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Abstract

Inspired by electromagnetically induced transparency (EIT), cavity induced trans-
parency (CIT) uses a cavity rather than a laser to couple a ground state with the
excited state of a three-level system. In this thesis, I discuss the theory behind CIT
and present the progress in our current experiment aimed at achieving CIT. In par-
ticular, I discuss the technical aspects of the experiment and give an overview of
our experimental setup. I conclude with preliminary data on the waist-size of the

sideprobe beam on the atomic ensemble trapped in an optical lattice. We measure
the beam size at our ensemble to be around 5pm. Although we have not yet measured
the size of the atomic cloud, we expect this beam size to be smaller than the atomic
cloud, and hence our beam is maximally interacting with the atoms.
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Chapter 1

Introduction

Electromagnetically induced transparency (EIT) is a phenomenon in which the effect

of a medium on a electromagnetic field propagating through is eliminated [13]. It is a

dramatic demonstration of quantum interference between radiative transitions in an

atom. EIT schemes require a 3-level system. One such scheme, known as a A scheme

is shown in figure 1-1. This configuration consists of two ground states |1) and 12)

each coupled to an excited state 13) by seperate lasers with coupling strengths Q1

and Q2 , respectively. Consequently, the probability amplitudes of 1) and |2) both

contribute to the probability amplitude of 13). When the detunings of both lasers

are equal, the probability amplitude of 13) is zero due to quantum interference. This

means that the absorption profile for one field is modified by the presence of a second

field so that there is a narrow dip in the center of the absorption peak, where there

would normally be maximum absorption!

Our experiment is in the spirit of EIT. Instead of using a laser beam to couple

the |2) and 13) states, we will use a cavity. Rather than using electromagnetic fields

to induce transparency, we use the cavity to induce transparency. Fittingly, this is

called cavity induced transparency (CIT). CIT allows us to explore the interactions of

an ensemble of atoms strongly coupled to a cavity. In our experiment, we use cesium

atoms and probe on different hyperfine states of the 62S 1/ 2 - 62P3/ 2 line.

In Chapter 2, we discuss the semiclassical and quantum analysis of the two-level

atom. We derive results that will be used in later sections. In Chapter 3, we discuss
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Figure 1-1: 3-level Lambda system

laser cooling and trapping techniques relevant to our experiment. Chapter 4 first

presents the theory behind CIT and then discusses the experimental setup and tech-

nical aspects of the experiment. We also present some promising preliminary data.

Chapter 5 ends with the conclusion.



Chapter 2

Atom-Field Interactions: The

Two-Level Atom and Cavity QED

In this chapter, we examine the effects of a time-dependent external electromagnetic

field on a two-level atom. Although an atom has an infinite number of bound states,

the two-level atom problem is still of practical interest. When the external field is

weak and near-resonance with a single atomic transition, we can neglect transitions to

other levels and approximate an atom as a two-level system. There are two formalisms

commonly used to describe the interaction between a two-level atom and an external

field. We begin with the semiclassical theory, which treats the atom as a quantum

two-level system and treats the field classically. A quantum mechanical treatment

of the atom allows us to examine quantum coherences between the two levels and

gives results we later use when examining dipole traps. However, the semiclassical

treatment does not suffice. There are effects, such as the collapse and revival of

atomic populations in the two states, that require a quantized field. Furthermore,

more immediately related to our experiment, atom-photon interaction in a cavity is

modeled by the interaction between an atom and a single mode of the quantized field.

Hence, we also discuss a fully quantum theory, where both the atom and field are

treated quantum mechanically.



2.1 The Two-Level Atom

Let the atom have ground state 1l) and excited state 12) with energy difference hwo.

To model the illumination of the atom by a laser, we assume a monochromatic classical

field with frequency w:

E(t) = Eo cos (wt)2 =e" + E*eiWt (2.1)

where we have decomposed the electric field into its rotating components. Addition-

ally, E is taken to be a vector. Note that we have made the dipole approximation:

we have neglected the spatial dependence of the electric field by assuming that the

electric field spatially varies on a much longer length scale than the size of the atom.

This is appropriate in the case of optical transitions since atom size is on the order of

angstroms while optical wavelengths are on the order of hundreds of nanometers [1].

The electric field induces and interacts with the atomic dipole, represented by

operator d ei. This operator can be conveniently expressed as

d = In') ('|dn) (n- = |n') (n(nI' dIn) (2.2)
n,n' n,n'

Summing only the two relevant levels and substituting pnn, - n'ldjn), we arrive at

d =P12|1)(21 + p21 2)(11 (2.3)

The Hamiltonian of the atom-field interaction, HAF, is given by the usual electric

dipole Hamiltonian, HAF =-d -E. Summing the atomic Hamiltonian HA and atom-

field interaction Hamiltonian HAF gives the total Hamiltonian:

H = H A + HAF 0 hwo 2)(2- - (P121l)(2 + Y2112)K1I) . (ee' ± £*eiw) (2.4)

Using the Schroedinger equation ihl+) = HIl@) on the atomic state IV) = c1(t)|1) +



c2(t)|2) gives

2 (t) --iwoc2(t) + ( + *eimt)p*c1(t)
h (2.5)

di(t) =(Ee-iwt + E*e''t)c2(t)

where we have defined y = p12 (and hence, P* =P 2 1 .) We can simplify the above

equations by transforming into a frame rotating with the electric field. This is equiv-

alent to substituting c2(t) = j 2(t)e-ft. The equations of motion become

a2(t) =iho 2(t) + (E + E*e2 iwt )c1(t) (
h (2.6)

a1(t) - (E* + se-2iwt)p*a2(t)

After this transformation, we find terms multiplied by e*2iwt. Since we are interested

in dynamics that occur on timescales longer than the optical frequency O, these terms

can be neglected as the oscillations will average to zero. This is called the rotating

wave approximation (RWA) and is valid when the field is weak and 6 - w-wo < w, wo.

The equations of motion then become:

2 (t) = f o 2 (t) + iQcI(t) (2.7)

a1(t) = iQa2(t)

where Q - L. We can uncouple and solve the differential equations in 2.7 by differ-

entiating the expression for di (t) and then substituting the expression for 62 (t). Using

intial conditions ci(O) - 1 and c2 (0) = 0, we arrive at

Q. Q't
c2(t) -- sin -Q' 2 (2.8)Q't 6 . 't
c1(t) cos 2 - sin

2 Q/ 2

where Q' _ v 2+62.

Squaring the amplitudes gives us the probability of an atom occupying the excited



and ground states:

Q2  
2 Q't

Pe = sin
e Q2 Q't 2 62 ' (2.9)

Pg =cos 2 Q 2  2

These expressions tell us that the electric field causes the atom to oscillate between

states 1l) and 12), a phenomenon termed "Rabi flopping."

Furthermore, after moving to the rotating frame and making the RWA, we can

write the Hamiltonian in matrix-form:

-h -26 Q
(2.10)

2 Q 0

We diagonalize 2.10 to find the eigenengergies and eigenstates of the coupled Hamilto-

nian. The new eigenstates are mixtures of the bare atomic states. The eigenenergies

are

E1 ,2 = -(-6 i Q') (2.11)
2

Hence, another effect of the electric field is to shift the energies of 1) and 12) closer

together for positive detuning 6 or further apart for negative detuning 6.

2.2 Two-level Atom in a Cavity

Although many of the phenomena observed in atomic physics can be explained by the

semi-classical theory, there are also many effects that require a quantum treatment

of the field. Most basically, a quantized field introduces the concept of photons or

quanta of energy. The eigenstates of the field Hamiltonian correspond to the number

of photons present while the eigenvalues correspond to the total energy of the photons

present. Furthermore, we know that an excited atom can transition to a lower energy

state by emitting a photon even in the absence of an electromagnetic field. This

"spontaneous emission" occurs due to atomic interactions with vacuum modes of the

field-a result that can only be explained by a quantized field. In this section, we begin



by quantizing the electromagnetic field, closely following the procedure in reference

[2]. Next, we derive the Jaynes-Cummings Hamiltonian, which models single-photon

processes due to atom-photon interactions in a high-finesse cavity.

2.2.1 Quantization of electromagnetic fields

Consider an electric field inside a large cavity of length L and volume V. The normal

modes of this cavity are running waves with wavevectors k, 2 ,rj where

(1, 2, 3...) is the mode number and a = (x, y, z) refers to the polarization direction.

For convenience, from now on let the index j include information about both the mode

number and the polarization direction. An electric field polarized in the x-direction

propagating in the z-direction can be expressed in terms of these eigenmodes as

Ex(z, t) qjeij (2.12)

where qj is the mode amplitude and w3j is the cavity resonance frequency. Letting

A = ,the corresponding magnetic field given by Maxwell's equations is

By (z, t) =-IE I Aj eikjz (2.13)

We arrive at the classical Hamiltonian for the field inside the cavity by integrating the

energy density due to the electric and magnetic fields over the volume of the cavity:

H - U dV(EoE2+ B2)
2 p (2.14)+ q

Equation 2.14 is equivalent to the Hamiltonian of a set of harmonic oscillators with

position qj, frequency og, and unit mass. Hence, the problem of field quantization

is identical to the problem of harmonic oscillator quantization, where we identify qj

with the position operator qj and q, with the momentum operator pj. Consequently,



we obtain:
1

Hcav h wj (>j + ) (2.15)

where 6j and t are the standard creation and annihilation operators for mode j. In
this context, & annihilates a photon and di creates a photon in the cavity.

Writing q in terms of the annihilation and creation operators gives the electric

field with polarization vector cc, in terms of a. and at as

( = ca C (5 + t)6 eikj.r (2.16)

=ec, + Eel (2.17)

where s =wc ajekj-r

2.2.2 The Jaynes-Cummings Hamiltonian

Interactions between a single atom and a single mode field can be experimentally

realized by using a high-finesse cavity to isolate a single mode field (the "cavity

mode" field) and confine a single atom. The total Hamiltonian for this system is the

sum of the atomic, field, and atom-field interaction Hamiltonians:

1
ft A + F + -f AF hwo2)2 + hwc (&t + ) + AF (2.18)

2

where the cavity mode has frequency we with field operators a and at. As in the

semi-classical case, the atom-field interaction Hamiltonian is a dipole Hamiltonian

HAF= -d -E, where E takes the form of 2.16. We find four terms after taking the

dot product:

at|)I(2|: Atom decays and emits a photon

a|2)(1|: Atom is excited and absorbs a photon

0t|2)(K1: Atom is excited and emits a photon

6|1)(2|: Atom decays and absorbs a photon



The first two processes do conserve energy while the last two processes do not conserve

energy and can be neglected. This situation is equivalent to the RWA approximation

in the semi-classical theory and is valid under the same conditions.

After making the RWA approximation, the atom-field interaction Hamiltonian is

HAF = -hg(|2)(1| + it|1)(2|) (2.19)

where g = eikr is the cavity QED coupling constant (which is analogous to

Q in the semi-classical picture.) This gives the total Jaynes-Cummings Hamiltonian

as
1

H hwol2)(21+ hwc(6ft+ -) -hg(a12)(1|+ t1)( 2 1) (2.20)
2

We can investigate the dynamics of the Jaynes-Cummings model with the same pro-

cedure used in the semi-classical model. Written in the basis of the the uncoupled

Hamiltonian, the state vector is 1) = E ci,n(t)|1, n) + c2,,,2, n). From equation

(2.19), we see that the only possible transitions are between states 11, n + 1) and

12, n). The transition from 11, n + 1) to 12, n) corresponds to the atom in the ground

state 1l) with n + 1 photons in the cavity absorbing a photon, which results in an

excited atom in the 12) state with n photons in the cavity. Applying Schroedinger's

equation and projecting with (2, nj and (1, n+ 11, we obtain the following amplitudes:

a2-n = -i(wo + nwc)c 2,n + ig n + 1c1 ,n+1  (2.21)

a1,n+1 = -i(n + 1)wcci,n+i + ig in + 1C2,n

This looks a lot like our amplitude equations in (2.7) from the semi-classical model.

In fact, the two are formally equivalent with a Rabi frequency Qn = 2gvin + 1 and

detuning wc - wo = 6. Like the semi-classical model, the eigenstates of the Jaynes-

Cummings Hamiltonian are mixtures of the uncoupled states, 11, n + 1) and 12, n),

and the off-resonant Rabi frequency is Q' = n + 62 4g 2(n +1) + 62.
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Chapter 3

Laser Cooling and Trapping

Laser cooling and trapping are integral tools in the field of atomic physics. Cooling

and trapping atoms allows us to explore ultra-low energy regions and gives us un-

precedented control over atomic motion. In this chapter, we begin with the most basic

cooling scheme, Doppler cooling, which damps the velocity of the atoms. We next

discuss the magneto-optical trap (MOT), which uses magnetic and optical fields to

provide both cooling and a confining potential. Polarization gradient cooling (PGC)

cools atoms below the Doppler cooling limit by using the polarization gradient result-

ing from counterpropagating beams and the multilevel structure of atoms. Finally,

we discuss the optical dipole trap, optical lattices, and derive the axial and radial trap

frequencies. This order roughly mimics the order in which we would experimentally

proceed when loading a dipole trap.

3.1 Doppler Cooling

Qualitatively, Doppler cooling works by using two counterpropagating beams to illu-

minate an atom. The frequency of both beams is detuned slightly below a specific

atomic transition frequency. If an atom moves with velocity v toward a beam with

wavevector k and assuming colinear motion, the atom will see the frequency of the

beam increase by kv due to the Doppler effect. Similarly, the atom will see the

frequency of the beam it moves away from decrease by kv. Since the detuning 5 is



negative, the atom will preferentially absorb photons from the beam it moves to-

wards. The momentum transfer due to this preferential absorption decreases the

kinetic energy and hence temperature of the atom. There is no net momentum effect

from emission of photons since the atom emits in all directions. Doppler cooling is

dependent on this lack of net momentum effect from emissions so that the net mo-

mentum effect from absorptions will dominate. Consequently, it is important that our

beams have low intensity because it allows us to ignore stimulated emission. Stim-

ulated emission results in a preferred direction of emission, which results in a net

momentum that cancels out the effect from preferential absorption.

Quantitatively, the force on a moving atom due to a traveling wave is

F= (3.1)
2 1+ so+ (2(6-kv)) 2

where -y corresponds to the decay rate of the excited state and so is the saturation

parameter. In the case of low light intensity, the total force on the atom is simply

the sum of the force from each beam:

FO sohyk( 1 1
F( = ( ) (3 2)2 1+ so + (2(1-k-v))2 + s0 + (2(6k v))2(

~h6s v = - #v (3.3)
'Y(l + s + (2)2)2

where we have expanded in i to first order in (3.3). From equation (3.3), we see why

this technique is aptly referred to as an optical molasses this slowing force results

in viscous damping. The force is plotted in figure 3-1. For small velocities, the force

mimics the usual linearly dependent damping force. After a critical velocity, the force

decreases rapidly. Note that Doppler cooling only damps the velocity and does not

actually trap the atoms.

So far our treatment seems to imply that the damping force can completely decel-

erate an atom and bring its temperature all the way down to absolute zero, violating

thermodynamics. What we have neglected to do is include heating effects due to the



Force (hyk)

Velocity (y/k)

Figure 3-1: Optical molasses cooling force. Plotted with so 2, = -7. The force

rapidly diminishes for atoms with velocities greater than the capture velocity.

momentum transfers from the absorption and emission of photons. Each momen-

tum transfer on average imparts recoil energy E, = h2 k2 to the atom, which results2m

in heating. Hence, there is a lower temperature limit to Doppler cooling, which is

typically below lmK [31.

3.2 Magneto-Optical Trap

The magneto-optical trap (MOT) uses optical fields and a magnetic field gradient

to simultaneously cool and trap atoms. In a MOT, anti-Helmholtz coils are used

to create a constant magnetic field gradient that vanishes in the center of the trap.

This is where the atoms will accumulate. By the Zeeman effect, an atomic transition

will split into its magnetic sublevels in the presence of a magnetic field. Each sub-

level is shifted by energy AEz = PbmjgjBo, where yb is the Bohr magneton, mj is

the magnetic quantum number that projects the total angular momentum onto the

quantization axis, gj is the Lande g-factor, and Bo is the magnitude of the magnetic

field. The presence of a magnetic field gradient results in position-dependent energy

shifts. Position-dependent energy shifts means that at any point in the MOT, certain

transitions between magnetic sublevels (in accordance with selection rules) will be



Me = +

Me= 0

o beam a beam

WMg= 0
z' Position

Figure 3-2: Diagram for 1D MOT. At position z, atoms preferentially absorb a-
light, resulting in a net force pushing the atom toward the trap center. W1 is the
frequency of the laser, 6 is the detuning from the mg = 0 -+ me = 0 transition, 6+ is
the detuning from the mg = 0 -+ me = +1 transition, and 6_ is the detuning from
the mg = 0 --+ me -1 transition. Figure from [3]

less detuned than other transitions. We can selectively address these transitions by

using counterpropagating beams with o+ and o- polarizations. a+ polarized light

induces Amj = 1 transitions while o- polarized light induces Amj = -1 transitions

from the ground state to the excited state. The arrangement of the ID MOT with

the simplest case of a transition from ground state Jg = 0 to an excited state Je = 1

is shown in figure 3-2. In reference to the figure, consider an atom at position z, on

the right side of the trap center. Since the beam is less detuned from the Amj = -1

transition, the atom will preferentially absorb photons from the a- polarized beam. If

we choose the o- beam to be incident from the right (and incidentally, the a+ beam

is incident from the left), the atom will be pushed toward the center in a manner

analogous to the Doppler cooling situation.

Quantitatively, we can easily modify the force equation for the optical molasses in

3.2 to apply to our ID MOT scheme. We need only to take into account an additional

frequency shift in the detuning due to the Zeeman energy shifts. Hence, we replace

the 6± k -v by 6± k -v -T [-' in the denominators of 3.2, where we have substituted

piBoz for AEz. Taylor expanding to first order in j(k -v + I-7z) gives the MOT force



8h6s ok 2  862s ok pBo
MOT 7(1 + So + (2)2)2 y(1 + S+ (2)2)2

= -6v - r-z (3.4)

Equation 3.4 is equivalent to the force equation of a damped harmonic oscillator and

shows that the MOT provides both a viscous damping force and a restoring force.

Although we have only examined a ID MOT, this discussion can be generalized for

a 3D MOT by simply placing counterpropagating beams on all three axes.

3.3 Polarization Gradient Cooling

The temperature limit of Doppler cooling was long believed to be a fundamental

limit in cooling schemes. However, in the late 1980's, experiments with alkali metals

resulted in limits more than ten times lower! Sub-Doppler cooling was first explained

by Cohen-Tannoudji and collaborators in a scheme known as polarization gradient

cooling (PGC) or Sisyphus cooling [5]. This technique considers the resultant field

inhomogeneity of counterpropagating beams and the multilevel structure of atoms.

Consider the sum of two linearly polarized, orthogonal, counterpropagating beams

with the same frequency w and magnitude Eo

E Eo cos(wt + kz)i + Eo cos(wt - kz)Q

- Eo cos(wt) cos(kz)(i + Q) + Eo sin(wt) sin(kz)(. - Q) (3.5)

At z = 0, E = Eo cos(wt)(i + Q). The field is linearly polarized along an axis tilted

i from the x-axis. At z =, E = 0 sin(wt + 1)f - Eo cos(wt + 1)Q. The field is

circularly polarized in the negative sense about the z-axis (polarization o-.) Similarly,

at z = the field is once again linearly polarized but along an axis titled -! from

the x-axis. At z = the field is circularly polarized in the positive sense about the

z-axis (polarization o+.) We see that there is a strong polarization gradient. This is
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Figure 3-3: Spatial dependence
agating beams.

of the polarization of linearly polarized counterprop-
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Position (z)

Figure 3-4: Spatial dependence of energy shifts of
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illustrated in figure 3-3

Now consider PGC running on a simple J = 1/2 -- Je = 3/2 transition. The

two ground state magnetic sublevels mg - ±1/2 undergo different light shifts due to

the o+ and o- field polarizations. Hence, they are not energetically degenerate even

in the absence of a magnetic field. Where m, = 1/2 has energy maxima, mg = -1/2

has energy minima, and vice versa. This is depicted in figure 3-4.

Say the atoms start out in a region of space where the field has o.+ polarization.

Due to dipole selection rules, the ground state magnetic sublevel m. = 1/2 can

only couple to the excited state magnetic sublevel m, = 3/2 and decay back to



mg = 1/2. Similarly, the ground state magnetic sublevel mg = -1/2 can only couple

to me = 1/2 and can decay back to either mg = 1/2 or m. = -1/2. The Clebsch-

Gordan coefficients tell us that it is twice more likely for me = 1/2 to decay into

mg = 1/2 than m= -1/2. Hence, the net effect of the a+ polarized field is to pump

atoms from mg = -1/2 to mg = 1/2. In o+ polarized, the mg = 1/2 state has lower

energy than the mg = -1/2 state. Similarly, in a- light, the mg = -1/2 state has

lower energy and the light pumps atoms from the mg = 1/2 state to the m = -1/2

state.1 As an atom in the m9 = 1/2 state moves in the a+ region toward the a-

region, it converts kinetic energy into potential energy. As it reach the top of the

potential hill and is about to convert the gained potential energy back into kinetic

energy, the a_ light intervenes and pumps the atoms into the mg = -1/2 state. The

previously gained potential energy is lost with the emission of a photon. The process

repeats until the atom no longer has enough energy to surmount the potential hill,

or equivalently, move by A/4.

Like in Doppler cooling, heating is introduced through the momentum kicks the

emitted photon imparts to the atom. The cooling limit scales as r. Figure 3-5.shows

both the Doppler and PGC cooling force. Note the smaller capture velocity but larger

damping of PGC.

3.4 Optical Dipole Trap

Since PGC cannot operate in the presence of a magnetic field, we must again confine

the atoms once they have been further cooled. We use an optical dipole trap [16].

Optical dipole traps work through the interaction between the atomic dipole and

the laser field. As previously discussed, an atom does not have a permanent electric

dipole. Rather, an oscillating atomic dipole moment is induced by the oscillating

electric field of the laser. This dipole moment then interacts with the electric field.

Along with other interesting effects, this results in a shift in the energy levels of the

'Linearly polarized light has no net pumping effect on the atoms; the Clebsch-Gordan coefficients
tell us that the atoms will decay back to the state they came from.
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Figure 3-5: Plot of Doppler cooling and PGC force. Figure from [4].

atom (i.e. the Stark shift.) If the laser field is spatially inhomogeneous, the energy

shifts will be correspondingly inhomogeneous. This creates a potential, and the force

from this potential is the optical dipole force [17].

We have conveniently already derived the Stark shift in 2.11. In the limit where

Q < 1, the Stark shift AEs is

AEs hQ2  (3.6)
45

to first order. Since the laser field is spatially inhomogeneous, Q is no longer a constant

and is instead spatially dependent Q(r), where r refers to the spatial coordinate over

which the field varies. The on-resonance saturation parameter so relates Q(r) with the

intensity of the field, 1(r): so = =2 (r)/I , where I, is the saturation intensity
-2r

2

[3]. For a focused Gaussian beam, the intensity is given by I(r, z) = P e ,

where r is the radial coordinate, P is the power of the beam, and w(z) gives the axial

dependence of the beam radius as

w(z) = WO 1+(z (3.7)

30



where wo is the minimum radius of the beam (the beam waist) and ZR = (the

Rayleigh range.) In our experiment, a standing wave is formed in our cavity due to

the constructive interference of the laser beam. This configuration is called an opti-

cal lattive. In optical lattices, there is also an axial variation in the beam intensity.

To account for this, we simply multiply our previous intensity equation by cos 2 (kz).

Plugging our expression for the beam intensity into 3.6, the spatially dependent po-

tential is
U2 -2

U(r, z) = I z 2 cos2(kz)e 7 (3.8)
1- )

where

Uo - ir 2I (3.9)

is the trap depth, defined at U(r = 0, z = 0). The potential in 3.8 is Gaussian. We

see that near its minimum, the potential looks similar to the potential of a harmonic

oscillator. If the thermal energy of the atomic ensemble is much smaller than the

trap depth, we can assume a small radial extension of the atoms.2 Expanding the

potential in (_ _)2 and ( z )2 to first order gives
WO ZR

U(r, z) -Uo cos2(kz)(1 - 2r2 1 2) (3.10)
0 ZR

This is indeed the potential of a harmonic oscillator. It follows that an atom of

mass m oscillates with frequency wz = in the axial direction and frequency

Wr = U7 in the radial direction.
m0

There is a subtlety in our discussion of the dipole trap. We quite casually used

the Stark shift of a two-level atom after making the RWA. But recall that the RWA

is only valid when the the laser is near resonance with an atomic transition. This

is not the case in the dipole trap---the laser field of the dipole trap is far detuned

from atomic resonance since we do not want to excite the atom. Without the RWA

approximation, we need to take into account the effect of all other atomic levels when

calculating the energy shift by using perturbation theory.

2 This is equivalent to saying we are within the Lamb-Dicke regime.
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Chapter 4

Cavity induced transparency: the

experiment

4.1 Theory behind cavity induced transparency

Consider ground states 1) and 12) and excited state |3) arranged in the A config-

uration shown in figure 4-1. In CIT, instead of the usual laser beam, the cavity is

used to couple 12) to 13). From our discussion of the two-level atom, we can figure

out the relevant Hamiltonian. In the rotating frame and after making the RWA, the

uncoupled atomic Hamiltonian for a single atom and a single photon is

Ha = h1)(11 + h6c12)(21 (4.1)

where the energy of the excited state is zero, 6 is the laser detuning from the 1) to

|3) transition, and 6, is the cavity detuning from the |2) to the 13) transition. The

interaction Hamiltonian is

hQ
2
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Figure 4-1: A configuration. The cavity couples 2) to 13) with coupling strength 2g.
A laser beam couples |1) to |3) with coupling strength Q.

where Q is the laser coupling strength and g is the cavity QED coupling constant.

We can rewrite 4.2 as

I h
Hint =-13)(Q(11 + 2g(21) + h.c

2 (4.3)

This motivates transforming to a basis

1
H-) = (Q1l) + 2g|2))

Q2 + 4g2

-) (Q|2) - 2g|1))
Q2 + 4g2

(4.4)

We can write 1) and 12) in the basis of 1+) and I-). Substituting these expressions

for |1) and 12) into (4.2) and (4.1) allows us to write the atomic and interaction

Hamiltonians in the 1+) and -) basis:

Ha = A1| +) ++ hA2 -)(-I + NQ'( -)(+I+ I +)-|)
(4.5)

Nint = 2 + (+)(31 + 13)(+1)
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Figure 4-2: Energy level diagram for cesium. Figure from [10], splitting values from

[11].

where A1 = 2 1 (Q26 + 4g 26c), A2 = 13 9 (4g 26 + Q26c) and Q' = o72 (6c - 6).

We see from the interaction Hamiltonian that I-) is decoupled from |3). Furthermore,

at Raman resonance, when 6c = 6, 1-) is also decoupled from 12). Therefore, if we

were to scan the probe beam frequency while holding the cavity frequency constant,

we would see a narrow dip in the absorption spectrum when the detuning of the cavity

is the same as the detuning of the laser beam. This is same effect as EIT, but we have

essentially used an empty cavity to modify the absorption spectra of the atoms!1

4.2 Experimental implementation

A diagram of the lasers entering the vacuum chamber is in figure 4-3. The relevant

level structures in cesium are shown in figure 4-2. In order to load the atoms into

the optical lattice, both the lattice beam and three MOT beams are turned on. The

atoms will accumulate in the overlapping area of the beams. The optical lattice beam

is at 937nm. The MOT works on F = 4 ground state to the F = 5 excited state

transition (henceforth called the F = 5' state) on the cesium 162S1/ 2) to 162P3/2) line

'Perhaps you think we're cheating a little here. After all, the cavity isn't totally empty since the
coupling in the cavity results from the photons emitted into the cavity mode. But the essential (and
novel) point of the experiment is that the cavity starts out being empty and no beam is ever sent
through the cavity to drive a transition.
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at 852nm. It is also possible for an off-resonant excitation from F = 4 to F = 4' to

occur. Atoms in F = 4' can decay into the F - 3. To prevent the loss of atoms in

the cooling process, a repumper beam on the F = 3 to F = 4' transition is used to

repump atoms back to F = 4.

The MOT will cooling will be enough to trap some atoms in the optical lattice,

but other atoms will require further cooling. This further cooling is achieved by using

PGC. We use PGC on the F = 3 -+ F = 2' transition. A quick way of seeing why

PGC is more effective than Doppler cooling is by comparing the force vs. velocity

graphs of PGC and Doppler cooling in figure 3-5. PGC has a much greater damping

coefficient as evidenced by the steeper slope, but also has a much smaller capture

velocity. Hence, it is necessary to cool atoms prior to using PGC.

Once the dipole trap is loaded, we pump the atoms into the F = 3 state, and

measure the transmission of the probe beam using a photodiode.

4.3 Preliminary Data: the size of the beam illumi-

nating the atomic ensemble

To ensure our probe beam passes through the atomic ensemble in its entirety and

maximal absorption occurs, we must make sure the probe beam waist is smaller than

the width of the atomic ensemble and is centered on it. In order to measure the size

of the probe beam when it passes through our atomic ensemble, we use the probe

beam to excite atoms from the F = 3 ground state to the F = 4 excited state for

a set amount of time. Atoms excited to the F = 4' state will spontaneously decay

into the F = 4 ground state. They will also spontaneously decay back into the

F = 3 ground state, but we later account for this in our calculations. A beam is sent

through the cavity to excite atoms from F = 4 to F = 5'. As we saw in the Jaynes-

Cummings Hamiltonian, a Stark shift occurs between the dressed states IF = 4, n)

and IF = 5', n - 1), where n is the number of photons in the cavity. This energy

shift corresponds to a shift in the cavity resonance frequency. Therefore, by scanning
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Figure 4-4: Fitted beam waist-size data. The sideprobe beam is turned on for lys
and 3ps.

the cavity beam and detecting the light that is transmitted through the cavity, we

can obtain the cavity transmission peak and find the value of the energy shift. Next,

we use the energy shift to obtain the number of atoms. For N atoms, the coupling

between the ground and excited dressed states is 2g/N, which gives the Stark shift

as

AEs = g N (4.6)
6

We can write this shift in terms of the cooperativity parameter, Tj = giving

AEs = NTI( ) (4.7)46

Since the energy shift is given by our data and we know parameters r, -y, and 6, we

can solve for N77. We then plot Nr as a function of the frequency difference between

the reference laser and the probe laser. This is shown in figure 4-4.

The number of atoms that end up in the F = 4 state is not simply the number

of atoms that were originally in the F = 3 state. Rather, we need to consider the



Nr/ so wo (MHz) beam size (pm)
t = 1ps 117.3 1.09 636.3 5.1
t = 3ps 170.1 0.67 636.5 4.6

Table 4.1: Summary of fit results and beam sizes from beam size data.

intensity of the laser and the decay rate from F = 4' to F = 4. These factors are

accounted for in a quantity called the scattering rate F:

F =1 s SO (4.8)
2 1 + so (2)2

where so is the ratio between the beam intensity and the saturation intensity. The

number of atoms that end up in the F = 4 state is

N(6) = No(1 - eaO]F) (4.9)

where , = 0.58 is the branching ratio of the decay from the F 4' state into the

F = 4 state, a- is the oscillator strength between F = 3 to F 4', t is the time

the probe beam illuminates the atoms, and No is the number of atoms initially in

the F = 3 state. We can fit our data to (4.9) with parameters No, wo, and so. Once

we obtain so, we can obtain the intensity. Since we know the beam power, P, and

j =2P because the beam is Gaussian, we can solve for wo= The fit data
ir0

and beam size data is summarized in table 4.1. Discrepancies in the data may be

due to the laser linewidth or spatial saturation effects. The beam sizes may be an

overestimation. They are only true if all the all the incident power illuminates the

atomic ensemble, which would only be the case in a perfectly collimated beam with

no spherical abberation at the lenses. Therefore, estimating that around 50% of the

incident power is at the center of the beam may be more realistic. Hence, it is likely

that our actual beam sizes are smaller by a factor of V(2).



4.4 Laser and Cavity Locking Schemes

The success of our experiment depends crucially on the ability to stabilize our laser fre-

quencies and cavity widths. Our relevant atomic transitions have a natural linewidth

of ~ 5 MHz, which is a measure of the amount a photon's frequency can deviate

from the transition frequency and still be absorbed by the atom. Therefore, to ensure

reliable coupling between the atomic levels, the laser linewidth must be less than the

atomic linewidth. Similarly, the cavity length must be stablized to ensure that the

resonant cavity frequency is at fixed detuning from the transition frequency.

In our lab, there are currently seven lasers that need to be locked: The MOT laser,

the optical lattice laser, the probe laser, the cavity-probe laser, the transfer cavity

laser, the repumper laser, and the reference laser. There are two cavities that need

to be locked: the experimenal cavity and the transfer cavity. The reference laser is

termed the reference laser because it is used as a reference when locking other lasers.

To lock a laser to the reference laser, we observe the beatnote signal between the laser

and the reference laser and lock using a frequency off-set lock. There are two types

of frequency off-set locks in our lab: delay line locks (DLLs) and phase loop locks

(PLLs). We will only discuss the DLL in detail below. The reference laser itself is

locked using a Doppler-free dichroic atomic vapor laser lock (DAVLL) scheme [6, 7].

We like like to lock our experimental cavity to the cavity-probe laser, but this

would require the cavity-probe laser to be on during the entire duration of the ex-

periment. The near-resonant light would then excite the atoms, which is clearly

undesirable. The solution was to build another cavity, the transfer cavity, and lock

the experimental cavity to the near-resonant laser via the transfer cavity. As Jon

Simon so succinctly stated, the experimental cavity is locked to the transfer laser,

which is locked to the transfer cavity, which is locked to the cavity-probe laser which,

is locked to the reference laser. The transfer laser is far detuned at 817nm, so there is

no concern over unwanted excitations. To lock cavities to lasers or lasers to cavities,

we use the Pound-Drever-Hall lock (PDHL) [8].

The basic idea behind locking cavities or lasers is the same: feedback. The process



begins with the generation of an error signal, which feeds back on the laser or cavity.

The error signal is set to zero when the laser or cavity is at the desired frequency.

Otherwise, based on the error signal, a current controller will adjust the current input

to the laser or the piezoelectric driver will change the voltage on the piezo to change

the length of the cavity. In this way, the laser frequency or cavity length is constantly

adjusted against fluctuations.

4.4.1 Locking the Reference Laser

In DAVLL, we send two counterpropagating beams into a vapor cell of atoms. One

beam is a strong pump beam while the other is a weak probe beam. The frequencies

of both beams are scanned together. If we measure the absorption of the probe beam

on a photodiode, we will find a wide absorption dip with a comparitively sharp peak

in the center of the dip. The wide dip occurs because moving atoms absorb light off

the resonant frequency wo due to the Doppler shift. For example, an atom moving

with velocity v toward the probe beam will absorb light with frequency wo - k -v,

where k is the beam's wavevector. Stationary atoms, however, only absorb light at

the resonant frequency. Since the transition in stationary atoms are saturated by

the strong pump beam, they cannot absorb light from the probe beam. The moving

atoms, however, are not saturated due to the Doppler shift. Hence, the sharp peak

is centered at the resonant frequency and has width ~ 5 MHz, which corresponds to

the natural linewidth.

In our system, scanning the laser frequencies will result in six peaks in the wide

absorption dip. Three peaks occur due to the excitation of stationary atoms from

F = 3 to F = 2', F = 3', and F = 4'. The other three peaks result from moving

atoms due to the Doppler shift and occur equidistant between neighboring stationary

peaks. Consider an atom moving toward the pump beam. The atom sees the pump

beam's frequency increased by kv and the probe beam's frequency decreased by kv.

Let the difference between two resonant frequencies be Aw.If the beam frequency is

halfway between two resonant frequencies, then the atoms with velocity v = 72k

see a pump beam in resonance with the higher energy level and a probe beam in



resonance with the lower energy level. The pump beam will saturate the transition at

the higher energy level so absorption by the probe beam is suppressed. The same thing

happens with atoms moving away from the pump beam: the pump beam saturates

the transition at the lower energy level. Since this occurs for each pair of neighboring

excited states, there are three "crossover" peaks in the spectrum.

We would like to lock the reference laser to the resonant frequencies. That is, we

would like to use the absorption spectrum as an error signal so we correct the laser

frequency whenever it deviates from the resonance peak. In order to do this, we need

our error signals to cross the zero voltage line at the desired frequency, which clearly

is not the case with the resonance peaks. To resolve this issue, we apply a constant

magnetic field to the sample to split the previously degenerate magnetic sublevels.

When the magnetic sublevels are no longer degenerate, the absorption spectrum will

be shifted symmetrically about the resonance frequency for .+ and o- light. Although

the light we send in is linearly polarized, we send it through a quarter-wave plate and

a polarizing beam splitter (PBS) after it has passed through the atomic cloud. This

separates the linearly polarized light into its o+ and o- components. We collect each

polarization at a photodiode and subtract one signal from the other. This places the

resonance frequency in the absence of a magnetic field at zero voltage. Since it gives a

differential signal, the DAVLL scheme also has the benefit of being insensitive to laser

power and atomic density fluctuations. Figure 4-5 shows a typical DAVLL signal.

4.4.2 Pound-Drever-Hall Lock

The general idea of PDHL is to use a phase shift to generate an error signal and

then use feedback to correct either laser frequency or cavity length fluctuations. Our

discussion of the PDHL refers to locking a cavity to a laser, but the method is the

same for locking a laser to a cavity. In the latter case, the feedback signal goes into

the laser rather than the cavity. A standard PDHL setup is shown in figure 4-6.

Proper feedback requires knowing which way to adjust the laser frequency when it is

off resonance. For example, the reflected intensity of the beam is symmetric about

the resonance. Consequently, we can't use the intensity as an error signal, since the



Figure 4-5: DAVLL signal. Here there are only five peaks because the sixth peak is
not resolved.
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Figure 4-6: Basic PDHL configuration. In our experiment, the actuator is a piezo,
driven by the piezoelectric driver, which changes its voltage output to the piezo based
on the error signal.
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system could not know which way to ajust the frequency when it is off resonance. In

other words, our error signal must be an odd function. The PDHL lock creates an

odd error signal by phase modulating the beam, giving it sidebands using an electro-

optical modulator (EOM). The magnitude of the electric field of our incident beam

with the carrier frequency and two sideband frequencies can be written as [9]

Ej Eo[Jo(#)ewOt + J1(#)e(wo +a)t + Ji(l)e(wO-")t] (4.10)

where # is called the modulation depth, Ji,2(/3) are Bessel fuctions, EO is the un-

modulated electric field magnitude, wo is the unmodulated field frequency, and the

sideband frequencies occur at w ± a. The reflection coefficient of a lossless symmetric

cavity of length L is
iwuL

F(w) = (4.11)
1-r 2 ec

To find the reflected field, we multiply each component of the incident field by the

reflection coefficient at the appropriate frequency

Er -Eo[F(wo) Jo(0)ei-O' + F(wo + a) Ji(3)e(wo )t (4.12)

+ F(wo - a)J1(#3)e(W -a)t

This reflected field is sent into a photodetector, which detects its intensity, |Er12.

The intensity of the reflected field contains terms of frequency w, W + a and W - a.

Interference between w and w + a and between w and w - a creates a beatnote with

frequency a. We take this signal, mix it with a term cr cos a, and low pass filter it.

The resulting signal is our error signal.

4.4.3 Delay Line Lock

A diagram of the DLL path is in figure 4-7. In the DLL, the beatnote between the

laser we wish to lock and the reference laser is input into a photodiode. The ensuing

signal is cx cos((Wo - Wr)t), where w, is the frequency of the laser we wish to lock and
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Figure 4-7: Delay line lock configuration. Figure modified from [9].

wr is the frequency of the reference laser. 2 Let w, - w, - w. A voltage controlled

oscillator (VCO) produces a signal oc cos((wvcot)). A mixer is used to multiply the

VCO signal and the beatnote signal, giving a signal proportional to

[cos((w + Wvo)t) + cos((W - Wvco)t)] (4.13)
2

We use a lowpass filter to filter out the cos((w + wvco)t) component. A splitter is

next used to send the signal through two paths. One path goes straight into a second

mixer, and the other path goes through a cable of length L (this is the delay line that

this locking scheme derives its name from). Relative the to signal that went directly

to the mixer, the signal that goes through the path of length L gains phase so that

it is now oc cos((W - wvco)t + (w - wvco)), where v is the speed of the signal. As

before, the mixer multiplies the two signals giving a signal

1 L L
oc -[cos(2(w - wvco)t + -(W - wo)) + cos( (W - wo))] (4.14)

2 v v

Passing this signal through another lowpass filter gives the final signal as

c cos( (W - oVCO)) (4.15)
V

By tuning WvCo, we can shift the signal along the frequency axis so that our desired

laser frequency matches where the signal crosses the x-axis. Hence, we can lock a

laser to this error signal.

2 There is also a cos((wi + wr)t) component, but it oscillates too fast for our photodiode to detect.
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Chapter 5

Conclusion

We have discussed the theoretical underpinnings of CIT and the technical aspects of

our experiment. We have presented preliminary data on the beam size at our atomic

ensemble. We find that the beam size is around 5pum, which is most likely smaller

than the atomic cloud size. Since we would like the beam size to be smaller than

the atomic cloud size so that the beam maximally interacts with the atoms, we can

work with this beam size and move on in the experiment. The next step would be

to measure the absorption of the beam on the F = 4 to F - 5' transition. This will

allow us to obtain the optical depth of our sample. If the sample is not optically

dense enough, we will be unable to see even the broad absorption peak of the F = 3

to F = 4' transition. Thus far, CIT seems experimentally promising, and we hope to

obtain results within a few weeks.
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Appendix A

Delay Line Lock Circuit

Our current DLL setup consists of parts from Mini-Circuits. Since this setup is rather

space-consuming, we attempted to put all the DLL components on a circuit board.

The PCB layout and schematic are shown below. However, there were oscillation

problems with the circuit, which may have been caused by excessive gain in the

circuit. The table below shows the DLL input frequencies and the frequencies at

which signal oscillations occur as the VCO is tuned.

Input Frequency (MHz)
700
750
800
850
900
950
1000

Frequency Ra
oscillations oc

Table A.1:

nge where
cur (MHz)
1342-1410
1070-1132
1172-1209
1342-1410
1182-1212
1244-1270
1934-2009

Oscillations

(see prev
column)

1228-1242
1307-1329
1117-1280
1740-1810
1815-1907

(see prev
column)

1453-1484
1540-1614
1640-1720

I -
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Figure A-1: PCB layout of the DLL circuit
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Figure A-2: Schematic of the DLL circuit
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Appendix B

920 vs. 937 Optical Lattice Laser

We currently use a 937nm Eagleyard laser for our optical lattice. However, these lasers

have a had a habit of spontaneous deaths and unstable lasing [141. Hence, we have

built a 920nm laser as back-up. In order to measure the finesse of the cavity at 920nm,

we need to know the cavity linewidth. Usually, the cavity linewidth is measured by

monitoring the cavity transmission as we sweep through the cavity linewidth with

a laser frequency modulated with sidebands. However, since our cavity linewidth is

much narrower than our laser linewidth, this technique cannot be used. Instead, we

measured the linewidth of the cavity at 920nm using the ringdown method described

by Poirson et al. [15]. In this method, we monitor the cavity transmission as we

rapidly sweep the cavity resonance through the laser line via the piezo. We obtain

plots like that of figure B-1.

The data gives us the cavity linewidth through the following equation:

rK 1 R +2- e- 1 -(B.1)
-r 27r 2At

where R is ratio between the heights of two peaks time At apart. Table B.1 gives a

summary of results for five sets of data.

The finesse of the cavity is given by

FSR
cavity linewidth
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Figure B-1: Data obtained through ringdown method. Cavity piezo was scanned with
20 kHz, 10 Vpp signal

Data Set 1
Data Set 2
Data Set 3
Data Set 4
Data Set 5

Height 1 I Height 2
0.5
0.6

0.54
424
532

0.06
0.144
0.12
51
88

At (ms)
210
197
180
190
210

Cavity Linewidth (MHz)
2.9
1.4
1.7
3.1
2.0

B.1: Ringdown data for cavity linewidth measurements.
at 30 kHz, Data sets 1 through 3 taken at 20 kHz

Data Sets 4 and 5

where FSR is the free-spectral range of the cavity, which is 10.909 GHz for our cavity.

We find a finesse of around 3000, about 10 times better than the finesse at 937nm.

Table
taken



Appendix C

920nm Laser Mount
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Figure C-1: Machined aluminum mount for the 920nm laser.



Bibliography

A. Steck Quantum and Atomic Optics, available online at

http://steck.us/teaching (2006)

[2] M. Scully and M. Zubairy. Quantum Optics Cambridge University Press, 2007.

[3] H. Metcalf and P. van der Straten Laser Cooling and Trapping Springer-Verlag

New York, 1999.

[4] Lecture notes. Physics 285b. Harvard University, Fall 2010

[5] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by

polarization gradients: simple theoretical models. Journal of the Optical Society

of America, 6(11): 20232045, 1989.

[6] T. W. Hansch, I. S. Shahin, and A. L. Schawlow. High-resolution saturation spec-

troscopy of the sodium d lines with a pulsed tunable dye laser. Phys. Rev. Lett.,

27(11): 707710, Sep 1971.

[7] A. Hecker, M. Havenith, C. Braxmaier, U. Strner, and A. Peters. High resolution

doppler-free spectroscopy of molecular iodine using a continuous wave optical

parametric oscillator. Optics Communications, 218(1-3):131 134, 2003.

[8] R.W.P Drever et al., Laser phase and frequency stabilization using an optical

resonator. Appl. Phys. B: Photophy. Laser Chem. 31: 97-105, 1983.

[9] E. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am.

J. Phys., 69(1): 79-87, Jan 2001

[1] Daniel



[10] B. Bloom. Atomic quantum memory for photon polarization. Bachelors thesis,

Massachusetts Institute of Technology, 2008.

[11] Daniel A. Steck. Cesium d line data. Technical report, Los Alamos National

Laboratory, 1998.

[12] D.Budker et al., Resonant nonlinear magneto-optical effects in atoms. Reviews

of Modern Physics. 74(4), (2002)

[13] S. E. Harris. Physics Today. 50(7): 36-42, 1997.

[141 J. Simon. Cavity QED with Atomic Ensembles. PhD Thesis, Harvard University,

2010.

[15] Jerome Poirson, Fabien Bretenaker, Marc Vallet, and Albert Le Floch. Analytical

and experimental study of ringing effects in a fabryperot cavity. application to the

measurement of high finesses. J. Opt. Soc. Am. B, 14(11): 28112817, 1997.

[16] R. Grimm and M. Weidemuller. Optical dipole traps for neutral atoms. Adv. At.

Mol. Opt. Phys.. 42: 95-170, February 2000

[171 Dressed-atom approach to atomic motion in laser light: the dipole force revisited.

J. Opt. Soc. Am. B, 2(11): 1707-1720, Nov 1985


