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Abstract

In the last several years, parallel computing on multicore processors has transformed from a
niche discipline relegated primarily to scientific computing into a standard component of high-
performance personal computers. At the same time, simulating processors prior to manufacture
has become increasingly time-consuming due to the increasing number of gates on a single chip.
However, writing parallel programs in a way that significantly improves performance can be a
difficult task. In this thesis, I outline principles that must be considered when running good gate-
level circuit simulations in parallel. I also analyze a test circuit's performance in order to
quantitatively demonstrate the benefit of considering these principles in advance of running
simulations.
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1. Introduction

1.1 Thesis Goals

In the last several years, parallel computing on multicore processors has transformed from being

a niche discipline relegated primarily to scientific computing into a standard component of high-

performance personal computers. As processors become more complex, it becomes increasingly

important to use simulations to detect design flaws before processors and other computer

hardware are fabricated. It is important to discover these flaws in simulation prior to fabrication

because of the expense involved in actually producing a chip. These simulations occur at many

different levels of design, ranging from transistor-level simulations involving voltages and

currents, to system integration simulations. At every level, these simulations are computationally

expensive and time-consuming, so efforts to improve performance of simulations are of great

importance.

While there has been a great deal of research on simulation algorithms at low levels, there has

been less research done on parallelizing gate-level simulation. Gate-level simulation is of

particular interest since that's the highest level of simulation that can be used to verify the

coverage of the manufacturing tests used to determine if a chip has been fabricated correctly.

Lower-level simulations provide unnecessary detail; higher-level tests abstract away many of

the circuit structures and hence don't provide information on how defects in a particular structure

would affect what is observed at the pins.

In this thesis, I outline principles based on machine-level features that must be considered in

order to achieve real-time speed-up when running simulations on multi-core machines. This



involves assigning the simulation of subcircuits to specific cores with the goal of maximizing

parallelism by minimizing inter-core communication.

1.2 Outline

Section 2 covers background relevant to the topic of circuit simulation. I provide a brief guide to

the properties of the four primary levels of circuit simulation. I also outline previous research

conducted on concurrent gate-level circuit simulation. Section 3 covers the operation of the

specific simulator that I used and the modifications that were made to this simulator in order to

allow it to run on multiple cores.

Section 4 outlines general principles that need to be considered when running simulations in

parallel. These general principles provide a useful checklist for anyone considering

implementing parallel circuit simulation specifically, but these principles can also be generalized

to the parallel implementation of many different programs.

Section 5 describes the experiments I conducted running circuit simulations are circuits

partitioned differently for different threads, and Section 6 discusses the implications of these

results. My seventh and final section summarizes the contributions of my research as a whole.



2. Background

2.1 Circuit Simulation Levels

Circuit simulation can be conducted at a number of different levels depending on the specific

information a tester wishes to obtain from the simulation. In order of decreasing complexity and

increasing size of the circuit primitives, these levels are the circuit, switch, gate and

functional/behavioral levels. I outline briefly the different levels below. The simulator I used in

this research was a gate-level simulator whose design is outlined in the next section.

2.1.1 Circuit Level

The circuit level is the lowest level of simulation possible. It simulates a circuit based on the

underlying physical principles of the circuit's most basic primitives - resistors, transistors,

capacitors, wires, etc. Circuit level simulations are the most accurate type of simulation, but are

impractical for circuits larger than several thousand transistors because of the length of time they

take to run [1].

2.1.2 Switch Level

Switch-level simulations are the next highest level and treat MOSFET switches and transistors as

the primitive devices. This allows larger circuits to be modeled within a reasonable period of

time.

2.1.3 Gate Level

Gate-level simulation is similar to switch-level simulation except that the primitive unit is a logic

gate rather than a MOSFET switch. Collectively, switch-level and gate-level simulations are



known as logic-level simulations.

2.1.4 Functional/Behavioral Level

Functional- and behavioral-level simulators analyze circuits at the highest level by grouping

segments of the circuit into functional units. This level of simulation allows ease of modification

and produces rapid results, but cannot easily detect many low-level faults caused by defects in

manufacturing. Because the purpose of my research is to improve the speed of evaluating

whether tests can detect all or most of the possible manufacturing flaws, I cannot use this level of

abstraction as it is unlikely to have a high enough resolution to detect a majority of flaws.

2.2 Previous Work

Using parallel processing to improve the performance of simulations has been of interest for over

two decades, but the primary work has been conducted using switch-level simulations. Initial

attempts to measure available parallelism in switch-level simulations by Bailey and Snyder

found that the typical activity level of devices was below 3% [2]. However, parallelism research

continued with the advent of asynchronous parallel execution constrained by critical path

analysis as discussed in Briner et al [3]. They were able to show significant improvements in

performance running their simulations on multiple processors with random partitioning

compared to running the simulations serially, although they concluded that their methods still

failed to take full advantage of available parallelism and that their methods performed poorly on

circuits with low inherent parallelism (as would be expected).

More recent studies of parallel switch-level simulations include Chen and Bagrodia in 1997,



where they compared different parallel protocols and found improvements in performance of

between 3 to 6 times for simulations running on 8 processors using the highest performing

parallel protocols [4]. These results are promising with regard to applying similar techniques at

the gate level.

Work that has specifically been performed at the gate level includes studies by include Sporrer et

al. who obtained speedups of about 8 when using 20 workstations in a cluster to perform gate-

level simulation using a Time Warp synchronization technique [4, 5]. Since high computation

granularity is critical for parallel simulation, Wisley and McBrayer investigated ways to combine

processes in order to increase computation granularity [6]. While there have been some more

recent studies on concurrent gate-level simulation, there have been very few that focused

specifically on fault simulation and ways to combine parallelism available in the circuit

simulation itself, as well as parallelism available by virtue of the fact that many similar

simulations with small variations are being run to see whether faults can be detected.



3. Circuit Simulator Operation

For my simulations, I used a gate-level circuit simulator known as gsim designed by Christopher

Terman. In this section I describe the original sequential gsim implementation as well as the

steps we took in attempting to create a version that could run in parallel.

3.1 Sequential Gsim Overview

Gsim is an event driven gate-level circuit simulator written in C++ which takes as input two files

- a netlist file and a timing and testing file. Gsim runs the series of tests listed in the timing file

and outputs whether it detected any mismatches between the predicted and observed signal

values as well as other useful information about the system such as the numbers of nodes and

devices in the circuit and the number of evaluations and updates that occurred.

3.1.1 Class Organization

Gsim possesses three classes that embody the functionality of the circuit being simulated. These

are the network, node and device class. The data members and functions comprising these

classes are summarized in the following three tables.



The Node Class

Data Members Functions

name The node's name adddriver Appends a new device to
the node's list of drivers

*network The network this node is a add_fanout Appends a new device to
member of the node's list of fanouts

drivers The devices that have this node reset Resets the value of the node
as an output at the beginning of a

simulation
danouts The devices that have this node schedule-update Prepares a node to be

as an input updated at the end of a time
step if its value has changed

value The node's current value update Performs an update by
setting value to nextvalue,
and scheduling all fanout
devices to be evaluated at
the next timestep

nextvalue The node's value after its next setinput Sets the input of a node to a
update specific value and adds that

node to the update list

input Indicates whether the input has get-name Returns the value of name
been set by the timing file

scheduled Indicates whether the node is get-value Returns the value of value
scheduled to be updated

The Device Class and LogicGate Child Class

Data Members Functions
name The device's name finalize Schedules a device for evaluation

once the network is finalized

*network The network this device is a reset Resets the device's internal state
member of

**inputs Nodes that are inputs to this evaluate Computes new values for outputs
device based on inputs

* *outputs Nodes that are outputs of this tristate Returns whether this device can
device produce tristate output

ninputs The number of inputs and
noutputs outputs possessed by the device
scheduled Indicates whether the device is

scheduled to be evaluated



The Network Class

Data Members Functions

node-map Maps a string node name to a findnode Checks whether a node is
pointer to that node contained in nodemap and

if its not, creates the new
node.

nodes A list of all the nodes in the adddevice Adds a device to the
network network by adding it to

devices

devices A list of all the devices in the finalize After all nodes and devices
network have been added, performs

any necessary adjustments
and sets finalized to true

update A list of nodes scheduled to be reset Resets the network
updated

eval A list of devices scheduled to be schedule-update Adds a node/device to
evaluated schedule eval update or eval, respectively

finalized Boolean indicating whether this simstep Performs a unit-delay
network has been finalized simulation on the network.

Described in full detail in
____ ____ ____ 3.1.4.

time The current simulation time dump Print out various attributes
stats of the network in human-

readable form

nevals Counts of the number of
nupdates evaluations, updates, iterations
niterations and steps which have occurred
nsteps in the simulation

3.1.2 The Netlist

A netlist in gsim is a list of all devices and their associated inputs and outputs, with each device

on a separate line. Gsimi supports standard logic gates, muxes, adders, tri-state logic, latches,

registers and multi-port memories.

3.1.3 The Timing and Testing File

The timing and testing file contains the specifications for simulations that the user wants run on a

specific circuit as defined by the corresponding netlist. Using this file, the user can specify



which nodes are connected to specific pins, group nodes to be asserted together by a timing

statement, print messages to stdout, control the clock rate of the circuit and the length of setup

and hold times. Following these setup parameters, the bulk of the timing file consists of

statements that set nodes to particular values at particular times, followed by the expected output

given those inputs

3.1.4 Simulation Procedure

The simulation of each clock cycle is split into a sequence of simulator actions: asserting input

and clock values, running the simulation, testing outputs. Gsim calls the network's sim-step

procedure at appropriate points in the simulation sequence. While the current simulation time is

less than the specified stop time, sim-step alternates between performing scheduled updates

(recomputing a device's output values from its current input values, scheduling changed nodes

for eval) and evals (updating nodes with their new values, scheduling fanout devices for update).

At any given step, devices updates can be performed concurrently, as can the subsequent evals.

At any point during this process, if there are no scheduled evals or updates, then the simulation is

finished and we can end that loop and move to the next test until all tests in the timing file are

complete.

3.2 Parallel Gsim Overview

In any given iteration of gsim, a set of evaluations or updates can be performed concurrently. In

the original program, these two operations were implemented asfor loops that either updated all

the nodes on the update list or evaluated all the nodes on the eval list. Allowing these operations

to run in parallel was the critical task for our code, and we attempted to parallelize this portion in



a variety of ways before finding one that consistently provided speedup when run in parallel.

We first attempted to use Intel's Threading Building Blocks (TBB) library before switching to

pthreads to implement our parallel version of gsim. The specific methods we used and our

experiences with each are outlined in the following sections.

3.2.1 Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) is a C++ library designed to allow non-threading experts

to more easily introduce parallelism into their code. It works by abstracting away the specific

threading mechanisms by introducing higher level functions and containers like parallel-for and

concurrentvector. I attempted to use TBB to parallelize gsim using the methods described in

the next three sections. Though each of these methods failed, the reasons why each method

failed shed light on the challenges of parallelism specific to circuit simulation.

3.2.1.1 The Simplest Approach

Initially, I used TBB to change the code in the simplest way possible to see how well an

unsophisticated approach might do. I modified the update and eval lists to use TBB's

concurrentvector data structure instead of the STL's vector. The primary reason for this was

because concurrentvector supported concurrent calls to push-back. In terms of the functions

used, I modified the update and eval for loops to run as parallel for functions.

This approach did not work. In fact, it increased the runtime of some circuit simulations by a

factor of twenty or more - the opposite of the desired result. The primary reason for this was the



concurrentvector data structure. Using concurrentvector meant that each time a node or

device was updated or evaluated and memory needed to be written, a lock was acquired on the

entire concurrentvector data structure. Since our operations take very little time compared to

1/0 operations and system calls, most nodes and devices were simply waiting for their turn to

write memory. Therefore, the ultimate effect was of code that was still running sequentially

because of the locks, but which was burdened by a gross amount of overhead. The next step was

to try a different data structure.

3.2.1.2 A Better Version

In my second attempt at parallelization I removed the use of a concurrentvector in order to

eliminate any possibility that this container was using locks that would inefficiently constrain

updates and evaluations. This did not have the required effect because although locks were

removed, nodes and devices could now be added to the update and evaluate lists multiple times,

which meant that on the next time step more updates and evaluates would occur than necessary.

More importantly, this implementation did not eliminate the root cause of the slowdown - writes

to shared memory that required system calls to ensure cache coherency. In particular, the fact

that entire nodes and devices were being added to the update and eval vectors caused larger

writes to shared memory that significantly increased the runtime such that a "parallel"

implementation could take up to 6 times longer than the serial version - clearly not what is

desired from a parallel application.

3.2.1.3 Lessons from TBB

Though TBB seems like a good library for high-level parallelization, particularly if maintaining



operation locality on a particular core over time is not important, I was not able to use TBB in a

way that would improve performance.

The primary reasons for this are as follows. First, the overhead of TBB's high level functions

was large compared to the number of evals and updates we would perform during a single

operation. Second, there was no way to map individual nodes and devices to specific cores

which would prevent shared writes, a major time sink, without working at a much lower level -

at which point TBB has no advantage over pthreads. This prevented us from taking advantage of

circuit locality.

3.2.2 Using TBB's Lessons to Create an Intelligent pthreads Implementation

Armed with experience from TBB, the next step was to create a pthreads implementation where

we could control thread distribution to cores at a low level. The idea is that each thread is

assigned a portion of the nodes and devices contained in a circuit. It then updates or evaluates

the nodes and devices assigned to it on each iteration.

In order to prevent a single thread from getting "out of step" with the other threads, some type of

barrier is necessary to synchronize the activity of the different threads. We initially tried using

the built-in pthread barrier, but ended up needing to implement a custom barrier.

In pthreads, the standard barrier implementation initializes a barrier with attributes specified by

the user which include the number of threads which need to call pthread-barrierwait before the

program can continue. When pthreadbarrierwait is called, it increments a shared variable



which contains the number of threads that are currently waiting. When the number is equal to

the number specified at initialization, the program can proceed.

The problem with this implementation for our purposes is that the barrierwait call requires a

system call to check the value of count every time a thread checks in. It also writes to shared

memory, thereby invoking the system's cache coherence protocol. Both of these operations are

extremely costly compared to the amount of time a single thread spends updating or evaluating

objects. If the update and eval operations were more costly, barrierwait might not be a

bottleneck, but when compared with operations that take only microseconds to run, any system

calls or writes to shared memory are significant bottlenecks. In addition, barrierwait must be

called hundreds of thousands of times total in our test circuits - and real circuits and test files are

much larger - which further decreases performance.

The answer, then, is to create an implementation of a barrier that does not rely on writing to

shared memory. Instead, the custom barrier we use works such that each thread possesses an

individual count of how many times it has reached the barrier and increments this count when it

calls barrierwait. It then reads every other thread's count of how many times it has reached

barrierwait. Threads are able to proceed when every other thread has reached the barrier.

The advantage of this implementation is that no shared writes occur. Every thread writes to its

own location and then performs a read of the values belonging to other threads. Shared reads are

significantly less costly than shared writes.



After implementing this distributed barrier, we finally achieved a real-time performance gain

when using a parallel version of gsim as compared to a sequential version. There were no further

barriers in the implementation itself, but a good algorithmic implementation that minimizes

shared writes is not enough to maximize performance. To do that requires more careful

implementation of which parts of a circuit should be mapped to different threads in order to

minimize shared writes and inter-core communication; i.e. how the circuit should be partitioned.

This is the subject of the remainder of the thesis.



4. Principles for Mapping Circuits to Cores

In the previous section I demonstrated that writing parallel programs can be a complex process.

In order to produce any speedup whatsoever it was necessary to eliminate as many system calls

and shared writes as possible in the code- itself. This applies generically to any parallel

application. In our situation, the shared writes and kernel calls used by the standard pthreads

barrier implementation were too expensive, so it was necessary to write a different barrier

implementation. This eliminated shared writes caused by thread coordination, but in a circuit

simulation there is another source of shared writes - connections between nodes and devices.

It is not enough to simply cut the circuit into arbitrary pieces and throw those pieces onto as

many cores as you have available. This will lead to suboptimal performance. Instead, the

following general principles should be followed to maximize potential speedup. The most

important of these is partitioning such that communication between cores is minimized. Less

important, but still useful considerations include dividing the work evenly, taking into account

the size of a partition versus the memory of a processor and ensuring that sufficient tests are

being run on the circuit (this consideration is usually not a problem in complex circuits).

Each of these considerations is discussed in this section. In the next section, I present empirical

results demonstrating how these principles can be applied in practice.

4.1 Partitioning

To begin with, assume that the circuit to be analyzed is bigger than the cache of a single core,

because if the entire circuit can fit in the memory of a single core, there is no need to run this



circuit on multiple cores. Doing so would simply create a large amount of unnecessary inter-

core communication, causing slowdown. There may be some exceptions to this where the cost

of communication is extremely low, as might be the case for two portions of a circuit that only

communicated via a few wires but otherwise did not communicate.

However, if the circuit will not fit in a single core's memory, then some speedup might be

obtained through partitioning. Ideal partitioning attempts to divide the circuit between cores in a

way that maximizes the independence of each subcircuit - which usually involves cutting

through a minimum number of nodes. Put another way, we are attempting to separate portions of

the circuit that are already mostly independent. A concrete example of where this might occur

would be dividing a pipelined processor along pipeline divisions. Since each pipeline stage is

supposed to operate independently, this is a useful heuristic for separation.

I _IBSrc | '
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Figure 1: A five-stage pipelined processor with added dashed lines to indicate a possible
partitioning scheme given an ideal multi-core system with large single-core caches (Source:
6.823 Fall 2009 Lecture 5 Notes).



Partitioning in this fashion attempts to minimize the number of nodes that will need to be in

shared memory. This example further assumes that each pipeline stage can fit in a single core's

memory. This is not likely to be the truth in practice and it would be necessary to further

subdivide the circuit using similar principles.

Many algorithms to statically partition circuits have been developed. A selection of these is

described in Section 2.

4.2 Dividing Work Evenly

Suppose that in the circuit above (as is likely to be true) the Instruction Fetch stage will have

very few operations on every iteration, while the register file and ALU stages are likely to have

many evals and updates to perform. If the circuit is partitioned as in Figure 1, then the core

processing the Instruction Fetch portion of the circuit will have long periods where it is idle

while it waits for other stages to reach the barrier.

If the Instruction Fetch stage is small enough to be combined with another partition while still

having both of them fit in a single core's memory, then combining these two is the simplest

solution. In general, if two partitions can be combined to both fit on a single core, it is usually

better to move put both of these on the same core - especially if neither of them is the bottleneck

partition with respect to workload per iteration.

However, there may be no way to combine partitions easily. In this case, optimizing against the

bottleneck problem is more difficult. On the one hand, we could assign the Instruction Fetch



stage to the same core as another partition. If this combination exceeds the memory of that core,

we might see thrashing, which would increase the time spent by that core performing I/O instead

of useful work. If this is still less than the time the core with the largest workload takes on each

iteration, this might be a good solution.

Another option might be splitting up the bottleneck partition across more cores so that its

average workload of evals and updates per iteration is smaller. We would want to apply good

partitioning principles to this split to minimize the amount of communication between the two

cores that are replacing the single partition. This might be an easy problem to solve, if the

partition is easily divided into sub-partitions. If the partition is not easily divided, it will be

necessary to balance the decrease in the workload of each processor per iteration against the

increased latency that might be caused by inter-core communication.

It is difficult to predict exactly what the effect of any of these actions might be in advance, so in

cases where there is heavy skew in workload, dynamic analysis, where different assignment

schemes are tried and run on the good simulator might be the best option. The assignment

scheme that provides the best performance for the good machine simulations can then be used

for the potentially more extensive tests needed on a fault simulator. Another option is to

dynamically meter the simulation as it is running and update the partitioning accordingly. This

could potentially be accomplished by monitoring the number of cycles being used by other cores

on each simstep and having less-burdened cores claim some nodes and devices, or by looking at

the number of evals and updates being performed by a core on each simstep.



There is much room for exploration of dynamic analysis, but I do not explore it in this thesis as

the circuits I ran experiments were primarily chosen to explore issues of static partitioning and to

have a fairly equal workload across threads.

4.3. Other Considerations

Though minimization of communication through intelligent partitioning and analysis of

workload are the two primary considerations for maximizing the performance of a parallel circuit

analysis application, there are a few other issues that should be considered in certain cases.

These include using a sufficiently large test vector to offset initialization effects and being

careful about attempting to use all available cores on a system as the scheduler may make this

tricky.

4.3.1 Timing and Test File

The timing file should contain a large enough test vector that simply initializing the circuit in

memory does not overshadow any other operations. For example, even an intelligently

partitioned circuit with a small test vector will show no speedup when compared with a parallel

implementation because the time spent loading the nodes and devices into memory on the first

test will dominate the performance. The increased speed of the remaining few tests due to

caching will not be apparent.

This is a consideration for the simple fan-in circuit used as a test circuit in my experiments

described in Chapter 5. There are only 4 distinguishable test cases, but these tests must be

repeated several thousand times in order to cause the memory load factor to be small relative to



the effects of parallelization.

4.3.2 Threads Equal to the Number of Available Cores

On many multicore systems, the scheduler may limit the programmer's ability to use all of the

available cores simultaneously, so maximal theoretical speedup may be constrained by this. For

example, on our 8-core machine, the scheduler will not always utilize all 8 cores if 8 threads are

used in the application.

4.4 Analysis

By exploring the general principles outline above it becomes clear that mapping circuits to cores

for parallel processing requires consideration of the number of cores available, their

communication methods and the latency of different operations like reads and writes. In

addition, the specific layout of the circuit being considered must be analyzed. A circuit which

has an equal workload across all nodes and devices is easier to partition than one with a

relatively skewed load, where shared write considerations must be balanced against leaving some

cores idle for a period of time on every iteration. In addition, things tangential to the actual

program like the size of the test vector and the behavior of the computer's scheduler need to be

taken into account.

Good analysis can increase performance significantly but, like creating parallel algorithms, is

more complex than it appears at first glance.



5. Experiments

In the previous section, I presented a selection of principles that need to be followed in order to

maximize performance gains when running circuit simulations in parallel. In this section I

present experiments that demonstrate each of the principles outlined in the previous section.

These experiments were conducted on an machine with 4 Intel dual-core Xeon processors,

meaning that the theoretical maximum number of threads we could run would be eight, although

as outline in Section 4.3.2, actually using eight threads does not produce as much of a

performance improvement as might be expected.

5.1 Base Case Circuit

In order to conduct controlled experiments, and obtain the maximum possible gain from running

the simulation in parallel, I began by reducing the problem to a trivially parallel circuit - a fan-in

of AND gates. NOR, XOR, NAND or other gates would have worked equally well.

This circuit begins with 2" gates, which feed into a second level of 2"- gates. This recursive

descent continues until a single gate is reached, at which point the circuit terminates in an OUT

node. While being simulated, every node and device is visited as values propagate through the

circuit. An example of this circuit with 23 devices at the start is shown in Figure 2.

I used a Python script to generate netlists for this type of circuit automatically, so I could quickly

create a circuit of arbitrary size. I then ran experiments that demonstrate each of the principles



mentioned in Section 4.

5.1.1 Test File Demonstration

At the first input level, every device has the same two inputs. This results in four possible test

cases corresponding to Figure 3, an AND gate's standard truth table.

Figure 2. An example of a fan-in circuit composed of AND gates.



A B OUT

0 0 0
0 1 0

1 0 0

1 1 1

Figure 3. Truth table for an AND gate fan-in circuit of arbitrary size.

Since there are only four possible outcomes, in the test circuit each test is run 10,000 times to

diminish the effect of initialization. If only four tests are used, cached values are used only three

fourths of the time, so any potential performance improvement is overshadowed by initialization

costs. In fact, performance decreases as the number of threads increases. Figure 3 demonstrates

this for circuits ranging in size from 29 to 222 initial inputs. A test I ran with only four tests

demonstrated this, and can be seen in Figure 3. As mentioned in Section 4.3.1, the way to

counteract this is to run the same tests repeatedly. When conducting simulations for this specific

circuit, I used 10,000 simulations for each test case.

5.1.2 How to Partition the Test Circuit

The benefit of using a simple fan-in circuit such as the one presented above is that it makes

analysis much simpler. We know that a good partition minimizes the number of shared writes -

in the case of this circuit, that means minimizing the number of nodes that are shared between

cores.

From this observation, it is easy to see the best and worst ways that devices might be assigned to

cores in my fan-in test circuits. Using four threads as an example, Figure 5 shows the worst

possible way devices could be assigned and Figure 6 demonstrates the best possible way. The



Python script that generated the original netlists ordered them in a way that resulted in the worst

possible thread assignment.

Initialization Cost for AND Gate Fan-in Circuits
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Figure 4. The effect of initialization cost on the performance of a simulation using a small test
vector as the number of threads is increased.

5.1.3 Partitioning vs. Parallelization Experiments

Since it is easy to determine the ideal partitioning scheme for the test circuit, it was also possible

to design a program that would take a netlist as it was originally generated (with worst-possible

thread assignment order) and transform the netlist into an ordering that would result in near-ideal

thread assignment when used as input to gsim.



Thread 0

Thread I DEVICE4
A

B DEVICE10

DEVICE5

BDEVICE13
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DEVICE7
A
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Figure 5. The worst possible way devices in my test circuits could be assigned to threads. This
arrangement maximizes the number of shared nodes.

In addition, the simplicity of this circuit enable me to construct an experiment so that I could

quantitatively determine how much performance can be gained by using effective partitioning

apart from the effects of parallelization alone.

To accomplish this, I ran simulations which ran with 1, 2, 4 or 8 threads on circuits ranging in

size from a single AND gate (with some control logic) up to circuits with up to 220 input devices.

I ran these simulations first on circuits which were partitioned in the worst possible manner, then



on netlists which were reordered to be near-optimally partitioned for the number of threads being

run.

Figure 6. The best possible way devices in my test circuit could be assigned to threads. This
arrangement minimizes the number of shared nodes.

By comparing the results of these tests, I was able to determine quantitatively the maximum

amount that partitioning can improve the runtime performance of a simulation as compared with

a circuit whose only difference is that it is poorly partitioned.



Experiment 1: Performance Improvement due to the addition of cores alone

In my first experiment, I analyzed whether any performance improvement could be achieved in

the presence of poor partitioning simply by increasing the number of threads used. Based on my

Chapter 4 analysis, I expected the answer would depend on the circuit size as compared with the

cache size. Figures 7 and 8 demonstrate the results of this experiment, where it is possible to see

a fairly sharp cutoff at circuits of size 210 where the benefit of using multiple cores begins to

outweigh the cost of inter-core communication. At this point, performance improvement caused

by minimizing cache thrashing begins to outweigh the detrimental effects of inter-core

communication.

Figure 7 by demonstrates that if an entire circuit below a certain size can fit within the cache,

there is no benefit to adding cores because it adds communication costs without providing any

additional caching benefits (and in fact, subtracting from previously useful caching). In the

worst, case, using 8 threads on very small circuits decreased performance by up to 8000%.

Figure 8 shows how as the circuit size begins to exceed the size of the cache, adding more cores

does begin to provide some benefit. In fact, if we concentrate specifically on the 2" circuit, we

can see the threshold. For this size circuit, adding a second core improved performance by 50%,

and using four cores provided approximately the same performance, but using eight cores caused

a severe downswing in performance as communication costs became too costly once the circuit

was split across more cores and caches than necessary.

This figure also demonstrates another limit. Runtime improvement based on adding cores alone



Normalized Runtimes for Worst-Case Partitioning of Small Circuits (<2000 Nodes+Devices)
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Figure 7. Normalized performance improvement as a ratio of the runtime for the threaded

version divided by the runtime of the serial version.

was maximized for a circuit of the size 2"4, after which performance does not improve as much

compared to the serial case for increasing circuit size. This is likely because the size of the

subcircuit assigned to each thread again begins to exceed the cache size of an individual core.

Experiment 2: Determining the effect of partitioning alone

The second part of the experiment was to determine the effect partitioning would have on

performance separately from increasing the number of cores used. To do this, I recorded the

runtime of simulations for circuits that were partitioned in the worst possible way versus circuits

that were partitioned appropriately for the number of threads available. I also tried partitioning a

single-threaded simulation as though it were running on two cores to see whether that might have
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an effect.

Normalized Runtime for Worst-Case Partitioning of Large Circuits (>2000 Nodes+Devices)
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Figure 8. Performance improvement for larger poorly partitioned circuits upon parallelization.

Figure 9 shows the results of this experiment as run for circuits above the level where the

advantages of parallelization begin to outweigh the disadvantages of increased communication.

Even for a single-thread, proper partitioning seems to improve performance slightly, possibly

because of an improved access pattern when caching, but I did not fully investigate this because

of time constraints.

More significantly, we can see that a sweet spot exists where effective partitioning causes a sharp

increase in the efficiency of the simulation. This is the point at which the size of the subcircuit is



very close to the cache size and maximal benefit is achieved from having each processor make as

few writes to shared memory as possible by minimizing the number of nodes and devices that

need to be shared with each core. After this maximally efficient point, the size of the subcircuits

begins to exceed the size of single-core caches enough that the performance improvement is less

significant.

Effect of Partitioning Alone on Simulation Performance
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Figure 9. The performance gain caused by partitioning alone when running a parallel
simulation. The y-axis is calculated by dividing the runtime when partitioned appropriately by
the runtime when partitioned in the worst possible manner

Strikingly, it is possible to see how closely this effect is connected to the size of the circuit by

noticing that the circuit size where maximal performance improvement due to partitioning is

achieved doubles as the number of threads doubles. This presents very strong support for my

explanation.



Experiment 3: The Total Effect of Parallelization and Partitioning

After running experiments to separate out effects of the two potential speedup methods, I

compared the results to analyze the overall effect by looking at the ratio of a partitioned, parallel

simulation with a single-threaded, worst-case partitioned circuit. This is shown in Figure 10.

The results displayed in Figure 10 are the product of the two ratios calculated above, i.e.:

Overall Performance Ratio = Partitioning PR x Parallelization PR

Thus, maximal overall performance improvement is achieved by maximizing the product of

these two performance ratios.

Combined Effect of Parallelization and Partitioning
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Figure 10. The overall effect ofparallelization and partitioning when compared with the serial,
poorly partitioned case.



6. Discussion and Future Work

The results presented in this thesis break down the complicated problem of how to separate the

relative effects of partitioning and parallelization by reducing the problem to an extremely simple

circuit that can be analyzed without complicated algorithms. This approach allowed me to

quantify the validity of principles asserted in Chapter 4.

In the real world, consideration of the factors mentioned in Chapter 4 should be conducted before

full-scale simulation begins, especially if simulation performance is particularly important. Of

the simulation aspects mentioned in that chapter, the most important ones in the real world are

likely to be how many cores to use for simulation and finding the optimal way to partition the

circuit either statically or dynamically. As a minor note, in real world simulations,

considerations involving whether a circuit is too small to need partitioning are unlikely to be

relevant.

Future work in this area will involve analysis of the relative performance of various partitioning

algorithms on different, more complex types of circuits, since most circuits in the wild do not

contain the kind of regularity I took advantage of in my test circuit. As mentioned in the

background section, some work in this area has already been conducted at the switch level by

Chen et al [4].

Fault simulation, another area where further investigation would be useful. One logical way to

extend this research to fault simulation is to first find the ideal number of cores and partitioning

for a good circuit simulation, then replicate that across multiple cores using map-reduce or a



similar algorithm. For example, if the ideal number of cores to use to perform a good simulation

of a circuit is 8, and a particular machine has 64 available cores, a master could assign groups of

8 cores subsets of the test vector. In order to make this more efficient, if different individual tests

demonstrate different usage across the circuit, it might be possible to cluster tests such that usage

is maximized.

Dynamic partitioning, as mentioned earlier, is also an interesting area for further exploration. In

trying to predict the future from events of the past, this type of research may benefit from

research conducted in branch prediction on pipelined processors.



7. Contributions

In this thesis, I explored how to extract maximal performance improvement from a gate-level

circuit simulator when run in parallel. My primary contributions are as follows:

e Outlining general principles that should be considered when attempting to parallelize

circuit simulations

e Implementing several versions of the gsim simulator using Intel@ Threading Building

Blocks

e Analyzing a bootstrap-level- circuit to quantify the maximal performance improvement

that could be achieved through parallelization and effective partitioning

The analysis conducted in this thesis is a proof-of-concept that a high level of performance

improvement can be achieved in circuit simulation if portions of the circuit are independent

enough to be effectively partitioned, and if the resulting partitions are of an appropriate size such

that a single core can take advantage of the partition locality.
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