A METHOD OF CORRELATING HEAT TRANSFER
DATA FOR SURFACE BOILING OF LIQUIDS

BY

WARREN M. ROHSENOW

FOR

THE OFFICE OF NAVAL RESEARCH
CONTRACT N5ori-07827
NR-035-267
D.I.C. PROJECT NUMBER 6627

JULY 1, 1951

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DIVISION OF INDUSTRIAL COOPERATION
CAMBRIDGE 39, MASSACHUSETTS
DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Some pages in the original document contain pictures, graphics, or text that is illegible.
A METHOD OF CORRELATING HEAT TRANSFER DATA
FOR SURFACE BOILING OF LIQUIDS

by
Warren M. Rohsenow*

SUMMARY

A method based on a logical explanation of the mechanism of heat transfer associated with the boiling process is presented for correlating heat transfer data for nucleate boiling of liquids for the case of pool boiling. The suggested relation is

\[\frac{C_4 T_x}{h_{fg}} = C_{sf} \left(\frac{g/\mu}{(\mu h_{fg})^{0.33}} \right) \left(\frac{C_{sf}}{k_s} \right)^{0.7} \]

where the various fluid properties are evaluated at the saturation temperature corresponding to the local pressure and \(C_{sf} \) is a function of the particular heating surface-fluid combination.

Heat transfer data for forced convection flow without boiling is correlated by the normal Nusselt number, Reynolds number based on pipe diameter and Prandtl number. For pool boiling with essentially saturated liquids, Jakob (1) shows that the heat transfer from the surface is for the most part transferred directly to the liquid, the increased heat transfer rate associated with boiling being accounted for by the resulting agitation of the fluid by motion of the liquid flowing behind the wake of the bubble departing from the surface. Rohsenow and Clark (2) showed a similar result in studying motion pictures of McAdams (3) for subcooled liquids flowing in forced convection with surface boiling but no net generation of vapor. Gunther and Kreith (4) and Gunther (5)

* Assistant Professor of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
presented photographic evidence that in highly subcooled liquids in pool boiling and in forced convection with surface boiling, the bubbles could form at the surface, grow, and then collapse while remaining attached to the surface. Nevertheless the increased heat transfer in boiling was attributed to the agitation of the liquid by the bubble motion.

As the rate of heat transfer is increased and bubble agitation becomes more vigorous the effect of forced convection fluid velocity and hence Reynolds number based on pipe diameter becomes less and less. This effect is shown by the data of Rohsenow and Clark (6) reproduced here in figures 1 and 2. This data is representative of data of others for surface boiling with forced convection. In these figures the curves for various fluid velocities are seen to merge into one curve, showing that as the boiling becomes more vigorous, the effect of fluid velocity disappears. It seems reasonable then to seek a correlation of the heat transfer data by means of a bubble Reynolds number based on bubble diameter and velocity.

For purposes of analysis one can visualize a number of streams of bubble receding from the heating surface and a bubble Reynolds number defined by

\[N_{Re,b} = \frac{G_b D_b}{\mu_2} \]

(1)

based on the mass velocity of the bubbles and their diameter as they leave the surface. This quantity is a measure of the local agitation of the fluid at the heating surface and hence is analogous to the ordinary pipe Reynolds number which is a measure of the turbulence in the stream.

To evaluate the bubble Reynolds number, characteristics of bubbles in pool boiling will be employed since there is more detailed visual evidence available for this case than there is for forced convection surface boiling.
Results of these bubble characteristics are compiled by Jakob (1). The heat transfer to the bubbles while attached to the surface can be written with good approximation (2) as
\[
\left(\frac{q}{A}\right)_b = h_{fg} f_r m \frac{\Delta L}{6} D_b^3 f
\]

Fritsch (8) presents a relation for the diameter of the bubble as it leaves the surface, which may be written in the form
\[
D_b = C_d \beta \sqrt{\frac{2 g \sigma_{\text{gas}}}{g (\rho - \rho_f)}}
\]

where β is the angle of contact of the bubble as shown in figure 3.

Jakob (9) has shown for vapor bubbles of water and of carbon tetrachloride a relation exists between the frequency of bubble formation at a favored point on the surface and the diameter of the bubble when it leaves the surface. This relation can be approximated by the equation
\[
f \cdot D_b = C_{fd}, \text{ constant}
\]

without serious error.

Inspecting the terms of equation (2) in the light of equations (3) and (4) shows that $(q/A)_b$ is proportional to f for a given operating pressure, θ does not change with pressure, since all other quantities are functions of saturation pressure alone or are constant. Experiments have shown that bubbles form at selective points on surface forming swaying columns of bubbles. Jakob (7) found that the number of columns or points of origin of bubbles was very nearly directly proportional to the rate of heat transfer from the heating surface for a given operating pressure. Therefore $q/A \propto (q/A)_b$ and can be
written as
\[
\frac{g}{A} = C_q h g \frac{p_v}{n} \frac{n^2}{c} D_b^3 f \quad (5)
\]
where \(C_q\) may be a function of pressure.

The mass velocity of the vapor bubbles leaving the surface may be written as
\[
G_b = \frac{n^2}{c} D_b^3 f p_v n \quad (6)
\]

Equations (3), (5) and (6) may be substituted into equation (1) to obtain an expression for the bubble Reynolds number as
\[
N_{Re,b} = C_R \beta \frac{\sqrt{g \frac{p_v}{n} D_b}}{\sqrt{g (P - P_v)}} \quad (7)
\]
where \(D_b\), \(G_b\) and \(n\) have been eliminated, and \(C_R = \frac{\sqrt{2}}{C_d}\). The term \(\frac{\sqrt{g \frac{p_v}{n} D_b}}{\sqrt{g (P - P_v)}}\) is dimensionless and \(\beta\) has the dimensions radians of angle.

In applying this reasoning to attempt to correlate heat transfer data in the boiling regime it would seem that a bubble Nusselt number would be useful, defined as
\[
N_{Nu,b} = \frac{h D_b}{k} \quad (8)
\]

This quantity has been defined and utilized by Jakob (1)(16). Substituting equation (3) into equation (8) results in
\[
N_{Nu,b} = C_{Nu} \beta \frac{\sqrt{g \frac{p_v}{n} D_b}}{\sqrt{g (P - P_v)}} \quad (9)
\]
where \(C_{Nu} = \sqrt{2} C_d\). Here, too, the term \(\frac{\sqrt{g \frac{p_v}{n} D_b}}{\sqrt{g (P - P_v)}}\) is dimensionless.

Since the postulated mechanism of heat transfer indicates that most of
the heat transfer goes directly from the wall to the liquid, and since the Prandtl number is significant in relation for heat transfer to a non-boiling fluid, it should probably be included in the correlation for heat transfer to a boiling fluid. Then the correlation suggested is

\[N_{Nu,b} = \Phi \left(N_{Re,b}, N_{Pr} \right) \] \hspace{1cm} (10)

where \(C, \mu, k, \sigma, \nu \) are all evaluated at the saturation temperature corresponding to the local pressure. The above relation applies to the region of vigorous boiling where the fluid velocity or pipe Reynolds number does not influence the heat transfer rate. It would also apply to the case of pool boiling. In the case of surface boiling with forced convection and not very vigorous boiling where the fluid velocity does influence the heat transfer rate, some form of a pipe Reynolds number might be added to the right side of equation (10). There is some doubt that the ordinary pipe Reynolds number would be significant because the motion of the bubbles might tend to destroy the normal relationship between viscous and inertia forces.

Contact Angle, \(\beta \)

The bubble contact angle, \(\beta \), shown in figure 3, is determined by the values of \(\sigma_{sl}, \sigma_{lv}, \) and \(\sigma_{vs} \); hence it is determined both by the kind of fluid and the kind of heating surface. All of the other properties in the expressions for bubble Reynolds number and bubble Nusselt numbers are functions of the fluid alone. The angle \(\beta \) from figure 3 is seen to be related to the various surface tensions by the relation

\[\cos \beta = \frac{\sigma_{sl} - \sigma_{vs}}{\sigma_{lv}} \] \hspace{1cm} (11)

For lack of available information the effect of pressure on \(\beta \) was
disregarded in applying equation (10) to existing data. This assumption is equivalent to assuming that the effect of pressure on the values of $\frac{T}{v}, \frac{C}{v}$ and $\frac{C}{v}$ of figure 3 is such that the angle β remains independent of pressure. In applying equation (10) to the correlation of experimental data the terms C_{R}, C_{n} and β will be omitted.

Effect of Liquid Subcooling

In pool boiling the primary region of interest is the case in which the liquid temperature is essentially at the saturation temperature. However, in forced convection with surface boiling the liquid temperature may be greatly subcooled. It has been shown by many experimenters that the effect of subcooling of the liquid may be eliminated if the data is plotted as q/A vs T_x as shown in figures 1 and 2. Hence defining the film coefficient in the bubble Nusselt number as $h_x = \frac{(q/A)\sqrt{T_x}}{T_x}$ eliminates the necessity of including liquid subcooling as a variable in a correlation.

OTHER FORMS OF THE PROPOSED CORRELATION EQUATION

Since both the bubble Reynolds number and the bubble Nusselt number embody a (q/A) term, it will be desirable to employ the term

$$\frac{N_{Re_b} N_{Pr}}{N_{Nu_b}} = \frac{C_P T_b}{h_{fg}}$$

This dimensionless group is the ratio of liquid superheat enthalpy at the surface temperature to the latent enthalpy of evaporation.

The equation (10) may be replaced by

$$N_{Re_b} = \phi \left(\frac{C_P T_b}{h_{fg}} ; N_{Pr} \right)$$

CORRELATION OF EXPERIMENTAL DATA

Pool Boiling:

The proposed correlation equation (13) has been applied to the data of various experimenters. It will be of interest to observe in some detail its
application to the data of Addoms (10) for pool boiling of water because of the wide range of pressures covered — 14.7 psia to 2465 psia. In these experiments degassed, distilled water was boiled by an electrically heated horizontal platinum wire. Data for a wire diameter of 0.024 inches is shown in figure 4a. A plot of \[
\frac{(q/A)}{\mu_k h_{fg}} \left[\frac{g \sigma}{g (\rho_f - \rho_v)} \right]^{1/2} \text{ vs } \frac{C_2 T_x}{h_{fg}}
\]
is shown in figure 4b. On this plot the position of the lines rises to a maximum with pressure and then falls again. At the pressure corresponding to the highest line on this plot, the Prandtl number is very nearly at its minimum value according to the data tabulated by Wellman (11). Hence this effect appears to be a Prandtl number effect, which was anticipated in the analysis. A cross-plot of \(C_2 T_x/h_{fg}\) vs \(N_P\) for constant values of bubble Reynolds number shows the slope of the line on a log-log plot to be approximately 1.7; hence the final correlation as shown in figure 4c results in an equation of the form

\[
\frac{C_2 T_x}{h_{fg}} = C_{sf} \left(\frac{q/A}{\mu_k h_{fg}} \right)^{0.33} \left(\frac{C_2 A_d}{k_d} \right)^{1.7}
\]

where the value of \(C_{sf}\) is 0.013 with a spread of data of approximately ± 20%.

This process was repeated for some of the data of Cichelli and Bonilla (12) who boiled various fluids on a polished chromium-plated, horizontal plate which was electrically heated. The results of the proposed correlation are shown in figures 5 through 7. In each case the resulting equations are of the form of equation (14). Only the data for single component fluids on clean surfaces were correlated.

The data of Cryder and Finalborgo (15) is shown correlated in figure 8. In every case the correlation equation (14) was applied and the resulting values of \(C_{sf}\) are listed in Table I.
In order to show the effect of forced convection flow on the boiling process plots of \(N_{Re,p} \) vs \(\left(C_x T_e / \rho_s g \right) N_{Pr} \) were made for the surface boiling data of Robsenow and Clark (6)(13) for degassed distilled water flowing in a vertical nickel tube 0.180" diameter 9.4" long and for the data of Kreith and Summerfield (4) for degassed distilled water flowing in a stainless steel tube 0.587" diameter 17.5" long. Superimposed on these plots, figures 9 and 10, is the correlation line for the pooling boiling data for water from figure 4c.

Lines of constant forced convection velocity and pressure are seen to merge toward a single line which would probably be parallel to this line for pool boiling from figure 4c. When the boiling becomes more vigorous at the higher values of \(T_e \), the effect of forced convection fluid velocity apparently disappears. In this region the motion of the bubbles seems to control the mechanism of heat transfer due to fluid agitation.

EVALUATION OF FLUID PROPERTIES

In these correlations the fluid properties have been evaluated as properties of liquid at the saturation temperature. This was done both for the case of pool boiling with saturated liquid and for the case of surface boiling in forced convection of a subcooled liquid. In each case the liquid near the

<table>
<thead>
<tr>
<th>Reference</th>
<th>Fluid-Heating Surface</th>
<th>(C_{sf})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addoms(10)</td>
<td>Water - Platinum</td>
<td>0.013</td>
</tr>
<tr>
<td>Cichelli-Bonilla(12)</td>
<td>Benzene - Chromium</td>
<td>0.010</td>
</tr>
<tr>
<td>Cichelli-Bonilla(12)</td>
<td>Ethyl Alcho1 - Chromium</td>
<td>0.0027</td>
</tr>
<tr>
<td>Cichelli-Bonilla(12)</td>
<td>n-Pentane-Cromium</td>
<td>0.015</td>
</tr>
<tr>
<td>Cryder-Finalborgo(15)</td>
<td>water - Brass</td>
<td>0.0060</td>
</tr>
</tbody>
</table>

Forced Convection with Surface Boiling:

In order to show the effect of forced convection flow on the boiling process plots of \(N_{Re,p} \) vs \(\left(C_x T_e / \rho_s g \right) N_{Pr} \) were made for the surface boiling data of Robsenow and Clark (6)(13) for degassed distilled water flowing in a vertical nickel tube 0.180" diameter 9.4" long and for the data of Kreith and Summerfield (4) for degassed distilled water flowing in a stainless steel tube 0.587" diameter 17.5" long. Superimposed on these plots, figures 9 and 10, is the correlation line for the pooling boiling data for water from figure 4c.

Lines of constant forced convection velocity and pressure are seen to merge toward a single line which would probably be parallel to this line for pool boiling from figure 4c. When the boiling becomes more vigorous at the higher values of \(T_e \), the effect of forced convection fluid velocity apparently disappears. In this region the motion of the bubbles seems to control the mechanism of heat transfer due to fluid agitation.

EVALUATION OF FLUID PROPERTIES

In these correlations the fluid properties have been evaluated as properties of liquid at the saturation temperature. This was done both for the case of pool boiling with saturated liquid and for the case of surface boiling in forced convection of a subcooled liquid. In each case the liquid near the
heating surface is very nearly at saturation temperature or possibly even at a metastable superheated temperature. Properties of the liquid were used for the \(C / \mu \) and \(k \) values in the bubble Nusselt number, the Prandtl number, and the new term \(\frac{C_x T_x}{h_{fg}} \) because the heat transfer was found to occur primarily by transfer of heat directly from the heating surface to the liquid. The value of \(\mu \) of the bubble Reynolds number was evaluated as a property of the liquid because viscous forces acting to retard the motion of the bubble are those of the liquid.

DISCUSSION OF RESULTS

The results shown in figures 4 through 10 are essentially plots of \(q/A \) vs \(T_x \) each multiplied by a judicious combination of fluid properties thus effecting the correlation. It is readily observed that \(q/A \) rises rapidly with small changes in \(T_x \). Further, the magnitude of \(T_x \) is rather small, being of the order of 50 F for water at atmospheric pressure and of the order of 5 or 10 F for water at 2000 psia. In all of the data correlated here the energy was supplied by electricity; hence \(T_x \) became the dependent variable in each case. It is difficult to measure the heating surface temperature directly when electric heating is employed. It must be calculated from other measured values such as outer tube surface temperature or resistance of the heating wire. The value of \(T_x \) is obtained by subtracting the saturation temperature from this determined heating surface temperature. Since the magnitude of \(T_x \) is small, any errors in the determined value of heating surface temperature will be greatly magnified in the resulting value of \(T_x \). This can possibly account for some of the difference in the value of \(C \) of equation (14) as obtained by various experimenters.

It is, of course, essential in obtaining a correlation of data that the properties of the fluid employed be correct. Any error in the values for these
properties is directly reflected in the data correlation.

Probably the most significant cause of the difference in the values of C is the result of omitting, for lack of currently available information, the term \(\bar{e} \) from the bubble Reynolds number and the bubble Nusselt number in arriving at the correlation as applied. The effect of this is to cause C to be a function of \(\bar{e} \) which is determined by the character of and the kind of heating surface and by the properties of the fluid as shown by equation (11). There is then good reason to expect a different value of C to result for every combination of kind of surface and kind of fluid. Additional information regarding the values of \(\bar{e} \) for various combinations of surfaces and fluids should clarify this matter and produce a valid correlation for all such combinations.

In arriving at equation (5) and hence equations (7) and (9), the expressions for bubble Reynolds number and bubble Nusselt number, it was assumed that \(\bar{e} \) did not vary with pressure for a particular combination of fluid and heating surface. This assumption may account for some of the small spread of the final correlation for each surface-fluid combination. The assumption appears to be fairly good, nevertheless, since the data for a particular fluid-heating surface combination is correlated within about \(\pm 20\% \) by equation (14).

It is not suggested that the exponents 0.33 and 1.7 of equation (14) are the true values nor that the form of equation (14) is the best one. Rather it is suggested that the dimensionless groups of equation (14) are significant in correlation boiling heat transfer data. Much more data was correlated than is presented here. Only the data for single component fluids on clean surfaces are presented here. They seemed to be correlated quite adequately by equation (14) with the exponents of 0.33 and 1.7. The 0.33 exponent of the bubble Reynolds number appeared to be adequate for most of the data whether the heating surface was clean or not, but the 1.7 exponent appeared to be valid only for clean surfaces. With dirty surfaces, the value of this exponent was quite
erratic, varying between 0.8 and 2.0.

For purposes of comparison the correlation equation (14) may be re-written in the form

\[
\frac{g/A}{k_0} \left(\frac{g/A}{k_0} \right)^{2/3} \frac{g/A}{k_0} \left(\frac{g/A}{k_0} \right)^{2/3} \left(C_{bf} \right)^{0.667 - 0.7} \]

or

\[
N_{Nu,b} = \frac{1}{C_{bf}} \left(N_{Re,b} N_{Pr} \right)^{0.667 - 0.7}
\]

which may be compared with the non-boiling forced convection expression

\[
N_{Nu} = C_2 \left(N_{Re} N_{Pr} \right)^{1/3}
\]

where \(C_2 \) is in the range of 0.5 to 0.7 when the flow area varies along the direction of flow, e.g., for flow across tubes, around spheres or cylinders, or across interrupted fins.

CONCLUSIONS

Data for pool boiling of a liquid on a clean surface can be correlated by an equation of the form:

\[
\frac{C_2 T_k}{h_{fg}} = C_{sf} \left(\frac{g/A}{\mu_f h_{fg}} \right)^{0.333} \left(C_{bf} \mu_0 \right)^{1.7}
\]

Further experimental work is needed to study the variation of bubble contact angle \(\beta \) and coefficient \(C_{bf} \) with pressure and with type of heating surface fluid combination.

Further experimental work is needed to study the validity of equations (3), (4) and (5) which were used in obtaining the terms \(\left(C_{bf} T_k / h_{fg} \right) \), bubble Reynolds number and bubble Nusselt number.
ACKNOWLEDGEMENT

Thanks are due to Dr. J. N. Adams for permission to use his data shown in figure 4 and to Mr. Fakhri Rahmatallah for performing most of the calculations required in preparing this report.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_d, C_{fd}, C_q</td>
<td>Coefficients in equations (3), (4), (5), (9), (7), respectively.</td>
</tr>
<tr>
<td>C_{nf}, C_R</td>
<td>Coefficient of equation (14), which depends upon the nature of the heating surface-fluid combination.</td>
</tr>
<tr>
<td>C_{sf}</td>
<td>Diameter of the bubble as it leaves the heating surface, ft.</td>
</tr>
<tr>
<td>D_b</td>
<td>Mass velocity of bubbles at their departure from the heating surface, lb_m/hr ft2.</td>
</tr>
<tr>
<td>G_b</td>
<td>Bubble Nusselt number, defined by equations (8) and (9).</td>
</tr>
<tr>
<td>$N_{Nu,b}$</td>
<td>Prandtl number $= \frac{C_{sf} \mu_c}{\kappa_f}$.</td>
</tr>
<tr>
<td>N_{PR}</td>
<td>Bubble Reynolds number, defined by equations (1) and (7).</td>
</tr>
<tr>
<td>$N_{Re,b}$</td>
<td>Heat surface temperature minus saturation temperature, F.</td>
</tr>
<tr>
<td>T_x</td>
<td>Specific heat of saturated liquid, Btu/lb$_m$ F.</td>
</tr>
<tr>
<td>C_2</td>
<td>Frequency of bubble formation, 1/hr.</td>
</tr>
<tr>
<td>f</td>
<td>Acceleration of gravity.</td>
</tr>
<tr>
<td>g</td>
<td>Conversion factor, $4.17 \times 10^8 \ (\text{lb mass})(\text{ft})/(\text{hr}^2)(\text{pound force})$.</td>
</tr>
<tr>
<td>g_c</td>
<td>Latent heat of evaporation, Btu/lb$_m$.</td>
</tr>
<tr>
<td>h_{fg}</td>
<td>$q/A \div T_x$; film coefficient of heat transfer, Btu/hr ft2 F.</td>
</tr>
<tr>
<td>h_k</td>
<td>Thermal conductivity of saturated liquid, Btu/hr ft F.</td>
</tr>
<tr>
<td>k_R</td>
<td>Number of points of origin of bubble columns per ft2 of heating surface.</td>
</tr>
<tr>
<td>m</td>
<td>Heat transfer rate to bubble per unit heating surface area while bubble remains attached to the surface, Btu/hr ft2.</td>
</tr>
<tr>
<td>$(q/A)_b$</td>
<td>Heat transfer rate per unit heating surface area, Btu/hr ft2.</td>
</tr>
<tr>
<td>q/A</td>
<td>Bubble contact angle, defined in figure 3.</td>
</tr>
<tr>
<td>σ, σ_{lv}</td>
<td>Surface tension of liquid-vapor interface, lb$_f$/ft.</td>
</tr>
<tr>
<td>σ_{sv}, σ_{sl}</td>
<td>Surface tension of vapor-solid interface, lb$_f$/ft.</td>
</tr>
<tr>
<td>ρ, ρ_s</td>
<td>Surface tension of solid-liquid interface, lb$_f$/ft.</td>
</tr>
<tr>
<td>ξ</td>
<td>Density of saturated liquid lb_m/ft3.</td>
</tr>
</tbody>
</table>
Density of saturated vapor lb./ft3

Viscosity of saturated liquid, lb./ft hr.

Bibliography

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effect of Fluid Velocity on Heat Transfer Rate in Nucleate Boiling (Data of Rohsenow and Clark, (6)).</td>
</tr>
<tr>
<td>2</td>
<td>Effect of Fluid Velocity on Heat Transfer Rate in Nucleate Boiling. Data of Rohsenow and Clark (6).</td>
</tr>
<tr>
<td>3</td>
<td>Surface Tension forces Acting at Point of Bubble Contact.</td>
</tr>
<tr>
<td>4</td>
<td>Correlation of Data of Addoms (10) for Platinum-Water Interface for Pool Boiling.</td>
</tr>
<tr>
<td>5</td>
<td>Correlation of Data of Cichelli-Bonilla (12) for Chromium-Bansene Interface for Pool Boiling.</td>
</tr>
<tr>
<td>6</td>
<td>Correlation of Data of Cichelli-Bonilla (12) for Chromium-Ethyl Alcohol Interface for Pool Boiling.</td>
</tr>
<tr>
<td>7</td>
<td>Correlation of Data of Cichelli-Bonilla (12) for Chromium-n-pentane Interface for Pool Boiling.</td>
</tr>
<tr>
<td>8</td>
<td>Correlation of Data of Cryder-Finalborgo (15) for Brass-Water Interface for Pool Boiling.</td>
</tr>
<tr>
<td>9</td>
<td>Data of Rohsenow-Clark (6)(13) for Nickel-Water Interface for Forced Convection Surface Boiling.</td>
</tr>
<tr>
<td>10</td>
<td>Data of Kreith-Summerfield (14) for Stainless Steel-Water interface for Forced Convection Surface Boiling.</td>
</tr>
</tbody>
</table>
FIGURE 1

\[\frac{q}{A} \times 10^{-6}, \text{ BTU/HR FT}^2 \]

WALL TEMP. - LIQUID TEMP. (°F)

- \(p = 2000 \text{ PSIA} \)
- \(t_{\text{LIQ}} = 460 \text{ F} \)
- \(V = 10 \text{ FT/SEC} \)
FIGURE 2

- **p = 2000 PSIA**
 - \(V_i = 30 \text{ FT/SEC} \)
 - \(G = 5.7 \times 10^6 \text{ LB/HR FT}^2 \)

- **p = 1500 PSIA**
 - \(V_i = 30 \text{ FT/SEC} \)
 - \(G = 5.7 \times 10^6 \text{ LB/HR FT}^2 \)

- **p = 2000 PSIA**
 - \(V_i = 20 \text{ FT/SEC} \)
 - \(G = 4.2 \times 10^6 \text{ LB/HR FT}^2 \)

- **p = 1500 PSIA**
 - \(V_i = 20 \text{ FT/SEC} \)
 - \(G = 4.2 \times 10^6 \text{ LB/HR FT}^2 \)

\(T_x = t_w - t_{sat} \) °F

\(q/A \times 10^{-6} \text{ BTU/HR FT}^2 \)
LIQUID
VAPOR
HEATING SURFACE

FIGURE 3
CICHELLI-BONILLA (12)
POOL BOILING BENZENE
ON
POLISHED PLATED CHROMIUM

\[
\frac{C_{\ell}}{h_{fg}} T_x = 0.010 \left(\frac{q/A}{\mu_{\ell} h_{fg}} \sqrt{\frac{g_0 \sigma}{g (\rho_f - \rho_v)}} \right)^{0.33} \left(\frac{c_{\ell} \mu_{\ell}}{k_{\ell}} \right)^{1.7}
\]
CICHELLI - BONILLA (12)
POOL BOILING
ETHYL ALCOHOL
ON POLISHED PLATED CHROMIUM

\[\frac{C_l}{h_{fg}} \frac{T_x}{N_{pr}} = 0.0027 \left(\frac{q/A}{\mu_l h_{fg}} \sqrt{\frac{g \sigma}{g(\rho_l - \rho_v)}} \right)^{0.33} \left(\frac{C_l \mu_l}{k} \right)^{1.7} \]
CICHELLI - BONILLA (12)
POOL BOILING
n- PENTANE
ON POLISHED PLATED CHROMIUM

\[
\frac{g_0 \sigma}{g(\rho_\ell - \rho_v)} \left(\frac{q/A}{\mu_\ell h_{fg}} \right)^{0.33} \left(\frac{c_\ell \mu_\ell}{k_\ell} \right)^{1.7}
\]

FIGURE 7
CRYDER-FINALBORGO (15)

POOL BOILING

\[\frac{C_l}{h_{fg}} = 0.0060 \left(\frac{q/A}{\mu g_{fg}} \sqrt{\frac{g \sigma}{g(\rho_2 - \rho_v)}} \right)^{0.33} \left(\frac{C_l \mu g_{fg}}{k_2} \right)^{1.7} \]

FIGURE 8
CORRELATION LINE FOR ADDOMS DATA, FIG. 4

$p = 157 - 168$ PSIA

- $V = 6 - 7$ FT/SEC
- $\Delta = 12$
- $100 - 110$
- $\square = 6 - 7$
- $\Diamond = 12$
- $60 - 66$
- $\nabla = 6 - 7$
- $\blacklozenge = 12$
- 45.5
- $\blacklozenge = 6 - 7$
- 40.5
- $\blacksquare = 6 - 7$
- 36
- $\bullet = 6 - 7$
- $22.5 - 25$
- $\blacktriangle = 6 - 7$
- $\blacklozenge = 12$

KREITH-SUMMERFIELD (14)

FORCED CONVECTION
SURFACE BOILING
STAINLESS STEEL-WATER

\[
\frac{q}{A} = \frac{g_0 \sigma}{g (\rho_c - \rho_v)}
\]

\[
\frac{C_{\ell}}{h_{fg}} = T_x \frac{1}{N_{pr}^{1.7}}
\]

FIGURE 10
DISTRIBUTION LIST

Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 438 (2)

Director, Naval Research Laboratory
Washington 25, D. C.
Attn: Tech. Info. Officer
Technical Library (1)
Mechanics Division (2)

Commanding Officer
Office of Naval Research
Branch Office
495 Summer Street
Boston 10, Mass. (2)

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, N. Y. (1)

Commanding Officer
Office of Naval Research
Branch Office
844 N. Rush Street
Chicago 11, Illinois (1)

Commanding Officer
Office of Naval Research
Branch Office
301 Donahue Street
San Francisco 24, Calif. (1)

Commanding Officer
Office of Naval Research
Branch Office
1030 Green Street
Pasadena, Calif. (1)

Contract Administrator, SE Area
Office of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Mr. R. F. Lynch (1)

Assistant Naval Attache for Research
London
U. S. Navy
RFD 100
New York, N. Y. (5)

Library of Congress
Washington 25, D. C.
Attn: Navy Research Section (2)

Research and Development Board
Department of Defense
Pentagon Building
Washington 25, D. C.
Attn: Library (Code 3D-1075) (1)

Chief of Bureau of Aeronautics
Navy Department
Washington 25, D. C.
Attn: TD-41, Technical Library
PP-22 (1)

Chief of Bureau of Ordnance
Navy Department
Washington 25, D. C.
Attn: Ad-3, Technical Library (2)

Chief of Bureau of Ships
Navy Department
Washington 25, D. C.
Attn: Director of Research
Code 390 (3)
Code 646 (2)
Code 432 (1)

Superintendent
U. S. Naval Academy
Post Graduate School
Annapolis, Maryland (1)

Naval Ordnance Laboratory
White Oak, Maryland
RFD 1, Silver Spring, Maryland
Attn: Mechanics Division (1)

Naval Ordnance Test Station
Inyokern, California
Attn: Scientific Officer (1)

Director,
Naval Engineering Experiment Station
Annapolis, Maryland (2)

Chief of Staff
Department of the Army
The Pentagon
Washington 25, D. C.
Attn: Director of Research
and Development (1)
Office of Chief of Ordnance
Research and Development Service
Department of the Army
The Pentagon
Washington 25, D. C.
Attn: ORDTB

Commanding General
U. S. Air Forces
The Pentagon
Washington 25, D. C.
Attn: Research & Development Div. (1)

Office of Air Research
Wright-Patterson Air Force Base
Dayton, Ohio
Attn: Chief, Applied Mechanics Group (1)

U. S. Atomic Energy Commission
Division of Research
Washington, D. C. (1)

Argonne National Laboratory
P. O. Box 5207
Chicago 80, Illinois
Attn: W. H. Jens (25)

U. S. Coast Guard
1300 E Street, N. W.
Washington, D. C.
Attn: Chief, Testing and Development Division (1)

National Advisory Committee for Aeronautics
Cleveland Municipal Airport
Cleveland, Ohio
Attn: J. H. Collins, Jr. (2)

Dr. William Sibbitt
Purdue Research Foundation
Purdue University
Lafayette, Indiana
Professor E. D. Kane
University of California
Berkeley, California (1)

Dr. J. V. Foa
Cornell Aeronautical Laboratory
Buffalo, New York

Professor John W. Hasen
Engineering Research Division
University of California
Los Angeles 24, California (1)

Professor W. H. McAdams
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge 39, Massachusetts (1)

Professor A. L. London
Department of Mechanical Engineering
Stanford University
Stanford, California (1)

Professor Warren Rohsenow
Mechanical Engineering Department
Massachusetts Institute of Technology
Cambridge 39, Massachusetts (15)

Lt. Cdr. E. P. Wilkinson
o/o U. S. Atomic Energy Commission
P. O. Box 1105
Pittsburgh 30, Pa. (2)

Mr. R. A. Bowman
Westinghouse Electric Co.
Atomic Power Division
P. O. Box 1463
Pittsburgh, Pa. (1)

Dean L. M. K. Boelter
Dept. of Engineering
University of California
Los Angeles, California (1)

Professor J. H. Keenan
Dept. of Mechanical Engr.
Mass. Inst. of Technology
Cambridge 39, Massachusetts (1)

Professor J. N. Addoms
Dept. of Chemical Engr.
Mass. Inst. of Technology
Cambridge 39, Mass. (1)

Dean W. J. Wohlenberg
School of Engineering
Yale University
New Haven, Conn. (1)

Mr. E. E. Ross
Room 20-E-226
Mass. Inst. of Technology
Cambridge 39, Mass. (1)
Distribution Also to Include the Following

Mr. Robert Bromberg
Engineering Research
Department of Engineering
University of California
Los Angeles 24, California

Commander E. B. Roth
Office of Chicago Directed Operations
U. S. Atomic Energy Commission
P. O. Box 4160 A
Chicago 80, Illinois

Mr. H. Etherington, Director
Naval Reactor Division
Argonne National Laboratory
P. O. Box 5207
Chicago 80, Illinois

Mr. Ben Pinkel
National Advisory Committee for Aeronautics
Lewis Flight Propulsion Laboratory
Municipal Airport
Cleveland, Ohio

Reference Services Branch
Technical Information Service
U. S. Atomic Energy Commission
Oak Ridge, Tennessee
Attn: I. A. Warheit, Chief

Mr. E. P. Kranzfelder
Babcock & Wilcox Company
Research & Development Dept.
Alliance, Ohio

Dr. George A. Hawkins
Purdue University
Lafayette, Indiana

Mr. Fred Gunther
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Mr. H. S. Isbin
Hanford Works
P. O. Box 550
Richland, Washington

Mr. Gilbert L. Campbell
Library
Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, New Mexico

J. C. Morris
Chief Librarian
Oak Ridge National Laboratory
P. O. Box P
Oak Ridge, Tennessee

Miss Hazel Hutcheson, Librarian
Westinghouse Electric Corporation
Atomic Power Division
P. O. Box 1468
Pittsburgh 30, Pennsylvania

Mr. Joel V. Levy
Bureau of Ships
Department of the Navy
Washington 25, D. C.

Mr. Spencer C. Stanford
Library
Brookhaven National Laboratory
Upton, Long Island, New York

Mr. W. E. Shoupp
Director of Research
Westinghouse Electric Corporation
Atomic Power Division
P. O. Box 1468
Pittsburgh 30, Pennsylvania

Library
Fairchild Engine & Airplane Corp.
NEPA Division
P. O. Box 415
Oak Ridge, Tennessee

Dr. R. M. Lyon
Technical Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Mr. W. K. Woods
3703 Building
General Electric Company
Richland, Washington
Distribution (cont.)

Mr. N. F. Lansing
Oak Ridge National Laboratory
P. O. Box P
Oak Ridge, Tennessee

(1)

Mr. Frederick T. Hobbs
Technical Cooperation Branch
Division of Research
ABC
Washington, D. C.

(1)

Mr. H. V. Lichtenberger
Argonne National Laboratory
P. O. Box 5207
Chicago 80, Illinois

(1)

H. D. Young
Information Division
Argonne National Laboratory
P. O. Box 5207
Chicago 80, Illinois

(2)

Mr. John R. Huffman
Reactor Engineering Division
Argonne National Laboratory
P. O. Box 5207
Chicago 80, Illinois

(1)

Mr. Frank Kreith
Project Squid
Princeton University
Princeton, New Jersey

(1)

Dr. Martin Summerfield
Project Squid
Princeton University
Princeton, New Jersey

(1)

Dr. Alfred G. Lundquist
Code 429
Power Branch
Room 2714, Bldg. T-3
Office of Naval Research
Department of the Navy
Washington 25, D. C.

(1)

Mr. O. J. Woodruff, Jr.
Physics Department
Atomic Power Division
Westinghouse Electric Corp.
P. O. Box 1468
Pittsburgh 30, Pennsylvania

(1)