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Abstract

We study the magnetic field and the planet-star interactions of super Earths, extra-
solar planets with masses between 1 and 10 times the mass of the Earth. We first
present a model of the magnetic field of a super Earth, the dynamo model. We then
list and explain several mechanisms through which magnetic energy can be released,
as well as various ways through which the power dissipated can be observed. We
apply our model to two recently discovered super Earths, CoRoT 7-b and GJ 1214
b. We find that emission from CoRoT 7-b is very low and thus unlikely to be observ-
able, while emission from GJ 1214 b may be detectable with current instruments and
its measurement can provide information regarding the internal composition of the
planet. Further on, we discuss some special cases for detection, such as M and Ap
type stars. We conclude our thesis with a generalization of our results and guidelines
for future developments.

Thesis Supervisor: Paola Rebusco
Title: Pappalardo Fellow

Thesis Supervisor: Sara Seager
Title: Associate Professor



4



Acknowledgments

I would like to thank the following people for their contribution to this project:

Doctor Paola Rebusco, for being involved in every step of this thesis. None of this

would have been possible without her constant advice and insights, her almost daily

feedback and proof reading, her encouragement, patience and enthusiasm.

Professor Sara Seager, for all her support and advice throughout this past year, and

for helping me shape my future as a researcher. I am grateful for the opportunity to

work with and learn from her.

Doctor Mike Stevenson, for his skillful proofreading and his insightful suggestions.

I would also like to thank Professor Bruno Coppi, Doctor Elena Gallo and Professor

Caleb Scharf for providing me with conversations and references essential to my un-

derstanding and analysis of this work.

A special thank you to Professor Edmund Bertschinger, for his help and guidance in

my past two years as a UROP student.

Finally, I would like to thank my loved ones for their constant words of encourage-

ment, for believing in me, and for always being there for me, willing to listen to my

complaints and offer me a hug when things get tough.



6



Contents

1 Introduction 15

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Detection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Doppler methods (Radial velocity tracking) . . . . . . . . . . 16

1.2.3 Transit method . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Pulsar Timing . . . . . . . . . . . . . . . . . . . . . . . . . .. 17

1.2.5 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.6 Astrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Current discoveries and planetary parameters . . . . . . . . . . . . . 18

1.4 Planet-star interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Tidal interaction . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Magnetic interaction . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Magnetic Interaction Model

2.1 Planetary Magnetic Field . . . . .

2.1.1 Dynamo model . . . . . .

2.1.2 Induction fields . . . . . .

2.2 Magnetic field strength . . . . . .

2.3 Star-Planet Magnetic Interaction

2.3.1 Magnetic reconnection . .

2.3.2 Power to mass relationship

23

. . . . . . . . . . . . . . . . . . . . 2 3

. . . . . . . . . . . . . . . . . . . . 2 3

. . . . . . . . . . . . . . . . . . . . 2 6

. . . . . . . . . . . . . . . . . . . . 2 6

. . . . . . . . . . . . . . . . . . . . 2 8

. . . . . . . . . . . . . . . . . . . . 2 8

. . . . . . . . . . . . 3 5



2.3.3 A different model for the dissipated power .

2.4 Tidal Locking . . . . . . . . . . . . . . . . . . . . .

2.5 Observations . . . . . . . . . . . . . . . . . . . . . .

2.5.1 Radio emission . . . . . . . . . . . . . . . .

2.5.2 Peak frequency for radio emission . . . . . .

2.5.3 X-ray emission . . . . . . . . . . . . . . . .

2.5.4 UV emissions . . . . . . . . . . . . . . . . .

3 Applications to Known Super Earths and Results

3.1 CoRoT 7-b ... .................

3.1.1 Discovery and physical parameters

3.1.2 Internal composition . . . . . . . .

3.1.3 Magnetic field strength . . . . . . .

3.1.4 Stellar X-ray emission . . . . . . .

3.1.5 Magnetospheric radio emission . . .

3.2 GJ 1214 b ... .. .... ....... ....

3.2.1 Discovery and physical parameters

3.2.2 Internal composition . . . . . . . .

3.2.3 Magnetic field strength . . . . . . .

3.2.4 Stellar X-ray emission . . . . . . .

3.2.5 Magnetospheric radio emission . . .

3.3 Detection potential . . . . . . . . . . . . .

3.3.1 Condition for dynamo existence . .

3.3.2 Radio emission observations . . . .

3.3.3 LOw Frequency ARray for radio astronomy (LOFAR) . . . . .

3.4 Special cases for detection . . . . . . . . . . . . . . . . . . . . . . . .

3.4.1 M dwarfs: flares and coronal mass ejections . . . . . . . . . .

3.4.2 A p stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Discussion and Conclusions

4.1 Directions for future work... . . . . . . . . . . . . . . . . . . . ..

. . . . . . . 35

. . . . . . . 36

. . . . . . . . . . 37

. . . . . . . . . . 37

. . . . . . . . . . 39

. . . . . . . . . . 40

. . . . . . . . . . 41

43

. . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . 44

. . . . . . . . . . . . . . . 45

. . . . . . . . . . . . . . . 45

. . . . . . . . . . . . . . . 46

. . . . . . . . . . . . . . . 47

. . . . . . . . . . . . . . . 47

. . . . . . . . . . . . . . . 48

. . . . . . . . . . . . . . . 48

. . . . . . . . . . . . . . . 50

. . . . . . . . . . . . . . . 50

. . . . . . . . . . . . 51

. . . . . . . . . . . . . . . 52

. . . . . . . . . . . . . . . 52



A Figures 61

B Tables 73



10



List of Figures

A-1 Currently discovered exoplanets . . . . . . . . . . . . . . . . . . . . . 62

A-2 Disc dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A-3 Flux densities of solar system planets . . . . . . . . . . . . . . . . . . 64

A-4 CoRoT 7-b: vpeak for varying A and po . . . . . . . . . . . . . . . . . 65

A-5 CoRoT 7-b: P, for varying Vpeak and ro . . . . . . . . . . . . . . . . . 66

A-6 GJ 1214 b: Vpeak for varying A and po . . . . . . . . . . . . . . . . . . 67

A-7 GJ 1214 b: P, for varying Vpeak and ro . . . . . . . . . . . . . . . . . 68

A-8 Dynamo regions for terrestrial planets . . . . . . . . . . . . . . . . . . 69

A-9 Dynamo regions for ice planets . . . . . . . . . . . . . . . . . . . . . 70

A-10 CoRoT 7-b observations.. . . . . . . . . . . . . . . . . . . . . . . 71

A-11 GJ 1214 b observations. . . . . . . . . . . . . . . . . . . . . . . . 72



12



List of Tables

B.1 Physical parameters for CoRoT 7-b, GJ 1214 b and their and host stars 74



14



Chapter 1

Introduction

Do other Earths exist? And if so, do they harbor life? This is one of the main ques-

tions planetary science is aiming to answer. As of today, more than 400 planets have

been detected outside the solar system. The majority of them have been discovered

by Doppler techniques, which measure the star's line-of-sight motion as the star orbits

the planet-star common center of mass. Most of the extrasolar planets, or exoplan-

ets, that have been detected are giant planets, with much larger masses than that of

the Earth. Hence, the next and possibly more fascinating step is discovering planets

with masses close to the Earth mass, the so called super Earths. At the present time,

the detection and study of exoplanets is a hot topic in astronomy and astrophysics,

especially since several super Earths have recently been detected and new missions

will soon discover more (e.g. Kepler) [17].

1.1 History

The first planets outside the solar system were detected in 1992 by Aleksander Wol-

szczan and Dale Frail. They discovered three planets orbiting the pulsar PSR1257+12.

However, the first exoplanet orbiting a main sequence star, 51 Pegasi, was discovered

in 1995 by Michel Mayor and Didier Queloz. It was therefore named 51 Pegasi b 1.

'The nomenclature convention for exoplanets is the following: the first planet discovered in a
star system receives the name of the star followed by the letter 'b' (for example, the first planet in
the star system 51 Pegasi was named 51 Pegasi b). The following planets receive the letters 'c', 'd',



1.2 Detection Techniques

Currently, there are several methods to detect exoplanets. We briefly summarize

them and explain their limitations.

1.2.1 Direct detection

Detecting an exoplanet directly is very difficult, due to the fact that the parent star

emits much more light than the planet, making it impossible to be seen in visible

light. There are several methods to detect a planet, such as using infrared radiation

rather than visible light, or using a coronograph that blocks the direct light from

the star. Although direct detection is sometimes the only way to assess important

physical parameters of the planet, it is an enormous challenge. Alternatively, there

are several indirect methods of exoplanet detection that can provide useful insight

into exoplanet properties. The indirect methods assess the existence and features of

an exoplanet by examining the effect on the parent star or observations thereof.

1.2.2 Doppler methods (Radial velocity tracking)

The presence of an exoplanet causes the parent star to move in a small orbit around

the common center of mass. The velocity with which the star moves as seen along

the line of sight of an observer from Earth is called radial velocity. The star will

move towards, then away from the Earth as it completes an orbit, and hence cause

the lines in the spectrum of the star to undergo Doppler shift. This effect can be

detected on Earth by high-precision spectrographs. Such measurements can yield, for

example, lower bounds on the mass of the planet. Currently, one of the most successful

detectors is called HARPS (High Accuracy Radial Velocity for Planetary Searcher)

and is mounted on the 3.6 m ESO (European Southern Observatory) telescope from

La Silla, Chile.

'e' etc. as they are discovered.



1.2.3 Transit method

If a planet passes (transits) between its host star and Earth, the apparent brightness

of the star as observed from Earth decreases. This effect can be measured using pho-

tometry. The transit method can reveal important information about the atmosphere

of the planet. It is used, for example, by the Kepler mission launched by NASA in

2009 to search for planets in the Cygnus constellation, or by the COROT mission led

by the French Space agency and the European Space Agency [5].

1.2.4 Pulsar Timing

A pulsar emits radio pulses regularly as it rotates. If a planet is orbiting a pulsar, it

will affect the timing of the emitted pulses. This is how the first exoplanets mentioned

in section 1.1 were detected.

1.2.5 Gravitational lensing

The gravitational attraction of a star will bend and amplify the light coming from

another distant star, acting like a magnifying lens. If, however, there is a planet

orbiting the lens star, the light curve of the distant star will change slightly - it will

contain an additional peak. The size and shape of the secondary peak will depend

on the mass and distance of the planet from the host star. This method was used,

for example, to detect the extra solar planet OGLE 2003-BLG-235.

1.2.6 Astrometry

Astrometry is used to observe the position in the sky of a star and how that position

changes over time - if a star is orbited by a planet, the star itself will move in a small

orbit around the center of mass of the planet-star system. This method is thus similar

to the radial velocity method. So far there have not been any successful detections

using astrometry.



1.3 Current discoveries and planetary parameters

As of March 23, 2010, 442 extra solar planets have been confirmed [4]. A plot of the

mass of the planets as a function of their radius, as well as the detection methods, is

shown in Fig. A-1. Most of the planets discovered so far are large and they orbit very

close to their host star. This is due to the fact that large planets are usually easier to

detect. Such planets, of roughly Jupiter-like masses, are called 'hot Jupiters'. How-

ever, several smaller planets have been discovered in the past couple of years (e.g.

CoRoT 7-b, Gliese 581 e, GJ 1214 b). The planets with masses between 1 and 10

Earth masses are called 'super Earths'.

If a planet is found through the radial velocity method, its orbital inclination i (the

angle between the rotation axis of the planet and the planetary orbit) is unknown,

and hence it is only possible to detect its minimum mass, M sin i. However, the angle

i has, statistically, an average of r/4 = 0.785, so the minimum mass estimates will

generally be close to the true mass of the planet [10]. Additionally, if a planet is

detected by the transit method, then its inclination angle is known, and so the true

mass of the planet can be accurately determined.

The surface temperature of an exoplanet can be estimated from the intensity of the

light it receives from its host star, or from variations in the infrared radiation received

as the planet orbits around its parent star and is eclipsed by it.

The average density of a planet can be determined once we know its mass and radius.

The density can give us some information regarding the internal composition of the

planet. For example, planets with low average density are assumed to be composed

mainly of hydrogen and helium, which is the case for hot Jupiters. Planets with a

medium average density are likely to have water as a predominant element, while

planets with a high average density are believed to have a rocky structure, similar

to that of the Earth. The exact structure and composition of a planet are difficult



to estimate; however, more knowledge regarding the internal structure and the at-

mosphere of a planet can give information regarding its habitability (its capacity to

sustain life).

1.4 Planet-star interactions

In this section we discuss possible interactions between exoplanets and their host

stars. The existence of a planet around a star can affect the outer atmospheric layers

of the star or the coronal activity [111. We can classify the star-planet interactions

into tidal interaction and magnetic interaction.

1.4.1 Tidal interaction

The tidal interaction between a planet and its host star arises as an effect of the

gravitational acceleration caused by the planet. This gravitational acceleration varies

in strength and orientation along the surface of the star, affecting the motions and

flow fields in the atmospheric layers of the star [11]. If the orbital period of the planet

and the rotational period of the stars are different, the variation of the gravitational

force will cause stellar tidal bulges (expansions and subsequent contractions of the

outer layers of the star due to different accelerations on the side nearest to the planet

and on the side farthest to the planet). Since the flow velocities increase in these

tidal bulges, more energy will be released, resulting in an enhanced level of stellar

activity. [11] proposes a model for estimating the strength of the tidal interaction

between extrasolar giant planets and their host stars. In this thesis, however, we

will not discuss tidal interaction. This is mostly due to the fact that most extrasolar

planets have an orbital period very close or equal to the rotational period of their

host star, and so tidal interactions can be neglected in this situation. Instead, we will

focus on the magnetic interaction between a planet and its parent star.



1.4.2 Magnetic interaction

Another important type of interaction between a planet and a star is the interaction

between the magnetic fields of the two celestial bodies. This interaction usually occurs

at the surface of the magnetosphere of the planet (the region of space to which the

planetary magnetic field is confined by the stellar wind plasma blowing outward from

the host star). The magnitude of the interaction is mainly determined by magnetic

reconnection, which will be discussed in more detail in section 2.3.1. The magnetic

interaction between a planet and its host star will lead to the release of magnetic

energy that will be emitted in various forms of electromagnetic radiation (see section

2.5). The magnetic interaction between giant exoplanets (hot Jupiters) and their

parent star has been studied in detail ([11], [38], [19], [13]). We will discuss it in more

detail in Chapter 2.

1.5 Motivation

There are currently several models of the magnetic interaction between extrasolar

giant planets and their host stars. However, the magnetic interaction between super

Earths and their parent star has not been investigated yet. This is mainly due to

the fact that planets with a mass similar to that of Earth have only recently been

discovered. Additionally, super Earths have a relatively small mass and radius (com-

pared to hot Jupiters), which will usually cause the magnetic field to have a smaller

strength that in the case of hot Jupiters. Therefore, we expect the strength of the

magnetic interaction for super Earths to be much smaller than in the case of hot

Jupiters, and hence not easily detectable. However, this is not always the case. As

we will see in chapter 3, emission from the super Earth GJ 1214 b is in the detectable

range. Furthermore, the development of instruments with higher capabilities and

sensitivity will make it possible to observe weaker interactions. Creating a magnetic

interaction model for super Earths and comparing it with observations can provide us

with essential information regarding the internal structure and composition of these

planets. Among others, it could give important pieces of information in determining



whether a super Earth can be habitable or not, which is one of the main questions

that planetary science is trying to answer.
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Chapter 2

Magnetic Interaction Model

In this chapter we review the models for magnetic interaction between an extrasolar

planet and its host star. We first present the general case, after which we apply it to

the particular instance of super Earths. We model the magnetic field of the planet as

a dynamo and briefly explain the conditions under which the dynamo can exist. We

then model the magnetic interaction between the planet and its host star, focusing on

different types of mechanisms through which power can be released. All the results we

present are based on scaling arguments. Lastly, we relate our model to observations.

2.1 Planetary Magnetic Field

2.1.1 Dynamo model

The dynamo model is a mechanism through which a celestial body, such as a star or

a planet, can generate a magnetic field. This process involves rotation of, convection

in and electrical conduction in the celestial body. It is a complex process that is not

fully understood.

The planetary core represents the innermost layer of a planet. For some planets, it

can be separated into an inner, solid core and an outer, liquid shell. A magnetic field

can be generated by the movement (conduction) of charged particles in the outer shell



of the core of the planet. In order to produce a current, the outer shell needs to be

made of a conducting material: it can be an iron-nickel composition, as is the case for

the Earth, metallic hydrogen (Jupiter), or even a salt-water composition (Ganymede

[18]). Due to differences in temperature and composition, convective motions are cre-

ated in the outer shell. These convective motions produce an electromotive force and

the associated currents and fields, which, by induction, give rise to a reinforced mag-

netic field. This field then undergoes rotation and convection, resulting in a positive

feedback cycle. In order for the magnetic field to be strong enough, the currents need

to flow fast enough and exhibit convection. If a planet rotates too slowly or its core

is too viscous, a strong magnetic field cannot be created. As such, the strength of

the magnetic field of a planet can give us information regarding its internal structure.

An analogy between the planetary dynamo and the disc dynamo can be seen in Fig.

A-2.

The magnetic field in the case of a dynamo is described by the induction equation

[39]:
9B= AV2B + V x (v x B), (2.1)
at

where B is the magnetic field vector, v is the fluid velocity relative to the rotating

frame of reference of the planet, and A is the magnetic diffusivity [39] and is defined as

A = /Ipoo, where yo is the vacuum permeability and u is the electrical conductivity.

The first factor on the right hand side of the above equation is the conduction term,

while the second factor is the convection term.

We are interested in the conditions for which a planetary dynamo exists. We follow

here the exposition in [39]. First off, we know that if the dynamo is suddenly stopped

(there is no more fluid motion), the magnetic field decays in time. The time scale of

this free decay can be approximated as [39]

T ~ (2.2)

24



where L is a characteristic length of the field. In our calculations, we take L - ro,

where ro is the radius of the planetary core. As such, for a constant decay time

(typical values are 10' years for the Earth), we obtain a relation between the radius

of the conducting region ro and the electrical conductivity a of the core:

ro -1/2 (2.3)

Furthermore, we assume that the heat flow from the core is all being transported to

the dynamo region rather than absorbed. In this approximation, the total heat flow

at a radius r from the center of the planet is given by

Ftotai(r) = -pcCpr dT (24)
dt 3(

where pc is the mean core density, C, is the specific heat and Tc is the mean temper-

ature of the core. The condition for thermal convection (and hence the existence of a

dynamo regime) is that the heat flow defined in equation (2.4) must be higher than

the heat flow carried by conduction along an adiabat, defined as

Fcond,ad 4, irGperkaT/C,, (2.5)

where k is the thermal conductivity, a is the coefficient of thermal expansion and G

is the gravitational constant. In order to relate the above mentioned quantities to

electrical conductivity, we will use the Wiedemann-Franz law [39], an empirical law

named after Gustav Wiedemann and Rudolph Franz, which states that the ratio of

the thermal and electrical conductivity in a metal is proportional to the temperature.

The proportionality constant is called the Lorentz number and is given by

L = = ~ 2 x 10-8 WQ/K2, (2.6)
aT 3 \ e /

where kB is Boltzmann's constant and e is the elementary charge. This, together with

the dynamo existence condition, implies an upper bound for the electrical conductivity



in order for conduction to be possible. For nominal parameter choices, this upper

bound is roughly equal to the electrical conductivity in the Earth core [39]. It is

important to mention that the Wiedemann-Franz law is only valid for terrestrial

planets - for ice planets, the heat flow along the adiabat is much higher than the

actual heat flow [39]. From this upper bound and from the proportionality in equation

(2.2) we can obtain conditions for the existence of a dynamo, as a function of the

core radius ro and the electrical conductivity - of the core. Numerical estimations

for super Earths will be presented in Chapter 3.

2.1.2 Induction fields

Apart from a magnetic field produced by a dynamo, a planet can also have an in-

duction field (a magnetic field produced by an external field, e.g. another celestial

body). For an external field that varies with angular frequency w and for a thin

conducting shell of the planet, of radius R and thickness d, a strong induction will

exist if (A/w) 1/2 < (Rd)1/ 2 [39]. In this thesis we neglect the induction fields.

2.2 Magnetic field strength

By Lenz's law, the Lorentz force created by the currents induced by core motion

will act to oppose the rotation of the core, quantified by the Coriolis force. Strong

planetary dynamos work in an equilibrium regime, and hence the Coriolis Force ~

the Lorentz Force [32], with the ratio between the two forces being defined as the

Elsasser number: A = |Fcor|/|Fior|-

In the fluid frame, the Coriolis force per unit volume is given by:

Fcor = 2pv x Q -> IFcorI = 2pvQ, (2.7)

where p and v are the density and the velocity of the fluid, respectively, and Q is the

angular velocity.



The Lorentz force per unit volume is given by:

Fior = j x B -+ Fior| = jB. (2.8)

But j oE = o-vB 2 , where o- is the electrical conductivity of the fluid and E is the

electric field. As such, we obtain that the Elsasser number is given by

B2

A = . (2.9)
200opooA'

We define A = 1/poo-. Also, in this case, the density p will be the density at the

surface of the planetary metallic core of radius ro: p = p(ro) = po. We therefore

obtain from equation (2.9) that the magnetic field strength is given by

B = 42OopAA. (2.10)

Since for the dynamo regime |Fcorl ~ Fiori, we expect the Elsasser number to be of

order 1 [34]. In addition, we know that the Elsasser number does not vary much in

known planets (A ~ 1 for the Earth, A - 0.01 for Uranus and Neptune). Since B

changes as ~ A1 /2 , we can see that an Elsasser number between the 0.01 and 1 will

change the strength of the magnetic field by at most one order of magnitude. However,

since we will encounter many other uncertainties in our subsequent estimations, we

can incorporate the uncertainty of the Elsasser number in the other uncertainties.

As such, we consider from now on that A = 1. We obtain that the magnetic field

strength at the surface of the core is given by

B = 2QpopoA. (2.11)

Since we are using a dynamo model, the magnetic field is represented by a dipole,



with intensity in polar coordinates given (to first order) by

B(r, M) = D( + 3sin ), (2.12)

where r and 6 are the polar coordinates centered on the planet and MD is the dipolar

magnetic moment and is given by

MD =B , (2.13)

where ro is the radius of the metallic core.

2.3 Star-Planet Magnetic Interaction

In this section we discuss different mechanisms of power release due to the planet-star

interaction, as well as the observational means by which such energy releases can be

detected.

2.3.1 Magnetic reconnection

Magnetic reconnection is the fundamental mechanism in a plasma through which

magnetic field lines, normally attached to the plasma, become detached, break (dis-

connect) and rejoin (reconnect). The magnetic fields can annihilate each other, caus-

ing the plasma to follow a trajectory along the weaker field, at a velocity called the

Alfven speed. Essentially, magnetic reconnection is a topological restructuring of a

magnetic field due to the change in connectivity of the field lines. During this pro-

cess, magnetic energy is released as heat, plasma kinetic energy or fast particle energy.

Magnetic reconnection occurs in solar flares, coronal heating geomagnetic storms and

many other dynamical processes in astrophysical objects.

The magnetic reconnection between the magnetic field lines of a planet and the mag-

netic field associated with the wind of the host star takes place at the magnetopause



of the planet. The magnetopause is the surface between the magnetosphere of the

planet (the region of space to which the planetary magnetic field is confined by the

stellar wind plasma blowing outward from the host star) and the surrounding plasma,

on which the magnetic pressure of the planet is equal to the ram pressure of the stellar

wind. From [22] and [19], the power released due to reconnection can be approximated

as:

P = VBypRM erg/s, (2.14)

where V is either the radial or tangential component of the stellar wind velocity (see

the paragraphs below), BMP is the magnetic field strength at the magnetopause and

RMp is the radius of the magnetopause. This expression for the power dissipated can

be obtained by taking into account that the energy dissipated through reconnection

is a fraction of the total energy, which is the energy density B 2 /87r integrated over the

volume. As such, the power dissipated can be expressed as a fraction of the energy

density integrated over the changing volume r 2v, where r is the radial distance and

v is the stellar wind velocity. We integrate over the magnetosphere and therefore

obtain that the dissipated power is proportional to B pR2 pV, explaining equation

(2.14).

Before proceeding with this model, we need to explain the conditions under which

this interaction is significant and therefore can potentially be detectable. We will

show here that the strength of the interaction will depend, among other variables, on

the distance between the planet and the star relative to the Alfven radius.

Alfven radius

The Alfven radius rA is the distance from the star for which the ram pressure is

balanced by the magnetic pressure [27]:

PV 2 r=rA B,(rA)2 (2.15)
87rx



where pw is the stellar wind density and B,(rA) is the radial magnetic field of the host

star at r = rA. The mass loss rate of the star is related to the stellar wind density

and velocity by

M( rA) - 4,rr 2p"V. (2.16)

From equations (2.15) and (2.16) we find that the Alfven radius is given by

V M(rA)
T A B2  . (2.17)

r

Furthermore, B,(rA) can be expressed as

B,(rA) = B, , (2.18)
(rA)

where B, is the magnetic field strength at the surface of the star and R, is the radius

of the star. We therefore obtain from equations 2.17 and 2.18 the following expression

for the Alfven radius:

rA V 2M A) (2.19)

The typical value of the Alfven radius of the Sun is rA ~ 15R,, = 0.07 AU [30],

depending on the solar activity.

Case I: r > rA

The strength of the magnetic interaction will be different for a planet inside or outside

the Alfven radius of its host star. Let us first consider the case in which the distance

between the planet and the star is larger than the Alfven radius. In this situation, the

plasma transports the magnetic field lines from the star to the planet magnetosphere.

Magnetic reconnection occurs on the surface of the magnetosphere, where the stellar

wind pressure is balanced by the magnetic pressure of the planet. At this distance,

the dominant component of the stellar wind velocity will be the radial component,



which we denote as V.. As such, equation (2.14) becomes

P = pR 2 erg/s. (2.20)

Since V, is large at a large enough distance from the star (i.e. V. > 200km/s at

r = 0.1 AU for the Sun), the power released will also be significant. As an example,

the distance between the Sun and Jupiter is larger that the Alfven radius of the Sun,

and so the magnetic reconnection between the solar and jovian magnetic fields takes

place outside the Alfven radius, having a high intensity.

Case II: r < rA

We now consider the case in which the distance between the planet and its host star is

smaller than the Alfven radius, which is the case for most extrasolar planets detected

so far. In this situation, the magnetic field lines of the planet and of the star are

continuously connected. The plasma will flow along the magnetic field lines from the

star to the planet. Since the magnetic field lines corotate with the plasma, the stellar

wind velocity is now given by its tangential component, and it is a relative velocity

[11]:

Vrel = K(R,/A) - Vrot, (2.21)

with K the orbital velocity and Vrot the equatorial rotational velocity of the star.

Additionally, the continuous magnetic connection between the star and the planet

will cause an enhanced, turbulent activity at the surface of the star, which will be

characterized by a velocity Vmac/v/, the mean rms granular convective velocity at

the stellar surface, observationally seen as rms macroturbulence. Therefore, the total

tangential stellar wind velocity is [11]

V = (V ac/2 + vei)1/ 2 , (2.22)



and hence equation (2.14) becomes

P = V R 2 (2.23)

However, vmac is generally small (vmac ~ 0.5km/s for the Sun [12]). Furthermore, as

we will see in section 2.4, most extrasolar planets will become tidally locked to their

host stars after a relatively short period of time. As such, the relative velocity Vre

will be very small, since it is expressed as the difference between the orbital velocity

of the planet and the rotational velocity of the star, which will be equal in the case of

tidal locking. The conclusion we draw is that the power released from magnetic recon-

nection will generally be weak inside the Alfven radius, and hence not easy to observe.

Another possibility of magnetic interaction between a planet and its host star inside

the Alfven radius is an interaction similar to the one between Jupiter and its satellite

Io. This type of interaction is believed to produce Alfvenic waves [43]. These waves

produce electrical currents that accelerate the electrons in the plasma to energies of

the order of keV, causing a significant energy release. The power dissipated in this

situation can be expressed as [43]

=a B2Ve R 2 (2.24)
4(1 + Ma2) 1/2

where Ma is the Alfvenic Mach number and is approximately equal to 0.3 for the

jovian magnetosphere.

Reconnection power dissipated

We now go back to making a qualitative estimate for the reconnection power from

equation (2.14). The stellar wind velocity is generally difficult to estimate; however,

the stellar wind model described in [29] predicts that the stellar wind velocity will

not vary significantly for different types of stars. As such, we can estimate it to be

constant and equal to the solar wind velocity at a distance equal to the distance be-



tween the star and the planet (for distances of the order - 0.05 AU, V,.~ 200 km/s).

From [38] and [151, the magnetosphere radius can be expressed as a function of the

planetary magnetic moment and the characteristics of the solar wind 1:

PofoM 1/6
Rup = ,AM (2.25)

where MD is the magnetic dipole moment of the planet (see equation (2.12)), p, and

V, are the density and velocity of the stellar wind at the magnetosphere, A is the

distance between the planet and the star, and fo is a form factor equal to fo = 1.5

for a spherical magnetosphere, but a more realistic estimate is fo = 1.16 [15]. In

our calculations, we will assume fo has the same values for all planets. Assuming

spherical symmetry, the density of the stellar wind at the radius of the planet is by

definition

pw 47rA 2V (2.26)

where M, is the mass loss rate of the host star. From equations (2.25) and (2.26) we

therefore obtain the following expression for the magnetosphere radius:

RMP = 22 1/M/3 - 1/6 V-1/6A1/3. (2.27)

We can use observations to estimate the mass loss rate of the star [38], [42]:

R*,[2iFX]= (2.28)M*1O1= RO Fx,O

where Mo is the mass loss rate of the Sun and (equal to 2 x 10 1 4 MO/year), Fx,O

is the solar x-ray surface flux (equal to 31 Jm-2s-1) and 6 = 1.15 t 0.20. Fx is the

X-ray flux at the surface of the star:

Fx = (2.29)
41r R2>

'The expression for the magnetosphere radius is derived from the fact that the ram pressure of
the stellar wind is equal to the magnetic pressure at the magnetosphere.



where Lx is the X-ray luminosity of the star, which is usually determined from ob-

servations. Once we know the value of the X-ray luminosity we can estimate the

mass-loss rate of the star M. In the next sections we will find empirical relations for

Lx.

Next, we want to calculate the strength of the magnetic field BMP at the magne-

topause. From equation (2.12) (taking, for simplicity, 0 = 0), we obtain that

MD
BMP ~ 3D (2.30)

RMP

But from equation (2.27), RM o MD1 -1/2V 1/2A. From this and equation (2.30)

we obtain that the magnetic field strength at the magnetopause can be expressed as

BMP oc A, 1 6 V1/6A-1/3. (2.31)

We thus notice that in this model, the magnetic field strength at the magnetopause

does not depend on the strength of the magnetic field at the surface of the planet,

and can therefore be easily calculate with basic information about the host star pa-

rameters, and the distance between the star and the planet.

By substituting equations (2.27) and (2.31) into equation (2.14), we obtain that the

power due to reconnection will be of the form

P oc M2/3. (2.32)

Since the magnetic dipole moment of the planet can be expressed as MD= Bro,

where B is given by equation (2.11), we finally obtain that the reconnection power

will only depend on ro, po and A - the dissipated power from reconnection scales as

SB 2/3:

P oc ro (po A)/ 3 . (2.33)



2.3.2 Power to mass relationship

In this section we relate the power dissipated through magnetic interaction between

the planet and the star to the mass of the planet. From equation (2.33)

P Oc rop 3  (por )1/3ro. (2.34)

But poro represents a fraction f of the total mass of the planet Mp: poro = fMp oc

Mp, and so we obtain that

P oc Mi/3ro. (2.35)

2.3.3 A different model for the dissipated power

[11] makes a different estimate for the power of magnetic field interaction between

a planet and its host star for the case of hot Jupiters. By analogy, we can derive

an expression for the energy flux (power) due to magnetic interaction in the case of

super Earths.

[11] derives the following expression for the dissipated power:

P cBB 1 3V, (2.36)
d2R 2F/ 6

where e is the fraction of total magnetic energy per unit time that magnetic interaction

releases, B, and B are the mean magnetic fields averaged over the surface of the star

and planet, respectively, v4 is the tangential component of the stellar wind velocity

(see section 2.3.1), A is the distance between the star and the planet, Rp is the radius

of the planet and Fx is the X-ray flux at the surface of the star. In the case of super

Earths, the radius of the planet Rp is replaced by the radius of the core ro:

P o-.cB .0V (2.37)
d2r2F1/6

It is further assumed in [11] that B, oc P- 7, where Prot is the period of rotation



of the star. The X-ray flux at the surface of the star Fx is related to the X-ray

luminosity Lx observed on Earth by equation (2.29).

By contrast with the expression of dissipated power derived in section 2.3.1, the power

derived by [11] scales as ~ B1 / 3 r- 2 . By analogy to equation (2.35), Fi, - M'r -5 /2

in this case.

2.4 Tidal Locking

One factor that can affect the strength of the magnetic interaction between a planet

and its host star is tidal locking. Tidal locking occurs when one (smaller) celestial

body is forced to always face another (larger) celestial body, due to tidal forces. These

forces arise due to the fact that the gravitational force exerted by the larger body

upon the smaller body is not uniform: the side closer to the large body experiences

a stronger force, while the other side experiences a weaker force. An example of tidal

locking is the Earth-Moon system: one side of the Moon always faces the Earth,

while the other never does. Tidal locking causes the 'locked' body to rotate around

the other body in the same amount of time that it takes it to rotate around its own

axis. This phenomenon is also called synchronous rotation. The time scale for a body

to become tidally locked is given by [14]:

Q(G, ~ _) (wi - f) ( )(A), (2.38)
(GMp M, Rp

where Q is the planet tidal dissipation factor, Rp and Mp are the radius and mass of

the planet, respectively, M. is the mass of the hose star, wi and Wf are the initial and

final angular velocities of rotation, respectively (before and after tidal locking), G is

the gravitational constant and A is the distance between the star and the planet. It

is easy to notice that the synchronization time will be shorter for a smaller distance

between the star and the planet. Since most discovered super Earths orbit very close

to their host star, we expect these planets to become tidally locked to their host stars



after a relatively short period of time (r8 ync < 0.1Gy [14]). After the tidal locking,

the synchronous angular velocity of rotation (wf) will be given, from Kepler's law, by

Wf 3
3 . (2.39)

In section 2.3.1, we derived that the power resulting from magnetic reconnection is

proportional to the strength of the magnetic field of the planet to a given power; the

magnetic field, on the other hand, is - w 1 / 2 from equation (2.11). Since tidal locking

causes the angular velocity of the planet to decrease, the magnetic field and hence

the reconnection power will also have relatively small values compared to unlocked

planets, and hence detection will be difficult.

2.5 Observations

In this section we discuss the different means by which power can be dissipated and

observed in radio emissions, X-ray emissions and ultraviolet (UV) emissions. The

dissipated total power derived in equation (2.14) can be written as

P = frPr + fXPX + fu PUV) (2.40)

where P, is the radio power, Px is the X-ray luminosity, P,, is the UV power, and

fr, fx, fuv are numbers between 0 and 1 representing the fractions of power that are

emitted through radio, X-ray and UV, respectively.

2.5.1 Radio emission

The observation of radio emissions from extrasolar planets can be useful for several

reasons. For example, it can provide another possible means of observing the planet

directly and of finding information about its rotation period or its inclination. More

importantly, the radio emission of a planet is related to the energy release at the mag-

netosphere (see section 2.3.1), so observations of radio emissions can give an estimate



of the planetary magnetic field. The magnetospheric radio emissions can have several

origins: synchrotron radiation, thermal radiation or electron cyclotron maser radia-

tion. The flux intensity of the different emissions is depicted in Fig. A-3 for various

planets of the solar system. We notice that the strongest emissions are produced by

the electron cyclotron maser radiation, so we will discuss this type of emission in more

detail. This type of radiation is associated with planetary magnetic fields. In this

process, electrons with energies of the order of 103 eV radiate power at a frequency

equal to the gyrofrequency of the magnetic field lines. These emissions usually occur

in regions of very low plasma density [16].

We follow again the derivations from [38) and adapt them to the case of super Earths.

In radio emissions, the emitted power is observed as radio flux: the radio flux is

measured in Jansky (symbol Jy), and 1 Jy=10-2 6 W/m2 Hz. We denote the radio flux

emitted by the planet as Pr. Since different fractions of the solar wind kinetic flux

(proportional to the ram pressure) and of the magnetic energy flux (proportional to

the magnetic pressure) will be emitted through radio waves, we have the following

relations:

Pr = aPram - 3Pmag, (2.41)

where Pram is the stellar wind kinetic flux, Pmag is the incident magnetic energy

flux on the magnetosphere of the planet, and a and 3 are constants, also known as

efficiency coefficients. From [38], Prm is defined as

Pram = pwV3,rR2, (2.42)

(with pw the stellar wind density at the magnetosphere). Using equation (2.26), Pram

can also be written as
5, Vw2R2u

Pram = 4A2 .P (2.43)

From this and the expression for RMP given in equation (2.27) we obtain that the



radio flux emitted by the planet will be given by

PocX M 2/3V /3V B 2/3r2A-4/ 3, (2.44)

as calculated at the surface of the star. However, since we can only measure the radio

emission from the Earth, we need an expression for the radio flux at the surface of

the Earth. This will have an additional D- 2 dependence, where D is the distance to

the star:

P, oc KI 2/ 3 V5/3B2/3rA4/3D2. (2.45)

For constant M., V., A and D, and using the dynamo magnetic field strength derived

in equation (2.11), we obtain a scaling relation for Pr of the form:

Pr oc ro(poA) 1/3 , (2.46)

where the proportionality constant can be determined from the known radio emission

of Jupiter. We notice that this relation is consistent with the one derived in 2.33,

which makes sense, as both scaling models have the same basic assumptions. We

assume, based on equation (2.40), that the power resulting from each type of emission

(X-ray, radio, UV) will be of the form P ~ B2/3 , where j = r, x, v.

2.5.2 Peak frequency for radio emission

In order for the radio flux to be detected through observations, we need to know the

frequency for which the peak radio emission will occur. Following the derivations

in [381, we first define two important frequencies - the plasma frequency denoted

as vP, and the electron cyclotron frequency, denoted as vc. The plasma frequency

represents the collective oscillation frequency of electrons in a plasma in the absence

of a magnetic field. It is defined as

(nlee 2 \1/2V2 = 8.98 x 10~3 MHz. (2.47)
7rme



The electron cyclotron frequency represents the number of times per second that an

electron orbits a magnetic field line, and is defined as

eBB
Mc = = 2.8 MHz, (2.48)

(27rmec) 1Gauss

where e is the electron charge, ne is the electron density in cm-3, and B is the magnetic

field strength in Gauss at the surface of the conducting region of the planet (defined

in equation (2.11)). [38] derives an empirical expression for the value of the frequency

for which the radio emission is maximum: it is found that the magnetic field strength

at the surface of Jupiter is B ~ 4.3 Gauss, corresponding to an electron cyclotron

frequency of 12 MHz. This value is roughly equal to the observed frequency of the

peak radio emissions from Jupiter. As such, it is approximated that peak emissions

will occur at a frequency equal to the cyclotron frequency:

Vpeak =c = 2.8B. (2.49)

As such, the peak frequency will scale as:

,/peak OC (poA)1 2. (2.50)

It is important to notice that observations of radio emission are only possible if the

peak frequency is larger than the plasma frequency for the said star - radio waves

with a lower frequency will always be screened, since radiation with frequency below

the plasma frequency will always be trapped within the magnetosphere [28].

2.5.3 X-ray emission

As mentioned in section 2.5, a fraction of the reconnection power will be emitted

through high energy X-rays from the stellar corona. These X-ray emissions are gen-

erally caused by thermal bremsstrahlung. As mentioned in section 2.3.1, the coronal

activity is directly influenced by the magnetic interaction between the star and an

orbiting planet. As such, the existence of a planet in the proximity of a star will



produce changes in the X-ray output, providing information with regards to the mag-

netic properties of the planet.

[35] finds an empirical relationship between the X-ray luminosity and the projected

mass of hot Jupiters. This relation applies for distances between the star and the

planet smaller than 0.15 AU, which is our domain of interest, since most super Earths

have a distance to their host star less than 0.15 AU. He finds the following empirical

relationship:

LX = (3.58 ± 0.01) x 1028(Mp sin i)0 .60 ±0.12 erg/s, (2.51)

where LX is the sum of the time-averaged X-ray luminosities of the star and of the

planet, and i is the inclination angle of the planet (the angle between the orbital

plane and the ecliptic plane). Notice that the theoretical model presented earlier,

Lx oc M,. 33 , (see equation (2.35)), is different from the empirical relation derived

above. This might be caused by the fact that the model we are assuming is too

simple. Additionally, choosing a different scaling model for the power dissipated (see,

for example, [14]) might yield a theoretical result in agreement with observations.

2.5.4 UV emissions

A fraction of the energy resulting from magnetic reconnection will be emitted in the

Ca II H & K lines. The Ca II & H lines are two absorption lines of singly-ionized

calcium in the ultraviolet region of the spectrum, with wavelengths of 3968.5 A and

3933.7 A, respectively [2]. The energy resulted from these emissions quantifies the

amount of light emitted from the active magnetic regions of the stars. Since the stel-

lar activity is influenced by the presence of an orbiting planet (see section 2.3.1), the

emissions in the Ca II H & K lines will be significant when there is a strong magnetic

interaction between the star and the planet. In particular, the prominence of the Ca

II H & K lines can indicate a strong magnetic activity in the stellar chromosphere [2].

The Ca II H & K emissions have been studied for extrasolar giant planets. In [37], the



chromospheric activity in the Ca II H & K lines of several hot Jupiters is monitored

over the course of several years (three years for most planets). The long exposure

is necessary in order to obtain reliable information regarding the stellar activity and

stellar cycles. [37] concludes that the stars with closely orbiting planets ('close-in'

exoplanets) exhibit higher emissions in the Ca II H & K lines than the stars without

planets. This indicates the existence of magnetic interactions between the planets and

their host stars, as well as the fact that the energy released from these interactions

can be detected through UV emissions. [37] quantifies the Ca II H & K emissions for

several extrasolar planets, but does not provide a quantitative relationship between

these emissions and the properties of the magnetic fields of the star and the planet.

Currently, there are no studies regarding the possibility of UV emissions for super

Earths.



Chapter 3

Applications to Known Super

Earths and Results

In this chapter we apply the model developed in Chapter 2 to two known super Earths,

CoRoT 7-b and GJ 1214 b. We discuss the detection potential of emissions from these

planets, and generalize our results for other super Earths. We further consider spe-

cial cases for detections, such as solar flares, or planets around Ap stars and M dwarfs.

For convenience, we write

used in the next sections:

again the formulas we derived in Chapter 2 that will be

B = V 2 popoA oc (poA) 1/2

Vpeak = 2.8B OC (poA) 1/ 2

P o r2(poA) 1/3 X 2/320 Vpeak 0

(3.1)

(3.2)

(3.3)

(3.4)

We notice that, if we know the orbital angular velocity Q and we measure the peak

frequency 1 peak, then we can find poA from equation (3.2). Furthermore, if we also

measure the radio flux P,, we can find ro from equation (3.3).



3.1 CoRoT 7-b

3.1.1 Discovery and physical parameters

The extra solar planet CoRoT 7-b was discovered by the French space mission CoRoT

in early 2009, through the transit method (see Chapter 1). [25]. It is the first su-

per Earth with a measured radius and mass, and the smallest yet exoplanet with

a measured diameter. The physical parameters of CoRoT 7-b and its host star are

summarized in Table B.1. CoRoT 7-b orbits around the parent star CoRoT-7 at a

distance of only 4.27 stellar radii, or 0.017 AU [40], and with an orbital period of

0.854 days [40]. Its radius was derived to be R = (1.68 ± 0.09)Re [40], where RE is

the Earth radius. The mass of the planet was measured through the radial velocity

method by the HARPS spectrograph [31]: Mp = (4.8 ± 0.8)ME [31], where ME is

the mass of the Earth. It therefore has an average density of 5.6 ± 1.3 g/cm3 [31].

It has an age of about 1.2-1.3 Gy [40] and an equilibrium temperature of 1800-2600

Kelvin [40]. The inclination angle between the axis of the planet and the orbital plane

was determined to be i = (80.1 ± 0.3) deg [25].

The planet orbits around the host star CoRoT-7. CoRoT-7 is a main sequence yellow

dwarf star (type G9V) [25], similar to our Sun. It has a mass M, = (0.93 ± 0.03)M 0

[4] and a radius R, = (0.87 ± 0.04)R 0 [4]. CoRoT-7 is at a distance of 150 ± 20

parsecs [4] away from us (1 parsec= 3 x 1013 km) and it has a rotation period of 23

days [40].

3.1.2 Internal composition

Due to an average density similar to that of the Earth, CoRoT 7-b is believed to have

a predominantly rocky structure [40]. In [40], several possible internal structures are

presented, compatible with the known physical parameters of the planet. The first

scenario is an iron-rock-ice planet, with an iron core, a silicate mantle and an ice

layer. The second model is that of a steam planet, again with an iron core, a silicate



mantle and a (possibly H-He) layer of steam. The final possibility consider by [40] is

an evaporated ice or gas giant. However, this last scenario is highly incompatible with

the observed parameters of the planet. The conclusion reached by [40] is that CoRoT

7-b is most likely made of iron and silicates, which allow a mass range between 4 and

15 ME. The determined mass of the planet is therefore compatible with the rocky

structure model.

3.1.3 Magnetic field strength

All possible compositions of CoRoT 7-b considered so far imply the existence of a

molten core. As such, due to convection in the mantle, the planet is likely to generate

a dynamo magnetic field, as described in section 2.1.1. Since the orbital period of

CoRoT 7-b is P = 0.854 days (see section 3.1.1), we find Q = 27/P = 8.52 x 10- 5s-1 .

We would first like to obtain a rough estimate of the magnetic field strength B. As

such, we assume, for example, A e 2m2 /s for terrestrial planets [39]. We obtain

approximate values for po and ro by assuming an iron core mass fraction of 32 %, as

approximated in [41]: ro r 5400 km and po - 15000 kg/m 3 . By plugging in these

numbers into equation (2.11), we obtain a value for the intensity of the magnetic field

BO: B0 ~ 25 Gauss, around 50 times bigger than that of the Earth (BO,Earth 0.5

Gauss). From equation (2.13), we obtain that the magnetic dipole moment is MD

4 x 1024 Am 2 . Of course, the values of A, po and ro mentioned above are only true

for a certain composition of the planet. Different internal compositions, however, will

result in a different set of values for A, po and ro.

3.1.4 Stellar X-ray emission

Currently, there is no precise data on the X-ray luminosity Lx of CoRoT-7. [25] sets

an upper bound on the luminosity Lx of CoRoT-7: Lx(CoRoT - 7) < 5 x 1028 erg/s.

Another way to estimate Lx is by using the empirical relationship between X-ray

luminosity and planetary mass from equation (2.51). We thus find Lx ~ 2.9 x 1027

erg/s, within the upper bound from above. We notice, however, that the X-ray



luminosity that we are extrapolating is actually the sum of the X-ray luminosity

of the star and the X-ray luminosity of the planet. However, the planetary X-ray

emission is usually much smaller than the stellar X-ray emission, so the result we

obtain is fairly accurate.

3.1.5 Magnetospheric radio emission

In this section we estimate values for the radio flux and the frequency of the peak

radio emission of CoRoT 7-b. We calculate these values based on different properties

of the planet, all of which are reflected in the strength of the magnetic field B at the

surface of the planetary core.

From equation (2.49) we determine how the peak frequency of radio emission for

CoRoT 7-b depends on the density of the core po and the magnetic diffusivity A:

1 peak = 2.8B = 0.4(poA)1/ 2 MHz. (3.5)

Next, we attempt to estimate the radio emission flux for CoRoT 7-b, as defined in

equation (2.45). We first need to estimate the stellar mass loss rate of CoRoT-7,

using equation (2.28). We use the value of the X-ray luminosity from section 3.1.4,

Lx ~ 2.9 x 1027 erg/s, to estimate the mass loss rate of CoRoT 7-b: M,[M0 ] = 1.8.

With this information, we can find the dependence of the radio flux emission on po,

A and ro:

Pr 6.4 x 10- 18r2(poA1 /3) mJy. (3.6)

We would now like to see how exactly the peak frequency and the emitted radio flux

will vary for different internal structures of the planet. For a terrestrial planet with

an inner core composed of mostly iron, the magnetic diffusivity will typically have

values between 1 and 10 m2 /s [261. In subsection 3.1.3 we assumed the density of the

core to be po ~ 15000 kg/m 3 . We will now assume that po varies between 5000 and

25000 kg/m 3 . We therefore plot Vpeak as a function of A for varying po. The result



can be seen in Fig. A-4. We notice that the peak frequency has a range of values

between 30 and 200 MHz.

Next, we study the dependence of the radio flux P, on v, eak and ro. From equations

(3.5) and (3.6) we obtain the following relation:

P, = 1.2 x 10v1 7 2/3 r2 mJy. (3.7)
Ir±~/\lu l/~peakr 0~

We plot Pr as a function of vpeak, where vpeak varies between 30 and 200 MHz (as

obtained above), and we vary ro between 0.1Rp and 0.5Rp, where Rp is the radius

of CoRoT 7-b. The resulting plot is shown in Fig. A-5. We can see that the radio

flux emitted varies between 3 x 10-4 and 0.01 mJy. We will see in later sections of

this chapter that these values are very small and not detectable with present or near

future instruments.

3.2 GJ 1214 b

3.2.1 Discovery and physical parameters

The extrasolar planet GJ 1214 b was discovered by the MEarth project in Decem-

ber 2009, also through the transit method [3]. It is the second super Earth with a

measured radius and mass, after CoRoT 7-b. The physical parameters of GJ 1214 b

and parent star GJ 1214 are labeled in Table B.1. It orbits around the parent star

GJ 1214 at a distance of only 0.0143 AU [9] (even closer than CoRoT 7-b), and with

an orbital period of 1.58 days [9]. Its radius was derived to be R = (2.68 ± 0.13)Re

[9]. The mass of the planet was determined through the Doppler shift in its spec-

trum to be Mp = (6.55 ± 0.98)MD [9]. It thus has an average density of 1.87 + 0.4

g/cm 3 [33] (smaller than the average density of CoRoT 7-b). Its equilibrium tem-

perature was determined to be between 393 and 555 Kelvin [9], while the inclination

angle between the axis of the planet and the orbital plane is i = (88.62+ 0.28) deg [9].



The planet orbits around the host star GJ 1214. GJ 1214 is a main sequence red

dwarf star (type M4.5) [4]. Its mass is M, = (0.157 ± 0.019)ME [4], while its radius

is R, = (0.211±0.0097R® [4]. GJ 1214 b is at a distance of 13 parsecs [4] away from

us, more than 10 times closer than CoRoT-7.

3.2.2 Internal composition

Current observations do not provide much information about the internal structure

of the planet, and there is no evidence of the presence of water yet. However, [33]

presents three different possible models for the compositions of the planet. The first

model is that of a mini-Neptune, with an iron core, a silicate mantle, a layer of water

and ice, and an envelope composed of hydrogen and helium. For such a composition,

the gas layer can constitute at most 3.2%-6.8% of the planetary mass. If the planet

has a Ganymede-like structure (with an iron:sillicates:water/ice layers in the mass

ratio 3:22:75 [33]), then the gas envelope has to account for 0.01%-0.6% of the mass

of the planet.

The second model assumes a water planet, with a predominantly icy interior sur-

rounded by a gas envelope. In this case, the planet interior consists of an iron core,

a silicate mantle and a water envelope.

The final possibility is that of a super Earth with a purely rocky interior and a

substantial gas layer. Since the planet has a relatively low average density, it needs

to have a gas layer in order to balance the high density of the rocky interior.

3.2.3 Magnetic field strength

All possible compositions of GJ 1214 b considered so far imply the existence of a

molten core. As such, the planet is likely to generate a dynamo magnetic field, as

described in section 2.1.1. For GJ 1214 b, we find Q to be 4.6 x 105s1. Same as for

CoRoT 7-b, the magnetic field strength at the surface of the core will be a function



of the density of the core po and the magnetic diffusivity A (see equation (3.1)):

B = 0.1(poA)1 /2. (3.8)

Similarly to the case of CoRoT 7-b, we first obtain a rough estimate of the magnetic

field strength of GJ 1214 b at the surface of the core. We perform this calculation

under the assumption that GJ 1214 b has a rocky structure. Currently there is no

data on the possible radius of the core of GJ 1214 b. From [24], we estimate ro of

GJ 1214 b to be ro ~ 5900 km. From [41], we estimate the density of the core to

be po ~~ 21000 kg/m 3 1. We use the same values for the magnetic diffusivity of the

planet as we used for CoRoT 7-b, A ~ 2m2 /s. As such, we derive the magnetic field

strength at the surface of the core to be B ~ 20 Gauss.

Magnetic field discussion

Before proceeding further, it is important to point out that a water/icy interior may

produce a more complex magnetic field than the dipole assumption. In this situation,

the magnetic field may have a quadrupole nature [24], with its strength decaying as

~ , as opposed to the dipole field that decays as - r- 3 . In the solar system, the

magnetic fields of Uranus and Neptune exhibit this behavior. Therefore, the model

of the planet-star interaction presented in section 2.3.1 will change. Additionally, the

quadrupole field might decays very fast, which might make it difficult to distinguish

between different models for the planet interior. However, since in this thesis we

are only concerned about producing some qualitative estimates of the planet-star

interaction and planetary emissions, we will assume that the magnetic field can still

be represented as a dipole for an icy planet. We leave the more complex model open

for future work.

'Under the assumption that the core constitutes 32% of the mass of the planet.



3.2.4 Stellar X-ray emission

There is currently no data on the X-ray luminosity of GJ 1214. Therefore, we use

instead the average value for X-ray luminosity for M dwarfs. [8] finds this average

value to be 2.3(+1.3, -1.4) x 1028 erg/s. We will thus use Lx e 1028 erg/s.

3.2.5 Magnetospheric radio emission

In this section we estimate values for the radio flux and the frequency of the peak

radio emission of GJ 1214 b. Similar to the case of CoRoT 7-b, we calculate these

values based on different properties of the planet, all of which are reflected in the

strength of the magnetic field B at the surface of the planetary core.

From equation (2.49) we determine how the peak frequency of radio emission for GJ

1214 b depends on the density of the core po and the magnetic diffusivity A:

Vpeak= 2.8B = 0.3(poA) 1/2 MHz. (3.9)

We then proceed to estimate the radio emission flux for GJ 1214 b, as defined in

equation (2.45). We first need to estimate the stellar mass loss rate of GJ 1214 b,

using equation (2.28). We use Lx = 1028 erg/s and obtain M,[M0 ] = 10.8. With

this information, we can find the dependence of the radio flux emission on po, A and

To:

P, 3.8 x 10- 12 r(poA) 1/3 mJy. (3.10)

We are now interested to know how the peak frequency and radio emission will vary

for different internal structures of the planet, as well as whether these emissions are

detectable or not. Since the planet could have both a rocky or an ice predominant

composition, we assume a larger range of magnetic diffusivities A between 1 and 100

m2 /s, where the higher diffusivities correspond to the icy composition [391. Moreover,

since the average density of the planet is smaller than the average density of CoRoT

7-b, we will assume a range of smaller values for the core density po, between 103 and



104 kg/m 3 . We plot veak as a function of A for varying po. The result can be seen in

Fig. A-6. We notice that the peak frequency has a range of values between 10 and

300 MHz.

We now study the dependence of the radio flux P, on veak and ro. From equations

(3.5) and (3.10) we obtain the following:

P, = 8.4 x 101 2 v2/ 3 r mJy. (3.11)
IrL). peakrO

We plot P, as a function of Vpeak, where Vpeak varies between 10 and 300 MHz (as

obtained above), and we vary ro between 0.1Rp and 0.5Rp, where Rp is the radius

of GJ 1214 b. The resulting plot is shown in Fig. A-7. We notice that the range of

plausible radio flux emitted by GJ 1214 b varies roughly between 25 and 25000 mJy,

which is several orders of magnitude larger that the radio flux emitted by CoRoT

7-b. This can be explained by the fact that GJ 1214 b is more than ten times closer

to the Earth than CoRoT 7-b, thus producing a much stronger signal at the surface

of the Earth. Additionally, host star GJ 1214 is an M-dwarf and hence has a higher

activity than CoRoT-7, which results in a stronger X-ray emission. In contrast with

CoRoT 7-b, we will see later in this chapter that the values obtained above for the

peak frequency and the radio flux can be detectable with current instruments.

3.3 Detection potential

In this section we discuss the possibility of detection of radio, X-ray and UV emis-

sions from super Earths with current instruments, as well as the potential for future

detections. We first relate the results obtained in the previous sections for CoRoT

7-b and GJ 1214 b to observations and explain the detection potential of each planet.

We then generalize our results for other super Earths.



3.3.1 Condition for dynamo existence

We first want to investigate under which conditions a dynamo magnetic field can exist

(and hence when can magnetic interaction occur). In section 2.1.1, we obtained an

expression for the magnetic field decay time after the dynamo stops:

2

T 0 .(3.12)
72A

Since we do not have any information regarding the dynamo decay time for exoplan-

ets, we will use the known value for the Earth dynamo: T ~ 104 years. Using this, we

obtain a relationship between the radius of the metallic region ro and the magnetic

diffusivity A that is depicted in Fig. A-8 and A-9. The first figure shows the allowed

and forbidden dynamo regions for terrestrial planets, while the second figure shows

the same regions for icy planets. The gray region in both figures represents the for-

bidden region, the region in which the dynamo decays very fast. We notice that our

choice of parameters for CoRoT 7-b (see section 3.1) allows the existence of the dy-

namo, imposing however a lower bound for the radius of the core ro: from the graph,

ro needs to be larger than (roughly) 1000 km for the dynamo to be possible, which

explains the lower bound that we chose for ro in Fig. A-5, ro,min = 0.1R ~ 10700 km.

Similarly, if we consider GJ 1214 b to have a rocky composition, the dynamo will

be possible for our choice of parameters, as can be deduced from Fig. A-10. If,

however, we assume GJ 1214 b to have a predominantly icy interior, then different

conductivities of the core will result in different lower bounds for the radius of the

core ro in order for the dynamo to exist. For example, if o = 5 x 103 S/m, we obtain

ro,min ~ 4000 km ~~ 0.23RP.

3.3.2 Radio emission observations

In this section we discuss several current and future instruments for detecting radio

emissions.



Giant Metrewave Radio Telescope (GMRT)

The GMRT is the world largest set of radio-wavelength telescopes [6] and is located

in India. It was built in 1995 and it consists of 30 telescopes, with a collection area

of 60750 km2 [6]. It can detect radio waves with frequencies around 150 MHz, for a

power limit of around 1 mJy [23].

Very Large Array (VLA)

The VLA is a radio astronomy observatory located in New Mexico. It consists of

27 independent antennas, each with a diameter of 25 meters [1]. The lowest radio

frequency that it can detect is around 74 MHz at a resolution of 24 arcseconds [1].

The corresponding minimum power output is 135-300 mJy [23].

The Ukrainian T-shaped Radio Telescope, second modifica-

tion (UTR-2)

UTR-2 is the world largest radio telescope at decameter wavelengths. It is located

near Kharkiv, Ukraine and has a collective area of 15000 km2 . It detects frequencies

between 8 and 40 MHz, with a sensitivity of 1000 mJy [23].

3.3.3 LOw Frequency ARray for radio astronomy (LOFAR)

LOFAR is a project of building an interferometric array of radio telescopes distributed

across the Netherlands, Germany, Great Britain, France, Sweden and possibly other

European countries. The total effective collecting area is aimed to be up to 1 km2 .

LOFAR aims to detect frequencies between 10 and 240 MHz, with a resolution at 240

MHz better than one arcsecond and sensitivity of around 0.1 mJy or less. The first

LOFAR station opened in November 2007 in Germany. Twenty additional LOFAR

stations are currently being funded and constructed.

The detection potential of the above mentioned telescopes is depicted in Fig. A-10



and A-11 for CoRoT 7-b and GJ 1214 b, respectively. We notice that none of the

telescopes can detect the very low signals emitted by CoRoT 7-b, which confirms

our statement from section 3.1. On the other hand, we can easily see that the four

telescopes cover the whole range of possible radio emissions from GJ 1214 b, which

is an important result.

3.4 Special cases for detection

In this section we discuss some special situations in which the interaction between an

extrasolar planet and its host star might be strong enough to be detected. We discuss

solar flares and coronal mass ejections of M dwarfs, as well as their implications upon

the habitability of exoplanets. We then briefly mention Ap stars.

3.4.1 M dwarfs: flares and coronal mass ejections

A stellar flare is a sudden explosion in the atmosphere of a star that releases a very

large amount of energy. Flares are caused by magnetic reconnection (see section 2.3.1)

and emit radiation in the entire electromagnetic spectrum: radio emissions, visible

emissions, X-rays and gamma rays. Stellar flares can have a significant effect on the

atmosphere and habitability of the orbiting planets. However, since stellar flares are

irregular phenomena, occurring at fixed points in time and having a relatively short

duration, they often have a very low statistical chance of detection [20]. Since there is

strong evidence that M-dwarfs undergo frequent and strong flare-like events, detection

of such events around M-dwarfs is more probable then around G-stars like our own

Sun. If a stellar flare is extremely powerful, it can produce a coronal mass ejection

(CME): ejection of plasma from the stellar corona. Flares and CMEs are therefore

a manifestation of the same physical phenomenon, and so it can be expected that

frequent stellar flares on M-dwarfs are associated with CMEs. [20] assumes that the

CMEs from M-dwarfs are very similar in nature and in strength to solar CMEs, due

to the fact that they are produced by the same basic mechanisms in similar coronal

plasma conditions. Therefore, [20] models the CMEs from M-dwarfs based on the



known information regarding CMEs from the Sun. The study concludes that close-in

exoplanets should experience a continuous CME exposure over long periods of time

[20], which has strong implications upon the atmosphere and hence the habitability

of such exoplanets.

The existence of stellar flares and CMEs can have important implications on the power

dissipated due to magnetic reconnection. In particular, the stellar wind velocity

V, will increase significantly when such an event is produced. This, in turn, will

increase the power dissipated due to magnetic reconnection defined in equation (2.14).

Therefore, the radio emissions from the planet will also be stronger (with energies

> 1032 erg [20]), which increases the likelihood that these emissions will be observed.

It is important to note, however, that such events are rare, and so the probability of

detecting them is low.

3.4.2 Ap stars

Another possibly interesting set of stars to host extrasolar planets are the Ap stars.

The 'Magnetic peculiar A' stars, commonly referred to as Ap stars, represent a small

fraction of the main sequence A stars and are characterized by overabundance of some

rare elements in their atmosphere, such as strontium, chromium and europium [21].

An important feature of the Ap stars is the fact that they produce strong magnetic

fields, in the range of few hundred to 30000 Gauss [21]. So far there are no reported

discoveries of exoplanets around Ap stars. However, the strong magnetic field of an

Ap star suggests that, if a planet were to orbit such a star, the magnetic interaction

between the star and the planet will be significant, and hence detectable. We leave

this as a potential topic for future work.
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Chapter 4

Discussion and Conclusions

In this thesis, we began by collecting and presenting various existing models of the

magnetic field and the planet-star magnetic interaction between a giant extrasolar

planet and its host star. We then adapted these models for the case of super Earths,

specifically to two known planets. We summarize our results and findings in the next

paragraphs.

First, we modeled the planetary magnetic field as a dynamo. We then presented a

model of the magnetic interaction between a super Earth and its host star (section

2.1.1). We found that the mechanisms governing this interaction differ as a function

of the distance between the planet and its host star. The interaction (mainly due to

magnetic reconnection) will be stronger when the planet lies outside the Alfven radius

of the star, and weaker inside the Alfven radius (section 2.3.1). We further assumed

that the total energy released due to magnetic reconnection will be emitted only in

the radio, X-ray and ultraviolet (UV) ranges of the electromagnetic spectrum (section

2.5). Based on existing models, we estimated the radio flux emitted by a super Earth

and the frequency at which this emission is maximum as a function of the strength

of the magnetic field at the surface of the planet (sections 2.5.1 and 2.5.2). Since this

magnetic field depends on the internal composition of the planet (more precisely, on

the radius, density and electrical conductivity of the planetary core), we were able to

find a direct relation between the radio flux, peak frequency and some of the internal



physical parameters of the planet.

We estimated the frequency of peak emission and the strength of the radio flux for

two recently discovered super Earths, CoRoT 7-b and GJ 1214 b (see Chapter 3). We

considered several possible compositions for both planets (rocky, ice+rock mixture,

water) (sections 3.1, 3.2). We first related the frequency of peak radio emission to

the density and the electrical conductivity of the planetary core (equations (3.1-3.2)).

Since both the peak frequency and the radio flux have similar dependences on the

density and electrical conductivity of the core, we were able to eliminate the latter

quantities and obtain an expression of the radio flux only as a function of the fre-

quency of peak emission and the core radius (equation (3.3)).

Next, we compared the estimated emissions from CoRoT 7-b and GJ 1214 b with the

detectability range of current and future instruments (section 3.3). We found that

radio emission from CoRoT 7-b is very low, mainly due to a large distance between

the Earth and the planet-star system (Fig. A-10). On the other hand, we found that

the flux observed on Earth from GJ 1214 b is much stronger, mostly due to the fact

that the planet is more than ten times closer to Earth than CoRoT 7-b. As such,

the whole range of possible peak frequencies and radio fluxes can be detected with

current instruments or instruments that will be functional shortly (Fig. A-11).

Lastly, we discussed briefly the possibility of detection around special types of stars,

such as M-dwarfs and Ap stars (section 3.4).

The measurement and detection of the power released due to the magnetic interac-

tion between an extrasolar planet and its host star can reveal important information

regarding the internal composition of the planet. In the case of GJ 1214 b, for ex-

ample, if we detect its radio emission in a small frequency range and subsequently a

small radio flux range, we can find an estimate of the planetary core radius, as well as

a relationship between the density and electrical conductivity of the core. This can



help us determine the composition of the planetary core. As we saw in Fig. A-11,

the detection of GJ 1214 b emission in a certain frequency and flux range can help

us distinguish between a rocky composition and an ice-dominated interior. Our cal-

culations can be generalized for other super Earths; if emission from a super Earth

is detected, important information regarding the internal structure of the planet can

be revealed. Knowing the internal composition of the planet, as well as the activity

of its host star (i.e. stellar flares or CMEs), can be vital in determining if the planet

has the potential to be habitable or not, which is one of the main questions that

planetary science is aiming to answer nowadays.

4.1 Directions for future work

This thesis aims to present a general model of the interaction between an exoplanet

and its parent star. It can therefore serve as a starting point for more detailed studies

of the magnetic fields of super Earths. For instance, the planetary magnetic field

becomes more complex if we also take into account magnetic induction in the outer

layers of the planet (which we are neglecting in this paper, see section 2.1.1). Another

further development would be the more detailed modeling of the magnetic field in the

case of a water/ice planet, taking into account its possibly quadrupolar nature (see

section 3.2). Determining the internal composition of super Earths is a key topic in

planetary science, since it directly affects the existence and composition of a planetary

atmosphere (see, for example, [33]). It can also provide insight into the presence of

liquid water and finally the possibility of the planet being habitable. Consequently,

the study of the magnetic fields of super Earths and of the interaction between super

Earths and their host stars can lead us to significant discoveries regarding the plethora

of planets outside the solar system, and may help us to finally answer the perpetual

question 'Does life on other planets exist?'.



60



Appendix A

Figures
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Figure A-1: Currently discovered exoplanets: mass versus radius diagram (Credit:
Sara Seager)
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Figure A-2: The disc dynamo illustrates the principles of the dynamo process (Source:
[36]). The rotation of an electrically conducting disc through a magnetic field induces
electrical currents in the disc, which can themselves create B when guided through a
coil.
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Figure A-8: Terrestrial planets: the allowed and forbidden region for a planetary
dynamo to exist. The gray region represents the region in which the dynamo decays
too fast
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Appendix B

Tables



Table B.1: Physical parameters for CoRoT 7-b, GJ 1214 b and their and host stars

CoRoT 7-b GJ 1214 b
Radius (R) (1.68 ± 0.09)RE (2.68 ± 0.13)RD
Orbital period (P) 0.854 days 1.58 days
Distance to its host star (A) 0.017 AU 0.014 AU
Age 1.2-1.3 Gy -
Equilibrium temperature (T) 1800 - 2600 K 393 - 555 K

Mass (M) (4.8 ± 0.8)Me (6.55 ± 0.98)ME

Average density (p) (5.6 ± 1.3)g/cm 3  (1.87 ± 0.4)g/cm3

Inclination angle (i) (80.1 ± 0.3) deg (88.62 ± 0.28) deg
Prt of host star 23 days -

Radius of star (R,) (0.87 ± 0.04)R0 (0.211 ± 0.0097)Rg
Distance of star (D) (150 t 20) pc 13 pc
Mass of star (M,) (0.93 ± 0.03)MO (0.157 ± 0.019)M 0
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