
Integrating Digitizing Pen

Technology and Machine Learning

with the Clock Drawing Test
by

Kristen Felch

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 2010

2010 Massachusetts Institute of Technology

All rights reserved.

/ '-.\

ARCHIVES
MASSACHUSETTS INSTI IJTE

OF TECHNOLOGY

AUG 2 4 2010

LIBRARIES

Author ----------

Department of Electrical Engineering and Computer Science

February 2010

Certified By --- -------------------------------- ----------

Professor Randall Davis

Thesis Supervisor

Accepted By

Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

-- - - - - - - - - - -.- - - - - -

_- ------- ---- -- - - - - -

r7D



Integrating Digitizing Pen Technology and Machine Learning with the Clock Drawing Test

by

Kristen Felch

Submitted to the

Department of Electrical Engineering and Computer Science

February 2010

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The Clock Drawing Test (CDT) is a medical test for neurodegenerative diseases that has been

proven to have high diagnostic value due to its ease of administration and accurate results. In

order to standardize the administration process and utilize the most current machine learning

tools for analysis of CDT results, the digitizing pen has been used to computerize this diagnostic

test.

In order to successfully integrate digitizing pen technology with the CDT, a digit recognition

algorithm was developed to reduce the need for manual classification of the data collected and

maintain the ease of administration of the test. In addition, the Multitool Data Analysis Package

was developed to aid in the exploratory data analysis stage of the CDT. This package combines

several existing machine learning tools with two new algorithm implementations to provide an

easy-to-use platform for discovering trends it CDT data.



Contents

1 Introduction

2 Background

2.1 The Clock Drawing Test ............ .....................

2.2 Digitizing Pen Technology . . . . . . . . . . . .....................

3 The Data Collection Process

3.1 Status Quo . . . . . . . . . . . . . . . . . . . .....................

3.2 A New Algorithm . . . . . . . . . . . . . . . . . ...................

3.2.1 The Initial Split . . . . . . . . . . . .. ....................

3.2.2 Method One: The 'Standard' Case . . .....................

3.2.2.1 Simple Binning Classifier . . . ...................

3.2.2.2 Rotational Classifier . . . . . . ...................

3.2.2.3 Choosing a Method . . . . . .....................

3.2.2.4 Digit Recognition . . . . . . . ...................

3.2.2.5 Finalizing the Classifications. .....................

3.2.3 Method Two: The 'Nonstandard' Case......................

3.3 Algorithm Performance . . . . . . . . . . . .. ....................

3.4 Visual to Numerical Transformation . . . . . .....................

3.5 The Final Data . . . . . . . . . . . . . . . . . . ...................

4 The

4.1

4.2

4.3

4.4

Multitool Data Analysis Package

Introduction . . . . . . . . . . . . . . .

MDA Package . . . . . . . . . . . . . .

File Creation . . . . . . . . . . . . . .

Machine Learning Tools . . . . . . . .

4.4.1 Weka... . . . . . . . . . . .

4.4.2 DataBionics ESOM . . . . . .

4.4.3 Cluster 3.0 . . . . . . . . . . .

...............

...............

...............

...............

...............

...............

...............



CONTENTS

4.4.4

4.4.5

4.4.6

BSVM ..............................................

PCA.........

EPCA ..............................................

5 Sample Analysis

5.1 Input Overview .......

5.2 Weka- The Decision Stump

5.3 ESOM ...............

5.4 BSVM ...............

5.5 Clustering .............

6 Contributions

7 Bibliography

8 Appendix

...............................

...............................

...............................

...............................

...............................



Introduction

Bringing technology to the medical field is a present-day challenge that attracts the efforts of

both researchers and doctors. Recent innovations in software and hardware provide seemingly

endless opportunities for the advancement of medical data collection and analysis, but progress is

slowed by the necessary caution and regulation surrounding work in the medical field. This thesis

addresses the movement of one particular technology into the medical domain, and describes the

tools that have been built to support the application.

The technology in question is a digitizing ballpoint pen, which records its location on paper

through time-stamped data points; the medical application is the Clock Drawing Test (CDT).

The Clock Drawing Test has a long history of success in diagnosing patients with Alzheimer's,

Parkinson's, and other neurodegenerative diseases, but is currently administered using paper, pen,

and subjective rating scales. Is it possible to improve the accuracy of the CDT through standard-

ization of the data collection and analysis procedures, using a digitizing ballpoint pen rather than

the traditional pen?

Software has been developed that interacts with the new pen to record results of the CDT. The

Clocksketch program is straightforward, in use requiring minimal training for doctors that use

it to administer the CDT. However, in order to be truly embraced by the medical community,

CDT administration with the digitizing pen should be easier than traditional methods. My first

contribution outlined in this thesis was improving the algorithm that runs behind the scenes of

the Clocksketch program, easing the process of data analysis.

A computerized version of the CDT must maintain the ease-of-use of its pen and paper prede-

cessor, its primary advantage over more intrusive/complex diagnostic tests, while also creating

opportunities for more rigorous data analysis and standardization of data collection. My second



1. INTRODUCTION

contribution is the creation of a data analysis package, the MultiTool Data Analysis Package

(MDA), which was developed to ease exploratory analysis of CDT output data. MDA has evolved

to handle any input data of a specified format, but its features and functionality were chosen by

predicting the demands of a future analyst working with CDT data.

At this point, the data collected by digitizing pens from the CDT is small in size compared to

the expected influx of data over the next few months. However, the successful processing of our

limited data using MDA indicates that the tool will be indispensable once data arrives on a larger

scale. MDA's chief functionality includes automatic creation of input files for machine learning

tools and a common launching platform for these tools. With the most popular machine learning

tools at his fingertips, an analyst will easily be able to provide more rigorous analysis of CDT
data than that of a doctor prior to use of the digitizing pen.

The digitizing ballpoint pen and supporting software are making their way into the medical

domain because of the improvements they can offer on the traditional Clock Drawing Test. Data

collection is improved through use of classification algorithms dealing with output of the digitizing

pen. Because of the digital nature of the test, the most modern machine learning techniques can

be used to analyze output from the CDT and add rigor and standardization to the process. This

thesis explains exactly how the data collection and analysis phases of the CDT are improved upon

in the new Clock Drawing Test.



2

Background

To understand the advantages of incorporating the digitizing pen technology with the traditional

Clock Drawing Test, we look at the history and development of the CDT. We then explore the

most current technology for digitizing pens, and how they can be used in a medical context.

2.1 The Clock Drawing Test

The Clock Drawing Test is a cognitive screening tool that has been in use for over 50 years,

diagnosing patients with various dementias and other neurological disorders. It is a fairly simple

test, requiring the patient to draw two clocks showing a given time. One of these clocks is drawn

without any visual references, while for the second the patient is given an image to copy. Previous

research has shown that the CDT has high potential for differentially diagnosing Alzheimer's and

other neurological disorders. However, the current implementation is a pen-on-paper sketch that

is viewed by doctors and ranked based on widely-varying scales. Instructions given to the patient,

implementation of the copied clock, and even the ranking scale for clock drawings differ depending

on where the test is administered.

The success of the traditional CDT in recognizing neurological disorders even with nonstandard-

ized procedures suggests that it could become a very powerful tool when executed using modern

technology. In a 1986 study at the University of Toronto, researchers first attempted to collect data

to legitimize the use of the CDT as part of cognitive screening. They compared the results of the

CDT to results from two other well-established screens of cognitive function, and found that the

CDT could provide a simple and practical method of screening for mental disorder. (Shulman 136)

For this Toronto study, seventy-five subjects were selected from the inpatient and outpatient pop-

ulations at the University of Toronto. Subjects were over the age of 65, and included subjects

with mental disorders and healthy subjects. Three tests were administered to the patients- the



2. BACKGROUND

Clock Drawing Test, the Mini-Mental State Exam, and the Short Mental Status Questionnaire.

In addition, a test to assess the subject's level of depression was administered. The MMSE is one
of the most widely-accepted cognitive function tests, and is often used as a standard for screening.

The SMSQ is a short 10-answer questionnaire that classifies scores of 7 or above as normal. In

administering the CDT, subjects were given the outline of a clock and asked to complete it and set

the time to three o'clock. The clocks were then analyzed by two independent raters, who ranked
the clock with a number 1-5 based on a hierarchical classification of errors. There were about 20

errors that the rankers were asked to look for when assigning a number to the clock. (Shulman 136)

The results of this study showed that the magnitude of error in the CDT is correlated to the error

of the MMSE and the SMSQ. In other words, when a subject scores poorly on the CDT he or
she is likely to score poorly on the other tests as well. The correlation coefficient between two

tests is a measure of how the pattern in results of one test mimick the patterns seen in the other

test. The correlation coeffcient of the CDT and MMSE was -. 65, and that of the CDT and SMSQ
was -. 66. Correlation is negative since high scores on the CDT indicate impaired cognition while

high scores on the other two tests indicate a healthy subject. As a result of this study, the CDT
was established as a useful addition to the cognitive tests already in use. Since it is simple to

administer, it can provide a quick screening measure before the MMSE is administered. (Shulman

139)

Division of the Clock Test

One of the next advances in the CDT involved dividing the test into two separate parts. In a study
at the University of Texas in 1998(Royall 589), it was shown that separate clock tests could be
used to differentiate between alternative cognitive impairments. The first test, CLOXI, requires

the test subject to draw a clock without any visual guidance. It is meant to reflect the subject's

performance in a novel situation, something referred to as executive control, since he or she is pre-

sented with only a blank page and asked to draw a clock showing a particular time. Observations

were made such as the order that the digits were drawn in and whether or not corrections were

made along the way. CLOX2 involves giving the subject a clock to look at and asking them to

copy it. This test is aimed more at examining the subject's visuospatial awareness than executive

control. Correlation between these two separate CDTs was measured in comparison to MMSE

and EXIT25, a common measure of executive control. (Royall 589)

This study determined that both MMSE and EXIT25 results were correlated with results from

CLOXI, but only MMSE was correlated with CLOX2. This is as expected, since copying a clock



2.1 The Clock Drawing Test

does not require the same cognitive function as drawing from memory. In a comparative analysis

between both CLOX tests and MMSE performance, it was concluded that the CLOX tests were

able to correctly identify 81:3% of subjects who had Alzheimer's disease. This is compared to the

89:9% that a combination of EXIT25 and MMSE achieve. When looking at differential diagnosis

between Alzheimer's subgroups, CLOX2 scores alone were able to discriminate between the sub-

groups. Using a combination of CLOXI and CLOX2, performance on differentiating Alzheimer's

subgroups was 91:9% correct. This was a remarkable result, since a combination of EXIT25 and

MMSE did not perform as well. The conclusion drawn from this study was that a combination

of two clock drawings would be a practical and reliable cognition test to be used by clinicians.

(Royall 591-3)

Rating Scales

One of the most notable differences across CDT usage is the scale or rating system that is used.

Some tests rate out of 4, others 5 or 10, and some up to 30. Clearly comparisons between facilities,

or even between doctors within one facility, would be very difficult with this variation.

The ranking methods for the two studies described above differed in nature and content. For the

Toronto study, errors were classified into different levels and the clock was classified to match

the highest error level found. The first level included small errors such as drawing the numbers

outside rather than inside the circle, or drawing in helper lines to indicate spacing. The middle

levels included things such as leaving out numbers or continuing numbering past 12. The fifth

and worst level was the inability to make an attempt at drawing a clock. (Shulman 136) Thus,

the clocks were ranked from 1 to 5.

The Texas study had rankings that ranged from 0 to 15. Rather than dividing errors into levels

to classify the clock, a simple checklist of common errors was used. Each error that occurred was

worth one point, totalling 15. Things such as the absence of all 12 numbers on the clockface, as

well as the absence of a minute hand and an hour hand, were each worth one point. (Royall 592)

In both of these ranking systems, low scores indicate a healthy patient.

Several papers have been written comparing alternate rating systems for the CDT. In one study

performed in 2002, 63 clock drawings were rated using 5 different scales and the results compared:

. The Wolf-Klein scoring method assigns 10 points based on the spacing of the numbers.



2. BACKGROUND

" The Sunderland scoring method assigns a maximum of 10 points, but is based on the place-

ment of the hour and minute hands.

e The Shulman method was the one used in the Toronto study, but was modified to have 6

categories of error rather than 5.

" The Clock Drawing Interpretation Scale (CDIS) awards a maximum of 20 points for the

circle, hand placement, and presence and placement of numbers.

" The Glass method assigns a score of 0 if five main aspects are correct- circle formation,
numbers aligned, all numbers included, hands aligned, and both hands identified. Half of

a point is added if one of the above is partially correct, and one point if it is incorrect.

(Richardson 170)

The conclusion of this study was that each of the scoring methods had significant correlation

with the MMSE test, with the Sunderland scoring criteria having the highest correlation. More

importantly, it was discovered that different classification methods worked better for diagnosing

different diseases. With patients who had Alzheimer's disease, the Glass method had the highest

correlation with MMSE. For patients with mixed dementia and multiinfarct dementia, the CDIS

scoring criteria yielded the highest correlation with MMSE.

The study concluded that patients with mixed dementia are more likely to make time-setting

mistakes than number-spacing errors. Therefore, they score better with the Glass and Shulman

tests that do not depend on the clock hand placement.

These results suggest that a standardized method of classification that combines all of the measure-

ments would help to differentially diagnose the different types of neurogenetic diseases. (Richard-

son 171-2)

A similar investigation conducted in Australia in 2001 assessed different scoring criteria by inte-

grating the area under the ROC curve. The ROC curve is created by mapping the relationship

between the number of true positives and false positives for a given scoring criteria. A high area,
between .7 and .9, indicates a useful criteria because it means that a high percentage of positives

can be correctly identified without incurring a large number of false positives. The scoring methods

that were examined in this study were those proposed by Mendez, Shulman, Sunderland, Watson,
and Wolf-Klein. The Mendez criterion has 20 frequent errors that are assigned points, similar to

the CDIS. The Watson method scores out of 7 based on number placement. The study showed that



2.2 Digitizing Pen Technology

the Shulman and Mendez methods give the largest area under the ROC curve, and predict demen-

tia more accurately than the Sunderland and Watson methods. The Schulman method had both

high sensitivity and high specificity, while the Watson method had high sensitivity but low speci-

ficity. The researchers conclude that the Schulman method scores the best, but that CDTs should

still not be used alone to diagnose dementia. Until a standardized scoring criteria is developed and

much more testing is done, CDTs are not reliable enough to be used as stand-alone tests. (Storey)

One such method of standardizing the CDT is use of a digitizing ballpoint pen. If a standard

procedure for collecting data can be established through distribution of a pen and supporting

software, then CDT results across locations can be compared and analyzed. With more data

available, analysts will have a better sense of the comparitive diagnostic value of the CDT. The

next section will describe the digitizing ballpoint pen that will be incorporated into the CDT.

2.2 Digitizing Pen Technology

In order to digitize the process of drawing, two components are necessary- the digitizing pen and

special paper upon which to draw.

The Paper

Special paper is required in order for a digitizing pen to be able to store information about the

image being drawn. This paper uses the Anoto pattern, which provides a simple but very power-

ful mechanism that identifies which physical page a pen is on as well as the writing and drawing

movements made on the page. The pen would not be able to record anything without the pattern,

and it is the pattern that makes it possible for the pen to know what you write and where you write.

The Anoto pattern consists of small dots (100 microns in diameter) arranged with a spacing of

approximately 0.3 mm on a square grid. The dots are slightly displaced from the grid, each dot

in one of four possible positions. The pattern is visible on plain paper, but faint enough so as to

not interfere with drawing.

The Pen

We used the the Maxell DP-201 (R4.1) digitizing pen. This pen has a built-in camera, which takes

digital snapshots of the pattern as the pen moves over the paper. The pen uses an infrared LED

(light-emitting diode) to take the snapshots between 50 and 100 times per second. The camera



2. BACKGROUND

can determine its position only on paper with an Anoto pattern. The pen processes the snapshots

by calculating its position on the page, and stores the snapshots in the form of pen stroke data

(a set of time-stamped coordinates). (Anoto(A) 22)

With the combined capabilities of a digitizing pen and the Anoto patterned paper, it is possible

for the CDT to be recorded in the form of time-stamped points. Armed with this capability, we

are ready to see how the data analysis stage of the CDT has been revolutionized by the digitizing

pen technology and supporting software.



3

The Data Collection Process

In order for the digitizing ballpoint pen to be successfully integrated into the Clock Drawing

Test, it must provide advantages during administration of the test. If it is more difficult or time-

consuming to administer the CDT using a digitizing pen, doctors will be hesitant to make any

changes to their time-proven approach. For this reason, the current software that supports the

pen must be improved to have higher digit recognition rate so that less input from doctors is

required.

3.1 Status Quo

The digital Clock Drawing Test is administered in much the same way as the traditional CDT, by

asking the patient to draw two separate clocks. The patient uses the Maxell digitizing pen, and

draws the clocks on paper containing an Anoto pattern. A few changes have been made to the

administration process to reflect use of the digitizing pen.

The test paper is divided into a right and a left half, and the left half is covered for the first

portion of the test. The test administrator places a check mark in the upper right corner of the

page to indicate that a new test is starting, then hands the pen to the patient, who draws the

first clock on the (empty) right half of the page. The left half of the page is then uncovered to

reveal an image of a clock. The patient copies the image on the left half of the page, and the

administrator places a check mark in the bottom right corner of the page to indicate completion.

The software that supports use of the digitizing pen with the Clock Drawing Test is called the

Clocksketch program. Once the patient has completed the test, the pen is returned to its base,

which is connected to the computer. It is possible to run tests on several patients before the pen

is connected to the computer and data is transferred. The maximum amount of data that the pen



3. THE DATA COLLECTION PROCESS

can store is that from approximately 500 patients.

Once the pen has been connected to the computer, the Clocksketch program will automatically

launch. The first test will be loaded, and images of the two clocks will appear in the center panel.

The doctor will enter information including patient name, date of birth, sex, MMSE score, doctor

name, and scorer name. Once this information is entered, the doctor must save the test before

it can be re-opened for analysis. If there is more than one set of data stored in the pen, the

doctor needs to enter patient information and save each individually. Files are saved with a .csk

extension. Figure 3.1 shows the appearance of the Clocksketch program when the pen is first

connected to the computer.

Fie Zoom 5ketch Help [AdnOrOy)

Patient Name/dnfe

Last

Sex MM5E Yrs ed Handed

Doto Name

Test Scored By

Hospitalc Name

Medcal Record ID

PrmayOn Confidence

Scdaagoi

Secondary Dlagnos Corfidence

Tertiary Diagnsis

Tertiary Diagnosis Condence

Sketch Date/Time:
11:34AM EST 2 Dec 2009
Comments

t~
t

v>L

~ S.

Figure 3.1: Appearance of Clocksketch Program Upon Startup;

After the doctor has saved the original data files, they can be reopened using the

program for analysis. The .csk file contains information about each stroke drawn by

but strokes have not been interpreted or assigned to the correct clock. There is no

about location of particular digits or hour/minute hands.

Clocksketch

the patient,

information

The Clocksketch program currently uses a simple method for classifying the different components



3.1 Status Quo

of the clock. First, the outline of the clock is found by looking for the largest continuous stroke

drawn by the patient. Then, the location of the center of the clock is found by fitting a circle to

the clock outline and finding the center of this circle. From here, the circle is divided into "bins,"

resembling slices of a pie. There are 12 bins, and each is expected to contain one number on the

clock. For example, the bin directly above the center of the clock is expected to contain the 12.

Strokes are assigned to a particular number according to the bin that they fall into. Classified

strokes are surrounded by tan boxes to indicate that they have been classified. After the numbers

are found, the hour and minute hands are recognized as the strokes that come closest to the clock

center.

Another feature of the Clocksketch software is the ability to play a movie of the drawing, showing

how it was drawn (rather than just the final appearance). The movie can be played slower or

faster in order to make it easier to observe different phenomena. The movie can be played back at

any time, including long after the test was taken, giving a physician reviewing the medical record

a chance to "look over the patients' shoulder," seeing what he/she would have seen when the test

was being given. Hence all the hesitations, false starts, error corrections, perseverations, etc., are

preservable along with the final appearance of the clocks. (Penney 4)

The current method for identifying the elements on the clock is highly dependent on their correct

placement. Given the nature of the CDT, many of the clocks that doctors encounter will be far

from perfect. If the patient begins numbering the clock in the wrong place, the program will

classify each digit incorrectly. Similarly, the current method will give incorrect classifications if

the numbers are clumped together rather than spread evenly along the circumference of the clock.

If this situation arises, it is necessary for the doctor to correct the mistakes that the program

made. This involves classifying each digit by hand by placing it in the correct folder, which can

be a tedious process.

If the classification process is too difficult for clocks that are even slightly abnormal, the advantage

of using the digitizing pen is lost. For this reason, a more accurate classification algorithm is

needed. This algorithim should take into account not only spatial information about the strokes

in the drawing, but also the temporal information that is available. It is also possible to measure

the accuracy of digit classification by comparing the digits that are found to sample drawings

of each number. With a better classification algorithm, doctors will need to make far fewer

adjustments and the data collection process will be sped up immensely. The next section will

describe a new algorithm that I have developed to achieve this goal.



3. THE DATA COLLECTION PROCESS

3.2 A New Algorithm

In order to improve classification of the elements on the face of a clock, spatial and temporal

factors are used. The algorithm that I developed chooses from two different methods to classify

the clock; the first is used if the layout of the digits is fairly circular; the second is used if the

digits are not laid out as expected (clumped to one side, for example). In the first case, timing

and angle information is used in a similar, but more complex, manner as the original algorithm.

In the second case, the algorithm relies only on digit recognition to pick out numbers. Each stage

of the algorithm is described below.

3.2.1 The Initial Split

In order to get a general sense of how the digits are laid out on the face of the clock, the algorithm

looks at the shape that the strokes make. The Clockface stroke (the outer circle) is removed from

consideration, and we similarly remove the hands by removing any strokes that come close to the

clock center. We then extract the center of mass of each remaining stroke, combining these centers

into one stroke, and determine the ellipticity of the shape that these points make. If the ellipticity

falls below a certain threshold, indicating a fairly circular arrangement of digits, we will use the

first method of classification below to classify the digits. High ellipticity indicates a non-standard

arrangement of the digits, and thus the second classification method is used.

3.2.2 Method One: The 'Standard' Case

If the layout of the digits is judged to be fairly circular, then we proceed with a classification

method based on angular location of the strokes and the relative times at which they were drawn.

This method is actually a combination of two methods, several additional procedures that correct

mistakes, and a final procedure that determines which of the methods achieves a better classifi-

cation. The two methods are referred to as the Binning and Rotational Classifiers.

3.2.2.1 Simple Binning Classifier

This method closely resembles the method used in the original algorithm for finding digits on the

face of the clock. It assumes that the digits will be drawn near their correct absolute locations on

the face of the clock, and therefore looks at specific angles for each number. However, it is slightly

more sophisticated than simply dividing the clock into pie-slice bins.

The first stage of the Binning Classifier divides the clock face into 12 bins, but only categorizes

those strokes that fall very close to the center of the bin. For example, in order to be considered



3.2 A New Algorithm

part of the 12, a stroke will have to appear extremely close to directly above the center of the

clock. In the original algorithm, each bin had a range of 30 degrees, to total the 360 degrees

around the clock. With the new version, strokes must fall within 5 degrees of where a number

should fall in order to be classified. This prevents numbers that are slightly out of place from

immediately being placed in the incorrect bin.

After this initial assignment is complete, strokes that are touching classified strokes are given the

same classification as the stroke they are touching. This allows for classification of strokes that

are not within the narrow margin described above, but are very likely part of a classified number.

A possible error could be made in this stage if several numbers overlap, but this is accounted for

in the next stage.

Finally, adjustments are made based on the number of strokes that we expect for each digit. For

example, we expect the 8 to contain 1-2 strokes. If the digit has been assigned more than the

expected number of strokes, we remove the stroke that is farthest away from the center of mass

of the bin of that digit. After these strokes have been removed from each digit, we add the now

unclassified strokes to digits that have fewer than the expected number of strokes. In the end,

we expect to have a reasonable number of strokes assigned to each digit and to have found those

strokes closest to where each digit should be located.

This simple binning classifier is the best performer when there are digits missing from a clock face.

Since it is based on relative location of the strokes to pre-determined bins, correct classification of

one stroke is independent of classification of other strokes. However, this classifier is the weakest

performer when a patient draws the 12 digits with a non-standard placement. For example, if they

start by drawing the 12 in the l's position and continue around the clock, each classification will

be off by one number. For this reason, we have a second classifier called the Rotational Classifier.

3.2.2.2 Rotational Classifier

The Rotational Classifier takes a different approach to classifying the digits on a clock face. The

insight that led to creation of this classifier is that patients may draw the numbers on the clock in

the correct order, but not begin in the correct location. Or, they may start in the correct location

but finish numbering before they've come full circle. In either of these cases, the Binning Classifier

would get a majority of the classifications incorrect.



3. THE DATA COLLECTION PROCESS

The Rotational Classifier begins by creating a set of all of the strokes that are not touching the

center of the clock. This is to avoid classifying the hour and minute hands as digits. Then, the

set of strokes is sorted by the angle of the center of mass of each stroke. Once the strokes are

in a sorted list, the next step is to combine nearby strokes that are likely to be part of the same

digit. This is done by repeatedly looping through the list and combining the two strokes that are

nearest to each other, until there are 12 remaining strokes.

Once the list is of length 12, we use nearest neighbor classification to determine which stroke

belongs to the number 8, based on a database of 60 samples of each number. This technique is

described in further detail below, but we chose to look for the number 8 because it is the most

easily differentiable from the other numbers. Once we have found the 8, we assign the numbers

1-12 based on the location of the 8, based on the assumption that the patient drew the numbers

in order around the clock.

The obvious disadvantage to using this method is that it will not work if the patient drew the

numbers on the clock out of order. If there are any numbers missing, the Rotational Classifier will

get only the numbers between the 8 and the first missing number correct. However, this method

performs better than the Binning Classifier when the patient has all of the correct numbers on

the clock, but not exactly aligned with the expected angles. Since we don't know ahead of time

whether the Binning or Rotational Classifier will perform better, we use digit recognition to chose

between them.

3.2.2.3 Choosing a Method

After both the Rotational and Simple Binning Classifiers have been run on the clock data, we

score the results of each classifier using nearest-neighbor matching on each of the digits. We then

count the number of digits whose classification matches the bin in which it was placed, and choose

the classifier that gets the higher score.

3.2.2.4 Digit Recognition

In order to determine whether a stroke has been placed in the correct bin, we need a method

for assigning a digit to an unclassified stroke. This is commonly known as the digit recognition

problem, and there are many methods for solving it. Nearest-neighbor classification, support

vector machines, and neural networks are the most common methods found in digit classification

literature. Several studies have compared performance of different machine learning algorithms



3.2 A New Algorithm

on the digit recognition problem.

One study has been particularly useful to me in beginning work on digit recognition, done in 2005

by Levent Kara of Carnegie Mellon University and Thomas Stahovich of the University of Cali-

fornia. They developed a method of classification that combines four separate template-matching

classifiers and uses these results to classify the unknown. All four classifiers are based on a down-

sampled version of the image, called the template.

The unclassified image goes through 4 stages: pre-processing, template matching, rotation han-

dling, and classifier combination. In the preprocessing stage, the image is down-sampled to a

48 by 48 square grid. In the template-matching stage, four different distance formulas are used

to determine the similarity between the test sample and each of the training samples. The first

is the Hausdorff distance, which finds the largest minimum distance between a point in the test

sample and one in the training sample. This number marks the furthest distance between the two

samples. The second formula is a modified version of Hausdorff distance, which finds the average

of minimum distances rather than the maximum. The third formula involves counting the number

of black pixels in each of the samples and their overlap. The Tanimoto coefficient is defined as the

number of black pixels that overlap between the two images, divided by the sum of the number of

black pixels in each image minus the overlapping ones. Since this is based solely on black pixels, a

complementary coeffcient can be used to compare white pixels. Finally, the Yule coeffcient takes

into account overlap between both the black and the white pixels.

The last two methods for classification are subject to large error if the digits are rotated even

slightly. Therefore, one stage of the classification involves taking rotational invariance into ac-

count. In this study, researchers developed a method of rotating the square grids by varying

degrees and finding the closest match at each rotation. In order to combine these four techniques,

the distances are normalized. Then, the classification found that corresponds to the smallest

distance is taken as the test sample's classification. The use of the down-sample square grid, as

well as the rotational technique developed here, were helpful in my own development of a digit

recognition system. (Kara)

I developed a method of digit recognition that combines the preprocessing steps in this study with

a simpler nearest neighbor classifier. I used a downsampled 15 by 15 square grid as a feature

vector, similar to the method used above. I thickened the data that was received from the pen,

and rotated the symbols by small increments in each direction to adjust for digits that are not

drawn perfectly straight up and down. I did a study of which methods worked best on my data,



3. THE DATA COLLECTION PROCESS

and discovered that an SVM using an RBF kernel and the nearest neighbor method both work

rather well. When calculating the error rate for each method, I used 10 fold cross-validation for

the SVMs and leave-one-out cross-validation for testing the nearest neighbor method. Since the

nearest neighbor method is quicker and simpler, I chose this method for use with the clock drawing

test. With a large enough dataset, error rates drop to about 3%.

3.2.2.5 Finalizing the Classifications

The final stage in classifying the digits on the clock in method one is using digit recognition to

choose between the Rotational and the Simple Binning Classifier. The combination of these two

classifiers works well for clocks whose digits are drawn in a relatively circular fashion. However, a

much different approach must be taken when this is not the case.

3.2.3 Method Two: The 'Nonstandard' Case

When the digits are not drawn on the clock face in a circular pattern, it does not make sense to

use the Binning or Rotational Classifiers. The classifier for this case is much simpler, and depends

on the relative timing and location of each of the strokes. There is a threshold for both time

and space, and if two strokes are close enough to each other in both domains they are combined

together. Once all combinations are made, the nearest neighbor digit recognition technique is

used to assign a number to each set of strokes.

There are both benefits and drawbacks to this method. The first is that we could end up with

more than one of a given digit. This could also be seen as an advantage, because in some cases

the patient will actually draw more than one of the same digit. Another drawback is that this

method does not take advantage of the relative locations of the numbers. It does not assume that

the 4 will be closer to the 3 than the 9, because if the numbers are not drawn in a circle we do

not make any assumptions about their actual layout. This method was shown to perform much

better on poorly drawn clocks than the Rotational and Binning Classifiers.

3.3 Algorithm Performance

The new algorithm for digit classification is much more accurate than the existing one. The new

algorithm also performs slower, due to the nearest neighbor matching. The timing of the new

algorithm is about 15 seconds for the first clock, and then 5 for any subsequent clocks that are

classified while the program is still running. This difference occurs because the sample digit data

for nearest neighbor classification must be read in and preprocessed. Below are some comparisons



3.3 Algorithm Performance

of the performance of the two algorithms, so that the improvement in classification can be seen.

Figure 3.2: Sample One;

In the first sample, neither the old(left) or new(right) algorithm gets all of the numbers correct.

However, the new algorithm classifies the 10 correctly where the old method did not find the 10.

In addition, the old algorithm found only one digit of both the 11 and the 12. The new algorithm

found both digits, because it looked for more strokes when it did not initially find the minimum

number expected (in the case of the 11 and the 12, the minimum is 2). Finally, the arrow on the

minute hand was classified as part of the 2 in the old algorithm. This mistake was not made with

the new algorithm.

In sample two, the old(left) algorithm classifies only half of the numbers correctly. The new(right)

algorithm does much better, missing only 3 of the numbers. The Rotational Classifier was able

to recognize the sequence of numbers from 5 to 12, even though the individual numbers are not

drawn in the correct locations. The three errors are a result of the 2 being classified as part of

the minute hand, because it overlaps with the arrowhead. For this reason, the 3 is classified as

the 2, the 4 as the 3, and the top of the 5 is called the 4. The hour hands are not found in either

case, but the new algorithm is able to correctly identify the minute hand.

As in the previous samples, the old(left) algorithm does not find all of the numbers on the clock

in sample three. However, in this case the new(right) algorithm correctly classifies all of the dig-



3. THE DATA COLLECTION PROCESS

Figure 3.3: Sample Two;

Figure 3.4: Sample Three;

its. Despite the fact that numbers are shifted slightly from their expected angles, the Rotational

Classifier can still recognize them because they do not overlap and are drawn clearly.

7-



3.4 Visual to Numerical Transformation

Over all, digit classification is improved tremendously. Administration of the Clock Drawing Test

should now only require a few small fixes by doctors, rather than classifying each digit by hand in

the worst cases. We now move on to discuss the transformation of this visual data to spreadsheet

format.

3.4 Visual to Numerical Transformation

After the elements on the clock face have been classified correctly, as approved by the doctor,

the file is saved in a .csk format. The next step is to export the data to an .xls file, which will

record all of the clock data in numerical format. The Clocksketch program has the ability to make

certain measurements once the digits are all identified, including measures of time, distance, and

angle. The doctors and researchers leading the CDT project have decided upon a list of features

that should be recorded, agreeing that these features have potential diagnostic value. The data

analysis stage will attempt to pick out specific valuable features, but in the data collection stage

our goal is to maintain all of the potentially important data without losing any information. The

information recorded is divided into 10 categories.

Patient Information

This section contains information identifying the patient. It includes name, facility, medical record

number, diagnosis, gender, handedness, and other facts collected from the patient not related to

the CDT. Some of these factors, such as gender, may turn out to be critical pieces of information

for diagnosis. However, for the most part, this data is mainly used for identification purposes.

Drawing

The Drawing category contains only 3 measurements. The first is Drawing Type, which is either

"command" or "copy". For each patient, there will be one page of the .xls spreadsheet dedicated

to information about the command clock and another to the copy clock. This feature identifies

which clock the data represents. The other two features are number of strokes and total time,

both measured for the entire clock. Although these are simple measurements, we expect that they

are critical to differentiate our healthy patients.

Clockface

This section records all data related to the Clockface stroke, the outer circle of the clock. Measure-

ments include number of strokes, total time, and speed. For the speed measurement, the clockface



3. THE DATA COLLECTION PROCESS

is divided up into quartiles and four different speeds are recorded. The goal of this approach is to

determine if the patient slows down or speeds up during certain parts of the circle. Other features

include measurements of symmetry, horizontal and vertical diameter, and location of the center.

"Closedness" measurements indicate whether or not the patient was able to complete the circle,
and how close their ending point is to their starting point.

Hands

The next two sections are dedicated to the minute hand and the hour hand. Each records total

length, time and number of strokes. In addition, the center of mass is recorded as well as distance

from the center of the clock. Direction of drawing is recorded for both the hand and the (potential)

arrow on the end of the hand, both of which are either "outward" or "inward." Finally, the angle

of the hand is recorded in addition to the difference of this angle from the ideal angle of the hand.

Hand Pairs

The Hand Pairs section contains information about the relationship between the minute hand and

the hour hand. Measurements include x and y intersection, as well as the angle between the two

hands.

Numbers

There are two parts to the Numbers section- an overall numbers analysis and specific details

about each number. The Numbers Analysis section contains average width and height of the

digits as well as the number of digits missing. The next section records information such as the

number of strokes, total time, and length of each individual digit. The center of mass of each

digit is recorded as an x and y coordinate, along with the height and width of the digit. An

OutsideClockface feature records if the digit was drawn inside or outside of the Clockface Stroke,
because some patients will be unable to place digits correctly. Finally, the absolute angle of the

digit, the difference from ideal angle of the given digit, and the distance from the circumference

of the circle are recorded. We predict that comparing the placement of specific digits on the face

of the clock will be a key factor in differential diagnosis.

Hooklets

Hooklets are abrupt changes in direction at the end of a stroke. When drawing the numbers on

a clock, it is a common phenomenon for subjects to leave a "tail" on one digit that points in the

direction of the next digit to be drawn. This is because the pen has not been fully lifted off of the



3.5 The Final Data

paper before the hand moves towards the next digit. An example of a hooklet can be seen in Fig

3.5.

Figure 3.5: Sample Hooklet;

Information such as the length, slope, and speed of each hooklet are recorded, as well as which

digit they are part of and the distance to the following digit. It is predicted that the presence of

hooklets will indicate a foresight or planning capability in the patient, that of planning the next

digit while they are still drawing the current one, that will be absent in patients who have certain

mental deficencies.

Non-Standard Symbols

This section contains information about symbols that are only present in some patients' drawings.

These include a center dot for the clock, tick marks along the circumference, text that has been

written on the page, and any digits over 12 that are written. The presence or absence of certain

extra features may be indicative of specific mental deficencies.

Latencies

The final category of features that is recorded for each clock is Latencies, or lag time between

different parts of the sketch. Latencies are recorded between different parts of the clock, such as the

Clockface and the hands or the hands and the center dot. The inter-digit latency is also recorded,

which is the average time that the patient takes between digits. Large latencies indicates a long

pause between each part of the drawing, which could be indicative of different mental conditions.

3.5 The Final Data

A third sheet in the .xls file contains a long list of features for the patient. All of these features

come directly from the measurements above, and some are derivative of these measurements. For

example, this final list has space allotted for 9 hand pairs. If information about only one hand



3. THE DATA COLLECTION PROCESS

pair was recorded above, then the remainder of the entries will be filled with zeroes.

The final list of features was agreed upon in a joint effort between doctors and researchers. The goal

is to include all features that could be potentially useful in diagnosis, losing as little information

as possible between the sketch and the database. Currently there are 1017 features that are

recorded for each clock, making a feature vector of about 2000 for each patient. The next step

is to analyze our data and discover which of these features can be used to differentially diagnose

neurodegenerative diseases. How do we deal with data so large, and figure out which of these

features actually have diagnostic value? This is the question that will be addressed in the next

section.



The Multitool Data Analysis Package

4.1 Introduction

After the data collection stage, we are left with feature vectors approximately 2000 features in

length for each patient. These vectors contain spatial and temporal information about both the

command clock and the copy clock, as well as other information such as patient gender and age.

How do we take this large set of data and find common trends? Is there, for instance, a group of

features that take on extreme values in patients with Alzheimer's disease as opposed to patients

with Parkinson's?

This problem calls for the use of data mining and machine learning tools such as clustering, di-

mensionality reduction, and self-organizing maps. A large number of tools are available today

that provide the functionality of machine learning algorithms. However, when the domain of

data is relatively new, such as data collected from patients in the CDT, it is difficult to know

in advance which of these techniques will be most useful in uncovering trends or patterns. Since

each individual tool requires a unique data input format, the conversion can be a tedious process,

particularly when data mining is in the exploratory phase.

In order to solve this problem for CDT data analysis, I developed the Multitool Data Analysis

(MDA) Package. This tool unifies different approaches to data mining on a single, easy-to-use

platform. The MDA Package is designed to provide several options for analysis techniques, to

provide file conversion for ease of use, and to facilitate easy launching of the programs from a

single interface.

While many excellent tools are available in the machine learning community, each has drawbacks

that make exclusive use undesirable. For example, Cluster 3.0, the clustering tool chosen for



4. THE MULTITOOL DATA ANALYSIS PACKAGE

the MDA Package, allows for easy and direct modification of clustering parameters, but has no

method for visualization of results. WEKA is probably the most common machine learning tool,
as it provides many different functionalities, but it lacks the customization capability that more

focused tools provide.

With the ability that the MDA Package provides to easily launch several tools, analysts will be

able to more easily determine which techniques are most useful for their domain. One difficulty

that arises when trying to use several analysis tools is that each requires its own idiosyncratic in-

put file format, and some require additional template or header files. The MDA Package provides

functionality that converts data in the well known .csv format into formats usable by each of the

six selected tools. Rather than requiring the user to create input files for each program by hand,
the package generates the necessary files from a .csv data file.

The MDA Analysis Package currently launches six machine learning tools:

" Weka: A multi-faceted tool providing clustering, dimensionality reduction, and supervised

classification tools.

* Cluster 3.0: A tool that allows the user to directly edit parameters in the k-means clustering

algorithm, the self-organizing map algorithm, and in principle components analysis.

" Databionics ESM: A tool that allows the user to see a 2D visualization of dimensionality

reduction by SOMs.

" BSVM: A tool that trains a support vector machine with a focus on multi-class classification,
allowing the user to edit paramaters.

" PCA and EPCA, both for dimensionality reduction.

These six tools were chosen for the collective depth and breadth that they provide to an analyst,
and to include tools for both supervised and unsupervised learning methods.

4.2 MDA Package

The MDA Analysis Tool can be run either as a command-line application or from a graphical user

interface. The graphical interface is customized to work with CDT data, so analysis of other data

must be done through the command-line option. The interface is simple to use, with an upper



4.3 File Creation

Figure 4.1: User Interface for CDT Data;

panel for file creation and a lower panel for launching the six available machine learning tools.

Data that is not derived from the Clock Drawing Test can be formatted for machine learning

tools using the command line version of this package. The user will be prompted with a series

of questions, asking for the location of all of the input files as well as the machine learning tool

that will be used. Files can be created for each program individually, rather than in batch form

as with the CDT data. We show a sample use of the command line interface in Figure 4.2.

4.3 File Creation

Three input files are used to guide the transformation of .csv files into a format usable by our

selection of machine learning tools. One is the raw data file, and the other two are referred to as

template files, which contain information on the type of input data and desired output data. The

format for these template files was developed to be as simple as possible for the user, but still

contain enough information about the input in order to correctly transform the input .csv file. I

chose to use separate input and output template files so that different analyses can be performed

on the same input data. By simply changing the output template file, the analyst can decide



4. THE MULTITOOL DATA ANALYSIS PACKAGE

Figure 4.2: Text UI;

which features are included in the output files that will be fed to the machine learning tools.

ClockSketch Data Files

The Clocksketch software creates a .csv file in a common format, with the first line containing

uniquely named features taken from the clock drawings, followed by two lines of data for each

patient.

Here are the first few lines from a sample .csv file.

Type , PtNameF, PtNameL , MedicalRec , DocName , DwgTotStrokes , DwgTotTime

CS, "CIN1875169520" ,"86","","Dana Penney",22,25.38900

CS, "CIN1875169520 ","86", "" ,"Dana Penney",25,25.58200

CS,"CIN1525846837","91", "","Dana Penney",82,158.74800

CS,"CIN1525846837","91","" ,"Dana Penney",30,63.19800

This is a standard .csv format, with values separated by commas and no extra spaces. Missing

string data is indicated by "", and missing numerical data is indicated by two commas in sequence.

The first line names seven features, and each name is unique. The next two lines have the same

PtNameF and PtNameL features, indicating that the data is from the same patient.

Input Template File

The purpose of the input template file is to specify types for each of the features contained in

the .csv file. This file will be used to ensure that the data we are analyzing follows an expected

format- the analyst should be made aware of any unexpected values that appear in the data before

they cause strange results in the analysis stage. The input template file will contain a list of all of



4.3 File Creation

the features that are expected in the data file; our current feature vectors for the Clock Drawing

Test are about 2000 in length. In addition to the name of each feature, the type of the feature

will be included so that type checking can be performed before file creation. Specifications for the

input template file can be found in Appendix A.

Here are a few lines from a sample input template file. To keep the example short, ellipses have

been used to indicate text that is left out. Further explanation of the example can also be found

in Appendix A.

Type NA

PtNameF NA

PtNameL NA

MedicalRec NA

DocName NA

FacilName NA

PtDiagnosisl {ADD,ADHD,Alcohol Related,... .

DwgType NA

DwgTotStrokes int

DwgTotTime real

ClockFacelTotStrokes int

ClockFace1TotTime real

Mapping Input to Output

In order to facilitate flexible data analysis, MDA allows the analyst to define the list of output

features in the output template file. Some of these output features will be functions of the input

features, rather than a direct mapping of the input value to the output file. For example, the

analyst might want to look at trends in the time it takes to draw the 1-3, and therefore want to

add together digit and latency times.

To accomodate any derived features that the analyst wants to study, the file creation component

of MDA contains a section in which "transform functions" can be defined. These functions are

written in Python, and therefore some familiarity with Python is required of the analyst. The

analyst needs to define any transform functions that are needed to compute new features from

those in the .csv file. The transforms.py file holds these functions. Each function takes two lists

as input: a list of input features and a list of additional parameters. Here is a sample function,

Pure, as seen in the above example of an output template file.



4. THE MULTITOOL DATA ANALYSIS PACKAGE

def Pure(x, args):

return x[0]

See Appendix A.2 for transform function specifications and a more complex example of a trans-

form function.

Output Template File

The output template file indicates the mapping between data in the .csv file and the desired

output data we want to analyze. For example, we may want to look at only a few features of the

input data. Or, the features that we want to analyze may be functions of several of the input

features. See Appendix A.3 for specifications of the output template file.

Here are the first few lines from a sample output template file.

ClockFacelTotStrokesCOMMAND Pure {ClockFaceTotStrokesCOMMAND} {} int
ClockFacelTotTimeCOMMAND Pure {ClockFacelTotTimeCOMMAND} {} real
ClockFacelTotLenCOMMAND Pure {ClockFacelTotLenCOMMAND} {} real
ClockFace1PnSpdQ1COMMAND Pure {ClockFace1PnSpdQ1COMMAND} {} real
ClockFacelPnSpdQ2COMMAND Pure {ClockFace1PnSpdQ2COMMAND} {} real

Names in the first column (the output features) can be chosen by the analyst. The rows in this

example each use the Pure function, which means that the value of the feature contained in column

three will be passed on to the output. If there aren't any extra parameters for the function, as in

this case, column four contains empty brackets. As in the input template file, the final column is

used for type-checking on the values that will be printed to the output files. An error message will

indicate if any output values are calculated that do not match the expected output value type. It

is important for correct file creation that the output feature to be used as the class is the last row

in the output file. See Appendix A.3 for another example of an output template file.

Output Specifications

The file creation functionality of MDA will provide a directory of files for use with the six provided

machine learning tools. The directory will be named according to the time of its creation, and

subdirectories will contain files for each of the tools. These files should be opened with the

appropriate tool for further analysis. See Appendix B for an example of the complete process of

file creation.



4.4 Machine Learning Tools

4.4 Machine Learning Tools

The MDA Tool can launch six machine learning tools; this section explores use of these tools using

a sample cancer dataset. Four of these tools are stand-alone tools that could be used outside of

MDA, while two were developed specifically for the MDA Package. More details on use of each

of the tools can be found in Appendix C.

4.4.1 Weka

Weka is a tool that is well known in the machine learning community for the number of algorithm

implementations it provides and its easy-to-use interface.

One valuable feature of Weka is its ability to easily preprocess data. Certain features can be

selected/deselected, and then removed from the dataset. This functionality is useful if the analyst

wants to observe the results of classification based on a subset of the features recorded. A side

panel provides a bar graph of the distribution of the samples for each feature selected; for each

possible value of the feature, the graph indicates how many of the samples have this feature value.

This is useful because it allows the analyst to quickly and easily recognize the distribution across

each feature.

Weka provides both supervised and unsupervised learning functionality. For example, k-means

clustering is an unsupervised learning tool and the decision tree algorithm is a supervised classi-

fication method, both available in Weka. Once preprocessing is completed, these algorithms can

be run and the output will be displayed on the right-hand panel of the interface. The interface

is text based, so there is no visualization functionality for algorithms such as clustering or linear

separators.

In addition, Weka provides association, attribute selection, and visualization capabilities. The

Associate functionality will generate rules that partition the data into classes. The Select At-

tributes functionality includes algorithms such as Principles Components Analysis, which reduces

the dimensionality of the data by choosing to keep only features that account for high variance

in the data. Finally, the Visualization capability shows graphs of pairwise comparisons between

features of the data. This is useful for determining if any features are correlated, or just visualizing

the relationship between any two features.

Weka provides a wide array of tools for the user to begin analyzing a dataset. More detailed

information about Weka, as well as sample usage, is available in Appendix C.1.



4. THE MULTITOOL DATA ANALYSIS PACKAGE

4.4.2 DataBionics ESOM

The ESOM (emergent self-organizing map) tool provided in the MDA Package has a more focused

functionality than the WEKA tool. An ESOM is a projection of high-dimensional space onto a

two-dimensional "map", with distances in the higher-dimensional space indicated by differing col-

ors on the map. The major advantage to using this tool for data analysis is that it provides a

detailed map of the data and a visual representation of any clustering that occurs in the data.

The program requires the user to load three files, all of which are provided by the file creation

functionality of the MDA Tool. (Appendix C.2)

4.4.3 Cluster 3.0

The clustering tool provided in the MDA Package was originally developed for clustering of DNA

microarray data, and therefore has the capabilities required to handle large datasets. Although

Cluster 3.0 contains PCA and SOM functionality, better implementations of these algorithms

can be found in the PCA and ESOM tools. However, the clustering functionality of Cluster 3.0

allows for tight control over parameters by the analyst. Data can be centered and normalized

before clustering is performed, and eight different distance metrics can be chose for the k-means

clustering algorithm. The number of clusters and iterations of the algorithm must also be chosen

before run time. Clustering output is a text file which contains a list of each of the samples in the

data and the cluster to which they have been assigned. (Appendix C.3)

4.4.4 BSVM

The BSVM tool provided is a tool for training SVMS on the data, allowing users to select desired

kernel type, loss function, tolerance, and many other parameters. BSVM allows the user to choose

from four different algorithms for multi class classification: bound-constrained multi-class support

vector classification (SVC), multi-class SVC from solving a bound-constrained problem, multi-

class SVC from Crammer and Singer, and bound-constrained support vector regression. Users

can edit type of SVM, kernel type, and values for 12 other parameters. Once a model has been

trained, it can be used to classify new unlabeled data. (Appendix C.4)

4.4.5 PCA

The PCA tool provided performs principle components analysis on the data and returns a new

dataset in which the number of features has been reduced. Researchers perform PCA on data in

order to get rid of features that do not account for significant variance between samples of different

classes, and bring the data down to a more manageable size. The new features that are created



4.4 Machine Learning Tools

will be combinations of original features, mathematically creating the best matrix decomposition

of the original data, but often having little physical interpretation.

This Java implementation of PCA was specifically developed for the MDA Package, to give users

more control over the parameters of the algorithm. When PCA is performed, the number of

features in the data will be reduced. It can be reduced to a set number of features, or reduced

until the set of features accounts for a certain percentage of the variance in a dataset. Most PCA

implementations only allow for the latter approach, but sometimes it will be necessary for analysts

to choose a specific number of features to keep. Therefore, I have created a Java implementation

of PCA that lets the user decide whether to reduce data to a certain size or to account for a

specified variance. (Appendix C.5)

4.4.6 EPCA

The EPCA (Exponential PCA) tool provides almost the same functionality as the PCA tool, but

has a different underlying algorithm. The goal of EPCA is dimensionality reduction, but this

algorithm takes into account the differing feature types in the data. Therefore, the new features

are chosen by a more complex process than simply choosing those that account for the highest

variance across samples. The EPCA algorithm requires the number of output features desired as

a parameter, and therefore the user must make this decision before running the program.

This python EPCA implementation was developed specifically for the MDA Package. It is based

on a MATLAB implementation by Peter Gehler of the EPCA algorithm in the Collins et al. paper.

The MATLAB implementation accounts for data that is completely binary or integer value. My

implementation allows for different types within a dataset, and uses different loss functions for

the different features. See Appendix C.6 for more information.



4. THE MULTITOOL DATA ANALYSIS PACKAGE



5

Sample Analysis

This chapter will walk through analysis of a sample CDT dataset, highlighting the results from

each of the 6 machine learning tools that seem most promising. The intention of this chapter is

to introduce methods rather than show results, since our sample dataset remains far too small for

results to be significant.

5.1 Input Overview

The .csv file output from the CDT contains approximately 2000 features and 44 patients. How-

ever, not all of these features are useful for classification and some were not included in the output

template file. Among the unused features are Type, PtNameF, PtNameL, MedicalRec, DocName,

and FacilName; these features have NA as their data type in the input template file and are

not present in the output template file. You can choose which features to exclude, and we have

selected the few that shouldn't have an effect on classification. For example, PtNameF is the first

name of the patient, and we do not expect there to be a pattern linking first name with diagnosis.

There are also features that we wanted to combine to create new output features. The order-

ToAbsoluteDigit function described in Appendix A.2 was used to take all 60 possible digit entries

and save only one for each digit. This function reorders the data so that we are always comparing

like digits rather than digits drawn in the same order sequentially. In this example, rearranging

how the digits are stored was the only function performed on input features. PtDiagnosisl is the

last feature listed on the output template file, since this is the feature chosen to indicate the class

of a sample.



5. SAMPLE ANALYSIS

5.2 Weka- The Decision Stump

The Decision Stump algorithm is a good first step in creating a decision tree for the data. Decision

trees are easy to understand, because they involve asking a series of questions about features that

lead to classification. The Decision Stump chooses the first feature that should be examined, the

one that can correctly classify the most samples with just one threshold value.

For this dataset, PtAgeAtTestCOMMAND (which would be the same value as PtAgeAtTest-

COPY, since it is the same patient) was chosen as the most important feature. If the patient is

over 69.337 years of age, the patient is classified as having DementiaSDAT, while anyone under

this age is classified as a Healthy Control. The choice of this feature makes sense, because the

Healthy Controls that we had are much younger in age than the other patients. In addition,

DementiaSDAT and Healthy Control have the largest number of samples in our data, so choosing

these two classifications naturally leads to the highest rate of correct classification. This phe-

nomenom will be fixed when the dataset becomes much larger and all diagnoses are represented.

The output from the Decision Stump algorithm is:

=== Run information ===

Scheme: weka.classifiers.trees.DecisionStump

Relation: clocks

Instances: 89

Attributes: 867

[list of attributes omitted]

Test mode: 10-fold cross-validation

=== Classifier model (full training set)

Decision Stump

Classifications

PtAgeAtTestCOMMAND <= 69.33717999999999 : HealthyControl
PtAgeAtTestCOMMAND > 69.33717999999999 : DementiaSDAT

PtAgeAtTestCOMMAND is missing : HealthyControl

Class distributions



5.3 ESOM

Time taken to build model: 0.09 seconds

Stratified cross-validation

Summary ===

Correctly Classified Instances 31 34.8315 %

Incorrectly Classified Instances 58 65.1685 X

Kappa statistic 0.1435

Mean absolute error 0.0227

Root mean squared error 0.1091

Relative absolute error 88.9191 X

Root relative squared error 98.1911 X

Total Number of Instances 89

This decision only correctly classified 34.8% of the samples, but this makes sense since we are only

using one feature and two possible classes. The other classification methods, in particular those in

the Tree category, perform much better by relying on more of the features. However, this means

that they are more complicated and require more time and space resources.

5.3 ESOM

The ESOM tool provides a good visualization of our data. First, the three files created by the

MDA tool were loaded, and then a self-organizing map was trained using the default program

parameters. Figure 5.1 shows the resulting map.

Although the dataset is small, it is possible to see a bit of clustering for some of the classes.

In Figure 5.1, the Dementia-SDAT samples are navy blue squares that are in bold. Since green

represents low distance, the three samples near the top are close together, as are the two slightly

lower. This is by no means amazing performance, but the small size of the dataset is a limiting

factor. Once we have a large number of samples with each classification, we can hope to see more

definitive clustering.

5.4 BSVM

The BSVM tool is a useful supervised classification method for finding separators in the data.

For example, if the linear kernel option is chosen, BSVM will find linear separators that most

accurately classify each sample. It is very easy to create a model using BSVM, and then test the



5. SAMPLE ANALYSIS

Figure 5.1: ESOM- CDT Sample;

model on a reserved set of test samples.

The file that MDA provides contains all of the samples from the original .csv file with the clas-

sification as the first feature in each row. An easy option to get started is to train an SVM on

the entire dataset. However, in order to provide the model with new data for testing, we first

set aside some of the samples and placed them in a new file called bsvmTest.txt. To do this,
seven of the rows were deleted from the file created by MDA and copied into bsvmTest.txt. Once

the dataset is large enough, these test samples will be chosen at random out of the dataset, or

cross-validation will be used. However, since our dataset is so small, we chose samples for testing

that come from classes that are highly represented in the data. Class 0 is unknown diagnosis

and class 33 is Healthy Control. The results of classifying seven samples by a model built on the

remaining 81 samples are:

Actual Class Classification

0 33

33 33

33 33



5.5 Clustering

33 33

33 33

0 0
0 0

Of the seven samples, six are classified correctly. This is a good start, and the simplicity of the

BSVM tool makes it a promising option for when more data is available.

5.5 Clustering

In this section, we will examine the results of clustering on the sample dataset. We will first cluster

the original data, and then perform clustering on dimensionality-reduced data output from the

PCA and EPCA tools.

Original Data

To cluster the data, it was loaded into Cluster 3.0 and the k-means tab was selected. Under the

"Genes" panel, "Organize Genes" was selected and we chose to use 20 clusters. Upon clicking

"Execute", the k-means algorithm produced an output file and a new data file in the same directory

as the input file. The output file, with the .kgg extension, lists the samples that were clustered

together in cluster order. To see how well the clustering performed, we look at one of the clusters

and the actual classifications of the samples that were classed together. The first column below

shows the sample number, the second column the cluster number, and the actual classification

has been added as a third column.

11 0 PD-DBS Pre-Surgical

13 0 Healthy Control

29 0 0

34 0 0

36 0 Epilepsy - Right hemisphere foci

42 0 Healthy Control

46 0 0

57 0 Dementia - SDAT

61 0 0

80 0 0

84 0 Stroke - right hemisphere: PCA

In this cluster of samples, there are a wide range of classifications. The most common class is

0, which seems to indicate that the samples of unknown diagnosis group together. Overall, our

data size is too small to get accurate clustering. However, we can compare these results with the

results of performing dimensionality reduction first and then clustering.



5. SAMPLE ANALYSIS

PCA Reduced

When PCA is performed on the data with 95% variance accounted for, then new feature vectors

of length 35 are assigned to each sample. One of the groups found by clustering this new data is:

13 11 Healthy Control

27 11 0

29 11 0

34 11 0

36 11 Epilepsy - Right hemisphere foci

42 11 Healthy Control

43 11 Healthy Control

59 11 Stroke - left hemisphere: MCA

61 11 0

80 11 0

82 11 Healthy Control

The first observation to be made is that performing PCA first allows clustering to happen much

quicker. Clustering went from taking about 30 seconds on the original data to only 2 seconds on

the dimensionality-reduced data. Secondly, we can see that most the samples remain in the same

group. Samples 13, 29, 34, 36, 42, 61 , and 80 cluster together in both the original data and the

new data, while only four of the samples in the original cluster are no longer present in the new

cluster. Both clusters are dominated by the 0 class, and the data that went through PCA first

also has 4 Healthy Control samples in this cluster. With this small sample size, the most notable

trend is that reducing the dimensionality of the data before clustering gives different but similar

clustering results.

EPCA Reduced

Finally, we perform the same steps using EPCA. We reduce the data down to 35 dimensions, and

the following are two clusters found in the new data:

12 7 PD-DBS OFF Post-Surgical

13 7 Healthy Control

34 7 0

36 7 Epilepsy - Right hemisphere foci

61 7 0

73 7 Epilepsy - Left hemisphere foci

74 7 Healthy Control

87 7 Stroke - right hemisphere: MCA



5.5 Clustering

3 17 PD-DBS ON Post-Surgical

20 17 0

27 17 0

29 17 0

39 17 Normal Aging

57 17 Dementia - SDAT

63 17 Stroke - left hemisphere: MCA

77 17 Epilepsy - Indeterminate foci

80 17 0

Using the data reduced by EPCA, we get a much different clustering structure than with PCA.

The samples from the one cluster that we followed from the original data and the PCA-reduced

data are split up between two clusters after reduction by the EPCA algorithm. We can see that

samples 13, 34, 36, and 61 are clustered together in each of the three methods, as are samples 29

and 80.

In conclusion, PCA and EPCA dimensionality-reductions create a dataset that is of a much more

manageable size, but they change the clustering output by leaving out some features. This process

of comparing the results of the three clustering methods should be repeated on a larger dataset,

to determine if dimensionality reduction improves clustering.



5. SAMPLE ANALYSIS



Contributions

I made several contributions to the Clock Drawing Test. To improve the stroke classification stage

of data analysis, I collected samples to train a model for nearest neighbor classification of digits.

I used stroke thickening and rotation invariance to improve cross-validation results. I then devel-

oped an algorithm that uses temporal and spatial features of strokes, as well as digit recognition,

to classify the digits on the face of a clock.

I developed the Multitool Data Analysis Package to ease exploratory data analysis by providing

file conversion and tool launching functionality. MDA includes new implementations of Principles

Components Analysis(PCA) and Exponential PCA, an extension of the PCA algorithm to handle

binary and integer valued data through use of Bernoulli, Poisson, and Minimum Mean Squared

Error Loss functions. Each of these contributions helps maintain the ease of administration of the

CDT and subsequent data analysis.



6. CONTRIBUTIONS



Bibliography

Anoto(A),"Development Guide for Services Enabled by Anoto Functionality." Anoto AB: 2006.

Anoto(B), "Paper Interface Guidelines." Anoto AB: 2006.

Collins, Michael et al. "A Generalization of Principle Component Analysis to the Exponential

Family." AT&T Labs.

Penney, Dana. "A Clock Drawing Test scoring application for dementia, vascular disease and

Parkinson's Disease: A Pilot Study."

Richardson, Hayley et al. "A Comparison of Scoring Protocols on the Clock Drawing Test in Re-

lation to Ease of Use, Diagnostic Group, and Correlations with Mini-Mental State Examination."

Journal of the American Geriatrics Society. Jan 2002 50:169-173.

Royall, Donald et al. "CLOX: An Executive Clock Drawing Test." Journal of Neurology, Neuro-

surgery, and Psychiatry. 1998 64:588-594.

Shulman, Kenneth et al. "The Challenge of Time:Clock-Drawing and Cognitive Function in the

Elderly." International Journal of Geriatric Psychiatry. 1986 1:135-140.



7. BIBLIOGRAPHY



Appendix

A. File Formats

A.1 Input Template File

" This is a tab-separated file, with two columns and a number of rows equal to the number of

features in the .csv file.

" The first column of the input template file contains the feature names and hence should

exactly match the first row of the .csv file.

* The second column lists the data type of values for each feature. Possiblities include: 1cm

- bin: 0 or 1.

- real: real number

- int : integer values

- {x,y,z} : This notation provides an enumeration of specific values possible for this

column. The list can contain strings and/or numbers.

- NA : The data will not be used, and hence there is no need to specify a type.

Type NA

PtNameF NA

PtNameL NA

MedicalRec NA

DocName NA

FacilName NA

PtDiagnosisl {ADD,ADHD,Alcohol Related,...}

45



8. APPENDIX

DwgType NA

DwgTotStrokes int

DwgTotTime real

ClockFacelTotStrokes int

ClockFacelTotTime real

Notice in the sample input template file that there are two tab-separated columns for each

row. There are no tabs or spaces following the second column. The first column matches

the first row of the sample .csv file (Type,PtNameF). If there are discrepancies between the

header line of the .csv file and the first column of the input template file, an error message

will appear indicating the specific feature that needs to be fixed. The second column of

the input template file will be used for type-checking on the input data. For example, the

feature Type is not restricted in value but DwgTotStrokes must take on an integer value.

PtDiagnosisl is an example of an enumeration; this list must contain every possible value

for the data type it describes. If a value is found that does not match the input template

specifications, the user will be notified via an error message indicating which feature is

incorrect.

A.2 Transform Functions

Transform functions are written to convert input features to output features. Each transform

function must take two arguments, the first is a list of input features and the second is a list

of extra parameters. The Pure function is the simplest transform function, simply passing

the input value through to the output. The argument x is a list of input features and args

is the list of extra parameters. For this function, x will be of length one, and the first term

of x will be returned. Since no extra parameters are needed, args will be empty.

def Pure(x, args):

return x[0]

orderToAbsoluteDigit is a slightly more complicated example.

def orderToAbsoluteDigit(l, num):

num = num[O]

indexOf = None

for i in range(60):

if l[i] == num:



indexOf = i

else:

#since the digit 6 can be stored as 6 or "6", we check here to make

#sure we recognize the string form of a digit.

try:

if int(l[i]) == num:

indexOf1 = i

except ValueError:

pass

if indexOf == None:

return 0

else:

if l[index0f+60] ==

print 'error'

return 1[index0f+60]

The goal of this function is to take in as 1 the list of digits in the order they were drawn,

appended to a list of corresponding feature values for these digits (ie: length),and return a

feature value for a particular digit. This is necessary because the CDT records digits in the

order in which they are drawn, not numerical order. So if we want to compare the length of

the 3 from two different clocks, in each case we have to look up when the 3 was drawn. For

example, orderToAbsoluteDigit(12,6,3,9,..., 1.2,1.6,1.8,1.9,..., 6) would find when the 6 was

drawn by its position in the first half of the list. The first half of 1 (the first four numbers

shown plus missing entries indicated by ellipses) contains the digits in the order they were

drawn (12,6,3,9); the second half contains their values. For example, the 12 was of length

1.2 and the 6 was of length 1.6. Once we've found when the 6 was drawn, we can select

the correct length for the 6. These lists will normally be of length 120, because there are

60 possible digits and 60 corresponding values. (There are 60 possible digits because some

cognitive deficits cause patients to repeat digits, and the program has room for up to 5 such

repetitions of each digit.) The second argument to the orderToAbsoluteDigit function is a

list containing one number- the number that we want to find.

A.3 Output Template File

The output file contains 5 tab-separated columns:

- The first column contains names for the output features, which must be unique.



8. APPENDIX

- The second column contains the name of the function that will be invoked on the

input data to produce the output data. Possible functions will be defined in the trans-

forms.py file

- The third column contains the names of features input to the function in column

two, contained between brackets, with no spaces between features. Each feature must

exactly match one of the feature names in the input template file with either "COM-

MAND" or "COPY" appended to the end.

- The fourth column contains any additional parameters that the function in column

two requires, contained within brackets without any spaces.

- The fifth column contains the type of the data that will be output from the function

and stored in the output file. Possible types are the same as those for the input

template file.

Here is an example of several lines of an output template file. Ellipses indicate missing

information, to keep the example short.

Digit1StrokesCOMMAND orderToAbsoluteDigit {Digit1COMMAND,... , Digit6OCOMMAND,

Digit1StrokesCOMMAND, ... ,Digit6OStrokesCOMMAND} {1} int

Digit1TimeCOMMAND orderToAbsoluteDigit {Digit1COMMAND,... ,Digit6OCOMMAND,

Digit1TimeCOMMAND,...Digit6OTimeCOMMAND} {1} real

Digit1LenCOMMAND orderToAbsoluteDigit {Digit1COMMAND, ... ,Digit60COMMAND,

Digit1LenCOMMAND,.. .,Digit6OLenCOMMAND} {1} real

Fie Edt View insett Form*t Help

DigitlLenCONMAND orderToAbsoluteDigit (Digit1COMAND,Digit2COMMAND,Digit3COMMANDDigit4COMMAND,Digit5CONMAND,Digit
DigitlCentXCONMAND orderToAbsoluteDigit (Digit1COMMAND,Digit2COMNAND,Digit3COMMAND,Digit4COMHAND,DigitSCOMNAND
DigitlCentYCOMMAND orderToAbsoluteDigit (Digit1COMMANDDigit2COHNAND,Digit3COMMAND,DigitlCOMMAND,DigitSCOMMAND
DigitlidthCOMMAND orderToAbsoluteDigit (Digit1COMMAND,Digit2COMuAND,Digit3COMAND,Digit4COMAND, Digit5COMHAND

Digit1HgtCONHAND orderToAbsoluteDigit (Digit1COMHAND,Digit2COHMAND,Digit3COMMAND,Digit4COMMAD,DigitSCOEMAND,Digit
DigitlOutsideCOMAND orderToAbsoluteDigit (Digit1COMHAND,Digit2COMlANDDigit3CONMAND,Digit4COMMAND,Digit5COMMAND
DigitlAngleCOMHAND orderToAbsoluteAngle (Digit1CONMANDDigit2COMNAND,Digit3COMMAND,Digit4COHNAND,DigitSCOHNAND
DigitlIdealDiffCOMMAND orderToAbsoluteDigit (Digit1CONHAND,Digit2COHNAND,Digit3CONMAND,Digit4COMMAND,DigitSCOHAND
DigitlDistCircumCOMHAND orderToAbsoluteDigit (DigitlCOMMAND, Digit2COMMAND,Digit3COMMAND,Digit4COMMAND, Digit5COMNAND

Digit25trokesCOAMAND orderToAbsoluteDigit (DigitlCOMMAND,Digit2COMMANDDigit3COMMAND,Digit4COMMAND,Digit5COHMAND
Digit2TimeCOHMAND orderToAbsoluteDigit (Digit1COMMAND,Digit2COMMAND,Digit3COMMAND,Digit4COMAND,Digit5COMMANDDigit

Figure 8.1: Snapshot of the Output Template File



The sample output template file shows a function called orderToAbsoluteDigit, where inputs

are not passed directly to the output template file. As described in Appendix A.2, this

lookup function takes the list of digits in the order that they were drawn and the value of a

particular feature of that digit (length, time, etc), and returns the value corresponding to a

particular digit.

B. Sample File Creation

This chapter walks through the process of creating files for a sample dataset. Since this is not

a CDT dataset, the command line option for running the program will be used. However,

all of the input files used follow the same rules.

Cancer Dataset

The cancer dataset contains information from 699 tumor samples. There are ten attributes

in addition to the class attribute which labels the tumor as benign or malignant. Machine

learning algorithms are used on this dataset to discover which combinations of attributes

indicate that a tumor is malignant. Below are excerpts from the data file, input template

file and output template file for the cancer dataset.

Data file

id,clump thickness,size uniformity,shape uniformity,...

1000025,5,1,1,1,2,1,3,1,1,2

1002945,5,4,4,5,7,10,3,2,1,2

1015425,3,1,1,1,2,2,3,1,1,2

1016277,6,8,8,1,3,4,3,7,1,2

1017023,4,1,1,3,2,1,3,1,1,2

1017122,8,10,10,8,7,10,9,7,1,4

1018099,1,1,1,1,2,10,3,1,1,2

Just as with output from the CDT, acceptable data files are .csv files, with the first line

of the file containing names of each field, separated by commas. The remaining lines each

represent one subject/patient/sample, and entries on each line are separated by commas.

There should be no spaces in the text lines or at the end of the lines.



8. APPENDIX

Input and Output Template File

Here is the input template file for the cancer data set in its entirety.

id int

clump thickness {1,2,3,4,5,6,7,8,9,10,?}

size uniformity {1,2,3,4,5,6,7,8,9,10,?}

shape uniformity {1,2,3,4,5,6,7,8,9,10,?}

marginal adhesion {1,2,3,4,5,6,7,8,9,10,?}

single cell size {1,2,3,4,5,6,7,8,9,10,?}

bare nuclei {1,2,3,4,5,6,7,8,9,10,?}

bland chromatin {1,2,3,4,5,6,7,8,9,10,?}

normal nucleoli {1,2,3,4,5,6,7,8,9,10,?}

mitoses {1,2,3,4,5,6,7,8,9,10,?}

class {2,4,?}class {2,4,?}

The input template file is tab-separated, with the first column containing the name of each

attribute in the input file, which must match the corresponding entry in the first row of

the data file. The second column records the type of value that each attribute can take.

For example the first row, the id attribute, is an integer. In fact, in this dataset all of the

attributes are integers. However, if values are limited, we can be more specific about their

possible values by creating an enumeration. For example, clump thickness can only take on

values 1-10 or ?.

Here is an output template file for the cancer dataset.

clump thickness Pure {clump thickness} {} {1,2,3,4,5,6,7,8,9,10,?}

size uniformity Pure {size uniformity} {} {1,2,3,4,5,6,7,8,9,10,?}

shape uniformity Pure {shape uniformity} {} {1,2,3,4,5,6,7,8,9,10,?}

marginal adhesion Pure {marginal adhesion} {} {1,2,3,4,5,6,7,8,9,10,?}

single cell size Pure {single cell size} {} {1,2,3,4,5,6,7,8,9,10,?}

bare nuclei Pure {bare nuclei} {} {1,2,3,4,5,6,7,8,9,10,?}

bland chromatin Pure {bland chromatin} {} {1,2,3,4,5,6,7,8,9,10,?}

normal nucleoli Pure {normal nucleoli} {} {1,2,3,4,5,6,7,8,9,10,?}

mitoses Pure {mitoses} {} {1,2,3,4,5,6,7,8,9,10,?}

The output template file is very similar to the input template file. The first column contains

the names of desired output attributes. The user has the freedom to chose names for these

attributes, as long as there are no duplicates. The second column contains the name of

the function that will be performed in order to create this attribute. In this case, all of



the functions are "Pure" because we are simply passing input values to output. The third

column contains a list of the input attributes that will be passed to the function, and the

fourth column contains a list of contants that will be passed to the function. Finally, the

last column contains the type of values that the new output attribute can take on.

Appendix C explores the different machine learning tools provided in the MDA Package

using the cancer dataset.

C. Machine Learning Tools

C.1 Weka

Preprocess

Once the explorer is open, click on "Open File" to load your data file. You will then need to

locate the file that was created in the previous stage. It will be contained in folder similar

to ClockData_234545612.23/weka, located in the same directory as the gui.py file. The file

that you load should have an .arff extension. Once data is loaded, the screen will appear as

below. (Fig 8.2)

When the data is loaded, the "Preprocess" tab will be visible. Working in this tab, the user

is able to filter the data by any of the features. Certain features can be selected/deselected,

and then removed from the dataset. This functionality is useful if you want to observe the

results of classification based on a subset of the features recorded. The right hand panel

provides a bar graph of the distribution of the samples for each feature selected; for each

possible value of the feature, the graph indicates how many of the samples have this feature

value.

Each remaining tab at the top of the screen is a possible analyses technique that can be

used on the data. However, some of the tools contained in Weka are supervised learning

methods and some are unsupervised methods. For example, k-means clustering is an unsu-

pervised learning tool available through weka and the decision tree algorithm is a supervised

classification method. For supervised methods, the user needs to ensure that the classifi-

cation attribute is present in the Attributes panel of the Preprocess tab. For unsupervised

methods, the user needs to ensure that classification is not used as one of the features, by

removing or deselecting.



8. APPENDIX

Preprocess Classify, Cluster! Associate_ lc attributes Vsualize:___________

Open URL.. Open D1... Generate... [ E itave

3 hpenfomty2

Clioe NoneApl

Current relatln Selecteid attribute

Relation: clocks Name: clumptaclnese Type: Noinal
Instance: 699 Attrbutes: 10 ngssng: 0(0%) zisteict: 10 Unue: 0

Attributes No. Label count
itt 1145

s At 2u2 s50

3 3 1108
No ae4 4 806

!5!5 1130

2 ci nifonv 6634

3 shaFpeigue 8oty 717 L23
4 _ rarginaladhesion . -

Class: class (NoCa) ssViy Al
5I seieceisionStump" ud teTesagoysnefteim

6 barenuclei

normalnucleoli 3

9h martoses

10= C assfe moei(ul riin.ut =

Class if ca

classiyngeu dt.I hs aeieniformity of1orhessngthe cls iy hesple attribute tha.i

Clsii Rmoe (fl1tanngst

Deciusio tm

Classifictin

#Jsfyn sizeiforItis 1ae omisingmte class eify the asple atibt class 2.



Pre cee Classiy er Assodat Select attributes Visualize

clashfer

Choose DecsoSturnp

Test ptir classiher output -

=eRun information

Scheme: weka.classifiers.trees.Decisionstump

t Relation: clocks

C) Prcentge split j Instances: 699
Attributes: 10

More op~tkx~. clumpthickness

sizeuniformity

(Nom) class shapeuniformity

marginaladhesion
start singlecellsize

barenuclei
R esult list (rigt-dickfor options)

normalnucleoli

mitoses
class

Test mode: 10-fold cross-validation

Classifier model (full training set)

Decision Stump

OK L x0

Figure 8.3: Weka-Classify;

#Otherwise classify the sample as class 4.

sizeuniformity = 1 : 2

sizeuniformity ! 1 : 4

sizeuniformity is missing : 2

#Here is the breakdown of results of using this attribute.

#For example, .98 of the samples with sizeUniformity of 1 are

#correctly placed in class 2.

Class distributions

sizeuniformity = 1

2 4 ?

0.9895833333333334 0.010416666666666666 0.0

sizeuniformity != 1

2 4 ?

0.24761904761904763 0.7523809523809524 0.0

sizeuniformity is missing

....: .e .



8. APPENDIX

2 4 ?

0.6552217453505007 0.3447782546494993 0.0

Time taken to build model: 0.03 seconds

#Statistics, indicating how well the classifier performed.

#Root mean squared error is a common measure of accuracy.

Stratified cross-validation

Summary ===

Correctly Classified Instances

Incorrectly Classified Instances

Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error

Total Number of Instances

#This is a breakdown of how well the

=== Detailed Accuracy By Class ===

Weighted Avg.

TP Rate

0.83

0.983

0

0.883

FP Rate

0.017

0.17

0

0.07

617

82

0.758

0.1197

0.2451

39.6614 %

63.1639 %

699

88.269 %

11.731 %

classifier did by class.

Precision

0.99

0.752

0

0.908

Recall

0.83

0.983

0

0.883

F-Measure

0.903

0.853

0

0.885

ROC Area

0.884

0.884

0.884

Class

2

4

#The confusion matrix is a common output of classification algorithms, showing

#how many samples in each class were given each possible classification. The

#numbers appearing on the diagonals are correct classifications.

=== Confusion Matrix ===

<-- classified as

a= 2

b= 4

c= ?

a b

380 78

4 237

0 0

c

0 |

0I

0 |



The confusion matrix at the bottom indicates the number of cells that were classified cor-

rectly using only this feature.

Cluster

When the Cluster tab is selected, a "Choose" button near the top of the screen allows for

selection of a particular clustering algorithm to be used. (Fig 8.4)

Preprocess Cassifh Cluster Associate Select attributes 4Vi isualize

Cisterer

Choose SinpleKMeans N 2 -A "weka.core.EudideanDistance -R first-last -1 500 -5 10

Cluster mode Clusterer output

QUsetrainngset .== Run information ...

Scheme: veka.clusterers.SimpleKeans -N 2 -A "veka.core.

O ra t ~ Relation: clocks

Casses to usters evaluation Instances: 699

Attributes: 10
-_-----_-_-------clumpthickness

Store clusters for visuaization sizeuniformity

shapeuniformity

Ignore attributes marginaladhesion

singlecellsize

start bar enuclei
blandcht omatin

Result list (right-ck for ovtons) normalnucleoli

mitoses
Ignored:

class

Test mode: Classes to clusters evaluation on training data

Model and evaluation on training set ---

k[eans

Status

Figure 8.4: Weka-Cluster;

K-means is one of the simplest, and finds cluster centers that minimize distance from each

data point to the nearest cluster center. Notice that "classes to cluster evaluation" is selected,

meaning that the "class" attribute will be ignored as a feature and instead used to determine

the number of cluster centers to look for. The output of clustering is displayed in the panel

on the right.

kMeans



8. APPENDIX

Number of iterations: 3

Within cluster sum of squared errors: 2544.0

Missing values globally replaced with mean/mode

Cluster centroids:

Cluster#

Attribute Full Data 0 1

(699) (228) (471)

clumpthickness 1 10 1

sizeuniformity 1 10 1

shapeuniformity 1 10 1

marginaladhesion 1 10 1

singlecellsize 2 3 2

barenuclei 1 10 1

blandchromatin 2 7 2

normalnucleoli 1 10 1

mitoses 1 1 1

Clustered Instances

228 ( 33%)

471 ( 67%)

Class attribute: class

Classes to Clusters:

1

444

27

0

<-- assigned to cluster

|2

14

|?

Cluster 0 <-- 4

Cluster 1 <-- 2

Incorrectly clustered instances : 41.0 5.8655 %

0

14

214

0



First, we can see a chart that indicates the coordinates of each cluster center. In this case,

the cluster centers have 9 dimensions (rows). Then, smaller charts indicate the percentage

of the data points that fell in each cluster, as well as the number of data points from each

actual classification that were placed in each cluster. From these numbers, a percentage

error is calculated.

Associate

When the "Associate" tab is selected, several algorithms for creating rules based on the data

are available. (Fig 8.5)

Preprocessi Gassiy Ckster Assoiate Select attributes Visuaze! - -------- _-_--------

Associator

ChooslteredAssociator -F "weka.fkers.MkF&er - \weka.fters.unspervsed.attrite.Repeingesk -c -1 -W weka.associationsA

Assocator output

Generated sets of large itemsets:

Size of set of large iteasets L(l): 7

Size of set of large itemsets L(2); 6

Size of set of large itexsets L(3): 2

Best rules found:

1. barenuclei=1 class=2 401 -- > mitoses-l 394 conf: (0.98)

2. normalnucleoli-1 class-2 402 -=> mitoses=1 394 conf: (0.98)

3. barenuclei=l mitoses=1 405 ==> class=2 394 conf: (0.97)
458 i 1 445 4. 0 94. class=2 -=> a toses= co : ( . )

5. barenuclei=1 418 ==> aitoses-1 405 conf:(0.9

6. normalnucleoli-1 443 ==> uitoses=l 426 conf:

7. barenuclei-1 418 ==> class=2 401 conf: (0.96)
8. marginaladhesion=1 407 ==> mitoses=1 388 con

9. barenuclei-1 418 ==> mitoses=1 class=2 394 c

10. normalnucleoli-1 mitoses=1 426 -=> class=2 394

Status

71

(0.96)

f: (0.95)
onf: (0.94)

conf: (0.92)

a.p xa

Figure 8.5: Weka-Associate;

Using the FilteredAssociator, the following rules were found for the cancer dataset.

Best rules found:

1. barenuclei=1 class=2 401 ==> mitoses=1 394 conf:(0.98)

2. normalnucleoli=1 class=2 402 ==> mitoses=1 394 conf:(0.98)

3. barenuclei=1 mitoses=1 405 ==> class=2 394 conf:(0.97)



8. APPENDIX

4. class=2 458 ==> mitoses=1 445 conf:(0.97)

5. barenuclei=1 418 ==> mitoses=1 405 conf:(0.97)

6. normalnucleoli=1 443 ==> mitoses=1 426 conf:(0.96)

7. barenuclei=1 418 ==> class=2 401 conf:(0.96)

8. marginaladhesion=1 407 ==> mitoses=1 388 conf:(0.95)

9. barenuclei=1 418 ==> mitoses=1 class=2 394 conf:(0.94)

10. normalnucleoli=1 mitoses=1 426 ==> class=2 394 conf:(0.92)

The first rule says that of the 401 samples that have the barenuclei feature value 1 and are

in class 2, 394 have the feature value 1 for mitoses as well. This is a .98 ratio, and rules are

listed from highest to lowest certainty.

Select Attributes

The "Select Attributes" tab will allow for the number of attributes in the samples to be

condensed via algorithms such as Information Gain Ranking Algorithm. These algorithms

are based on different equations for measuring the utility of each feature in determining the

class of a sample. (Fig 8.6)

When the Information Gain Ranking Algorithm is selected using the cancer dataset, the

following ranking of features is calculated.

Attribute Evaluator (supervised, Class (nominal): 10 class):

Information Gain Ranking Filter

Ranked attributes:

0.684 2 sizeuniformity

0.661 3 shapeuniformity

0.569 6 barenuclei

0.548 7 blandchromatin

0.514 5 singlecellsize

0.475 8 normalnucleoli

0.465 1 clumpthickness

0.449 4 marginaladhesion

0.21 9 mitoses

Selected attributes: 2,3,6,7,5,8,1,4,9 9

This information could be considered by the user when deciding which features to measure

or collect data on and which to leave out.



Weka E orer

Preprocess Classify a estereAssociate Select attributes Visualize

Attribite Eialualor

FChooe] iufoGsainAttlbioteEvall

Seatrch Method

Choose Ranker -T 1a797693a34t86t2r31i57E3b8 -N - I

Attribute Selertion Node Attribute selectio~n output

C-)Usefulltra~flgset -=Run information

OCross-alabon
Evveo ~ seka. attributeSelection. InfoGainkttributeEval

Search: weka.attributeSelection.Ranker -T -1.7976931348i623157E308 -N-

Relation: clocks
(Nom) class Instances: 699

~.Attributes: 10
SAt clumpthickness

Retdt list (rkght-dlck for opios) sizeuniformity
shapeuniforuity
marginaladhesion
singlecellsize

barenuclei
blandchromatin

normalnucleoli
mitoses
class

Evaluation mode: evaluate on all. training data

< > >~~Ai A )

Status

OK K MbX0

Figure 8.6: Weka- Select Attributes;

Visualize

Finally, the "Visualize" tab allows the user to see pairwise graphs of the features. For

example, for the cancer dataset the user might want to see how sizeuniformity changes

with shapeuniformity. Many small graphs are presented, as shown in Fig 8.7 below, but by

double-clicking the user can see an enlarged graph. (Fig 8.7, 8.8)

C.2 Databionics ESOM Analyzer

The ESOM (emergent self-organizing map) tool provided in the CDT Tools Package has

a more focused functionality than the WEKA tool. An ESOM is a projection of high-

dimensional space onto a two-dimensional "map", with distances in the higher-dimensional

space indicated by differing colors on the map. The major advantage to using this tool for

data analysis is that it provides a detailed map of the data and a visual representation of

any clustering that occurs in the data. The program requires the user to load three files, all

of which are provided by the file creation functionality of the MDA Tool. One file, with a

.lrn extension, contains the data to be analyzed, while the .csl and .names files contain the

class labels of the data in numerical and string format, respectively. The first step that the



8. APPENDIX

Figure 8.7: Graphs for Pairwise comparison of features;

user should take is to load each of these files, starting with the .lrn file. This can be done

under the File tab. The second step is to train a self-organizing map on the data, which can

be done by selecting Tools, then Training. The user will be able to edit many parameters

of the ESOM, and then click on Start at the bottom of the screen. In general, the default

parameters work just fine for a first run on the data. After training is completed, the user

should click on close and return to the main screen. The map should appear in the upper

panel of the user interface.

(Figure 8.9)

Each dot on the map represents a sample. Colors on the map indicate elevation; the higher

the elevation between two points the further they are apart in higher dimensional space. For

this example, green colors indicate low elevation and brown/white indicates high elevation.

In the lower part of the user interface, there are many tabs that can be selected for alternate

views of the model. A few important ones are highlighted below.



Weka EplorerVisu--aliin- cok

Figure 8.8: Enlarged Pairwise Comparison Graph;

W.ssg. Viw 6o seLg CowoFrw & So

Color 16 ,rwwfah

- ---------- an

-- " --- - - Usl nanw%
wconturs isedd Destmalteisze. I

Clorize :::::=:Rundbe ches

Figure 8.9: ESOM trained on cancer data;

Messages

The "Messages" tab shows output from each task. For example, if a file is not loaded

correctly, the user will be able to see why by reading the messages recorded in this tab. An

X__barere_(Nom)_- Y: mfitoses (Nom)

Colour: class (Nom) Select Instance

C~Y ari Open Save~l3.te

x x . x

~~ e~i e,

x x x x

x x x x x x x

3 5 0 9 ?

Class cour

24 1

7 4

X X x



8. APPENDIX

example of messages recorded while the ESOM is being trained is shown below.

training time: 206.562 seconds

100%
saving file: C:\Program Files\ClockDataAnalysis\ClockData_1256776721.06\... bm

Setting file C:\Program Files\ClockDataAnalysis\ClockData_1256776721.06\.. .bm

saving file: C:\Program Files\ClockDataAnalysis\ClockData_1256776721.06\...umx

exit called!

Training is done.

View

The "View" tab allows the user to zoom in/out on the map, or create a tiled version. Also,

the user can select color schemes for the ESOM.

Data

This section is where the data can be seen by the user. It is a good idea to check here and

make sure that data has been loaded correctly, especially the column indicating the class of

each sample.

Classes

The "Class" section provides an easy way for the user to see where samples of the same

class are located on the ESOM. By selecting 2 for example, all of the samples that are in

class 2 are highlighted on the map. An example of this is shown in Figure 8.10. (note that

samples labeled "2" are in class 0 in this case, while samples labeled "4" are in class 1.) All

of the bold white squares indicate samples that are of the same class, and they seem to be

very well clustered in the green region of the map. The ESOM tool works very well with the

cancer dataset, as seen by the small number of samples that are not clustered with samples

of the same class.

C.3 Cluster 3.0

The clustering tool provided in the CDT Analysis Package was originally developed for

clustering of DNA microarray data, and therefore has the capabilities required to handle

large datasets. For this reason, some of the filtering functionality will not be routinely used



-- 241,C~ _j%

Figure 8.10: Class Two Sample Highlighted;

on CDT data. In addition, whenever the program refers to "genes" it is referring to rows

of data. "Arrays" refers to columns of the data. When the program launches, the user

interface will appear as in Fig 8.11. The first thing to do is load the data file, which should

be in the form of a .txt file in the Cluster directory produced by the MDA tool. If the file

is successfully loaded, then the top panel of the user interface will show the file name.

Adjust Data

After the data is loaded, the user can adjust the data if desired. Options given in the

second tab include the log-transform, centering data, or normalizing data. If centering or

normalizing are chosen for "gene", this will perform the operation across a row of data.

Centering or normalizing the "array" means doing so for the columns of data.

K-means

Although other clustering methods are provided that relate specifically to microarrays, the

k-means, pca, and SOM algorithms presented in Cluster 3.0 are general enough to work well

with CDT data. For k-means clustering, the user should select "organize genes", and then

choose the number of clusters and runs desired. The typical distance measure for k-means is

euclidean distance, however the user can select a different metric as needed. Once "Execute"

is pressed, the clustering will occur and the user will see a message (Solution Found X Times)

at the bottom left of the interface when it has completed. Two files are put in the same

Dalabianics fSOM Analyt



8. APPENDIX

Figure 8.11: Cluster 3.0 Upon Launch;

directory as the original data file; the .kgg file contains the classification of each sample,

and the .cdt file contains the original data reordered into the same order as the .kgg file.

It is the .kgg file which is most useful, because the user can compare output with the true

classes to determine how well the clustering algorithm performed. This file will appear with

two columns, as below, the first containing the sample number and the second containing

the class it was assigned to.

Fun GROUP

2 0

6 0

7 0

15 0

19 0



21 0

22 0

24 0

26 0

39 0

In this case, these first samples were all placed in the same class, class 0. A comparison with

the true class labels on the samples indicates that 8 out of 10 of these samples really belong

to the same class. The clustering functionality of this tool is especially useful because the

user can edit all of the parameters- distance metric, number of clusters, and number of runs.

SOM

This clustering tool also provide SOM functionality as in the ESOM tool, but with far

fewer editable parameters. To use this functionality, options in the "genes" panel should be

selected and then "Make SOM" pressed. The .gnf file that is output will contain the location

in high-dimensional space that maps to each x-y grid coordinate on the map. There is no

visualization aspect to this tool, so using the Databionics tool for self-organizing maps is

preferable.

PCA

The PCA tab has one button, "Execute". This will create the matrix factorization of the

data, and .svu and .svv files will be created. Cluster 3.0 does not provide functionality

allowing the user to select parameters such as the desired number of principle components,

so the PCA or Weka tools are preferable for this functionality.

C.4 BSVM

Figure 8.12 shows the appearance of the BSVM interface when the program is launched.

The first step in using the BSVM tool is to train a model. This should be done by loading

the input file out of the bsvm folder created by the MDA Tool, and selecting a location for

the model file. Default parameters will load upon program launch, but you can edit these

parameters to choose the type of SVM, kernel type, and values for 12 other parameters.

Once the parameters are set, click on "Model" to create the model file. The "Restore De-

faults" button will clear any parameters that you have edited and return to the defaults.



8. APPENDIX

Figure 8.12: BSVM Tool;

Once a model has been created, it can be used to classify samples. In the "Test" part of the

interface, you can load an input file, the model file, and an output file. The input file should

be the same format as the input file used in training, but may contain different data. It is

common to train on a large percentage of the data and save a small number of samples to

be used to test the accuracy of the model. The model file is the same file output from the

training stage, and the output file is where you would like the output to be stored. Once

"Test Data" is pressed, an output file will be generated that contains the class assignment



for each sample in the input file. Comparing these classes to the actual class of the samples

will give a good idea of how well the classifier is performing.

C.5 PCA

PCA will reduce the dimensionality of data by creating new features that are combinations

of the original features. For example, the first feature in the new dataset might be .4 *

barenuclei + .3 * sizeuniformity. Figure 8.13 shows the interface for PCA.

b Percentage Variance" t
70A 75 8I ,$ 9o 95- 100

sL ength of Vector a 5

Figure 8.13: PCA;

After loadingt opta i the mt pca folder, the user has two options for how data will

be reduce in the pca algorithm. The first option is to choose the percent of the variance

across samples in the original data to be accounted for. This can be done by selecting the

button next to "Percentage Variance" and moving the slider to the desired percentage. A

second option is to specify the number of new features that are desired. This can be done by

selecting "Length of Vector," and typing the number of desired features in the corresponding

box. The first option is the most commonly used, but the second option is useful when data

needs to be reduced to a specific size requirement.

After this choice is made, click on "Complete PCA." Two files will be placed in the same

directory as the input file; both will have the same name as the input file, but one will end

in -Out and the other will end in -Weights. The first is the output file, which will contain

the original data reduced to a lower dimensionality. The other file is the weights file, which

contains the weight of each original feature present in each of the new features. The output

file from the PCA tool in the correct format to be used as input to the Cluster 3.0 tool.



8. APPENDIX

C.6 EPCA

EPCA is similar to PCA, but takes into account the fact that features are not all real-valued.

For more information on the EPCA algorithm, see Collins et. al. The algorithm used by

MDA is similar to that developed in the Collins paper, but allows features to take on dif-

ferent data types within the dataset. (Figure 8.14)

The process of reducing the dimensionality of the data involves choosing the dimensions

ahead of time, and then attempting to find a matrix factorization that minimizes the loss

between the product of two smaller matrices and the original matrix. For PCA, the loss

function that is used in minimum mean squared loss. The EPCA algorithm described in the

Collins paper uses Poisson loss for integer data and Bernoulli loss for binary data. In my

implementation, either minimum mean squared, poisson, or bernoulli loss is used depending

on the type of each column of the matrix. Therefore, binary and integer features are treated

differently than real-valued features when it comes to measuring loss.

Input C:/Program Files/CckD a Arnys s 'c k jD aa/e

Type Fe Pogam F Ies/ClockDataAnalysi/cfocksDaa/e

Output FC /Progrm Fles/CbckDaanalysis/clocksDaa/e

10 1000

M Model

Figure 8.14: Exponential Principle Components Analysis;

First, the user must select the input file, which is located in the epca folder created by the

MDA. The type file, which lists the type of each feature in the dataset, also must be loaded

from the epca folder. The third file name required is the output file, and the user can choose

where to place this file. There are two editable parameters for the epca algorithm- output

length and number of iterations. Output length is dimension of the output data, the number

of new features that are found. Number of iterations refers to how many loops the algorithm

runs in attempt to optimize the solution before quitting.

Once the parameters are set, press the "Model" button. This is a slow algorithm, especially

on large datasets. It takes about 2 minutes to run 10 iterations on a dataset with 90 samples

and feature length 1000 on a 2.4 GHz Intel Processor. Once the optimization is complete,



the output will be written to a file in the same directory as the input file. As with the

output from the PCA tool, this output can be used as input to Cluster 3.0.


