
REFRIGERANT FORCED- CONVECTION
CONDENSATION INSIDE HORIZONTAL
TUBES

Soonhoon Bae

J. S. Maulbets ch

W. M. Rohsenow

Report No. DSR 79760-64

Contract No. ASHRAE RP 63

Department of Mechanical Engineering
Engineering Projects Laboratory
Massachusetts Institute of Technology

November 1, 1969

ENGINEERING PROJECTS LABORATORY
ENGINEERING PROJECTS LABORATOR'

14GINEERING PROJECTS LABORATO'
~INEERING PROJECTS LABORAT'

NEERING PROJECTS LABORK
'EERING PROJECTS LABOR

'ERING PROJECTS LABO
'RING PROJECTS LAB'

ING PROJECTS LA
iG PROJECTS I

' PROJECTS
PROJECTF
ROJEC-

II

£2



TECHNICAL REPORT NO. 79760-64

REFRIGERANT FORCED-CONVECTION CONDENSATION

INSIDE HORIZONTAL TUBES

by

Soonhoon Bae
John S. Maulbetsch
Warren M. Rohsenow

Sponsored by:-

TECHNICAL COMMITTEE 1.3

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS

Contract No: ASHRAE RP63

DSR Project NO: 79760

November 1, 1969

Heat Transfer Laboratory
Mechanical Engineering Department

Massachusetts Institute of Technology
Massachusetts Avenue, Cambridge, 02139

fiffill WA111



REFRIGERANT FORCED-CONVECTION CONDENSATION

INSIDE HORIZONTAL TUBES

by

Soonhoon Bae
J. S. Maulbetsch
W. M. Rohsenow

Massachusetts Institute of Technology.

ABSTRACT

High vapor velocity condensation inside a tube was studied theoreti-

cally. The heat transfer coefficients were calculated by the momentum

and heat transfer analogy. The Von Karman universal velocity dis-

tribution was applied to the condensate flow. Pressure drop was

calculated by the Lockhart-Martinelli method and the Zivi void fraction

equation.

Experimental data was obtained for the flow rate from 240,000

to 485,000 lbm/ft2 hr. R-22 was condensed in a 0.493" I.D. 18 ft.

long test section. The measured heat transfer coefficients agreed

with the prediction within 10% except a few points in the very low

quality region.
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Nomenclature

A cross section area ft2

a. actual gravitational acceleration in the axial direction,

g sin 6 ft/hr2

B buoyancy modulus, Eq. (37)

C constants

C specific heat Btu/lbm *F

D tube inner diameter ft

E ratio E to E

F defined in Eq. (1) lbf/ft 2/ft

F2 defined in Eq. (22a, b, c)

*
f friction factor at the vapor-liquid interface when condensation

occurs, Eq. (C13)

Fr Froude number, Eq. (36)

g gravitational acceleration ft/hr 2

82
g constant, 4.17 x 10 lbm ft/lbf hr2

G total mass velocity lbm/ft hr

G e mass velocity of the liquid, G(1-x) lbm/ft2 hr

G mass velocity of the vapor, Gx lbm/ft2 hr

GE equivalent mass velocity, Eq. (C2) lbm/ft2 hr

hz local heat transfer coefficient Btu/hr ft *F

h mean heat transfer coefficient Btu/hr ft 2 0Fm

h 0heat transfer coefficient when only liquid flows at the same

total mass flow rate Btu/hr ft *F

h latent heat of vaporization Btu/lbm
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K conductivity of the liquid Btu/ft hr *F

L total length of condensation ft

M defined in Eq. (18)

Nu Nusselt number h D/K
z

(dP/dz) Pressure Gradient lbf/ft 2f t

Pr Prandtl number y' C /K

(q/A) heat flux Btu/ft 2 hr

Re total liquid Reynolds number GD/y

Re local liquid Reynolds number G kD/I

Re' Reynolds number, Eq. (C6)
V

S perimeter ft

T temperature *F

AT temperature difference between the vapor and the condensing

wall *F

ATw coolant temperature rise *F

v mean velocity ft/hr

vz local velocity in the axial direction ft/hr

v friction velocity g T 0 ft hr

W total flow rate lbm/hr

W liquid flow rate lbm/hr

Wv vapor flow rate lbm/hr

x vapor quality, Eq. (7)

X tt lockhart-Martinelli parameter, Eq. (D1O)

y radial distance from the wall ft

z axial distance from the condensation starting point ft
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ax void fraction

thermal diffusivity K/p C ft 2hr

defined in Eq. (D35)

6 thickness of the condensate film ft

eddy diffusivity ft 2/hr

defined in the calculation of (dP/dz)m

0 angle of inclination

y viscosity lbm/ft hr

V kinematic viscosity ft 2/hr

p density lbm/ft3

shear stress lbf/ft 2

T V vapor shear stress on the liquid film lbf/ft2

Lockhart-Martinelli parameter, Eq. (D8)

F flow rate per unit circumference lbm/ft hr

Subscript

6 liquid vapor interface

f friction

g gravity

h thermal

i interface

z liquid

m momentum

o wall

V vapor

z local

Superscript

+ non-dimensionalized by g0T0 /p

* non-dimensionalized by ( Yv /g F )1 /3
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I INTRODUCTION

Condensation inside tubes is inherently required for some kinds

of condensers. When saturated or super-heated vapor flows through

a cold tube, the condensation occurs on the cold surface and the

condensate liquid film is formed on the tube wall. Depending on the

geometry of the surface, the flow rate of condensate and thickness

of the liquid film are varied at the same physical conditions. In

general, the film condensation heat transfer resistances are divided

roughly into two parts. One is the resistance due to inter-phase

mass transfer and the other is the conduction resistance through

the condensate film, so called "Nusselt resistance". While an inter-

phase mass transfer resistance is the predomirent resistance in the

high conductivity material condensation, it is negligible for the

condensation of low conductivity material, such as water and refrig-

erants, compared with the Nusselt resistance. The purpose of this

investigation is to give a clear picture of the fluid mechanics of

vapor-liquid flow inside tubes and the predominent heat transfer

resistance during condensation of refrigerants.

Since the fluid mechanics of the condensate flow and the heat

transfer rate from vapor to the cold tube wall are closely related,

the classical Nusselt analysis [49] seems to show a basic approach

to this problem.

When the vapor and condensate are convected naturally with low

flow rate, laminar flow of uniform thickness liquid film occurs on

the wall of a vertical tube, while condensate film is formed on the upper

part of the tube and the condensate accumulates at the bottom of the tube

inside a horizontal tube. Chaddock [19], Chato [20], and Rufer [57]

Idi 11IE ,di
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gave solutions for the cases of horizontal and inclined tubes. The

experimental data show good agreement with those analytical solutions.

In a long vertical tube or in a horizontal tube with high

inlet vapor velocity, the condensate flow usually becomes turbulent.

It was shown that the transition from laminar flow to turbulent

flow does not occur at a particular Reynolds number as it is the

case for a single phase flow. The transition occurs at various

points depending on not only fluid velocity and viscosity but also

local flow conditions such as shear stress distribution in the

liquid film [13], [27], [35], [55].

Numerous data and correlations are available for turbulent

condensing flow inside tubes. Empirical correlations of non-

dimensional group type can be used in practical designing without

much involved calculations. However, most of those correlations

available to date do not include sufficient variables to describe

the condensate flow [1], [2], [16], [21], [51]. A semi-empirical

equation by Carpenter and Colburn [17] seemed good to correlate

data of some particular fluids. The coefficient and the exponent

of the Prandtl number, and the procedure of wall shear stress calcu-

lation were modified by later investigators [3], [61]. Since the

conduction resistance of the laminar sublayer was assumed to be the

only significant resistance, the equation has no general applicability

for the wide range of Prandtl number and flow conditions. Another

analytical approach appeared in some papers [27], [39], [55].

Using the momentum and heat transfer analogy, assuming that the

universal velocity distributior of turbulent flow is applicable to

the condensate flow, heat transfer coefficients were solved in

rather a complicated form. This analytical approach is the
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most helpful, among three approaches, for understanding of the mechanism

of condensation flow and heat transfer. This method will be develop-

ed for a horizontal tube case and the procedure of utilizing this

method for practical designing will be recommended in this paper.
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II THEORY

The analysis will be done on the condensation heat transfer

inside a horizontal tube for a high inlet velocity (60,000 to 600,000

lbm/hr ft 2). In order to avoid confusing the local value concepts

in two-phase flow, the inlet condition will be fixed as 100% vapor

quality at saturated states. Details of theoretical derivation

and nurerical procedure are included in the Appendices. In this

section, basic equations and results are presented.

2.1 Flow Model

Annular flow regime with a uniform thickness around the cir-

cimference of a tube is assumed to exist in the parameter ranges

of interest. In fact for such high vapor velocity, annular flow is

the predominant flow pattern and slug flow may appear at very low

qualities. Accumulation of the condensate at the bottom of a horizontal

tube has a negligible effect when the flow is highly turbulent.

Entrainment of liquid droplets in the vapor core will be neglected

in the analysis. Analytical theory will be developed for the case

of constant temperature difference between wall and vapor along a tube.

2.2 Local Heat Transfer Coefficients

The basic assumptions are as follows:

1. The von Karman equations for universal velocity distribution

in turbulent flow are directly applied to the velocity distribution

of the liquid film at the wall.

2. The heat conduction in the flow direction and the subcooling

of the liquid film are neglected. Because of the turbulence in the

liquid film the temperature distribution is nearly uniform and
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subcooling enthalpy change is small compared with latent heat.

Hence, heat flux is almost uniform in the radial direction.

3. The ratio of eddy viscosity C to eddy conductivity Eh is assumed

1.0. Although some experimental data for single phase flow

shows the ratio ranging from 1.0 to 1.7, the previous investiga-

tions [27], 155] get good results with the assumption of Em ='Eh.
4. Transition from laminar to turbulent flow occurs at y+ = 5.

Since the universal velocity distribution takes account of turbu-

lence as the film thickness increases, no transition theory

is necessary [27].

5. A simple flat plate analysis is applied to a tube without a signifi-

cant error. Even at the down stream of the condenser tube (up

to vapor quality 20%), the void fraction for most fluids is

larger than 0.8, or the film thickness is smaller than 10% of

the tube radius.

6. The vapor temperature is assumed uniform at the saturation

temperature. The flow in the vapor core is so highly turbulent

that the temperature gradient in the radial direction is negligible.

Interface mass transfer resistance is so small that it is neglected.

The temperature at the vapor-liquid interface is assumed to be

the saturation temperature.

With the above assumptions, consider a control volume as shown in

Figure 1.

TO= Fo 6+ Tv m1

where F is the total static pressure plus momentum change in the liquid

film and gravity force acting on the film. And from the basic definitions

of eddy viscosity and eddy conductivity,
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70 t +C(2)

=/A = C,(a +C )d (3)

Local heat transfer coefficients are defined as follows:

h = -W A)O(4a)

With the assumption (2)

h = A (4b)

The liquid Reynolds number inside a tube is defined as

Re =(5)

where

LTL= (6)

is the superficial mass velocity of liquid. The flow quality x is

defined as the ratio of vapor flow weight to the total flow weight

in a unit time; that is

/ V | - -(7)

From Eq. (6) and (7) with

W = G - (8)
4

Hence,

= CT ( )(9)

The flow rate per unit circumference is

wit (10)
7g D

4r
Combining Eq. (6) and (10) gives ( - and substituting this
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into Eq. (5) yields

4 r
And also

mf 6p v di

Von Karman's universal velocity distributions are the following:

5 S~3o 1I = - 3.05

1K= 5.5

+ 5.0 o n g*

+ 2.5 &n *

6 -t
+P2
V~ 1,

(15a)

(15b)

(15c)

Liquid Reynolds number may be expressed in terms of dimensionless

variables as follows:

^ReL = + LS+/* d +
Substituting the universal velocity distribution,

for 8+< 5
= 2 ( b*4 ) 2

(11)

(12)

(13)

where

(14a)

(14b)

(14c)

M-OMMUmM INIM."

+ = +

6-30

Relt (l6a)
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for 5-6 30

ReL = 50 - 32.26+ +20b6*n 6

630
= - 256 + 12 6* + 10 b*.n b*

With the assumption (3),E h is obtained from Eq. (1), (2) and (14a, b, c)

and integration of Eq. (3) leads to the temperature profile. From

the definition (4b) heat transfer coefficient is easily derived.

The results are the following:

-Pr

Z ~ F-
where

7

K

FO

6

( (17)

(18)6* )

\go. Fo

(19)

(20)

(21)

go F)
And

(1) For 6+ < 5

F2

(2) For 5 -6- 30

Fz = 5 Pr + 5 9mn

for

(1 6b)

(16c)

Pr (22a)

EI
15

(22b)

I + ( rV*

- )][ 1 + Pr



- 19 -

(3) For 30

F2  5 Pr + 5Pr(+5Pr)

2.5 2M-I+ It|+ 6M -1+ (-22c

From Eq. (1), (l5b) and (20) 6 6

( )(23)

which is shown graphically in Fig. 2.

2.3 Mean Heat Transfer Coefficients

Although it is clearly preferable to think in terms of local

values for a complete understanding of processes involved, the designer

is primarily interested in mean values which can be applied directly.

In general, the mean heat transf er coef fic ient is def ined as

the average value of local values with respect to the length of a

condenser tube. However, for given conditions the above analysis

gives only the relation between local heat transfer coefficients

and local liquid Reynolds numbers. It is necessary to develop a

method of integrating the local values with respect to Reynolds

number or quality.

Q =FnTD h h, AT 7DL (24)

The differential of Eq. (24) is

dQ = L D d ci = h7 AT T D dZ (25)

From Eq. (25)

[" AT dZ
_ @_,(26)

hn hl

Integration of Eq. (26) from inlet to outlet of a condenser tube gives
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for uniform AT,

dr AT L (27)
0 z hf3

Substituting Eq. (24) into Eq. (27),

frr
hm (28)hz h

7m (29)

Using Eq. (11),

hm R'exit (30)

And furthermore from Eq. (9)

1_ 1_1 dX

hmr ei Xzy ha
2.4 Local Pressure Drop

In the condenser tube, pressure drop occurs due to the friction

between vapor, liquid and tube wall, momentum change of the condensing

fluid, and elevation in the gravity field. Total pressure gradients

will be obtained by the sum of these three terms.(dP a dp + p
d-Z dZ dz d z (32)

Using Lockhart-Martinelli's[43] correlation for friction pressure

drop and Zivi's[69] correlation for local void fraction, each term of

Eq. (32) may be calculated as follows:

(__ d- ~3 (D -o.2D /, ), = - -9( Td -

So523 o.4'7 .33 p 0-261

U 0.10o5 0.94 a g 6.522.
+ ( ) II)I X(33)
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-I-( i -2.

L2'C C I

P. 2

dp

C:r*/ Pir

where

- I (- ) + BOC
Fr PVf

(C/efr)
Fr = OD

Pv-

1+ ~_ _V.

IC %

And terms F and T in Eq. (1) may be obtained as follows:

FO - (cP) -2%
,-0o (*.)

+ 9L)_

( dP
\dz)

+ C Pg, a
T

gop V

dx % 2.
dz 

0( ( I- a)
(%) (40)

where 3 is the ratio of vapor-liquid interface velocity to the average

velocity of liquid film and may be taken 1.2 as a good approximation.

dP
ao.D (3-z An Dd

+ 20(9c)-
Pit

(34)

(35)

(36)

(37)

(38)

(39)

WA

P,,. I
-- ~ 2x)-p-

-o P

2 (1 -X')
~ , _Og

_i_ OL

+ a PT P

PW
F z )]

(-2 PAV
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2.5 A Method of Numerical Calculation

With given conditions such as kinds of working refrigerants,

saturation temperatures, mass velocities and coolant temperatures,

it is required for a condenser designer to know pressure drop, heat

transfer rate, and size of condenser tube. Unfortunately, the pressure

gradients and the heat transfer rates must be solved simultaneously

in a condensation problem. Trial-and-error is inherently involved

in the calculation. The following procedure may be used for hand

calculations. Known variables: tube diameter, saturation temperature,

mass velocity, temperature difference between vapor and wall, and

physical properties of fluid.

1. Divide the quality range into several steps. The local value

is to be calculated for the average quality of those steps.

2. Calculate the friction pressure drop by Eq. (33) for each step.

3. With an initial trial value of (dx/dz), calculate the momentum

term by Eq. (34). In many cases 0.05/leemed to be a good initial

trial value for the refrigerant.

4. Calculate the gravity term by Eq. (35). This term is zero for

a horizontal tube.

5. The sum of those three terms is the total pressure gradient (dP/dz)

(Eq. (32)).

6. Obtain F and T from the above results and Eq. (39) and (40).0
*

can be obtained from Eq. (20), and a from Eq.(38).

7. Calculate Reynolds number Re, from Eq. (5) and (9).

8. With the Reynolds numbers find 6+ from Eq. (16a), (16b) or (16c)

whichever is apprepriate or Fig. 4.

* + *
9. Calculate 6 from the obtained 6 and T. by Eq. (23) or Fig. 2.
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10. Using the appropriate equation among Eq. (22a), (22b) or (22c)

with Eq. (18) calculate F Substitute the obtained values of

6+I M and F2 into Eq. (17) to get h or Fig. 5-8.

*
11. Use the definition of h , Eq. (19), to get the local heat

transfer coefficients.

12. From Eq. (6), (7),( 8), (10) and (25)

4 Z= 4 hP F

This should agree with the magnitude of the dx/dz which was assumed

in Step 3. If they do not agree, repeat steps 3 through 12 until

agreement is reached. Actual repeating this calculation with dx/dz

obtained in Step 12 usually requires only the second trial to reach

good agreement if the momentum pressure gradient is small. Al-

ternatively this calculation procedure can be set up for computer

calculation, Appendix G. A sample calculation is also shown in

Appendix H.
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III EXPERIMENT

3.1 General Description of Apparatus

The apparatus was designed for a practical range of parameters

in the refrigeration industry.

The basic apparatus, schematically shown in Figure 11, consists

of a closed-loop refrigerant flow circuit driven by a mechanical-

sealed rotor pump. Upstream of the test section, an electrically

heated boiler produces vapor, which passes through a flow meter and

a throttle valve to the test section. Downstream of the test section,

an after-condenser was provided to ensure fully condensed refrigerant

at the pump inlet. The pumping power was fixed in test runs and

flow rate and pressure level of the test section was controlled

by making use of a by-pass loop.

The test section itself is an annular shaped heat exchanger

with refrigerant flowing through the inner tube and cooling water

running in the outer annulus counter-currently. The test section

was divided into six 3 ft-long sections of 0.493 in I.D. straight

smooth nickel tube. Each short section has a separate cooling water

circuit and those sections are connected smoothly with specially

made stainless steel fittings in order not to disturb the condensate

flow.

Each of those six sections except the third section from the

inlet was separately and identically instrumented to give basic

data on the condensing refrigerant. Two thermocouples are placed

in the middle of the 3 ft section; one at the outside of the condenser

tube and the other one at the center of'the tube. Two differential

thermocouples are located at the inlet and the outlet of the cooling
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water circuit. These thermocouples are located in different radial

positions in order to detect any possible non-uniformity in temperature.

On the third section, in addition to the above thermocouples, two

more thermocouples are placed at the tube wall to measure the cir-

cumferential variation of the wall temperature.

All the thermocouples were made of 0.05 in O.D. nylon-sheathed

copper and constantan wire.

Seven pressure taps were installed at every connection between

the 3 ft sections for measurement of local pressure gradients.

All the loop except the part from the pump to the boiler was

insulated with fiberglass. The heat loss from the test section to

the atmosphere was not measurable within the accuracy of the potentio-

meter.

3.2 Test Procedure

In order to eliminate non-condensable gas in the test loop, the

loop was evacuated with a vacuum pump (SENCO HYVAC). The pressure

of the system went to 28 in lig vacuum after a two hour operation

of the vacuum pump. The loop was charged slowly at the lowest

point of the loop with refrigerant 22 by heating the 50 lb-containers

of R-22. When the system pressure went up to 5 psia, the charging was

stopped and the system was evacuated again. After repeating the process

three times, R-22 was charged so that the heating units of the vapor gener-

ator were completely submerged under the liquid level. Since the R-22

vapor is much heavier than air, vents at the highest point of the loop

were opened until liquid drops of R-22 came out from the valves.
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in order to prevent oil contamination, a mechanical sealed rotor

pump was used instead of the reciprocating compressors commonly used in

refrigeration systems.

Data were taken after steady state had been attained for one hour

in the system. The heat flux to the coolant was obtained from the

coolant flow rate and the temperature change. The condensing wall

temperature was determined from the outside tube wall temperature and

the heat flux. All the measurements were done on one 3 ft section at

a time from up-stream to down-stream. The coolant flow was regulated

such that the wall temperatures were kept almost constant through

the test section and the temperature change of the coolant was large

enough to give an accurate measurement (1-30F).

heat balance was checked with total enthalpy change from the inlet

of test section to the outlet of the after-condenser. In most runs,

except Run 1, the heat balance error was less than + 6%.
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IV ERROR ANALYSIS

The cooling water flow rate vas determined by weigh-tanks. Time

was measured for 200 lbm of water flow. The error is estimated of the

order 0.25% of that flow rate. The error in the cooling water tempera-

ture rise is within the accuracy of differential thermocouples and

is estimated of order 2.75%. Therefore, the error in the heat flux

would be around 3%.

The error in the temperature difference between vapor and inside

wall temperature comes from the readings as well as the locations of

thermocouple junction. Calibration shows that the deviation of thermo-

couple readings from the standard table is 0.49%. Vapor temperature

measurement would be within this accuracy. Inside wall temperature

was calculated from the measured value of outside wall temperature.

Each thermocouple was soft-soldered to the outside wall and the spot was

covered by a small amount of epoxi-resin in order to support the

junction in highly turbulent current of cooling water. The temperature

rise due to the insulation effect of epoxi-resin is estimated of

order 0.01*F by assuming complete insulation. The coolant current

distrubance by the support would have small influence on the wall

temperature. Therefore, taking account of the capability of K-2 poten-

tiometer, the estimate of the error in the temperature difference

between vapor and inside wall is around 2%. The total error in

heat transfer coefficient would be the sum of these two or around 5%.

The inherent error in the refrigerant vapor flow meter is stated

by the manufacturer to be 2%. Fluctuations in the float reading

were of the order of 1%. Therefore, the maximum error in the refrigerant
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flow reading would be approximately 3%. This, along with the estimated

3% error in heat flux, would produce an error in the change in quality

from the inlet of about 6%. Usually the pressure drop in the whole

test section is of the order of 5 psi. The latent heat for the pressure

drop is about 0.5 Btu/lb. Hence, the error in the quality due to the

pressure drop is negligible compared with other errors.
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V Discussion of Results

5.1 Limitation of Analysis

Since the theoretical analysis was based on the annular

flow model, the results are applicable only to the case where

annular flow is developed. To date no successful investigation

has been made of condensation flow regimes. For gas and oil mixtures,

a flow regime map was drawn by Baker [9], but it is probably not

applicable to two-phase flow with condensation. However, it surely

gives an approximate view of the flow regime boundaries of condensa-

tion. Quandt [51] analyzed qualitatively the force field of gas-

liquid flow. Still a quantitative figure of the flow regime boundaries

cannot be obtained from an analysis. Therefore, until more re-

liable information about flow regimes of vapor-liquid flow with

condensation is available, it is recommended that the Baker plot

be used for determining probable flow regimes.

In most cases of practical forced-convection flow the regime

appears to be annular except at the very low quality region. This

analysis is not applicable to the very low quality region because

the flow regime may be different and because the condensate film

is so thick that the flat plate analysis is no longer valid for a

tube. The present method is therefore not suggested for use when

the vapor quality is less than 20%. Interpolation between the

present correlation at x = 0.20 and McAdams equation for single

phase flow (x = 0) will give useful information for the low quality

region.
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Entrainment of liquid in the vapor core was neglected in the

analysis. Since thermal resistance is nainly offered by the laminar

sublayer and the buffer layer, the entrainment effect is not signif-

icant when the condensate film thickness is larger than that of the

high thermal resistance layers (6+ > 30). However, as expected,

the effect appears to be significant at the very high vapor quality

region where a very thin film exists (6+ < 5), as shown in some

of the test runs. The theory was somewhat modified implicitly

by using the empirical correlations of pressure gradients which

were developed for the actual flow. Yet when a considerable amount

of entrainment is produced, the theory predicts lower values than

actually occur.

In the heat transfer coefficient derivation, no restriction

was made on the position of the tube. It is applicable to a hori-

zontal tube as well as to a vertical tube as long as pressure

gradients are properly estimated. The suggested equations for

pressure gradient were derived for an arbitrarily inclined tube.

Since the derivation of the friction pressure drop (Eq. 33) was

based on the Lockhart-Martinelli method, which does not explicitly

account for the effect of gravity force and momentum changes on

the friction pressure drop, it may be applied to a vertical tube

without modification. Although there actually exist effects on the

friction pressure drop or wall shear stress due to condensation and

gravity, these effects were not big enough to appear in experimental

data [43], [45].

As the total flow rate decreases, the thickness of the liquid

film on the wall of a horizontal tube may be changed significantly.
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Even though the flow shape becomes an eccentric annulus, the analysis

may give a good prediction because the heat transfer coefficient

increases at the top and decreases at the bottom of the tube when

this happens. However when the accumulation of the condensate

becomes apparent, then another theory should be used.

5.2 Comparison with Data

The data for the 8 test runs are tabulated in Appendix A and

plotted in the 8 graphs of Fig. 13 and 14. The prediction curves

are also drawn in the figures. In the data reduction, the physical

and thermal properties are taken from reference [64]. Because

of small temperature differences between vapor and the tube wall,

the properties were evaluated at the saturation temperature.

The agreement with the present data is within 10% except a

few low quality points. In general predictions are slightly lower

than the experimental data within the range of measurement accuracy

(Fig. 15). The pressure drop measurement also shows good agreement

except for Run 8. It is interesting to note that at the upstream

end of the condensing tube the predicted pressure gradient has

a negative slope. However, the measurement shows the opposite

trend. Except for Runs 5 and 8, the pressure drop of the first

section is always higher than that of the other sections.

The data of Pltman et al were also compared with the prediction.

Again the agreement is within 10% as shown in Fig. 17. Pressure

drops are correlated within 10% by the equations suggested in

Chapter III (Fig. 16).

The analysis of Kunz et al [39 ] agreed with the present results.

A detailed review is followed in Appendix C.

MMM MWIWMMI iM141111,6.
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VI Conclusions

1. The present theory appears to provide good agreement with

the present data and the data of Altman et. al.

2. The method of Soliman et. al. [61] was modified in order to get

the proper wall shear stress. Still the momentum effect on

the total static pressure gradient is negligible.compared

with the friction pressure gradient.

3. The present theory agrees well with the Kunz [39] result except

when the vapor shear stress is small. When the liquid Reynolds

numbers become larger than 10,000, the effect of the vapor

shear s.:ress on the Stanton number is significant.

VII Recommendations for Future Work

1. The original proposal called for superheated refrigerant vapor at

the condenser inlet. The analysis is significantly more compli-

cated for this condition, but should be undertaken to cover the

entire expected range of operating conditions. The analysis

must be verified by experimental data. The present apparatus

would require modification by adding a superheater and changing

the pressure measuring technique in the superheated region.

2. Since the entire theoretical analysis is currently based on the

shear stress in the tube, a more detailed study should be made

of the effect of condensate flow on the effective vapor shear

stress at the liquid-vapor interface and also on the wall shear

stress.

3. It is generally impractical to make a condenser of straight

horizontal tubes. Most commercial units are fabricated with

several U-shaped bends in the condensing region. These bends
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may have important effects on the development of the internal

refrigerant flow patterns. The magnitude of such effects should

be investigated.

4. In the high-quality region annular flow is the most probable

regime. However at low qualities, it is difficult, to predict

the flow regime. Since knowledge of the entire quality range

is required to determine the overall performance of a condenser

tube, a thorough investigation of the possible flow regimes is

necessary. A flow regime "map" should be developed for two-

phase flow with condensation. Such a map is expected to be

different from one prepared for evaporating flows.

5. Slug flow is anticipated for condensation at low-qualities.

An analysis of this region, with properly determined flow regime

boundaries, should be made and verified by experimental data

in order to enable the prediction of overall condenser per-

formance.
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Appendix A

Tables of Data

Run 1 G = 250,000 lbm/ft hr Tsat = 86*F

Measured

Sec
No

T
vapor

83.17
82.97
82.40
82.31
82.04
81.88

T
out

71.25
71.45
69.47
70.89
70.06
67.92

Wwater

2400
2134
2718
1807
1953
2254

AT
w

1.482
1.450
1.250
1.531
1.473
1.186

Calculated

Q/A

9200
7990
8450
7150
7450
6820

T
w.
in

72.73
72.74
70.83
71.05
71.26
69.03

AT

10.44
10.23
11.57
10.26
10.78
12.85

880
780
730
696
692
530

93.8
82.5
72.2
62.4
53.3
44.3

q = 4,210 x 2.6 = 10,950 Btu/hr

q total = 29,200 Btu/hr

q total W(Oin - out) = 402(111.2 - 31.7) = 31,900 Btu/hr

Heat Balance Error -8.5%

dP/dz

15.3
24.7
21.2
14.1
15.3

9.4

Sec
No
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Run 2 G = 485,000 lbm/ft 2hr Tsat

Measured

Sec
No

T
vapor

81.64
81.19
81.01
80.19
79.62
79.44

Tw
out

72.81
70.79
70.12
68.84
68.13
67.89

Wwater

1690
2800
1920
1510
1730
1910

Calculated

Q/A

9,440
11,400
11,350
11,100
11,200
10,850

Tw.
in

74.33
72.64
71.95
70.63
69.93
69.64

AT

7.31
7.55
9.06
9.56
9.69
9.80

1290
1330
1250
1160
1150
1100

96.4
88.3
79.4
70.6
61.8
53.3

qcond = 4,280 x 6.3 = 27,000 Btu/hr

qtotal = 52,310 Btu/hr

qtotal W(Hin - H out) = 645(111.14-31.9) = 51,500 Btu/hr

Heat Balance Error +1.6%

= 81*F

AT
w

2.61
1.58
2.29
2.85
2.50
2.20

dP/dz

73.2
62.5
57.8
47.2
53.0
43.6

Sec
No

Ummbilgmlhlmki ANIN Idffil
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Run 3 G = 250,000 lbm/ft2 hr Tsat

Measured

Sec
No

T
vapor

86.57
86.39
85.96
85.77
85.69
85.58

T
w

out

70.37
71.02
70.12
69.38
69.67
71.04

Wwater

3310
2560
2490
2910
2790
1750

Calculated

Q/A

10,850
9,730
8,810
8,050
7,350
6,150

T
w.
in

72.12
73.09
71.54
70.68
70.85
72.03

AT

14.45
13.30
14.42
15.09
14.84
13.55

q cond= 1,180 x 6.35 = 7,500 Btu/hr

qtotal = 27,210 Btu/hr

q total =W(H in
- H ) = 332(111.4- 33.2) = 26,000 Btu/hr

out

Heat Balance Error +4.65%

= 860F

AT
w

1.27
1.47
1.37
1.07

1.02
1.36

dP/dz

24.2
20.5
17.0
13.0
13.0

7.1

Sec
No

750
730
610
535
495
455

91.1
74.3
59.6
46.7
34.1
23.0
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Run 4 G = 470,000

Sec
No T

vapor

85.53
85.01
85.00
84.54
84.19
83.64

lbm/ft2 hr Tsat

Measured

wout

74.23
75.10
71.96
73.92
72.22
71.28

wwater

2660
1670
3500
1970
2470
3090

Calculated

Q/A

12,200
9,700

12,800
9,610
9,840
9,900

T
win

76.19
76.68
74.02
75.47
73.81
72.87

AT

9.34
8.33

10.98
9.07

10.38
10.77

1,300
1,160
1,165
1,060

950
920

95.1
85.6
76.0
66.9
59.0
51.0

q cond= 3,890 x 8.84 = 33,400 Btu/hr

q total= 58,220 Btu/hr

q t = W(H. - H ) = 625(111.4 - 33.6) = 54,900 Btu/hr
ttala in out

Heat Balance Error +6.05%

= 850F

ATw

1.77
2.27
1.42
1.88
1.54
1.24

dP/dz

62.3
60.9
57.0
47.4
47.2
38.5

Sec
No
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Run 5 G = 270,000 lbm/ft2 hr T sat= 920F

Measured

Sec
No

T
vapor

92.22
92.07
91.81
91.77
90.90
90.94

T
w

out

74.98
75.30
71.90
71.71
73.73
72.03

w
water

2300
2080
2770
2690
2060
2340

AT
w

1.87
2.02

1.69
1.54
1.67
1.35

Calculated

Q/A

11,100
10,850
12,100
10,700
8,900
8,160

T
w.
in

76.77
77.05
73.85
73.44
75.16
73.35

AT

15.45
15.02
17.94
18.33
15.74
17.59

718
721
674
584
566
465

92.0
76.2
59.7
43.3
29.2
17.0

qcond= 1,720 x 5.22 = 8,980 Btu/hr

q = 3,290 Btu/hr

qtotal = W(Hin - Ho) = 359(111.7-33.9) = 31,500 Btu/hr

Heat Balance Error +4.45%

dP/dz

18.9
24.8
20.1
14.2
14.2

9.0

Sec
No
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Run 6 G = 240,000 ibm/ft2 hr Tsat = 92*F

Measured

Sec
No

T
vapor

93.04
92.46
91.98
91.88
91.66
91.80

T
wout

80.34
80.97
79.72
79.28
78.29
77.91

wwater

2440
2180
2300
2310
2600
2580

AT
w

1.16
1.26
1.19
1.15
1.04
1.01

dP/dz

20.1
21.2
16.5
11.8
11.8

7.1

Calculated

Sec
No Q/A

7550
7100
7090
6870
7000
6740

T
win

81.52
82.10
80.86
80.39
79.42
79.00

AT

11.52
10.36
11.12
11.49
12.24
12.80

h

655
685
636
599
571
526

93.9
82.1
70.6
59.4
48.2
37.1

q cond =2,340 x 4.73 = 11,100 Btu/hr

q total= 27,480 Btu/hr

q total W(Hin - H Out) = 319(111.8-34.5) = 27,800 Btu/hr

Heat Balance Error -1.15%

ilmhlli
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Run 7 G = 308,000 lbm/ft2 hr Tsat

Measured

S 3C
No

T
vapor

98.07
97.80
97.37
97.02
96.98
96.93

T
w

out

80.96
82.12
80.06
79.26
78.58
77.26

w
water

2510
1860
2410
2800
2840
2080

Calculated

Q/A

11,850
10,200
10,700
12,200
10,200
8,500

w.in

82.87
83.77
81.79
81.23
80.23
78.63

15.20
14.03
15.58
15.79
16.75
18.80

780
726
687
770
610
452

92.4
78.1
64.6
49.8
35.3
23.2

q cond= 3,450 x 1.8 = 6,210 Btu/hr

q total= 30,880 Btu/hr

qtotal= W(H - H out) = 410(112 - 37.5) = 30,600 Btu/hr

Heat Balance Error +0.9%

= 920F

AT
w

1.83
2.13
1.72
1.69
1.39
1.58

dP/dz

25.4
23.6
21.2
16.5
16.5
11.8

Sec
No
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Run 8 G = 316,000 lbm/ft 2hr Tsat

Measured

Sec
No

1
2
3
4
5
6

T
vapor

103.12
102.91
101.79
101.33
100.98
100.98

T
w

out

84.63
86.73
85.33
83.72
80.99
79.66

Wwater

2530
1390
2480
3000
3070
3330

Calculated

Q/A

13,700
10,400
10,100
11,600
11,100
11,300

Tw in

86.85
88.41
86.96
87.59
82.78
81.48

AT

16.27
14.50
14.83
15.74
18.20
19.50

q cond= 2,880 x 2..2 = 6,420 tu/hr

q total= 32,850 Btu/hr

q total = w(hin -

Heat Balance Error

out ) = 420(112.2 - 37.9) = 31,200 Btu/hr

5.5%

= 103*F

AT
w

2.10
2.89
1.58
1.50
1.40
1.31

dP/dz

15.3
28.3
27.1
20.0
20.0
15.3

Sec
No

842
717
680
737
610
610

91.2
75.8
62.6
48.7
34.1
19.8

11INIIIIIIIIII, I I,
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APPENDIX B

Details of Experimental Apparatus

B.1 Eguipmnent

The basic closed-loop of condensation consists of a heating

unit, a condensing unit, driving forces of fluid and regulators for

stabilizing the system.

Boiler

In order to gererate the saturated vapor, a boiler was designed

for maximum pressure 400 psia and rating 60,000 Btu/hr. A Chromalox

Heating Element TM-6153 was placed in the lower part of a 24 in long,

20 in O.D. steel pipe. Six elements of the heating unit were separately

connected to six Arrow-Heart and Hegemann Electric Nc 6808 switches.

One of the six elements was connected to a General Radio V20H Variac

and the other five directly to the power line. heat input was controlled

by the six switches and the Variac. All the connecting wire was 12/2

Type S 600 Volts. A high pressure (max 800 psia) Pyrex-glass 3/4 in.

O.D. tube (Ernst Water Column & Gage, L-150) was used as a liquid level

gage. 'he liquid level was always kept above the leating unit to

avoid high surface temperature of the elements. The boiler shell was

insulated with fiberglass to prevent heat loss to the atmosphere.

Pump

As the driving force of fluid for a closed circuit, one can

use either a compressor or a pump. In general a reciprocating compressor

is used in refrigeration systems as the fluid flow driving force and power

input into the system. However, a pump was used for this experiment

in order to avoid oil contamination of the refrigerant. A Flexi-liner
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pump, which consists of a flexible liner between the liquid passage

and an eccentric shaft, seemed to be ideal for this purpose, but

the usual flexible liner, made of neoprene, is easily broken by the high

system pressure and the initial attempt to use this kind of pump,

Vanton XB-S90, failed.

A mechanical sealed-rotor pump, Blackmer X51 1/4 A C Max-flow

rate 12 GPM, was substituted for the flexible liner pump. The new

pump was driven by a General Electric 5KC 213AG601A 1 hp motor. Power

input of the motor was fixed. A by-pass loop was provided for controlling

the flow rate and the pressure level of the system. The manufacturer

claims that this pump may be used for any kind of refrigerant with a 20

psi pressure rise across the pump, and 300 psia maximum system pressure.

After Condenser

A shell-and-tube type York Standard Condenser-Receiver was used

for complete condensation and subcooling after the test section.

The capacity was choosen for 70% of the vapor generator capacity

(40,000 Btu/hr). The city water line was directly connected to the coolant

passage. The condenser can be used safely up to 300 psia. The degree

of subcooling was controlled with the cooling water flow rates.

B.2 Test Section

Since local values are to be measured, care must be taken to

accurately determine the inlet fluid conditions and the tube length.

It was shown that flow patterns depended not only on the local conditions

but also on the past history, i.e. upstream conditions. [66] And

in non-isothermal two-phase flow the flow pattern is also affected

by heat flux. Particular pre-caution is necessary when a pre-condenser



- 50 -

is used to introduce low vapor quality mixtures. Use of a short test

section should be avoided so that entrance effects will not interfere

with measurement of local conditions.

In the present experiment, always the saturated vapor was introduced

into the test section and the length of the test section, about 18

ft. was determined to give complete condensation for some inlet condi-

tions. In order to measure local values the test section was divided

into six 3 ft sections so that changes in wall temperature and vapor

fraction along the test section are small, consistent with accurate

measurement of the cooling water temperature rise.

In construction of the test section, six identical 3 ft sections

were connected in series. Two 20 ft long, 1/4 in steel rods with

seven pieces of plexi-glass block were fixed by U-bolts on a Dexion

frame to provide a base on which the test section was placed hori-

zontally. Copper is a common material for condenser tube in industry,

but a lower conductivity material was required in order to use a

heatmeter described by Rosson and Meyer [56], which measured the

temperature drop across the tube wall to give the heat flux. Nickel

was selected for its lower conductivity and the thickness of the

tube was determined so that a simulation-variable k6, a measure of

the peripheral conduction, was approximately the same in the nickel

and copper tubes. But the initial attempt to use the Rosson and

Meyer type heatmeter failed, because of the difficulties of locating

the thermocouple junctions exactly at the inside tube wall and of

obtaining precise measurements of small temperature drops (order of

0.1*F). The heat flux was subsequently determined by measuring cooling

water flow rate and temperature rise.
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Because of its low conductivity, plexi-glass was chosen as the

outer annulus in order to provide insulation from the environment.

The cooling water passage was sized so that flow velocity was high

enough to make the water temperature uniform by turbulent mixing

(2-5 ft/sec). Water temperature was varied from 60*F to 80*F by mixing

hot and cold water in the main stream. The water flow rate was controlled

separately for each 3 ft section by six gate valves at the outlet of

each water passage.

Seven flange-type stainless steel cornectors were made with special

care to provide smooth connections between the 3 ft sections. Neopren

0-rings were used to prevent leakage of refrigerant and cooling water.

Although a low conductivity material, plexi-glass, was used for

the outer annulus, in order to ensure no heat loss to the environment,

all test sections were completely -,nsulated with fiberglass.

B.3 Instrumentation

Temperature All thermocouples were made of Thermo-Electric, 36 gage

copper-constantan wire and the junctions were spot-welded by a Dynatech

TIG Welder. The wire was insulated separately by nylon coating and

the two wires were jacketed together with another nylon coating.

Since a direct calibrat-on scheme for each thermocouple was hardly

available, calibration was done on three pieces of sample wire from

the same spool, where all the thermocouples were taken. Emf was

measured between a steam bath and ice and the deviation from the

Leeds and Northrup Standard Conversion Table (National Bureau of

Standard Circular 561) was interpolated between 32*F and 212*F.

A Leeds and Northrup K-2 Potentiometer, which is capable of reading to
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+ 2 microvolts, was also calibrated by a local company before

data were taken. All emf were read with the potentiometer and a

light-beam galvanometer.

Flow Rate Flow rate was measured at the nearest point to the test

section inlet. Because of the large volume of the boiler and the

after-condenser, there was a possibility of refrigerant accumulation

at those two locations. In order to avoid the difficulties in measuring

flow rate of two-phase m;xture at the outlet of the test section,

a Fischer and Poter 10A3565S Flowrator was placed at the test section

inlet and vapor flow was measured. The flowrator has an accuracy of

+ 2% of maximum flow.

Cooling water flow rates were measured by a weigh-tank and a

stop watch. The time variation of water flow due to the pressure

change in the main city water line was negligible (less than 1% for

a 3 hour period).

Vapor Inlet The saturated condition was checked by a Frost-Line

Refrigerant Pressure gage and a thermocouple at the tube axial position.

The pressure was read to an accuracy of 1 psia. The vapor at the inlet

was always kept slightly superheated (order of 0.4*F) within the

accuracy of the pressure gage to ensure 100% vapor quality.

Bulk Yapor Temp erature Each taermocouple was inserted to the tube axis

through a 0.013 in O.D. hypotubing, which was soft-soldered to the

tube wall and the bead of the thermocouple was exposed directly to the

vapor stream. The thermocouple wire was continuous from the hot

junction to the Leed and Northrup thermocouple switch which connected

the cold junction (ice bath) and the potentiometer. The connections

of wire and switch were insulated with fiber-glass.
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Tube Wall Temy erature The hot junction was soft-soldered to the out-

side tube wall. In order to prevent the thermocouple from being

broken by the high speed water stream, the junction was covered by epoxi-

resin. Although the cooling water was slightly disturbed by the junc-

tion, the insulation effect of epoxi-resin on the thermocouple was

negligible (order of 0.01 *F).

Water Temperature Rise Two differential thermocouples were located

at the inlet and the outlet of the cooling water circuit. The two

thermocouples were easily movable to check the uniformity of the

water temperature. The temperature rise was kept less than 3 *F.

The potentiometer was read up to 0.1 micro-volts and the temperature was

converted up to 0.01*F. However, the accuracy of the temperature

measurement was of order 0.1*F.

Heat Balance At the exit of the after-condenser, a thermocouple

measured the temperature of the subcooled liquid. Total enthalpy

change between the inlet of the test section and the exit of the after-

condenser was calculated from the temperature. The sum of the heat

transfered in the test section and in the after condenser, (determined

from the water flow rate and temperature rise) was compared with the

enthalpy change. Except Run 1, the agreement was within 6%.
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APPENDIX C

Review of Previous Work

A considerable amount of work has been done on in-tube condensation.

At low vapor velocity, laminar film condensation occurs on the tube

wall. The classical Nusselt analysis [49] and several modified correla-

tions for a horizontal tube with consideration of the effect of accumu-

lation of condensate at the bottom of a tube showed good agreement

with empirical data [19], [20], [58].

As the flow rates increased, waves appeared in the liquid film

and the bottom condensate inside a horizontal tube became thinner and

thinner. These phenomena were dealt with by Rosson and Myer [54]. The

variation of heat flux with time was measured. The Nusselt analysis

was used to correlate data at the top of a tube and the von Karman

analogy between heat and mass transfer was used to predict heat trans-

fer rate at the bottom.

At sufficiently high vapor velocity, the liquid film and the vapor

core are both turbulent and annular flow exists. There are three general

approaches in this annular flow region. Since the scope of the present

analysis is within this region, a more thorough literature survey on

the annular flow model will follow.

C.1 Empirical Correlation of Non-Dimensional Group Type

Considering single-phase turbulent flow to be equivalent to the

condensate flow, the single-phase flow McAdams equation was modified

in various ways. The single-phase equation is

Nu= C Pr Re (Cl)

Akers et. al. [1] modified Reynolds number with an equivalent
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liquid mass velocity which was defined as follows:

A. 1r P (C2)

In terms of vapor quality defined by Eq. (7)

=(C3)

Substituting Eq. (C3) into (Cl)

h=h, [ I + I. (A)" (C4)

where h is the heat transfer coefficient when only liquid flows at

the same total mass flow rate. The term inside a square bracket is

a modification factor. A similar approach appeared in a Russian

paper by Boyko et. al. [14]. They made a direct modification on the

heat transfer coefficient instead of Reynolds number [1].

Pt

3 =.h 0 [+ x(- - I (C5)

The constants of Eq. (Cl) are as follows:

c m n Range

Akers et. al. 0.0265 1/3 0.8 ReE > 5 x 104

5.03 1/3 1/3 ReE < 5 x 104

Boyko et. al. 0.024 0.43 0.8
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Those correction factors are compared in Fig C-1 for a particular

case when Refrigerant 22 is condensed at the saturation temperature

90*F. A significant deviation appeared between those correction

factors. If is interesting to note that the corrections are a function

of vapor quality and density ratio, while the Nusselt analysis showed

that the heat transfer coefficient is also a function of AT - tempera-

ture difference between vapor and condensing wall. However, this effect

turned out to be very small.

Although those equations are very convenient to use in practice,

because of their weak foundation on the physics of the phenomena

itself, those constants which were determined empirically should be

checked with data for every fluid and flow condition.

Later, Akers and Rosson [2] included the effect of AT. For

Re < 5000. The fellowing correlation was suggested.

N4 C pr Re ')" cPA-) (C6)

where

KevA~ D Cf A 2

is a modified vapor Reynolds number.

In order to compare with Eq. (tl) it is rearranged:

Nu =C Pr Re 4( c )f )(C7)

The terms in the square bracket of Eq. (C4) and (C7) are quite close

to each other in the high quality region. However, the application

of Eq. (C6) is limited because heat transfer data were correlated

with the vapor Reynolds number alone inspite of the strong effect
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of the liquid Reynolds number on heat transfer coefficients.

Equations of the same type with different constants and exponents

are shown in Reference [16], [21], and [51]. Those equations should

be verified with various data in a wide range of parameters.

Hilding and Coogan [33] reported that their attempt of using the

Kutateladze (40] equation was not successful. The Kutateladze equation

-- = c Pr ( D) ( -- ccK c( CA CT (C8)

has liquid and vapor velocity terms explicitly. Hilding and Coogan's

empirical correlation is the following:

A- r/ . P i 3 6O x 1 0, - -U - -16

P..v4 b .1a /rX4 r/, 6P-v)O (C9>

The above equation was reported to indicate that the tube diameter

and vapor velocities play a stronger role in determining the rate

of heat transfer than does the mean thickness of the annular liquid

layer. The equation itself is not easily applicable because the

relationship between given conditions and film thickness is difficult

to calculate.

C.2 Semi-Empirical Correlations of Carpenter-Colburn

Carpenter and Colburn [17] assumed that the entire thermal resist-

ance was offered by the laminar sublayer after sufficient condensate

bad been formed to produce turbulence.

As a resulting relationship for this laminar layer,

= n

C Pr (ClO)

This equation can be written as follows:

C Pr 
(Cli)

fl C(C11)

olmoillmllwli i 1 IN IIII I



- 58 -

where

This equation has two main drawbacks:

1. Since only the resistance of the laminar layer is considered,

it should result in greater than experimental heat transfer

coefficients at the low vapor qualities.

2. For the high vapor quality region where film thickness is very

small (liquid Reynolds number is less than around 120),

Eq. (C10) itself predicts lower values unless it is modified.

3. There is no explicit Reynolds number effect. That is, for

the same thickness of laminar sublayer, change in the upper

layer flow produces different heat transfer rates. (Fig C-2)

With these inherent drawbacks, the constant and exponent of the Prandtl

number were changed by later investigators [3], [61]. Also the shear

stress term was modified. Even though the original investigators

defined the shear stress T as shear force acting on the unit surface

area at the outer boundary of the laminar layer, T should be inter-

preted as the wall shear stress. In single-phase studies of laminar

sublayer boundary, y is constant where the laminar and turbulent

relations intersect and y+ was non-dimensionalized by the wall shear

stress T . The same arguments were introduced in the Carpenter-

Colburn analysis of the condensate flow.

Altman et. al. [3] calculated the shear force as follows:

T =) - (C12)
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where (dP/dz) is the total static pressure gradient. Considering

the momentum balance in a tube as in Eq. (Dl) of Appendix D, it is

clear that T should be considered as
0

instead of Eq. (C12).

Soliman et. al. [61] derived T0 from the momentum balance equation.

Lockhart-Martinelli's [44] results for isothermal two-phase flow

were applied to the calculation of T . Because of the effect of radial

flow at the interface due to condensation, T V is not equal in iso-

thermal flow and in non-isothermal flow with condensation [43], [60],

and [67]. In terms of friction factor T is

-v- * TJV (C13)

*
where f is the friction factor for condensation at the interface.

i
f. may be divided into three terms.

SO

where (f .) . is the friction factor of isothermal horizontal flow,
i iso

(f ) is the gravity effect on the friction factor and (f )m is the

effect of momentum change on the friction factor. It is expected

that (f ) and (f )m may be negligible compared with (f ) ., but

it has not yet been verified.

In the present analysis, Lockhart-Martinelli's results were

used in the calculation of T . The above argument is also applied to the

calculation of T0 ; however, the effect of cross flow by condensation
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is expected to be smaller at the wall than at the interface. Martinelli-

Nelson [46] correlated data for isothermal flow and flow with boiling

without distinguishing this effect and got a good result. That is,

the effect of boiling or condensation on the friction factor may be

negligible except in some extreme cases.

It is noticed that the momentum term and gravity term in the

force b: lance equation (Eq. Dl) should not be considered as the effect

of momentum change and gravity on the wall shear stress as was done

in the previous references.

Kunz and Yerazunis [39] modified Nikuradze's equation of mixing

length for condensate flow as follows:

Er [0. 1+ -o a.81O) 1-o-o6( ,) 4N , -1 +

V~~~ -1 - -IdIro
where A is the Van Driest turbulent damping constant. And

E = .5 % 7 >0.09I
j era/(I<P-cr l I

was used to derive heat transfer coefficients. The results were

present in the liquid Reynolds number versus Stanton number plot as

shown in Fig. C-2. Since the effect of variations of D+, gravitational

force, and momentum pressure gradient terms were neglected, the dis-

crepancy is significant when liquid Reynolds number is larger than 1000.

Not all the references are discussed here.
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APPENDIX D

Local Pressure Gradients

The following postulates are made as in the analysis of isothermal

two-phase flow [44]:

1. Static pressure drop for the liquid must equal the static

pressure drop for the vapor phase regardless of the flow

pattern, as long as an appreciable radial static pressure

difference does not exist.

2. The volume occupied by the liquid plus the volume occupied

by the gas at any instant must equal the volume of the pipe.

With the above assumptions, consider a cross element of a tube shown

in Fig. D-1 as a control volume.

where C is external acceleration force field. Rearranging Eq. (Dl)

yields

(c4jrt J~ + 4-V (D2)

The above equation shows that total static pressure gradient is the sum

of pressure gradients due to friction, gravity and momentum change.

d + m 4d7 (D3)

Comparing Eq. (D2) and (D3).

- T - (D4)
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+) -U- (D6)

D.1 Evaluation of Pressure Gradients

Friction Assuming that the pressure drop due to friction does not

change by condensation, the correlation of isothermal data will be

used directly. The same assumption was made in Reference [46] and

resulted in a good agreement with boiling data.

-f r , /TPF (D7)

where (dP/dz)TPF is the pressure gradient due to friction for isothermal

two-phase flow. The Lockhart-Martinelli [44] method seemed to be

regarded as the best available to predict the friction pressure drop.

The correlation of Reference [44] in the present notation is

TPFr V d' (D8)

where

X=

xtt dp

According to Reference [44], the pressure drop in vapor flow and

parameter $, are given as follows:
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)O-1AoL>-

=- o0. *3

(D9)

.-.

,wV-WB
(D1O)

And the Lockhart-Martinelli data of # were given in an approximate

curve by Soliman et. al. [61] as follows:

I t 2. S5- Xt
a.523

(Dll)

'ih 3 agreement with data is within 5% for Xtt

Combining Eq.

< 1 as shown in Fig. D-4.

(D7), (D8), (D9), (Di0) and (Dll) yields

( dP I11 x1''8302/1

o.o523

+ 5.7 -- )

+ . II ---)
,a -tr

E CK , -,-

o.105'

0t - C( Pj]

[ PA - ( P - R-) j

In the same form as Eq. (D12)

(i 6.219v~ Fr
where

7 r C, / D

Xtt

Gravity

. . o.52'2
( I- X 1-0-) 3

P.

(~)5

(D12)

(D5)

(D13)

(D14)

(D15)

1- L.

OD

RP-..26

7: /f I- )t

+PAL(fP
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is the Froude number based on the total flow rate and

a P( D 1 6 )

is the buoyancy modulus. In the gravity field

CL = 4i*, (9(D17)

where 6 is the angle of inclination from the horizontal position.

The Zivi equation for local void fraction [71] is recommended to use

in Eq. (D14) as done in Reference [611.

j-j- (D18)

The discussion of local void fractions will be followed in Appendix E.

Momentum

In order to avoid the complexity of evaluating local velocity, momentum

changes will be estimated for the ideal annular flow. For one-dimensional

flow models using average velocities in the liquid and in the vapor

region

where

(f V dCIA

for a constant density.

Previous detailed investigations [43] show that in most cases of turbulent

flow the value of q becomes unity. In the following it will be assumed

n = 1.



- 65 -

The pressure drop due to momentum change during condensation may

be separated into two terms: momentum change in the liquid film and

in the vapor core.

o d. (dP)

From Eq. (D2)

( a 1 )P 'L
\d /E )ylJ

A

rv (.)

The average velocities of vapor and liquid at any location along

the tube may be written in terms of the local vapor quality x and

void fraction a as follows:

(I x) W

Substituting Eq. (D22) and (D23) into Eq.(D20) and (D21) respectively

gives

/d
I V T--- -

(dijmA (D25)'~0A Li-c'(J

(D19)

(D20)

(D21)

(D22)

(D23)

(D24)
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And with Eq. (D18)

d/ P )mir d zgor 12 x

Adding Eq.

( dP
CI IL

tD26) and (D27) results

( x

+ ( I - 2%) (Th)11 I(fAI

D.2 Evaluation of F0 in Eq. (1)

Considering a liquid film element (Fig. D-2),

+t TV S, -

T 5= - 1 )A,+

T. S + a. 

goRP

1I JJI-

+ sv-

Let

TO A + -r. -V.
S

where

When condensation occurs on a flat plate. Eq. (D31) becomes:

T = F. b + ' v-(

(D26)

*± -zx Pf- -32j)
(D27)

( I - 2X)

(D28)

(D29)

(D30)

(D31)

(D32)

so

4
T mtws) -A- ku;-9

(D33)

P Z,4r

P

- d PC, 1) A .
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The momentum term in Eq. (D32) will be calculated by the same method

as used in the calculation of (dP/dz)m'

(F.)r = - [ jc W)-v ]

The interfacial velocity V depends on the velocity distribution

within the liquid layer and may be written in the following form

(D34)

(D35)

where 1 is a constant. From the universal velocity distribution F

can be estimated as follows:

"V;

For 6+ < 5

For 5 < 6+ < 30

1I~f~

~f0~' ircLJ

P3=
-3. 05 6* +

12.5 - 8.056* +56*'Sb

For 6+ > 30

5.F i 2. 5 d s>

- 64- +-3* +e. ~ -b

Fig. D-5 shows that values of S decrease with increasing 6+.

Eq. (D18), (D23), (D34) and (D35) yields

- - . .
(*)[ I- 2(%-l

()3

(D36)

(D37)

(D38)

(D39)

Combining

(D40)
(-(X')2 VI
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Therefore

S-z'kp, ( PR.

2 -x)
(j ~Q(~)2~

D.3 Evaluation of T, in Eq. (1)

Considering an element of vapor core (Fig. D-3),

-TV SV +

d'
TrV SV

- P iAgo
4

T.,( V4VWv) + lYZ

Ar + P, Air

Considering the curvature of the condenser tube wall, the term TV of

STEq. (1) may be modified as c [ hen from Eq. (D42),

fj- j(JV&W.O)

Substituting Eq. (D18),

4-

(D22) and (D35) yields

d P a.

_ (. g-±.

(D41)

PV AV
V1.~

Aw
S

P1.?
&2-/ Pvp

go -

d x x

t( i - %) +) J (D43)

I

-Il
20

[ 7 I

-(dp)A,

,V,Wv) +K V46w,
JT (D42)
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APPENDIX E

Derivation of Heat Transfer Coefficient

It was thought that the condensate flow in a tube is quite different

from the single-phase turbulent flow because of the strong effect

of vapor shear stress at the interface of vapor and liquid. However,

since the von Karman formulations of the universal velocity distribu-

tion are non-dimensionalized such that the distribution is affected

by the force field of flow by using the friction velocity

V =J T/ , it is a reasonable assumption to apply the formulations
T -00 9 9..a

to the condensate flow substituting actual T of the flow. For flow
+

of thin films with little interfacial shear (6 < 30 and = 0),

or for highly turbulent flow near the liquid-vapor interface (6+ > 30

and T >> 0), this assumption is quite likely to be in error. But

for the practical ranges of flow rates where the annular flow regime

occurs, vapor shear stress is of the same order of magnitude as

wall shear stress T0 for thin films, i.e. the high quality region.

With a no slip condition at the interface, the order of magnitude of

T /T may be obtained from Eq. (D31) for the small change of momentum

in the flow.

(El)

For 6+ < 30, the void fraction a is larger than 0.95 for most fluids

condensed in about 0.5 in I.D. tubes at mass velocities from 60,000

to 600,000 lbm/ft2 hr, which is in the range of the present experiments.

*
Therefore, practically T /T = 1 and the universal velocity

* T/T = 1 is an assumption which is implicitly implied in von

Karman's equation for the range of 6 < 5 [26]
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distribution of this range is quite adequate for the condensate flow.

For the highly turbulent region of thick films (6+ > 30),even though

vapor shear is decreased as the film thickness is increased at the same

conditions, the strong effect of vapor shear still remains and devia-

tions may be expected in this region. However, realizing that the

region of expected error is also a region of very small resistance

to heat flow when compared to that of the buffer layer and the laminar

sublayer, it is felt that deviations in this area will have but little

effect on the predicted values of heat transfer coefficients for the

entire film.

D.1 Laminar Sublaye (0 < 6+ < 5)

In this region the turbulent motion is very small compared to

viscous motion.

E7M / Vj < < 11,9h << (E2)

From Eq. (3) of Chapter II

(VA_ dT

P'Cp d(E3)
Integrating from 0 to 6,

- - C 
(E4)

h, P. c ± (E5)
Let

F Pr (22a)

h-
(E6)
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In a dimensionless form

s, F. )11 (19)

(17)
* Pr b' 113

Fz M
where

(E7)

or from Eq. (1),

In a dimensionless form F.b

I + * / t

The Reynolds number can be obtained by substituting Eq. (14a) into

Eq. (13).

Re

In a dimensionless form

Re,. = 4 T +4+. (E9)

Re 2 ( )

D.2 Buffer Layer (5 < 6+ < 30)

Both the turbulent and the viscous motion have an important

effect in this region. However it is still valid to assume T/T = 1.

(18)

(E8)

(16a)

MMUMNAW. Wil

TO
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Substituting Eq. (14b) into Eq. (3) with T/T = 1,

6m = )
5

Since Cm /h = 1 was assumed,

eh- I )

(ElO)

(Ell)

Substituting Eq. (Ell) into Eq. (3) and integrating from 6+ = 0 to 6+

9/A

-T .. -r,.
ha PACP~ Se o

F2. Pk
where

F.,= 5r5 ~ i Pr -)

And substituting Eq. (14b) into Eq. (E3),

5

fe,=. 50 -32. 2 + 20 m 6 -

Without assuming T/T = 1, a quite complicated solution can be ob-

tained for this region

From Eq. (1)

-t ... -

TO T

(E12)

(22b)

(E13)

(16b)

(E14)

-5 +~+ eh
(E15)

Following the same procedure as before

and

( - 3. o5 +F 57. 0 9, J ) g+ -+ $~0

Gm = --
5
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F = 5 Pr *
1 20 (1/ Pr -1) .

friX( In M-i *20( I)~ 10M - I -r

M -I + 1+20(. -1)

Numerical values of Eq. (21c) and (E15) are not significantly different.

D.3 Turbulent laer (6 > 30)

The only significant motion is the turbulent motion in this

region. C mv >> 1 and V is neglected.

E =

Substituting Eq. (14c)

d r d y.

(6
(E16)

(E17)
Y+

25 c,

Because of the considerable thickness of the liquid film in this

region, the assumption of uniform stress (T/19 = 1) is no longer

valid. Combining Eq. (1) and (E173,

V . - 2. ] h (E18)

Substituting this into Eq. (3),

h = cP
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where

F = 5Pyr + 5Y ( i+ 5Pr) +

2. +- - i+-.M_.

Fir Vd'

2.5
i -

~r1-- o Pr M-

and substituting Eq. (1

Gen = - 256

4c) into Eq. (E8),

+ 12. 6- + 1 0 b* 9- i

(22c)

(16c)
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APPENDIX F

Discussion of Void Fraction

Void Fraction a is defined as follows:

Air(Fl)
A

For the annular flow model without entrainment of liquid into the

vapor core, a becomes

0( ( '(F2)

or

S 2 /t' (F3)

where 6+ and D +are non-dimensionalized length by friction velocity

V = Ig 01fpI. Since T may be obtained from Eq. (33) of (hapter

II, the void fraction was already determined by assuming the velocity

distribution in the liquid film. However, Zivi's correlation [71]

was used in the calculation of momentum changes

1+ (38)

Although it seemed to be inconsistant in the theory to use other

information for void fraction, it is suggested that Zivi's equation

be used in the calculation of pressure gradients as in Reference [61].

Zivi's equation has been proved successful in correlating experimental

data [6]. It is believed that the universal velocity distribution

gives a good approximation of the eddy diffusivities for the condensate

flow. But the velocity distribution itself is still to be proved.

Comparison of Eq. (F3) and Eq. (38) is shown in Fig. F-1. The wall

shear stress T was obtained from Eq. (33) as follows:
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T - 4 (F4)

The small discrepancy between those two equations indicates that

momentum changes of the flow have small effects on the total static

pressure gradients.
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APPENDIX G

List of Computer Programs

PAGE 1

// FOR

9

0
0

) tDPG
,REA
GA ( 19
.0411
.,20.

(19) ,DPT (19)
19915) ,HSTT(
),AL(19),SH(
,10./,

,3.,40.,50.

,TV(19) ,

19,15) ,

19)

*IOCS(CARD,1132 PRINTER)
PEAL L(19) ,M
DIVENSfiON X(19) ,DPF(19) ,DPM,(1
19EZ(19) ,HST(19) PHZ(19) tDST(30
2Hv(19),RH(19),GX(19),AGX( 19),
DATA GTSATDDET/2.50E5,86.,
1DST/0.5,0.7,0.9,2.,4.,6.,8.,1
280.,100./,AGX/19*0.001/
K=1
00 1 I=1,19

1 GX(I)=-AGX(I)
GO TO 4

2 DO 3 I=1,19
3 GX(I)=-BGX(I)
4 GR=4.17ER
C GRAVITY FORCE

A=0
RT=1 .25

C PHYSICAL PROPERTIES OF FREON
C VISCOSITY

JL=0.673-(0.00135*TSAT)
UV=0.028+((0.5*TSAT)/10000)

C LIQUID CONDUCTIVITY
RK=0.0699-((0.235*TSAT)/1000)

C DENSITYLATENT HEAT, SPECIFIC
DL=86.056-(0*149*TSAT)
IF(TSAT-100) 5,5,6

5 DV=(0.05*TSAT)-1*1115
HFG=98.363-(0.255*TSAT)
CP=0.255+((0.6*TSAT)/1000)
GO TO 7

6 DV=(0.0665*TSAT)-2.6593
HFG=101.6-( '.288*TSAT)
CP=0.24+((0.75*TSAT)/1000)

7 OVS=UL/UV
R D E = DV /,DL

C LOCAL PiESSURE GRADIENTS
DO 21 I=1,19
XL( I )=0.05*I
X(I)=1-XL(I)
A1=G*G/(GR*DV*D)
A2=U.09*((UV/(G*D))**0.2)
A3=X( I )**1.8
A4=5.7*(RVS**0.0523)*(XL(I)**
1*(RDF**0.261)
A5=8.11*(RVS**C.105)*(XL(I)**
1*(PDF**0.522)
DPF(I)=-(Al*A2*(A3+A4+A5))

WN, ,,

22 (80F TO 120F)

HEAT

0.47)*(X( I)**1.33)

0*94)*(X(I)**0*86)

,60 *
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PAGE 2

91=2*x( 1I)
P2=(1-2*X( I) )*(RDE**0s333)
B3=( 1-2*X( I) )*(RDE**U.667)
q4=2*XL (I) *RDEF
DDM(1I)=-(Al*GX( I)*(Bl+B'.2+B3+134))
VI(XL( I)*(RDE**O.667) )/X( I)
R=1/ ( l+V )

DPT( I)=DPF( I)+DP( I ~)+DPG( I)
Gl1=(1-2*XCI))*(RDE**0.333)/(l-R)

E1=2*X( I)/R'
F2=( l-2*x(I) )*(FRDE**U*667)/R
E3BRT*XL (I) *RDE,/ (R* ( -P))

TV( I)=T1*R*D/4
COP=((UL*UL)/(GR*DL*FO))**O.333
TVST=TV (I) /( FO*COR)
REZ (I) =G*D*XL (I) /UL

C LOCAL HEAT TRANSFER COEFFICIENTS
PR=UL*CP/RK
3=0

E

3 =3+1
DP=DST (3) *SQRT(DST (3) +"VST)
M=DST (3) /(DST (3)+TVST)
IF(DP-5) 1291299

9 IF(DP-30) l1o11g10
10 Cl=SQRT(1+(0*Y,/(PR*DP)))

C 2=2 * m-1+C
C 3=2 *kl M

C4=(60/DP)*\1-1-C1
C5=(60/DP)*Yt-l+Cl
R2=5*PR+5*ALOG( 1+5*PR) +( 2.5/Cl) *AL
REX(1I ,)=-256+12*Dp+lO*DP*ALOG(OP)
GO TO 13

11 F2=5*PR+5*ALOG(1+pR*((DP,'5)-1))
REX( I,3)=50-32.2*DP+20*DP*ALOG(DP)
GO TO 13

12 F2=PR*DP
REX( I,3)=2*DP*DP

13 HSTT(I,3)=PR*((DP/M)**j*333)/F2
IF(REX( I ,)-REZ(I) ) 14915915

14 IF(J-14) 8915915
15 JR=J

IF(3R-1) 16916o17
16 HST(I)=HSTT(I,3R)

GO TO 18

1+E2+E3 ))

OG ((C2*C4) /(C3*C5))
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PAGF 3

17 JQ=JR-1
D1=HSTT(-IJR)-HSTT(IJQ)
D2=REX(IJR)-REX(IoJ0)
D3=REZ(I)-REX(IJQ)
HST(I)=HSTT(IJQ)+(-(D1*D3)/D2)

18 HZ(I)=(HST(I)*RK)/COR
L(I)=0.05*mFG*G*D/(4*HZ(I)*DET)
RGX(I)=0.025*D/L(I)
IF(I-1) 19,19,20

19 HY(I)=HZ(I)
SH(I)=1/HZ(I)
GO TO 21

20 IR=I-1
RH(I)=1/HZ(I)
SH(I)=RH(I)+SH(IR)
HV (I) = I /SH (I)

21 CONT INUE
WRITE(3,22) TSAT,GD,DET

22 FORMAT(lH1,5X'FREON 22 AT ',F5.1,5X'G= ',F9.1,5X'D= ',
1F6.4,5X'DET= ',F4.1//2X'THERMAL AND PHYSICAL
2 PROPERTIES'/)
WPITF(3,23) UVUL

23 FORMAT(5X'VAPOR VISCOSITY',F8.4,5X'LIQUID VISCOSITY',
IF7.3/)
WRITE(3,24) DVDL

24 FORMAT(5XIVAPOR DENSITY',F1O.4,5X'LIQUID DENSITY',F9.3/)
WRITE(3,25) RKCPHFGPR

25 FOR\AT(5X'CONDUCTIVITY',F8.4,3X'SPECIFIC HEAT',F7.3,
13X'LATENT HEAT',F8.3,3X'DR',F6.2//2X'X',5X'DPF',
211X'DP 't,6X'DPT',9X'TV',9X'REZ',9X'HSTt,6XIHZ',
37XIHM',8X'L'/)
WRITE(3t26) (X(I),DPF(I),DPM( I),DPT(I),TV(I),
1REZ(I),HST(I),HZ(-I) ,HM(I),L(I) ,I=1,19)

26 FOR1AT(19(F4.2,F9.3,El4.3,F9.3,E12.3,E14.5,F8.3,
12F9.1,E14.5/))
IF(K-1) 27,27,28

27 K=K+1
GO TO 2

28 CONTINUE
CALL EXIT
END

LOGGED OUT TIME USED- 4 TIME LEFT- 87 LOGIN-RA E
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Appendix H

Sample Calculation

Given conditions

G = 250,000 lbm/ft2 hr

Tsat = 860 F

T = 760F
0

physical properties (from Du Pont Table of F-22)

Viscosity y = 0.557 lbm/hr ft

y = 0.0322 lbm/hr ft

Conductivity K = 0.0495 Btu/hr ft*F

Specific heat C = 0.305 Btu/lbm *F

Latent heat h = 76.470 Btu/lbm

Density p = 73.278 lbm/ft 3

V = 3.1622 lbm/ft 3

Pr = 3.43

D = 0.493 in

Assuming that complete condensation occurs in the tube, the quality

change is divided into 20 steps. A sample calculation will be done

for the quality change from 72.5% to 67.5%. The local heat transfer

coefficient at x = 0.7 will be considered as the average value in this

quality change. The calculation procedure is outlined in Sect. 2.5.

Eq. (33)

-(P) = (250,000)2/3.1622 (250,000 x 0.493 -0.2

4.1 f 18 - XO0.09 X (0.0322x 0.4X4.17 x 10 x 0.493/12) 03 x

01.8 + .557 ) 0.0523 0.47 1.33(3.162 0.261
x 0.7 + 5.70322 (1-0.7) 0.7 -i.278
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0.94 0.86
0.7 (3.162 0.522

k 73.278

( dP = -16.849 lbf/ft /ft

Taking -0.001 as the first trial value of D

Eq. (34)

(250,000) /3.1622

4.17 x 10 8X (0.493/12)

+(I - 2 X 0.7) ( 732 78/3

X 0.001 x F2 X 0.7

+ (1 - 2 X 0.7)

+2(1 - 0.7) (/ 3.162I

=1.41 lbf/ft 2/ft,

For a horizontal tube (gdPdz

Eq. (32)

= -16.849 + 1.41 = -15.44 lbf /f t 2/ft

+ 1 - 0.7
0.7

3.162 2/3
73.278 /

= 0.95

Eq. (39)

F = 15.44 + (250,000) 2/3.162
0 4.17 X 108 X (0.493/12)

X 0.001 x

(1-0.7)

(d -

2/3(3.162
73.278/

(g)Pdzl

= 0

dP

Eq. (38)

0.5 0.0523
t 8.11 (--6-2
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1 - 1.4__ 3.162) 1/3
1 -0.95 (73.278

F = 18.5 lbf/ft 2/ft

Eq. (40)

0.95 x 0.493
S- 4x12

2 X 0.7 1 - 1.4
0.95 +0.95

T = 0.17

Eq. (20)

+ 1.25( - 0.7)_ 2(1- 0.7) 3.162

1 1 - 0.95) 2 1 -0.95 j 73.278

15.44 + -(250,000)Y 162 )X 0.001 X
4.17 X 10 x (0.493/12)

3.162 2/3
73.278 )

+ 1.25(1 -_0.7) / 3.162 ) 10.95(1 - 0.95) 73.278

lbf/ft 2

1/3

SF) 0.557 2/73.278 1/3

4.17 x 10 x 18.5/
- 0.819 x 10~4

T * 0.17
v 18. 5

= 112.3

Eq. (5) and (9)

1

0.819 x 10~4

Re =25 0,000 x 0.7 x 0.493
Re 0.557 x 12

= 55,350

Eq. (16)

55,350 = -256 + 126+ + 106+1n6+

By a trial and error calculation 6+ = 716
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Eq. (23)

716 = 6 V6 + 112.3

Again by a trial and error calculation 6

Eq. (18)

1= 1
1 + (112.3/55.2)

= 0.33

Eq. (22c)

1 + -0x 0.33
3.43 x 716

F2 = 5 x 3.43 + 51n(l +

+2.5 ln f(2 x 0.33)
L(2 x 0.33) - 2

= 40.6

Eq. (17)

* 3.43 /_716) 1/2

z 40.6 0.33/

= 1.09

5 x 3.43)

(60 x 0.33/716) - 2
(60 x 0.33/716)

Eq. (19)

1.09 x 0.0495

z 0.819 x 10~4

= 662 Btu/hr ft2 *F

AT = T - T = 86 - 76 = 10
sat o

= 55.2
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AX) 4 x 662 x 10
Lz/ 76.470 x 250,000

= 0.00139

Comparing with the initial trial value, 0.001, (dP should be re-

calculated with D = 0.00139. Following the same procedure gives

h = 673
z

And again

( AX 4 x 673 x 10
Az) 76.470 x 250,000

= 0.00141

Comparing with the second trial value 0.00139, no further iteration is

necessary. The final results are as follows:

h = 673
z

Az = 0.05 x 0.493
0.00141 x 12

= 1.46 ft

where Az is the condensation length for the vapor quality change

from 72.5% to 67.5%.
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