells were pretreated with 1 μM PHA-666859 or 1 nM PHA-
818637 one hour before drug/cytokine stimulation. To inhibit autocrine EGFR ligand activity, cells were 
pretreated with 5 μg/ml anti-TGF-α neutralizing antibody (data not shown) or 10 μg/ml c225 monoclonal 
antibody one hour before drug/cytokine stimulation.  To inhibit autocrine IL-1 activity, cells were 
pretreated with 10 μg/ml recombinant human IL-1ra one hour before drug/cytokine stimulation. Data are 
presented as the mean ± SEM of eight biological replicates. Drug-cytokine co-treatment conditions that 
elicited supra-additive hepatotoxicity synergy, evaluated as described in Chapter 4.2.10, are denoted as (*).  
Differences between uninhibited and inhibitor pretreatments are labeled as significant (‡) if P < 0.05 by a 
Student’s t test. Autocrine ligand and kinase inhibitor pretreatments did not significantly perturb cell death 
responses in the absence of cytokine mix co-stimulation and thus are not shown. 
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