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Abstract

This thesis explores the impacts of neighborhood form and location on household transportation
energy use in the context of Jinan, China.

From a theoretical perspective, energy use is a derived outcome of activities, and households

choose their travel patterns to maximize net utilities subject to constraints of time, budget and

means. Neighborhood features presumably could 1) in the short-term directly influence

households' choices of their travel patterns by changing incurred trip costs (disutilities) and

realization benefits (positive utilities) among alternatives; 2) in the long-term indirectly influence

patterns by affecting households' attitudes and their choices of vehicle ownership, both taken

into account in the short-term utility maximization process. However, due to other complicating
interactions among different aspects of travel patterns and other factors (e.g., housing choice),
we cannot a priori determine what the impact of neighborhood on household travel energy use

will be.

This research takes an empirical approach to examining the relationship between the

neighborhood and household travel energy use in Jinan, China, using 9 neighborhoods

representing four different urban form typologies commonly found in Chinese cities:

"traditional", "grid", "enclave", and "superblock." Data on neighborhood forms and households

are obtained from visual survey, GIS digitalization and a household survey. Household transport

energy uses (and greenhouse gas emissions) are derived from self-reported household weekly

travel diaries. Descriptive analysis, multivariate regression analysis (i.e., OLS, TOBIT), and

advanced two-step instrumental models (i.e., LOGIT+OLS/TOBIT) are employed.

Results show that, all else equal, households living in the "superblock" neighborhoods consume

more transportation energy than those living in the other neighborhood types, as they tend to own



more cars and travel longer distance. The proximity to transit corridors and greater distance from
the city center also apparently increase household transport energy use, although both impacts
are somewhat minor, partially due to offsetting effects on car ownership. A number of effects of
household socioeconomics, demographics and attitudes on transport energy use and car
ownership are also identified.

Overall, the analysis suggests that to help chart a more energy-efficient Chinese urban future,
policymakers and urban designers should examine past neighborhood designs in China to find
alternatives to the "superblock", focus on strategic infill development, possibly encourage e-bike
use as substitute to larger motorized vehicles, improve the efficiency of public transport, and
examine preference-shaping possibilities to influence more energy efficient lifestyles.

Thesis Supervisor: P. Christopher Zegras
Title: Assistant Professor, Department of Urban Studies and Planning

Thesis Reader: Jinhua Zhao
Title: Research Scientist, Department of Civil and Environmental Engineering
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1 INTRODUCTION

This thesis examines whether neighborhood form typology, size and location could affect

households' transportation energy use; and if so, to what extent. The research is based on

analysis of 9 neighborhoods in Jinan, the capital city of Shandong Province in China.

Section 1.1 presents three emerging trends in China that motivate this research; section 1.2

introduces broader research context of the thesis, as embedded in a broader "Making the Clean

Energy City in China" collaborative research project; section 1.3 and 1.4 presents the main

research objectives and research questions, respectively; section 1.5 describes the research

approach including the choice of Jinan as the case study; section 1.6 concludes with the thesis

structure.

1.1 Motivation

1.1.1 Rocketing Transport Energy Use in China: A Challenge

The transportation sector accounts for 22% of primary energy use and 27% of CO 2

emissions in the world as of 2004, and is expected to be the most rapidly growing source over

the next 30 years (de Ia Rue du Can & Price, 2008). In the developing countries, transportation

energy use will grow at 2.7% per year from 2006 to 2030, a rate 8 times higher than the

projected rate for OECD countries, and the use of fuels in the non-OECD transportation sector as

a whole will nearly double over the period (International Energy Agency, 2009)

In China, the trend is more pronounced. Thanks to ongoing economic growth, urbanization

and changing consumer lifestyles, oil consumption by Chinese road transport has increased by

9% per year between 1995 and 2005 (see Figure 1-1), currently consuming about 30% of the

total national oil consumption (He, et al., 2005). In the next decades, demand is projected to

continue to increase at an annual rate of 6% under current trend, triggering a quadrupling

increase in oil consumption in 2030 and accounting for more than two-thirds of the overall

increase in national oil demand (He, et al., 2005; International Energy Agency, 2007)



This rocketing transport energy use adds uncertainty to China's future growth, because the

country has relatively limited petroleum resources compared to other energy sources like coal.

Measured on a per-capita basis, the petroleum reserves in China presented 4.3% of the world

average in 2000 (Chen & Wang, 2007). As China becomes more mobile, the transportation

sector's petroleum consumption poses important energy security problems. In addition, the rapid

increase in greenhouse gas (GHG) emissions from the transport energy use creates big

challenges for China, the largest carbon emitter in the world as of 2007, in working to mitigate

climate change risk.

Figure 1-1 Transportation Energy Sources and Consumption in
coal equivalent)

China (1990-2004) (in 10K tons of standard

Source: Chen & wang(2007), p. 11

1.1.2 Supply-Side Mitigation Strategies in China: An Inadequacy

The Chinese government has recognized the challenge in the transport sector and committed

to make changes mainly through introducing alternative fuels and regulating vehicle fuel

economy. For example, since 2002, China has been promoting ElO (10% bio ethanol and 90%

gasoline blend by volume) as an alternative transport fuel; China is now the third largest

fuel-ethanol producer in the world (Yan & Crookes, 2009). In addition, China has adopted the

Euro-4 tailpipe emissions standard in major cities to restrict exhaust emissions of new vehicles



sold in the market. Very recently, the Chinese government and the private sector have

emphasized electric car technology development (Bradsher, 2009).

Unfortunately, recent empirical studies in Chinese cities suggest that gains in vehicle

technology or fuel improvements in the past have been overwhelmed by underlying changes in

travel behavior and life-style, leading to rapid overall increases in energy use and GHG

emissions (Darido, et al., 2010), as shown in Figure 1-2. China is currently the world's largest

automobile market, and the vehicle fleet population is projected to grow by some 230 million

between 2006 and 2030, to reach almost 270 million (International Energy Agency, 2007). While

the alternative fuel and vehicle economy efforts are necessary and important given that so much

of the vehicle fleet is "yet to come", the relatively slow turn-over of the vehicle fleet and

ever-changing technology may significantly delay the incorporation of a large amount of

"greener" cars operating on China's roads.

In the face of similar situations faced by other countries, an increasing consensus among

international scholars seems to be emerging that a single technological fix will not resolve the

complex transportation energy use and greenhouse gas (GHG) problem; efforts from different

fields are warranted (Guan, et al., 2008; Mui, et al., 2007; Pacala & Socolow, 2004; Wright &

Fulton, 2005; Zeng, et al., 2008). As Ewing, et al. (2008) note, the objective of reducing

transportation energy or GHG emissions "can be viewed as a three-legged stool, with one leg

related to vehicle fuel efficiency, a second to the carbon content of the fuel itself, and a third to

the amount of driving or vehicle miles traveled (VMT) (p.1)." Those authors further note, in the

U.S. context, that relevant policy initiatives "have pinned their hopes almost exclusively on

shoring up the first two legs of the stool, through the development of more efficient vehicles

(such as hybrid cars) and lower-carbon fuels (such as biodiesel fuel)" and that "a stool cannot

stand on only two legs" (Ewing, et al., 2008; p.1). A somewhat similar situation seems to exist in

China, where the energy and climate initiatives in the transport sector have primarily been

supply-oriented. Thus, to make sure the stool does not "fall over" and to solve the deteriorating

energy problem in China, an increasing focus must explicitly target the demand side, or the third

leg of the stool, to manage transportation energy use.



Figure 1-2 Change in Major Urban Transport Drivers in 14 Chinese Cities

Cumulative Change
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1.1.3 Urban Form and Design to Reduce Travel Demand in China: A Potential

In the US and Europe, many have argued that urban growth management can be an effective

way to shape people's travel behavior towards less energy-consuming patterns. On the other

hand, skeptics argue that urban development's impact on travel demand and energy use can be

limited not only because it is difficult to achieve in practice, due to relatively weak policy

leverage from local governments, but also because cities in developed countries are already

largely built up with an auto-oriented structure, with an auto culture already dominating society

(Pickrell, 1999). By this argument, from a cost-effectiveness point of view, taxing fuel would be

a much simpler, faster, cheaper, and more effective policy instrument than rearranging

metropolitan areas and/or major investments in transit (Gordon & Richardson, 1989).

China, however, is different. China is still experiencing rapid urbanization, a trend likely to

continue for decades. A projected 350 million or more Chinese will move to the city in the next

15 years and the urbanization rate will increase to 60% by 2025, from 46% in 2010; at that time,

there will be 221 Chinese cities with more than one million people (McKinsey & Company,

2009). If travel demand can indeed be reduced through intervention in the urban built

environment, there is much larger scale-up potential for China than in developed countries to

intervene in the form of urban development in order to purposefully influence travel behaviors

and outcomes in the latter half of her urbanization process.

In addition, compared with many developed countries, Chinese city governments have

relatively strong control over local urban development patterns through their institutional settings

and public ownership to urban land. The recent heavy investment in urban infrastructures (e.g.,

subway lines, bus rapid transit systems, etc.) as a component of the national stimulus package

has made urban growth patterns (e.g., transit oriented development) advocated by many in the

west look feasible and promising in future China.

Unfortunately this opportunity for China has not been quite recognized. Instead, on the one

hand, auto-oriented neighborhood development (e.g., the so-called "superblock" development)

dominates current urban expansion and construction (Cervero & Day, 2008; Monson, 2008); on

the other hand, there have been very few empirical studies supporting alternative urban growth

patterns in China from the energy perspective. Although the neighborhood serves at the spatial

unit of intervention, planning, and institutional organization, transferring western policies and

design standards directly to China without careful adaption is viewed as risky and problematic by



local leadership given the much different social, cultural and institutional context. For example,

the existing neighborhood density in China already greatly exceeds any density level considered

in US development today. Even if the transit-oriented development (TOD) concept, for example,

is favorable, what kind of TOD we should pursue is still an urgent question. This cannot be

answered without empirical investigation in the local context.

1.2 Thesis Context: "Making the Clean Energy City in China"

This research is a component of the "Making the Clean Energy City in China" project,

sponsored by the China Sustainable Energy Program of the Energy Foundation-Beijing Office.

The overall project aims to create new physical models of urban development as well as new

analytical models to understand potential paths towards, and impacts of, alternative urban growth

patterns from an energy efficiency perspective. The collaborative project involves a number of

institutions in China and the USA, including:

" The Transportation Planning & Design Research Center, Shandong University

" The School of Geography and Remote Sensing, Beijing Normal University

" The School of Architecture, Tsinghua University

" The School of Environmental Science, Tsinghua University

" The Lawrence Berkeley Laboratory

" The School of Architecture and Planning, MIT

One of the tasks of the project focuses on deepening our knowledge of the "state of the

context"- the relationships between urban design and energy consumption in the Chinese city.

This work includes: (1) general data collection on the city, including energy consumption,

building types, etc.; (2) the development of typologies of urban development in the city, utilizing

GIS and other available data; (3) selection of a limited number of comparison sites that represent

some of the typologies identified in (2); (4) implementation of a survey of households in the

selected comparison sites, to collect data on energy use, travel behavior, etc.; (5) utilization of

statistical methods and models to quantify the apparent relationship between urban design and

energy consumption in the city. This thesis contributes directly to the sub-task (5), focusing

specifically on household transport energy use and GHG emissions, while a brief description of

previous tasks is also provided in Chapter 4 and Chapter 5.



1.3 Research Objectives

The main objective of this research is to improve our understanding of the link between

urban development at the neighborhood scale and household passenger transport energy use in

China. Specifically, we aim to quantify the energy reduction potentials from alternative

neighborhood locations and patterns based on empirical evidence.

1.4 Research Questions

The research objectives above can be grouped into two corresponding categories of research

questions.

Question 1: Neighborhood location features

Do neighborhoods near the city center or adjacent to transit corridors result in less

household transportation energy consumption? Should we encourage infill development and

concentrate urban development along transit corridors to reduce energy use?

Question 2: Neighborhood design features

What are the representative neighborhood forms in today China? Controlling for

socioeconomics, demographics and household attitudes, to what extent does transport energy use

vary across those different neighborhood forms? Should we build cities in future as the way we

build now in China (i.e., the "superblock"-like development), or should we look for alternatives

from an energy efficiency perspective?

1.5 Research Approach

In an attempt to answer the above questions, in this thesis I employ a research approach that

can be characterized as: an empirical study with a micro-level urban form focus, using statistical

techniques guided by activity-based econometrics.

First, empirical data were collected on both micro-level neighborhood features (location,

form, size) and households' characteristics in Jinan, China. The city of Jinan was chosen because

1) it represents middle-size Chinese cities (as opposed to Beijing and Shanghai) cities which are

drivers of China's increasing energy demand yet which have been rarely studied in the literature;

2) the city has recently implemented bus-rapid-transit (BRT) corridors, allowing examination of

the transit-corridor effect on household transportation energy use; and 3) survey data in Jinan

were available from local partners of the collaborative research project funded by the Energy



Foundation China. The survey data were collected from 2629 households in 9 different

neighborhoods which were, ex-ante via visual surveys and geographic information system (GIS)

analysis, determined to represent four distinct typologies (i.e., "traditional", "grid", "enclave"

and "superblock").

Second, an activity-based econometric behavior framework was developed to guide the

analysis of household travel energy use. Techniques used include: descriptive statistics,

single-stage multivariate regression models (i.e., OLS, TOBIT), and two-stage instrument

models (i.e., LOGIT + OLS/TOBIT) incorporating household vehicle ownership choice models

with instruments. Due to the nature of the data and the complexity of the research questions, the

statistical techniques deployed attempt to control for various influencing factors and statistical

challenges (e.g., endogeneity) and make it possible to strengthen the inferences. For more details,

see section 5.6.

1.6 Thesis Structure

The thesis is organized as follows (see Figure 1-3).

In Chapter 2, I summarize key neighborhood design principals advocated by urban

designers and others to change travel behavior towards lower travel energy use. I then review

empirical findings and methodologies employed in selected studies of district and neighborhood

form-energy use relationships. Finally, I discuss specific issues regarding research

operationalization and data constraints in the Chinese context.

In Chapter 3, I introduce the theoretical behavioral framework for understanding the

relationship between neighborhood urban form and household travel behavior and energy use.

The framework draws from existing travel demand theory, especially utility theory, specifically

combining the cost-based approach and activity-based approach to understand how

neighborhood characteristics and other factors may influence household transportation energy

consumption. Finally, I conduct a series of comprehensive and detailed analyses to illustrate the

complicated implications of some advocated neighborhood interventions on household travel

behavior and energy use.

Chapter 4 describes the Jinan city context, the ongoing bus-rapid-transit (BRT) corridor

development, and the representative neighborhood forms in the city.



Chapter 5 introduces the detailed research design in this thesis in terms of the neighborhood

sampling approach, household data collection, and the general econometric techniques employed

and related issues.

In Chapter 6, I perform descriptive analysis based on the neighborhood form and household

data. Specifically, I conduct cluster analysis on the 9 neighborhoods using derived form

measures. I also compare household attribute, travel patterns and associated energy use and

emission across the four neighborhood types.

Chapter 7 presents the quantitative analysis of the relationship between urban form and

household energy consumption. Specifically, I present a number of econometric models

examining the relationship between neighborhood typology, size, location features and

household transportation energy use. Two-stage instrumental models are employed to identify

that relationship meanwhile controlling for confounding effects from household attributes and

others. Marginal effects of neighborhood features on household transport energy use are

estimated.

In Chapter 8, I summarize the policy and planning implication of the findings, discuss

research limitations, and suggest directions for future research.

Figure 1-3 Thesis Structure
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2 LITERATURE REVIEW

Chapter 1 discussed the urgent need for, and potentials to, incorporate better spatial

planning and design, particularly at the micro/neighborhood development scale, into mitigation

strategies on urban transportation energy use and GHG emissions in the context of China's

urbanization and motorization. While such a concept is new to China, similar claims have been

made by urban planners (e.g., the "New Urbanists") in developed countries for a long time.

In the field of empirical research (as opposed to simulation studies) at the neighborhood

scale, there have been two main groups of efforts: 1) direct assessments on the relationship

between neighborhood design and explicitly measured household transportation energy use or

emissions; and 2) indirect assessments via examining whether and how neighborhood features

can influence people's travel behaviors, especially car driving and transit use. Does such

relationship indeed exist? Unfortunately, research results accumulated to date support both sides

of the argument; a debate over the effectiveness of neighborhood design strategies continues

among urban designers and transportation planners.

This chapter reviews the literature to examine why this has been the case and how the

situation is changing, and the implications for future empirical research in China. The chapter is

organized in four sections. In section 2.1, we begin with a background section summarizing key

neighborhood design principles advocated by urban designers to achieve travel energy and

emissions reductions. In section 2.2, I discuss analytical approaches that have been employed in

empirical studies in developed countries, the results from those studies, and lessons we can draw.

In section 2.3, I scan relevant empirical precedents in China, accompanied by comments on their

research findings and methodological limitations in the China context from an energy

perspective. Finally, section 2.4 provides a summary.

2.1 Neighborhood Features for Transport Energy Reduction: Advocates from Designers

The evolution of concepts for creating walking/transit-friendly neighborhoods, which imply

reducing car use and, presumably, energy consumption, can be traced back to the inception of



urban planning profession. In the late 1800s, the British urban planner Ebenezer Howard

proposed the "Garden City" model for British cities. The idea was to establish self-sufficient

communities linked by rail transit, with each community of approximately 6,000 acres housing

no more than 30,000 people and providing most services within walk distance (Howard, 1902).

In 1929, the American planner Clarence Perry advocated the "Neighborhood Unit" model with

the concept of housing 6,000-10,000 inhabitants and centering elementary schools in the

community with major roads bounded, so that children could safely walk to school without

crossing them (Perry, 1929). Both models were partly implemented in practice evidenced by, for

example, the Radburn (New Jersey, USA) development in the late 1920s (Lee & Ahn, 2003).

From the transport energy use perspective, Howard's and Perry's neighborhood design models

seem inherently associated with lower travel energy consumption, since they were devised with

the intention of promoting a community-based lifestyle by providing good walking accessibility

within the neighborhood. .

During the post-World War II era, however, suburban development, characterized by

single-use, low-density residential buildings and auto-oriented street configurations, dominated

the urban growth pattern and automobile use boomed in the United States (Zegras, 2005).

Aiming at breaking this urban growth pattern and mitigating its negative impacts on the society

and environment, a number of architects, urban designers, and advocates have brought a series of

alternative concepts, as will be discussed below.

Within this general school of thought, New Urbanism has become perhaps the most popular

planning idea since the 1980s and 1990s. Espoused by architects Peter Calthorpe and Andres

Duany, the "New Urbanist" model is characterized by features including medium-density,

mixed-use, human-scale and pedestrian-focused design, to discourage car use and encourage

walking and transit (Katz, et al., 1994).

In a similar vein, Traditional Neighborhood Development (TND) is another comprehensive

planning model with similar characteristics (Figure 2-1): a grid-like street network;

higher-density residential uses surrounding retail, recreational, and governmental uses; better

accessibility to retail and transit; and pedestrian-friendly neighborhoods (Aurbach, 2005; Duany

& Plater-Zyberk, 1992; Katz, et al., 1994). Planners have claimed that the TND neighborhoods

can utilize shorter trip lengths, promote better traffic flow, reduce the number of vehicle trips



(Horsley Witten Group, 2007), and therefore presumably perform well in terms of transportation

energy efficiency and pollution reduction.

Figure 2-1 A Comparison of "Conventional" Suburban Development and "Traditional" Neighborhood
Development

A. Conventional Suburban Development
Development

ftj' _

B. Traditional Neighborhood

Source: Boamet & Crane (2001), p.42

In some sense building on the New Urbanism and TND, transit oriented development

(TOD) generally refers to higher-density development which sets pedestrian priority and locates

within easy walking distance of a major public transit station. It has been argued that TOD can

contribute to energy efficiency and emission reduction in that it can increase transit use and

reduce automobile trips and vehicle miles traveled (VMT) (Evans Iv & Pratt, 2003). For

example, the California Air Resource Board used a hypothetical simulation approach (as

opposed to empirical analysis) and estimated that TOD would produce a 20 to 30 percent

reduction in household VMT as compared with non-TOD households, resulting in a

corresponding reduction in greenhouse gas emissions of 2.5 to 3.7 tons per household per year

(Arrington, et al., 2002).



Table 2-1 Post-World War 11 Neighborhood Design Principles Claimed to Reduce Transport Energy
Consumption or Automobile Use

Density Diversity Design Location
New Urbanisma - Medium-density - Mixed-use - Pedestrian focus - Transit-friendly

Traditional - Compact v Variety of * Provide a * Present and future
neighborhood development housing types network of modes of transit
development and land uses paths, streets and
(TND) b lanes suitable for

pedestrians and
vehicles

Transit Oriented * Higher-density * Mix land uses Pedestrian Within easy
Development development priority walking distance
(TOD) ofof a major public

transit station or
stop(s)

a. Katz, et al. (1994)
b. Aurbach (2005)
c. Evans Iv & Pratt (2003)
Note: Design principles for non-transport energy reduction are not listed.

Table 2-1 summarizes the neighborhood concepts and standards underlying the new

urbanism, TND, and TOD. While the names are different, all three concepts converge to similar

basic design principles, namely to have relatively high density, mixed land uses, a

pedestrian/bicycle friendly environment, and a "smart" location close to transit services.

Designers expect that neighborhood developments with such features will promote alternatives

to driving and thus reduce demand for car-mobility and its associated energy use and emissions.

Various design-oriented tools have emerged which attempt to rate neighborhood-level

developments, following the school of thought summarized in Table 2-1. For example, the

LEED-ND certification program (Leadership in Energy & Environmental Design for

Neighborhood Development) was launched in 2006. The program creators (the US Green

Building Council, the Natural Resources Defense Council, the US Environmental Protection

Agency, and the Congress for the New Urbanism) stated that the LEED-ND program will

facilitate neighborhood development practices that can achieve less automobile dependence (US

Green Building Council, 2007).

2.2 Empirical Precedents in the Developed Countries

Although urban designers seem to share similar neighborhood design strategies for reducing

car use and energy consumption, there might be "a mismatch between what we know about



travel behavior and what we need to know to evaluate the transportation goals of urban

designers" (Boarnet & Crane, 2001; p. 1 1). In the past decades, numerous studies have been

conducted in the developed countries using empirical data to test whether those claims from

urban designers are true or not, and to what degree. Unfortunately, and maybe surprisingly,

studies accumulated to date appear to show that identifying a direct connection between the built

environment and people's travel behavior (and the associated energy use and emissions) remains

elusive (Boarnet & Crane, 2001; Guo, et al., 2007; Pan, et al., 2009).

2.2.1 Empirical-analytical Methods

Comparative analysis, multivariate-regression analysis and advanced methods are among

the most widely used approaches applied in the field of empirical research. The more advanced

the method, the more data-hungry and sophisticated the modeling techniques become.

a) Comparative Analysis

Comparative analysis simply compares observable facts of travel behavior or energy

consumption patterns in different neighborhood settings, directly showing what is happening at a

particular place at a particular time. This approach was more favored in the early stage of

empirical research in the field (Cervero & Gorham, 1995; Dagang & Loudon, 1995; Friedman, et

al., 1994), although it was also applied in some recent studies (VandeWeghe & Kennedy, 2007).

In terms of the scale of data, the urban form data were often collected at the neighborhood level.

Identification of neighborhoods could be: 1) pre-determined by existing data sources (census

tract, traffic analysis zone, census block group, etc.); 2) standardized via assigning a buffer area

(e.g., a 400m by 400m grid) for each household sample; or 3) based on relative homogeneity

among a range of form attributes. The first two are more of operational convenience. Examples

of the third approach are shown in Table 2-2, which involves somehow arbitrary neighborhood

definition. In terms of the travel energy/emission/behavior data, information from individuals or

households was aggregated to the neighborhood level before cross-comparison.



Table 2-2 Neighborhood Typologies and Characteristics in US Travel Behavior Studies

Source Auto-Oriented Neighborhood Transit-Oriented Neighborhood

Sasaki Associates (1993)

Friedman et al. (1994)

Cervero and Gorham
(1995)

Handy (1995)

Started construction after 1910
auto-oriented from outset
single land use
branching street system

Developed since the early 1950s
Segregated land uses
well-defined hierarchy of roads
access concentrated at a few
points little transit service

laid out and built after 1945
laid out without regard to transit
primarily random street pattern
lower density

Irregular curvilinear street
networks
strip commercial
commercial areas outside
walking distance

Source: Ewing & Cervero (2001), p. 88

started construction before 1910
transit-oriented in initial stages
mix of land uses
interconnected system of streets

developed prior to WWII
mixed-use commercial district
neighborhoods close to
commercial uses
interconnecting street grid

laid out and built before 1945
initially built along a transit line
primarily gridded street pattern
higher density

regular rectilinear street networks
main street commercial
commercial areas within walking
distance

There are two main drawbacks of this method. First, comparative analysis tends to use

aggregated travel data for direct comparison (comparing household by household is impossible),

which makes the isolation of effects from any underlying disaggregate factors and the

exploration of the urban form- travel pattern dynamics difficult (Handy, 1996). Second, findings

using this approach are often challenged of the failure in effectively filtering out

non-neighborhood factors (e.g., income) which also are believed to be crucial in affecting travel

behavior patterns, associated energy use and emissions.

b) Multivariate-regression Analysis

Relevant multivariate-regression analyses typically involve ordinary least square (OLS),

logitistic regression (LOGIT), TOBIT and/or other modeling techniques, in which confounding

factors such as household socioeconomics and demographics are brought directly into the

analysis for statistical control. Disaggregated neighborhood form elements represented in the

models are sometimes grouped into three dimensions: density, diversity, and design (Ewing &

Cervero, 2001). Although the multivariate-regression approach is effective in controlling for

potentially confounding effects (e.g., due to socioeconomics and demographics), the approach



still poses challenges in establishing causality, due to the data type (e.g., lack of data on

attitudes) and analytical approach (e.g., cross-sectional) typically employed. This problem has

become widely referred to as the "self-selection" problem (e.g., see Mokhtarian and Cao, 2008).

c) Advanced Methods

More advanced methods and data have been applied to the urban form-travel behavior

analysis field in recent years, mostly to address the "self-selection" problem and thereby attempt

to strengthen claims that the built environment actual causes measurable differences in travel

behavior. Instrumental variable models, sample selection models, joint discrete choice models,

structural equations models, and/or models using longitudinal data are among the relevant

advanced models. For detailed discussions, comparisons and evaluations of these modeling

techniques, readers can refer to Mokhtarian & Cao (2008).

Figure 2-2 An Example of a Structure Equations Model

MEASUREMENT MODEL
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.......I.............................. . . . . . . .K: Density
Dierit LAND USE - - - - - - - - - - - - --------

(X1)

Dein-distance e
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e4 Education tr

Jobstatu.ECOOMIC 
e6 STATUS I

Income (X2)

STRUCTURAL MODEL

Source: Van Acker, et al. (2007), p. 342

2.2.2 Results

Some studies directly assess the links between neighborhood characteristics and transport

energy use or emissions. Section a), below, reviews these in some detail and Table 2-3

summarizes them. Other studies more indirectly assess such a link by looking at elements of



energy-related travel behavior' (e.g., travel distance or VMT, frequency, mode choice, etc.).

Section b), below, reviews some of those studies and literature reviews that exist (Ewing &

Cervero, 2001; Handy, 2006; Zegras, 2005) and Table 2-4 summarizes them.

a) Energy/ emissions specific studies

Cheslow & Neels (1980) provided one of the first studies to explicitly investigate

neighborhood form and location effects on travel energy use. They conducted multivariate

regressions based on aggregate travel data from eight metropolitan areas in the United States.

Energy use by urban passenger transportation was found to be lower with some development

patterns than with others. Specifically, it was estimated that a tripling of neighborhood densities

would reduce fuel use by 24% due to declining auto trip rates and travel distances (Cheslow &

Neels, 1980).

Naess & Sandberg (1996) collected journey-to-work travel information of 485 employees

from six companies in the Greater Oslo region, Norway. Multivariate regression analysis based

on those disaggregated individual travel data was performed. The authors found that employees

working in peripheral, low-density areas use considerably more energy in commuting than those

working in central, high-density areas. Statistically, controlling for car ownership and income

(but not density), an additional energy use of 73 percent, or 1640kWh was estimated for an

outer-area worker in his/her commuting trips annually (Naess & Sandberg, 1996).

Travel behavior studies that focus exclusively on physical activities (e.g., walking, biking) are not included

in the literature review since their energy consumption is considered negligible in this context, although we

recognize there exists a possible link between physical activities and fuel-based travel patterns.



Table 2-3 Empirical Evidence from Transport Energy Use/ Emissions Specific Studies

Higher Higher Better Smarter TOD-
Impacts onH Methodology Context Source

Density Diversity Design Location Overall

Less travel energy use Regression/ Aggregate 8 metro areas, US Cheslow & Neels (1980)

Less travel energy for commuting trips Regression Greater Oslo, Norway Naess & Sandberg (1996)
Disaggregate

Less vehicle emission (NOx, VOC, CO) i Puget Sound, US Frank, et al (2000)
Disaggregate

Less household transport energy use X X Regression Greater Oslo, Norway Holden & Norland (2005)
Disaggregate

Less annual eco-footprint on commute Regression/ Aggregate Barcelona, Spain Muniz & Galindo (2005)

Less per capita full-lifecycle

transportation-related GHG emissions and 4 Comparative/ Aggregate Toronto, Canada Norman, et aL. (2006)

energy use for auto, transit and light trucks)

Less per capita GHG emissions from transport 4Comparative/ Aggregate Toronto, Canada VandeWeghe & Kennedy (2007)
operations for auto and transit

Less household total auto emissions (CO, Regression/ Charlotte, US Yasukochi (2007)

NOx, HG) Disaggregate

Regression!
Less vehicle emissions (CO 2) 4igregate Nationwide, US Emrath & Liu (2008)Disaggregate
Less motorized energy 4 4 4 4 Regression/

Less energy burned from walking X 4 X X Disaggregate

Notes:

"Smarter location"- close to the city center (CBD) or a major transit station

"TOD"- transit-oriented development or a compact neighborhood development pattern



Frank, et al. (2000) explored the relationship between census-tract-measured urban form

and automobile emissions (nitrogen oxides, volatile organic compounds, and carbon monoxide)

within the Puget Sound region, US. Disaggregated household emission data were estimated from

detailed local travel survey data using emission rates from MOBILE5a and separate engine start

rates. Multivariate regression analysis was also adopted for controlling effects of income, vehicle

ownership, and household size. Results showed that household density, work tract employment

density, and, in the case of nitrogen oxides, street connectivity (census block density) were

significantly and inversely correlated with vehicle emissions (Frank, et al., 2000).

Holden & Norland (2005) conducted surveys in eight residential areas in the Greater Oslo

Region, Norway, the same area that Naess & Sandberg (1996) previously studied. The research

performed similar multivariate regression analysis while using disaggregated household data.

They found that the total household energy use decreases as density reaches a certain point, yet

at higher density levels the total energy use increases. This effect is different from the workplace

density effect identified in Naess & Sandberg (1996). The more recent research also found an

interesting interaction between households' everyday travel and leisure-time travel: for example,

residents living in high-density areas compensated for the energy savings from everyday travel

by having more leisure-time travel by plane (Holden & Norland, 2005).

Muniz & Galindo (2005) measured ecological footprints of commuting in the Barcelona

Metropolitan Region (BMR), Spain for its 163 municipalities, considering the energy used in

traction, vehicle manufacturing, the construction and maintenance of transport infrastructures,

and the land occupied by those infrastructures in each municipality. Multivariate regression

analysis using aggregated ecological footprint data was performed to control for average

household income and job ratio (per capita employment) at the municipality level. Net

population density was found to be negatively associated with ecological footprints. Conversely,

distance to center and distance to transport axis were found to have significant positive effects. In

general, urban form factors explained more of the variability of ecological footprints among

municipalities than socioeconomics did (Muniz & Galindo, 2005).

Norman, et al. (2006) assessed energy use and GHG emissions (including transportation

operations from light duty vehicles and public transit) associated with high and low residential

development in the City of Toronto, Canada, using input-output life-cycle assessment

"EIO-LCA" model. Through a comparative analysis at this aggregated scale, it was found that



per capita transportation energy use and GHG emissions associated with low-density

development was 3.7 times higher than the high density development; and the difference were

mainly from automobile use accounted for more than 90% of total transportation energy use

(Norman, et al., 2006).

VandeWeghe & Kennedy (2007) also focused on the City of Toronto, comparing GHG

emissions (including auto and transit operations) among 832 census tracts, a more refined, yet

still aggregate, scale than that in Norman, et al. (2006). They also followed a comparative

approach, and found that the top ten tracts in terms of GHG emission were all located in

low-density tracts on the outskirts, with their high emissions largely due to private auto use

(VandeWeghe & Kennedy, 2007). In both analysis of Norman, et al. (2006) and VandeWeghe &

Kennedy (2007), no socioeconomics or demographics were controlled for.

Yasukochi (2007) estimated a series of multivariate-regression models to analyze the affect

of neighborhood design (measured at the census block group) using disaggregated household

total automobile emission data (CO, NOx, HC) in the Charlotte, North Carolina metropolitan

area. The study found that the most important land use variables in the models were median

distance of houses within the block group to the central business district as well as local/regional

accessibility. Other land use variables were either statistically insignificant or very weak in terms

of their marginal effects (Yasukochi, 2007).

Emrath & Liu (2008) analyzed the effects of subdivision compactness and location on

transportation CO 2 emissions in the United States. In estimating disaggregated household travel

emissions, the study used VMT, the efficiency of the vehicles owned, and the efficiency of the

speed with which vehicles are driven, all information extracted or derived from 2001 US

National Household Travel Survey. Multivariate regression models were further applied and

showed that controlling for household attributes, CO 2 emissions were lower in denser

developments primarily due to reductions of VMT, even though vehicles were driven at less

efficient speeds (Emrath & Liu, 2008).

Frank, et al. (2009) studied the effect of regional accessibility and local walkability on the

personal energy consumption pattern of in the Atlanta region, USA. The disaggregated energy

consumption for both motorized travel and walking were derived from household 2-day travel

diaries of 10,148 residents. Neighborhood forms were measured in GIS based on a 200-m grid

around each participant's home location. Multivariate regression analysis was employed for



controlling demographic factors. Results showed that increase of transit accessibility, residential

density and intersection density could all significantly reduce motorized energy of residents but

meanwhile energy for walking was increased. The land use mix, interestingly, reduced energy

for motorized travel and walking at the same time. Authors speculated that because a mixed land

use pattern places destinations closer together, it reduces travel demand for both walking and

driving (Frank, et al., 2009).

b) Travel behavior specific studies

Table 2-4 summarizes findings from relevant studies in the field. Those discussed below

include only a part of the full literature. Conclusions appearing in the table but not in the

discussion were drawn from existing literature reviews (Ewing & Cervero, 2001; Handy, 2006;

Zegras, 2005).

Holtzclaw (1994) claimed his study as "a first attempt to measure reduction in automobile

usage and personal transportation costs that result from different characteristics of a

neighborhood (p.1)". He focused on 28 communities in California, measuring neighborhood

forms and average household annual VMT at the community level. He then used multivariate

regression on this aggregate dataset, finding that controlling for household income and size only,

the residential density were effective for reducing per household annual VMT, whereas the

effects of neighborhood shopping and pedestrian accessibility were not statistically significant

(Holtzclaw, 1994).

Handy & Clifton (2001) studied the effect of local shopping area on people's shopping

travel behavior. Disaggregated travel data were collected from residents in six neighborhoods in

Austin, Taxes, US. Results of their multivariate regression models suggested that that local

shopping was not effective in reducing automobile dependence (Handy & Clifton, 2001).



Table 2-4 Empirical Evidence from Travel Behavior Specific Studies

Higher Higher Better Smart TOD
Impacts on HihrHge etrSat TD Methodology Context Source

Density Diversity Design Location -Overall

Less driving 4 X X Regression/ Aggregate California, US Holtzclaw (1994)

Fewer trips 4 Comparative/ Aggregate San Francisco, US Friedman, et al. (1994)

More transit use 4 Comparative/ Aggregate
San Francisco, US Cervero & Gorham (1995)

Higher transit share 4 Regression / Aggregate

Fewer total trips/ More transit use 4 Comparative/ Aggregate California, US McNally & Kulkarni (1997)

Fewer trips 4Regression! Disaggregate
San Francisco, US Kitamura, et al. (1997)

Less auto share/ Higher transit share 4 4 4 4 (attitudes included)

Less driving to shopping X Regression/ Disaggregate Austin, US Handy & Clifton (2001)

Fewer VMT X X X X X Advanced (SEM)/ Disaggregate San Francisco, US Bagley & Mokhtarian (2002)

Less auto trip time for commuting X
Regression/ Aggregate Milan, Italy Camagni, et al. (2002)

Less transit trip time for commuting 4

Fewer trips/ Lower auto share X Regression/ Disaggregate
Seattle, US Krizek (2003)

Fewer VMT 4 (longitudinal data)

Less driving X X X X X Regression/ Disaggregate San Francisco, US Guo, et al. (2007)

Less driving X Advanced (SEM)/ Disaggregate Flemish, Belgium Van Acker, et al. (2007)

Less driving, more transit use for nonwork travel 44 Regression/ Disaggregate Northern California. US Cao, et al. (2007)

Notes:

"Smarter location"- close to the city center (CBD) or a major transit station

"TOD"- transit-oriented development or a compact neighborhood development pattern

"VMT"- vehicle miles traveled

"HH"- household

"SEM"- structural equations models



Kitamura, et al. (1997) examined the effects of land use characteristics on travel behavior

for five diverse San Francisco Bay Area (USA) neighborhoods using disaggregated household

travel survey data. Multivariate regression models were conducted incorporating socioeconomics

and attitudinal factors also. Results confirmed that residential density, public transit accessibility,

mixed land use, and the presence of sidewalks mattered in trip frequency and modal split; that

said, however, household attitudes were more strongly associated, suggesting that "land use

policies promoting higher densities and mixtures may not alter travel demand materially unless

residents' attitudes are also changed (p. 156)" (Kitamura, et al., 1997). This study raised an

important "self-selection" problem, which inspired more research efforts on addressing it.

Bagley & Mokhtarian (2002) examined travel behavior of residents in the same five

neighborhoods in San Francisco using disaggregated household travel data. To address the

self-selection problem, they adopted more advanced method of structural equations models

incorporating attitudinal and lifestyle variables. Results from their models confirmed Kitamura,

et al. (1997)'s finding that household attitude and lifestyle had the greatest impact on travel

demand among all factors. Conversely, results showed that neighborhood type and form

characteristics had no influence on travel behavior, strongly suggesting a correlation, rather than

a causal relationship, between the two (Bagley & Mokhtarian, 2002).

Krizek (2003) used longitudinal household travel data in the Puget Sound region, Seattle

and conducted a multivariate regression analysis to examine the relationship between changes in

neighborhood form (measured at the 150-meter grid cell) and changes in household travel

behavior. The results found that controlling for changes in lifestyle, the relocation of households

to a neighborhood with more accessibility could effectively reduce their VMT, but it is has no

significant effects on their trip generation or mode split (Krizek, 2003).

Guo, et al. (2007) explored impacts from neighborhood factors on the interaction of

motorized versus non-motorized trip frequencies in the context of the San Francisco Bay area.

Multivariable regression analysis using bivariate ordered probit models were conducted based on

disaggregate household travel data. Controlling for socio-demographics, temporal indicators and

weather, results of models suggested that few built environment factors led to the substitution of

motorized travel by non-motorized travel. Instead, some factors (e.g., bikeway density, street

network connectivity) tend to increase non-motorized travel supplementing individuals' existing

motorized trips (Guo, et al., 2007). From the energy perspective, these findings suggest no



neighborhood's effect on reducing automobile energy consumption. One shortcoming to this

study is that household attitude was not controlled, thus facing the "self-selection" challenge.

Cao, et al. (2007) studied the relationship between the residential environment and

non-work travel frequencies by auto, transit, and walk/bicycle modes in Northern California.

They addressed the "self-selection" issue by using quasi-longitudinal data from 547 movers and

assuming their residential preferences and travel attitudes remained constant. Through structural

equations model, they found more promising effects of neighborhood characteristics than those

found in previous studies after controlling for the "self-selection". Specifically, mixed land uses

and the availability of transit service was effective in discouraging auto travel and facilitating the

use of transit (Cao, et al., 2007).

Similar travel behavior empirical studies can be found in European developed countries as

well. For example, Camagni, et al. (2002) examined the effect of urban development patterns

(i.e., infilling, extension, linear development, sprawl, and large-scale projects) on workers'

mobility in the metropolitan area of Milan, Italy. Using multivariate regression models with

aggregated travel time data at the municipality level, they found that commuting times for

private transport seemed uncorrelated to urban development patterns after controlling for

socio-economics. On the contrary, the more dispersed and less structured the development

tended to increase trip time for transit but lower the share of it in the mobility market (Camagni,

et al., 2002).

Van Acker, et al. (2007) developed a structure equations model using disaggregated

household travel data in the context of Flemish region, Belgium. Results from their models

showed that the effect of land use is "restricted", whereas socio-economic characteristics (e.g.,

social status, household responsibility) influenced travel behavior (e.g., distance, time, trips) to a

greater extent (Van Acker, et al., 2007).

2.2.3 Comments

In this section, comments on findings, theory, methodology problems, outcome variables,

and urban form variables in the western literature are provided. Challenges of inferring western

evidences to China are also discussed.

First, empirical results are dependent upon local contexts and analytical approaches. As

shown in Table 2-4, neighborhood form and location may play significant roles in affecting

travel behavior and energy use under some local and research settings, whereas they do no matter



under others. The magnitude of relationship between neighborhood and travel can also vary.

Therefore, we should be cautious of generalizing conclusions from a specific study.

A second comment relates to the ultimate travel outcomes measured in the travel

behavior-focused studies. Many studies focus on a single aspect of the travel pattern (e.g., travel

distance for certain trip purposes, mode choice, trip frequency, car-only energy use, etc.), thus

giving incomplete insights of what the impact of neighborhoods might be on overall transport

energy use. A narrow scope (e.g., single individual) and time window (e.g., a single trip or a

single day), when applied to the study of energy use patterns, can bias the estimates, since a

household's travel pattern may include random or systematic day-to-day and member-to-member

variations. For example, full-time working couples may only go shopping together on weekends.

Effectively capturing full household travel and energy use and related interactions would require

a survey period of one week, or more.

A more fundamental problem of generalizing conclusions from the western literature to

places like China has to do with a much different set of neighborhood forms in urban China.

China has a longer urban development history compared to most developed countries. Cities and

neighborhoods in China have continuously evolved and undergone several major societal and

institutional transformations. In cities like Beijing, Xi'an and Jinan, the variety of neighborhood

forms existing today (e.g., courtyards, work-unit compounds, superblock) represent development

patterns from different historical periods. Such urban typologies do not specifically exist in

developed countries, thus urban form indicators which have been widely used in the west may be

not appropriate or sufficient for characterizing Chinese neighborhood forms.

Finally, and perhaps the most fundamentally, there has been a general lack of a complete

theory (e.g., behavioral theory) or framework to explicitly illustrate the "neighborhood form-

travel" mechanism. Theory is essential in any context because it "provides the basis for

conceptual models, consisting of the behavior of interest and the factors that explain that

behavior, the ways in which these variables are defined, and the assumed relationships between

them" (Handy, 2006a, p. 1). Without a generic theory, empirical research and data collection is at

risk of being poorly guided.

Given the above considerations, concepts and conclusions with respect to energy efficient

neighborhoods drawn from the developed countries' experience may not be directly applicable to

China. In the next section, we will review studies that directly target Chinese cities.



2.3 Relevant Empirical Precedents in China

2.3.1 Hypothetical Concepts

As the transportation and energy issues become more important to China, the attempt to

explore the transport energy and emission reduction benefits from neighborhood-scale urban

development intervention has recently emerged. Sadownik & Jaccard (2001) proposed the

concept of community energy management (CEM) with recommended measures including

facilitating bicycle use, improving quality of public transportation, encouraging more mixed land

uses and higher density development (Sadownik & Jaccard, 2001). Zhang (2007) proposed a

Chinese-version TOD (transit-oriented-development) concept with 5Ds: differentiated density,

dockized district, delicate design, diverse destination, and distributed dividends (Zhang, 2007).

Zegras, et al. (2009) proposed the concept of transport efficient development (TED), which is

quite similar to TOD, in the Chinese context in a framework to quantify the transportation carbon

emission reduction potentials of alternative neighborhood developments under the clean

development mechanism (CDM) (Zegras, et al., 2009). All ideas above share similar basic

principles that have been advocated in the developed countries before.

2.3.2 Empirical Studies

In addition to adapting ideas for low-energy Chinese neighborhood development,

researchers have more recently begun empirical examinations of the link between existing

neighborhood forms and travel behavior in China. Unfortunately, few empirical assessments

have directly examined the relationship between neighborhood form and transport energy use or

emissions in China.

Cervero & Day (2008) studied the impacts of residents' relocation to four neighborhoods on

Shanghai's outskirts (see Table 2-5) on their job accessibility, commuting mode choice, and

commuting durations, based on quasi-longitudinal disaggregated individual travel data.

Multivariate regression models (binary logistic models) were specified and estimated to predict

mode changes. Relocating to a suburban area near a metro-rail station was found to encourage

commuters' switching from non-motorized and bus transit to rail. In addition, this neighborhood

location effect had far stronger influences than neighborhood form features (e.g., street designs,

land-use patterns) (Cervero & Day, 2008).



Table 2-5 Neighborhood Types and Characteristics in Shanghai (a)

Neighborhood Type Characteristics Neighborhood Case

Non-metro with single use No metro service, conventional bus service; (Jiangqiao)

Limited retail shopping and only a few shopping stores

Non-metro with mix use No metro service, conventional bus service; (Sanlin)

Mixed use

Metro with mix use Rail-served; Job-housing isolated; (Mailong)

(proxy for transit-oriented Primarily market-based residential housing; (Xinzhuang)

neighborhood) High densities, local retail mixed-use, and good cycling infrastructure

Source: summarized from Cervero & Day (2008)

Pan, et al. (2009) studied people's travel behavior in another four Shanghai neighborhoods,

which fall into three hypothesized neighborhood typologies (i.e., traditional, planned, and gated;

see Table 2-6). Using the same multivariate regression analysis with also disaggregated travel

survey data, authors found that pedestrian/cycle friendly neighborhood form helps to reduce auto

dependence and shortens residents' travel distances (Pan, et aL, 2009).

Table 2-6 Neighborhood Types and Characteristics in Shanghai (b)

Neighborhood Type Characteristics Case

Traditional 2-3 storey homes densely laid out along small alleys; (Lu wan)

(1930s-1940s) Walking/cycling-friendly environment

Planned neighborhood/ Neighborhood unit (Perry' concept); (Kang Jian)

Workers' new village Mostly mid-rise (5-7 stories) row houses or towers; (Zhong Yuan)

(1970s-1980s) Average block size: 400m*500m;

School, retail, service facilities are provided according to the national

planning codes that specify service radii or population thresholds for

these facilities

Gated Commodity housing; (Ba Bai Ban)

(after late 1980s) Job-housing spatially isolated

Source: summarized from Pan, et al. (2009)

Wang & Chai (2009) focused on Beijing, China, and investigated the difference in

commuting behaviors between residents living in the work-unit compound (so-called danwei, a

special neighborhood type with good housing-job balancing as a legacy of the old Chinese

command economy) and those living in private market housing development. The survey

included 736 employed heads of households among eight urban districts in Beijing following the

probability proportion to size (PPS) sampling strategy. Through structural equations model

(SEM) analysis on the disaggregated travel data, the authors concluded that living in danwei



neighborhoods was associated with shorter commuting trips and higher usage of non-motorized

transport mode (Wang & Chai, 2009).

Li, et al. (2010) investigated and compared the influences of sub-district form features in

Beijing and Chengdu on private car ownership. Multivariate regression models (i.e., binary

logistic models) were conducted using disaggregated household data. Results indicated that

sub-district population density had a significant negative effect on household private car

ownership in both cities. Interestingly, a location effect opposite to that typical to the western

context was found in both cities: households living close to the urban centers are more likely to

own cars. In addition, the effects of education level on car ownership are different in two cities,

as are the effects of household size. These suggests that conclusions may not be fully transferable

among different local contexts in China (Li, et al., 2010).

Finally, Naess (2010) presented perhaps the most relevant precedent in the literature so far,

in that he explicitly examined the relationship between residential location and travel energy use

in Hangzhou, China. Multivariate regression analysis was employed, using disaggregated

motorized travel energy data that were derived from travel survey data of 3154 individuals. To

address the residential "self-selection" problem in his analysis, the author collected information

of respondents' dwelling preferences and included proxy variables of them in the model as

statistical control. Results confirmed that all else equal, distance of residence from the city center

in Hangzhou has a strong impact on increasing personal travel energy (Naess, 2010).

Unfortunately, neighborhood form effects were not investigated in this research.

2.3.3 Comments

Results from the above empirical research efforts in China give us more confidence in the

directionality of the travel behavior change from neighborhood design alternatives. Indeed, most

studies in China so far suggest an effect of the built environment on travel behavior and

automobile ownership exists. However, from a travel energy/emission perspective, several

limitations from prior studies still remain.

First, similar to western travel behavior analysis literature, none of past empirical analysis in

China provides a full picture of the implications of neighborhood form on transport energy

consumptions. Most research has taken a piecemeal approach by examining relationships

between certain neighborhood features and certain aspects of travel behavior (e.g., travel

distance by car, vehicle ownership, etc.). This leaves uncertainty in inferring the overall impact



on transport energy consumption. For example, neighborhoods with higher density are found to

attract more transit users, but this impact may even increase transport energy use if additional

transit users shift from walking or biking. Likewise, scholars confirm that certain neighborhood

types may reduce car trip frequencies, but this cannot guarantee the overall energy savings since

less frequent car trips can be accompanied with longer travel distances which will again increase

energy use.

Second, studies in China to date have focused mainly on the mega-metropolitan areas (i.e.,

Beijing and Shanghai), and thus the generalizability of conclusions could be questioned. One

exception is the Li, et al.'s (2010) article, in which the authors studied Chengdu in addition to

Beijing for a cross-comparison using same analytical approaches. Interestingly, results suggest

that several effects of urban form on automobile ownership are indeed different between the two

cities. The other exception is the Naess' (2010) paper, which studied Hangzhou with an

exclusive focus on residential location, not the form. Given these, many effects in the context of

mid-size cities are yet to be confirmed. Since growth in mid-size cities is one of the main drivers

of Chinese urbanization, additional empirical study on mid-size cities about the urban form-

travel energy use or emissions is desirable.

Third, studies in China have put more efforts on the behavior side and less on the form,

partly due to the availability problem of refined urban form data. In China, accurate micro-scale

GIS data for a city are rarely open to public and sometimes they even do not exist at all. Also, the

urban form data can easily become outdated since cities in China transform rapidly. As a result,

there is still a lack of systematic and quantitative understanding and describing of various

Chinese neighborhood forms.

2.4 Summary

In the realm of neighborhood form-travel behavior/energy/emission empirical analysis,

more than 30 years' literature in the developed countries as well as emerging studies in China

presents rich and valuable resources for doing similar research in future China. Several lessons

can be derived, as summarized below.

e Theory is always important. There has been a lack of sophisticated and complete theory

(e.g., behavioral theory) or framework to explicitly illustrate the "neighborhood



form-travel-energy (emission)" mechanism. Without a generic theory, empirical research

and data collection is at risk of being poorly guided.

* Results are contradictory and can vary across local contexts and methodologies used.

Even in western academia today, questions remain about the quantifiable influence of the

built environment on travel behavior; research in the area continues.

" Methodological challenges remain. Disaggregate analysis is preferable to aggregate

analysis, but the former also requires much effort in data collection and processing.

Comparative analyses pose difficulties in filtering out basic confounding factors such as

household socioeconomics and demographics. Cross-sectional multivariate regression

analysis leaves unanswered questions regarding the causal mechanisms involved, and

results of this approach are often challenged by the "self-selection effect" argument.

Advanced models (e.g., instrumental models) can partly address the "self-selection"

problem, but they have not yet been used to model travel energy use or emissions, to the

best of my knowledge.

e Challenges of identifying and describing neighborhood forms in China may exist. Form

measures widely used in the west may not fit China's context. Neighborhood boundary

definitions in western studies are often due to the convenience of data availability (e.g.,

TAZ, census block). This convenience may not exist in China given that city-wide urban

form data are rarely available or reliable under rapid urbanization.

e It is important to depict the full picture of travel pattern when estimating travel energy

outcomes. Energy use or GHG emissions are affected by all the characteristics of travel

pattern (mode, distance, frequency, speed, occupancy, etc.). However, many travel

behavior studies look at the influence of built environment on only one or two aspects of

travel patterns, such as trips by certain modes with certain purposes. This is not sufficient

to offer a full picture of the built environment's impact on travel energy use.

Many of the concerns raised above will be addressed throughout the following chapters in

this thesis. To address the "theory" challenge, Chapter 3 elaborates a generic theory that can

explain the relationship between the built environment and transport energy use from a

neighborhood perspective. The rest of challenges mentioned above will be reflected in the

methodological approach to this research, as will be discussed in Chapter 5.



3 THEORETICAL PERSPECTIVES ON HOUSEHOLD TRAVEL

ENERGY DEMAND

In Chapter 2, we conclude that despite strong advocacy for compact, mix-used and walkable

neighborhoods as a way to reduce transportation energy use and emissions and otherwise help

achieve "sustainable" transport, the empirical evidence in the west has not been able to fully

support the claims. However, people do agree on one thing. That is, such effectiveness, if it

exists, can only come from the success of the built environment in changing household's travel

behaviors. In other words, making adjustments to the built environment does not, in itself,

constitute direct transportation energy reductions. Rather, it presumably facilitates a variety of

travel energy conservation activities for households, including: (1) trip chaining (net trip

frequency effect), (2) shorter total travel distances by all modes, e.g. less automobile driving

(distance effect), (3) a shift to less energy-intensive modes, e.g., from car to transit or to

non-motorized modes (mode shift effect), and (4) lower motor vehicle ownership (greener choice

set effect). Each of these, independently or in some combination could translate into final

transportation energy savings. Along these lines, travel demand theory with an explicit

microeconomic behavioral framework provides perhaps the most straightforward way to analyze

travel pattern effects and to provide a useful explanation of the mechanisms by which

neighborhood form might indirectly influence household transport energy consumption.

This chapter includes three sections. In section 3.1, I introduce the travel demand theory

(utility maximizing theory) and propose a conceptual framework integrating the cost-based

approach and the activity-based approach, both of which have been used by transportation

analysts to assess the link between the built environment and travel behavior. In section 3.2, I

conduct a series of detailed qualitative illustrations of the influence of widely claimed urban

design principles on travel behavior and associated energy use. Section 3.3 gives additional

comments on previous theoretical discussions. Section 3.4 presents a summary of the chapter.



3.1 A Conceptual Framework

3.1.1 Travel Demand Theory

Household travel energy consumption or emissions is, by definition, a byproduct of travel.

Indeed, individuals or households make decisions based primarily on their travel activity

patterns, rather than the associated energy use or emission outcomes. Therefore, from a

theoretical perspective, to investigate what drives household travel energy use or emissions we

have to look at how people make choices among different travel behavior patterns available to

them.

a) Utility maximizing theory

The utility maximizing theory has been the core of travel demand theory in the realm of

disaggregated travel behavior studies since at least the early 1970s, thanks to the foundational

work of McFadden and others (Ben-Akiva & Lerman, 1985; McFadden & Domencich, 1975;

Train, 1986). The theory is grounded in microeconomic consumer behavior theory, basically

assuming that individuals or households are utility-maximizing agents who choose, from among

relevant alternatives, that which maximizes their utility subject to budget constraints, with their

demand for different goods depending on prices of all goods, income, and tastes.

With respect to household travel analysis, we would expect household members to choose

certain travel patterns to maximize their utility by weighing the comparative travel times, costs,

and other attributes of available competing modes, destinations, times of day, etc..

Characteristics of the travelers (e.g., income, age) themselves also influence the final selection.

b) Activity-based theory

The activity-based analytical theory formally emerged shortly after the adoption of a

utility-maximizing framework in travel behavior studies in 1970s, with two important

assumptions extending from the utility-maximizing theory.

First, the demand for travel was recognized explicitly as a derived demand for activities

(Jones, 1979; McFadden, 1974). Put another way, people shape their travel patterns not to

minimize the travel cost, but rather to maximize the net utility. Here, the net utility is defined as

the benefit obtained at destinations minus the cost of reaching them.

Second, people make decisions based on the whole of their expected activity patterns, rather

than on specific trips alone. Budget constraints in terms of space, time and money are involved in

the decision making process as well (Hagerstrand, 1970; Schafer, 2000). Along this line, if land



use changes reduce an individual's travel time, that individual might invest that saved time in

additional non-home activities. This would result in increased total travel and energy use.

Although there has been almost half a century of development of t travel demand theory, the

explicit role of the built environment in these theories only arose more recently. The most

important contributions come from Crane (1996, 2001) and Maat, et al. (2005), as will be

discussed below.

3.1.2 Cost-based Framework

Crane (1996, 2001) explicitly incorporated built environment into the above-mentioned

travel demand theory by arguing that "land-use and urban design proposals, if they influence

travel behavior, do so by changing the price of travel" (Boarnet & Crane, 2001, p. 103).

Crane illustrated how the built environment can change the relative trip costs of available

modes. For example, higher densities might reduce travel times (thus costs) between origins and

destinations; grid street patterns may lower trip costs for both car and walking modes in

comparison to conventional suburban street designs; safer and more pleasing walking/biking

environment can decrease relative "psychic" costs associated with those modes. Crane further

argued that the relative attractiveness of driving versus walking depends on the relative change in

the cost of each due to the built environment changes. For example, a grid-pattern street design

will have an ambiguous impact on mode choice unless the time and money cost of

non-automobile modes are reduced sufficiently more than car travel (Crane, 1996).

Crane's approach also reflected traveler time and budget constraints. For example, if an

individual is able to save travel cost (e.g., time and money) from better designed built

environment, he may decide to invest those savings in more trips to achieve higher benefits, and

this decision in return will increase the travel activities and associated energy consumption;

ambiguous ultimate effects can be expected (Boarnet & Crane, 2001; Crane, 1996).

There is one shortcoming associated with Crane's framework. As Zegras (2004) and Maat,

et al. (2005) point out, Crane emphasized the influence of built environment on travel costs, but

largely overlooked the important role of the built environment in also changing destination

benefits. The latter is an important component of the activity-based framework, as will be

discussed in the next section.



3.1.3 Activity-based Framework

To include the built environment's role in an explicit activity-based behavioral framework,

Maat, et al. (2005) illustrated how the built environment can influence both travel costs

(disutility) and potential activity realization benefit at destinations (positive utility).

More specifically, on the one hand, built environment changes (e.g., higher density) may

reduce an individual's travel time to obtain the same amount of activity benefit. On the other

hand, built environment changes may also increase the attractiveness of destinations at further

locations. If there are no budget or time constraints, and if the incurred additional cost to reach a

further location is less than the additional benefit derived from reaching it, the individual or

household might take longer trips to the more preferred destination, thereby allowing the

derivation of additional, latent, utility (Maat, et al., 2005).

Take a shopping trip, for example. According to the activity-based framework, positive

utility comes from the attractiveness of the shop (e.g., choice and quality of products, etc.)

whereas the disutility comes from the cost of getting there. To maximize their net utility,

individuals or households may opt for a more distant destination in order to get higher quality,

greater choice, and/or cheaper products (Maat, et al., 2005).

Not surprisingly, this consideration adds another level of ambiguity in predicting the

ultimate built environment effects on travel patterns and associated energy use. In the next

section, I will illustrate such ambiguity with a detailed focus on the effects of neighborhood form

and location.

3.1.4 An Updated Framework

The frameworks of Crane (1996) and Maat, et al. (2005) do not explicitly differentiate

between macro-scale urban form effects versus micro-scale neighborhood effects in travel

behavior. Nor do they include the travel energy/emission component, which is a primary focus in

my research. Therefore, building on Crane and Maat, et al., I update a conceptual model for

purposefully capturing the neighborhood form-travel energy use/emission relationship.

As shown in Figure 3-1, neighborhood design and location, plus individual/household

socio-demographics, attitudes, and vehicle ownership are all considered to influence transport

energy use by impacting travel activity patterns (composed of frequencies, travel distances, mode

choice, and speed). Speed has been rarely mentioned explicitly in the travel studies, but it is

important because it can affect fixed destinations for households (e.g., job location, parents'



home location, etc.), which may be relevant since both origin and destination characteristics can

enter the utility equation in the travel decision making process.2

Another important note regarding the utility maximization process is that neighborhood

form and location have an influence on both the activity realization benefit and the travel

disutility, given constraints on resources such as time and budget. This distinguishes the updated

framework from the cost-based framework of Crane (1996). Furthermore, as a number of

neighborhood influenced travel-related activities (e.g., shopping) can be shifted among days of

the week, concerns about total household energy use and emissions suggest our timeframe of

analysis should, at minimum, be weekly based at minimum, a timeframe which Maat, et al.

(2005) do not consider explicitly in their framework. I argue that an examining an entire week

allows us to observe, in theory, interactions among decisions about a variety of travel activities

(e.g., commuting trips on weekdays versus shopping trips on weekends), thus providing the

minimum acceptable time window for considering effects on household's lifestyle and travel

activity patterns.

In addition to the travel pattern choice, I include in the extended framework two relatively

longer-term choices: the residential choice and the vehicle ownership choice. Recall the

discussions about self-selection issues in Chapter 2: people may choose residential locations

based on their socioeconomics and demographics, vehicle ownership, as well as their lifestyles,

attitudes and travel-mode preferences. Certain attitudes and preferences can also be shaped from

living in certain forms of neighborhood (Mokhtarian & Cao, 2008), which suggests a possible

indirect effect of neighborhood form on transport energy via the neighborhood- attitude- (vehicle

choice)- vehicle use chain. Therefore, we need to acknowledge the potential mutual influences

between neighborhood features and household characteristics.

Finally, both neighborhood and household characteristics affect vehicle ownership, and

vehicle possession and use, in return, could shape households' travel preferences in the long run.

Vehicle ownership has an immediate effect on determining the available choice set when

2 Speed, of course, can also influence energy use and emissions, due to impacts on internal combustion engine

performance.



household members make short-term travel pattern choices, which then translate into energy

consumption. Besides this indirect effect on energy use, the vehicle ownership choice is relevant

also in the sense that 1) the vehicle type (combined with speed) directly affects energy efficiency

of distance traveled by a certain means; and 2) the vehicles themselves directly contain embodied

energy, an important component for life-cycle energy consumption estimation. Although these

two direct effects will not be explicitly examined in my empirical research due to data

limitations, I include them in my framework to depict a full picture of neighborhood-travel

energy mechanism.3

3 Note that the embodied energy of infrastructures (e.g, roads and rails) that household travel energy demands

also require are not included in the framework, although an extension to include such effects would be fairly

straightforward (i.e., attributing relative infrastructure "responsibility" to demands generated).



Figure 3-1 Conceptual Framework of the Set of Factors Influencing Household Transportation Energy
Consumption at the Neighborhood Scale
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3.2 The Generic Impacts of Neighborhood Features on Travel Energy Use

In this section, I use the framework described above to investigate, stylistically, the

short-term impacts of several popular neighborhood design concepts (which might reduce travel

distances, auto speeds, and distance to transit) on different aspects of household's travel pattern

(trip frequency, distance, mode) and the associated ultimate energy requirement. It is worth

noting that to simplify the complexity of discussions, the analysis in this section do not account

for the potential longer term effects which are also included in the framework- such as: the

changes in net utility by each mode that the neighborhood interventions imply may in the

medium term change vehicle ownership tendencies, which in return affect travel pattern and

energy use; or, a walkable neighborhoods might attract more non-auto preferring households,

further decreasing future travel energy demand.



The graphical illustration is inspired by the work of Boarnet & Crane (2001) and Matt, et al.

(2005), but with an exclusive emphasis on the effect of micro-level neighborhood characteristics.

The summary of effects is shown in Table 3-1.

3.2.1 Neighborhood Design: Higher Density, Diversity & Traffic Calming

a) Effects on travel frequency and distance

Figure 3-2 shows the net utility effects with respect to changes in modally travel frequency

and distances (e.g., by car). The net utility includes all benefits people can gain from

participating in activities within a certain distance from home and the travel costs of realizing

those activities. The red rectangle (In-NBRHD) represents the potential curve-shifting area due

to an intervention within the neighborhood boundary (DN). The utility-distance curve is assumed

to be S-shaped, reflecting initial actions needed for initiating car use (walking to the car, starting

the engine, etc.), increasing opportunities as one travels further afterwards, and the law of

diminishing returns towards the maximum trip distance. Given a time/budget constraint at DI,

households could achieve the maximum net utility U1 under the "basis" scenario.

Figure 3-2 Stylized Effects of Density, Diversity and Design Changes on Travel Frequency and Distance (e.g.,
by Car)
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Source: Derived and extended from Maat, et al. (2005)

Now assume we introduce a higher density or more diverse land uses in the neighborhood.

Either design concept produces shorter distances between potential destinations, as represented

. ........... ............



in the "More Density/Diversity" curve, which then impacts potential net utility levels. Higher

non-residential density increases the scale of attractiveness in terms of possible destinations. For

example, if increased non-residential density means a local shopping street instead of a single

small grocery store, a household can satisfy a greater number of shopping needs. Adding land

use mix could allow households to meet certain kinds of additional needs (not previously

existing in the neighborhood under the "basis" scenario) with shorter driving distances. Also,

diverse land uses may allow households to combine previously separate trips into a trip chain,

thus lowering the trip frequency as well. Overall, if a household chooses the same net utility

level as under the "basis" scenario (U1), then the household's travel distance will decline from D1

to D2. However, this is not the end of the story. According to the activity-based theory, such a

behavior change (D1 D2) will free up some time and travel expense budget, leading to the

question: how will the household's activity pattern respond to these savings? A household may

spend the saved time and budget on activities at the same destination (D2) or at home (0). This

will ultimately reduce the travel distance (D14D2). However, the household could also use the

saved time and budget for making more trips to the same location (D2) or taking longer trips to a

further location (e.g., DI) that increase net utility (U14U 2). In this case, the urban design shift

represented by the "reduced distance" curve translates ultimately into increased household net

utility vis-a-vis the "base case," but with no change in travel energy use or emissions.

Consider now the implications of a design feature: traffic calming. Traffic calming

measures will generally slow motorized travel speeds (especially for cars and buses), adding

travel costs to the within-neighborhood segment of motorized trips. Note, that higher densities

may have a similar impact on speeds due to congestion effects and, say, longer searching time

for a parking in the neighborhood. Both can be depicted as the "traffic calming" curve in Figure

3-2. In this case, for the same distance (DI), a household obtains lower net utility (U3), because

more time was consumed to traverse the distance. However, the household may not be able to

take that longer trip, not to mention longer or more trips. Without additional time available, a

slower trip means a shorter distance would be expected; and thus, energy is saved.

b) Effects on mode choice

Now we turn to an analysis of effects on different travel modes.

Figure 3-3 shows different trends in net utility changes across different modes (car driving

and non-motorized travel [NMT]) as the travel distance increases. Travel distance implies



different relative costs of each mode, due to speed differences. Pedestrians/bikers have hardly

any initial actions compared to car driving; therefore, a lower NMT travel cost presents a higher

net utility than car for short trips (assuming same net utility for a certain distance by either

mode). As trip distances increase, car driving becomes more attractive due to its speed

advantage. For very long trips (over D4), the NMT travel may even be impossible because of the

limitations of physical exertion. Under the "basis" scenario for auto and NMT, the same net

utility level is achieved at D3.

Figure 3-3 Stylized Effects of Density, Diversity and Design Changes on Mode Choice
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Source: Derived and extended from Maat, et al. (2005)

As discussed above, traffic calming and compact development features can reduce car travel

speed within the neighborhood (DN). These reduced car travel speeds can have two-fold impacts.

On the one hand, it will increase the car travel cost, shown as the "Car (More Density/ Diversity/

Traffic Calming)" curve; on the other hand, it can create safer and more pleasing NMT

conditions, thus decreasing NMT travel cost and increasing net utility for same trip distance,

shown as the "Bicycle/Walking (More Density/ Diversity/ Traffic Calming)" curve. Under these

conditions, NMT remains as an attractive alternative up until at the point at D5 . In other words,

people may shift from car to NMT for trips up to distance D5 . All else equal, this mode change

will save travel energy.



It is also worth demonstrating the ambiguous consequences of designing a separated

internal road network for cars and NMT in neighborhoods. Many designers strongly endorse this

concept and think it can result in a shift from driving to walking/biking given a safer NMT

environment. However, as illustrated by Figure 3-3, the fundamental factor is the relative cost for

different modes. While separated NMT paths, as represented by the "Bicycle/Walking (More

Density/ Diversity/ Traffic Calming)" curve, can certainly increase the safety and attractiveness

of walking or biking, such interventions, all else equal, will reduce the cost of car travel, since

now people can drive on exclusive roadways more freely and faster without potential conflicts

with NMT. If the relative gain for the car mode is greater than that for walking and biking, as

illustrated by the "Car (Separated)" curve, it is plausible to observe a NMT-to-car shift for trips

with distances between D6 and D3, which would lead to an ultimate increase in travel energy

consumption, all else hold constant.

3.2.2 Neighborhood Location: Proximity to a Transit Corridor

Neighborhood location, such as proximity to a transit corridor, strongly impacts

beyond-neighborhood destination utilities and cost patterns with respect to trip distance. A transit

corridor often contains two main features. On the transportation system side, the corridor

accommodates faster movement for transit, but may do the same or even more for car flows

(again, similar to the NMT case discussed above, by reducing transit-car conflict on the streets;

furthermore, such corridors may also simply improve the overall motorized transportation system

speeds), thereby lowering the travel time cost for all motorized modes. On the land use side,

intensified development along transit corridors presents greater destination reach-out benefits for

households living close to it.

a) Effects on travel frequency and distance

Proximity to a transit corridor has two-fold impacts, both depicted by the "Transit Corridor"

curve in Figure 3-4. On the cost side, adding more transit service can give households a faster

option (e.g., through reduced waiting time for transit with higher frequency) for reaching an

out-of-neighborhood location than previously. In other words, in moving from the "basis" to the

"transit corridor" situation, a household can increase its net utility at D1 from U1 to U2, due to

travel time savings. The intensive development along the corridor automatically increases the

activity-realization utility within the same distance beyond the neighborhood. Even without a



transit corridor, per se, the more bus routes provided, the bigger the expected transit service area,

and the larger the household's activity choices with the same distance travelled by transit. In both

cases, the "net utility-distance" curve shifts inward. In other words, to obtain the same net utility

U 1, now the household only needs to travel as far as D2. In both cases, a reduction in travel

distance can be expected. However, by the activity-based theory, the story does not end there.

Households can invest the savings from transit proximity in more and longer trips, to maximize

total net utility. The latter would, all else equal, involve more travel energy use.

Figure 3-4 Stylized Effect of the Proximity to a Transit Corridor on Travel Distance
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Source: Derived and extended from Maat, et al. (2005)

b) Effects on mode choice

In the "basis scenario", we assume no transit, with only car and NMT (bicycle/walking)

available for all households. For short trips with distance less than D3, NMT is the preferred

mode. For trips of distance D3 or more, the household prefers to drive car. Now in the transit

corridor scenario, we add a transit curve. Note that the curve starts at the neighborhood boundary

with a lower net utility point than NMT. This represents the assumption that the transit station is

on the edge of the neighborhood and the access mode for households to transit is NMT. The gap

between net utility of transit and NMT at DN reflects the utility loss for households waiting for

the transit service without gaining any utility at the station. Net utility then increases faster for



transit than NMT due to a higher speed for transit. The "corridor" scenario can also change the

curve for car mode, as shown in the graph. This is because most road-based transit corridors are

not exclusive to transit and the resulting wide lanes (sometimes viaducts) and traffic

management make car travel easier and faster.

Figure 3-5 Stylized Effects of the Proximity to a Transit Corridor on Mode Choice
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As shown in Figure 3-5, there are three important potential mode changes induced by a

transit corridor. First, for households with automobiles, we might expect a mode shift from car to

transit for trips of distance between D3 and D5. This will result in less transport energy

consumed, all else equal. However, if the transit corridor also improves car use conditions, then

car use may be more attractive than transit use, resulting in increased energy use. Second, for

people who do not own a car, a mode shift from NMT to transit can also happen for trips of

distance between D4 and D3. This could also result in an increase in transport energy use, since

transit vehicles also require energy. The ultimate energy requirement is uncertain, depending on

which effect dominates. For neighborhoods that have a majority of households without cars, the

second energy increasing impact could be greater than the impact of a car-to-transit mode shift.

For an auto-oriented neighborhood adjacent to a transit corridor which also improves car use

conditions, the energy consumption may also increase due to the relative advantage of car use

and the relative energy intensity of auto travel relative to transit.



3.3 Additional Comments

Table 3-1 presents a summary of the above exercises, illustrating the stylized effects of

neighborhood features on travel behavior. As one can expect based on the previous discussions,

no conclusive energy reduction outcomes can be deduced from popular neighborhood design

principles, except for the "traffic calming" concept.

Table 3-1 Qualitative Effects of Different Neighborhood Features on Travel and Energy Use

Neighborhood Features

Higher density Land use mix Traffic calming Transit proximity
(reduce distance All
&sedced e (reduce distance) (reduce speed) (reduce distance)
& speed)

Car trips +/- +/- - +/- +/-

Car trip distance +/- +/- - +/- +/-

Car shift to transit/ NMT - n.a. - - +/-

NMT shift to Transit n.a. n.a. n.a. + +/-

Overall energy use +/- +/- - +/- +/-

Source: Extended from Boarnet & Crane (2001); p.7 2

Although the summary focuses exclusively on the direct relationship between neighborhood

(form and location) and travel behavior (travel distance, mode choice, frequency), first we need

to recognize that such behavior is also affected by a bundle of other factors (e.g., household

characteristics) and long-term mechanisms (e.g., residence choice, vehicle ownership). Our

approach in this section is rather from a short-term comparative static perspective.

Second, the relevance of neighborhood characteristics in travel-pattern decisions may vary

depending upon trip purposes. For commuting trips, neighborhood effect on mode choice is

likely to dominate the effect on the travel frequency and distance. The reason is that the

destination of a workplace is much less flexible that for a non-workplace (e.g., a store); an

increase of job density in a neighborhood may not be able to reduce commuting distance since

there is not an easy match between the type of job and the person's skill and that individual has

to work at the same firm anyway. That said, it can still effect partially on commuting cost (i.e.,

time), which affects frequency decisions. For example, the BRT corridor may significantly

shorten commuting time (via higher speed facility) and people may decide to return home for a

rest in the middle of day. On the other hand, higher job density (e.g., in the service sector) may



suggest more commercial/recreational opportunities in the neighborhood, which could have a

significant impact on the trips for non-work purposes.

Third, the energy use outcome is also affected by travel speed. The "traffic calming"

concept aims at lower car travel speed with more acceleration and braking, an effect that would

make the vehicle operated less efficiently in terms of fuels use and emissions. This could cause

some "leakage" of the energy reduction effectiveness, such that the shorter distances become less

fuel efficient, creating no net reductions in energy use and emissions.

3.4 Summary

Travel demand theories, such as the utility maximizing theory and the activity-based theory,

provide the basis for developing a conceptual model to show the mechanisms underlying the

neighborhood-travel energy relationship. Drawing from these theories and existing frameworks

developed by Crane (1996, 2001) and Matt, et al. (2005), I developed an updated framework

comprised of the travel pattern choice as well as longer-term choices on vehicle ownership and

residential location. Household socioeconomics and demographics affect all three choices.

Neighborhood form and location affect both the activity realization benefits and the associated

travel costs. Three choices are intertwined with mutual influences among factors, making it

difficult to isolate the specific causal relationship between the neighborhood, travel patterns, and

the associated energy use or emissions.

In the second section, I followed Maat, et al. (2005)'s graphical illustrations, and used a

series of diagrams to demonstrate the ultimate ambiguity of neighborhood (form and location)

effects on travel behaviors such as frequency, distance and mode choice. Although the discussion

was limited to the short-term travel pattern decisions (i.e., I did not consider the broader picture

of long-term residence and vehicle ownership choices), the core message is clear: the

neighborhood-travel behavior relationship is already a complex one. Further complicated by the

interaction with longer-term vehicle ownership and housing choices, no conclusive energy

reduction outcomes can be theoretically deduced, ex ante, from the neighborhood design

principles widely advocated by urban designers (except for the "traffic calming" concept).



4 RESEARCH CONTEXT

This research effort focuses on the relationship between neighborhood characteristics and

household transport energy consumption in Chinese cities. Jinan, a mid-size city undergoing

rapid urbanization and motorization shared by many Chinese cities, provides a good context for

exploring this relationship. The availability of support from a local academic institution in Jinan

through the Energy Foundation China Office (sponsor of this project) made the empirical

research logistically convenient. Furthermore, the city government's intent of integrating

ongoing bus-rapid-transit corridor construction with transit-oriented development gives this

research immediate policy relevance.

This chapter presents the overall empirical setting, including the Jinan city context (section

4.1), the bus rapid transit (BRT) corridor development (section 4.2), and the neighborhood

typologies identified in the city (section 4.3). Section 4.4 provides a summary.

4.1 Jinan City

Jinan is the capital city of Shandong Province in China with a registered urban population of

about 3.5 million as of 2008 (Statistics Bureau of Shandong Province, 2009). Lying on the lower

reaches of the Yellow River (see Figure 4-1, left) and positioned on the east coast of China, Jinan

is one of China's most famous historical and cultural cities with rich natural spring water

resources and a long history dating over 4,000 years.

Jinan has been experiencing rapid urbanization and urban growth since the 1980s, a trend

likely to continue for decades. In 1986, the city built-area in Jinan was only 117 square

kilometers; by the end of year 2007, the total urban area has expanded to 295 square kilometers

(Statistics Bureau of Shandong Province, 2007). According to the recent city master plan, the

city's built-up area is projected to expand to 410 square kilometers by 2020, mainly towards the

east (the Olympic park and administration district) and the west (the high-speed rail station area)

(see Figure 4-2); an additional 1 million people are expected to move into the Jinan city area

during the next decade (Jinan Urban Planning Bureau, 2005).



Figure 4-1 Jinan City in Shandong, China

Source: (left) Adapted from (Warriortours.com, 2010)

Figure 4-2 Jinan Master Plan 2005-2020

Source: Adapted from (Jinan Urban Planning Bureau, 2005)

Compared to other Chinese cities, Jinan is a typical medium-sized city with a much smaller

urban population and a much lower GDP than Beijing, Guangzhou, and Shanghai, while it is

similar to a bunch of medium cities such as Wuhan, Xi'an, Nanchang, Zhengzhou, etc. The



urban density in Jinan is also much lower than that of all tier 1 cities and even some tier 2 cities

(see Figure 4-3).

Figure 4-3 Population and Economic Trends in Chinese Cities
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Although automobile ownership in Jinan is, again, lower than that in the largest Chinese

cities (e.g., Beijing, Chongqing, etc.) and travel behavior changes have been less drastic (see

Figure 4-4 and Figure 1-2), Jinan itself already suffers from serious congestion due to rocketing

travel demand. Between 2005 and 2008, the average annual increase in the vehicle fleet in Jinan

was about 16% (SDUTC, 2010). The local government's steady efforts in expanding the urban

road infrastructure (mainly highways) in the past have failed to catch up with the even more

rapidly expanding automobile population (see Figure 4-5 and Figure 4-6). Today, the average



speed of vehicles operating on arterials in Jinan central areas is as low as 24.5 km/hr during

peak-hours (SDUTC, 2010).

Figure 4-4 Car Ownership (Cars per 100 Households) across 36 Cities in China in 2006

J

-7
~ 't7

4
N
K

K / At~

I

5---

IS

'N

--- 5.-.'-5 9

S

L

N / I

4-1-

iWS. r 100 5 "

Source: Li, et al. (2010), p. 8

Figure 4-5 Peak-Hour Congestion in Jinan
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Figure 4-6 Private Car Population and Urban Road Length Trends in Jinan (2003-2008)
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Source: (Jinan Statistics Bureau, 2009); urban road length in 2007 adjusted

To cope with this surge of urban travel demand and to help Jinan grow sustainably, the local

government has recognized the important role of urban public transport. Aiming at establishing a

"safe, efficient, ecological and diverse" urban transportation network, the city government has

set a goal that in 2020: more than 95% of Jinan residents will spend less than 45 minutes per trip;

more than 60% will travel less than 30 minutes per trip; and the transit mode share for trips will

increase to 45% (SDUTC, 2010). Transit share is expected to rise considerably to slow down the

increase of automobile uses (see Figure 4-7).

Figure 4-7 Jinan Measured and Forecasted Mode Shares 1995-2020
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4.2 BRT Corridor Development in Jinan

One important strategy Jinan has embraced to achieve its transportation goals is to build a

comprehensive bus rapid transit (BRT) system. In 2005, the city began planning the system and

the Chinese central government then named it a "BRT Demonstration City". As of summer 2009,

BRT lines on three corridors -the Jingshi Avenue, the Beiyuan Street, and the Lishan Road-

were already in operation (see Figure 4-8 and Figure 4-9). It is planned that by the end of 2015,

Jinan will have a complete BRT network with a length over 120 kilometers (SDUTC, 2010), as

shown in Figure 4-10. The BRT corridor development generates clear policy relevance for this

thesis, as we aim to examine whether households living next to BRT corridors consume less

transportation energy and to better understand the types of neighborhood forms that should be

encouraged when integrating urban development with BRT system expansion in future Jinan.

Figure 4-8 Jinan BRT Corridor Map (as of August, 2009)

Source: Adapted from local BRT maps provided by Ms. Wu Min at the Jinan Bus Company in 2009



Figure 4-9 Jinan BRT Corridor Photos

Figure 4-10 BRT Network Plan 2015

Source: Adapted from SDUTC (2010) p. 14

4.3 Neighborhood Typologies in Jinan

At the neighborhood development scale, the city of Jinan -with a long history of evolution-

presents a variety of urban forms. Four main neighborhood typologies were identified through

discussion with local public officials, urban planners and designers: "traditional", "grid",

"enclave", and "superblock." Respectively, they represent characteristics of the local city

development during different historic periods in a rough time sequence. A summary of the form

features associated with each typology is shown in Table 4-1.



Table 4-1 Summary of Form Features across 4 Main Neighborhood Typologies

Typology Building/Street/Function Access/Parking

Traditional 1-3 story courtyards; fractal /dendritic fabric off a main no cars
shopping street, on-site employment

Grid Block structure with different building forms contained Easy access; cars on-street; some
(1920s) within each block, retail on connecting streets parking lots

Enclave Linear mid-rise walk-ups; housing integrated with Moderately gated (walls, fences and
(1980-1990s) communal facilities (kindergartens, clinic, restaurants, sometimes security guards at entries);

convenience shops, sports facilities, etc.) Scarce on-courts parking lots

Superblocks Towers in park with homogeneous residential use Completely gated; sufficient parking
(-2000s) lots (underground, surface, etc.)

Source: Derived in collaboration with partners in the Clean Energy City Project (see section 1.2) and local officials and planners.

4.3.1 The "Traditional"

The majority of "traditional" neighborhoods can be found in the inner city of Jinan. Some

old villages of this type were also once developed at the edge of the inner city but now are

surrounded by modem city development. This type of neighborhood is characterized by 1-3 story

courtyards and narrow alleys. A main shopping street provides households with immediate

access to local employment and service opportunities. Cars have little access into the

neighborhood due to the narrow road space and complicated alley system. Almost no car parking

spaces are provided (see Figure 4-11).

Figure 4-11 The "Traditional" Neighborhood Typology

Source: (left) (Google Inc., 2009)



4.3.2 The "Grid"

The "grid" neighborhood typology was introduced in Jinan in the early 1920s. This

typology shaped the old commercial district, which is located to the south of the Jinan railway

station. The whole district is about 2 square kilometers with a length of 2.5 km and a width of

1km. The dimension of a typical block is about -160 meters by 160 meters (see Figure 4-12).

Originally, the blocks were composed of traditional courtyards, but they have since evolved into

more diverse building forms. As an old commercial district, jobs and housing supply are highly

balanced in this area today. Another main feature of the grid neighborhood is its openness: public

streets running between small blocks make the whole district very accessible. Retail

development and large trees along connecting streets create a walking-friendly street space.

Some on-surface parking lots exist in this district.

Figure 4-12 The "Grid" Neighborhood Typology

Source: (left) (Google Inc., 2009)

4.3.3 The "Enclave"

The "enclave" neighborhood form in Jinan (see Figure 4-13) originated in a national

experiment of urban residential developments in the mid-1980s with the goal of achieving "high

standards with relatively low cost, high quality with relatively low space standards, complete

functions in small areas, and a pleasant environment despite limited land coverage" (LU, et al.,

2001, p. 230). It is characterized by a north-south layout of buildings and an integration of

housing units with communal facilities (e.g., kindergartens, clinics, restaurants, convenience

shops, sports facilities, etc.). Jobs and housing are not necessarily matched in neighborhoods of

this type today because 1) they were often built by municipal governments rather than a single

work unit; and 2) housing units have been allowed for transaction on the real estate market



(Bray, 2006). Internal local roads within the neighborhood provide a safe outdoor space for

people. Sometimes, roads have bends and turns, similar to "traffic calming" measures used in the

west. Dead-end roads are often found within building clusters, to exclude through traffic. In

some cases there is even a separation between pedestrian flows and vehicle flows in the road

network. In terms of parking facilities, while the "enclave" provides plenty of bike storage space,

very limited car parking spaces exist (L, et al., 2001).

Figure 4-13 The "Enclave" Neighborhood Typology

Source: (left) (Google Inc., 2009)

4.3.4 The "Superblock"

As China entered the 1990s, a more formal housing market emerged and, at the same time,

the "superblock" neighborhoods started to dominate the country's urban growth pattern (Cervero

& Day, 2008; Monson, 2008). Jinan is no exception. Neighborhood of this type are usually

entirely composed of housing units (i.e., with little mixed use) and completely enclosed by walls

or fences, with only a few entrances. Such a physical setting combined with security and

monitoring measures at access points, especially in the more affluent "superblock"

neighborhoods, often creates significant isolation between the neighborhood and its surrounding

urban space (Bray, 2006; Wu, 2005). In addition, the "superblock" is characterized by high-rise

buildings, considerable landscaping, an auto-oriented internal road network, and ample parking

for private motor vehicles (see Figure 4-14).



Figure 4-14 The "Superblock" Neighborhood Typology

Source: (left) (Google Inc., 2009)

4.4 Summary

The city of Jinan, China provides the context for the empirical research in this thesis. The

city represents a typical mid-size city in China with a moderate-level of urban population and

density, yet witnessing a trend of rapid urbanization, highway construction and motorization.

Accompanying the rising travel demand, Jinan has been suffering from urban congestion, a

situation shared by many other Chinese cities.

As one response, the local government in Jinan started to build a bus-rapid-transit system.

As of summer 2009, there were 3 BRT corridors operating, with more corridors planned to

eventually constitute a comprehensive BRT network. Recently, the city government has

announced intentions to integrate ongoing BRT system construction with land development -i.e.,

TOD. This gives this research immediate policy relevance.

At the neighborhood development scale, the long history of Jinan's evolution endows the

city today with a variety of neighborhood forms, including "traditional", "grid", "enclave", and

"superblock". The first three typologies were shaped in older times, with relatively small blocks,

mixed land uses, refined local pedestrian networks, and limited parking space. Today,

neighborhoods of those types are experiencing deterioration, and some have even been destroyed

to be replaced by the "superblock" typology, which is much more auto-oriented and

characterized by homogenous residential use, low permeability and ample parking provision. Is

this trend sustainable from an energy perspective? The empirical research in this thesis aims to

shed light on answers to this question, again, signifying important policy relevance.



5 RESEARCH DESIGN

This chapter introduces the research design and methodologies employed for the empirical

analysis of the relationship between neighborhood features and household transportation energy

consumption in Jinan, China. An adequate research design poses an important challenge in this

context. Recall from Chapter 2 that few relevant research precedents exist in China, and research

examples from the West illuminate a number of challenges remaining among the variety of

existing analytical approaches. Therefore, the development of an appropriate research design for

Jinan needs to be both creative (building upon tools and lessons learned from the west) and

realistic (based on the inevitable constraints in the local context).

Section 5.1 describes decisions involved in the neighborhood sample selection process.

Section 5.2 introduces neighborhood measures obtained from visual surveys of the

neighborhoods and from geo-coded information on neighborhood form. Section 5.3 describes the

household-related measures from the household survey carried out by Shandong University.

Section 5.4 describes how transport energy consumption and GHG emission measures are

derived from the household travel activity data reported in the survey. Section 5.5 shows the full

database structure at the end of data preparation. Section 5.6 discusses analytical approaches,

both how they are chosen and how they are conducted. Finally, section 5.7 provides a summary.

5.1 Neighborhood Sample Selection

Although it would perhaps have been ideal to carry out a detailed urban form and design analysis

of all neighborhoods in Jinan for the purpose of completely identifying the variety of urban

forms and their representative typologies, such an approach proved infeasible due to the lack of

neighborhood form information available, particularly in geo-coded electronic form. To address

this data problem, nine neighborhoods in Jinan were first identified in a collaborative process

involving faculty from Shandong University, Tsinghua University and MIT, as well as officials

from the Jinan Urban Planning Bureau. The purpose was to select a number of neighborhoods

representative of the main four neighborhood typologies described in section 4.3, and with a



variety of locational characteristics regarding their proximity to BRT corridors and the distance

to the city center. The nine neighborhoods chosen include: Dong-Cang (Enclave), Wuying-Tan

(Enclave), Fo-Shanyuan (Enclave), Yanzi-Shan (Enclave), Lv-Jing (Superblock), Sunshine-100

(Superblock), Shanghai-Garden (Superblock), Old Commercial Distract (Grid), and

Zhang-Village (Traditional). As can be seen in Table 5-1, beyond the typology differences, the

selected neighborhoods also offer relevant locational variations (in terms of BRT and center city

proximities). Figure 5-1 illustrates the location of the 9 neighborhoods in Jinan.

Table 5-1 Neighborhoods' Variation by Typology and Location with Population Estimates

Typology Neighborhood Case On BRT Distance to City Population
Corridor Center Estimate

Traditional 1. Zhang-Village Yes 3.0km 11,100

Grid 2. Old Commercial District No 3.6km 11,700

Enclave 3. Wuying-Tan Yes 4.6 km 16,100

4. Yanzi-Sshan No 3.5 km 21,000

5. Dong-Cang Yes 2.3 km 5,600

6. Foshan-Yuan No 0.8 km 5,300

Superblock 7. Shanghai-Garden No 7.3 km 6,400

8. Sunshine-100 No 4.8 km 19,000

9. Lv-Jing Yes 2.8 km 2,500

Figure 5-1 Neighborhood Case Locations

ZHANGJCJN SHANGHAI GARDEN

r LVJING
DONGCANG

THE GRID

FOSANYUAN yA AN

S NoHIdE

Source: Provided by School of Architecture, Tsinghua University



5.2 Measures of Neighborhood Form

A geographic information system (GIS) database of the nine neighborhoods was developed

by a technical team from Beijing Normal University. The team first procured a high-resolution

aerial photo of the Jinan urban area, used the aerial imagery to identify relevant 2-dimensional

information (e.g., building profile, road, open space, trees, etc.) of the nine neighborhoods, and

further geo-coded the information in a GIS platform. Second, in summer 2009 the team carried

out a visual survey of all nine neighborhoods to validate existing data and to collect additional

physical data (e.g., building height, parking spaces, building functions, land uses, gates, bus

stops, catchment area 4 land use, etc.) that could not be extracted from the aerial photo.

Information obtained from the visual survey was then, again, geo-coded into GIS as well as an

AutoCAD database, as shown in Figure 5-2 and Figure 5-3.

Based on these "raw" neighborhood form data, a series of form measures for each of the

nine neighborhoods were calculated using the GIS software 5 . Table 5-2 presents those

neighborhood form variables, their definitions, and further notes.

4 In general, catchment area refers to an area within walking distance from the neighborhood in the context of

this research.

5 I thank Ms. Chen, Yang, a PhD student at MIT, for her assistance with the GIS analysis.



Figure 5-2 GIS Maps of the Selected Nine Neighborhoods in Jinan
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Figure 5-3 Layout of Dong-Cang Neighborhood (the "Enclave" Type)
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Table 5-2 Neighborhood Measures in the Study

Measure Definition Note
Density Measures

Population Density Number of persons per square kilometer

Floor Area Ratio (F.A.R) The ratio of total floor area of buildings in the
neighborhood to the size of the neighborhood
land

Building Coverage Percentage of building footprint area to the
neighborhood land area

Average Building Height Average number of building floors in the
neighborhood

Diversity Measures
Land Use Mix MIX=1-(Ir - + + + + Avalue of forthis index

15T -115 T 5 Trs means that building floor
" ).) where

-0 where space (or land area) in the
r= square meters of residential floor space (or neighborhood has a single
land area) use and a value of 1
c- square meters of commercial/business/office indicates perfect mixing
floor space (or land area) among the five uses.
i= square meters of industrial floor space (or Adapted from Rajamani, et
land area) al. (2003)
a= square meters of administrative/institutional
floor space (or land area)
o= square meters of open-space/recreational
floor space (or land area)

Building Function Mix Same as above
BIt-up Land Use Mix Same as above, except that land of open space is

excluded in the indicator calculation
Building Height Mix Standard deviation of building height in the

neighborhood

Design
Land Area Hectares of neighborhood land

Green Coverage Green area as a percentage of neighborhood Green area includes the
land area area of lawns and tree

canopy-------

Walkability Indicator 1 Percentage of residential building with street-

ing Availability Square meter parking space per household Only designated parking
lots are counted

Walkability Indicator 2 Percentageof Road. th Trees
Walabliy ndcator 3 Percentage of Roads with Walking Facilities Walking facilities include

roads with sidewalk, and
pedestrian paths o u

Intersection Density Number of intersections per kilometer-long Intersections include 3-way
roads and 4-way intersections

ad Isolation Indicator Average distance betweenneighborhood entry
intervals

Street Connectivity.Indicator Ratio of the number of cul-de-sacs to the total
number of intersections

Road Density Road space as a percentage of neighborhood
land area

Regional Location Measures
Distance to the City Center Distance from the neighborhood centroid to

Jinanl city plaza
BRT Corridor Proximity A dummy variable taking a value of 1 if the

neighborhood is within 200 meters' walk to the
BRT corridor; and 0 otherwise

500m Catchment land use mix The land use mix within neighborhood Catchment as a number of
catchment area 500m radius buffer areas

around neighborhood gates
outside the neighborhood

landbarea

Transit availability indicator Number of bus stops within vlk of boathe
neighborhood boundary



5.3 Household Survey Data

Parallel to the visual survey activities, in summer 2009 a team from Shandong University

carried out a household questionnaire survey, using the nine identified neighborhoods as the

sampling frame6 . Households were selected, without replacement, using stratified random

sampling based on building volumes within the neighborhoods. Eligible respondents were adults,
aged 20 to 65, who resided in private dwellings such as houses or apartments. Respondents were

interviewed at home by surveyors in all neighborhoods except for the Lv-Jing neighborhood. In

Lv-Jing, face-to-face interviews had to be conducted at the gates due to tight security control;

therefore passing households were randomly selected and surveyed 7. A total of 2,629 eligible

participants from the 9 neighborhoods filled out the survey questionnaires; about 2,500 of them

provided generally complete information. The questionnaire was designed to collect data on both

household travel and in-house energy expenditures; here we describe information relevant to the

travel analysis only.

5.3.1 Measures of Travel Activity

At the beginning of the survey, participants were asked to provide a detailed travel diary of

each family member during the past full week (including weekends). Specific travel-related

information requested included:

e Trip purpose: work, school, shopping, hospital, visit, entertainment, other;
" Number of trips made for each purpose per week: a one-way trip counts as one trip; a

round trip counts as two trips;
" Average trip distance for each purpose (in km);
" Mode of transport associated with trip distance: options include car, company car, bus,

company shuttle, taxi, motorcycle, e-bike, bicycle, walking; and
e Trip duration associated with trip distance (in minutes).

6 The Survey was carried out by students and faculty from Shandong University under the guidance of Asst.

Prof. Zhang Ruhua. The following description of the survey approach was provided to me by Ms. Zuo Weiwei from

Shandong. I owe a deep debt of gratitude to Asst. Prof. Zhang and his colleagues for allowing access to and use of

the survey for the research carried out in this thesis

7 This part of sample selected may still be biased towards households with more non-motorized-travel (NMT)
dominated travel patterns.



5.3.2 Measures of Socio-Demographics and Vehicle Ownership

The survey also collected information on household socioeconomics, demographics, and

vehicle ownership; specifically:

e Family size: the number of persons in the household;

* Number of employees: the number of employed persons in the household;

" Family structure, e.g.: single, couple, couple with kid, parents with married children,
grandparents and kid; and three generations;

* Gender (for each family member);

" Age (for each family member): age range options include <20, 20-30, 30-40, 40-50,
50-60, >60;

* Occupation (of each family member): options include teacher, student, worker,
government official, company employee, small business, peasant, unemployed, retired,
and other;

e Monthly income (of each family member): income range options include <600,
600-1000, 1000~2000, 2000~5000, 5000-10000, >10000 in RMB8 ;

" Housing tenure type: rented, owned outright, and owned with a mortgage;

" Vehicle ownership: number of cars, number of motorcycles, number of E-bikes, number

of bikes.

5.3.3 Measures of Household Attitudes

At the end of the survey, respondents were asked to rate a number of statements based on the

level of agreement, on a scale of 1 to 5 (1 = strongly disagree, 3 = neutral, 5 = strongly agree).

Relevant statements in our study include:

* "Car is a sign of prestige."

e "Taking public transit is convenient."

* "I enjoy bicycling."

* "Time spent in traveling is a waste of time."

8 1 US$= 6.8 RMB, approximately, as of May 18, 2010



5.4 Household Transport Energy Use and Emission Data

5.4.1 Measure of Household Transport Energy Use Measure

Using the reported weekly travel diary data, I calculated the estimated weekly transportation

energy consumption of each household in our sample. As discussed in Chapter 2, the weekly

scope is important to capture relevant activities over a longer time period than a day or two. The

household focus is important because a household, in aggregate, ultimately occupies a residential

unit, so the energy consumption of all relevant members should be accounted for; furthermore,

some travel decisions (especially for non-work trips) are made by more than one member of the

family and vehicles are often shared by household members.

Specifically, we summed up the household weekly travel distance by each mode, adjusted

for trip-based occupancy. Then, the distances by mode were converted into energy consumption

by using the mode's energy intensity. The energy intensity comes from vehicle fuel economy

and the fuel energy content factor. In equation form:

E Ti = Em E!", m E {car, taxi, bus, motorcycle, ebike} (1)

Ef" = Ej Ek FR k * ' * El' (2)

Elm = FU m * ECm  (3)

where
E Ti= Total household weekly transport energy consumption, by household i, in mega joules

per household per week (MJ/ HH/ Week)
E!"= Weekly household transport energy consumption, by household i using mode m, in

mega joules per household per week (MJ/ HH/ Week)
FRTk= Trip frequency (Trips/ Week), by mode m, for purpose k, by personj in household i
TDPk= Average travel distance per trip (Km/Trip), by mode m, for purpose k, made by

personj in household i
OC = Trip occupancy, by mode m for purpose k, by personj in household i
EIm= Energy intensity factor for mode m (MJ/ km)
FU'= Fuel economy factor (L/km; kwh/km) associated with mode m
EC'= Energy content factor (MJ/L) of the fuel type consumed by mode m

Occupancy rates of automobile, taxi, motorcycle and e-bike can be associated with each

trip, and thus were estimated using reported person trip data from the survey. Specifically,

person trips with exactly the same reported purpose, length and time among two or more

household members were treated as one trip shared by all. For transit, the system-wide



occupancy rate was estimated at 18 persons per bus based on reported system operation

performance data in 20079.

Table 5-3 presents the average fuel consumption and energy consumption data used in the

analysis, with the estimation process described in the footnotes.

Table 5-3 Fuel Economy, Fuel Energy Content and Energy Intensity Assumptions

Mode Fuel Economy Fuel Energy Content Energy Intensity Factor
x

(M) (FUm ) (EC m ) (EIm )

Car 0.092L/kma 32.2 MJ/Lf 2.962 MJ/km

Taxi 0.083L/kmb 32.2 MJ/L' 2.673 MJ/km

Bus 0.3L/kmc 35.6 MJ/L' 10.680 MJ/km

Motorcycle 0.019L/kmd 32.2 MJ/L' 0.612 MJ/km

E-bike 0.021kwh/kme -- 0.076 MJ/km

Notes:
a. derived from (National Bureau of Statistics, 2008). I used on average fuel economy of existing automobile engine types

in China weighted by their nationwide market composition. Specifically, fuel economies of existing automobile engine types
(with the market share) are: 6.5L/lOOkm (4.96%), 8.3L/100km (53.69%), 10.2L/lOOkm (32.09%), 11.9L/lOOkm (8.65%),
13.9L/lOOkm (0.62%).

b. I used on average fuel economy of seven taxi vehicle types in Jinan, including: JETTA (6.7L/1OOkm), SANTANA
(7L/lOOkm), SANTANA2000 (8L/lOOkm), FUKANG (8.3L/lOOkm), PASSAT(9L/lOOkm), BUICK(l lL/100km). This
information was provided by Mr. Liu Kai from Tsinghua Univeristy based on his interview with officials from the Jinan
Transportation Bureau.

c. (Zheng & Chen, 2008)
d. derived from (National Bureau of Statistics, 2008). Again, I used on average fuel economy of motorcycles in China and

weighted by vehicle fleet composition. The market shares of motorcycles with fuel consumption rates of 0.8L/1OOkm (special
light duty type; 15%), 1.3L/lOOkm (light duty type; 30%), 2.2L/lOOkm (engine-90 type; 40%), 3.3L/lOOkm (engine-125 type;
15%).

e. (Cherry, et al., 2009a)
f. (MIT Energy Club, 2009) assuming all cars, motorcycles and taxis use gasoline, and all buses use diesel.

The energy consumption estimation described above only considers the direct fuel or

electricity-associated energy use; up-stream energy is currently not included (e.g., energy

required to refine and distribute gasoline or generate and transmit electricity), nor is the full

life-cycle energy embodied in the vehicles. Also, I do not include the energy consumption (e.g.,

calories) associated with walking or bicycling, nor the associated energy embodied in relevant

9 Indicators for the Jinan transit operation performance in 2007 were used for the occupancy estimation,

including: operating distance as 160000000 km per year; daily passenger volume as 1930000 passenger-trips per

day; average trip length as 4.04 km per passenger-trip (SDUTC, 2008). The occupancy rate is calculated by:

(930000 x 365 x 4.04 /160000000) = 18 passengers per bus.



equipment, such as footwear and bicycles (likely negligible in any case, compared to the

embodied energy in other forms of transport). Finally, the speed and traffic condition effects on

the energy efficiency of vehicle operations are not reflected in the current estimation.

5.4.2 Measure of Household Transport GHG Emissions

Although the household transport energy use is our main focus of this thesis, it will be very

interesting to know corresponding GHG emissions and compare the patterns of the two. To

estimate household transport GHG emissions, I followed equations (1), (2) and (3) for

calculating transport energy use, except I replaced mode specific energy intensity factors (EI')

in those equations with mode specific GHG emission factors (EF') measured in kgCO 2/km, and

EFm = FU m * CCm
(4)

where:
FU m= Fuel economy factor (L/km; kwh/km) associated with mode m
CCm= GHG content factor (kgCO 2/L; kgCO2/kwh) of the fuel consumed in mode m

Table 5-4 presents the average fuel consumption and GHG emission data used in the

analysis.

Table 5-4 Fuel Economy, Fuel Carbon

Mode Fuel Economy
X

(M) (FUm )

Car 0.092L/km

Taxi 0.083L/km

Bus 0.3L/km

Motorcycle 0.019L/km

E-bike --

Content and GHG Emission Factor Assumptions

GHG Content Factor GHG Emission Factor

(CCm ) (EFm )

2.165 kgCO2/La 0.199 kgCO 2/km

2.165 kgCO2/La 0.180 kgCO 2/km

2.470 kgCO2/La 0.741 kgCO 2/km

2.165 kgCO2/La 0.041 kgCO 2/km

-- 0.026 kgCO 2/km'

Notes:
a. (MIT Energy Club, 2009) assuming all cars, motorcycles and taxis use gasoline, and all buses use diesel.
b. (Cherry, et al., 2009a)



5.5 Database Structure

Figure 5-4 shows the structure of the fully constructed database, based on the data described

in the previous sections, and including the links between the neighborhood data, the household

data and the estimated energy consumption data.

Figure 5-4 Framework for Database Construction

Source: Inspired by Frank, et al. (2000), p. 184

5.6 Analytical Procedures and Models

5.6.1 Descriptive Analysis

Descriptive analysis based on empirical data serves three main purposes: 1) better

understanding the neighborhood forms in Jinan, China; 2) depicting the picture of household

travel pattern and associated energy use and emissions, and to see whether and how those

patterns differ across neighborhood typologies; and 3) identifying potential confounding factors

that are also related to household transport energy use.

For task 1), I performed cluster analysis on the 9 neighborhoods using measured urban form

indicators (see Table 5-2) to test whether the a priori categorization of the Jinan neighborhoods



into four hypothesized neighborhood typologies was appropriate or not. Specifically, I ran a

hierarchical cluster analysis' 0 in the Statistical Package for the Social Sciences (SPSS) software,

which calculates "distances" between data points of our form indicators, and produces a

hierarchical tree diagram (dendrogram) to visualize how the neighborhood cases are distinct to

each other at the integrated level (see Figure 5-5). Further, I compared those form indicators (i.e.,

individual elements constituting a typology) across the four neighborhood typologies to explore

the major source of their distinction (if it exists). Household attributes were also compared to see

how neighborhood typologies differed from a social perspective.

Figure 5-5 A Hierarchical Tree Diagram

Cluster A ------------------

Cluster B ------ -----

Cluster C ------ --------------

Cluster D ---------------------------
1 2 3 4 5 6

Fusion values or linkage distance

Source: Bums & Bums (2008); p.555

For task 2), I compared means of travel pattern indicators (e.g., distance, frequency, mode

share, time, etc.) and associated transport energy use and emissions in our sample. For household

transport energy use, I also explored their distributions and used single-factor ANOVA analysis

to test the significance of the difference in on average energy use across the four neighborhood

types after controlling for the heterogeneity of energy use within each type.

10 Hierarchical cluster analysis a major statistical tool for identifying relatively homogeneous clusters of cases

based on measured characteristics. It starts with each case as a separate cluster, and combines the clusters (in our

case, the nine neighborhoods) sequentially, reducing the number of clusters at each step until only one cluster is left.

For details, see (Bums & Bums, 2008; Romesburg, 2004).



For task 3), I plotted a number of interrelationships between household transport energy

use/GHG emissions and socioeconomic demographics or neighborhood characteristics. Results

provided insights for the next-step multivariate statistical model specification.

5.6.2 Multivariate Analysis: Base Regression Models

The basic multivariate regression analysis regresses household weekly travel energy

consumption on variables including neighborhood form measures and the disaggregate

household-level data. Based on the theoretical discussions and framework developed in Chapter

3, we can translate the main short-term relationships among energy consumption, neighborhood

variables and other relevant factors into a series of equations, as shown below:

E T = f(T) = f(AB; y, V) (5)

AB = B - C = f(N, D; S, A) (6)

y = f(S) (7)

where

ET =household weekly total travel energy consumption
T= household weekly travel activity pattern
AB = the net utility associated with a certain weekly travel pattern
y = household travel budget
B = the utility sum derived at destinations associated with a certain weekly travel pattern
C = the disutility sum (time, $, discomfort) associated with a certain weekly travel pattern
S = a vector of socio-demographic variables
V = a vector of vehicle ownership variables
N = a vector of neighborhood form and location characteristics, and
D = a vector of fixed destination form and location characteristics, and
A = a vector of household attitudes towards trip modes

In equation (5), travel energy use derives from the household travel pattern, and the travel

pattern is determined by a household maximizing net utility (AB) among a set of travel pattern

choices under the constraint of the household travel budget (y) and vehicle availability (V).

Equation (6) indicates that the net utility is the benefit derived from activities at destinations (B)

less the disutility (general cost) of the travel effort (C); both (B) and (C) can be influenced by the

neighborhood characteristics (N), destination characteristics (D), household socioeconomics and

demographics (S), plus household attitudes and preferences (A). Finally, equation (7) assumes



that the household travel budget is mostly affected by household socioeconomics and

demographics (S), such as income, family size and structure, etc..

To obtain a reduced form model, we assume that differences in net utility (AB) and

variances in travel budget (y) can both be completely explained by differences in the

neighborhood characteristics (N), fixed destination characteristics (D), household

socioeconomics and demographics (S), and their attitudes and preferences (A). Therefore,

equation (6) and (7) can be substituted into equation (5) to yield,

E T = f(N, D; S, V, A) (8)

Equation (8) offers a convenient model form for conducting regression analysis; the

common specification would follow the linear ordinary least square (OLS) model with the form:

E Ti = Po + Pi'N +@2'S + @3'V + f#4'A + $sD +si (9)

However, there are three potential problems associated with this specification. First,

equation (9) assumes a linear relationship between any explanatory variable and the energy

consumption. This may not be true for many variables. For example, as income increases it may

have a diminishing effect on travel energy use, due to, for example, households' travel time

budget or spatial constraint. Therefore, log-transformation of some variables in the OLS model

may be more appropriate.

A second problem with the OLS model may come from the distribution of household

transportation energy consumption. In developed countries, we may expect a somewhat normal

distribution because most households drive cars every week. In China, however, the majority of

people still do not have access to automobiles. Some may even only walk and bike. Their energy

consumption, as we have defined it here, would be zero. In the case of energy consumption,

these cases are left censored at zero. There may be several reasons for this "censoring" at zero,

which have important implications for the regression technique employed. For example,

households who only walk and bike will record 0 values for transportation energy consumption.

But, those zeros may be qualitatively different than a random zero (that is, the chance that the

household made no motorized energy consumption travel on that particular week). In other



words, those households may purposefully choose zero energy use and, in fact, would prefer to

choose "negative" energy use. Given such an impossibility, the subsequent estimating of a OLS

regression line to all the observations, including the zeroes may underestimate the actual

relationship between the independent variables and energy use. The statistics literature refers to

this as a censoring problem of the dependent variable.

In this context, a TOBIT model, first developed by Tobin (1958), seems to be an appealing

solution. To address the censoring problem, the TOBIT model assumes that for each observation,

there is a latent variable ETi*, which linearly depends on a vector of independent variables

Xjwith a normally distributed error term Ei (Sigelman & Zeng, 1999):

E Ti* = Xi + Ei (10)

Under TOBIT, the observed variable Ei equals the latent variable whenever ETi* is

greater than zero, and zero otherwise:

{ET-* if ET-*> 0

ETi = T i, (11)
0 if Ei 0 (

A third problem is the now well-known "self-selection" problem, as we identified in

Chapter 2. As we recall from Section 2.2.3, Section 3.1.4 and some literature (Mokhtarian &

Cao, 2008; Zegras, 2010), common challenges to a single-stage, cross-sectional multivariate

regression model attempting to assess the relationship between neighborhood form and travel

behavior include:

1) The possibility of sample selection bias. This can exist when we only collect

observations which can only be a subset of the full sample. For example, as we are

interested in the energy consumption outcome, if we only observe energy-consumed

households without having those who only walk and bike, our estimates from the

regression analysis will be biased.

2) The possibility of endogeneity: This is a classic "self-selection" problem in the built

environment-travel behavior literature, where variables, such as attitudes, were

omitted in the multivariate regression analysis. In our case, this means people may



choose to live in the "superblocks" or buy cars, simply because (or at least

simultaneously) they are addicted to an energy-intensive travel pattern (e.g., car

prestige). Were not such effects excluded, we could have been biased in concluding

a causal relationship between neighborhood features and travel energy use from

modeling results.

To address the challenge 1), I randomly interviewed households in neighborhoods allowing

for observations on non-energy-consumed samples, and included them in estimating my models.

For the challenge 2), in terms of the mostly concerned "attitude" effect, I attempt to address

it in my models via statistical control. In other words, the attitudinal information collected in the

household survey is included in the reduced form model as control variables. This is exactly the

way socioeconomics and demographics are statistically controlled in the multivariate regression

analysis. If the "self-selection" effect exists, attitude variables will be revealed significant and

explain a good level of variance in dependent variable values in the sample. Presumably

self-selection could also be dealt with through a neighborhood choice model if we had enough

information to specify more advanced models (e.g., structural equations model) so as to further

address the "simultaneouty" concern.

However, omitted variables other than attitudes may still exist and cause endogeneity. In the

survey, we did not collect any information on household's major destinations. The reduced form

regression models therefore can only take the form,

ET = PO + 01'S + 2'V + p3'
N + p4'A + p (12)

But according to my updated conceptual framework, fixed-destination characteristics

(together with neighborhood characteristics) can influence travel costs and realization benefits.

Although our household transport energy use measure is not trip-specific, such destination

information is likely to be relevant. For example, if people work in downtown where parking

costs are high, they might be less auto-dependent and use less energy. In this vein, if we would

omit D when we run our regression in equation (12). The effect of this factor would therefore be

absorbed by the error term and we would actually estimate,



E T = PO + 13'S + $2'V + @3'N + @4'A + E

(where E = f 5D + p) (13)

Since correlation exists between V (vehicle ownership) and D (e.g., destination parking

cost), and D also separately correlates with ET, V is now correlated with the error term, p. Both

OLS and TOBIT models assume the error term is exogenous to all independent variables. In this

case, this assumption no longer holds and the estimates will be biased and inefficient.

5.6.3 Multivariate Analysis: Advanced Two-Step Instrumental Models

To correct this problem, I adopt the instrumental variable modeling approach, following a

two-step modeling procedure.

Step 1: Logistic Regression Model for Household Vehicle Ownership

In the first stage, we regress household vehicle ownership (V) on instrumental variables and

save predicted values of V:

V = f(I*; S, N, A) (14)

where I* is one or a vector of instrument variables. To be qualified as instrument variables,

these variables must be 1) correlated with the vehicle ownership; and 2) uncorrelated with

vehicle use or energy consumption (Mokhtarian & Cao, 2008). Otherwise, the variables would

be weak instruments and the 2-step modeling technique would not help.

Since the vehicle ownership variables (V) are discrete variables (being 1 for households

owning vehicles, and 0 otherwise), the binary logistic regression model (LOGIT) is the

appropriate model type of the form:

log( Pr($j) = po + IJ* + 2+ @3'N + P4'A + 6 (15)

For the probability of ownership for a certain vehicle type,

Pr(V = 1|I*, S,N,A)) = exp (0o+sl'I*+P2'S+s3'N+ 4 'A)
1+exp (po+P 11*+02 S+s 3 N+04 1A)



The predicted vehicle ownership from the logistical regression will, by construction, be

uncorrelated with other determinants of vehicle use and thus energy consumptions.

Step 2: Linear Regression Model for Household Weekly Travel Energy Use

In the second stage, the regression of interest is estimated as usual, except that in this stage

vehicle ownership (V) is replaced with the predicted ownership values (V). Therefore, we regress

E T taking the form:

E T = f(V, N; S, A) (17)

where V is a vector of predicted vehicle ownership values from the first stage regression in

equation (15) using calculation equation (16).

5.6.4 Multivariate Analysis: Sub Instrumental Models on Household Travel Distance by Mode

Finally, to further explore the detailed relationships between neighborhood characteristics

and travel energy use, we may want to know how neighborhood characteristics directly affect

travel by different modes. We may also want to know whether different modes are substitutes or

complements. For this purpose, we can estimate travel distance for each mode (car, transit,

motorcycle, E-bike, bike and walk) using the same approach as in Models 1 and 2. The only

difference is that the dependent variables are changed to household weekly travel distance (by

mode).

5.7 Summary

The research design described in this chapter aims to address both operational constraints in

China and some of the methodological challenges identified in Chapter 2. While in the following

chapters I will illustrate the application to the Jinan case, it can be generalized and transferred for

research in other cities in China.

Since reliable and publicly-shared databases on urban form is currently rare in China, one

realistic strategy we applied in Jinan is to select a limited number of neighborhoods -representing

realistic ranges in possible urban forms- in the city for careful study. Researchers can build a raw

database for those neighborhoods via GIS digitalization from aerial photos and by visual surveys.

To obtain household data, those neighborhoods can then serve as the sampling frame for a



stratified survey. Ideally, such a survey would include attitudinal information for statistical

control in the modeling, so as to partly address the "self-selection" problem. Based on the travel

data from the survey, energy consumption data can be derived from collected, using

straightforward calculations and energy conversion factors.

After data cleaning, descriptive analysis, multivariate regression analysis, including using

instrumental models provide a means to quantify the relationships between neighborhood types

and energy use, as will be demonstrated in the following chapters.



6 DESCRIPTIVE ANALYSIS RESULTS

Following the research design and methodologies described in Chapter 5, this Chapter

presents results and findings from the descriptive analysis, grouped into seven sections,

including: neighborhood form (section 6.1), socioeconomic and demographics (section 6.2),

vehicle ownership (section 6.3), attitudes (section 6.4), travel activity patterns (section 6.5),

travel energy consumption patterns (section 6.6) and inter-relationships among some of these

factors (section 6.7). Most of the discussion focuses on transportation energy use, specifically; in

a few occasions, I also discuss GHG emissions, however, since the two are highly correlated, I

focus primarily on the former to avoid redundancy. Overall findings are summarized in section

6.8.

6.1 Neighborhood Forms

6.1.1 Cluster Analysis

A series of disaggregated neighborhood form indicators, as described in Table 5-2, were

calculated for each of the 9 neighborhoods, as discussed in section 5.2. A cluster analysis, based

on these indicators, generally confirms our hypothesis that the 9 neighborhoods selected can be

grouped into the four neighborhood typologies. As shown in Figure 6-1, Zhang-Village (the a

priori "traditional" typology) stands out as a unique case. In addition, the three neighborhoods of

Lv-Jing, Shanghai-Garden, and Sunshine-100 are grouped together, suggesting a similarity of the

three in terms of their "superblock" typological characteristics.

Nonetheless, the clustering exercise fails to differentiate between the old commercial

district, which we hypothesized as a "grid" typology, and the four "enclave" neighborhoods (i.e.,

Dong-Cang, Foshan-Yuan, Wuying-Tan, and Yanzi-Shan), as also shown in Figure 6-1. From an

urban design point of view, these two typologies definitely look different. Since most of the

indicators calculated for the cluster analysis draw from those widely used in the western

literature, they may not fully capture the neighborhood forms in China. For example, both the

"grid" and the "enclave" neighborhoods are revealed to have a relatively large number of transit



stops within 1km boundary. However, the stop distribution is quite different: the old commercial

district has an evenly distributed bus stop network due to its grid-pattern public roads allowing

buses to pass through, whereas "enclave" neighborhoods tend to concentrate all transit stops

around their entrances and no bus stop can be located inside. If we had considered a better proxy

indicator of "transit accessibility" reflecting the distribution of bus stops (which affects the

average access distance to bus stops), the commercial district may have been identified as an

independent category, as opposed to clustering with the "enclaves."

Figure 6-1 Hierarchical Cluster Analysis Result

Dendrogram using Average Linkage (Between Groups)
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While the cluster analysis provides some statistics-based support for the differentiation of

the four neighborhood typologies, the analysis masks the underlying differences. To explore the

more subtle differences, we now turn to a comparison of specific, disaggregate neighborhood

indicators. Our discussion follows the three dimensions (density, diversity, design) now

somewhat widely used to characterize relevant dimensions of neighborhood form, as detailed

below.

6.1.2 Density Elements

Population density, household density, floor area ratio (F.A.R.) and building coverage

constitute some of the more common density measures used in the western literature. Table 6-1

presents results of these indicators calculated for the main neighborhood typologies in Jinan

using the GIS data. In terms of population density, the "superblock" neighborhoods have the

highest average density of 46,000 persons per square kilometer, followed by the "enclave" with a



density of 43,500 persons per square kilometer. The "traditional" has the lowest. However,

after accounting for potential household size effects, we can see that the density of the

"superblock" becomes relatively more modest (see Figure 6-2). This shows that the "superblock"

tends to house larger families than the other neighborhood typologies. The comparison of floor

area ratios (F.A.R) is generally consistent with our expectations, showing the higher values

associated with the taller buildings in the "superblocks"; we can also see this in the building

height metric, as the superblock's average is much higher than the "enclave" and "grid"

neighborhoods, where 5-6 story buildings predominate. The "traditional" neighborhood has the

lowest height on average, because most buildings inside are courtyard houses with 2-3 stories.

These indicators, and the green space coverage, support the idea of "superblock" representing a

version of the "tower in the park" urban design mindset.

Table 6-1 Density Measures in the Four Neighborhood Typologies

Traditional Grid Enclave Superblock

Population Density (persons/square kn) 34,000 37,500 43,500 46,000

Household Density (households/square kin) 12,300 13,300 14,300 14,300

F.A.R. 1.2 1.7 1.8 2.0

Building Coverage 54% 31% 34% 22%

Average Building Heights (floors) 2.2 5.5 5.3 10.1

Figure 6-2 Population Density vs. Household Density
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6.1.3 Diversity Elements

In terms of diversity measures, we calculated land use mix, building function mix, and the

standard deviation of building height, as shown in Table 6-2. The "Superblock", as expected, has

almost homogenous residential use measured, by both land use mix and building function mix.

The land and building use diversity levels of the "grid", "enclave" and "traditional," are higher

than the "superblock", and quite similar to each other. However, measured by building form

diversity" (i.e., building height standard deviation), "superblock" becomes the most diverse (see

Figure 6-3). This suggests that the "superblock," as a market oriented typology, introduces

different types of building products (e.g., low-rise, high-rise, etc.). The "grid" neighborhood has

the second most diverse building form, reflecting a complex physical nature deriving, perhaps,

from the long history of urban evolution in the district.

Table 6-2 Diversity Measures in the Four Neighborhood Typologies

Traditional Grid Enclave Superblock
Land Use Mix 0.21 0.30 0.36 0.09
Land Use Mix (for built-up land only) 0.23 0.32 0.37 0.07

Building Function Mix 0.33 0.34 0.38 0.04

Building Height Standard Deviation 0.3 3.6 2.75 4.47

Figure 6-3 Building Function Mix vs. Building Form Mix
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6.1.4 Design Elements

Table 6-3 presents a number of design-related indicators of the four neighborhood

typologies. The most prominent distinction between the "superblock" and other neighborhood

typologies is the level of car-parking supply (see Figure 6-4). While the "traditional" has no

parking space and the "grid" and "enclave" provide only a little due to space constraints, the

"superblock" provides parking lots for every 3 households, on average. In some recent

"superblock" housing projects (e.g., the extension project of the Sunshine-100), the

"parking-housing unit" ratio has been set higher than 1.

In addition, the "superblock" has a much higher degree of enclosure/physical isolation than

the other neighborhood typologies, as evidenced by the fewer number of gates and the longer

distances between entrances. In other words, all else equal the "superblock" makes it more

inconvenient for walking because the limited number of entrances to the neighborhood require

long detours just to get out. On the other hand, one advantage of the "superblock" over the others

is provision of green space, evidenced by a higher green coverage and more trees planted along

roads, perhaps because developers value the image of the neighborhoods. However,

good-looking green space does not necessarily lead to a walking-friendly environment. The

"superblock" tends to prioritize car use in its infrastructure and facilities; therefore, pedestrian

facilities and street activities receive less attention, as evidenced by related indicators (e.g.,

percentage of roads with walking facilities, the percentage of residential buildings with

street-level shops, etc.).

Regarding the road network, the measured results of the cul-de-sacs percentage is

intriguing, as the percentage is lowest in the "superblock" and highest in the "enclave" (see

Figure 6-4). In the western context, a higher share of cul-de-sacs tends to indicate more

auto-dependent road systems. However in the Jinan context, this is not true. In fact, the high

share of cul-de-sacs is often due to the dead-end road network within building clusters; such road

structures may help reduce car road connectivity and prevent through-traffic in local areas.

Interesting observations can also be found by comparing the "average roadway width"

across the 4 neighborhood typologies. The "grid" neighborhood has relatively wide roadways

because it allows urban arterials to cut through. On the contrary, the "traditional" is characterized

by very narrow lanes which almost completely prevent car use within the neighborhood.



Table 6-3 Design Measures across the Four Neighborhood Typologies

Traditional Grid Enclave Superblock

Parking (parking lots/100 households) 0 4 4 37

Entry Interval Distance (m) 218 107 148 730
Green Coverage 0% 12% 17% 31%

Percentage of Roads with Trees 0% 42% 42% 85%

Percentage of Residential Building with Street-level 21% 18% 24% 4%
Shops

Percentage of Roads with Walking Facilities 98% 87% 51% 64%

Road Density (km/square kin) 37.4 29.6 25.6 36.0

Intersection Density 18 12 9 10
(# intersections / km)

Percentage of Cul-de-sac 22% 20% 42% 19%

Average Roadway Width (m) 5 13 8 8

Average Building Footprint Area (sq m) 114 316 573 635

Figure 6-4 Parking versus Percentage of Cul-de-sac

6.2 Pattern of Socioeconomics and Demographics

Table 6-4 and Figure 6-5 illustrate the 4 neighborhood typologies in regards to the

socioeconomic and demographic characteristics of their resident households, as measured by

household size, number of workers, household monthly income, and household structure. The

results show that the average family size is around 3 persons, with the "superblock" slightly

larger at 3.2 persons per household. The "superblock" also presents the highest number of

Parking (parking lots/100 households)
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workers per family and the highest share of young couples with kids, although the differences

across neighborhood typologies in terms of employment and family structure are modest. A main

difference is found in the income levels. As expected, the "superblock" is the most affluent and

the "traditional" is the poorest, with average household income in the former 3 times as much as

in the latter. This contrast can also be seen through income distribution patterns across the four

neighborhood types, although household incomes within each neighborhood type tend to vary a

lot (see Figure 6-6).

Table 6-4 Socioeconomic and Demographic Measures across the Four Neighborhood Typologies

Traditional Grid Enclave Superblock

Household size (persons) 2.8 2.8 3.0 3.2

Household employment (workers) 1.5 1.6 1.7 1.9

Household income ($/month) 759 1,326 1,341 2,157

Notes: Income reported in RMB was converted to US$ at 1 US$= 7 RMB Yuan

Figure 6-5 Household Structures across the Four Neighborhood Typologies
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Figure 6-6 Household Monthly Income (US$) across the Four Neighborhood Typologies
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6.3 Pattern of Vehicle Ownership

Table 6-5 tabulates average ownership of different vehicle types by three income groups.

The income effects on vehicle ownership vary according to vehicle type, regardless of

neighborhood typology. For example, private car ownership increases as household income

grows, as expected. For motorcycles and E-bikes, the ownership seems relatively constant across

the three income groups in each neighborhood type (except for the "traditional"); this seems to

suggest no income effect at all. Conversely, bicycle ownership declines as income rises in all

neighborhood types (again, except for the "traditional").

Neighborhood types seem to somehow affect vehicle ownership. For example, the

"traditional" is associated with a unique income-vehicle pattern, probably because the particular

form prevents households from easily owning cars even with higher income. The "superblock"

also displays a notable relationship with household vehicle ownership. As illustrated in Figure

6-7, at the same income level, households in the "superblock" are much more likely to own cars

than those in the other neighborhood types. It is striking to see that even for households in the



"superblocks" with a monthly income of less than 500 dollars, more than 40% of them own cars

(there are 76 observations in our sample).

Table 6-5 Vehicle Ownership (vehicles per 100 households) by Monthly Income

Traditional Grid Enclave Superblock

< US$500
Private Car 6 10 8 42

Motorcycle 22 8 7 3

E-bike 46 28 31 48

Bike 82 79 86 78

US$500-1000
Private Car 16 18 21 49

Motorcycle 28 14 16 7

E-bike 76 41 46 44

Bike 82 109 88 65

> US$1000
Private Car 36 32 44 85

Motorcycle 40 11 10 5

E-bike 92 45 43 39

Bike 136 98 84 71

Notes: Presentation style inspired by Pan, et al. (2009) p.28 6

Figure 6-7 Private Car Ownership (cars per 100 households) by Household Monthly Income (US$)
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6.4 Pattern of Household Attitudes

Table 6-6 tabulates household attitudes across the four neighborhood typologies, revealing

several interesting findings. In general, household attitudes in the "superblock" are quite

different from others, while attitudes among "traditional", "grid" and "enclave" neighborhoods

are similar.

First, "superblock" households have a lower rate of agreement with the statement that

driving is a "privilege," although in the other neighborhood types the shares agreeing with that

statement are also not that high (less than 30%). This may seem somewhat surprising since we

might imagine that, in the "superblock," richer people, owning more cars, must feel privileged.

Here, in fact, an opposite meaning may be implied: those owning cars do not consider it a

privilege, while those who do not own vehicles do consider it a privilege- a condition for the

"elite." Additionally, and not in contradiction to the previous interpretation, as auto ownership

increases in prevalence across China, the elite "status" associated with driving declines. Second,

households in the "superblock" have a less favorable view of public transit, although not much

less so than "traditional" neighborhood households; notably, the majority of households in all

neighborhoods have a positive view of transit convenience. Third, households in the

"superblock" exhibit, through their response, a qualitatively higher value of travel time- over half

of "superblock" households think travel is a waste of time whereas in other neighborhood

typologies the share is only a third. Somewhat interestingly, opinions on bicycling show the

least total variation across the neighborhoods; again, a majority of households across all

neighborhoods still have favorable views on biking.

These observations suggest some relationship between neighborhood type (particularly, the

"superblock") and household attitudes, providing some evidence in support of "self-selection."

In other words, if we take the attitudes as valid and reliable indicators for households' latent

desired lifestyles, households living in "superblocks," vis-a'-vis the other typologies, view driving

as a more everyday (less privileged) behavior and transit as less convenient; perhaps they have

chosen the "superblock" in part because of those travel preferences.

However, there is one caveat: maybe households' attitudes are not driven by neighborhood

types, but rather their income levels. As shown in Figure 6-8, richer people do value more on

travel time and favor less in transit and biking. Poorer people tend to regard the car ownership

more of a privilege.



Table 6-6 Comparison of Percentage of Households Agreeing with Attitude-Related Statements

Neighborhood Type

Traditional Grid Enclave Superblock

(n=303) (n-293) (n=1086) (n=832)

Driving as Privilege 28% 29% 27% 17%

Transit as Convenience 63% 69% 74% 55%

like Biking 60% 59% 53% 51%

Travel as a Waste of Time 34% 33% 35% 53%

Notes: With the level of agreement on a scale of 1 to 5 (1 = strongly disagree, 3 = neutral, 5 = strongly agree), households rating
both 4 and 5 are categorized as households "agreeing" with the statement.

Figure 6-8 Attitudes (Percentage of Households Agreeing with Statements) versus Household Monthly Income
(US$)
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6.5 Pattern of Household Travel Activity

We now explore household weekly activity by examining travel frequency, travel distance,

mode share, and travel time.

As shown in Table 6-7, household frequency does not vary much across neighborhood

types. On average, a household in Jinan made 30-40 trips per week, or 4-6 trips per household

per day, or 1.5-2 trips per person per day. The numbers look quite a bit lower than international

figures in 2-4 trips per person per day on average (Schafer, 2000) One the one hand, the

difference may be explained by a less travel demand from locals in Jinan than that from rich

people in the developed world; on the other hand, it may suggest a under-reporting, which is



likely given the nature of the diary (people are unlikely to remember all trips over a week but

only the more important ones, and they may not have counted very short trips).

Table 6-7 Average Household Weekly Trip Frequency (trips) across the Four Neighborhood Typologies

Traditional Grid Enclave Superblock

Trips per Household 29 38 39 34

Trips per Person 10 14 13 11

While the trip frequencies are similar across neighborhoods, weekly travel distances show

large differences. Households in the "superblock" travel 250 km per week on average, whereas

households in the other three types travel much shorter distances (150-170 km). As seen in

Figure 6-9, the difference comes mostly from car travel distances, not distances by other modes.

In addition, the composition of travel distance by mode is somewhat unique for the "traditional"

typology, where households use less transit and very little car compared to others; instead, they

travel more with E-bikes and less distance overall.

Figure 6-9 Average Household Weekly Travel Distance (Km) across the Four Neighborhood Typologies
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In comparing the mode share, we also find a large difference in car use between the

"superblock" and the others. In the "superblock", among all weekly trips, about 33% of trips are

made by car, whereas the shares in other neighborhood types are lower than 8% (see Figure

6-10). Regarding walk trips, the shares in the "traditional" and "enclave" exceed 40%, much
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higher than walk shares in the "grid" as well as the "superblock" (25-27%). However, the lower

walk shares in the "grid" and the "superblock" have different explanations. In the "grid", the

lower share of walk trips is supplemented with trips by bike and E-bike, whereas in the

"superblock", the gap is filled almost entirely by a much higher share of car trips.

Figure 6-10 Average Household Weekly Travel Mode Share across the Four Neighborhood Typologies
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Finally, let's examine, across the four neighborhood types, the average household travel

time, a measure calculated from reported travel distances using the speed of each mode. For this

calculation, I assume the speeds of car, transit, motorcycle, E-bike, bike and walk are: 30km/hr,

18 km/hr, 16 km/hr, 15 km/hr, 12 km/hr and 5 km/hr, respectively. Figure 6-11 shows that,

although the composition of time by modes, is somewhat different, households in Jinan tend to

spend a reasonably constant amount of time per week in travel, regardless of the neighborhood

types. This echoes findings, from international comparisons, that households have relatively

constant average travel time budget, approximately 1.1 hours per day (Schafer, 2000). The

average value we find for Jinan is lower than the international data; possibly due to

under-reporting of trips, incorrect assumption of vehicle speeds, and/or actual lower travel times

in Jinan. Households in the "superblock" spend slightly more time traveling, perhaps because

they are richer and travel more by car, thus opting to invest that additional money and speed into

longer total distances and time spent traveling.



6-11 Average Household Daily Travel Time (Min) across
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6.6 Pattern of Household Transport Energy Use and GHG Emissions

After observing the differences of household travel activity patterns between the
"superblock" and others, we should not be surprised to observe that the "superblock" is

associated with the highest level of household transportation energy consumption among the four

typologies, as illustrated in Figure 6-12. The gap between the "superblock" and others results

from much higher energy use by car, a similar pattern we seen for travel distance and mode

share.
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Figure 6-12 Average Household Annual Transport Energy Use

Patterns of transportation energy use and GHG emission are also compared. As shown in

Figure 6-13, the GHG emission pattern looks quite similar to the pattern of energy, confirming

the argument that these two components are highly correlated with each other in the

transportation sector (Darido, et al., 2010). Households in the "superblocks" on average emit

1500-1600 kg carbon dioxides per year, about 1000 kg more than the amount emitted by

households in other neighborhood types. That said, we may find one noticeable, although not

big, difference regarding the role of E-bike use. Figures suggest that the share of E-bike use

contributing to total household emissions is larger than that contributing to total energy

consumption. This implies that electricity in Jinan is more carbon intensive than the fuels.
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Figure 6-13 Average Household Annual Transport GHG Emissions
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To put the estimated travel energy consumption numbers for Jinan into a broader context,

we compare the calculated personal annual travel energy use in Jinan with similar figures for

international cities. As shown in Figure 6-14, it is clear that the current level of passenger travel

energy use in Jinan is still much lower than the level in cities of developed countries (even the

level of year 1995).12 That said, the average person in the "superblock" consumes travel energy

at a level close to that of affluent cities in Asia, and higher than most cities in the developing

world. It is also interesting to see that the per capita passenger energy consumption in Jinan

non-"superblock" neighborhoods today is not much different from the average level of Chinese

cities more than a decade ago.

12 Note, however, that under-reporting of trips the Jinan survey may downward bias this estimate versus the

"real" thing.
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Figure 6-14 International Comparison on Personal Annual Transport Energy Use

JINAN Superblcck 2009 E008
JINAN Enclave 2009 2808

JINAN Grid 2009 2652
JINAN Traditional 2009 1768

CHN 1995 2495
LIA 1995 =55 3

AFR 1995 M 61 4
LAM1995 7 83
MEA 1995 10573
EEU 1995 E7 6f 61

HIA 1995 9556

WEU 1995 """""' 15 75
CAN 1995 3251
ANZ 1995 29610
USA 1995 60034

0 10000 20000 30000 40000 50000 60000 70000

MJ/ person

Notes: Data for international cities extracted from (Kenworthy, 2008), p. 215-220.

USA- US cities, ANZ- Australia/New Zealand cities, CAN- Canadian cities, WEU- Western European cities, HIA- High income

Asian cities, EEU- Eastern European cities, MEA- Middle Eastern cities, LAM- Latin American cities, ARF- African cities, LIA-

Low income Asian cities, CHN- Chinese cities

To compare the average energy consumption across the four neighborhood types,

considering the household heterogeneity within each neighborhood type, I conduct a

single-factor ANOVA test. First, however, we must examine the critical assumption about the

normality of the distribution of the observed values for the ANOVA test. Figure 6-15 (left)

shows that weekly household energy consumption data in the sample have a positively skewed

distribution, with about 500 zero values (as expected, given that many Chinese people today only

walk and bike. This suggests the assumption of ANOVA is violated. To solve this problem, I

adopt an adjusted logarithmic transformation for energy values by taking the natural log of each

observation's energy use plus 1 (i.e., ET+1), and then exclude the 500 zero values in the test.

Now the assumption about the normality is nicely met, as shown in Figure 6-15 (right). Results

of the test are presented in Table 6-8. For energy-consuming households, the consumption level

of the "superblock" is significantly higher than others at the 0.05 level, whereas the "traditional"



has the lowest travel energy consumption. There is no significant mean difference in energy

consumption between the "enclave" and the "grid".

Figure 6-15 Distribution of Weekly Household Transport Energy Use Before/After Adjusted
Log-Transformation
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Table 6-8 Single-Factor ANOVA Test Result

(I) Neighborhood Type (J) Neighborhood Type

Traditional Grid

Enclave

Superblock
Grid Traditional

Enclave

Superblock

Enclave Traditional

Grid

Superblock

Superblock Traditional
Grid
Enclave

Note: * The mean difference is significant at the .05 level.

Mean Difference (I-J)

-0.39*
-0.42*

-1.47*

0.39*
-0.03

-1.08*

0.42*

0.03

-1.05*

1.47*

1.08*
1.05*

Finally, I investigate those 500 excluded zero-values, which we might say represent
"super-efficient" transportation energy households from a transport, are investigated. As shown

in Figure 6-16, the share of no-energy-consumed households in the "superblock" is much lower

than that in the other studied neighborhood typologies. This, again, confirms that the
"superblock" is much less energy efficient from the household travel point of view.

109

Std.
Error
0.14

0.11
0.11

0.14
0.11
0.11

0.11

0.11

0.07

0.11
0.11
0.07



Figure 6-16 Shares of No-Energy-Consumed Households across the Four Neighborhood Types
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6.7 Some Interactions

6.7.1 Energy Use vs. Household Income

Since households in the "superblock" are richer on average, one may argue that the higher

income determines the patterns of higher energy consumption observed there. Figure 6-17 shows

that income is indeed an important factor in affecting household travel energy use, but the

neighborhood typology seems to remain relevant. Specifically, households in the "superblock"

consume a much higher level of travel energy at each income level (low, medium, high). Similar

patterns can be found for the household transport GHG emissions, as shown in Figure 6-18. That

said, from these two figures, one could still argue that, for example, the average income of rich

people in the "superblock" is higher than the average income of rich people in other types.

Therefore, I further plot a comparison showing the average household weekly travel energy use

associated with each observed income level in the "superblock" versus non-"superblock" (see

Figure 6-19). The "superblock" effect apparently remains. The best-fit non-linear curves suggest

a diminishing-return styled income effect on household travel energy consumption.
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Figure 6-17 Comparison of Household Weekly Transport Energy Use vs. Income (a)
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Figure 6-18 Comparison of Household Weekly Transport GHG Emissions vs. Income

40

35

30

25

-4-Traditional
20 -

-UE-Grid
U 15 -

-de-Enclave
10

-- Superblock
5

0

< 500 500-1000 > 1000

Monthly Income



Figure 6-19 Comparison of Household Weekly Transport Energy Use vs. Income (b)
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6.7.2 Energy Use vs. Household Size and Car Ownership

Figure 6-20and Figure 6-21 confirm an expected relationship between the household

transportation energy use and household size and car ownership. Specifically, the number of

persons in a household is proportional to energy use, although for more-than-3-perosn

households the effect of adding household members is small (see Figure 6-20). Households with

private cars consume much more energy than otherwise (Figure 6-21). Interestingly, households

having a company car on average consume more energy than those owning a private car do.
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Figure 6-20 Household Weekly Transport Energy Use vs. Household Size

Figure 6-21 Household Weekly Transport Energy Use vs. Car Ownership
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6.7.3 Energy Use vs. Neighborhood Location

Being further away from the city center appears to increase travel energy consumption

exponentially, as shown in Figure 6-22. Figure 6-23 shows that households living close to BRT

corridors in Jinan consume less energy on average, with the efficiency gain mainly from less car

use. However, according to our socioeconomic data, households living on BRT corridors are also

poorer: the average household monthly income for on-BRT-corridor households is US$741,

whereas the average for off-BRT-corridor households is as high as US$941. Given that

household income has an effect on household transportation energy use as well, the pure effect of

BRT-corridor location feature seems unclear.

Figure 6-22 Household Weekly Transport Energy Use vs. Distance to the City Center

Superblock
Superblock

Superblock

y = 101.6e
0 -191x

R2= 0.333

Enclave

Enclave
Traditional

0 1
0.00 1.00 2.00 3.00 4.00 5.00

Distance to City Center (km)

6.00 7.00 8.00

200 +-

100

0

Figure 6-23 Household Weekly Transport Energy Use vs. Proximity to BRT Corridors
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6.7.4 Energy Use vs. Household Attitudes

Finally, do household attitudes matter in transportation energy consumption? A comparison

in Figure 6-24 suggests the answer to be yes. For example, households who perceive driving as a

sign of prestige consume significantly less energy than otherwise. A similar reduction can be

found in households who see transit as a convenient travel means. Conversely, much greater

energy consumption is associated with households who apparently have high value of time

(indicated by agreeing on the statement that "travel is a waste of time"). Household preferences

for biking have a less pronounced observed effect on energy use.

Figure 6-24 Household Weekly Travel Energy Use versus Attitudes
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6.8 Summary

Descriptive analysis is an early but crucial step towards our better understanding of the

relationship between the neighborhood and household transport energy use patterns. The cluster

analysis of neighborhood characteristics to a large extent supports our classification of the 9

selected neighborhoods by 4 typologies in the context of Jinan. The failure of cluster analysis in

distinguishing between the "enclave" type and the "grid" as well as detailed investigation of

western conventional neighborhood indicators (e.g., cul-de-sac ratio) further raises some doubts

about those indicators to be capable of describing urban form in China.

A comparison of household transport energy use across neighborhood types seems to

suggest a strong connection between the two. Households in Jinan's "superblocks" on average

consume 2-3 times more energy than those in other neighborhood types do, while the differences

among non-"superblock" neighborhood types are modest. Although Chinese still consume a

relatively low level of transport energy compared to developed countries, consumption levels in

the "superblock" already comes close to that of affluent cities in Asia. In terms of neighborhood

location characteristics, distance to city center appears to increase travel energy consumption

exponentially; households with a proximity to BRT corridors use less energy, yet this may be

because of the fact that those households are in general poorer.

These empirical findings from comparative analysis does not account for confounding

effects, some of which are revealed by our exploration of inter-relationships. For example, higher

income increases travel energy use, yet in a diminishing returns manner. Bigger families

consume more. Owning private cars increase considerably travel energy use; having a company

car consumes even more. Household attitudes seem relevant, too. According to our data,

interestingly and perhaps somewhat surprisingly, households which view car driving as a sign of

prestige tend to own fewer cars and use less energy for travel. One explanation for this result is

that on the one hand, non-car-owning households clearly perceive this good as prestigious, or out

of their current reach; on the other hand, people using cars intensively tend to treat them only as

common tools.

Nonetheless, while the descriptive statistics begin to paint a basic picture of relevant

influencing factors in household transportation energy use, to isolate the effects of neighborhood

characteristics as well as to address the "self-selection" problem, we need to conduct multivariate
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regression analysis and use advanced instrumental variable models, which will be the focus of

next chapter.
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7 MULTIVARIATE ANALYSIS RESULTS

In this chapter, we examine weekly household travel energy consumption and GHG

emissions, in an attempt to identify the relative role of neighborhood typology and location

features. In our analysis we specify a number of multivariate regression models, as presented

generally in Chapter 5. The dependent variable for most of those models is the household weekly

travel energy use, although in a few cases the dependent variable is vehicle ownership or

household weekly travel distance by different modes. For independent or explanatory variables,

we have: variables representing neighborhood characteristics (the vector N in equation (12); see

Table 7-1), variables representing socioeconomics and demographics (the vector S; see Table

7-2), variables of vehicle ownership (the vector V; see Table 7-3), and finally, variables

representing household attitudes (the vector A; see Table 7-4).

Table 7-1 Neighborhood Variables

Variable Name Description Mean

Traditional a dummy variable equal to one if the 0.12

household lives in a traditional

neighborhood

Grid a dummy variable equal to one if the 0.12

household lives in a grid neighborhood

Enclave a dummy variable equal to one if the 0.43

household lives in an enclave

neighborhood

DistancetoCenter The distance from the neighborhood to the 3.37

city center of Jinan (the Spring City Plaza)

OnBRTCorridor a dummy variable equal to one if the 0.41

household is located on a BRT corridor

NeighborhoodSize the land area of the neighborhood 27.13

containing the household sample

Valid Sample

(n=)

2521

2521

2521

2521

2521

2521
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Table 7-2 Socioeconomic and Demographic Variables

Variable Name Description Mean Valid Sample

(n=)

LnIncome log transformed household monthly income 6.51 2473

Incomel00 Household monthly income (in 100US$) 8.58 2473

Adult_1 a dummy variable equal to one if the 0.08 2519

household has only one adult

Adult_3_or more a dummy variable equal to one if the 0.37 2519

household has 3 or more adults

Child_1_ormore a dummy variable equal to one if the 0.53 2519

household has 1 or more children

Elderly_1_or more a dummy variable equal to one if the 0.23 2519

household has 1 or more elderly people

Worker_0 a dummy variable equal to one if household 0.11 2519

members are all unemployed or retired

Worker_2_or more a dummy variable equal to one if the 0.68 2519

household has 2 or more workers

Table 7-3 Vehicle Ownership Variables

Variable Name Description Mean Valid Sample

(n=)

Car_1_ormore a dummy variable equal to one if the 0.31 2497

household owns 1 or more private cars

CompanyCar a dummy variable equal to one if the 0.02 2521

household has 1 or more company cars

Motorcycle_1_or_more a dummy variable equal to one if the 0.10 2515

household owns 1 or more motorcycles

Ebike_1_ormore a dummy variable equal to one if the 0.36 2511

household owns 1 or more E-bikes

Bike_1 a dummy variable equal to one if the 0.38 2517

household owns 1 bike

Bike_2_ormore a dummy variable equal to one if the 0.15 2517

household owns 2 or more bikes
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Table 7-4 Household Attitude Variables

Variable Name Description Mean

Car-as Prestige a dummy variable equal to one if the

household "strongly agree" or "agree"

that "Car is a sign of prestige".

Transit as Convenience a dummy variable equal to one if the

household "strongly agree" or "agree"

that "Taking public transit is

convenient".

I Like Biking: a dummy variable equal to one if the

household "strongly agree" or "agree"

that "I enjoy bicycling".

Travel isWaste of Time a dummy variable equal to one if the

household "strongly agree" or "agree"

that "Time spent in traveling is a waste

of time".

0.24

0.66

0.54

0.41

The chapter is organized by four sections. Section 7.1 presents results of base regression

models predicting transport energy use. Section 7.2 discusses how previous models might be

wrong, and how a 2-step instrumental incorporating vehicle models is performed. In section 7.3 I

then followed the same 2-step routine in predicating vehicle use by mode to explore some

sub-effects of neighborhood on vehicle use. Section 7.4 provides a summary.

7.1 Base Regression Models on Household Transport Energy Use

The base regression models of travel energy use include four classes of explanatory

variables: 1) socioeconomic and demographic variables that are expected to influence travel

pattern and associated energy use, such as household size, income, number of works, family

structure and age, etc.; 2) vehicle ownership of private car, company car, motorcycle, e-bike and

bike; 3) proxy measures of household attitudes towards travel modes to partially address the

"self-selection" problem; 4) neighborhood characteristics associated with the household,

including location characteristics- such as distance to city center and proximity to the BRT

corridors- and the neighborhood form typology. It is worth noting that we also include the

neighborhood size as a variable in the model (and all following models). This is more of a

Valid Sample

(n=)

2519

2520

2515

2520



purpose for statistical control: our neighborhood samples vary in size even within the same form

typology (e.g., the "superblock" Lv-Jing versus Sunshine-100). Since size is often determined by

physical barriers (e.g., walls, fence, arterials, etc.), we expect households living in those big

neighborhoods will have poor connection to surrounding public transit (except for the "grid"

which allows transit passing through the neighborhood), and that the location effect of proximity

to BRT corridors will have a relatively weak impact on energy consumption and vehicle

ownership.

7.1.1 OLS Models

As we saw in our updated conceptual framework (see Figure 3-1), household transportation

energy consumption can be estimated from their travel behavior patterns, which are directly

affected by household socioeconomic and demographics, vehicle ownership, attitudes,

neighborhood characteristics, and features of fixed destinations (e.g., workplace). In the absence

of information on fixed destinations, we can model the relationship using OLS as long as the

assumption holds that the error term is not correlated with any explanatory variables in the

model. In the specific specification, we use the adjusted log-transformed value of energy

consumption to reflect some hypothesized non-linear relationship (e.g., energy vs. income,

energy vs. distance to center), an insight from the results of the descriptive statistics (see

discussions in section 6.7). The OLS model takes the form,

log(E T +1) = -o + 31'S + P 2 V + P33N + p4 A + p (18)

Table 7-5 shows the results of fitting our base models on the Jinan neighborhood form and

household data. In column "control model", we only include the socioeconomic and

demographics (S) and vehicle ownership (V) as control variables in the model. Most variables

are significant with expected signs. For example, the significant and positive coefficient of the

log-transformed income variable suggests a positive, with diminishing return, effect of income

on household travel energy use. In other words, the richer a household is, the more travel energy

it consumes, but less so. This is intuitive given that people have time, budget and physical

constraints, somewhat evidenced in Figure 6-11. Families with children consume more travel

energy use whereas aging families consume less. The reason for this contrast may be that

children raise overall household travel demand as they require more activities (e.g., recreational,



educational, hospital, etc.), whereas elderly people may be more physically constrained and/or

have less out of home commitments and thus prefer to stay at home or travel in short distances.

Vehicle ownership variables (V) have significant impacts on energy use as well.

Households with cars use more energy, and particularly, households with a company car tend to

consume more energy than those with a private car. The latter has not, apparently, been revealed

in the literature. It suggests that company cars induce more auto use, as households do not pay

for fuels. Or perhaps people are assigned company cars because of their intensive business travel

requirement.

Most of the neighborhood variables (N), added to the regression in column "plus

neighborhood" (Table 7-5) are significant at the 5 percent level. The neighborhood variables

include location factors, size and form typologies. Distance to the city center has an expected

positive impact on travel energy use since neighborhoods further away from the center, all else

equal, are further geographically from all other potential destinations in the city (assuming a

center-city density gradient) and may imply worse transit and nearby public services.

Households close to BRT corridors tend to consume more travel energy. This may seem

counter-intuitive, yet it can be explained by potential trade-off among different aspects of travel

patterns, as discussed in section 3.2. We will examine those sub-effects later in this chapter.

Regarding the neighborhood typology, all non-"superblock" neighborhood typologies have

significant effects in reducing household travel energy use. It seems that the diverse land use,

parking restriction and walkable street design (e.g., refined internal road network) encourage

households to travel with higher energy efficiency. The only neighborhood characteristic that has

a non-significant effect is the neighborhood size. Also notice that the coefficients and their

significance remain almost the same as those in the first "control model".

Finally, the household attitudes (A) are added to the model in column "plus attitudes". Out

of five attitude variables, only the attitude of car prestige/status ("Car asPrestige") is revealed

to be significant. It is interesting to see its coefficient is negative, suggesting that all else equal,

households that view the car as a sign of prestige do consume less travel energy; and vice versa.

One possible explanation, as phrased earlier in section 6.7, is that people who have the car and

drive a lot in Jinan today regard it as a common travel means. On the other hand, such a finding

perhaps also implies that among people without much driving experiences, the status symbol

perception still exist and may serve as a strong motive for their future transition to car owners.
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By comparing the adjusted R square statistics, we can see that the "plus neighborhood"

model improves the explanation power perceptibly (although not much) whereas there is hardly

any improvement from the "plus neighborhood" to the "plus attitude" model.

Table 7-5 Comparison of OLS Models Predicting Log Transformed Household Weekly Total Travel Energy
Use (In total mj)

Control Model Plus Neighborhood Plus Attitudes
Coefficient t-test Coefficient t-test Coefficient t-test

Household Characteristics
LnIncome 0.521** 7.94 0.322** 4.79 0.313** 4.63

Adult 1 -0.435** -2.60 -0.452** -2.75 -0.447** -2.71
Adult 2 ref. ref. ref.
Adult 3 or more 0.158* 1.68 0.234** 2.53 0.257** 2.77
Child 1 or more 0.285** 3.96 0.235** 3.32 0.239** 3.37
Elderly_1 or more -0.220** -2.04 -0.227** -2.13 -0.233** -2.19
Worker 0 -1.265** -8.03 -1.272** -8.25 -1.246** -8.03
Worker 1 -0.262** -2.40 -0.224** -2.09 -0.209* -1.95
Worker_2_or-more ref. ref. ref.
Car 1 or more 1.790** 18.90 1.563** 16.16 1.552** 15.90
Companycar 2.046** 8.05 2.030** 8.17 2.010** 8.08
Motorcycle _1or_more 0.418** 3.27 0.620** 4.89 0.624** 4.91
Ebike 1 or more -0.168** -2.02 -0.168** -2.05 -0.172** -2.09
Bike 1 -0.084 -0.98 -0.09 -1.08 -0.087 -1.02
Bike_2_or more -0.374** -3.22 -0.365** -3.19 -0.384** -3.31

Neighborhood Characteristics
Distance to Center 0.081** 2.47 0.072** 2.19
OnBRTCorridor 0.224** 2.24 0.223** 2.23
NeighborhoodSize 0.005 1.43 0.005 1.63
Traditional -1.317** -6.62 -1.304** -6.55
Grid -0.814** -5.03 -0.793** -4.87
Enclave -0.653** -4.46 -0.654** -4.43

Superblock ref. ref,

Household Attitudes
Car as Prestige -0.252** -2.79
Transit as Convenience 0.082 0.98
ILikeBiking -0.024 -0.31
Travel isWaste of Time 0.105 1.33
Transport asKeytoHousingChoice -0.005 -0.05

(Constant) 0.003 0.01 1.362** 2.76 1.405** 2.77

No. Observations 2432 2432 2431
F 101.626 79.048 62.561

R2 0.353 0.384 0.385

Note: *p<.10, **p<.05
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7.1.2 TOBIT Models

One shortcoming of the OLS model results from the distribution of the dependent variable

(In total mj) values. In section 6.6, we saw that in our sample log-transformed energy values

had a normal distribution but with about 500 zero values (see Figure 6-15). In section 5.6, we

phrased it as a dependent variable censoring problem and introduced the TOBIT model to

address it.

Table 7-6 presents the results of fitting the TOBIT model in our Jinan household data in

comparison with the results from the OLS model estimation. All variables that are statically

significant at the .001 level in the OLS model remain significant in the TOBIT model, except for

the E-bike ownership ("Ebike_1_or more"). Signs of coefficients in the TOBIT model are also

identical to those in the OLS model.

The major difference comes from the values of coefficients in two models. Table 7-6 shows

that for all variables, their coefficients in the TOBIT model are greater than those in the OLS

model. We should be cautious on directly comparing them since the coefficients in TOBIT

indicate marginal effect on latent variable, not the observed variable which is of our interest here.

However, the logic still goes that, as negative latent dependent values are allowed in estimation,

the fitting line for TOBIT should become steeper and suggest more significant effects. It seems

to be safe to say that the censoring problem of the dependent variable does exist in the OLS

model and zero energy values are indeed associated with some latent negative values. As the

statistics literature suggests, if we drew the conclusion only from the OLS model, effects of

explanatory variables in our model would have been underestimated (Sigelman & Zeng, 1999).

Along this line, the TOBIT model seems to perform better than the OLS model from both the

theoretical and practical perspectives.

Table 7-7 compares results of conducting TOBIT models predicting household weekly

transportation energy consumption and GHG emissions in our Jinan data, respectively. All

effects of variables are identical, except that for E-bike ownership, it has a significant positive

impact on GHG emissions, whereas it does not affect energy use. This probably reflects that

E-bike is powered by electricity which is mostly generated by coal power plants in the Jinan

region (Cherry, et al., 2009b). Coefficients in Table 7-7 indicates that having an E-bike in Jinan

is somewhat closely as "dirty" as owning a motorcycle from a GHG emission perspective,

whereas the former is relatively more energy efficient.
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Unfortunately, neither of the two models have fully addressed the endogeneity problem if,

for example, some latent factor influences both vehicle ownership and vehicle usage (thus energy

consumptions) at the same time. I the next section we will use the 2-stage modeling technique in

an attempt to address this concern.

Table 7-6 Final OLS vs TOBIT on Predicting Log Transformed Household Weekly Total Transport Energy
Use (In total mj)

Final OLS Final TOBIT
Coefficient t-test Coefficient t-test

Household Characteristics
LnIncome 0.314** 4.68 0.385** 4.65

Adult 1 -0.455** -2.77 -0.677** -3.24
Adult 2 ref. ref.
Adult_3_or more 0.256** 2.76 0.293** 2.58
Child 1 or more 0.241** 3.40 0.273** 3.15
Elderly_1 or more -0.237** -2.24 -0.294* -2.24

Worker 0 -1.254** -8.13 -1.754** -8.92
Worker 1 -0.216** -2.02 -0.225* -1.72
Worker_2_or-more ref. ref.

Car 1 or more 1.551** 16.04 1.644** 14.05

Companycar 2.009** 8.09 2.169** 7.28
Motorcycle _1or_more 0.621** 4.90 0.782** 5.09
Ebike 1 or more -0.173** -2.10 -0.043 -0.43

Bike 1 -0.087 -1.04 -0.119 -1.16
Bike_2_or more -0.378** -3.30 -0.471** -3.34

Neighborhood Characteristics
Distance to Center 0.077** 2.36 0.085** 2.16
OnBRTCorridor 0.214** 2.15 0.252** 2.05
NeighborhoodSize 0.005 1.46 0.006 1.63
Traditional -1.303** -6.56 -1.570** -6.47
Grid -0.806** -4.99 -0.957** -4.83
Enclave -0.646** -4.42 -0.736** -4.15

Superblock ref. ref.

Household Attitudes
Car asPrestige -0.243** -2.70 -0.314** -2.83

(Constant) 1.472** 2.98 0.763 1.25

No. Observations 2431 2431

F 75.75
LR chi2 (20) 1091.57

Log likelihood -4840.34

Adjusted R2  0.381

Pseudo R2  0.383

Note: *p<.10, **p<.05
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Table 7-7 Comparison of Single-Stage TOBIT Models on Predicting Log Transformed Household Weekly
Total Transport Energy Use (In total mj) vs. GHG Emissions (In total co2)

ENERGY EMISSION
Coefficient t-test Coefficient t-test

Household Characteristics
LnIncome
Adult_1
Adult_2
Adult_3_or more
Child 1 or more
Elderly_1_or more
Worker_0
Worker_1
Worker 2 or more
Car_1_ormore
Companycar
Motorcycle_1_or_more
Ebike_1 or more
Bike_1
Bike_2_ormore

Neighborhood Characteristics
Distance toCenter
OnBRTCorridor
NeighborhoodSize
Traditional
Grid
Enclave
Superblock

0.385**
-0.677**

ref.
0.293**
0.273**

-0.294**
-1.754**
-0.225*

ref.
1.644**
2.169**
0.782**
-0.043
-0.119

-0.471 **

0.085**
0.252**

0.006
-1.570**
-0.957**
-0.736**

ref.

4.65
-3.24

2.58
3.15

-2.24
-8.92
-1.72

14.05
7.28
5.09

-0.43
-1.16
-3.34

2.16
2.05
1.63

-6.47
-4.83
-4.15

0.596** 4.18
-1.263** -3.54

0.389**
0.388**

-0.490**
-3.149**

-0.33

1.901**
2.819**
1.291**
0.941**
-0.255

-0.836**

0.119*
0.364*
0.011

-2.464**
-1.547**
-1.123**

1.99
2.61

-2.18
-9.37
-1.47

9.43
5.49
4.88
5.47

-1.45
-3.45

1.75
1.73
1.58

-5.90
-4.54
-3.68

Household Attitudes
CarasPrestige -0.314** -2.83 -0.490** -2.57

(Constant) 0.763 1.25 2.666** 2.55

No. Observations 2431 2431
LR chi2 (20) 1091.57 882.22
Log likelihood -4840.34 -4840.34
Pseudo R2  0.383 0.319

Note: *p<.10, **p<.05
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7.2 Advanced Two-Step Instrumental Models on Household Transport Energy Use

In section 5.6.2, we illustrated the possibility that some omitted variables (e.g., parking cost

at household workplaces) in our dataset may be correlated with both transportation energy

consumption and vehicle ownership and, if that is the case, the endogeniety problem results. In

response, we introduce a two-stage instrument modeling approach. This section will present the

application of this method in the Jinan case.

7.2.1 Step One: Incorporating Household Vehicle Choice

In the first step, we focus on modeling the endogenous explanatory variables of household

vehicle ownership. We hypothesize that a certain type of household vehicle ownership can be

influenced by neighborhood characteristics, household socioeconomics and demographics,

household attitudes, and other types of vehicle ownership. We specify binary logistical

regression models for each vehicle type (i.e., automobile, motorcycle, E-bike, and bike), with the

form:

log(Pr(v=1) = @0 + Pi'S + 2'V* + @3'N + 4A + Ps'I* + 6 (19)
Pr(V=O)

where V* is a vector of other vehicle ownerships, and I* is a vector of instrumental variables.

Recall from section 5.6.2, choosing "good" instruments requires some consideration.

Specifically, they should correlate with vehicle ownership but be uncorrelated with vehicle use

or energy consumption. Through some reasoning and experimentation, six instrument variables

are selected, as shown in Table 7-8.
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Table 7-8 Instrumental Variables

Variable Name Description Reasoning

Homeowned a dummy variable equal to one if Housing tenure and vehicle

the household owns the house ownership are both long-term

outright, and 0 otherwise choice and should correlate;

housing tenure should not affect

travel behavior pattern which is

a short-term choice.

Homemortgaged a dummy variable equal to one if Same as above.

the household owns the house with

a mortgage, and 0 otherwise

Smallbusiness

Transit asConvenience

I_LikeBiking

Travel is Waste of Time

a dummy variable equal to one if

the household runs small business

and 0 otherwise

proxy dummy variables of

travel-related attitudes

Households running small

business need automobile or

light truck for loading activities.

But the business may not require

intensive travel.

These are all ownership-related

attitudes, but none correlate with

energy use as evidenced in the

single-stage models.

In regressing vehicle ownership choice of a certain type, an incremental model specification

approach is taken, similar to what we have done in single-stage models. The basic model is a

"control model" including only household socioeconomic and demographic variables(S) and

other vehicle ownership variables (V*). Then neighborhood variables (N) are included. Lastly, I

add the household attitude variables (A) to get a "full" model ("plus attitude").

I first use instruments to model the household car ownership. Results are reported in Table

7-9. Several observations can be made.

The significance and signs of explanatory variables remain consistent across the

three models. Inserted instrumental variables are all significant at 0.05 level, except

the variable for attitudes favoring biking ("ILikeBiking"). This suggests some

promise in terms of using the vehicle ownership models to instrument in the

second-stage model of energy use.
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0 The "plus attitude" model shows the best goodness of fit among all three models,

evidenced by an application of the likelihood ratio test. 13 Therefore, I use this "full

model to calculate the predicted values of car ownership for each household. In the

second stage model, these predicted values replace observed car ownership values to

correct for the endogeneity problem in the single-stage models.

13 We first compare the "Plus Neighborhood" model to the "Control" model with the following statistic,

which has a chi-square distribution with 20-14=6 degree of freedom: -2( L(Control Model) - L(Plus Neighborhood

Model)) = -2(-1112.133 +1059.197) = 115.872. 115.872> the critical value of 12.592 (at a 5% level of

significance). Thus, we reject the null hypothesis of non-neighborhood effect.

Second, we compare the "Plus Attitudes" model to "Plus Neighborhood" model using the following statistics,

which has a chi-square distribution with 20-16=4 degree of freedom: -2( L(Plus Neighborhood Model) - L(Plus

Attitudes Model)) = -2(-1059.197+1038.013) = 42.368. 42.368> the critical value of 9.488 (at a 5% level of

significance). Thus we reject the null hypothesis of non-attitude effect.
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Table 7-9 Binary Logistical Regression Models Predicting Car Ownership

Household Characteristics
Income_100USD
Adult_1
Adult_2
Adult_3_ormore
Child_1_or more
Elderly_1_ormore
Worker_0
Worker_1
Worker_2_ormore
Companycar
Motorcycle-owned
Ebikeowned
Bikeowned
Small-business (IV)
Home-owned (IV)
Homemortgaged (IV)

Neighborhood Characteristics
DistancetoCenter
On BRT Corridor
Neighborhood_Size
Traditional
Grid
Enclave
Superblock

Household Attitudes
CarasPrestige
TransitasConvenience (IV)
ILikeBiking (IV)
TravelisWasteofTime (IV)

(Constant)

Control Model
Coefficient Z-test

0.139** 12.44
0.216 0.73

ref.
-0.196 -1.49

0.491** 5.04
-0.495** -3.22
-1.378** -4.70
-0.478** -3.03

ref.
-0.094 -0.28

-0.698** -3.55
-0.669** -5.92
-0.785** -7.18
0.366** 3.01
1.601** 8.60
1.726** 7.86

-2.

No. Observations
LR X2

Prob > X2

Log likelihood -1
Pseudo R2

Note: *p<.10, **p<.05, (IV) Instrument Variables

759**

2,404
750.38
0.000
112.133
0.252

-12.71

Plus Neighborhood Plus Attitudes
Coefficient Z-test Coefficient Z-test

0.105**
0.034

ref.
-0.095

0.423**
-0.429**
-1.248**
-0.448**

ref.
-0.128

-0.577**
-0.675**
-0.724**
0.379**
1.391**
1.059**

-0.163**
-0.249*
0.013**
-1.212**
-1.660**
-1.684**

ref.

-0.940**

2,404
856.25
0.000

-1059.197
0.288

9.11
0.11

-0.69
4.18
-2.68
-4.18
-2.74

-0.38
-2.81
-5.74
-6.35
2.97
6.84
4.21

-3.82
-1.66
2.93
-4.04
-7.22
-8.90

-2.82

0.099**
-0.027

ref.
-0.052

0.431**
-0.383**
-1.148**
-0.399**

ref.
-0.223

-0.577**
-0.714**
-0.711 **
0.361**
1.425**
1.057**

-0.151**
-0.231

0.011**
-1.106**
-1.522**
-1.535**

ref.

-0.416**
-0.510**

-0.040
0.363**

-0.751**

2,398
892.57
0.000

-1038.013
0.301

8.45
-0.09

-0.38
4.20
-2.36
-3.82
-2.40

-0.66
-2.80
-5.98
-6.07
2.79
6.97
4.16

-3.46
-1.52
2.52
-3.64
-6.52
-7.98

-2.98
-4.39
-0.36
3.24

-2.16

The models also provide important evidence for understanding the factors influencing

household car ownership in the context of Jinan, China. Since we are modeling households'

probability of owning one or more cars, a positive coefficient sign indicates that the explanatory

variable has a positive effect on household car ownership; and vice versa.

The most important finding in the larger research context is that neighborhood form

characteristics play an important role in affecting household car ownership choice after

130



controlling for confounding factors (including attitudes). The signs on the coefficients for all

three non-"superblock" neighborhood typology dummies are negative, suggesting that

households living in the "superblock" neighborhoods have a higher probability of car ownership.

This is probably due to the difference between the automobile-oriented design features of

"superblock" neighborhoods versus the more walking-oriented design of the other neighborhood

typologies. Note, that as travel attitudes figure significantly in the model (as discussed further

below), we can assert at least partial control for the fact that auto-oriented households might

prefer to live in the "superblocks". The neighborhood form is significant even after controlling

for attitudes.' 4 The neighborhood size shows a positive sign, indicating that households living in

bigger neighborhoods are more likely to own cars. An explanation might be that neighborhoods

in Jinan often do not have transit service within themselves (except the "grid" one), the size of a

neighborhood thus is correlated to on average transit walking access distance among residents;

bigger neighborhoods will make transit less accessible, and people, as a result, shift towards

driving and owning cars.

Neighborhood location characteristics matter too. The model results indicate that car

ownership tends to be higher for households living close to the city center than otherwise. This is

contrary to most findings in the west, yet consistent with recent findings in Beijing and Chengdu,

China (Li, et al., 2010). Authors in that article argue that urban centers in most Chinese cities

provide good urban amenities, and households with cars are often rich and still prefer to live

there; in the US, however, middle-class and affluent families tend to prefer suburban

communities along with the post World War-II city center decline. This argument, although true

to some extent, may not be convincing given that household income is already controlled for in

their models. In my case, I speculate that the distance to city center effect may be because 1) we

have little variation in the distance to city center among the neighborhoods studied; or 2) the

variable of distance to city center itself is not a good proxy for measuring regional accessibility

given that Jinan has already evolved into more of a multi-center city structure.

14 Of course, this does not account for more complex likely behavioral effects, such as attitudes changing

based on neighborhood, neighborhood choice conditional on vehicle ownership preferences, joint decision-making,

among others.



The effect of proximity to bus-rapid-transit (BRT) corridors on household car ownership

reveals interesting potential dynamics. In the "plus neighborhood" model, the results suggest the

effect is significant and negative. However, this effect becomes insignificant after controlling for

household attitudes, as evidenced in the "plus attitude" model. This change in significance,

combined with the revealed negative and significant effects of the transit convenience attitude,

suggests a self-selection effect going on: households may live on the BRT corridor because they

like transit, and it is such a travel mode preference that lowers their likelihoods of owning cars.

Household characteristics also show some interesting effects. The effect of household

income is positive as expected: richer households have a higher probability of owning cars.

Having children appears to be an incentive for households to buy cars, while having elderly

people has the opposite effect. The pattern is similar to what we see in the energy consumption

models. This is also intuitive since walking, biking or taking transit with children is often

inconvenient and unsafe; for elderly people, driving may become much difficult than taking

other modes and/or they may simply have different lifestyle habits and expectations. The number

of workers has a positive impact on car ownership. Households running small business are more

likely to own a car, probably reflecting their demand for business flexibility and logistics.

Households who own a house outright have a higher chance of owning a car than households

owning a house with a mortgage; renting households have the lowest car ownership likelihood.

Renters or mortgage payers have less disposable income relative to the households owning their

house outright. Family size does not have a significant effect on car ownership. Other type of

vehicle ownership decreases the probability of owning cars, indicating a substitution effect

among different vehicle type choices.15

Finally, attitudes have critical impacts on car ownership. Households that see car a sign of

prestige are less likely to own cars. This can be interpreted in two ways: 1) households without

cars envy those who have one (a sign of car prestige/status effect); and 2) as households own

cars, the car becomes perceived as more of a perceived need than a sign of status. Perceiving

15 Ideally this substitution effect can be scrutinized via having a nested model structure. This is one of future

research interests.
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transit as a convenient mode decreases the household's likelihood of owning cars, suggesting

that transit seems at least a partial perceived substitute to driving in Jinan. Finally and

interestingly, households viewing travel as a waste of time are more likely to own cars,

suggesting these households have a higher value of time and thus prefer the speed and

convenience of car ownership.

Beyond modeling car ownership, I follow similar approach to constructing models for

two-wheeled vehicles (2-WV); that is ownership of motorcycle, E-bike and bike. The results are

shown in Table 7-10. For 2-WV ownership, neighborhood characteristics seem still relevant. For

example, households living further away from the city center and in bigger neighborhood are

more likely to own e-bikes, suggesting the value of power assist to traverse the extra distances

The proximity of BRT corridors has a positive effect on household bike ownership, suggesting a

possibly complementary relationship among these modes. Compared to the "superblock", the

"traditional" neighborhood typology increases likelihood of households owning motorcycles,

e-bikes and bikes all together, probably because car is physically inhibited by the narrow lanes

and lack of parking. The "grid" neighborhood typology has similar impacts except its impact on

household E-bike ownership is insignificant. The enclave neighborhood typology increases

likelihood of household motorcycle ownership.

The household characteristics' role in 2-WV ownership is much different from those in the

car ownership choice, and more obscure. Income has no significant impact on motorcycle

ownership, while presenting even a negative effect on E-bike and bike ownership. Here we see

something of a substitution effect: low-income households who cannot afford cars tend to have

more E-bikes and bikes. Single families have a lower probability of 2-WV ownership, an effect

not found in the car ownership model. The effect of older adults in the family is negative, the

only household effect consistent across all vehicle ownership choice models. This may be

because 1) older people have lower travel demand; and 2) older adults feel less comfortable

handling any vehicle type.

That said, by comparing pseudo R squares, we can see that models for 2-WV ownership

have very modest explanatory power. Furthermore, many of the proposed instrumental variables

are insignificant in the models. In terms of 2-WV ownership, perhaps important influencing

factors were not available from the survey. Or, perhaps the choice of 2-WV ownership involves

more random or less well-understood decision making processes, given that a common
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2-wheeled vehicle is much cheaper than a car. This is of interest for future research.

Unfortunately, for our 2-stage instrument modeling approach, the results suggest that for 2-WV

ownership I have very weak instruments. In fact, I tested using predicted 2-WV ownerships in

the second-stage model, but the models performed poorly. As the statistics literature warns, poor

instruments are no solution to the endogeneity problem (Ebbes, 2007).

Table 7-10 Binary Logistic Regression Models Predicting Other Types of Vehicle Ownership

Motorcycle Owned E-bike Owned Bike Owned
Coefficient Z-test Coefficient Z-test Coefficient Z-test

Household Characteristics
Income_100USD
Adult_1
Adult_2
Adult_3_ormore
ChildIormore
Elderly_1_or more
Worker_0
Worker_1
Worker_2_ormore
Carowned
Companycar
Motorcycle owned
Ebikeowned
Bikeowned
Small-business (IV)
Home owned (IV)
Homemortgaged (IV)

Neighborhood Characteristics
DistancetoCenter
OnBRTCorridor
NeighborhoodSize
Traditional
Grid
Enclave
Superblock

Household Attitudes
CarasPrestige
TransitasConvenience (IV)
ILikeBiking (IV)
TravelisWasteofTime (IV)

0.016 1.15
-0.551* -1.74

ref.
0.103
0.110

-0.422**
-0.830**

0.186
ref.

-0.574**
-0.376

n.a
0.506**
-0.093

0.378**
-0.124
-0.212

0.003
-0.096
-0.005

1.663**
0.784**

0.59
0.88

-1.97
-2.20
1.04

-2.83
-0.70

3.50
-0.62
2.50
-0.64
-0.63

0.04
-0.47
-0.75
3.99
2.33

0.820** 2.43

-0.025
0.119
0.006
0.173

-0.16
0.78
0.04
1.21

-0.008 -0.86
-0.503** -2.31

ref.
0.322**
0.354**
-0.379**
-0.705**
-0.253**

ref.
-0.752**
-0.734**
0.514**

n.a
-0.368**

0.116
0.579**
0.663**

0.080**
-0.080

0.008**
0.993**
-0.209
-0.012

-0.026
-0.294**

0.090
0.083

2.91
4.25
-2.93
-3.53
-2.01

-6.31
-2.21
3.57

-3.82
1.10
4.02
3.33

2.05
-0.65
2.14
4.01

-1.05
-0.07

-0.24
-2.98
0.98
0.89

-0.026** -3.00
-0.619** -3.22

ref.
0.712**
0.277**
-0.263**

-0.207
-0.211*

ref.
-0.706**

n.a
-0.098

-0.375**
0.001
-0.085

0.817**
0.951**

-0.010
0.477**

0.001
0.460*
0.296

-0.013

0.081
0.131

0.700**
-0.111

6.39
3.29

-2.05
-1.14
-1.68

-6.14

-0.66
-3.88
0.00

-0.80
5.94
4.86

-0.26
4.01
0.23
1.86
1.53

-0.08

0.77
1.35
7.84

-1.21

-2.997** -6.35 -1.173** -4.14 -0.659** -2.39

No. Observations 2,398 2,398 2,398
LR X2  141.38 237.97 320.32
Prob > X2  0.000 0.000 0.000
Log likelihood -737.465 -1449.484 -1476.666
Pseudo R2  0.088 0.076 0.098

Note: *p<.10, **p<.05
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7.2.2 Step Two: Household Weekly Transport Energy Use

In the second stage model, I first predict car ownership probabilities for all observations in

our sample and insert these predicted values into the initial regression equation for household

weekly total travel energy use, replacing the observed car ownership values. For 2-WV

ownership, I stick with the observed values, since the instrument variables in 2-WV ownership

models were unqualified. For techniques of calculating the predicted probability of car

ownership, see section 5.6.2.

In regressing travel energy consumption with the instrumented car ownership values, both

OLS and TOBIT models are tested. Table 7-11 presents results from a series of models,

including the OLS and TOBIT models following the two-step procedures as well as single-stage

models derived in section 5.6. The purpose is to compare results from alternative approaches and

see whether the neighborhood effects remain robust as we are trying to solve the endogeneity

problem.

As can be seen in Table 7-11, the significance and signs of the coefficients for most

explanatory variables are almost the same across all models. With respect to the neighborhood

characteristics, the coefficients of the three neighborhood typology dummies are all negative and

significant, which gives us much confidence in concluding that households in the "traditional",

"grid" and "enclave" neighborhoods consume less energy in travel than those living in the

"superblock" neighborhoods. Households living on BRT corridors remain strongly correlated

with more travel energy consumption. We are also quite confident that the distance to city center

has a positive effect on household energy use despite a less significant effect in the 2-stage

TOBIT model. Neighborhood size turns out to be significant at 10% confidence level after

correcting the censoring and endogeneity problems by using the 2-stage TOBIT model. This

suggests our statistical control on the neighborhood size is useful and effective.

Most effects of household socioeconomic, demographics and vehicle ownership on

transportation energy use are also consistent with those in the single-stage models. The only

exception is that the negative effect of single-worker family on household transportation energy

consumption was found significant in the single-stage models but not significant in two-stage

models.

Finally, we compare the results of the models of household transportation energy

consumption and GHG emissions. As shown in Table 7-12, most effects (except the E-bike
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ownership) on energy use described above can be applied in explaining the variance in GHG

emissions.

Table 7-11 Comparisons of Models Predicting Log Transformed Household Weekly Total Travel Energy Use
(In total mj)

2-Stage OLS 2-Stage TOBIT 1-Stage OLS 1-Stage TOBIT
Coefficient t-test Coefficient t-test Coefficient t-test Coefficient t-test

Household Characteristics
Ln_Income 0.348** 4.16 0.475** 4.55 0.314** 4.68 0.385** 4.65
Adult_1 -0.517** -2.98 -0.772** -3.50 -0.455** -2.77 -0.677** -3.24
Adult_2 ref. ref. ref. ref.
Adult_3_ormore 0.254** 2.61 0.294** 2.46 0.256** 2.76 0.293** 2.58
Child_1_ormore 0.219** 2.77 0.273** 2.81 0.241** 3.40 0.273** 3.15
Elderly_1_or more -0.256** -2.25 -0.340** -2.42 -0.237** -2.24 -0.294** -2.24
Worker_0 -1.273** -7.71 -1.856** -8.79 -1.254** -8.13 -1.754** -8.92
Worker_1 -0.186 -1.62 -0.208 -1.48 -0.216** -2.02 -0.225* -1.72
Worker_2_ormore ref. ref. ref. ref.
Car_1_ormore n.a n.a 1.551** 16.04 1.644** 14.05
P_Car Owned (Instrumented) 1.639** 4.77 1.451** 3.44 n.a n.a
Companycar 1.952** 7.38 2.090** 6.59 2.009** 8.09 2.169** 7.28
Motorcycle_1_or more 0.609** 4.52 0.750** 4.58 0.621** 4.90 0.782** 5.09
Ebike_1_ormore -0.154* -1.65 -0.05 -0.44 -0.173** -2.10 -0.043 -0.43
Bike_1 -0.039 -0.41 -0.101 -0.88 -0.087 -1.04 -0.119 -1.16
Bike_2_ormore -0.398** -3.21 -0.527** -3.46 -0.378** -3.30 -0.471** -3.34

Neighborhood Characteristics
DistancetoCenter 0.083** 2.31 0.084* 1.92 0.077** 2.36 0.085** 2.16
OnBRTCorridor 0.252** 2.40 0.298** 2.31 0.214** 2.15 0.252** 2.05
NeighborhoodSize 0.005 1.53 0.008* 1.93 0.005 1.46 0.006 1.63
Traditional -1.204** -5.03 -1.576** -5.40 -1.303* -6.56 -1.570** -6.47
Grid -0.748** -3.63 -1.005** -3.98 -0.806** -4.99 -0.957** -4.83
Enclave -0.589** -2.99 -0.787** -3.28 -0.646** -4.42 -0.736** -4.15
Superblock ref. ref. ref. ref.

Household Attitudes
CarasPrestige -0.246** -2.58 -0.338** -2.87 -0.243** -2.70 -0.314** -2.83

(Constant) 1.125** 2.13 0.23 0.35 1.472** 2.98 0.763 1.25

No. Observations 2421 2421 2431 2431
F 59.00 75.75
LR chi2 (20) 926.95 1091.57
Log likelihood -4902.44 -4840.34
Adjusted R2  0.324 0.381
Pseudo R2  0.326 0.383

Note: *p<.10, **p<.05
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Table 7-12 Comparison of Two-Stage Models on Predicting Log Transformed Household Weekly Total Travel
Energy Use (In total mj) vs. GHG Emissions (In total co2)

Energy GHG
2-Stage OLS 2-Stage TOBIT 2-Stage OLS 2-Stage TOBIT

Coefficient t-test Coefficient t-test Coefficient t-test Coefficient t-test
Household Characteristics
LnIncome 0.348** 4.16 0.475** 4.55 0.605** 4.33 0.797** 4.55
Adult 1 -0.517** -2.98 -0.772** -3.50 -1.021** -3.54 -1.406** -3.83

Adult 2 ref. ref. ref. ref.
Adult 3 or more 0.254** 2.61 0.294** 2.46 0.331** 2.04 0.389* 1.94

ChildIormore 0.219** 2.77 0.273** 2.81 0.339** 2.56 0.418** 2.56
Elderly_1 or more -0.256** -2.25 -0.340** -2.42 -0.465** -2.45 -0.593** -2.52
Worker 0 -1.273** -7.71 -1.856** -8.79 -2.433** -8.84 -3.321** -9.43

Worker 1 -0.186 -1.62 -0.208 -1.48 -0.305 -1.59 -0.337 -1.43
Worker_2_or more ref. ref. ref. ref.
CarIor more n.a n.a n.a n.a
P_CarOwned (Instrumented) 1.639** 4.77 1.451** 3.44 1.415** 2.44 1.114* 1.86
Companycar 1.952** 7.38 2.090** 6.59 2.443** 5.55 2.657** 4.99
Motorcycle 1_or more 0.609** 4.52 0.750** 4.58 0.988** 4.39 1.195** 4.36
Ebike_1_ormore -0.154* -1.65 -0.05 -0.44 0.686** 4.40 0.863** 4.52
Bike_1 -0.039 -0.41 -0.101 -0.88 -0.23 -1.52 -0.318* -1.71
Bike_2_or more -0.398** -3.21 -0.527** -3.46 -0.693** -3.23 -0.905** -3.41

Neighborhood Characteristics
Distance to Center 0.083** 2.31 0.084* 1.92 0.103* 1.72 0.102 1.40
OnBRTCorridor 0.252** 2.40 0.298** 2.31 0.360** 2.06 0.427** 1.97
Neighborhood_Size 0.005 1.53 0.008* 1.93 0.011* 1.81 0.015** 2.08
Traditional -1.204** -5.03 -1.576** -5.40 -2.090** -5.22 -2.651** -5.39

Grid -0.748** -3.63 -1.005** -3.98 -1.403** -4.10 -1.799** -4.26

Enclave -0.589** -2.99 -0.787** -3.28 -1.082** -3.29 -1.388** -3.44

Superblock ref. ref. ref. ref.

Household Attitudes
CarasPrestige -0.246** -2.58 -0.338** -2.87 -0.414** -2.61 -0.551** -2.79

(Constant) 1.125** 2.13 0.23 0.35 3.143** 3.58 1.798* 1.65

No. Observations 2421 2421 2431 2431

F 59.00 50.23
LR chi2 (20) 926.95 813.29

Log likelihood -4902.44 -5957.91

Adjusted R2  0.324 0.289

Pseudo R2  0.326 0.294

7.2.3 Combined Effects: Overall Relative Influence of Neighborhood Characteristics

In this section, we adopt the two-step modeling approach comprised of two main equations:

(1) the household's transportation energy consumption (controlling for car ownership); and (2)

the household's car ownership. By estimating these 2 models, we can distinguish between direct

effects of a neighborhood variable (or another) on household travel energy consumption and the

indirect effects of the same variable on the energy consumption via the influence of this variable

on household car ownership.
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The relative influences can be estimated in the form of marginal effects, which enables an

assessment of the relative magnitude of the impact of different variables of interest on

transportation energy use. Specifically in our case, we measure the unit change in energy

consumption (before adjusted log-transformation, in MJ/household/week) caused by a one-unit

change in an independent variable (or a hypothesized scenario change) while holding other

independent variables constant. To calculate the marginal effects, I adapt Zegras (2010)'s

method of estimating the elasticity'6 .

16 A series of estimation procedures are followed. (1) For each observation, a "baseline" total transportation

energy and car ownership probability is estimated, using the coefficient estimates from the 2 nd stage OLS model (see

Table 7-11) and expected automobile ownership probabilities. For the investigated dummy variable, I set the value

to 0 for all samples. (2) a change of value from 0 to 1 in this investigated dummy variable (or a doubling value of the

continuous variable if investigated) was applied to each observation for the car ownership model; (3) new vehicle

ownership probabilities were estimated based on that change; (4) the marginal effect of a certain variable on the car

ownership probability was then calculated by: (Pnew - Pbaseline); (5) new energy consumption estimates (Enew)

were calculated for all samples, using the 2 nd stage OLS coefficients, the new predicted vehicle ownership

probabilities, and the original variable (or 0 for dummy variable)- this enabled an isolation of the vehicle ownership

effect on energy use (presented in "Car ownership" column in Table 7-13), calculated by: (Enew - Ebaseline); (6)

Enew was re-estimated by including the changed variable directly in the transportation energy use estimation model

also. This Enew2 was used to calculate a new marginal effect, which appears in the "Combined Marginal Effect of

Travel Energy Use" column in Table 7-13.
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Table 7-13 Conservative Estimation of Marginal Effects of Selected Variables on Household Transportation
Energy Use and Car Ownership based on the 2-Stage OLS Model Results

Variable Marginal Effect of Marginal Effect of Travel Energy Combined Marginal Effect of

Car Owning Use (MJ/Household/Week) Due to Travel Energy Use

Probability Variables' Effect on: (MJ/Household/Week)

Car Ownership All Vehicle Use

Traditional (ref Superblock) -24% -75 -55 -130

Grid (ref Superblock) -30% -86 -30 -116

Enclave (ref Superblock) -31% -86 -21 -107

2 X Distance to City Center -8% -18 +42 +23

On BRT Corridor -4% -6 +29 +22

Double Current Neighborhood Size +4% +8 +16 +24

Double Income

Have Company Car (ref no company car)

Own Motorcycle (ref no motorcycle)

Own E-Bike (ref no E-bike)

Own Bike (ref no bike)

+12%

-8%

-10%

-10%

+15

+562

+76

-23

-29

+46

+562

+61

-36

-40

Results from the marginal effect estimation are shown in Table 7-13. Most factors (except

for the company car variable) have both direct impact on transportation energy use via vehicle

use and indirect impact through the car ownership- to- vehicle use chain. In terms of the

magnitude of impacts, neighborhood characteristics are among the most important factors

influencing household travel energy use. Non-"superblock" neighborhood typologies decrease

both car ownership and vehicle use significantly, achieving a total marginal reduction of 100-130

megajoules for each household per week in travel energy use. Conversely, doubling the size of

neighborhoods can increase both car ownership and vehicle use, resulting in a marginal increase

of travel energy use by 24 megajoules per household per week". In our sample, most

17 In the model specification assumptions, we do not differentiate the effect of doubling the size of a

"superblock" neighborhood versus a non-"superblock" one. In reality this is probably not true given that destination

opportunities in the "superblock" are much more scarce than those in the rest types, and thus doubling the size of a

"superblock" neighborhood would greatly worsen the walking accessibility. An interaction term between the
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neighborhoods do not allow transit service running through for the sake of security (except the

"grid" one); therefore, such a doubling size effect can imply a longer access distance to transit

system which will in return encourage automobile ownership and uses. The location

characteristics have interestingly countervailing effects on car ownership and vehicle use. On the

one hand, doubling the distance to city center and being close to BRT corridors make households

less likely to own cars. On the other hand, they increase vehicle use and this direct impact on

energy use is stronger. As a result, in both "location" scenarios, the net change in per household

weekly travel energy is positive with a magnitude similar to the "doubling neighborhood size"

effect. Similar countervailing effects can be found for motorcycle ownership. Overall, the

impacts of 2-wheeled vehicle ownership is smaller than that of non-"superblock" neighborhood

typologies, yet greater than that in the neighborhood "changing location" and "size doubling"

scenarios. Finally, Table 7-13 shows the greatest impact on household travel energy use comes

from having a company car, probably because we set "no-company-car" as the "baseline"

scenario and thus the estimated marginal effect indicates the expected energy consumption of a

company car, which is a lot.

Figure 7-1 shows estimated energy use effects of various potential policy scenarios using a

more standardized measure as percentage gains in terms of energy reduction. Similar calculation

approach is followed as for estimating marginal effects. Again, eliminating the availability of a

company car or a private car has the greatest savings of travel energy use, followed by the

neighborhood typology changes from the "superblock" to all the others. It is interesting to see

that literally halving household income would not save as much energy as policy interventions in

the built environment would.

neighborhood size and typology in the model will address this but unfortunately it cannot not included in our case

because the limits of variance in our sample on these two variables.
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Figure 7-1 Expected Household Travel Energy Use Reductions of Hypothetical Measures
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7.3 Sub Instrumental Models on Household Weekly Travel Distance by Mode

In this section, we explore the relationship between neighborhood characteristics and

distance traveled by different. This potentially helps us to better understand the more nuanced

effects underlying the estimated effects on total household travel energy use/GHG emissions.

That is, we attempt to shed light on whether the apparent impact on energy use comes from

reduced auto use, reduced transit use, increased walking, some combination, etc.

All models follow the two-stage instrument modeling approach with LOGIT+OLS and

LOGIT+TOBIT both employed. Theoretically, the LOGIT+TOBIT model is better than the

LOGIT+OLS model given that our dependent variables of trip distance for each mode (except

walking) are heavily censored at zero.

Results using LOGIT+OLS and LOGIT+TOBIT are summarized in Table 7-14 and Table

7-15, respectively. In general, the effects of the variables revealed by the two models are

consistent in terms of their significance and direction, although for the same variable, the result

from the TOBIT model tends to suggest a greater magnitude of effect. Not surprisingly, the type

of vehicle owned (e.g, auto) dominates that vehicle category use (e.g., auto distance traveled).



Other household attributes (including travel preferences) seem to be much more relevant in the

use of transit, bike and walking than other vehicle uses. Yet we do not know why exactly it is the

case.

With respect to the effect of neighborhood form, results in both models show that all

non-"superblock" neighborhood typologies have significant impacts on use of car and transit,

and walking; they do not affect motorcycle, E-bike or bike uses. Specifically, households in the

"grid" and the "enclave" drive less and ride less transit in exchange of more walking, which

implies substitution effects. The "traditional" neighborhood typology, however, reduces travel

distance of all three modes including walking, suggesting it is the most self-contained. In

addition, compared to the "enclave" and the "traditional" neighborhood types, the "grid" has a

weaker effectiveness on reducing car travel- it even becomes ambiguous based on results in the

OLS model. This reflects that the "grid" neighborhood, on the one hand, offers good access to

transit and walkable streets; on the other hand, it provides more direct routes for cars which

make driving attractive.

Regarding the location effects, it is worth noting that the proximity of BRT corridors does

not affect transit use, a consistent finding in both models. The reason is perhaps that while

households have better transit service there, they may ride the BRT frequently or travel longer

distances to obtain more benefits at destinations.

We also identify some location effects that are inconsistent between results from the OLS

models and the TOBIT models. For example, the effect of "distance to city center" on transit use

is significant and positive in the OLS model of transit use, but becomes insignificant in the

TOBIT model. Similarly, the proximity to BRT corridors indicates more car use in the OLS, but

not in the TOBIT model.

Finally, by comparing results with the 2nd-stage total household energy use models (see

Table 7-11), we find that sub-effects of neighborhood location features revealed in the 2nd-stage

OLS sub-distance-models can explain well on their overall direct effect on travel energy use.

The 2"d-stage TOBIT sub-distance-models failed to do so: while location effects are significant

in the overall energy use TOBIT model, none is significant in 2nd-stage TOBIT sub-models on

energy consumed vehicle use. Since there are no precedents of applying LOGIT+TOBIT in the

literature, we are not quite sure whether it is indeed a statistically appropriate. However, to

address this puzzle is beyond the scope of this research. Therefore, following discussions are
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based only on the 2 d-stage OLS models (Table 7-14) combined with the total energy use

2 d-stage OLS model (Table 7-11).

Compared to the "superblock", the "traditional" neighborhood directly reduces total

household travel energy consumption mainly by shortening household car driving and transit

distance. The "grid" neighborhood, overall, can directly reduce household travel energy use.

However, sub-effects on vehicle use are more obscure since the grid-pattern road network

encourages walking, transit, and driving at the same time. Controlling vehicle ownership and

other factors, households in the "enclave" neighborhoods also consume less travel energy than

those in the "superblock", too. This direct savings mainly comes from a reduction of car use with

the compensation of walking- thanks to the traffic calming measures taken. In addition to

neighborhood typology, neighborhood size is also relevant to household travel energy use:

bigger neighborhoods tend to consume more transportation energy consumption due to its

positive effect on car driving distance.

We then turn to location effects. The distance to city center has a direct and positive on total

travel energy consumption, mainly through its impact on a mode shift from walking to transit.

Households living on BRT corridors use more energy in average because of more driving yet no

less transit use. The reason may be that BRT corridors may still present advantage of driving

over transit, and people are also willing to drive longer to attain more benefits at destinations

further away (e.g., shopping mall).
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Table 7-14 2nd Stage OLS Models on Log Transformed Household Weekly Travel Distance by Mode (Using Predicted Car Ownership: PCarOwned)
Ln car dist Ln transit dist Ln motor dist Ln ebike dist Ln bike dist Ln walk dist

Coefficient t-test Coefficient t-test Coefficient t-test Coefficient -test Coefficient t-test Coefficient t-test
Household Characteristics
Ln_Income 0.065 0.83 0.370** 3.43 0.015 0.47 0.176** 2.68 -0.110 -1.53 -0.075 -1.15
Adult_1 -0.157 -0.99 -0.329 -1.52 -0.088 -1.42 0.268 1.47 -0.329** -2.26 -0.387** -2.92
Adult_2 ref. ref. ref. ref. ref. ref.
Adult_3_ormore -0.027 -0.30 0.524** 4.36 0.007 0.21 0.013 0.18 0.394** 4.87 0.411** 5.58
ChildIormore 0.098 1.37 0.220** 2.25 0.007 0.26 0.053 0.95 0.314** 4.80 0.224** 3.76
Elderly_1_ormore -0.063 -0.62 -0.210 -1.50 0.002 0.06 -0.091 -1.12 -0.323** -3.42 0.788** 9.16
Worker_0 -0.036 -0.24 -1.477** -7.24 -0.071 -1.21 -0.106 -0.90 -0.237* -1.72 0.430** 3.44
Worker_1 0.143 1.38 -0.537** -3.77 -0.052 -1.26 -0.116 -1.41 -0.128 -1.33 0.270** 3.09
Worker_2_ormore ref. ref. ref. ref. ref. ref.
P_CarOwned 4.237** 13.25 -2.667** -5.71 -0.191 -1.52 -0.025 -0.10 -0.737** -2.49 -0.314 -1.17
Companycar 3.099** 12.90 -0.198 -0.60 -0.126 -1.33 -0.250 -1.32 -0.417* -1.89 -0.300 -1.49
MotorIormore -0.249** -2.07 -0.055 -0.34 1.721** 36.39 -0.016 -0.17 -0.311** -2.81 -0.315** -3.13
Ebike_1_ormore -0.517** -6.65 -0.325** -3.06 -0.034 -1.10 2.226** 36.50 -0.098 -1.37 -0.072 -1.11
Bike_1 -0.235** -2.94 0.131 1.20 -0.012 -0.37 0.032 0.52 0.674** 9.15 -0.113* -1.69
Bike_2_ormore -0.509** -4.71 0.093 0.63 -0.088** -2.08 -0.020 -0.23 1.254** 12.51 -0.152* -1.68

Neighborhood Characteristics
DistancetoCenter 0.003 0.08 0.098** 2.19 -0.005 -0.39 0.039 1.53 0.012 0.39 -0.075** -2.72
BRTCorridor 0.201** 2.10 0.082 0.63 -0.036 -0.97 0.122 1.63 0.334** 3.80 0.205** 2.55
NeighborhoodSize 0.000 -0.01 0.008* 1.93 0.000 0.06 -0.001 -0.43 -0.001 -0.27 0.006** 2.26
Traditional -0.419* -1.85 -0.994** -3.17 0.035 0.39 0.012 0.07 0.202 0.97 -0.407** -2.15
Grid -0.167 -0.88 -0.755** -2.87 0.024 0.32 0.118 0.79 0.130 0.75 0.364** 2.28
Enclave -0.347* -1.90 -0.200 -0.79 -0.062 -0.86 0.037 0.26 -0.043 -0.25 0.281* 1.84
Superblock ref. ref. ref. ref. ref. ref.

Household Attitudes
TransitasConvenience n.a 0.272** 2.36 n.a n.a n.a n.a
ILikeBiking n.a n.a n.a n.a 0.377** 5.53 n.a

(Constant) 0.039 0.08 0.546 0.82 0.070 0.37 -0.050 -0.13 1.019** 2.29 1.684** 4.15

No. Observations 2,421 2,421 2,421 2,404 2,421 2,421
F - 82.340 12.269 76.405 78.620 24.481 26.179
Adjusted R2  0.390 0.085 0.372 0.379 0.163 0.165

Note: *p<.10, **p<.05, n.a indicates the variable is excluded to avoid multicollinearity problems.
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Table 7-15 2nd Stage TOBIT Models on Log Transformed Household Weekly Travel Distance by Mode (Using Predicted Car Ownership:
P_CarOwned)

Ln car dist Ln transit dist Ln motor dist Ln ebike dist Ln bike dist Ln walk dist
Coefficient t-test Coefficient t-test Coefficient t-test Coefficient t-test Coefficient t-test Coefficient t-test

Household Characteristics
LnIncome 0.563* 1.91 0.723** 3.55 -0.349 -0.43 -0.163 -0.43 -0.371 -1.37 -0.144 -1.26
Adult_1 -0.856 -1.24 -0.787* -1.88 -2.527* -1.65 -0.225 -0.29 -1.771** -2.81 -0.581** -2.48
Adult_2 ref. ref. ref. ref. ref. ref.
Adult_3_or more -0.031 -0.10 0.827** 3.76 0.586 0.81 0.306 0.86 1.466** 4.83 0.754* 5.83
Child_1_ormore 0.700** 2.89 0.366** 2.04 0.146 0.25 0.256 0.94 1.242** 5.02 0.451** 4.31
Elderly_1_ormore -0.367 -0.97 -0.362 -1.41 -0.069 -0.08 -0.638 -1.46 -1.248** -3.49 1.170** 8.04
Worker_0 -1.782** -2.56 -2.844** -7.26 -2.650 -1.44 -1.119 -1.53 -1.056** -2.01 0.691** 3.25
Worker_1 0.030 0.08 -0.846** -3.23 -1.389* -1.72 -0.589 -1.41 -0.347 -0.98 0.507** 3.35
Worker_2_or more ref. ref. ref. ref. ref. ref.
PCarOwned 8.589** 7.92 -5.038** -5.79 -2.873 -0.96 -0.002 0.00 -3.385** -2.82 -0.619 -1.30
Companycar 6.319** 10.10 -0.397 -0.66 -26.875 . -2.285* -1.70 -1.728* -1.81 -0.717* -1.90
MotorI or more -0.724 -1.59 -0.026 -0.09 13.790** 8.92 0.108 0.26 -1.196** -2.79 -0.546** -3.02
Ebike_1 or more -1.464** -5.43 -0.542** -2.79 -0.603 -0.99 12.102** 15.28 -0.134 -0.50 -0.106 -0.92
Bike_1 -0.728** -2.69 0.201 1.01 -0.315 -0.48 0.030 0.09 3.239** 10.63 -0.219* -1.85
Bike_2_or more -1.746** -4.43 0.139 0.52 -2.122** -2.25 -0.160 -0.35 4.412** 11.87 -0.322** -2.03

Neighborhood Characteristics
Distance toCenter -0.037 -0.36 0.128 1.55 0.098 0.26 0.175 1.30 -0.022 -0.18 -0.171** -3.39
BRTCorridor -0.043 -0.12 0.112 0.47 -1.077 -1.14 0.617 1.44 1.120** 3.34 0.374** 2.69
NeighborhoodSize -0.002 -0.18 0.016* 1.95 -0.009 -0.29 0.000 0.00 0.001 0.10 0.012** 2.51
Traditional -2.769** -3.44 -1.949** -3.36 1.997 0.83 -0.112 -0.13 0.538 0.67 -0.823** -2.42
Grid -1.218* -1.89 -1.400** -2.88 1.860 0.96 0.385 0.48 0.401 0.58 0.668** 2.39
Enclave -1.409** -2.45 -0.427 -0.92 0.500 0.24 0.073 0.10 -0.425 -0.63 0.438 1.61
Superblock ref. ref. ref. ref. ref. ref.

Household Attitudes
Transit-asConvenience n.a 0.491** 2.30 n.a n.a n.a n.a
ILikeBiking n.a n.a n.a n.a 1.523** 5.71 n.a

(Constant) -6.998** -3.98 -2.471** -1.98 -10.449** -2.02 -11.096** -4.61 -3.293* -1.94 1.176* 1.66

No. Observations 2,421 2,421 2,421 2,421 2,421 2,421
LR chi2 (21) 999.771 227.063 590.591 1232.170 469.460 436.059
Log likelihood -2579.085 -4520.676 -412.980 -1634.323 -2503.681 -3886.588
Pseudo R2  0.377 0.092 0.217 0.383 0.165 0.170

Note: *p<. 10, **p<.05, n.a indicates the variable is excluded to avoid multicollinearity problems.
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7.4 Summary

The multivariate analysis presented in this chapter enables us to identify the apparent effect

of the neighborhood on travel energy consumption (and GHG emissions) while controlling for

confounding factors. I estimate single-stage base models using OLS and TOBIT to predict

adjusted log-transformed total travel energy consumption (and GHG emissions). Also, to correct

for potential endogeneity problems, I implement a two-stage instrumental variable modeling

routine for both the total travel energy consumption (and GHG emissions) and the travel distance

for each mode.

In the single-stage modeling approach, the TOBIT model performs better than the OLS

model in that the TOBIT model effectively corrects the censoring problem associated with the

household energy use variable in our sample. In the two-stage modeling approach, good

instruments are found for car ownership, but not the 2-wheeled vehicle ownership choices. In

general, the significance and signs of factors do not vary between the models of energy use and

GHG emissions (except for the E-bike ownership); nor do they vary much across models taking

different approaches on a specific outcome measure, either energy use or GHG emissions.

Table 7-16 presents the estimated qualitative effects of neighborhood features on household

transportation energy consumption based on the models estimated in this Chapter. It shows how

each neighborhood characteristic imposes both a direct impact on household travel energy use

and an indirect impact through its influence on household vehicle ownership, and those two

impacts may operate in the same (e.g., form typology, size) or in opposite directions (e.g.,

location features). The combined marginal effects via simulation suggest that 1)

non-"superblock" neighborhoods could reduce net household energy use compared to many

other alternative measures; and 2) neighborhoods with bigger size, being close to BRT corridors

or further away from the city center increase net household energy use, although the magnitude

of their impacts is somewhat minor.
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Table 7-16 Qualitative Effects of Different Neighborhood Features on Car Ownership,
Energy Use

Travel Distance and

Neighborhood Features
Traditional Grid Enclave Neighborhood Location: Location:
(ref. (ref. (ref. Size Distance On BRT
Superblock) Superblock) Superblock) to CBD corridor

Vehicle Ownership
Car
Motorcycle + + + ns ns ns
E-bike
Bike + + ns ns ns +

Vehicle Use/ Travel Distance
Car
Transit -- ns + + ns
Motorcycle
E-bike ns ns ns ns ns ns
Bike
Walk + + + - +

Total - - - + + +

Energy use

Note: Signs are extracted from the results of the two-stage LOGIT+OLS models of total energy consumption, vehicle ownership,

and distance traveled for each mode. ns- not significant

Literature in the west has emphasized the important role of household characteristics on car

ownership, travel behavior and related energy use. In the Jinan context, the evidence is partially

consistent with these findings. Here, richer households with children and more workers increase

both the likelihood of car ownership and household total travel energy use. Bigger families

require more energy for travel, but they may not own more cars in the Jinan context. Household

tenure and employment type matter in car ownership, but not in the travel energy use, directly

(they do influence energy use through vehicle ownership). Finally, household attitudes regarding

transit preference and perceived value of travel time seem to have a more direct weight on car

ownership than on vehicle use or energy consumption patterns. Car prestige is revealed to be

negatively associated with both car ownership and travel energy. This perhaps reflects that in a

rapidly motorizing society like Jinan, China, more car owners gradually regard the car only as a

common travel means, while car status/prestige as a popular perception remains among people

without car access yet.
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8 CONCLUSIONS AND IMPLICATIONS

This thesis set out the goal of answering the question whether neighborhood features make a

difference in household transportation energy consumption in urban China and, if so, to what

degree. A literature review in Chapter 2 showed that direct assessment of this relationship using

empirical evidence remains rare in China, and results from similar studies in developed countries

show how the results vary depending on variations in research approaches and local contexts.

The theoretical discussion in Chapter 3 further illustrated the inherently complex nature of the

neighborhood form- household transportation energy consumption relationship, suggesting that,

while a relationship between the two certainly exists, no conclusive effects should be taken for

granted. Chapter 4 set up the context of Jinan, China for this empirical research and Chapter 5

introduced the research design and analytical approaches taken. Chapters 6 and 7 presented the

analytical procedures and results in detail.

The final Chapter 8 is organized as follows. Section 8.1 summarizes the overall findings

from the analysis in Chapters 6 & 7. Section 8.2 discusses the policy relevance of those research

results. Section 8.3 raises the possibility of using our model estimates to help develop a

design-proposal based energy consumption evaluation tool (the so called "Energy Pro-forma"),

designed to help educate and inform urban designers. Section 8.3 describes implications for

regional travel demand modeling practices and tools. Section 8.5 & 8.6 identify the limitation of

the current research and some future research directions.

8.1 Empirical Findings on Household Transport Energy Use in Jinan

Although no perfect modeling technique could be identified through the analysis of our

empirical data, by comparing results across a series of alternative models, we feel confident in

concluding that neighborhood features significantly affect household travel patterns and

associated energy use in Jinan, China. Specifically, households living in "traditional", "grid" and

"enclave" neighborhoods consume less transportation energy than those in "superblock"

neighborhoods. Neighborhoods closer to BRT corridors or further away from the city center
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apparently increase household energy use, although these impacts are somewhat minor compared

to the neighborhood typology factor and partially offset by their negative effects on household

car ownership.

That said, we recognize a number of confounding effects from household socioeconomic

and demographic characteristics. For example, income has a diminishing-return effect on both

car ownership and transportation energy use. Young households with children and more workers

increase both the car ownership likelihood and household travel energy use. Household size is

positively correlated with energy use, but it does not influence car ownership in the Jinan

context. A household's housing tenure and employment type also matter in car ownership

decision, but not in the travel energy use pattern.

Regarding the vehicle ownership effects, we found that private car ownership is a main

driver of energy consumption. Interestingly, having a company car incurs even greater energy

use, probably due to lower concern for usage costs and the high travel demand nature of the

people equipped. Motorcycle ownership increases transport energy use. Household having two

or more bikes actually consume less energy.

Finally, we identify several effects of household attitudes. Our models suggest that a

household with a transit preference and low expressed value of travel time are less likely to own

cars. But such attitudes do not affect the vehicle use. Results also reveal an interesting effect of

the car prestige, which decreased both car ownership probabilities and vehicle uses. This seems

counterintuitive at the first glimpse. A likely explanation would be that China has entered a

motorized era in which more people (particularly car-owned people) perceive car as a common

traveling tool, whereas people without car access feel to be less well off (thus viewing the car as

a sign of prestige).

8.2 Implications for Policy Makers

8.2.1 Rethink the "Superblock" Neighborhood Typology: Learn from the Past

Although many Chinese cities like Jinan are still consuming relatively low passenger energy

at the household level compared to rich western countries (see Figure 6-14), the trend of rising

energy in China seems clear. A comparison of the energy consumption levels across

neighborhood typologies of "traditional", "grid", "enclave" and "superblock" suggests that the

spread of "superblock" neighborhoods is contributing to China's increasing urban passenger
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travel energy demand. We might expect that the relatively high density of Chinese

neighborhoods, regardless of which type they take, will automatically lead to high travel energy

efficiency. However, our study shows that despite of comparable (and high, by western

standards) densities across the neighborhoods, neighborhood typology does make a difference in

travel energy performance. This raises important questions about the viability of the

"superblock" as an appropriate development typology for a "clean energy" city future for China.

If the "superblock" neighborhood is not attractive from an energy efficiency perspective,

what neighborhood typology should we consider for future China's urban development? Instead

of borrowing ideas from the west, China can in fact learn from her own history. This empirical

study reveals that existing typologies from Jinan's past ("traditional", "grid" and "enclave")

imply lower per-household travel energy use than the "superblock". After controlling for

household characteristics, neighborhood location and even household attitudes, those old

neighborhood typologies are associated with 65%-80% less travel energy use than the

"superblock". The energy reduction potentials come from both less vehicle usage and lower

probability of car ownership, probably due to the mixed land uses, implicit traffic calming

measures, and parking restrictions. While these principles were not necessarily intended to save

energy when the neighborhoods were built, they could be revisited to inspire policy makers and

urban planners in making rules/regulations/guidelines and/or invent in new neighborhood

typologies for urban development in future China.

8.2.2 Neighborhood Location Matters

Distance to the city center is positively related to travel energy consumption, indicating that

infill development is indeed favorable from a travel energy efficiency perspective. On the other
18

hand, central location of neighborhood increases car ownership, although not much , suggesting

a possible policy leakage.

Another interesting implication is that building neighborhoods along transit corridors does

not necessarily achieve energy reductions. In fact, our empirical analysis shows that households

18 e.g., closing to the city center by half could increase a household's likelihood of owning a car by 8% based

on our car ownership model estimate.



living next to bus-rapid-transit (BRT) corridors consume even more transportation energy. Does

it suggest we should not provide transit services on corridors at all? Apparently not- a transit

corridor can indeed help households enjoy more opportunities without being more

car-dependent, partly evidenced by the BRT corridor's modest and somewhat even negative

effect on household car ownership in our model. Rather, the real challenge is that in China transit

corridors are often designated together with highways, and it is very difficult to provide a transit

system good and convenient enough so that the incentive of driving does not exceed the

incentive of transit use. That said, household energy spent on transit systems may not be reduced

from the corridor effect because intensive development along corridors provide increasing

opportunities further away which households may want to access even at the price of longer

travel.

8.2.3 Vehicle Ownership: Promote or Control?

China is experiencing rapid motorization. While most of the time people regard it as

increasing car ownership, the rise of motorcycle and E-bike ownership in China is also

phenomenal. Our empirical Jinan data suggest that households owning private cars and

motorcycles consume more energy than non-vehicle households whereas households who own

E-bike consume less, apparently due to reductions in transit and auto demand. An implication

could be that it is better to encourage households to use E-bikes (of course also bikes) rather than

cars, motorcycles, and even buses. Therefore, policy discouraging owning cars and motorcycles

and favoring E-bike or bike growth in China might be good for reducing energy consumption.

However, when GHG emissions were estimated, the e-bike ownership is further found to

increase household transportation GHG emissions, as in Jinan e-bikes draw electricity from

coal-generation plants. Company cars in China, a unique vehicle type quasi-owned by

households, account for a strong effect on energy use at the household level among all vehicle

types (including private cars). Better monitoring or more restrict company car use rules may be

helpful in reducing household travel energy consumption.

8.2.4 Improve Transit Efficiency

In middle-size cities like Jinan, empirical data shows that transit energy use is currently

comparable in total magnitude, though certainly not relative to passengers carried, or to

passenger car energy consumption. This is in contrast to the western context in which transit use



tends to be so low that the energy share by transit could be negligible. In non-"superblock"

neighborhoods in Jinan, transit-consumed energy is the main source of household travel energy

consumption. While educating or incentivizing individual household to buy more efficient cars is

difficult, targeting on achieving more energy efficient transit systems in Chinese cities could be

both realistic and cost-effective. The efficiency may come from cleaner fuel or better bus engine

design, but equally effective can be improving the transit system operations (e.g., scheduling).

Policies for boosting transit ridership can also make the system more energy efficient by

increasing the occupancy and therefore lowering the amount of system-wide per passenger

kilometer energy use.

8.2.5 Preference Shaping

Zhao (2009) argues that shaping traveler preferences, particularly in the China context,

presents significant opportunities to solve transportation problems (Zhao, 2009). Our empirical

analysis in Jinan supports this argument by showing that both household attitudes toward

different travel modes and people's perceived value of travel time have significant impacts on

automobile ownership, a main driver of transportation energy consumption growth in China.

However, our study also found that those preferences have little effect on vehicle use once

controlling for ownership. This contrast in significance of the two effects seems to suggest

preference shaping in China, if appropriately used, can be an effective measure to slow down the

rapid motorization, but the policy window is getting smaller. Once the majority of Chinese buy

cars, then further preference shaping efforts may gain little in mitigating transportation energy

use or GHG emissions.

8.3 Implications for Urban Developers and Designers

As mentioned in the research context, this study is part of the "Making Clean Energy City in

China" project. In addition to the tasks for collecting empirical evidences, one challenging task

of the project is to create an "Energy Pro-forma" design tool to help developers and designers

compare energy performance across proposed development patterns. The tool development

framework is shown in Figure 8-1.

Modeling results in this thesis can provide coefficients for transportation energy use

estimation, a sub-module in the "pro-forma". Specifically, one can set the "superblock"

neighborhood as the baseline scenario, using empirical average annual household transportation
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energy consumption in the "superblock" as a default value. Designers can extract a series of

neighborhood indicators (form and location) from their proposals and put them in the

"pro-forma". Form indicators could then be automatically aggregated to a neighborhood

typology indicator by a "neighborhood-form identification" sub-module. The derived typology

value as well as location variables would then be entered as the secondary input in the

transportation energy module to calculate expected transportation energy use. The efficiency

gain is the ratio of the expected transportation energy use to the default "superblock" value. In

the longer term, if empirical research could quantify separate neighborhood element (e.g,

density) effects on travel energy use, the secondary input variables for the transportation

sub-module could be replaced by more disaggregated neighborhood indicators. Similar

approaches based on empirical research can be applied to estimate the other energy components

(e.g., household operational energy, embedded energy) in the proposed development scenario.

An output processing sub-module can then generate a series of figures and tables showing the

comparison of energy performance of different components under different scenarios.

Figure 8-1 Framework of Energy Pro-Forma Tool Development
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8.4 Implications for Transportation Demand Modelers

Following practice in the west, more and more cities in China have begun to develop

city-wide transportation forecasting models to assist decision making on infrastructure

investment and urban growth management. Conventional four-step modeling techniques

deployed in the west often do not consider the built environment- travel behavior interaction,

except to the extent to which land use (exogenously or endogenously, depending on the type of

model used) determines the overall origin and destinations in the model. Such models are

ill-equipped to capture potential micro-level impacts on travel. However, our empirical evidence

of such neighborhood-level effetcs in Jinan suggests that future transportation forecasting in

urban China should include neighborhood form and location factors in projecting household auto

ownership and travel demand. Household attitudes towards different trip modes should also be

included in the modeling framework'9 . If not, forecasts can be biased. Accompanying the need

for modeling structure update is the need for more data preparation. Neighborhood information

and household attitude data collection is not a trivial task for most transportation agencies in

China, and they may seek help from other government departments (e.g., urban planning bureau)

or even the private sector (e.g., customer research team).

Another implication for transportation demand modeling has to do with the definition of

traffic analysis zone (TAZ), which is the unit of geography commonly used to calibrate and

forecast aggregated travel patterns of a sub-group of urban population. . In many cities, the TAZs

are defined by areas bounded with major arterials and the heterogeneity within a TAZ in terms of

neighborhood form is often ignored. Incorporating neighborhood typology factors into the

transportation models may prove a difficult task in the near future. Nevertheless, fine-grained

geographic information is required to improve transportation demand forecasting models to be

more effective in addressing the neighborhood form effects.

19 For detailed discussion on potential techniques for modeling improvement, see Zhao (2009).
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8.5 Research Limitations

There are a number of research limitations in this thesis, including:

" Measurement error on transportation energy use. In estimating energy use, a) we

did not account for the speed effect on vehicle operation efficiency (which could

depend on the vehicle type and even neighborhood forms); b) travel distance and

frequency were self-reported by the households, thus the former can be inaccurately

estimated whereas the latter may be under-reported especially on those short

unimportant trips; c) we did not account for long-distance travel (e.g., travel to

another city by train or plane); d) higher energy efficiency of the BRT vehicles than

that of traditional transit vehicles was not reflected; and e) the survey was conducted

in summer when students were having summer holidays, and thus school-related

trips in families with children were not reflected in our data.

" Not a fully random sample. We do not have it because in one of our nine

neighborhood cases (Lv-Jing), surveyors could not get in and had to interview

people at the gate. This may produce a different scale of error terms from

observations in other neighborhoods. Our current models do not control that.

" Aggregate neighborhood variables. Due to the limitation of the neighborhood

sampling frame, we could not distinguish effects of density, diversity and design

related specific neighborhood features. Also, there may be important

within-typology variation that the modeling approach is currently missing.

" 2-wheeled vehicle (2-WV) ownership variables may remain endogenous. In our

instrumental models, the instrumental variables are weak in the 2-WV ownership

choice models. This does not exclude the possibility of endogeneity. Rather, the

issue remains uncertain.

" Imperfect proxies of household attitudes. Although attitude variables in our data

were found to have interesting effects on car ownership and energy use, those

variables were not necessarily accurate measures of actual attitudes. On the one

hand, our methodology presumes that the respondent's attitudes reflect the

household's attitudes, which may not be the case; on the other hand, for a single

attitude, only one related question is asked to the respondent therefore the answer

may not be even reliable for representing his/her own actual attitude.
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" Inconsistency between estimation results from "LOGIT+OLS" and

"LOGIT+TOBIT" sub-models on vehicle use by mode. I was unable to explain the

reason behind and justify which is correct due to time and statistical knowledge

constraints. Related interpretations in section 7.3 should be cautiously taken.

e Cross-sectional multivariate regression analysis inherently fails to identify causal

mechanisms. This is because we could not address the time-precedence concern. For

example, the BRT corridor in Jinan is relatively new and we do not know whether a

car-owned household have changed any of their travel patterns since the BRT

system was open. If not, the corridor itself does not cause a reduction of car

ownership or an increase of energy consumption, although the association still

exists.

e Life is more complex than the utilitarian theory. This creates fundamental challenges

to any models applied in empirical studies, since people in the real world have

information asymmetry problems, behave irrationally, face peer pressures in

decision-making, and the like.

8.6 Future Research Areas

An immediate next step of this research would be to enlarge the neighborhood sample size

and corresponding household data via a new round survey in Jinan. More neighborhoods would

allow more variance in neighborhood indicators which further allow us to 1) better understand

existing neighborhood forms in China and what can be built in future; and 2) explore the effect

of neighborhood typologies and form elements on household transportation energy use and

emissions. Both are crucial for developing a full-version energy pro-forma tool mentioned in

section 8.3. Household transport energy use estimate for revised existing typologies or even a

brand new typology could then be feasible by using marginal effect of each generic form

indicator. Other potential research areas include:

e Investigating separate effects of neighborhood on transportation energy for each

trip purpose in the China context. Recall from the theoretical discussion, we expect

that the neighborhood effect on commuting trips may be tempered by

non-commuting travel.

156



e Statistical justification on the appropriate 2-step modeling procedure. This includes:

a) identifying good instrumental variables for vehicle ownership choice models; b)

improving 2-wheeled vehicle ownership model specification; c) testing alternative

approach such as vehicle-bundle choice models for the first step; and d)

mathematically comparing the consequences of performing LOGIT plus TOBIT

models versus LOGIT plus OLS models. Meanwhile, other advanced methods (e.g.,

structure equations model) are worth testing.

e Scope expansion beyond the current household transportation energy use (or

emissions) measure. For example, future research can include: a) embodied vehicle

energy through lifecycle analysis; b) residential energy use; c) freight energy use;

and d) the operational energy implied by non-motorized travel. Analysis of those

related energy components and how they further interact with our current measure

will help us obtain a fuller picture of the influence of neighborhood form on the

urban transportation energy consumption and to address the policy leakage

challenge. For example, people may save energy in travel but consume more

residential energy via participating more in-house activities. Or, households who

save energy by ordering food in fact simply transfer the energy to delivery sectors.

* Focus even beyond the energy itself We should not take a narrow view by judging a

"good" development pattern by only looking at its energy efficiency. Economy,

equity, and quality of life are also definitely our concern about the future growth in

China. As income increases, people's desire for goods will inevitably grow. It is

unfair to expect Chinese people to lower their living standard for the sake of travel

energy saving. Thus, ultimately, empirical research should be able to estimate the

effect of neighborhood form on a more comprehensive outcome measure, such as

sustainability.

* Examining neighborhood form supply issues. Even if the "traditional" type or a

certain neighborhood typology is indeed favorable, questions remain about why it

does not evolve naturally, what current implementation barriers (e.g., policy, market,

technology, etc.) are, and how we can facilitate change in the future.

e Testing more advanced data collection tools (e.g., smart phone devices). This will

help us reduce measurement errors associated with conventional household surveys
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and obtain even better and more complete travel data (e.g., over a month) with more

detailed and accurate activity profile and trip making profiles.

Studying more Chinese cities, especially the mid-size cities.
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