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ABSTRACT

The object of this work is to develop analytically equations by
which one could predict the thermal contact conductance between con-
tiguous surfaces operating in a vacuum environment. In this work
the solution to the problem is obtained by considering that any surface
can be modelled as being either: 1) nominally-flat but rough, 2) a
smooth surface having cylindrical waviness, 3) a smooth surface having
spherical waviness, or 4) a surface having either cylindrical or spherical
waviness plus roughness. Since the radiative heat transfer and the con-
duction through the interstitial fluid are negligible, the conduction of heat
across the metal contact spots is the dominant mechanism. It is consid-
ered that the prediction of thermal contact conductance must be approached
by: 1) examining the surface geometry, 2) proposing mathematical models
for the solution of the heat transfer problem, 3) determining the surface
parameters from deformation analysis, and 4) obtaining experimental data
to substantiate the proposed models.

The surface analysis is actually a critical examination of profiles
of real surfaces as obtained by profilometers. From such profiles it is
proposed that real surfaces can be idealized by assuming that any surface
is a combination of a wavy and rough component.

The thermal analysis is based upon the models proposed and the
solutions for the steady-state condition are obtained for the various
models and the appropriate boundary conditions. Certain surface para-
meters appear in the thermal contact conductance equations, which
require that an analysis of the deformation of the surface under load be
undertaken.

The deformation analysis is separated into two regimes: 1) purely
elastic and 2) purely plastic. The surface parameters are then deter-
mined as functions of the applied load for the proposed models under the
restrictions of pure elastic or pure plastic deformation.
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Chapter 1

INTRODUCTION

1. 1 Historical Background

It has been established that the surfaces of solid bodies which are

pressed together actually touch only at isolated spots and that the real con-

tact area is a small fraction of the total or apparent area. Thus the heat

transfer across the interface formed by the contiguous surfaces is in part

confined to the contacting spots resulting in converging and diverging flow

lines at each contact spot, and in part through the fluid which may be

present in the gaps. In a vacuum environment the heat transfer is accom-

plished by two modes: conduction through the metal contact and radiation

across the gap. During the past fifteen years many papers and reports on

the subject have appeared, stimulated by recent technological developments

in the power reactor field and aerospace work. The very high heat fluxes

encountered in reactor design required that knowledge about the thermal

conductance between the fuel elements and the metal cladding be obtained

in order to achieve acceptable overall thermal efficiencies.

The aerospace industry on the other hand, required information

about the thermal conductance between lightweight materials operating in

a vacuum.
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The majority of the papers dealt with experimental data obtained

for various surface geometries under a range of loads and environmental

pressures. The result is that all the experimental investigations, even

those in which the surface geometry was clearly defined, are applicable

only to the specific cases tested, and there is no way for another investi-

gator to apply these data to other situations (see references).

It was recognized by some that a more fundamental approach was

required in order to understand more fully this difficult problem, and so

several analytical works have appeared on the scene, the most noteworthy

are listed in the Bibliography (11, 12, 16,24).

In one way or another each report dealt with a specific aspect of

the thermal conductance problem and gave a better understanding of it.

However, it should be noted that some experimenters (15, 19, 20) have

found each theory to be inadequate in correlating data in some area of

their testing.

This report is concerned with the analytical and experimental

determination of the thermal conductance of rough, wavy surfaces in a

vacuum environment.
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1. 2 Review of Thermal Conductance Literature

1.2. 1 Studies of Thermal Conductance with Interstitial Fluid

Tachibana (30) in one of the earlier papers tried to find an empirical

relationship between the contact resistance and the coarseness of the surface

finish in the presence of air, oil and parafin. He concluded that the effects

of surface finish can be accounted for by the mean height of the coarseness.

He also stated that even if the surface finish is relatively smooth locally, a

small degree of out-of-flatness makes the contact resistance larger. When

a large area is in contact, the contribution to the gaps by bending of the sur-

face is greater than that by the coarseness of the finish. Under such con-

ditions, the conductance can only be determined by taking into account the

bending of the surface over the whole contact surface.

Held (31) made an analytic study and obtained some experimental

data to check out the theoretical work. He considered only nominally-flat,

rough surfaces with a random distribution of peaks; with initial plastic

deformation of peaks and then elastic deformation of those peaks coming

into contact with a further increase in load. He observed that the con-

ductance due to the air in the gaps was remarkably high, representing an

overwhelming proportion of the total conductivity. This is not surprising

since his surfaces were very rough and the apparent pressures were quite

low.
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Kouwenhoven and Potter (32) investigated the thermal resistance be-

tween two steel surfaces in the presence of air. Argon was used as the in-

terstitial fluid for the high temperature tests to eliminate oxidation of the

surfaces. Specimens varying in roughness from 3 to 4150 x 10-6 inches

were used, and the thermal resistance results were reported at two tem-

perature levels for pressures ranging from 195 to 2455 psi. They con-

cluded that thermal resistance decreases exponentially for rough surfaces.

The rate of decrease becomes less until at 3 x 10- 6inches, the resistance

is practically independent of pressure. They reported that the temperature

level has only a small effect on theria 1 resistance contrary to data obtain-

ed by other investigators. Their final conclusion was that there is need

for more accurate data of the actual surface areas in contact, as this re-

mains one of the greatest unknown factors in the problem.

Barzelay et al., in two reports (40,41) reported the results of

many tests which were conducted to determine the factors influencing

the thermal conductance across the interface between aluminum and

stainless steel structural joints. The type of joints investigated included:

bare metal-to-metal contact: contact surfaces coated with zinc-chromate

primer; contact surfaces separated by thin foils of good conductors; con-

tact surfaces separated by thin sheets of insulation; contact surfaces

joined by strength-giving bonds and rivited joints. The factors investi-

gated were heat flow, temperature drop, temperature level, and surface
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condition. In the first report (40) contact pressures were held constant at

about 7 psi in order to permit a thorough investigation of the other para-

meters. The second report (41) considered the effect of pressure ranging

from 5 to 425 psi.

They concluded that their experimental results gave evidence of the

following conclusions: the thermal conductance increases with the mean

temperature level, and remains approximately constant with changes in

heat flow; the thermal conductance of the interface with pressure, being

appreciable at low pressures but levelling off at higher pressures; at any

pressure level the thermal conductance generally increases as the r.m. s.

of the surface roughness decreases; however, surface roughness alone is

not a dominant parameter in determining thermal conductance of contacts,

for overall flatness has a more important role in determining the config-

uration of surface matching; when subject to repeated heating and loading

cycles the materials reveal a pronounced but varied loss and recovery of

strength which causes corresponding changes in thermal conductance; in

general interfaces formed between rough surfaces give more consistent

data than those between smooth surfaces; because of thermal stresses

caused by temperature gradients and uneven heat flow, a certain amount

of warping of the specimens occurs at the interface and may influence the

conductance value far more than either roughness or initial flatness.
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1.2.2 Studies of Thermal Conductance in Vacuum

Boeschoten and Van der Held (42) investigated the contact conductance

between surfaces of aluminum-aluminum and steel-uranium. The interstitial

fluid was air, helium or hydrogen, varying in gas pressure from 1 mm Hg to

760 mm Hg. The temperature of the interface was maintained at about 300 0F

for all experiments.

They concluded that at low contact pressures of about 15 psi, the heat

conduction takes place principally across the gaps, whereas at higher contact

pressures the metallic contact spots become dominant. From thermal con-

ductance and hardness measurements, they concluded that the contact spots

are about 30 microns in radius on the average, whereas about 640 such

spots are found per square inch at a contact pressure of 225 psi. The con-

tact pressure has little influence on the size of the contact spots, but the

number varies proportionally with the contact pressure; and above a certain

value of the contact pressure, a confluence of the contact spots takes place

with a corresponding decrease in their number. They stated that it seems

that the size of the contact spots is independent of the materials from which

the joint is formed, a value of about 30 microns being found for a great

variety of metals, and independent of the applied load and the size and the

shape of the joints.

Kaspareck and Dailey (39) obtained empirical data of the thermal

conductance of various dissimilar metals operating in a vacuum of
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10-2 mm Hg. Surface finishes ranged from 5 to more than 200 x 10-6 inches

CLA (Center Line Average), and a flatness deviation of about 700 x 10 -6

inches with contact pressures up to 1020 psi.

They concluded that a valid evaluation of surface flatness must be

undertaken with a well- defined program to determine the relationship of

flatness deviation to contact conductance. Data obtained from this experi-

mental program cannot be utilized to determine an average temperature

differential over the entire component mounting surface because of insuffic-

ient knowledge concerning the average contact pressure. They emphasized

the relationship between surface characteristics, (i.e., flatness deviation,

surface finish) and contact conductance. To evaluate flatness deviation and

surface finish, each must be taken separately, and then combined in a

closely controlled test.

E. Fried, et al., (18) in an attempt to determine the interface

thermal contact resistance of materials used in space vehicles, investi-

gated the effects of surface finish and flatness of aluminum and magnesium

plates operating at a chamber pressure of 10-6 mm Hg. Surface finishes

from 6 to 65 x 10- 6 inches r.m.s. and contact pressures up to 35 psi were

considered. They concluded that the flatness of the surface was a very

important variable for thermal contacts in a vacuum but were unable to

explain qualitatively how this parameter should be considered.

-7-
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Fried, in a subsequent report (19), made an attempt to semi-

empirically correlate the thermal contact conductance versus the apparent

pressure by assuming the deformation to be elastic. The model which was

proposed consisted of a spherical contact against a flat plate. This was con-

sidered to represent the asperities individually and th e cumulative effect of

a group of asperities on an elastic substrate. The Hertz equation of elastic

deformation for spherical contacts was considered to be applicable, in par-

ticular after the initial contact was made during which a number of the

asperities have been plastically deformed. The initial effect must be deter-

mined experimentally. Fried concluded that the thermal conductance when

plotted against the apparent pressure indicated a definite two- regime be-

havior with a pronounced point of change of slope. The exact reason for

this change in slope has not yet been defined, although it is believed that

possibly it represents the change from purely elastic to elastic-plastic

deformation behavior. He also made note of the fact that flatness deviation

effects were significant in controlling the thermal conductance of metallic

contacts in a vacuum.

Bloom (15), in a very extensive report obtained experimental data

for several space craft materials operating at space conditions of tempera-

ture and pressure. The apparent pressure ranged from 100 to 1000 psi

and the surfaces had finishes ranging from 3 to 130 x 10-6 inches r. m. s.

while the flatness deviation ranged from 100 to 500 x 10-6 inches. He
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showed empirical relationships of thermal conductance versus apparent

pressure, thermal conductance versus interface temperature, and thermal

conductance versus roughness. He then made an attempt to correlate his

data with the Fenech and Rohsenow Theory (16) and the Clausing and Chao

Theory (12). He found that the calculated conductance values using both

first and second-order equations as proposed by Fenech resulted in the

theoretical predictions falling far below actual data values. The differ-

ences between theory and test were greatest at low apparent pressures,

but tended to diminish as the contact pressure exceeded 1000 psi.

He also discovered that for the case of aluminum, the theory and

test for smooth specimens were in good agreement up to a contact

pressure of 500 psi. The theory predicted far higher values of the con-

ductance than obtained from tests for pressures exceeding 500 psi. For

the case of stainless steel, both theory and data are in good agreement

up to 200 psi; then theory begins to exceed data. The tendency for theory

to predict much larger values of thermal conductance than data usually

occurred when more than 42 percent of the total apparent area was in

macroscopic contact.

He concluded that the reason for the discrepancy between theory

and data could be attributed to the following: 1) the conductance due to

the asperities was considered to be negligible according to Clausing, 2)

the macroscopic conductance area predicted by the Hertz equation is

only valid for elastic spherical indentations.
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In an effort to reconcile the discrepancy between theory and test,

he attempted to combine Fenech's microscopic theory with Clausing's

macroscopic theory, but found that this resulted in theoretical values

only slightly lower than before for the higher pressure data.

Bloom concluded that a microscopic theory should be developed

in which the conductance values that it predicts can prevent the total

conductance from diverging to infinity at contact pressures greater than

5000 psi, or a better macroscopic theory should be developed which does

not diverge so rapidly.

1.2.3 Review of Analytic Studies of Thermal Contact Conductance

One of the earlier analytical and theoretical investigations of

thermal contact conductance of metal surfaces was due to Cetinkale and

Fishenden (11). In this analysis the contacting surfaces were nominally

flat but rough, and the contact areas were assumed to be uniformly dis-

tributed, each contact spot was assumed to be fed by a larger coaxial

cylinder. The voids at the interface were assumed to be of uniform

thickness and filled with a fluid of uniform conductivity. The steady-state

temperature distribution was obtained by the relaxation method.

After having considered the material resistance and the fluid re-

sistance, they developed an equation for the interface conductance which

had several parameters that were to be determined empirically. The

actual area of contact was determined by considering that the softer of

-10-



the two metals will flow plastically until the mean contact spot pressure is

equal to its Meyer hardness. They stated that their parameters were in-

dependent of the metal or fluid and were constant for a given type of surface

roughness.

Fenech and Rohsenow (16) in a later investigation made a mathe-

matical analysis of the thermal contact conductance by proposing an ideal-

ized shape of contact and then solving the boundary value problem by sub-

dividing the contact region and satisfying average boundary conditions be-

tween each region. The thermal conductance was then expressed in terms

of the thermal conductivities of the contacting metals and of the fluid filling

the voids, the real area in contact, the number of contact points per unit

area, and the volume average thickness of the void gaps.

A method was given for the determination of the above physical

properties of a contact. To use this method the following measurements

are necessary: two recorded profiles, perpendicular to one another; and

a Knoop hardness test on the softer of the two metals making the contact.

Experiments were performed with the following types of artificial

contact models: 1) solid cylinders with a neck machined into them, there-

by providing one contact spot of a specified radius, 2) specimens whose

surface consisted of several machined pyramids. Fairly good agreement

with experimental results was reported for interstitial fluids such as air,

water, and mercury.
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They concluded that two further requirements were necessary to

account for the elastic deformation of the surface sublayers and perman-

ent changes in the surface profile. Since these two effects had been neg-

lected, they stated that caution should be exercised in using the actual

graphical method at pressures sufficiently high to make these effects im-

portant.

The most recent analytical investigation due to Clausing and

Chao (12) is based upon the fact that real surfaces exhibit out-of-flatness

as well as roughness. They proposed that the apparent area can be sep-

arated into a contact and a noncontact region. The contact region is de-

fined as that portion of the contact surface where the density of micro-

contacts is high and is called the microscopic contact area. The non-

contact area contains few or no microscopic contact areas. They

suggested that the thermal contact resistance for any interface in a

vacuum may be represented by three resistances in series: large scale

or macroscopic constriction resistance, small scale or microscopic

constriction resistance and the film resistance. For "clean" engineering

surfaces they stated that the macroscopic resistance should be orders of

magnitude larger than the microscopic resistanced. They assumed that

the macroscopic contact area can be determined by purely elastic con-

siderations and thus obtained a dimensionless group termed the elastic

conformity modulus which relates the dimensionless radius ratio of the

-12-
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contact to the applied load, the surface parameters, and the material

properties.

They obtained experimental data for several surfaces having

roughness of about 4 x 10-6 inches and flatness deviation ranging from

40 to 900 x 10-6 inches. The tests were conducted in a chamber evacuated

to 5 x 10 6 mm Hg. The apparent pressure ranged from a few psi to about

1000 psi while the mean interface temperature ranged from 160 0F to 3400F.

There was good agreement between theory and test for all but the

aluminum specimens. For this set of tests, best agreement was obtained

between the theoretical curve and the aluminum specimens having a rough-

ness of 45 and 80 x 10-6 inches respectively and a flatness deviation of

220 x 10-6 inches.

They concluded that the macroscopic constriction effect is sig-

nificant and dominates the thermal contact resistance of many engineer-

ing surfaces. Their theory leads to a pair of dimensionless parameters

for correlating data, and calculations have indicated that the microscopic

constriction resistance is of secondary importance for many engineering

surfaces.

1. 3 Review of Surface Deformation Literature

The re-occurring conclusion of the thermal conductance literature

reviewed under Section 1.2 is that only by having a better and complete

understanding of the deformation of the roughness and the wavy components

can there be a better understanding of the thermal conduction problem.
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A cursory examination of the references of subjects related to

contact resistance shows that indeed many papers and reports have been

written regarding the description of surfaces, the deformation of contact-

ing surfaces under applied load, and the determination of various physical

parameters such as number of contact spots and the real area of contact.

Some investigators have approached the problem from the purely elastic

deformation standpoint (44, 50, 58, 61, 64) while others have considered the

problem from the purely plastic deformation standpoint (46,54, 62, 63).

Recently several papers have considered that the deformation of real

surfaces can only be solved by considering both elastic and plastic de-

formation of the roughness and wavy components (49, 51, 52, 55, 57).
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Chapter 2

SURFACE ANALYSIS

2.1 Description of Surfaces

It has been established that the surfaces of solid bodies which are

brought together under load actually touch only at isolated spots and that

the real area of contact is a small fraction of the total or apparent area.

A careful examination of profiles of real surfaces obtained by

means of surface analyzers, such as the one described by Henry (9) or by

any of the several commercial machines available, reveals that real sur-

faces of solid bodies are both rough and wavy.

The roughness component, often referred to as the microscopic

roughness, is due to the irregularities in the surface which result from

the inherent action of production processes. These are deemed to include

traverse feed marks and the irregularities within them. Roughness can

range from 2 x 10-6 inches r. m. s. for very smooth surfaces to 600 x 10- 6

inches r.m.s. for the roughest surfaces.

Waviness or macroscopic roughness is that component of the sur-

face profile upon which roughness is superimposed. The waviness may

result from such factors as machine or work deflections, vibrations,

chatter, heat treatment, or warping strains. The length of these waves,

-15-



depending on quite a number of conditions, varies from 0.04 to 0.40 inches

and the height accordingly varies from 80 x 10 6 to 1600 x 10-6 inches. The

waviness component can appear as cylinders or spherical caps, and may or

may not be periodic in character.

2.2 Nominally Flat Surface

The nominally flat surface is characterized by having a series of

peaks and valleys. The heights of the asperities seldom exceed 200 x 10- 6

inches. The most characteristic range of the included angle at the peak is

between 1600 and 1640. The smallest included angle which occurs with the

roughest surfaces would never be smaller than 1500. The crests or peaks

of the asperities are surfaces of very gentle curvature and not as shown in

Figure 1. The vertical scale is exaggerated with respect to the horizontal

scale by a factor of 10, so that the sides of the peaks and valleys appear

much steeper than they really are, and the curvature of the peaks and

valleys are greater than they are represented in Figure 1.

2.3 Wavy Surface

The wavy surface is characterized by large protuberances which

are orders of magnitude larger than the asperities found on nominally flat

surfaces. These waves which have been designated as flatness deviations

by Clausing (12) have base widths which are generally two orders of mag-

nitude larger than the wave height. This results in waviness which is
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very gentle with regard to the slope, and produces peaks and valleys of

relatively large curvature.

2.3.1 Cylindrical Waviness

This waviness or macroscopic roughness is characterized by being

essentially two dimensional, having a characteristic pitch L, a radius of

curvature R, and a finite length I in the direction of no waviness.

It is obvious that for cylindrical waviness

A A m 2

N a a (2.1)
c -2 L IL

where Nc is the number of cylindrical contours to be found on the apparent

area, and the form factor m2 = I/L.

When two identical wavy surfaces having cylindrical waves are

brought together so that they touch along a line parallel to the axis of the

waves, then the contour area of contact is given by

A = N 2C 1 (2.2)
c c 2

where C2 is the half width of the contact area, Figure 3.

The ratio of the contour area to the apparent area will be defined

by
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2
E 2c

A
c

a

2Cm2C 2m2
2
L

(2.3)

The importance of this dimensionless term will be developed in the follow-

ing chapter.

2.3.2 Spherical Waviness

Spherical waviness is characterized by being three dimensional,

having a characteristic pitch L and a radius of curvature R.

For spherical waviness, Figure 4, the number of contours can be

expressed as

,2 L
(2.4)

When two spherical caps are brought together under load, the

radius of contact C2 can be determined from the following expression

A = N 1TC 2c c 2 (2.5)

As for the cylindrical contours, define the ratio of the contour

area to the apparent area as

A2 c
E2s = ~

4C2

L 2-L 2
(2.6)

The importance of this parameter will also be developed in the

following chapter.
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Chapter 3

THERMAL ANALYSIS

3. 1 Contact Model for Nominally Flat Rough Surfaces

An examination of nominally flat surface profiles shows that for

small compliances, as a result of moderate to light apparent pressures,

the contact spots are small in number and in size. Each contact spot is

assumed to be circular in area and concentric with the heat channel which

feeds the spot. Since the slopes of the asperities which contribute to the

contact are generally less than 10 degrees, and the radius of the contact

is orders of magnitude smaller than the radius of the heat channel, the

system can be regarded as one semi-infinite solid in contact with another

over a small circular area.

As the load is increased, the number and size of the contact spots

increase so that the model proposed for light loads is no longer applicable.

In this case the influence of one contact spot on another must be considered

in the analysis.

3.2 General Equation for Contact Resistance

By definition the thermal contact conductance is given by

h= A AT (3.1)
a
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and the thermal contact resistance, following the electrical analog, is given

be

AT
R - (3.2)

Q
and

dR ds (3.3)k dA

where k is the thermal conductivity, ds is the elemental length in the direct-

ion of the heat flux vector, and dA is the elemental area perpendicular to the

heat flux vector.

Combining these definitions one can then write the relationship be-

tween the thermal contact conductance and resistance as

h dR ds (3.4)
a s k dA

A

The problem of heat transfer with light loading reduces to that of the

heat flow between two semi-infinite regions 0 < z < oo , 0 < z < oo ,

having thermal conductivities k and k2 (Figure 5) which are in contact over

the radius c, the center of the contact being taken as the origin of the

cylindrical coordinate system (r, z).

The following analysis is based upon steady-state conditions, constant

thermal and material properties, clean surfaces (no oxide film resistance),

no interstitial fluid, and negligible radiation across the gaps.
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The differential equation of the temperature, for the axially

symmetric case

2

ar

1
r

8T
ar

82+T = 0 (3.5)

must be satisfied by the following boundary conditions throughout the two

regions:

aT~
= 0 at z = 0, r > c (3.6

3T

= 0 at z = 0, r > c (3.7
az

In the absence of sources and sinks the conservation of thermal energy

requires that

8T 1  T
k1 8 k az , z >> a (3.8

and temperature continuity across the contact requires that

T = T2 at z = 0, r < c (3.9

letting

T =T at z = co (3.1
1 0

)

)

)

)

0)
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and

T2 = 0 at z = ca

it can be shown by substitution that

4(m)e-mz J (mr)dm

and

T2 = 
0

0

(m)e- mz J (mr)dm

for any m.

Using the boundary conditions specified above, the unknowns $(m)

and *(m) can be obtained as

k
O (m) = k 4(m)

2T k sin (mc)
and (m ) = m F +M 7T(k I + k 2 )

(3. 14,3. 15)

Now T can be solved for and is found to be

2k T
T,= T 2o(1~~~ o Fr~+2)

00

e-mz sin(mc)J(mr)

and therefore

T k

TI= k 2+ ,
z = 0, r < c

-22-
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The contact temperature is seen to be independent of the size of the contact

and uniform over the contact area.

The heat flow over the contact area is found by integration to be

Q = 1 r

0
2~k2  sin(mc)emJttmr)dm 0

i* (k 1 + k 2 ) ~0 Jo j Z

4 k 2T oc

k + k2

dr

(3.18)

Defining the mean harmonic thermal conductivity as

2 = +kii (3.19)
2

the heat flow can now be expressed as

Q= 2k T0 c (3.20)

It is seen that the heat flow varies linearly with the radius of contact.

The thermal contact resistance can now be expressed as

T 1 - T2
R = 1 2

Q
_ 1
2 kmc (3.21)

If there are N contact spots over the apparent area Aa, then the

total resistance will be given by
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R = 2 N(3.22)
m

and the thermal contact conductance using Eq. (3.4) is given by

h= 2 n k c (3.23)m

where n is the number of contact spots per unit area and c is the radius of

contact.

Further reduction of Eq. (3.23) can be achieved by substituting

n T a2 = 1 (3.24)

where a is the radius of the heat channel feeding the contact spot. Thus the

limiting value for the dimensionless number km VT/h is Y'C/2E for very

light loading, and any formulation which is developed for the general case

must reduce to this value in the limit as the apparent pressure becomes

very small.

For the case of large apparent pressures the total contact resis-

tance for N circular contact spots uniformly distributed over the apparent

area Aa at an average distance of 2a from center to center, according to

Holm (54), can be expressed as

1 -1la a
R(N, c) = 2 - N k c tan - - a (3.25)

m m a

-24-



This is an approximation because it has not taken into consideration the

very small resistance in the shaded space, Figure 6.

Since

2 2
= N w a and nw a = (3.26, 3.27)

by direct substitution and using Equation (4), the thermal contact conduc-

tance can be written as

S a

m

k -i-Fi

1
-2 c/a

2 1

2 Ar
E1 Aa

tan c/a

tan I -1 fr(E

(3.28)

(3.29)

a

For values of E < 0.03, tan 1/E I can be calculated from ( rr /2 - E 1).

Equation 3.29is graphically displayed in Figure 7 as fr(E1
) versus

E 1 which is the ratio of the radius of contact to the radius of the heat channel

feeding the contact spot.
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It is interesting to note that the dimensionless heat transfer number

is composed of the contact conductance, the thermal conductivity of the

metals, and the square root of the number of contact spots per unit area.

The parameter in' is actually the reciprocal of the pitch between the con-

tact spots and implicitly takes into consideration the surface geometry and

the effect of the applied load.

3.3 Contact Model for Cylindrical Waviness

Since waviness found on solid bodies may be the result of machine

or work deflections, it may appear as cylinders (two-dimensional

characteristic), as spherical caps (three-dimensional characteristic),

and may or may not be periodic.

In order to come to grips with the problem, it is proposed to

idealize the first type of contact as an "ellipse" whose major axis (I )is

orders of magnitude larger than the minor axis (2c 2)'

3.4 General Contact Conductance Equation for Cylindrical Waviness

The fact that for the waviness component the slopes are very gentle

and the radius of curvature is very large relative to the contact width

suggests that this problem can also be idealized as a contact between semi-

infinite solids touching along a line. At light pressures the contact will

resemble a long thin rectangular spot being fed by a large square channel.

-26-



As the load is increased, the width of the contact area will grow but never

exceed a fraction of the heat channel width.

The problem of heat transfer with light loading reduces to that of

the heat flow between two semi- infinite regions 0 < z < oo , 0 < z < oo,

having thermal conductivities kI and k2 , which are in contact over the

width 2c 2 and the length f, the center of the contact being taken as the

origin of the rectangular coordinate system (x, y, z).

The following analysis is based upon steady-state conditions, con-

stant thermal and material properties, clean surfaces, no interstitial

fluid (vacuum), and negligible radiation across the gaps.

For the case with negligible effects in the direction of the axis of

contact, the differential equation reduces to

2 2
ax az

(3.30)

The boundary conditions are

8T T2

+ kaz -k2 z- = 0 at z = 0, x > c (3.31 a, b)

In the absence of sources and sinks the conservation of energy requires

that
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+ T2
=-k2 az

and temperature continuity across the contact requires that

TI = T 2 at z = 0 x < c (3.33)

T, = T and T2 = 0 at z = oo (3.34 a, b)

it can be shown by substitution into the differential equation that

S004(m)e-mz cos(mx)dm

T2 =
0

0(m)e-mz cos(mx)dm (3.36)

for all values of m.

Satisfying the boundary conditions (3.32) and (3. 33) one can show that

k2
2T~k2

(m) and (m) = rr (k +k2 )
J1 (mc)

m (3. 37 a, b)

Therefore the solutions for the temperature distribution in regions 1 and 2

can be written as

-28-
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aT

+ k1lz (3.32)
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2T k

1 - T- (k1+ 2)

2T k1
T2 Tr (k +kF2 ) s 00

00

JI(mc)e-mz cos(mx) dm
cosmx-M

JI(mc)e-mz cos(mx) dm
J 1 (c~ernj

(3.38)

(3.39)

The heat flow over the contact is found by integration to be

2 8T2 3
z= 0

dx 2
nT o m (3.40)

It is seen that, as for the circular contact, the heat flow varies linearly with

the width of the contact.

The thermal contact resistance can be expressed as

T I - T 2
R = =

I

- k c
n m

(3.41)

If there are Nc contact spots over the apparent area A a, then the total resis-

tance will be given by

R =2N 1
ck c

IT m

(3.42)a Aa

and therefore the thermal contact conductance is given by
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h L

m

where L is the pitch between

E
2

= 2
1T M

waves, km

ductivity of the two metals and E22 is the

(3.43)

is the harmonic mean thermal con-

ratio of the real to apparent areas.

For the case of multiple contacts where one contact spot influences

the neighboring contact spots the total contact resistance can be expressed

as

R(Nc, c2 1
2N kcm 2

-1 L
tan 2T2

and the total contact conductance can be written as

tan m - 1 (EE2

In the limiting case when E 2 approaches zero, tan 1 / 2 2

culated from (w /2 - E 22 /m 2) and it can be shown that

can be cal-

Equation (3.45) re-

duces to Equation (3. 43) in the limit as E 2 2m approaches zero.

Equation (3.45) is shown graphically displayed in Figure 8 as fC(E ) versus

E2 with m2 as a parameter.
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3.5 Contact Model for Spherical Waviness

Although the flatness deviation is several orders of magnitude greater

than the surface roughness, the pitch of the spherical waviness is also

several orders of magnitude larger. When two such spherical caps come into

contact, the system can be regarded as one semi-infinite solid in contact

with another over a small circular area. This approximation is very good

when the flatness deviation is small or when the applied load is moderate.

3.6 General Contact Conductance Equation for Spherical Waviness

The solution for the steady-state condition must satisfy Laplace's

equation and the boundary conditions as specified under Section 3.2.

The equation for the total contact resistance for multiple contacts

can be written as

(3.46)R = 1 = 1 tan- 1 L L
hA 2T N k c ta 2 A

a c m2 2 m a

where C2 is the radius of contact, L is

N is the total number of contacts.c
ir2

Since Aa = Nc L andAc =

ratio E 22 = 4c 2 
2 /L 2 .

The general contact conductance

the pitch of the spherical caps and

2
Nc 1 c2 , the dimensionless area

equation can now be written as
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km 1 -1 1
= tan - 1 f ( 2 ) (3.47)hL 2 2  2

graphically displayed in Figure 9.

Note that the dimensionless heat transfer number is composed of the

contact conductance, the thermal conductivity of the metals and the pitch of

the spherical caps. The dimensionless heat transfer number km/hL is a

function of E 2 which, from elastic theory, depends upon the applied load,

the surface geometry (d, L) and the material property E.
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Chapter 4

DEFORMATION ANALYSIS

4. 1 Surface Deformation

As shown in the preceding chapter, the determination of thermal

contact conductance is dependent upon certain physical parameters which

can only be obtained from a complete understanding of how material sur-

faces behave under loading. In a vacuum environment, the heat transfer

between surfaces is a function of the surface finish, whether nominally

flat but rough or wavy and rough, and the elastic-plastic deformation of

the materials over a range of pressures.

Nurne rous investigations have been done to determine the real area

of contact between solid bodies. Bowden (46) proposed the following simple

formula

A = P /H (4.1)
r a

where Pa is the apparent pressure and H is the microhardness of the softer

material. This gives the value of the real area of contact for conditions of

fully plasticity without recourse to the roughness or the waviness of the

surface.
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Archard (43,44,45) in several papers determined the real area of

contact by assuming spherical asperities, having a range of radii of curva-

ture and of heights. His analysis was based upon considering the deforma-

tion to be completely elastic.

F. F. Ling (58) in one paper investigated some factors influencing

the real area- load characteristics for semi- smooth touching surfaces. He

based his analysis upon one surface being rigid and microscopically smooth

while the other was allowed to have a large number of microscopic asperit-

ies in the form of wedges.

In Ling's second work (59) an attempt was made to determine a

plausible distribution of asperities when both mating surfaces are rough.

He considered uniform, linear, Guassian, and Poisson distributions in

order to correlate compliance-load data, and he obtained compliance-load

data for stainless steel, aluminum and brass. The surfaces were flat

ranging in roughness from 6 to 20 x 10-6 r. m. s. while the maximum

apparent pressure was only 120 psi.

An analysis was done by Greenwood (51) to determine the real

contact area for nominally-flat, rough surfaces but considered only con-

tact between a smooth surface and a rough surface having a Gaussian

distribution of asperity heights. It was concluded by the authors that the

nature of the contact deformation depends upon the topography of the
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surface and not upon the load and established a criterion for distinguish-

ing surfaces that touch elastically from those that touch plastically.

The elastic contact of rough spheres was considered in Greenwood's

second paper (52). It is shown that for light loads and rough surfaces the

behavior of surfaces in contact is quite different from that described in the

classical Hertzian theory: the contact region is much larger, and the

pressures much lower. As the load is increased or the surface becomes

smoother, these differences become less and the Hertzian values are

obtained as a limiting case.

Although the apparent contact area is greater than the Hertzian

contact area, the total area of the real micro-contacts is less; conversely,

the real pressures on the micro-contacts are much higher, and the apparent

pressures much lower, then the Hertzian predictions.

An excellent paper on the compliance of elastic bodies in contact

was written by Mindlin (61). His analysis was based upon considering two

homogeneous, isotropic, elastic bodies in contact at a point. He determin-

ed the boundary of the contact to be an ellipse and gave the magnitudes of

the principal axes and the relative approach or compliance of the two bodies.

Based upon the work done by previous investigators and on recent

empirical data, we assumed that the real area of contact can be determined

by the assumption that the deformation of the asperities is plastic and

elastic, while the waviness component will deform elastically for light loads
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and elastically and plastically for very high pressures. Under the influence

of the applied load, the two surfaces approach each other and the highest

peaks will be deformed before any of the lower ones come into contact. If

all the yielding is at the tips of the peaks, one would therefore expect the

highest asperities to be massively deformed by plastic deformation until

the real area of contact is that given by A = P /H.r a

In fact, such behavior has not been observed, and it is evident that

subsurface yielding has occurred on a scale large enough to distribute the

load over a larger number of asperities than would be possible if only the

higher asperities were deformed at their tips.

4.2 Elastic Deformation of Nominally Flat Rough Surfaces

Based on the thermal analysis of Chapter 3 it is quite evident that

the two most important surface parameters are the number of contact

spots per unit length and the ratio of the real to apparent areas.

In order to determine 1fi we first obtain linear profiles of the

two contacting surfaces using a profilometer. If we assume that the as-

perities are ergodic over the contacting surfaces, then recorded profiles

along any diameter of the specimen will be representative of any other

arbitrary diameter. This will allow us to obtain the three-dimensional

configuration of the surfaces by recording only one profile from each

surface. The initial, or no-load position is determined when contact is

-36-



first established at three spots per unit area or V3I points on each pair

of profiles. This initial separation between the mean lines of each profile

is carefully identified as Y and is generally 3 to 4 times the r. m.s. value

of the contacting surfaces. To simulate an increase in pressure, the pro-

files are moved by small increments in a direction perpendicular to the

contact plane; this relative displacement of the two profiles is termed the

compliance of the two surfaces under load. This technique is best accom-

plished by reproducing the two profiles on transparent sheets of paper and

counting the number of times the surfaces interfere with each other as the

compliance is increased. The two profiles are then displaced a slight dis-

tance parallel to the contact plane and the counting procedure is repeated

as the compliance is increased. The number of contact points is then

taken as the average of the two counts and plotted versus the ratio of the

compliance to the initial displacement, Figures 10 and 11.

J. J. Henry (21) accomplished the same result as the graphical

method by recording profile voltages on magnetic tape; then recordings

were fed into a general purpose analog computer which processed the

input voltages in a manner analogous to the graphical analysis.

In order to relate the number of contact spots with the applied load,

three M. I. T. Masters Theses (4, 7, 8) were devoted to the radiographic

determination of the number of contact spots.
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Because of the uncertainties encountered in the radiographic tech-

nique the values of the experimentally determined n are lower than the

values determined graphically for a given apparent pressure. These un-

certainties involve the facts that the phenomenon of tracer transfer at a

contact point need not occur at every contact spot and that all of the

receiver sample contacts receiving radioactive gold- 198 need not receive

a sufficient amount to activate the portion of the emulsion in their vicinity

during the allotted exposure time. Just how much error is inherent in a

given autoradiographic datum cannot be precisely determined.

The other alternative is to obtain test data of compliance versus

apparent pressure for pairs of surfaces having different materials and

surface geometries. As stated in Chapter 2, Ling (58) obtained such data

for three different pairs of metals which were nominally flat but relatively

smooth; also, his maximum apparent pressure was only 120 psi, much too

low to be extrapolated up to 1000 psi or even 10, 000 psi.

Figure 12 ,NiiF versus apparent pressure, represents experimental

data obtained by radiographic means for nominally flat aluminum surfaces

having a roughness of 120 x 10-6 inches r. m. s. and a slope of 0. 120

r. m. s.

Since E I and {iin are geometrically related to the compliance,

this data will be applicable to any materials which have the same surface
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geometry. Therefore, once 1I'_versus Pa is obtained from test, then know-

ing Viiversus c/Y , one can cross plot c/Y versus Pa'

Figure 13 shows the experimental data obtained by Ling and test

data as determined from heat transfer data for stainless steel and A4ii'

versus Pa aluminum.

It is interesting to note that Ling's data for smooth surfaces and

moderate pressures when extrapolated come very close to our data. It

would appear that when c/Y is plotted versus Pa, the magnitude of the

roughness is not an important parameter.

The second geometric parameter E 1 2, which is the ratio of the real

area of contact to the total or apparent area, can be determined from the

classical elastic theory of Hertz. The subsequent deformation analysis will

be based upon the following assumptions: (1) all asperities have spherical

caps, (2) the number of asperities in contact will be determined by graphical

analysis of profiles, (3) the surface is ergodic, (4) the two surfaces are of

the same material, and v = v 2 = 0.3, (5) the to surfaces are similar,

i.e., R = R2 = R, (6) the two surfaces are symmetric about the contact

plane, (7) the line of force always acts through the centers of curvature of

touching asperities.

Elastic deformation theory shows that the radius of contact per pair

of touching asperities can be expressed as
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3* R12 1/3
c = [---P(k + k2 ) R + R ]

1 2
(4.2)

while the compliance of the two surfaces can be expressed as

C 91 P 2 (k +k) 2 R 1 + R2 1/3
C 6 = 22 R R]1 2

(4.3)

Solving for the radius of contact after having considered all the

appropriate assumptions, the following simple geometric relation results:

2 CR
c1 = 1.58(

The second geometric parameter can now be determined from

2 Ar NC1" NN2 c 2
A = + A +a a a

(4.5)

2 iT
E I 1.58=

m

i=o
(C m- C.)(ni+1- n)R

where the summation over the subscript i is to account for the new contact

points which appear when the compliance, C, increases by AC, an arbitrary

increment, where n is the number of contact spots per unit area, and R is

the radius of curvature corresponding to the compliance C. Solutions were

obtained by means of the M. I. T. Digital Computer and are plotted versus

the compliance ration in Figure 14 .
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Similarly one can show that the apparent pressure can be related to

the surface geometry (n, R), the compliance C and the elastic modulus by

the following simple relationship

P = E n C3/ 2 R1/ 2
a 1.865

or

Pa 1 m 3/2 1/2
E i (ni+ 1 - n )(Cm~ i) R (4.8)

Values of Pa versus compliance were determined with the aid of a

computer and are plotted in Figure 15.

4.3 Plastic Deformation of Nominally Flat Rough Surfaces

The simplest deformation analysis applies to the case of nominally-

flat,rough surfaces. It is assumed that the asperities are deformed plasti-

cally and therefore the real contact area can support only the stress at

which the material begins to yield. For metallic surfaces this stress is

the microhardness H of the material determined in a Knoop or Vickers

test. Therefore, from a simple force balance consideration:

H A = P A (4.9)r a a

or

a r 2 (4.10)
= -A = ( .
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When only the yield stress Y of the material is available, the surface

parameter can be obtained from Equation (C-5) of Appendix C.

P
2 a

E I =7-Y (4'11

An approximation, Figure 16 , which relates the ratio of the real

to apparent areas with the geometry of the surface and the compliance as

developed in Appendix B is expressed as

2 Ar C 2 _ 2 C )2
E I = Y- e Y 0 (4.12)

a o

where C is the compliance of the two surfaces, Y is the separation of the

mean lines at zero load, and j is a multiplier (Appendix A).

4.4 Elastic Deformation of Wavy Surfaces

The thermal analysis of Chapter 3 shows that for cylindrical wavi-

ness the two surface parameters necessary for the evaluation of the contact

conductance are the ratio of the real contact area to the apparent area and

the length of the cylinder. For spherical waviness the two parameters are

the real contact area to the apparent area ratio and the pitch of the waves.

4.4. 1 Elastic Deformation of Cylindrical Wavy Surfaces

The subsequent analysis will be based upon the following postulates:

(1) all the cylindrical waves are smooth and continuous, (2) the two
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surfaces are similar, i.e., R I = R2 = R, (3) the surfaces are of the same

material and v I = v 2 = 0.3, (4) the two surfaces are symmetrical about

the contact plane, (5) the cylindrical waves have uniform pitch, (6) the line

of force always acts through the centers of curvature of the touching waves,

(7) the deviation from flatness is small relative to the pitch.

From elastic deformation theory one can write the half-width of

rectangular contact area as

= 1 WR ]/2 (4.12)

where W is the load per unit length in the direction of no waviness, R is

the radius of curvature and E is the modulus of elasticity.

If assumption (7) is held to be valid, then the radius of curvature

can be approximated by

-L2
R I 8d (4.13)

where L is the pitch and d is the deviation from flatness.

One obtains from a simple force balance

W = PaL2 (4.14)

PL 1/2
c2 1. 08 [ 8E d, (4. 15)
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Finally one can express the cylindrical elastically deformed area

ratio as

2 2c 2 2 PaL 1/2 (4.16)
E2ce L m =0.765m ](

It should be emphasized that this will be the ratio of the real con-

tact area to the total or apparent contact area only for the case of no sur-

face roughness and elastic deformation of the surfaces. It is interesting
2

to note that the dimensionless number E2ce depends upon the surface

geometry (L, d), the material property E, and the applied load Pa

4.4.2 Elastic Deformation of Spherical Wavy Surfaces

The elastic deformation analysis will be based upon the following

assumptions: (1) all the spherical waves are smooth and continuous, (2)

the two surfaces are similar, i.e., RI = R2 = R, (3) the surfaces are

of the same material and v 1 = v 2 = 0. 3, (4) the two surfaces are

symmetrical about the contact plane, (5) the spherical waves have a

uniform pitch, (6) the line of force always acts through the centers of

curvature of the touching waves, (7) the deviation from flatness is small

relative to the pitch.

The radius of contact can be written as
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c2= 1.28[FR] 1/3 (4.17)

where F is the load at each contact, R is the radius of curvature of the

spherical cap and E is the modulus of elasticity.

As for cylindrical waviness one can express the radius of curvature

as

R - L(4.18)

and

F=P -rL2 (4.19)a 4

from a simple force balance consideration.

Finally one can express the spherical elastically deformed area

ratio as

s2c2 P L 1/3 (4.20)
L -081 [ a -] (.02se L Ed

Again one should remember that this expression is the real area

to apparent area ratio only for the case of no surface roughness, otherwise

it expresses the contour area to apparent area ratio. Note that the dimen-

sionless number E2se depends upon the surface geometry (L, d), the

material property E, and the applied load Pa'
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4.5 Plastic Deformation of Wavy Surfaces

Wavy surfaces whether cylindrical or spherical can only support the

stress at which the material begins to yield if there is plastic deformation.

For metallic surfaces this stress is generally equal to 2. 8 - 3.0 times the

yield stress Y.

4.5.1 Cylindrical Waviness

A force balance consideration gives

N 2c 2 H = P N LLc 2 a c

2c 2 2 2p

(4.21)

(4.22)
Pa

where Pa is the apparent pressure and H is the microhardness which is

equal to 3Y.

4.5.2 Spherical Waviness

2
Nc 2 H:

4c2 2

L2

2
E E2p

P N -- L'a c 4

Pa
HTi
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It should be noted that for all three cases of nominally flat rough

surfaces, cylindrical wavy surfaces and spherical wavy surfaces, the

area ratio parameter is a function only of the applied load Pa, and the

material strength H. It is independent of the shape or distribution of the

asperities or the waviness.
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Chapter 5

EXPERIMENTAL DETERMINATION OF CONTACT RESISTANCE

5. 1 Description of Apparatus

The experimental apparatus is shown in Figure 17 and consists of

a structure for support and loading, the test chamber, a vacuum system and

an instrument console.

The physical load is obtained by means of the lever system, having a

mechanical advantage of about 100, which provides dead weight loading that

is transmitted to the test section by means of the bellows. Dead weight load-

ing has the advantage of being independent of thermal strains which result

when the test section is heated to operating conditions. The actual load on

the test specimens is measured directly by a strain gauge dynamometer

which had been calibrated against a Moorehouse Proving Ring.

When tests are run in a vacuum, the minimum load on the test

section is 103 pounds (or 131 psi in the on e-inch diameter test section)

due to the atmospheric pressure acting across the 3-inch diameter bellows

through which the loading system is attached to the vacuum chamber.

An assembly drawing of the test section and chamber is shown in

Figure 18 . The chamber is a vacuum enclosure consisting of a top plate
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and upper cylinder, a baseplate which is bolted to the supporting structure,

and to which is attached the vacuum system, and a lower flanged cylinder

bolted to the upper cylinder and baseplate.

The test section, Figure 18 , consists of, from top to bottom: the

upper cooler (part 4), spacers (5 and 6) of materials chosen to have conduc-

tivities appropriate for the test being conducted, the upper heater (7), the

upper heat meter (8), the two test specimens (9, 10) the lower heat meter

(16), the lower heater (17) and insulating spacer (18), the dynamometer

(19), and the lower cooler (20).

Some flow of water is maintained in all coolers during testing in

order to protect the top and base plates and the feedthrough. The heating

elements are Kanthal resistance wire coiled and cemented between an

alundum core and an outer sleeve. The heater cores are one-inch dia-

meter stainless steel.

All thermocouples are 28-gauge chromel-alumel cemented into

place using Sauereisen. Four thermocouples are inserted into each speci-

men up to the centerline and are uniformly spaced along the axis of the

specimen. The thermocouple and ceramic sleeve occupy less than 3 per

cent of a plane perpendicular to the axis of the specimen, and therefore

the thermocouples do not measurably disturb the flow of heat.
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The dynamometer is a 1 1/2 inch diameter by 2-inch long solid

aluminum cylinder located between the lower cooler and the lower insula-

tion. Near the base of the cylinder are attached semi-conductor strain

gauges. The basic sensitivity of the dynamometer is about 1 millimeter

displacement on the Sanborn recorder readout for a one- pound load.

In order to minimize radiation losses from the test section,

radiation shields are provided as shown in Figure 18.

The vacuum system consists of a mechanical forepump, a 4-inch

diffusion pump with a water-cooled optical baffle, and a three-way vacuum

valve. The mechanical pump is capable of reducing the pressure in the

chamber to about 10 microns; while the mechanical and diffusion pumps

operating in series are capable of reducing the chamber pressure to about

1.5 x 10-6 mm Hg when the system is operating at about 5000F.

Pressures between 5 and 1000 microns of Hg are read with a

thermocouple gauge, and the pressure range between 5 microns and 10~7

mm Hg is read with an ionization gauge.

The instrument console is shown in Figure 19 . Power for the

four heaters and the pumps is controlled from the console. The thermo-

couple potentiometer, wattmeters for the heaters, and the vacuum gauge

control are located on the console as are valves for controlling the water

flows through the four coolers.
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The apparatus for generating the cylindrical waviness consists of

the specimen holder and the tool as shown in Figure 20 . The holder con-

sists of two V-blocks, two verniers, runners and baseplate, while the tool

is a long piece of tool steel 1/4-inch thick having one edge machined to the

desired waviness.

5.2 Preparation of Specimens

Specimens about 1 1/2-inch are cut from 1-inch diameter bar stock.

After turning the specimens on a lathe and then grinding the ends so that the

specimens are 1 1/2- inch long, they are lapped to produce a flat surface

with a roughness number of 3.

The surfaces are now tested for waviness with the profilometer, and

if there should be any indication of surface waviness, the lapping process is

repeated.

The nominally flat surfaces are then blasted with glass spheres to

achieve an ergodic surface having a random distribution of asperities.

These prepared specimens are stored in dessicators to prevent oxidation of

the surface until the specimens are to be tested.

The wavy specimens are prepared using the apparatus described

above. The specimen is placed between the V-blocks and secured into place

when it has been ascertained that the specimen is level by means of the low-

er vernier. The cutting edge of the tool is covered with a thin layer of lap-

ping compound and the tool is then aligned with the horizontal vernier which
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is flush with the edge of the specimen. The tool under uniform pressure

is run across the specimen generating the wavy, rough surface. The

waviness depends upon the shape of the tool and the roughness depends

upon the lapping compound used between the tool and the specimen.

By means of the horizontal vernier the tool is displaced the width

of the tool across the specimen and the rubbing process is repeated.

This is repeated until the desired surface geometry is obtained. The

specimens are placed in a dessicator until they are to be tested.

5.3 Experimental Procedure

The surface profiles of the specimens to be tested are read out

onto a Sanborn strip by means of the profilometer. Next the thermo-

couples are placed and secured in the specimens by means of the

Sauereisen, surfaces are cleaned with acetone and the specimens are

positioned and aligned in the test section under a load of about 20 psi.

After having aligned the specimens, the chamber was closed and

a vacuum of about 5 x 10-6 mm Hg was attained by means of the mechan-

ical and diffusion pumps. With a minimum interface pressure of 131 psi,

all heaters were turned on producing an interface temperature of about

700 F. The system and the interface were allowed to outgas for about

36 hours after which there was no noticeable change with time of the con-

tact conductance.
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The outgassing of the interface having been completed, the load

was increased in increments, temperature readings were taken and record-

ed. About two to four hours were required to achieve thermal equilibrium

in the test section subsequent to increasing the load. The specimens having

high heat capacitities and low thermal conductivities required maximum

time for thermal equilibrium.

The temperature at the interface was generally maintained at a

constant value as the load was increased by increasing the input to the

heaters.

The specimens were loaded to a maximum load of about 20, 000 psi

and then the load was reduced in increments and the temperature readings

recorded as before.
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Chapter 6

COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

To determine whether the asperities deform elastically or plastically

the experimental values of h/km versus Pa (apparent pressure) are shown in

Figure 29. In the same figure is shown the calculated values of h/km using

Equation (3. 29) where the contact ratio, E , was obtained using

(a) the elastic theory outlined above and Equation (4.6)

(b) the plastic theory using the relationship Ep 2 P/H

where H is the yield pressure, and the correspond-

ing compliance ratio, (C/Y ), was calculated from

Equation (B- 9). The number of contact points was

obtained as in part (a) using Figures 10 and 11.

Figure 29 shows that the deformation of the nominally-flat, rough

surfaces at light to moderate pressures is due to the plastic deformation

of the asperities, but at higher pressures the actual deformation begins

to deviate from the completely plastic assumption. At the light pressures

the assumption of completely elastic deformation of the asperities is

erroneous but at higher pressures this effect seems to be important, and

is probably the reason that the experimental observations deviate from

the assumption of completely plastic deformation.
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As can be seen from the plots of E 2 versus Pa for the cylindrical

and spherical waviness, the test data values always fall between the values

determined from elastic theory and plastic deformation. The values of E2

as determined by the classical Hertzian theory exceeds the test results

over the entire load range, while the values of E2 as determined by plastic

considerations always lies below the test results over the same load range.
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Chapter 7

CRITICAL COMPARISON OF THEORY WITH
PUBLISHED THEORIES AND TEST DATA

Since the phenomenon of surface interactions at large pressures is

quite complex and therefore intractable, it was decided to obtain empirical

information about the surface interactions under loading conditions. A

survey of the literature revealed that several authors had investigated this

mechanical phenomenon under various surface conditions, geometries and

physical loads. Invariably the investigators were concerned with relatively

smooth surfaces under very light loading so that only a small number of

asperities per unit area were contacted, and therefore the deformation of

these contacted asperities were completely plastic.

The most interesting and useful paper (59) showed experimental

data of applied load versus surface separation for three metals. In the

present work, the aluminum and stainless steel data have been replotted

as the apparent pressure versus the dimensionless compliance, Figure 13.

Since empirical data of the apparent pressure against the dimension-

less compliance for these metals at higher pressures were not available,

it was decided to use experimental information, such as fiiversus Pa for

aluminum surfaces, Figure 12, and h/km versus Pa (apparent pressure)

for the stainless steel surfaces, Figure 29.
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With the assumption that Fni versus compliance is a geometric

relationship independent of the material under consideration, then the

apparent pressure as a function of the dimensionless compliance for any

metal can be obtained from empirical data relating the number of contact

spots per unit area against the apparent pressure. The information in

Figure 12 is shown cross plotted in Figure 13, and compares quite favor-

ably with the information in Reference (59).

The heat transfer data for stainless steel surfaces yielded the

plot of Figure 13 which shows again a very satisfactory correlation of

data from two independent sources.

The experimental data (59) was obtained for metals which had

relatively smooth surfaces, and for light apparent pressures which

never exceeded 120 psi; while the other experimental data was obtained

for surfaces which were, relatively speaking, much rougher and the

pressures ranged from a minimum of 130 psi to a maximum of about

15, 000 psi.

The good agreement under these conditions is therefore most

encouraging and suggests that the basic assumptions are quite good. An

examination of Figure 13 shows that when the apparent pressure is plotted

against the dimensionless compliance, the effect of the surface roughness

is not very strong. However, further load-compliance tests should be
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made for various materials having a range of roughness before definite

conclusions can be made.

The conductance equation developed by Clausing was based on the

assumption that the macroscopic constriction resistance is the dominant

resistance, and that the material deformation is due solely to elastic de-

formation, with possibly some creep being present under conditions of

high interface temperature.

The conductance equation is expressed as

km _IT g(xL) (7.1)

2 L

where

XL 1.285LPa j 1/3 (7.2)
m t

and g(xL) is the constriction alleviation factor.

The stringent restriction that Eq. (7.1) is valid only for xL< 0.65

limits its applicability to moderate apparent pressures. As an example,

for aluminum materials having a flatness-deviation of 100 x 10-6 inches

and a wavelength of one inch, the equation is valid up to an apparent

pressure of 60 psi. The great discrepancy between theory and experimental

data which he observed for aluminum samples having a flatness-deviation
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of 80 x 10- 6 inches or less, is probably due to the inherent limitation in the

conductance equation.

As the flatness deviation increases or the modulus of elasticity in-

creases or the pitch decreases, the pressures for which the equation is

valid also increase, for example, stainless steel having d = 500 x 10-6

inches and L = 1/4 inch, Pa = 3600 psi. Clausing observed that for stain-

less steel the best agreement between theory and test occurred at

d = 300 x 10- 6 inches and the worst agreement occurred at d = 80 x 10-6

inches.

Since experimental data was not obtained for the case of spherical

waviness, the heat transfer data reported in Reference (12) was used to

determine the actual E2s. The dimensionless ration E 2s as determined

from pure plastic deformation, pure elastic deforrn tion, and by test are

shown plotted versus the apparent pressure. The test values of E 2s

always lie between the limiting case of plastic and elastic deformation.

It would appear from the plot of the test data that there is plastic defor-

mation present at all times, which tends to reduce the value of E2s deter-

mined from pure elastic deformation. A very small amount of plastic

deformation will presumably have a significant effect upon the value of

E2s. When E2s determined by elastic theory has values greater than 0. 10

but less than 0.40, the actual value of E2s lies about mid-way between

-59-



E 2se and E2sp (Figure 24 ). The actual values of E 2s should be correlated

with E 2se and E 2sp by considering the effects of the applied load, the

material properties, and the surface geometry.

Clausing based his analysis upon the statement that the macroscopic

constriction resistance (RL) is orders of magnitude larger than the micro-

scopic resistance (R s). In his report he has shown that R L/RS is at least

29 for aluminum and at most 156 for brass. Several investigators have

obtained experimental data which show that the microscopic resistance is

at least as great as the macroscopic resistance, and can often be larger

under certain conditions. Let us consider a stainless steel contact having

Pa = 500 psi, a = 120 x 10- 6inches, d = 300 x 10-6 inches, L = 0.25 inches.

The ratio of the wavy to rough conductance can be expressed as

f r(E 1 )/L fiJ[1 fs(E2 ) .' . h2s/h, = 2.50/. 082 x 0.25 x 80 = 1.52 and not

65 as reported by Clausing. One cannot simply say that the microscopic

conductance is orders of magnitude larger than the macroscopic conductance

as seen from the sample calculation. The microscopic conductance must be

determined for each case and compared with the macroscopic conductance

before a decision can be made to neglect the microscopic conductance.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8. 1 Discussion of Results

The contact conductance for nominally-flat,rough surfaces placed

in a vacuum can be correlated by the thermal conductivity of the metal and

by two surface parameters: the number of contact points per unit length

and the dimensionless real to apparent area ratio. Since the number of

contact points per unit length is inversely proportional to the distance be-

tween contact spots, then one can say the contact conductance is inversely

proportional to the pitch of the contact spots.

The number of contact spots can be determined by counting the

number of contact points as two linear profiles, representing the actual

surfaces, are brought together. Since the compliance of two surfaces

depends upon the material properties, the applied load and possibly the

surface geometry, one must resort to empirical information in order to

be able to correlate the number of contact spots with the applied load.

The second surface parameter necessary for the determination of

the contact conductance is more difficult to obtain by studying the inter-

action of two profiles representing the real surfaces. A full understanding

of the deformation of the asperities is necessary for the prediction of the
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real to apparent area ratio. In this work an attempt was made to determine

what this ratio would be if the deformation was strictly plastic or strictly

elastic. From an examination of the heat transfer test data it would appear

that the actual area ratio lies between the two limiting values determined by

plastic or by elastic considerations. At very light pressures it appears that

the deformation is solely plastic. When the pressure is increased slightly,

the elastic deformation begins to have an influence and the plastic criterion

is no longer valid. At very high pressures, the values of the area ratio

determined by plastic theory are larger than the values determined by

elastic theory. There appears to be a pressure at which there is a trans-

ition from a region where the elastic deformation yields the greater value

of the area ratio to a region where the plastic deformation yields the greater

value of this surface parameter.

The cylindrical waviness contact conductance is a function of the

thermal conductivity of the metals and the three surface parameters: the

pitch between the waves, the ratio of the length of the wave in the direction

of no waviness to the pitch, and the realto apparent area ratio. Test data

reveals that the area ratio is greater than that determined by plastic theory

but less than that determined by elastic theory. For particular cases where

the material is soft, the pitch is large and the flatness deviation is small,

elastic theory gives values of the area ratio orders of magnitude larger
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than determined from test. This author believes that there is a reduction in

the pressure available for the elastic deformation of the waves because of a

small, but significant, change in the real area due to plastic deformation.

This effect will be more pronounced with wavy surfaces which are rough

rather than smooth. There is a reduction in the pressure due to shearing

forces as the rough surfaces slip very slightly.

This author did not obtain test data for surfaces which had spherical

waviness. Test data from reference (12) were used to check out the contact

conductance equation which shows that the important parameters are the

thermal conductivity of the metals, and the surface parameters: the pitch

between the waves and the real to apparent area ratio.

As for the case for cylindrical waviness test data shows that the

area ratio is greater than the values determined by plastic theory but less

than values determined by elastic theory.

This author believes that the same reasoning can be applied for the

case of spherical waviness as for cylindrical waviness to explain why there

is such a discrepancy between elastic theory and test data. A full under-

standing of the effect of shear which results in some plastic deformation

is necessary before a good correlation between test and theory can be

made.
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8.2 Recommendations for Future Research

For nominally-flat,rough surfaces, empirical data relating the com-

pliance with the apparent pressure for various values of the roughness are

necessary for the theory to be complete.

Some means of introducing the effect of substratum yielding is also

necessary to enable one to determine the number of contact spots per unit

area corresponding to a particular apparent pressure.

It is evident from an examination of the interaction of two surface

profiles that for certain values of the compliance, there is a coming together

of several contact spots thereby forming one large contact spot. If this

should occur at many places over the entire apparent area, then possibly it

would have a large effect upon the actual contact conductance.

It is recommended that test data be obtained to determine the effect

of load upon the cylindrical or spherical waviness. It is necessary to know

whether plastic as well as elastic deformation occurs and how much. One

surface could be covered with a dye which can easily be transferred to the

other surface when contact occurs, and which can easily be detected upon

the second surface after contact has occurred.

A critical examination of surface profiles before and after test might

also reveal whether plastic deformation has occurred and how much of the

real area was due to this type of deformation.
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Appendix A

CONTACT SPOT DENSITY FOR NOMINALLY FLAT
ROUGH SURFACES

The real area of contact between two nominally flat rough surfaces

having a random distribution of asperity heights about a mean line can be

approximated by considering the interaction of an ideally flat rigid surface

with a nominally flat rough surface having a roughness a = o 2 + a2

where a and a2 are the root mean square deviations of surface 1 and 2.

Consider the placement of an ideal flat rigid surface upon a sur-

face having asperities with a random distribution of heights and base

angles, and the asperities are distributed ergodically over the surface.

Shown below is the ideal flat surface just coming into contact with the

rough surface (sectional view).

A_ _ __ _/

JEU

A-1



Let NI and N2 be the number of contact points per unit length in mutually

perpendicular directions I and 2. a is the standard deviation or root mean

square deviation of the heights of the asperities from a median. The maxi-

mum height of any asperity in the sample length is given by ja where j is a

factor ranging in value from 2.90 to 3. 8 depending upon the number of

asperities in the sample and the range of asperity heights. I is the interval

for which the frequencies have been determined.

For a Gaussian distribution of asperity heights the frequency of

contact spots in the 1-direction per unit length is given by

2
NI 1 u)N I - ( )

n = e 1  (A-1)

a1

where u is the distance measured from the mean line to the ideal plane.

The frequency equation can be rewritten by letting u + y = ja where

y is the distance moved by the plane, i.e., the compliance of the two

surfaces:

1 
1

N I 2

2 e (A-2)

Similarly in the mutually perpendicular 2-direction

_ 1 .[ _ y 12

N22n= e (A-3)2 -2 f

A-2



The number of asperities encountered by the ideal flat plane as it

moves a distance y is given by:

SI . y 2  1 2

NN2 1 2 1 ~2 j2 u2
n = n n2 a 2w 2 e (A-4)

In this analysis it is assumed that when y= 0, there is contact at

3 asperities, i.e., the frequency curve has been arbitrarily truncated.

For surfaces which are ergodic and have the same distribution, 11= 12'

a, c2 ' , 1 j 2 and N, = N2 '
2

N 2 12 ) en- -e

2r a

Differentiating this equation one can show that

dn 2nj y)

which is found to be important in the following analysis.

(A-5)

(A-6)

A-3



Appendix B

REAL TO APPARENT AREA RATIO FOR
NOMINALLY FLAT ROUGH SURFACES

Assume that all the asperities can be idealized as cones having

base angles whose tangents are given by ko- where o is the r. m. s. dev-

iation of all the tangents and k is a multiplier in the same sense as j in

Appendix A.

As the ideal flat plane moves a distance dy into the rough sur-

face, dn asperities are contacted and the following relation

Ay + dy = Ay + dA (B-1)

can be expressed as

2
dy)Tr (r + dr) =

2nrrr + dA

Assume radius of contact per contact spot is proportional to the displace-

ment of the flat surface, i.e.,

r = , therefore
tan 9

dr = dy
tan e

as a first approximation when tan 0 is assumed constant with y.

B-1

dn
(n + (B- 2)

(B- 3)



Neglecting terms of

dA nir

tan 0

(dy)2 and smaller

2 dy
y

+2j+4 dy - 2ydy

nTr yAy= 2
tan 0

dA 2 y
+ A dy - 2y ) dy

(B- 5)

(B-6)

(B-7)

The boundary conditions to be satisfied are at

y = 0, A = 0

and

y = ja, A = Aa (B-8)

The boundary condition (B-8) states that all the material above the

mean line has flowed into the voids below the mean line when the compliance

has reached its maximum value ju.

Solving Equation (B- 6) one can show that

A
E2 Y

a

2 .,2 e ' y ) 2

-j (

B-2

Since

(B- 4)

(B-9)



The validity of this equation has been checked with values deter-

mined by graphical means and the agreement is quite good, Figure 17.
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Appendix C

AREA RATIO-HARDNESS RELATIONSHIP FOR
PLASTIC DEFORMATION

A simple force balance gives the following relationship

dF = HdA (C-1)

where F is the applied force and H is the microhardness of the material.

Using Equation (B-6) one can write

dW = HA ( 2 dY
y y

+ 2j
oa

2 .2
A = A (-)-) e~3 (
y a jao

dy - y
2

y )2

j 7

dy) (C-2)

(C-3)

Since the slopes of the asperities are 100 or less, the hardness of

the material is approximately three times the yield strength and constant

for any asperity height (46).

Letting H be a constant one can solve Equation (C-3) to show that

w
Pa 7

= 2 -j 2(1 y )2
Hja)e j a (C-4)

C-1

but



i.e.

2 2
P = HE = 3YE (C-5)

C-2



Appendix D

ELASTIC AND PLASTIC COMPLIANCE RATIO

Consider the interaction of two smooth spherical caps having the

same radius of curvature R. The force F acts through the centers of each

cap and is perpendicular to the contact plane which is midway between the

centers-of the caps.

Assuming that the hardness of the surfaces is constant and equal to

3Y, a simple force balance gives

c 1(D1)

where c is the radius of contact.

Since the radius of contact is generally much smaller than the

radius of curvature, the compliance can be determined from

2c 2 2 [F
Cp= = 3 L_ Y (D- 2)

From elastic theory one can immediately write that

C = 1.23 F i 1/3 (D-3)e IE R

D-1



The ratio of the elastic to plastic compliance is

Ce Y R2/3p = 1.55 2Cp E 23F1/
(D-4)

For surfaces which we shall consider, the radius of curvature R

can be related to the pitch L and the flatness deviation d by using the follow-

ing relationship:

(D-5)

1. 93 E
E2/3

L4/ 3 1
(D-6)

For a stainless stee-l surface having a pitch of 1 inch and a flatness

deviation of 500 x 10-6 inches, the ratio reduces to

e 60.1

p F
(D- 7)

For a load of 100 pounds per contact, the ratio is 13.2, and this is the load

that is often encountered when surfaces are brought together under load.

D-2

C
e

Cp

WIN,

R - L2
R Tg -



Appendix E

CRITERIA FOR PLASTIC YIELDING OF
THE SUBSTRATUM

Cylindrical Waviness

From elastic theory the half width of contact for cylinders which are

of the same material, having equal radii and v = 0.3

c2 = 1.08 (E-1)

The maximum shear stress which can be sustained in the substratum

before plastic yielding occurs is

2WE 1/2
R J

(E-2)s = 0.126max

Solving Equations (E- 1) and (E- 2) and using the approximation

R = /8d, one can write

E 2 = 1. 23m
smnmax

1/2

(E-3)

where m2 = I /L as defined in the report. The substratum of the wavy

cylindrical component will yield plastically when E 2 exceeds the value

determined by (E-3).

E-1

WR11/2



Spherical Waviness

The radius of contact for two identical spherical caps composed of

the same material is

c2 I (E-4)
2[ 1/3

and the maximum shear stress which can be sustained by the substratum

is given by

s =0.12 PE 24 1/3  (E-5)
max R

solving Equation (E-4) and (E-5) with R = /8d

E = 1. 16 L max (E-6)

(E- 6) gives the value of E2 which must be exceeded before substratum

yielding is important.

It should be noted that the dimensionless number e2 which is the

criterion for whether plastic yielding of the substratum is significant,

depends upon the surface geometry and the material properties, but does

not depend upon the applied load.

Nominally Flat Rough Surfaces in Contact

The criterion for plastic yielding of the substratum of nominally

flat rough surfaces can be determined from

E-2



SC

e = 5.40 max j2 1
(tanO) o

(E-7)

This equation is the result of solving Equations (E-4) and (E-5) with the

radius of curvature approximated by

(E-8)R = ( , 2 (1 - 0
2(tanO) o

where a is r. m. s. of the roughness, tanO is the slope of the asperity,

Y 0= ju is the separation at zero load and c is the compliance.

Just as for the other two cases the criterion is based upon the

surface geometry and the material properties, but independent of the applied

load.

E-3



Table 1

Aluminum Specimens A 3 L = 0.25"

d = 1250jt in o= 60 ti in r. m.s.

A 4 L = 0.25"

d = 1300 1. in a = 57 p in r. m. s.

Date

9/16/65

9/16/65

9/16/65

9/16/65

9/16/65

9/16/65

9/16/65

Time

7:45 am

9:50 am

11:15 am

12:40 pm

2:30 pm

3:40 pm

5:30 pm

P
a

246

703

2200

3600

5900

3600

703

Temp

513

475

478

476

448

468

506

h/k

13.85

20.51

46.7

76

108.5

104

53.5

Load
Unloading

L

L

L

L

L

U

U

246 492 22.49/16/65 12:00 pm



Table 2

Stainless Steel Specimens S 3 L = 0.25"

d = 1000 ti in o = 42.5 ji in r.m.s.

S 4 L = 0.25"

d = 900 p. in a = 45.0 p. in r.m.s.

Time

11:30 am

12:50 pm

1:45

Temp

541

519

512

h/k

10.8

16.4

33.4

Loading
Uniloading

9/20/65 2:25

Date

9/20/65

9/20/65

9/20/65

P
a

246

940

2050

4400 498 62.4



Table 3

Magnesium Specimens M 3 L = 0.25"

d = 2000 in a =

M 4 L = 0.25"

d = 1800 ± in a = 62 p in r. m. s.

Time

5:30 pm

7:30 pm

8:30 am

10:30 am

12:30 pm

2:30 pm

Loading
UTloafdTing

L

L

L

L

U

U

246 470 20.0

Date

9/17/65

9/17/65

9/18/65

9/18/65

9/18/65

9/18/65

P
a

246

703

2200

3600

2200

703

Temp

500

490

500

490

485

490

h/k

12.0

18.5

50.0

80.0

68.5

40.0

55 1,in r. m. s.

9/18/65 4:30 pm



Table 4

Aluminum Specimens

200

1000

2100

3400

. 125

.321

.405

.442

L = 1 in d = 20 in

L = 1 in d = 40 iLin

L = 1 in d = 120 in

h

350

1600

3000

4500

E
2

. 185

.380

.435

.464

750

2300

4000

5900

S3-5 in r.m.s.

a 3-5 in r. m. s.

o-= 3-5 in r.m.s.

. 280

.410

.455

.483

.462 6000 .484

Pa

100

300

500

700
7700 . 495900 4750



Table 5

Stainless Steel Specimens

L = 1 in d = 40 in a= 3-5 [in r. m. s.

L = 1 in d=

E 2  h

.120 95

.275 170

.375 230

300

370

150 in a = 3-5 in r.m.s.

E
2

.134

.200

.230

.265

.294

P
a

100

300

500

700

900

h

85

325

700



Table 6

Magnesium Specimens

Pa

100

300

500

700

2100

6800

9400

L = 1 in d = 105 in

L = 1 in d = 260 in

E
2

.310

.434

.458

h

900

2200

4600

8300

0= 3-5 in r. in. s.

a 3-5 in r. m. s.

2

.20

.316

.400

.445



Table 7

Brass Specimens

Pa

100

300

500

700

360

590

790

1000

L 1 in d = 780 11in

L 1 in d = 950 in

.076

.130

.144

.173

250

405

500

650

a= 3-5 in r.m. s.

- 3-5 p in r. m. s.

.055

.110

.135

.150

INNNIIINNINIUMMINk I M 1110141111 Mwm 116111111,11 IN



Table 8

Material

Stainless Steel (303)

Leaded Brass

Aluminum (2024 T4)

Magnesium (AZ 31B)

Temp ( F)

100
300

500

100

300

500

100

300

500

100

300

500

E(psi)

29

27.6

26.5

14.2

13.0

12.5

10.5

10.0

8.5

6.5

5.5

4.2

k(BTU/hr-ft2_ o F)

x 10 6

x 106

x 106

x 106

x 106

x 106

x 106

x 106
x 106

x 106

x 106

x 106

9.0

9.8

10.6

65.0

71.0

80.0

72.5

88.0

100.0

46.0

54.0

58.5

Y(psi)

120, 000

68, 000

66,000

28,000
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PROB

VERTICAL SCALE 5mm=59.6 yin.

HORIZONTAL SCALE 5 mm= 0.00596in.

FIGURE 1a. TYPICAL SURFACE PROFILE

MEAN
LINE

I

VERTICAL SCALE

HORIZONTAL SCALE

5 mm= 59.6 pin.

5 mm= 59.6p in.

FIGURE lb. TYPICAL ASPERITY



L = 0.25"

d = 1000,in

a. = 10 0 in r. m.s.

& = 0.107 r. m. S.

FIGURE 2 WAVY-ROUGH SURFACE PROFILE
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APPARENT AREA A.

CONTOUR AREA Ac

REAL AREA Ar

I L

2c 2

FIGURE 3. CYLINDRICAL CONTACT MODEL
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FIGURE 4. SPHERICAL CONTACT MODEL
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FIGURE 5. CONTACT
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FIGURE 9. CONTACT CONDUCTANCE FACTOR FOR SPHERICAL WAVINESS
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FIGURE 17: CONTACT RESISTANCE APPARATUS



PARTS LIST FOR FIGURE 18

Top Plate

Loading Mechanism

Bellows

Upper Main Cooler

Spacer of Optional Conductivity

Transite Spacer

Upper Main Heater

Upper Heat Meter

Part No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ler

ter

ter

ler

Upper Sample

Lower Sample

Guard Ring: Upper Guard Ring Coo

Upper Guard Ring Hea

Lower Guard Ring Hea

Radiation Shield

Guard Ring: Lower Guard Ring Coc

Lower Heat Meter

Lower Main Heater

Transite Spacer

Dynamometer - Aluminum Cylinder

Lower Main Cooler



Part No.

Base Plate

Top Plate Mountings

1

2

3

4

5

6

Base Plate Mountings

1

2

3

4

5

6

(Not Shown on Figure 18 )

Adjustable Vacuum Leak

Upper Main Heater Power Feedthrough (2 Terminals)

Upper Guard Ring Heater Power Feedthrough (2 Terminals)

Upper Main Cooler Feedthrough (Inlet and Outlet)

Upper Guard Ring Cooler Feedthrough (Inlet and Outlet)

Thermocouple Feedthroughs (2 with 8 Thermocouples Each)

(Not Shown on Figure 18 )

Lower Main Heater Power Feedthrough (2 Terminals)

Lower Guard Ring Heater Power Feedthrough(2 Terminals)

Lower Main Feedthrough (Inlet and Outlet)

Lower Guard Ring Cooler Feedthrough (Inlet and Outlet)

Thermocouple Feedthrough (For Up to 8 Thermocouples)

Dynamometer Signal Feedthrough
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FIGURE 18. TEST SECTION AND CHAMBER
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FIGURE 20. WAVINESS GENERATOR



10

100 800

F2 VERSUS APPARENT PRESSURE ALUMINUM

200 300 400 500 600 700
P0 (psi)

FIGURE 21.,



CDlcmJ

10-

-2
10

100 800

APPARENT PRESSURE STAINLESS STEEL

200 300 400 500 600 700
P0 (psi)

FIGURE 22. c2s VERSUS



I I I I I I

---- ELASTIC DEFORMATION

TEST DATA REFERENCE (12)

TABLE 7

- e- -

-1.

10-

PLASTIC DEFORMATION

10
100 200 300 400 500 600 700 800

Pa (psi)

F2 s VERSUS APPARENT PRESSURE MAGNESIUMFIGURE 23.



4n

-210
100

E Es VERSUS APPARENT PRESSURE

200 300 400 500 600 700 800
Pa (psi)

FIGURE 24. B RASS



1 | 1 1 I 1 | l L

I I I I I i i I I I I I i ii I
1,000

Pa (psi)

10,000

FIGURE 25. CONDUCTANCE VERSUS APPARENT PRESSURE STAINLESS STEEL

cl

100

I I I I I I I I



I I I I 1111 I I I I III

I I I I I I I I l i i i I I l ii
1,000

P0 (psi)
10,000

FIGURE 26. CONDUCTANCE VERSUS APPARENT PRESSURE ALUMINUM

*
IcuJ

IO3
10 0

I i I I I I I

I I I I I I I IL_

I I I I I I I I



I ~4 I I I I liii I I I lulL

sLL

0 $

I I I I 11111 I I I I I I I I
1,000

Pa (psi)

10,000

FIGURE 27. CONDUCTANCE VERSUS APPARENT PRESSURE STAINLESS STEEL

102
100

10 4 I I I I I I I

10

I I I I I I I I



104 I I I I I I I L

0

c)J

I Ir I 1 1 1 11 I I I I liii
1,000

Po (psi)
10,000

FIGURE 28. CONDUCTANCE VERSUS APPARENT PRESSURE MAGNESIUM

lo02
100

I I I I I I I I I

I I I I I I I I



102

TV

E

I0

10 210 3 10 4

Po (PSI)

FIGURE 29. HEAT TRANSFER COEFFICIENT VERSUS APPARENT PRESSURE



02

0.1 0.2 0.3 0.4 0.5
C/Y.

0.6

FIGURE 30. APPARENT PRESSURE VERSUS COMPLIANCE RATIO

oil



- STAINLESS STEEL SURFACES

V REFERENCE (19)

0 REFERENCE (4)

0.1 0.2 0.3
C/Yo

APPARENT PRESSURE VERSUS COMPLIANCE

i04

10'

I /
I I
( /
/

/

(I
/

/

4/,
/

0.4 0.5 0.6

RATIOFIGURE 31.



10

0..2

E

10

Po (PSI)

COEFFICIENT VERSUS APPARENT PRESSUREFIGURE 32. HEAT TRANSFER


