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Abstract

In problems of dispersive wave propagation governed by two distinct restoring-force
mechanisms, the phase speed of linear sinusoidal wavetrains may feature a minimum,
cmin, at non-zero wavenumber, kmin. Examples include waves on the surface of a
liquid in the presence of both gravity and surface tension, flexural waves on a floating
ice sheet, in which case capillarity is replaced by the flexural rigidity of the ice, and
internal gravity waves in layered flows in the presence of interfacial tension. The
focus here is on deep-water gravity-capillary waves, where cmin = 23 cm/s with
corresponding wavelength Amin = 27r/kmin = 1.71 cm. In this instance, ignoring

viscous dissipation, cmin is known to be the bifurcation point of two-dimensional
(plane) and three-dimensional (fully localized) solitary waves, often referred to as
"lumps"; these are nonlinear disturbances that propagate at speeds below cmin without
change of shape owing to a perfect balance between the opposing effects of wave
dispersion and nonlinear steepening. Moreover, Cmin is a critical forcing speed, as the
linear inviscid response to external forcing moving at Cmin grows unbounded in time,
and nonlinear effects as well as viscous dissipation are expected to play important
parts near this resonance.

In the present thesis, various aspects of the dynamics of gravity-capillary lumps
are investigated theoretically. Specifically, it is shown that steep gravity-capillary
lumps of depression can propagate stably and they are prominent nonlinear features
of the forced response near resonant conditions, in agreement with companion exper-
iment for the generation of gravity-capillary lumps on deep water. These findings are
relevant to the generation of ripples by wind and to the wave drag associated with
the motion of small bodies on a free surface.

Thesis Supervisor: Triantaphyllos R. Akylas
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Chapter 1

Introduction

1.1 Gravity solitary waves

When dispersion and nonlinearity are exactly balanced in a dispersive wave system,

locally confined steady waves of permanent form, or solitary waves, may arise. John

Scott Russell, a Scottish engineer made the first observation of a solitary wave at

the Union Canal in Edinburgh in 1834. He described his observation as "the form of

a large solitary elevation, a rounded, smooth and well-defined heap of water, which

I have called the Wave of Translation" (Russell 1844). Dispersive waves such as

water waves can be modeled by nonlinear partial differential equations. The relevant

equation for Russell's solitary wave is the Korteweg-de Vries (KdV) equation, which

describes the dynamics of long waves on the surface of shallow water and admits a

'sech 2 ' two-dimensional (2-D) solitary wave solution (Korteweg & de Vries 1895). The

KdV equation is a generic equation in that it can describe weakly nonlinear long-wave

phenomena in various other fields such as plasma physics, optics, astrophysics and

biomechanics. The KdV solitary wave is a nonlinear gravity solitary wave of elevation.

In the absence of surface tension, the phase speed of linear gravity waves features a

maximum at zero wavenumber (long wave). The KdV soliary wave of elevation exists

when its speed is above the linear phase-speed maximum.



1.2 Gravity-capillary solitary waves

In contrast to pure gravity waves, the linear phase speed features a minimum if both

gravity and surface tension are equally important. The resuling waves are gravity-

capillary solitary waves. Depending on the wavenumber where the phase-speed min-

imum occurs, there are two types of solitary waves. When the phase-speed minimum

occurs at zero wavenumber (long wave), two-dimensioanl (2-D) KdV solitary waves

of depression and three-dimensional (3-D) Kadomtsev-Petviashvili (KP-I) solitary

waves of depression (Kadomtsev & Petviashvili 1970) exist when their speeds are

below the linear phase-speed minimum. On the other hand, when the phase-speed

minimum occurs at non-zero wavenumber, there exist different types of 2-D and 3-D

gravity-capillary solitary waves having speeds below the linear phase-speed minimum.

In contrast to well established KdV or KP-I solitary waves, the latter type of 2-D

gravity-capillary solitary waves and 3-D gravity-capillary solitary waves (commonly

refered to as 'lumps') were discovered only recently (Akylas 1993; Longuet-Higgins

1993; Kim & Akylas 2005; Parau, Vanden-Broeck & Cooker 2005) and are the subject

of the present thesis work.

Previous work mostly dealt with the existence (Groves & Sun 2005) and steady

profiles of these gravity-capillary depression solitary waves with propagation speeds

less than the linear phase-speed minimum (Longuet-Higgins 1989; Vanden-Broeck &

Dias 1992; Parau, Vanden-Broeck & Cooker 2007). At low speeds below cmin, they are

fully localized disturbances with steep depression. At speeds close to cmin, they are

wavepacket-type disturbances, with small amplitudes. The stability and the related

dynamics of these gravity-capillary wavse were studied only recently. 2-D gravity-

capillary solitary depression waves are stable to longitudinal perturbations (Calvo &

Akylas 2002). However, when subject to transverse perturbations, they are unstable

and eventually transform into steep 3-D gravity-capillary solitary depression waves

(Kim & Akylas 2006). Compared to their 2-D counterparts, 3-D gravity-capillary

solitary depression waves have different stability characteristcs. While 3-D steep

gravity-capillary solitary depression waves are stable to longitudinal perturbations,



small-amplitude 3-D gravity-capillary solitary depression waves of wavepacket type

are unstable to longitudinal pertubations (Akylas & Cho 2008; Chapter 2). These

gravity-capillary waves have also been observed in experiments. Zhang (1995) re-

ported evidence of 3-D gravity-capillary solitary depression waves on the surface of

deep water in a wind-wave experiment. Later, Longuet-Higgins & Zhang (1997) tried

to generate 2-D gravity-capillary solitary depression waves on the surface of deep

water in the laboratory. They used a 2-D slit through which compressed air was

blown onto the surface of stream of deep water. They reported persistent lateral

instability in the 2-D plane solitary waves. Based on these studies, only steep 3-D

gravity-capillary solitary depression waves are expected to be physically relevant and,

therefore, are the main focus of the present thesis work.

1.3 Objective of thesis work

The main purpose of the present thesis work is to reveal the physics governing the

dynamic behavior of 3-D gravity-capillary depression solitary waves generated by a

moving pressure forcing on the surface of deep water. Motivated by aformentioned

studies, combined experimental and theoretical studies on 3-D gravity-capillary soli-

tary depression waves were proposed by research groups from University of Maryland

(Professor James Duncan and Dr. James Diorio) and MIT (Professor Triantaphyl-

los R. Akylas and author). Particularly, the main focus of this joint work is on the

generation of 3-D gravity-capillary depression solitary waves on deep water. In the

experiment, three different behavioral states (state I, II, and III) are identified ac-

cording to forcing speeds. When the forcing speed is low, a simple 3-D depression

was observed just below the moving forcing. This is essentially the linear response,

and this state is refered to as state I. As the forcing speed is increased towards Cmin,

they observed steep steady 3-D gravity-capillary solitary depression waves following

just behind the moving forcing, and this state is referred to as state II. In addition, in

state II, the response of maximum depression is independent of the forcing strength.

Finally, near the resonance when forcing speed is close to cmin, they observed that 3-D



gravity-capillary solitary depression waves are shed outward in the oblique directions

in a time-periodic manner and decay due to viscous dissipation. This state is referred

to as state III. Overall, 3-D gravity-capillary solitary depression waves observed in

the experiment are steep and, therefore, nonlinearity is not weak. In addition, they

are in the gravity-capillary range, so viscous dissipation cannot be neglected. Finally,

the interplay between nonlinearity and viscous dissipation is very delicate, which is

implied in the characteristics of state II and state III.

Related to the main objective of explaining the experimental results, several pre-

liminary theoretical studies were done in advance and, also, in parallel with the

companion experiment. The first work is to investigate the stability of 3-D gravity-

capillary solitary depression wave according to its steepness or propagation speed

(Chapter 2). The contents of chapter 2 are based on the paper by Akylas & Cho

(2008). A linear stability analysis is carried out to reveal the stabilty of 3-D gravity-

capillary solitary depression waves according to the wave steepness. Also, the related

nonlinear dynamics is investigated numerically. This chapter provides the stabilty

criteria which is related to the existence of stable steep 3-D gravity-capillary solitary

depression waves observed in the companion experiment.

The second work is to investigate the dynamics of 2-D gravity-capillary solitary

depression waves generated by a 2-D moving pressure forcing (Chapter 3). The con-

tents of chapter 3 are based on the paper by Cho & Akylas (2008). This chapter

is a preliminary study leading into the investigation of forced 3-D gravity-capillary

solitary depression waves with viscous dissipation. Compared to the free gravity-

capillary solitary waves without forcing and viscous dissipation, little is known about

the forced gravity-capillary waves with viscous dissipation, even in the 2-D solitary

wave case. The purpose here is to study both steady and unsteady responses ac-

cording to forcing speeds under the effects of unsteadiness, nonlinearity and viscous

dissipation. Particular attention is paid to the resonant condition where forcing speed

is close to Cmin. This preliminary work regarding forced 2-D solitary waves is expected

to provide a partial explanation for the three different behavioral states observed in

the experiments and, also reveal the combined effects of nonlinearity and viscous



dissipation when forcing speed is close to Cmin.

Chapter 4 is the capstone of this research and provides a model explaining the

experimental behavior of steep 3-D forced gravity-capillary solitary depression waves

with viscous dissipation. The contents of chapter 4 are based on the paper by Diorio,

Cho, Duncan & Akylas (2009) and further results in preparation for the publication

of papers (Experimental part: Diorio, Cho, Duncan & Akylas, Theoretical & Compu-

tational part: Cho, Diorio, Akylas & Duncan). This chapter is directly related to the

companion experimental results. The purpose is to study both steady and unsteady

responses according to forcing speeds under the effects of three-dimensionality, un-

steadiness, nonlinearity and viscous dissipation. Particular attention is paid to the

resonant condition where forcing speed is close to Cmin. This work provides full, al-

though qualitative, explanation for the three different behavioral states observed in

the experiment and the combined effects of nonlinearity and viscous dissipation when

forcing speed is close to Cmin.





Chapter 2

On the stability of lumps and wave

collapse in water waves

2.1 Introduction

Unlike their plane-wave counterparts, 3-D solitary waves localized in all directions,

commonly referred to as lumps, arise in dispersive wave systems under rather special

conditions. On physical grounds, for a lump to remain locally confined, its speed

must be such that no linear wave can co-propagate with the main wave core. This is

feasible when the linear phase speed features a minimum so lumps propagate below

this minimum.

In the classical water-wave problem, in particular, the phase speed features a min-

imum only if both gravity and surface tension are important, and two distinct types

of lumps arise: firstly, in the high-surface-tension regime (Bond number, B > }),
where the phase-speed minimum occurs at zero wavenumber, lumps bifurcate at the

linear-long-wave speed and are generalizations of the depression solitary waves of the

Korteweg-de Vries (KdV) equation in shallow water. Secondly, for B < 1, on water

of finite or infinite depth, where the phase-speed minimum is realized at a non-zero

wavenumber, lumps bifurcate from linear sinusoidal waves of finite wavelength at this

minimum and, in the near-linear limit, behave like localized wavepackets with enve-

lope and crests moving at the same speed.



Although shallow-water lumps have been studied extensively, lumps of the wavepacket

type were discovered only recently. Using an asymptotic approach, Kim & Akylas

(2005) constructed small-amplitude wavepacket lumps slightly below the minimum

gravity-capillary phase speed. In this limit, lumps can be approximated in terms of a

particular steady solution (ground state) of an elliptic equation system that governs

the coupled evolution of the envelope along with the induced mean flow. We shall

refer to this system as the Benney-Roskes-Davey-Stewartson (BRDS) equations, as

the coupling of the envelope to the mean flow for a gravity wavepacket with two-

dimensional modulations was first studied by Benney & Roskes (1969), followed by

Davey & Stewartson (1974); the effects of surface tension were included later (Djord-

jevic & Redekopp 1977). The asymptotic analysis of Kim & Akylas (2005) suggests

that two branches of symmetric lumps, one of elevation and the other of depression,

bifurcate at the minimum phase speed; they are fully localized counterparts of the

two symmetric plane-solitary-wave solutions that bifurcate there as well (see, for ex-

ample, Dias & Kharif 1999).

In an independent numerical study, Parau, Vanden-Broeck & Cooker (2005) com-

puted symmetric elevation and depression gravity-capillary lumps on deep water

with speed less than the minimum phase speed. In the small-amplitude limit, consis-

tent with the asymptotic analysis, these lumps behave like wavepackets and, as the

steepness increases, they transform into fully localized disturbances whose centreline

profiles resemble steep plane solitary waves on deep water computed in earlier stud-

ies (Longuet-Higgins 1989; Vanden-Broeck & Dias 1992). More recently, the same

authors also presented computations of similar gravity-capillary lumps on water of

finite depth (Parau, Vanden-Broeck & Cooker 2007). Finally, a rigorous existence

proof of gravity-capillary lumps was given in Groves & Sun (2005).

The studies cited above deal exclusively with steady wave profiles, and little is

known about the stability properties and dynamics of lumps that bifurcate at the

minimum gravity-capillary phase speed for B < 1. In an attempt to fill this gap,

Kim & Akylas (2007) examined the stability of plane solitary waves of depression to

long-wavelength transverse perturbations. While stable to longitudinal perturbations



(Calvo & Akylas 2002), depression solitary waves turn out to be transversely unstable,

suggesting a possible generation mechanism of lumps, similar to that of shallow-water

lumps which arise from the transverse instability of KdV solitary waves of depres-

sion. This scenario was confirmed in Kim & Akylas (2006) using a model equation

for weakly nonlinear long interfacial waves in a two-layer configuration. In this in-

stance, according to unsteady numerical simulations, transverse instability leads to

the formation of lumps, that propagate stably at a different speed, thus separating

from the rest of the disturbance.

However, there is also reason to suspect that, close to their bifurcation point

at least, gravity-capillary lumps of the wavepacket type are unstable, since, in the

small-amplitude limit, they are related to the ground state of the BRDS equations.

This equation system predicts the formation of a singularity at a finite time, known

as wave collapse, owing to nonlinear focusing when the initial condition exceeds a

certain threshold (Ablowitz & Segur 1979; Papanicolaou et al. 1994). Given that

the ground state is on the borderline between existence for all time and collapse, one

would expect small-amplitude lumps to be prone to nonlinear focusing; the numeri-

cal simulations of Kim & Akylas (2006) though did not reveal any sign of a related

instability.

As a first step towards a comprehensive study of the stability properties of gravity-

capillary lumps of the wavepacket type, rather than tackling the full water-wave

equations, we shall discuss a simpler model problem. Specifically, we consider the

fifth-order KP equation, an extension to two spatial dimensions of the fifth-order

KdV equation, that describes weakly nonlinear long water waves for Bond number

close to j. While ignoring viscous effects cannot be justified under these flow condi-

tions, the fifth-order KP equation admits lumps of the wavepacket type analogous to

those found in the full water-wave problem for B < j, and provides a useful model

for theoretical purposes.

A linear stability analysis of depression lumps (the primary solution branch) of

the fifth-order KP equation confirms that they are unstable in the small-amplitude

limit. An exchange of stability takes place at a finite wave steepness though, above



which lumps become stable. Moreover, based on unsteady numerical simulations, a

small-amplitude wavepacket, under conditions for which it would have experienced

wave collapse according to the BRDS equations, in fact evolves to an oscillatory state

near a finite-amplitude lump that is stable. This clarifies the meaning of the wave col-

lapse predicted by the approximate envelope equations and suggests an explanation

for the emergence of stably propagating finite-amplitude lumps in the simulations of

Kim & Akylas (2006).

Even though the present chapter deals with a model equation only, it is likely that

locally confined gravity-capillary wavepackets in the full water-wave problem also

would have a tendency to form steep lumps as a result of nonlinear focusing. This

would seem consistent with laboratory observations of wind-driven gravity-capillary

waves having profiles similar to those of steep depression lumps (Zhang 1995).

2.2 Preliminaries

As remarked earlier, in order for lumps to be possible in the water-wave problem, it

is necessary that the linear phase speed features a minimum, and this requires both

gravity and surface tension to be present. Using the water depth h as lengthscale and

(h/g)1/2 as timescale, g being the gravitational acceleration, the character of gravity-

capillary lumps hinges on the value of the Bond number B = a/(pgh2 ), where o

denotes the surface tension and p the fluid density. This is clear from the dispersion

relation, w2 = k(1 + Bk 2 ) tanh k, k being the wavenumber and w the wave frequency,

according to which the minimum of the phase speed w/k is realized at k = 0 when

B> , whereas for B < }, it occurs at a non-zero wavenumber, k = km. Accordingly,

in the former case, lumps are two-dimensional generalizations of KdV solitary waves

of depression that also bifurcate at k = 0, while, in the latter case, lumps are fully

localized counterparts of the plane solitary wavepackets that bifurcate at k = km as

well.

As our interest centres on lumps of the wavepacket type, we shall take B < }, and,

for convenience, it will be further assumed that B is close to } so that km < 1. The3



neighborhood of the phase-speed minimum may then be captured via a long-wave

approximation (k < 1) to the dispersion relation:

=k {11+ !(B - j1)k2 + 1k4 + -- (2.1)

Combined with a quadratic nonlinear term of the KdV type, (2.1) leads to the fifth-

order KdV equation, that has served as the starting point in several prior theoretical

investigations of plane solitary waves of the wavepacket type (see Grimshaw 2007

for a review). In the same vein, we shall make use of the fifth-order KP equation,

an extension to two spatial dimensions of the fifth-order KdV equation, in order to

discuss lumps of the wavepacket type. To this end, assuming nearly uni-directional

wave propagation along x, the leading-order effects of transverse (y-) variations are

taken into account in (2.1) by writing k = (12 + m2)i 12 _l + m2 /l, I being the

longitudinal and m < l the transverse wavenumber components.

The fifth-order KP equation then follows from this weakly two-dimensional ap-

proximation to the linear dispersion relation, combined with a KdV-type quadratic

nonlinear term. A systematic derivation was presented in Paumond (2005). Here, we

shall work with the fifth-order KP equation (for B < j) in the normalized form

{It + 3(n2)2 + 2n7x2 + ?7xxxxx} + y, = 0, (2.2)

where q(x, y, t) stands for a variable associated with the wave distrubance, such as

the free-surface elevation, in a frame moving with the linear-long-wave speed. The

linear dispersion relation of the model equation (2.2) for uni-directional propagation

along x,

w = -2k 3 + k5, (2.3)

is of the same form as (2.1) when allowance is made for the change in reference frame.

In preparation for discussing the dynamics of lumps, we first consider small-

amplitude modulated wavepackets of (2.2) and obtain the corresponding evolution

equations. This derivation follows along the lines of the classical weakly nonlinear sta-



bility theory (Stuart 1960). Briefly, introducing the amplitude parameter 0 < C < 1,

the appropriate expansion takes the form

= e {S(X, Y, T)e0 + c.c.}+E 2So(X, Y, T)±+ 2 {S 2 (X, Y, T)e2io + c.c.}±-- ,(2.4)

where 0 = kx - wt, k and w being the carrier wavenumber and frequency, respec-

tively, which satisfy the dispersion relation (2.3), and (X, Y, T) = E(x, y, t) are the

'slow' envelope variables.

Upon substituting (2.4) into (2.2) and collecting zeroth-harmonic terms, the in-

duced mean flow So satisfies, to leading order:

SoxT+SoY = (ISI 2)xx. (2.5)

Similarly, collecting second-harmonic and primary-harmonic terms, the envelope S(X, Y, T)

of the primary harmonic satisfies

i(ST + cgSx) + e(Ic',Sxx + .SyY) + 16 k2>2 - 6ekSS0 = 0, (2.6)

where cg = dw/dk, c' = d2w/dk 2 and * denotes complex conjugate.

As expected, to leading order, the wavepacket propagates with the group velocity

c9 . Adopting a reference frame moving with cg, X'= X - cgT, and defining T' = ET,

it follows from (2.5) and (2.6) (after dropping the primes) that S and So satisfy

-cSoxx + Soyy = -(IS| 2)xx, (2.7a)

1 ~ _S 2S.
iSk + + Sy+k(5k 2 - 2) - 6kSS0 = 0. (2.7b)

The coupled-equation system (2.7a) and (2.7b) is of the same form as the BRDS

equations that govern the evolution of the wave envelope and the induced mean flow

of a modulated wavepacket in the water-wave problem.

As explained by Ablowitz & Segur (1979), the signs of the various coefficients

in these equations are critical in determining the character of the solution. Here, of



particular interest is the case of both (2.7a) and (2.7b) being elliptic; this requires Cg <

0 and c' > 0, which is realized if 3/5 < k < N6/5. For k in this range, moreover,

the coefficient of the cubic term in (2.7b) is positive, implying that the self-interaction

of the envelope has a focusing effect, and the sign of the second nonlinear term in

(2.7b) is such that the interaction of the envelope with the mean flow enhances this

nonlinear self-focusing. As a result, when 35/5 < k < V6/5, the BRDS equations

(2.7a) and (2.7b), predict the formation of a singularity in finite time, or so-called wave

collapse, of localized initial conditions above a certain threshold amplitude (Ablowitz

& Segur 1979; Papanicolaou et al. 1994). In the water-wave problem, this situation

arises for gravity-capillary wavepackets in sufficiently deep water, suggesting that a

small-amplitude wave pulse under these flow conditions would evolve to a peaked

nonlinear disturbance.

It is well known (see, for example, Papanicolaou et al. 1994; Ablowitz, Bakirtas

& Ilan 2005) that the threshold for wave collapse is provided by a special locally

confined solution of (2.7a) and (2.7b), so-called ground state, S = S(X, Y)exp(iT).

Physically, this solution, when combined with the carrier signal, corresponds to a fully

localized wavepacket with envelope of permanent form moving with the group speed

cg and crests travelling at the linear phase speed, w/k, slightly modified by nonlinear

effects. In general, as these two speeds are different, the disturbance, as a whole,

does not represent a lump. However, at the specific wavenumber k = km = 1 and

frequency w = wm = -1 corresponding to the minimum of the linear phase speed,

the group speed cgm is equal to wim/km = -1 so the minimum phase speed becomes

the bifurcation point of lumps of the wavepacket type. It is important to note that

km = 1 is within the range 3/5 < k < 6/5 where the BRDS equations (2.7a) and

(2.7b) are of the elliptic-elliptic focusing type.

Returning to (2.4), near their bifurcation point, these lumps can be approximated

as localized wavepackets with envelope and crests moving at the same speed: i/ =

e5((, Y) cos(x - ct) + - - -, where ( = e(x - ct), c = -1 - C2 , 5 being the ground-state

solution of the BRDS equations for k = km = -1; from (2.7a) and (2.7b), it follows



that S satisfies the coupled system

S+oy=- j(|S|2), (2.8a)

-S + 4$66 + Sy + }$3 - 65 05 = 0. (2.8b)

Note that two symmetric solution branches bifurcate at c = 0, one corresponding to

elevation and the other to depression lumps, depending on whether the maximum of

S at the origin ( = Y = 0 coincides with a crest or a trough, respectively. Small-

amplitude lumps near the minimum phase speed of the full gravity-capillary problem

for B < j were constructed in a similar way by Kim & Akylas (2005). In the special3

case that transverse variations are absent (a/&Y = 0), (2.8a) and (2.8b) reduce to the

steady nonlinear Schr6dinger (NLS) equation which admits the well-known envelope-

soliton solution with a 'sech' profile; one thus recovers the elevation and depression

plane solitary waves that also bifurcate at c = -1.

To trace lump-solution branches, (x, y; c) where x = x-ct, in the finite-amplitude

range away from their bifurcation point, we solve directly the steady version of (2.2),

(-c4 + 3 2 + 2 xx + xxxx)xx + y = 0, (2.9)

via a Fourier-iteration method, analogous to the one used in Musslimani & Yang

(2004), using 1024 x 128 modes along the horizontal and the transverse direction,

in a computational domain 1207r x 607r. Figure 2-1 shows the peak amplitude ro =

(X = 0, y = 0; c) of depression lumps (also known as the primary solution branch) as

c is decreased below -1. Also, for comparison, we have plotted the peak amplitude of

plane solitary waves of depression. Although, for the same speed, lumps have roughly

twice the peak amplitude of solitary waves, the two solution branches behave in a

similar manner qualitatively as c is varied; also lump profiles along the centreline

y = 0 are similar to those of plane solitary waves. The computations of Parau et al.

(2005, 2007) revealed an analogous behaviour for gravity-capillary lumps and solitary

waves on water of finite or infinite depth.
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Figure 2-1: Peak amplitudes of lumps (solid) and plane solitary waves (dashed) of
depression as the wave speed c is decreased below the bifurcation point c = -1.

On the other hand, considering that the ground state of the BRDS equations

is prone to collapse while NLS envelope solitons are stable, one would expect the

dynamics of lumps to be quite different from that of plane solitary waves. This

issue is taken up below by first examining the stability of lumps to infinitesimal

perturbations.

2.3 Exchange of stability

We shall focus on the primary (depression) lump-solution branch, i(x, y; c), parame-

terized by the wave speed c, of the fifth-order KP equation (2.2). Upon superposing

a perturbation q'(X, y, t) and linearizing about the basic state, q' satisfies

{g' - c ' + 6 ( 7')x + 2i' + 'X} + n' = 0. (2.10)

Before considering the associated eigenvalue stability problem, in a preliminary

stability analysis, we integrated the linearized perturbation equation (2.10) numeri-



cally by a spectral method that parallels the one used in Kim & Akylas (2006), for

various values of c below the bifurcation point (c = -1), taking as initial condition

,q'(x, y, t = 0) = i(X, y; c). The spatial resolution was the same as that used earlier for

the steady equation (2.9), and the time step At = 5 x 10- 3 . To monitor the evolution

of the disturbance, we compute

E'(t) = J j 1/'2dXdy. (2.11)

We first considered values of c slightly below -1, for instance c = -1.02, for which

lump profiles resemble small-amplitude modulated wavepackets. Following an initial

transient period, ln E'(t) eventually grows linearly with time, indicating exponential

growth of E'(t), and this trend also was confirmed by monitoring the growth of

the peak amplitude of the disturbance with time. On the other hand, for values

of c farther from the bifurcation point, for example c = -1.64, E'(t) exhibits quite

different behaviour: as suggested by a log-log plot of E'(t) against t, eventually,

E'(t) oc t2 so the disturbance now grows linearly with time. This is not a sign

of instability, however, as it is easy to show that the perturbation equation (2.10)

admits the linearly-growing disturbance q' = thj - O /0c as a solution, which may be

interpreted as a shift in the speed parameter of the base state i(X, y; c). Consistent

with this reasoning, the numerical results confirm that 77' oc thx at large time.

The overall picture suggested by these computations is that q' grows exponentially,

implying instability, when -1.053 < c < -1. Figure 2-2 shows the computed growth

rate A for c in this range; as c is decreased below the bifurcation point, A first increases

until c ~ -1.03 where a maximum is reached, and then it decreases sharply. On the

other hand, for c < -1.09, there is no evidence of instability as q' eventually grows

linearly with time, Tj' oc thx. Finally, for c in the range -1.09 < c < -1.053, our

numerical results are not entirely conclusive, and we suspect that the computation

has to be carried out to very long times (t > 200) in order to see a definite trend in

this transitional regime between unstable and stable behaviour.
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Figure 2-2: Numerically computed growth rate A of the instability of depression lumps
with wave speed in the range -1.053 < c < -1.

Turning next to a formal stability analysis, upon substituting q' = i(X, y)exp(At)

in (2.10), i is governed by

(A - chy + 6(iM)x + 2 xxx + xxxxx)x + nyy = 0, (2.12a)

S-> 0 (x2 + y 2 -+ oo), (2.12b)

assuming that the perturbations are locally confined. This defines an eigenvalue

problem, the eigenvalues occurring in quartets (A, -A, A*, -A*); instability thus is

associated with eigenvalues that are not purely imaginary.

In the light of the numerical results presented above, one would expect a pair

of real eigenvalues when -1.053 < c < -1, as disturbances were found to grow

exponentially for c in this range. Combined with the fact that no instability was

detected when c < -1.09, this suggests that, for a certain c between -1.053 and

-1.09, an exchange of stability takes place, the pair of real eigenvalues colliding at

the origin A = 0 as this critical value of c is approached from above.

To explore further this hypothesis, a bifurcation analysis near the possible onset

of instability (JAI < 1) was carried out, adapting to the case of lumps a procedure



suggested in Pelinovsky & Grimshaw (1997) for the stability of plane solitary waves.

Specifically, introducing the expansion

=() + A (') + A2 (2 ) + - , (2.13)

7(0) is posed as a linear combination of x and x, (0) = g +Cy, which are solutions

of (2.12a) and (2.12b) for A = 0 by virtue of the invariance of i to translations in X

and y.

At O(A), () is governed by the forced equation L (1) = - xx - Cgxy, L denoting

the linear operator in (2.12a) for A = 0, and is subject to condition (2.12b) at infinity.

The solution is expressed as

) = C (2.14)Oc Oc2 0

where (x, y; c, c2) satisfies

{-cX - c2A, + 3 (2) + 2 xxx + ±xxxxx}I + y = 0, (2.15)

and 8N/Oc 2 10 denotes 8/&c 2 evaluated for c2 = 0. (As explained in Kim & Akylas

(2006), physically i corresponds to an oblique lump solution and can be mapped to

a lump propagating along the x-direction via rotation of axes.)

Proceeding to O(A 2), it follows from (2.12a), making use of (2.14), that (2) sat-

isfies

E(2) ( -+ C ) (2.16)
(c 19 c2 0)X

subject to condition (2.12b). Appealing to the usual solvability argument, for this

inhomogeneous problem to have a solution, it is necessary that the right-hand side in

(2.16) be orthogonal to the well-behaved homogeneous solution of the corresponding

adjoint problem. Here, the operator adjoint to L is

LA =C -c2 + 6 a2 + 2a4 +a6 +a2, (2.17)
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Figure 2-3: E(c) for lumps (solid) and plane solitary waves (dashed) of depression as
the wave speed c is decreased below the bifurcation point c = -1.

and a well-behaved solution of L' 7^ 7 A = 0 is readily shown to be

r/^A = gdx'. (2.18)

(Note that RA - 0 as x -> o, as required by the well-known constraint of the KP

equation; see, for example, Akylas (1994).) Imposing this solvability condition on the

right-hand side of (2.16), making use of the fact that Bi/&c2 |0 is odd in x and y, it

follows that
dE

= 0, (2.19)
dc

where E(c) = f_ f_ i 2 dXdy. The constant C remains undetermined at this stage.

The above heuristic analysis, assuming that /(O) is a linear combination of ix and

iy, suggests (2.19) as a necessary condition at the critical value of c where exchange of

stability takes place. Figure 2-3 shows E(c) for the depression-lump solution branch

computed earlier, along with a plot of E(c) (per unit y) for plane solitary waves of

depression. It is interesting that E corresponding to depression lumps features a

minimum, so (2.19) is met, at c = -1.0576, consistent with our numerical results

(see figure 2-2) which indicate that exchange of stability occurs for a value of c in



the range -1.09 < c < -1.053. On the other hand, as shown in figure 2-3, E grows

monotonically for plane solitary waves of depression, as they are stable to longitudinal

perturbations (Calvo, Yang & Akylas 2000).

2.4 Transient evolution

The linear stability analysis presented above indicates that, close to their bifurcation,

lumps are unstable to infinitesimal perturbations. Also when viewed as wavepackets,

these small-amplitude lumps are on the verge of wave collapse according to the BRDS

equations. Here we follow the transient evolution of linear instability in the nonlinear

regime, in an attempt to understand the meaning of this singularity.

For this purpose, we solve the fifth-order KP equation (2.2) numerically as an

initial-value problem, employing a spectral technique analogous to the one in Kim &

Akylas (2006). The spatial resolution used is the same as before and At = 1.0 x 10- 3.

It can be readily shown that, for locally confined disturbances,

E = j j 2(x, y, t)dxdy. (2.20)

is conserved, and this property was also used to check the accuracy of the computa-

tions.

The first set of initial conditions considered is of the form

r = (1 + 6)(x, y;c) (t = 0), (2.21)

where denotes the depression-lump solution branch computed earlier and J is a

parameter that controls the amplitude and sign of the perturbation imposed. For c

in the linearly stable range found in §2.3, for instance c = -1.64, we confirmed that

lumps propagate stably under perturbations of either sign.

However, close to the bifurcation point c = -1, where lumps are linearly un-

stable and resemble small-amplitude wavepackets, the BRDS equations predict that

the initial condition (2.21) would eventually either collapse (for J > 0) or disperse
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Figure 2-4: Results of numerical simulations using the initial condition (2.21). Left:
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and negative perturbation; (b)-(d): centreline profiles in frame moving with c at
selected times. Right: i is ground-state wavepacket with k = 1.05 and E = 0.15; (e):
same as (a) above; (f)-(h): centreline profiles in frame moving with cg = -0.5375 at
selected times.

0.2

(b)t = 0
0.1

0

-0.1 -

-150 -100 -50 0 50 100 150
x



out (for J < 0). Figure 2-4(a-d) shows results from computations using the initial

condition (2.21) for c = -1.0225, which is in the linearly unstable range (see figure

2-2). For a positive perturbation (6 = 0.01), the peak amplitude of the disturbance

initially grows, as expected from the results of the linear stability analysis, but rather

than experiencing wave collapse as the BRDS equations would imply, the disturbance

evolves to a finite-amplitude oscillatory state (figure 2-4a). Representative wave pro-

files, corresponding to the initial condition and to the times at which the (magnitude

of the) peak amplitude reaches its first maximum and minimum are displayed in fig-

ure 2-4(b-d). The disturbance profile at the maximum of the peak amplitude (figure

2-4c) is close to the stable finite-amplitude lump that corresponds to c ~ -1.17 in

figure 2-1.

On the other hand, for the same initial condition as above, but with negative

perturbation (6 = -0.05), the peak amplitude decreases in magnitude monotonically

(see figure 2-4a), and the disturbance decays into dispersive waves. This is consistent

with the BRDS equations which predict that initial conditions below the ground state

(J < 0) eventually disperse out.

We next consider as initial condition a wavepacket with envelope given by the

ground state of the BRDS equations, but with carrier wavenumber other than k =

km = 1 corresponding to the minimum phase speed, so the initial disturbance as a

whole is far from a lump. Specifically, we chose k = 1.05, which is still in the range

V/3/5 < k < /~/5 where the BRDS equations (2.7) are of the elliptic-elliptic focus-

ing type, and i in (2.21) was replaced by the first three harmonics in expansion (2.4),

using the corresponding ground state S(X, Y) as the envelope S and c = 0.15.

The results of the evolution of this initial condition are summarized in figure 2-4(e-

h). For a positive perturbation (6 = 0.05), after an initial transient period, the peak

amplitude of the disturbance again exhibits an oscillatory behaviour (figure 2-4e).

Moreover, as illustrated in figure 2-4(f-h), rather than the wave collapse predicted by

the BRDS equations when 6 > 0, the disturbance oscillates essentially between two

depression lumps, one of relatively small amplitude (no r -0.24) that is unstable and

the other of higher amplitude (no -0.41) that is stable. Here, the results are dis-



played in a frame moving with the group velocity cg = -0.5375 of the initial packet,

so the main disturbance is seen to propagate to the left (figure 2-4(f-h)), as lumps

propagate with speed less than -1. In contrast, the same initial wavepacket but with

a negative perturbation (6 = -0.1) results in a decaying disturbance (figure 2-4e)

that eventually disperses out, as also predicted by the BRDS equations for 6 < 0.

These results have brought out the prominent role of finite-amplitude lumps in

the nonlinear focusing of localized wavepackets. Extension of these ideas to the full

water-wave problem, including the effects of damping and forcing, are topics in the

following chapters (Chapter 3, Chapter 4).
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Chapter 3

Forced Waves Near Resonance at a

Phase-Speed Minimum

3.1 Introduction

In dispersive wave systems, maxima or minima of the linear phase speed are associ-

ated with the bifurcation of plane solitary waves, and a phase-speed minimum is also

a possible bifurcation point of fully localized solitary waves, often called 'lumps' (see,

for example, Grimshaw 2007). Moreover, when a wave system is subject to forcing

by a moving external disturbance, the linear response exhibits resonance phenomena

at a maximum or minimum of the phase speed due to the fact that the phase and

group speeds are equal there. As a result, nonlinear effects can play an important

part near such critical forcing speeds.

In the case that the phase speed features a maximum or minimum at zero wavenum-

ber (long-wave limit), the forced problem near resonant conditions has been studied

extensively in various physical contexts and is well understood. For two-dimensional

(plane) forcing and ignoring dissipation, the weakly nonlinear response is governed

in general by the forced Korteweg-de Vries (KdV) equation. This evolution equation

predicts periodic shedding of solitary waves for a range of transcritical forcing speeds,

consistent with observations (Akylas 1984; Grimshaw & Smyth 1986; Wu 1987).

When the forcing is three-dimensional, the forced KdV equation is replaced by the



forced Kadomtsev-Petviashvili (KP) equation (Katsis & Akylas 1987), which admits

lumps as free solutions only if the long-wave speed is a phase-speed minimum. In

most physical examples, including gravity surface and internal waves, the long-wave

speed is a maximum; it does happen to be a minimum, though, for gravity-capillary

surface waves in the presence of strong surface tension (Bond number, B > 1/3), but

this condition restricts the water depth to less than a few mm so ignoring viscous

effects cannot be justified.

The present chapter is concerned with the resonant response when the linear phase

speed features a minimum at a non-zero wavenumber. This case is more complicated

and has received far less attention than the long-wave limit; here, a weakly nonlinear

approach using a generic evolution equation, analogous to the forced KdV and KP

equations, turns out to be not entirely satisfactory and, moreover, viscous dissipation

effects cannot be ignored in general.

Most of prior related work was done for gravity-capillary surface waves, moti-

vated by applications to the generation of ripples by wind (Zhang 1995) and the wave

drag of moving bodies on a free surface (Rapha8l & De Gennes 1996; Burghelea &

Steinberg 1996). However, phase-speed minima also arise and resonance is possible

in the response of a floating ice sheet to surface loads, the role of capillarity being

taken in this instance by the flexural rigidity of the ice (Squire et al. 1996), as well

as in layered flows that support 'gap' solitons (Grimshaw & Malomed 1994).

For free gravity-capillary waves, according to potential-flow theory, the linear

phase speed features a minimum, Cmin, at non-zero wavenumber when B < 1/3, and

this is possible on water of finite or infinite depth (eg, in deep water, cmin = 23.2cm/s

with corresponding wavelength Amin = 1.71cm). At Cmin bifurcate two symmetric

plane solitary-wave solutions of the wavepacket type, the so-called elevation and de-

pression branches. These have been studied analytically in the small-amplitude limit

as well as numerically for finite steepnesses (see the review Dias & Kharif 1999).

It turns out that weakly nonlinear elevation and depression solitary waves can be

approximated as envelope solitons with stationary crests in terms of the nonlinear

Schr6dinger (NLS) equation (Akylas 1993; Longuet-Higgins 1993); but the NLS equa-



tion alone is not able to predict the various other solitary wave solutions that bifurcate

at finite amplitude below Cmin (Yang & Akylas 1997).

In regard to the forced gravity-capillary problem, Vanden-Broeck and Dias (1992)

computed, on the basis of potential flow, the steady-state wave response due to a one-

dimensional symmetric pressure disturbance of finite extent moving on the surface of

deep water. Starting at a subcritical forcing speed far below Cmin with the small-

amplitude locally confined response predicted by linear theory (known as Rayleigh's

solution), they followed this solution branch via numerical continuation, gradually

increasing the forcing speed. Rather than blowing up at Cmin as linear theory would

suggest, Rayleigh's solution branch turns around at a certain critical speed, forming

a limit point before Cmin is reached, and then follows a finite-amplitude subcritical

solution branch close to free depression solitary waves.

Calvo & Akylas (2002) examined the linear stability of this steady-state subcrit-

ical forced response and concluded that only the small-amplitude branch is stable,

suggesting that Rayleigh's solution would be realizable. What happens for forcing

speeds past the limit point brought out by the computations, however, is not clear. In

a related experimental study, Longuet-Higgins & Zhang (1997) used an air jet from

a narrow slit as forcing over a current in deep water. The observed responses for a

range of subcritical current speeds close to Cmin, while locally confined, were accom-

panied by persistent unsteadiness. According to estimates (Calvo & Akylas 2002),

the forcing speeds in these experiments were probably higher than the critical speed

corresponding to the limit point of the steady-state response.

Apart from unsteady effects, viscous dissipation, too, apparently plays an impor-

tant part in the forced response near resonant conditions. While viscous dissipa-

tion alone is capable of healing the singular behavior of the linear response at Cmin

(Richard & Raphael 1999), the interplay of viscous dissipation and nonlinearity can

have a rather dramatic effect, according to computations by Kang & Vanden-Broeck

(2005). When viscous dissipation is not too strong, in particular, numerical contin-

uation along the small-amplitude subcritical solution branch reveals a rich response

structure, with multiple branches of nonlinear steady states being possible as Cmin is



approached from below; whether or not these states are realizable is unclear, however.

In addition, there is evidence that viscous dissipation is important in the response of

ice sheets to moving loads near the minimum gravity-flexural phase speed. Rather

than being symmetric about the load position as predicted by inviscid nonlinear com-

putations (Parau & Dias 2002), the response recorded in field observations (Takizawa

1988; Squire et al. 1988) for subcritical speeds is markedly asymmetric, consistent

with a viscoelastic model (Hosking et al. 1988).

In an effort to address some of the issues raised above, the present chapter focuses

on a simple model dispersive wave system with a phase-speed minimum at non-zero

wavenumber, namely, a forced-damped fifth-order KdV equation. In the absence of

forcing and viscous dissipation, this model has also proven useful in understanding

free solitary waves of the wavepacket type that bifurcate in the vicinity of a minimum

of the phase speed (Yang & Akylas 1997). Here, emphasis is placed on the combined

effect of forcing, nonlinearity and viscous dissipation in the response near resonant

conditions.

3.2 Steady response: perturbation results

The ensuing analysis is based on a fifth-order KdV equation with the addition of

viscous dissipation and forcing. In normalized form, combining a Burgers-type viscous

dissipation term with locally confined forcing traveling along x with speed V, this

equation reads

q- V7r + 6,qq + 2TI ± j - Ape, (3.1)

in the reference frame following the forcing, ( = x - Vt. The parameters v > 0 and

A control the strength of viscous dissipation and forcing, respectively.

The fifth-order KdV equation can be formally derived from the full potential-flow

equations for gravity-capillary waves, assuming weakly nonlinear long disturbances

for Bond number B close to 1/3. However, as remarked earlier, the condition B ~ 1/3

severely limits the applicability of this equation to surface waves because boundary

layer effects from the bottom cannot be neglected in this flow regime. Here, equation



(3.1) is viewed merely as a convenient model problem, that features a phase-speed

minimum at non-zero wavenumber and also combines nonlinearity, viscous dissipation

and forcing in a rather simple way.

We begin by looking at the steady-state response 77S((; V). Ignoring the nonlinear

term in (3.1), the linearized steady state is readily found by Fourier transform:

r = Aj"O P ~)e dk (3.2)
_00 D(k; V, v)'

where

D = k4 - 2k2 _ ivk -V (3.3)

and

P(k) = P( )e-ikld<. (3.4)

The form of expression (3.2) is typical of the forced response due to a moving dis-

turbance in dispersive wave systems (see, for example, Whitham 1974). As is well

known, the behavior in the far field hinges on the zeros of D in the k-domain, as they

correspond to the wavenumbers of free waves that can remain steady relative to the

forcing. Mathematically, these zeros are also poles of the integrand in the complex

k-plane and provide the main contribution in the far field upon evaluating the Fourier

integral in (3.2).

According to the linear dispersion relation of equation (3.1), the phase speed of

undamped (v = 0) propagating waves has a minimum, cmin = -1, when k = kmin = 1.

For subcritical forcing speed (V < -1), the zeros of D thus turn out to be complex

and the far-field response is evanescent, r;' -+ 0 (( -> ±oo). On the other hand, for

supercritical forcing speed (V > -1), D = 0 has real roots in the absence of viscous

dissipation (v = 0), corresponding to poles on the real k-axis in (3.2) and propagating

waves in the far field. Letting v > 0, these poles are pushed off the real axis, which

makes it possible to evaluate the integral in (3.2). It transpires that short waves

(relative to kmin) are found in ( > 0 and long waves in ( < 0, consistent with the

radiation condition based on the group velocity (Whitham 1974).



The case of interest here is when the forcing speed V is near the phase-speed min-

imum, Cmin = -1. In this instance, the steady-state response (3.2) exhibits resonant

behavior, similarly to a harmonic oscillator forced near its natural frequency. In the

absence of viscous dissipation (v = 0), exactly at the critical forcing speed V = -1,

D has a double root at k = 1, which translates into a double pole of the integrand

in (3.2); as a result, r7, turns out to be singular. A more detailed analysis, based

on an initial-value problem (Akylas 1984), indicates that the resonant response in

fact grows unbounded with time, like t1 2 . This is easy to understand on physical

grounds, as the group speed is equal to the phase speed at an extremum of the phase

speed; hence, when V = Cmin, energy cannot be radiated away from the vicinity of

the forcing, causing the response to grow.

While viscous dissipation alone does heal the singularity of the linear steady-state

response at the critical speed V = -1 by pushing off the real axis the pole of the

integrand, nonlinearity, too, is likely to be important near resonant conditions. In

the vicinity of the critical speed, it is possible to set up a weakly nonlinear the-

ory, similar to that presented in Calvo & Akylas (2002) for forced gravity-capillary

waves, which would lead to a forced NLS equation with an additional term due to

weak viscous dissipation. This approach, however, as it is valid when the response

is of small amplitude, cannot describe the finite-amplitude subcritical steady-state

response branches revealed by the computations cited earlier (Vanden-Broeck & Dias

1992; Kang & Vanden-Broeck 2005). To account for these solutions, here we shall

explore the possibility of finite-amplitude steady responses in the form of free solitary

waves, slightly modified by the presence of forcing and viscous dissipation.

In preparation for the perturbation analysis, we write

r/((; V) = r(( + 0; V) + Ai , (3.5)

where denotes an undamped free solitary-wave solution of (3.1) traveling with speed

V, that satisfies

-V + 3 2 + 2ig + e = 0, (3.6)



and 0 denotes a phase-shift constant to be found. Since solitary waves are found below

the phase-speed minimum, it is implicitly assumed here that V is in the subcritical

range, V < -1. We also write

v = pA, (3.7)

p being a parameter that measures the strength of viscous dissipation relative to

forcing. (We shall take A > 0, implying that p > 0 since v > 0.)

Upon substituting (3.5) into (3.1), making use of (3.6) and (3.7), it is then found

that the perturbation q is governed by the equation

-Vi + 6i(( + 0; V) + 2i + = pig + p(() + A(pig - 3 2). (3.8)

Equation (3.8) is solved by expanding i and 0 in powers of 0 < A < 1:

-(0) +A + --- , =Bo + A61 + - -. (3.9)

To leading order, j(O) satisfies the forced equation

-V (0) + 69( + Bo; V)( 0) + 2i) + -(0)= pig(( + 0 ; V) + p(s). (3.10)

Note that the differential operator in (3-10) is self-adjoint and, from (3.6), i7('+0o; V)

is a homogeneous solution that decays to zero as ( -> ±oo. Appealing then to the

usual solvability argument, in order for (3.10) to have a well-behaved solution at

infinity, it is necessary that the forcing be orthogonal to (( + 0; V):

y gC((; V) 2 d+ j p(,),,(, + 6o; V)d = 0. (3.11)

The solvability condition (3.11) provides an equation for determining the phase

shift 00. In the absence of viscous dissipation (p = 0) and for symmetric forcing

p(() about ( = 0, 0o = 0 is always a possible solution, corresponding to a symmet-

ric forced response, consistent with inviscid computations of forced gravity-capillary

waves (Vanden-Broeck & Dias 1992). When viscous dissipation is present (p > 0),



however, 0 is no longer zero, and the response (3.5) is asymmetric, the solitary wave

i being shifted relative to ( = 0.

To see the effect of viscous dissipation more clearly, take

p() = -(), (3.12)

in which case condition (3.11) simplifies to

CO(O; V) = p gg ((; V) 2dg. (3.13)

Now, the solitary-wave profile i((; V) does not depend on p, and ik oscillates between

positive and negative values. Hence, for given V, one would be able to satisfy (3.13)

only if viscous dissipation is not too strong, P < perit; and, for each p < pcrit, more

than one solutions 0 would be expected.

Having determined 0 and j( 0), it is straightforward to find corrections by pro-

ceeding to higher order in the perturbation expansions (3.9). Specifically, applying a

similar solvability condition to the O(A) problem for 0(') yields

-1 )(+ Bo; V) 2 d + f:{pq - 3((O)) 2}je((+ 6o; V)d = 0; (3.14)

this readily specifies 01.

The results of the perturbation theory provide evidence that, when viscous dissipa-

tion is not too strong in comparison with forcing (p < Ierit), multiple finite-amplitude

steady responses are possible for subcritical forcing speeds. These responses are es-

sentially free solitary waves, slightly modified due to the presence of forcing and

viscous dissipation. The main effect of viscous dissipation is to shift the position of

the solitary wave relative to the forcing, and more than one value for this shift can be

found corresponding to the same solitary-wave profile. Detailed comparison against

numerical computations is carried out in §3.3 below.
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Figure 3-1: Steady-state response: E defined in (3.17) is plotted against V in the

subcritical-speed range V < -1, for different values of the viscous dissipation param-

eter v. (a) v = 0; (-) forced response; (----) free depression solitary waves;

free elevation solitary waves. (b) v = 0.01. (c) v = 0.02. (d) v = 0.03.

3.3 Steady response: numerical results

The steady version of equation (3.1),

-V7" + 3,,2 + 2i' s + 7", - v?7sC = Ap,

was integrated numerically for symmetric locally confined forcing in the form of a

Gaussian:

p( = - e-102

(3.15)

(3.16)

mW

-1.4 -1.2 -1



Equation (3.15) was discretized by second-order centered finite differences, using 1024

grid points in the computational domain -150 < < 150, and solution branches were

traced via pseudoarclength continuation. In all the computations, A = 0.015/ =

0.0177.

We first explore the combined effect of nonlinearity and viscous dissipation on

Rayleigh's subcritical solution branch. Starting at a subcritical value of the forcing

speed V well below Cmin = -1 with the small-amplitude response predicted by linear

theory (Rayleigh's solution), we followed this branch as V was increased, for different

values of the viscous dissipation parameter v. The results of these computations are

summarized in Figure 3-1, which shows plots of

E = jrys2d< (3.17)

against V for four values of v.

Figure 3-la, in particular, displays the undamped (v = 0) response which, as was

found by Vanden-Broeck & Dias (1992), forms a limit point (at V = -1.048) before

reaching cmin and then follows a finite-amplitude solution branch close to free solitary

waves of depression. As expected, in the absence of viscous dissipation, the response

is symmetric about ( = 0, as is the forcing (3.16).

However, as illustrated in Figure 3-1b for v = 0.01, viscous dissipation can alter

the undamped response diagram dramatically. Continuing Rayleigh's solution branch

past the first limit point at V = -1.047, the response follows a finite-amplitude branch

close to that of depression solitary waves as in the undamped case, but then turns

around at V ~ -2.75, forming a second limit point, and heads towards cmin along a

nearby branch. Continuing further, the reponse again turns away from cmin, follows a

different finite-amplitude branch, forms another limit point at V ~ -1.5 and returns

to the vicinity of cmin once more. Interestingly, this second finite-amplitude solution

branch is close to that of free elevation solitary waves, that also bifurcate at cmin (see

Figure 3-1a).

For relatively stronger viscous dissipation (v = 0.02), Rayleigh's solution branch



follows a less complicated path upon continuation, as indicated in Figure 3-1c. How-

ever, nonlinearity still is a key factor, and the response is qualitatively similar to

that of a forced lightly damped oscillator with a nonlinear spring close to resonance.

Finally, upon increasing v further, viscous dissipation eventually dominates over non-

linear effects, and the response diagram for v = 0.03 features merely a small peak

near the critical speed, similarly to a forced damped linear oscillator in the vicinity

of its resonance frequency (Figure 3-1d).

Although not immediately evident, the results displayed in Figure 3-1 are qual-

itatively similar to the computations of Kang & Vanden-Broeck (2005) for forced

gravity-capillary waves in the presence of viscous dissipation. Note that they pre-

sented their results in terms of the free-surface displacement at the center point

(( = 0) of the applied pressure forcing, rather than E defined in (3.17); when our

results are re-plotted in terms of q(0), they show similar behavior to theirs.

Returning now to Figure 3-1 b, it is interesting that the forced response, in the

presence of light viscous dissipation (v = 0.01), features two nearly identical finite-

amplitude solution branches close to solitary waves of depression, and the same is true

for the two branches neighboring solitary waves of elevation. This turns out to be a

result of the combined effect of light forcing and viscous dissipation on solitary waves,

and is consistent with the perturbation analysis in §3.2. As a check, consider the de-

pression solitary wave for V = -2.4. With the approximation p() ~-6(() of the

forcing (3.16), and for p = v/A = 1/fr, corresponding to v = 0.01 and A = 0.01ir,

the solvability condition (3.13) furnishes two possible values of the shift, 0 = 0.8 and

00 = 1.7. In line with these theoretical predictions, the two numerically computed

forced response profiles at V = -2.4 are nearly identical to the depression solitary

wave with the same speed, and are centered at ( = -0.88 and ( = -1.77. More-

over, varying V for fixed y = 1/fr, we find that condition (3.13) can be satisfied

for V > -2.8, in reasonable agreement with the limit point at V ~ -2.75 computed

numerically (Figure 3-1b).

The perturbation theory was also applied to solitary waves of elevation in order

to make comparison with the forced responses found close to these solitary waves in



Figure 3-1b. Specifically, for V = -1.4 and again p = v/A = 1/fIl, the solvability

condition (3.13) now suggests four possible choices for the shift: 0 = -2.2, -0.9, 4.1

and 4.9. The two positive values of 0 are consistent with the results in Figure 3-1b:

the computed profiles at V = -1.4 closely resemble the elevation solitary wave having

this speed, and are centered at ( = -4.1 and ( = -5.0. In addition, we were able

to converge on two other forced responses close to the elevation solitary wave with

V = -1.4, that were centered at (= 0.88 and (= 2.36; apparently, these correspond

to the two negative values of the shift 60 predicted by the perturbation theory, but

lie on subcritical solution branches that are not continuously connected to Rayleigh's

solution.

3.4 Transient response

As remarked earlier, in the gravity-capillary problem, linear stability analysis of the

inviscid steady-state response for subcritical forcing speeds indicates that the small-

amplitude solution branch (Rayleigh's solution) is stable, while the finite-amplitude

branch is unstable (Calvo & Akylas 2002). This would seem reasonable intuitively, as

the latter solution branch corresponds to virtually free depression solitary waves, that

a small perturbation would easily dislodge from the vicinity of the forcing. While no

formal stability analysis will be pursued here, on similar physical grounds, one would

also expect to be unstable the finite-amplitude steady states found in the presence

of light viscous dissipation (Figure 3-1b). This then brings up the question as to the

fate of the response for forcing speeds past the limit point of Rayleigh's solution.

To address this issue, we explored the transient response from rest through a

numerical study of equation (3.1), subject to the forcing (3.16) with again A =

0.01/i, for various subcritical forcing speeds V and different values of the viscous

dissipation parameter v. Equation (3.1) was integrated by a Fourier spectral method

in combined with leap-frog time stepping, in the computational domain -300 <

( < 300, using 2048 grid points and time step At = 10- 4 .

According to the numerical results, the transient response from rest approaches
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Rayleigh's small-amplitude steady solution when this state is available; this happens

to be the case for all forcing speeds when viscous dissipation dominates (Figure 3-1d).

However, for light to moderate viscous dissipation, Rayleigh's solution branch turns

around, forming a limit point before reaching V = -1 (Figure 3-1(b, c)). The behavior

of the transient response for forcing speed past the limit point then is determined by

the strength of viscous dissipation, controlled by v.

Consider first u = 0.01, corresponding to light damping. For this value of v,

according to Figure 3-1b, several finite-amplitude subcritical branches coexist with

Rayleigh's steady state. The time-evolution of the transient response from rest for

subcritical speeds past the limit point of Rayleigh's state (V = -1.047) is illustrated

in Figure 3-2, which shows a plot of 1min| , the magnitude of q at the deepest trough,

against time for V = -1.02. Following an initial period of continous growth, a

maximum is reached at t ~~ 100, and subsequently the response settles into a nonlinear

time-periodic state that involves shedding of wavepacket solitary waves. Figure 3-3

shows snapshots of the disturbance at three instants within a cycle: at t = 300 (Figure

3-3a), the response is quite steep in the vicinity of the forcing and a solitary wave is
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getting ready to be shed in ( < 0; by t = 325, the solitary wave has clearly separated

from the forcing (Figure 3-3b); and at t = 350, the effect of viscous dissipation on

the solitary wave is already evident, as the disturbance near the forcing is starting

to steepen again, in preparation for generating a new solitary wave (Figure 3-3c).

Continuous shedding of solitary waves under these conditions of light damping seems

consistent with the claim made earlier that finite-amplitude steady states close to free

solitary waves are unstable to perturbations.

Increasing viscous dissipation to y = 0.02, Rayleigh's steady response again

forms a limit point (Figure 3-1c), but the transient response from rest now reaches

steady state for all subcritical forcing speeds. As the limit point at V = -1.043 is

crossed, however, the response jumps from Rayleigh's solution to the solution branch

present for forcing speeds above the limit point. This is illustrated in Figure 3-4 by

the response profiles reached at steady state for V = -1.05 and V = -1.03, which

are also in good agreement with those computed earlier by numerical continuation.

Note that the response for V = -1.03 is noticeably asymmetric relative to the forcing

and significantly steeper than the one for V = -1.05. Similar jump phenomena are

encountered in the forced response of a lightly damped oscillator with a nonlinear

spring near resonance.



3.5 Discussion

Based on the forced-damped fifth-order KdV equation studied here, the resonant re-

sponse near a minimum of the phase speed at a non-zero wavenumber shares some

common features with, but also has significant differences from, its counterpart at a

phase-speed minimum or maximum in the long-wave limit. Both these phase-speed

extrema are bifurcation points of free solitary waves and, moreover, define critical

speeds at which the undamped linear forced response due to a moving disturbance

exhibits resonant behavior. The nonlinear steady-state response near a phase-speed

minimum at a non-zero wavenumber, however, has far more rich structure: multiple

finite-amplitude solution branches are possible in the subcritical speed range, and

light viscous dissipation can have a dramatic effect, as suggested by our perturbation

analysis and numerical computations.

These subcritical finite-amplitude steady states, nonetheless, have little bearing on

the transient response from rest, as it approaches the small-amplitude steady solution

predicted by linear theory (Rayleigh's solution), if this state is available. Furthermore,

for forcing speed close to critical, where the small-amplitude steady state may cease

to exist, the fate of the transient response is determined by the strength of viscous

dissipation in comparison with forcing. In the presence of relatively light viscous dis-

sipation, in particular, a time-periodic state involving shedding of solitary waves is

reached. This scenario is entirely analogous to the familiar periodic shedding of KdV

solitary waves for transcritical forcing speeds in the long-wave limit. On the other

hand, for stronger viscous dissipation, the transient response reaches steady state,

but jump phenomena are possible. Given that the forcing speeds in the experiment

of Longuet-Higgins & Zhang (1997) apparently were in a range where Rayleigh's so-

lution was not available, it is tempting to speculate that the observed unsteadiness

was related to shedding of solitary wavepackets.

It is interesting to note that the forced NLS equation, which can be derived asymp-

totically close to the critical forcing speed on the assumption of weakly nonlinear

disturbances, also predicts the possibility of approaching a time-periodic state (Calvo



& Akylas 2002). However, according to the forced NLS equation, even with the ad-

dition of a viscous dissipation term, the response (in terms of the wave envelope) is

symmetric relative to the forcing, whereas solitary wavepackets are shed only on one

side of the forcing according to the full governing equation (Figure 3-3). Furthermore,

the forced NLS equation cannot account for finite-amplitude steady responses.

In this chapter, the emphasis was on the resonant response for subcritical forcing

speeds, and only the case of two-dimensional forcing was considered. In three dimen-

sions, wavepacket solitary waves are replaced by lumps which, however, are stable

only above a certain finite steepness (Akylas & Cho 2008; Chapter 2). The resonant

response due to fully locally confined forcing, where these lumps could play a role, is

investigated in the following chapter (Chapter 4).





Chapter 4

Resonantly forced gravity-capillary

lumps on deep water

4.1 Introduction

Since the first observation of a two-dimensional (plane) gravity solitary wave of el-

evation by John Scott Russell, most attention has been paid to solitary waves on

shallow water, that bifurcate from a uniform stream at the linear-long-wave speed

and are governed by the Korteweg-de Vries (KdV) equation in the small-amplitude

limit (Whitham 1974, §13.11). Apart from being the bifurcation point of KdV soli-

tary waves, the long-wave speed, co, is also associated with a resonance condition:

the linear response to external forcing moving at this critical speed grows unbounded

in time (Akylas 1984). Naturally, nonlinear effects are important near this resonance,

and the forced response due to a pressure disturbance on the free surface or a bottom

bump travelling with speed close to co, involves periodic shedding of KdV solitary

waves (Akylas 1984; Cole 1985; Wu 1987).

The KdV equation applies to two-dimensional (plane) waves and is replaced by

the Kadomtsev-Petviashvili (KP) equation when variations in the transverse direc-

tion are taken into account (see, for example, Akylas 1994). The KP equation reveals

that fully localized 3-D solitary waves, or 'lumps', are not possible on shallow water

under typical flow conditions. On physical grounds, for a lump to remain locally



confined, its speed must be such that no linear wave can co-propagate with the main

wave core; this is feasible when the speed at which lumps bifurcate coincides with a

minimum of the linear phase speed, lumps thus being found below this minimum. In

shallow water, however, co is a maximum of the phase speed of pure gravity waves.

For gravity-capillary waves, co becomes a phase-speed minimum if surface tension o-

is sufficiently strong: o > jpgH2 , H being the water depth, p the fluid density and g

the gravitational acceleration; but this condition restricts H to less than a few mm.

The situation is entirely different for gravity-capillary waves on deep water. Ignor-

ing viscous dissipation, the phase speed now features a minimum, cmin = v2(Ug/p)1/4,

at the non-zero wavenumber kmin = (pg/)1/ 2 . (In cgs units, a = 73, p = 1 and

g = 981, SO Cmin = 23 cm/s and Amin = 27r/kmin = 1.71 cm.) This minimum is the

bifurcation point of a new class of plane gravity-capillary solitary waves as well as

lumps, and the latter turn out to be the most relevant physically.

Specifically, at Cmin, bifurcate from linear sinusoidal waves of wavenumber kmin

two branches of plane solitary waves, one of elevation and the other of depression,

which propagate with speed less than cmin. In the small-amplitude limit slightly be-

low Cmin, both types of solitary waves behave as modulated wavepackets, with carrier

wavenumber kmin (Akylas 1993; Longuet-Higgins 1993), and at finite steepness they

transform into isolated troughs (Longuet-Higgins 1989; Vanden-Broeck & Dias 1992).

However, only the depression branch is stable to longitudinal perturbations (Calvo &

Akylas 2002), and these solitary waves turn out to be unstable, too, in the presence

of transverse perturbations (Kim & Akylas 2007).

The minimum gravity-capillary phase speed, cmin, is also the bifurcation point of

elevation and depression lumps propagating at speeds less than Cmin (Kim & Akylas

2005; Parau, Vanden-Broeck & Cooker 2005). These fully localized steady solutions

share several common features with their two-dimensional counterparts. Lump pro-

files, in particular, are relatively elongated in the transverse direction and resemble

qualitatively those of solitary waves along the propagation direction. In regard to

their stability properties, however, lumps behave very differently from plane solitary

waves: while both lump-solution branches are unstable in the small-amplitude limit,



lumps of depression become stable at finite steepness (see Chapter 2). This suggests

that, if viscous dissipation is somehow overcome, steep depression gravity-capillary

lumps are likely to be observable. In fact, there is numerical evidence from an un-

damped model equation that the transverse instability of depression solitary waves

indeed results in the formation of finite-amplitude depression lumps (Kim & Akylas

2007).

In contrast to the progress made in the theory of gravity-capillary solitary waves

on deep water, there have been only a few related experimental studies. In laboratory-

scale wind-wave experiments, Zhang (1995) observed isolated features with sharp cur-

vatures in slope images of the water surface. The features were relatively elongated in

one direction, resembling, at least qualitatively, calculated shapes of lumps. Measure-

ments of the profiles across the narrow dimension of these features showed reasonable

agreement with computed profiles of plane solitary waves in Longuet-Higgins (1989).

In a later laboratory experiment, Longuet-Higgins & Zhang (1997) used a 2-D slit to

create a vertically oriented air jet that impinged on the water surface in a recirculat-

ing water channel. The plane of the jet was normal to the flow direction and a small

amount of chalk powder was used to make the free surface visible. When the free

stream water velocity was below cmin, a localized wave formed directly beneath the

impinging jet. The shape of the free surface showed good agreement with computed

plane solitary gravity-capillary waves (Longuet-Higgins 1989), but the wave pattern

was not completely steady owing to lateral instabilities, particularly at lower speeds.

The present chapter deals with theoretical and computational investigation of

gravity-capillary lumps, generated by a localized pressure source moving over deep

water at speeds below Cmin. A relevant companion experiment was carried out by Dr.

Diorio and Professor Duncan at University of Maryland. Similarly to cO in shallow

water, cmin is a critical forcing speed at which the linear invisicd response becomes

singular (Rapha8l & de Gennes 1996), and nonlinear effects are expected to come

into play as this resonance is approached. In earlier work, assuming potential flow,

Parau et al. (2005) computed the steady-state wave pattern induced by a localized

pressure disturbance moving on the free surface of deep water; as Cmin is approached



from below, the response, rather than blowing up as predicted by linear theory, turns

around at a certain critical speed less than cmin, forming a limit point, and then

follows a finite-amplitude solution branch corresponding to essentially free lumps of

depression. Calvo & Akylas (2002) examined the stability of this steady-state forced

response and found that only the small-amplitude (Rayleigh's) solution branch is sta-

ble, suggesting that this state would be realizable for forcing speeds below the limit

point. What happens for forcing speeds above the critical speed defined by the limit

point, and the possible role of lumps, are open questions that will be addressed in

the present investigation.

A related issue is the role of viscous dissipation, that is known to be significant for

waves in the gravity-capillary range (Lamb 1993, §348). In their steady-state compu-

tations, Parau, Vanden-Broeck & Cooker (2007) introduced a small damping term in

the dynamic free-surface condition merely as a device for imposing the radiation con-

dition. We find that, as the forcing speed is increased towards cmin, the response is not

always steady; moreover, its precise nature is decided by a delicate balance between

nonlinearity, which is controlled by the strength of forcing, and viscous dissipation.

4.2 Companion experiment (by J. D. Diorio and

J. H. Duncan at University of Maryland)

The companion experiments were carried out in a water tank 7.3 m long and 76

cm wide with water depth of approximately 60 cm (figure 4-1). The tank has glass

walls and bottom for optical access. The surface tension was measured in situ with

a Wilhelmy plate and remained at o = 73 dyne/cm throughout the experiments. A

pipe with inner diamter D = 2.5 mm was mounted vertically to a carriage that rides

on top of the tank. The open end of the pipe was positioned 1 cm above the water

surface. The carriage was towed at various speeds by a servomotor with a precision

of better than 0.3 %. Speed parameter is defined as a = V/cmin, where V is the

speed of the pipe-carriage assembly and cmin = 23 cm/s is the minimum phase speed.
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Figure 4-1: Schematic of the experimental setup. A small tube (2.5 mm ID) is
mounted in a vibration reducing casing and attached to a movable carriage. A pres-
surized air line forces air through the tube to generate a small depression on the
water surface. A high-speed camera (not shown) images the water surface deforma-
tion pattern from the side. The tube is towed in the x (streamwise) direction, and
is mounted on a translational stage so it can be displaced in the y (cross-stream)
direction. (reproduced under the kind permission of Dr. James Diorio and Professor
James Duncan at University of Maryland)

A pressure disturbance is made on the water surface by connecting a pressurized air

line to the 2.5 mm pipe. The air flow rate was controlled with a flow metering valve

and the nondimensional forcing parameter is defined as F = ho/D, where ho is the

depth of the depression created by the air forcing when the carriage is stationary.

The resulting wave pattern was measured using a high-speed camera combined with

a shadowgraph technique.

4.2.1 State I and state II

Figure 4-2 shows the patterns that form as the pipe is towed at various speeds. The

pictures were taken with the high-speed camera viewing the water surface from above.

The images were backlit using a white light source to creat a contrast; the dark area

represents downward sloping face where the light is blocked and the bright area is

ridge or crest that are well illuminated. Each photo is from a separate experiment,

and the forcing is moving from right to left. At low speeds, there is a symmetric

circular depression located directly beneath the air jet (figure 4-2a). We call this
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Figure 4-2: Images of the wave pattern taken from above the water surface with the
high-speed camera. The forcing parameter is approximately F = 0.43. The pressure
forcing (and the pipe) are moving from right to left. (a) a = 0.905, (b) z = 0.927,
(c) az = 0.948, (d) o = 0.970. For scale, note that the outside diameter of the pipe is
approximately 3.2 mm. (reproduced under the kind permission of Dr. James Diorio
and Professor James Duncan at University of Maryland)

configuration state I. As the speed is increased, the response becomes asymmetric and

a stronger depression forms behind the air jet (figure 4-2b). This trailing disturbance

is longer in the cross-stream than the streamwise direction and is qualitatively similar

to a depression gravity-capillary lump of finite steepness; as the speed is increased

further, the disturbance moves farther behind the jet (figures 4-2(b-d)). We call this

asymmetric pattern state II. Figure 4-3 shows the maximum depth of the pattern

hmin, normalized by ho, versus a when F = 0.43. Each point in figure 4-3 comes

from a different experimental run. For small values of a, the response is essentially

linear, as in figure 4-2a. However, at a critical value of the speed parameter, c ~ 0.9,

there is a distinct jump in amplitude which coincides with the transition from the

linear, localized, symmetric response (state I) to the nonlinear, extended, asymmetric

response (state II). In the vicinity of this transition speed, the response exhibits time-

dependent behavior, oscillating between state I and II, but the wave pattern appears

to become steady for a > ce.

The effects of F, i.e., the level of surface pressure induced by the air jet, on

the surface deformation pattern were also investigated. Some aspects of these effects
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Figure 4-3: Normalized maximum depth, hmin/ho versus a for F = 0.43. Each data
point is taken from a different experiment. (reproduced under the kind permission of
Dr. James Diorio and Professor James Duncan at University of Maryland)
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Figure 4-4: Normalized maximum depth of the wave pattern, hmin/Amin, versus the
speed parameter a. Data taken with four different values of F are shown: o F = 0.30,
L F = 0.43, O F = 0.51, and A F = 0.69. Note that all the data fall on a common

line in state II (each of these data points is filled with a black dot in the center),
independent of the value of F. The straight dashed line, hmin/Amin = -1.58a + 1.64,
is a least squares fit to the points considered to be in state II. Data points above this
line at high values of a are in state III. (reproduced under the kind permission of Dr.
James Diorio & Professor James Duncan at University of Maryland)
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are shown graphically in the plot of hmin/Amin versus a (where Amin = 27r(o/gp)1/ 2

is the gravity-capillary wavelength at the minimum phase speed cmin) in figure 4-4.

Data is presented for all four values of F: 0.30, 0.43, 0.51 and 0.69. Qualitatively,

regardless of the value of F, the surface response and the general shape of the curves

of hmin/Amin versus a resemble the case discussed above, which is also shown in figure

4-4. However, the details of the hmin/Amin versus a curves show considerable variation

from one value of F to another. As can be seen from the figure, the value of ac and the

jump in hmin/Amin at this a decrease with increasing F, while the jump zone occurs

over a wider range of a. Also, the value of a where the state II response begins

decreases with increasing F. However, one of the most significant features of the plot

is that the state-II data points for all four values of F fall on a single curve. The

dashed line in the plot is a least-squares fit of a straight line to the state-II data and is

given by hmin/Amin = -1.58a + 1.64. Similarly, a one-to-one relationship between the

depth of the depression and its phase speed is found in the theory and calculations

of freely propagating gravity-capillary solitary waves in deep water.

4.2.2 State III and supercritical state

As the towing speed approaches Cmin, the trailing disturbance completely detaches

from the forcing, leading to the formation of a time-dependent V shape as in figure 4-

5. We refer to this pattern as state III. The wave pattern in state III has a well-defined

cycle. Figure 4-5 shows images of the water surface as the wave passes through one

of these cycles. Initially the wave has V shape as shown in figure 4-5a. The pattern

then stretches out as two disturbances are shed from the tips of the V (figure 4-5b

and 4-5c) producing a more localized, linear response (figure 4-5d). The nonlinear

response quickly grows again and the V-shaped pattern is observed once more (figure

4-5e and 4-5f). Finally, as the towing speed exceeds cmin, the classic wave radiation

"wedge" is formed, with waves both in front of and behind the pressure forcing (figure

4-6).
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Figure 4-5: Sequence of images showing the "shedding" oscillation of the wave pattern
in state III from above the surface for F = 0.43 and a = 0.981. The images are
separated by 0.36 s in time. (reproduced under the kind permission of Dr. James
Diorio and Professor James Duncan at University of Maryland)

Figure 4-6: Images of the wave pattern taken from above the water surface with the
high-speed camera. The forcing parameter is approximately F = 0.43. The pressure
forcing (and the pipe) are moving from right to left. a = 0.981. (reproduced under
the kind permission of Dr. James Diorio and Professor James Duncan at University
of Maryland)



4.3 Model formulation

We recall that, according to linear potential-flow theory, cmin is a resonant forcing

speed, where the response grows unbounded in time, suggesting that nonlinear and

viscous effects would likely become important near this critical condition. Moreover,

ignoring viscous damping, cmin is the bifurcation point of fully localized solitary waves,

or lumps, that may also play a significant role in the resonant forced response.

In the previous sections, laboratory experiments conducted in a tank using as

forcing a circular pressure distribution, created by a small tube blowing air onto the

water surface are summarized. Now, this section is concerned with an approximate

theoretical model, that is used to explain various aspects of the observed responses

near-critical conditions.

The experimental observations summarized in the previous sections suggest that

the wave response to a localized pressure source moving with speed near Cmin is con-

trolled by dispersive, nonlinear, three-dimensional and transient effects; also, given

that the waves of interest are in the gravity-capillary range, viscous dissipation is

expected to play an important part. Moreover, as the response features lumps that

are fairly steep, nonlinearity cannot be assumed weak.

Rather than the full unsteady, nonlinear, viscous water-wave problem in three

dimensions, the ensuing analysis is based on a simple model equation. Even though

it is not obtained from the exact governing equations via a systematic approxima-

tion procedure, this equation combines the main effects controlling the response and

captures the essential features of the observations. Furthermore, the proposed model

adds to the physical understanding of the response by bringing out the delicate inter-

play between dispersive, nonlinear and viscous effects that takes place near Cmin. A

similar ad-hoc approach is taken in Whitham (1974, §13.14) in an attempt to study

water-wave breaking, a phenomenon also not amenable to weakly nonlinear treat-

ment.

We now present the various terms in the model equation. The starting point is

the dispersion relation of potential-flow theory for linear sinusoidal gravity-capillary



waves of frequency w and wavenumber k on deep water,

w2 = k(1 + k 2 ), (4.1)

written in dimensionless form, normalizing to 1 the minimum of the phase speed,

c(k) = w/k, and the corresponding wavenumber kmin. On kinematic grounds, at

steady state, a locally confined source moving with dimensionless speed a would

excite waves that satisfy

a cos# = c(Ik|), (4.2)

# being the inclination of the wavevector k to the line of motion of the source

(Whitham 1974, §12.4). In the case of interest, where the source speed is close to the

minimum phase speed, a ~ 1, the kinematic constraint (4.2) requires that Iki ~1

and # < 1. Accordingly, a forcing moving along x, say, with near-critical speed would

generate waves with k = (k, 1) close to kmin = (1, 0). This suggests approximating

the dispersion relation (4.1) in the neighbourhood of the phase speed minimum; for a

left-going source as in the experiment, in particular, expanding (4.1) to second order

around kmin yields

W = -Isgn(k)(1 + 2 |kl + k2 + 212). (4.3)

To account for viscous dissipation, we shall modify (4.3) by adding an imaginary

part representing the wave decay rate due to viscous damping:

W = -iJk12 - 'sgn(k)(1 + 2|k+ k2 +21 2) (4.4)

F being a constant. This choice is consistent with the classic result obtained by

Lamb (1993, §348) for the viscous decay rate of linear sinusoidal waves, where P

turns out to be equal to Do = v(4g) 1/4 (p/)3/4 , v being the kinematic viscosity. (In

cgs units, y = 0.01, g = 981, p = 1 and o = 73, so Fo = 0.003.) More recently,

Longuet-Higgins (1997) examined viscous dissipation in deep-water gravity-capillary

solitary waves. The expression for the decay rate in (4.4) turns out to be also valid

for small-amplitude solitary waves, which resemble modulated wavepackets (Akylas



1993; Longuet-Higgins 1993); in this instance, however, iP 2 0 , due to the spreading

out of the wave envelope as the amplitude decreases. In the other extreme, steep de-

pression solitary waves, owing to the sharply increased curvature in the wave troughs,

experience far more rapid decay than their weakly nonlinear counterparts. Here, (4.4)

will be assumed to hold in general, irrespective of the wave steepness, treating I as a

parameter that controls the strength of viscous damping.

Based on (4.4), making use of

W <--> i , (k, 1) +-> -- i( , ,sgn(k) <-+ iX, (4.5)at' ax ay

where RX {f} = F-1 {-isgn(k)F {f}} stands for the Hilbert transform, with

F{f} = I f(x)e-ikdx (4.6)

being the Fourier transform, it is straightforward to write down the associated linear

differential equation that combines dispersive effects near cmin with viscous damping;

adding the effect of forcing due to a pressure source Ap((, y) moving from right to

left along x with speed a, the following forced equation for the free-surface elevation

q((, y, t) is obtained:

nt - D(9qC + nyy) + (a - j - }X { C + 2yy - q} = Ape, (4.7)

where ( = x+at and A is a parameter that controls the peak amplitude of the applied

forcing.

To complete the model, it remains to account for nonlinearity. In the interest of

simplicity, following Akers & Milewski (2009), we add to (4.7) a quadratic nonlinear

term of the Korteweg-de Vries (KdV) type:

,qt- P(TIC + nyy) + (a - j),g - #(r7)C - 1 {jgt + 2rjy, - q} = Ape, (4.8)

where #3 = 11/2/8. This choice for # ensures that, in the small-amplitude limit, free



(A = 0), inviscid (F = 0) lump solutions of the model equation (4.8) agree, to leading

order, with their weakly nonlinear counterparts of the full potential-flow theory of

water waves (Kim & Akylas 2005).

Briefly, small-amplitude inviscid lumps are modulated wavepackets with carrier

and envelope propagating at the same speed a slightly below the minimum phase

speed (a < 1). According to the model equation (4.8), for F = A = 0, these solutions

can be expanded close to their bifurcation point a = 1 as

7 = je {S(X, Y)e' + c.c.} + _c 2 {S2 (X, Y)e 2i6 + c.c.} + , (4.9)

where a = 1 - E2 (0 < e < 1) and (X, Y) = e( , y). Substituting (4.9) into (4.8), the

envelope of the primary harmonic is governed by

-S + {(Sxx + 2Syy) + pS2S* = 0, (4.10)

the same steady nonlinear Schr6dinger (NLS) equation (after allowing for the differ-

ence in normalization) as found in Kim & Akylas (2005) for weakly nonlinear lumps

on the basis of potential-flow theory.

While the NLS equation (4.10) provides a link to the full water-wave problem only

in the weakly nonlinear limit, we shall use equation (4.8) regardless of wave steepness.

The predictions of our model, therefore, are expected to be qualitative at best. For

instance, figure 4-7 shows plots of maximum depression against wave speed a of free,

inviscid lumps, as obtained from numerical solutions of the model equation (4.8) for

A = F = 0 (Akers & Milewski 2009; Appendix A), the full potential-flow theory of

water waves (E. Parau, private communication) and the leading-order weakly non-

linear approximation according to expansion (4.9). The model equation, although it

is a definite improvement upon the weakly nonlinear theory away from the bifurca-

tion point, overpredicts the peak amplitude of depression lumps of the exact inviscid

theory. This discrepancy can be mitigated to some extent by adding to (4.7), rather

than merely a quadratic term, a combination of quadratic and cubic nonlinearities,

(#13q2 + #2r73)6, choosing the coefficients #1 and #2 so that both the O(E) and O(E2)
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Figure 4-7: Plots of maximum depression, 1r/min|j, against wave speed a of free, inviscid
lumps of depression. : model equation (4.8) with A = F = 0; ----- : leading-order
weakly nonlinear approximation; ***: full potential-flow theory (E. Parau, private
communication).

terms in expansion (4.9) agree with the full theory (Appendix B). However, the over-

all gain does not seem worth the added complication, given that the nonlinear nature

of viscous damping was ignored earlier, among other assumptions.

4.4 Steady-state responses

Perhaps the most striking nonlinear feature of the wave response as the forcing speed

approaches Cmin, revealed by the experimental observations, is the sudden jump from

state I to state II, that occurs at a critical speed ac < 1 depending on the strength of

the forcing. State I is locally confined beneath the forcing, similarly to the subcritical

response predicted by linear theory (Rayleigh's solution), whereas state II is nonlinear

as it features a steep lump downstream of the forcing. In an effort to understand the

transition from state I to state II, we shall make a systematic study, based on the

model equation (4.8), of steady-state responses as the forcing speed a is increased

towards 1, for various values of the forcing amplitude A and damping parameter F.

Throughout this chapter, the forcing disturbance p((, y) in (4.8) will be assumed to



be in the form of a Gaussian centred at ( = y = 0:

p( , y) = exp(-2( 2 - 2y 2). (4.11)

4.4.1 Shifted lumps

Guided by the nature of state II, we first look for possible subcritical steady-state

solutions of (4.8) in the form of a finite-amplitude lump, slightly modified by forcing

and damping. To this end, we write

7 = (( - 0, y) + ((, y). (4.12)

Here, q denotes a free, undamped depression-lump solution of (4.8) with speed a < 1,

a- - - !-(H {I% + 2%y - i} = 0, (4.13)

0 being an as yet undetermined constant shift of the lump profile relative to the

forcing, and i is a correction term.

Inserting (4.12) into (4.8) and making use of (4.13), it is found that i satisfies

(a - )ij - 2#((( - 0, y)i) - !'H {i + 29yy -

= P(% + %7Y) + Ap + Pqik ± j rn) + ,3(i 2 ) (4.14)

Taking forcing and damping effects to be weak (A < 1, F, < 1), we put

F1 = pA, (4.15)

p being a parameter that measures the relative importance of damping, and expand

the solution to (4.14) as

(4.16)= A (' +A AN~/) + - - -.



with a similar expansion for the shift 0:

=6(0) + A601 ) +- . (4.17)

The same sort of perturbation procedure has also been used in analyzing finite-

amplitude steady-solution branches of a forced-damped fifth-order KdV equation

(Cho & Akylas 2009; Chapter 3).

Upon substituting (4.16) into (4.14) and using (4.15) and (4.17), it is found that

9() is governed by the forced equation

(a D - - 2#(Q( - 6(O), y)0(')), - j + i) ± 2i') - R1) = R) (4.18)

where

R()= p + ( ) - 0 y) + %(( - 0(0), y)). (4.19)

The adjoint to the operator on the left side of (4.18) is

a a2 a2
(a - } - 2#3(( - 0(O), y) - "H + 2 1 , (4.20)

and, in view of (4.13), ((-6(O), y) is a homogeneous adjoint solution that goes to zero

as ( -+ ±oo, y -+ ±oo. Therefore, appealing to the standard solvability argument,

for the forced equation (4.18) to also have a well-behaved solution, the forcing R(1 )

must satisfy

Jo J- R()1 ( - 0(0), y)d~dy = 0. (4.21)

Making use of (4.19), the solvability condition (4.21) takes the form

j j(i + i;)d~dy = - p(( y)i,(( - 0(O), y)d~dy; (4.22)

this furnishes an equation for determining the shift 0(o), depending on the forcing

speed a and the parameter pt.

Note that 0(o) appears only on the right-hand side of (4.22), while y solely mul-
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Figure 4-8: Predictions of solvability condition (4.22) regarding the lump accompa-
nying state II. (a) Downstream shift 0(0) of lump relative to the forcing profile versus
forcing speed a, for p = 0.033; the parameter p defined in (4.15) measures the impor-
tance of damping relative to forcing. (b) Limit point a = a 2 below which shifted-lump
solution is not possible, as a function of p.

tiplies the left side. For p = 0, in particular, since p((, y) is even in ( according to

(4.11), 6(0) = 0 satisfies (4.22) regardless of a. As expected, in the absence of damp-

ing, the proposed response (4.12) is symmetric relative to the forcing and tends to

the free-lump solution as a becomes more subcritical. On the other hand, for p > 0,

the solvability condition (4.22) can be satisfied for two non-zero values of 0(0) when

a exceeds a certain threshold value, a 2 , depending on y, but no solution is possible if

a < a2 , as illustrated in figure 4-8(a) for the case p = 0.033. Accordingly, damping

causes finite-amplitude steady-state solution branches to eventually turn around as

a is decreased, and the turning point a = a 2 moves further away from a = 1 when I

is decreased (figure 4-8b). Moreover, since y = F'/A, increasing the forcing amplitude

A has the same effect as reducing the damping parameter D .

It is interesting that the values of 0(0) for p = 0.033 displayed in figure 4-8(a)

are positive, and this turns out to be generally the case in the range 0.01 < I 0.1

we examined. The lump profile in (4.12) is thus shifted in the downstream direction

relative to the applied forcing, consistent with state II. In fact, as discussed below,

tracing of finite-amplitude steady-state solution branches via numerical continuation

reveals that state II is associated with the larger of the two possible values of 0(0) for

a > a 2.
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Figure 4-9: Inviscid (F = 0) steady-state response diagrams of maximum depression,
|r/min|I, versus forcing speed a for five different forcing amplitudes A.

4.4.2 Numerical continuation

For highly subcritical forcing speed a and small forcing amplitude A, the solution

to the model equation (4.8) is expected to reach the linear subcritical steady state

(Rayleigh's solution), that is locally confined in the vicinity of the forcing, similarly

to state I. Using numerical continuation, we shall now follow this small-amplitude

steady-state solution branch as a is increased towards 1, for different values of A and

f, in order to make connection with the finite-amplitude states found by perturbation

theory in §4.4.1.

The steady version of equation (4.8) was discretized using fourth-order centred

finite differences, and the Hilbert transform was computed using the discrete Hilbert

transform (Kak 1970). Exploiting symmetry, only y > 0 was considered, and the

edges of the computational domain, ( <_o < ( < 0 < y < yes), were placed far

enough so as to have negligible effect on the overall response. The resulting nonlinear

equation system was solved by Newton's method, combined with pseudo-arclength

continuation (Appendix C). The results reported here were obtained using 256 grid

points along ( and 64 grid points along y with (,, = = y+o = 18.85.



We first consider the inviscid limit, P = 0, where the subcritical response is sym-

metric relative to the forcing. As a is increased, Rayleigh's solution branch turns

around at a limit point before reaching a = 1 and then follows asymptotically the

finite-amplitude solution branch corresponding to free, inviscid lumps. This result is

consistent with the perturbation analysis for y = 0 as well as the full potential-flow

computations of Parau et al. (2005). The location of the limit point, a = ac, is quite

sensitive to the forcing amplitude A, ac moving closer to a = 1 as A is decreased

(figure 4-9). For the choice A = 0.23, in particular, it turns out that ac = 0.92, which

matches approximately the critical speed where transition from state I to state II was

observed experimentally for the experimental forcing amplitude F = 0.43.

Next, we turn to the role of dissipation (f > 0). Figure 4-10 summarizes the results

of numerical continuation in a of the small-amplitude subcritical solution branch, for

A = 0.23 and four different values of [, expressed in terms of Do = 0.003, the value of

P pertaining to linear waves (Lamb 1993, §348). Compared to the invisicd response

diagram (figure 4-9), for the two lower values of F = Fo, 2Do (figure 4-10a, b), the

effect of dissipation becomes evident only after passing the turning point at ac = 0.92:

as a is decreased past ac, the response initially stays close to the inviscid one, but

later a second turning point, a = a 2 , is encountered where the solution reverses course

again, heading back towards a = 1 along a neighbouring path. A qualitatively similar

behaviour is also found for the two larger values of F = 6 0 , 810 ; stronger dissipation,

though, affects the entire response diagram, including the critical speed at which the

first turning point occurs (figure 4-10c, d).

The presence of a second turning point, due to dissipation, in the response dia-

grams shown in figure 4-10 confirms the predictions of the perturbation theory (figure

4-8), and the analytical estimates for a 2 based on (4.22) are in reasonable agreement

with the values obtained from numerical continuation (see table 4-1). In line with the

perturbation analysis, both before and after turning around at a 2 , the numerically

computed responses feature a finite-amplitude depression lump shifted downstream

relative to the forcing; the downstream shift becomes more noticeable after turning

around at a 2 and keeps increasing while the lump steepness decreases, as a moves
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l P Numerical Analytical
iD0  0.014 0.34 0.44

2Do 0.028 0.59 0.64
6%o 0.083 0.85 0.89
8P0  0.110 0.90 0.95

Table 4.1: Second limit point a = a 2 for forcing amplitude A = 0.23 and four different
values of the damping parameter F., where io = v(4g)-1/(p/U)3/4 = 0.003 is the value
of iD pertaining to linear waves (Lamb 1993, §348). The analytical estimates for a2
were deduced from the solvability condition (4.22), using p = f//A; the numerical
values of a 2 were obtained via continuation in forcing speed a of the small-amplitude
steady-state subcritical response.

further away from a 2 . Figure 4-11 shows representative wave profiles at four different

speeds along the response curve for A = 0.23 and F/ = 2T/0 (figure 4-10b). We recall

that, for this A, the first turning point, a, = 0.92, according to the model, is close

to the critical speed at which the jump from state I to state II was observed experi-

mentally for forcing amplitude F = 0.43; the speeds of the profiles displayed in figure

4-11 match those of the four experimentally observed profiles in figure 4-2(a-d), that

illustrate the transition of the response from state I (figure 4-2a) to state II (figure

4-2(b-d)) for F = 0.43. The computed steady-state responses (figure 4-11) exhibit

qualitatively similar behaviour to the observed disturbances. As a is increased past

ac, in particular, the lump accompanying state II is shifted further downstream, be-

coming less steep and more spread out in the spanwise direction, consistent with the

observations.

Finally, for I = Do, 2P0 , where dissipation is relatively low, carrying on the continu-

ation beyond the stage shown in figure 4-10(a, b) reveals a rather intricate behaviour,

with the emergence of steady states comprising multiple lumps. Figure 4-12 shows

the detailed path followed by the solution branch for the case I = 2F0, and figure

4-13 displays the wave profiles corresponding to four locations along the way, marked

a-d in figure 4-12. Note that a third turning point occurs at 0 3 = 0.974; just prior to

reaching there, the response still resembles state II (figure 4-13a), but after turning
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Figure 4-11: Representative steady-state wave profiles at four different forcing speeds
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Figure 4-12: Continuation in the forcing speed a past the second limit point at
a = 0.59 (not shown) of nonlinear solution branch for forcing amplitude A = 0.23
and damping parameter iD = 2 D o, where FDo = 0.003. I7min| stands for the maximum
depression of the response. ac = 0.918 is the first limit point, where the small-
amplitude state turns around; as = 0.974 and a4 = 0.875 denote the third and
fourth turning points, respectively. The wave profiles corresponding to the four points
marked a-d along the path followed by the nonlinear solution branch, are plotted in
figure 4-13.

around at a3 a new steady state emerges featuring two lumps downstream of the

forcing (figure 4-13b). Upon further continuation along the same solution branch,

the disturbance beneath the forcing transforms into a third lump (figure 4-13c), and

the entire pattern is shifted downstream (figure 4-13d) after encountering a fourth

turning point at a 4 = 0.875. This appears to set the stage for the bifurcation of a

new state involving more lumps, but will shall not pursue this possibility.

4.5 Transient evolution

The steady-state analysis in §4.4 suggests that the transition from state I to state II

is associated with the limit point a = ac, where the response jumps from the small-

amplitude state to the nonlinear solution branch that comes close to a = 1 after

turning around, due to dissipation, at the second limit point, a = a 2 (figure 4-10).

This scenario presumes that the nonlinear solution branch is stable, which remains



to be established. Also, according to the experimental observations, as the forcing

speed is increased past a,, there is a second transition, from state II, which is steady,

to state III, which is unsteady. To address these issues, we shall turn to numerical

investigation of transient responses based on the model equation (4.8).

The numerical technique for solving (4.8) used a spectral approximation in space,

combined with a predictor-corrector Euler time stepping (Appendix D). The re-

sults reported here were obtained using the computational domain (-37.7 < ( <

37.7, -31.4 < y < 31.4) with 512 grid points along (, 256 grid points along y and

time step At = 10-3.

4.5.1 Stability of state II

Rather than a formal spectral analysis, the stability-of state II was explored by di-

rect numerical integration of (4.8), employing as initial condition the steady solution

obtained from continuation and letting numerical error act as the perturbation.

We first tested the stability of state II for forcing amplitude A = 0.23 and dissipa-

tion parameter i = Fo, 2P 0. Under these conditions, and forcing speed above ac, state

II is availabe in the finite range ac < a < a3, a = a3 being the third turning point

encountered earlier in the course of the continuation (figure 4-12), with a3 = 0.975

for P = P0 and a3 = 0.974 for P = 2P 0. Although the steady-state response diagrams

corresponding to these two values of I (figure 4-10 a, b) are similar qualitatively, our

numerical experiments suggest that state II is unstable for F = Po, but stable for

P = 2T0, throughout the speed range ac < a < a3 . Figure 4-14 illustrates the totally

different stability behaviour of state II for F = Fo, 2F 0 when a = 0.93. The oscillatory

instability seen for P = P0 is also consistent with the computations reported in Diorio

et al. (2009). Our earlier study used the model equation (4.8) with P = P0, and the

transient response from rest for A = 0.21 and forcing speed a above ac was found to

be periodic in time rather than approaching steady state II.

Based on the present stability computations, when P = Po, state II turns out

to be unstable for 0.08 < A < 0.36, corresponding to 0.86 < ac < 0.98, which

covers the whole range of forcing amplitudes 0.3 < F < 0.69 used in the experiment



0.5
0

-0.5-
-1

-1.5 -
-20 -10 0 10 20

0.223~-0:657 _

10

y 1

(b)

0.5

-0.5i

-1-
-1.5,

-20 -10 0 10 20

0.5
0-

-0.5-
-1 1

-1.5-
-20 -10 0 10 20

-1.621K

10

(d)

Figure 4-13: Steady-state profiles at the four points marked a-d in figure 4-12 along
the path followed by the nonlinear solution branch beyond its second turning point.
The one-dimensional plots display the centreline profile r((, y = 0). The correspond-
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Figure 4-14: Time history of maximum depression, hmin (in mm), as obtained from
numerical solution of the model equation (4.8) using as initial condition state II,
computed via continuation, for forcing amplitude A = 0.23, forcing speed a = 0.93
and two different values of the damping parameter F. (-): F = PO,(-): i = 2F/,
where iDo = 0.003 is the value of I pertaining to linear waves.

(figure 4-4). Hence, according to our model, F1 must be greater than Fo, the value

of F/ appropriate for linear waves, in order for state II to be stable, as observed

experimentally. This seems reasonable, given that the effect of dissipation in steep

gravity-capillary solitary waves is considerably stronger than in linear disturbances

(Longuet-Higgins 1997), and one would expect the same to be true for lumps as well.

However, as the assumed damping term in (4.8) is linear, it is not possible to account

for nonlinear effects in viscous dissipation from first principles. In an attempt to

allow for this effect in a rough sense, for the remainder of the chapter, we shall use

F = 2.4D/o; this choice implies somewhat stronger viscous dissipation than in weakly

nonlinear solitary waves, in which case I = 2Fo (Longuet-Higgins 1997), and also

appears to provide the best overall fit of the model with the observations.

4.5.2 Transition from state I to state II

We next studied the transient response from rest. The model equation (4.8) with / =

2.4F0 was integrated numerically turning on the forcing impulsively at t = 0. Several



runs were made for forcing amplitude 0.08 < A < 0.36 and speed 0.7 < a 1.03. As

noted above, these conditions cover the entire range of forcing amplitudes and speeds

used in the experiment. On the whole, our computations confirm that three distinct

subcritical reponses, namely states I, II and III, are possible. Here, we focus on states

I and II; state III will be discussed in §4.5.3.

The transient response from rest invariably tends to the small-amplitude steady

solution (state I) when the forcing speed a < ac. Upon crossing ac, however, state I is

no longer available and is replaced by state II for ac < a < a3 , where a3 denotes the

third turning point of the finite-amplitude solution branch computed earlier (figure 4-

12). Based on numerical experiments (see §4.5.1), for F = 2.4 0 and 0.08 < A < 0.36,

state II is stable when ac < a < a3 , and the transient response from rest indeed

tends to state II within this range of forcing speeds.

For both state I and state II, the approach to steady state features decaying

oscillations, with period of roughly 1 s, as illustrated in figure 4-15 for A = 0.23.

Similar behaviour was also seen in the experiment, particularly for forcing speeds

in the vicinity of ac. According to our computations, the transition from state I to

state II at a = ac is sharp, the response invariably tending to one of these two states

depending on whether a < ac or a > ac.

As remarked earlier, ac is quite sensitive to the forcing amplitude A and so is a3 ,

the upper limit of the speed range ac < a < a3 in which state II is available. Table

4-2 lists the values of ac and a3 , obtained from numerical continuation as explained

in §4.4.2, for LD = 2.4P0 and the five forcing amplitudes used earlier in the undamped

(LD = 0) response diagrams in figure 4-9. While ac is practically unaffected by the

presence of damping, a3 owes its existence to a delicate balance between forcing and

damping; for the weakest of the forcings, A = 0.08, in particular, no third turning

point, a 3, is found. In this instance, state II is weakly nonlinear and conncets directly

with the small-amplitude supercritical response as a is increased past 1.

Figure 4-16 displays the solution branches associated with state I (a < ac) and

state II (ac < a < a 3) for four forcing amplitudes A. It is interesting to compare

these results to the experimental plots of normalized maximum response depth against



A ac a 3
0.08 0.982 -
0.16 0.948 0.989
0.23 0.918 0.975
0.36 0.864 0.952
0.42 0.839 0.942

Table 4.2: First (a = ac) and third (a = a3 ) limit points encountered along the
continuation in the forcing speed a of the small-amplitude steady-state subcritical
response, for damping parameter P = 2.4P0 , where Fo = 0.003, and five different
forcing amplitudes A.

forcing speed a, shown in figure 4-4, for four experimental forcing amplitudes F. The

theoretical forcing amplitudes A have been chosen so that the corresponding values

of ac match roughly the critical speeds at which the response was observed to jump

from state I to state II, for the four values of F used in the experiment. It is not

surprising, then, that the boundary of state I is well reproduced by the model. More

importantly, however, there is also good qualitative agreement with the experiment in

regard to the behaviour of state II. Note, in particular, that the theoretical response

curves corresponding to state II in figure 4-16 essentially follow the same line for all

four values of A, similarly to the experimental data in state II, which collapse on a

common line independent of F.

4.5.3 State III

The transition from state II to state III is associated with the third turning point,

a 3 ; state II is not available beyond this speed, and the transient response from rest

approaches a periodic state in time, as illustrated in figure 4-17 for a = 0.981 when

A = 0.23. Note that, for this forcing amplitude, a3 = 0.975, which explains the very

different time history of the response in figure 4-17 compared to that for a = 0.97 in

figure 4-15.

State III is characterized by periodic shedding of lump-like disturbances down-

stream of the forcing. Figure 4-18 displays snapshots of the computed response for

a = 0.981 and A = 0.23 at eight times, separated by 0.36 s, that illustrate a full
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Figure 4-15: Time history of maximum depression, hmin (in mm), associated with
transient response starting from rest, for forcing amplitude A = 0.23, damping pa-
rameter F/ = 2.4F00, where E1O = 0.003, and four different forcing speeds a. Under these
conditions, the response from rest reaches a steady state: state I for a = 0.905, but
state II for the three higher speeds.

cycle of the shedding process after the periodic state has been reached. At the early

stages of the cycle, the pattern has a V shape trailing the forcing (figure 4-18a), but

soon the tips of the V transform into lumps (figure 4-18b, c) and the disturbance is

reminiscent of the steady states with multiple lumps downstream, computed earlier

(figure 4-13c, d); here, however, the lumps detach from the rest of the disturbance

and are quickly damped out (figure 4-18(d-g)), thus preparing the way for the cycle

to start anew (figure 4-18h). These results are in good qualitative agreement with the

experimental observations regarding state III (figure 4-5). Finally, upon increasing

a past the critical value a = 1, the response from rest returns to a steady state, as

illustrated in figure 4-17 for a = 1.03 when A = 0.23. This supercritical state is

of small-amplitude and has a V shape (figure 4-19), consistent with figure 4-6. The

transition from state III to the supercritical state has not been studied in detail.
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Figure 4-17: Time history of maximum depression, hmin (in mm), associated with
transient response starting from rest, for forcing amplitude A = 0.23, damping pa-
rameter F = 2.4F/o, where DO = 0.003, and two different forcing speeds a. (-):
a = 0.981, (... ): a = 1.03. In the former case, the response reaches a periodic
state in time, that corresponds to state III; in the latter, the response reaches the
small-amplitude supercritical steady state.
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Figure 4-18: Plots at eight different time instants of the induced wave pattern for

forcing amplitude A 0.23, damping parameter = 2.4 0, where Do =0.003, and

forcing speed a = 0.981. In (a), t=4.49 s and the following plots, (b)-(h), are

separated by 0.36 s. The response corresponds to state III and is characterized by

periodic shedding of lumps. The eight snapshots shown cover a full cycle of the

shedding process, in qualitative agreement with the experimentally observed state III
(figure 4-5).
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Figure 4-19: Plot of supercritical steady state reached by transient response from rest
for forcing amplitude A = 0.23, damping parameter F = 2.420, where Fo = 0.003, and
forcing speed a = 1.03.

4.6 Discussion

The preceding analysis reveals that the precise nature of the forced response near

the critical speed Cmin is determined by a rather delicate balance between nonlinear-

ity, which is controlled by the strength of forcing, and viscous dissipation. Out of

the three possible subcritical responses found, state II and III, being nonlinear, are

particularly sensitive to this interplay of nonlinear and damping effects. As a result,
damping has to exceed a certain threshold in order for state II to be steady as ob-

served experimentally rather than time-periodic, and state III ceases to be available

when forcing is too weak in comparison to damping.

From a theoretical viewpoint, the prominent role that nonlinearity plays near Cmin

is perhaps somewhat surprising. It is easy to show (from either the model equation

(4.8) or the full water-wave equations) that, ignoring dissipation, the linear response

to localized forcing at speed equal to Cmin features only a logarithmic singularity, and

one might expect that damping would entirely mask nonlinear effects due to this weak

resonance. Nevertheless, for forcing speed slightly below cmin, the response exhibits

rich nonlinear behaviour, which must be attributed to the presence of lumps in the



subcritical speed range.

In spite of being crude in many respects, the theoretical model proposed here

reproduces, at least qualitatively, the main features of the observed responses, and

seems to be a viable alternative to fully numerical simulation of the exact governing

equations. This type of model could also prove useful in understanding the generation

of gravity-capillary lumps in wind-wave experiments (Zhang 1995), as well as in other

physical systems where the phase speed features a minimum at non-zero wavenumber

(Squire et al. 1996).
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Chapter 5

Concluding remarks

5.1 Summary and conclusion

The main purpose of the present thesis work is to reveal the physics governing the

dynamic behavior of 3-D gravity-capillary depression solitary waves generated by

a moving pressure forcing on the surface of deep water. Companion experiments

were conducted by Dr. James Diorio and Professor James Duncan at University of

Maryland. In the experiment, they made an observation of surface profiles according

to forcing speeds. In summary, three different behavioral states (state I, II, and III)

are identified according to forcing speeds. When the forcing speed is low, a simple 3-D

depression was observed just below the moving forcing. This is essentially the linear

response, and this state is refered to as state I. As the forcing speed is increased

towards cmin, they observed steep steady 3-D gravity-capillary solitary depression

waves following just behind the moving forcing, and this state is referred to as state

II. In addition, in state II, the response of maximum depression is independent of the

forcing strength. Finally, near the resonance when forcing speed is close to cmin, they

observed that 3-D gravity-capillary solitary depression waves are shed outward in the

oblique directions in a time-periodic manner and decay due to viscous dissipation.

This state is referred to as state III. Overall, 3-D gravity-capillary solitary depression

waves observed in the experiment are steep and, therefore, nonlinearity is not weak.

In addition, they are in the gravity-capillary range, so viscous dissipation cannot be



neglected. Finally, the interplay between nonlinearity and viscous dissipation is very

delicate, which is implied in the characteristics of state II and state III.

Chapter 2 deals with the stability and nonlinear dynamics of free 3-D gravity-

capillary solitary depression waves. This chapter is related to the existence of sta-

ble steep 3-D gravity-capillary solitary depression waves observed in the companion

experiment. A linear stability analysis reveals that 3-D gravity-capillary solitary

depression waves are unstable in the small-amplitude limit, but become stable as

the steepness increases. In other words, an exchange of stability occurs at a certain

finite wave steepness. In addition, depending on the perturbation, the unstable small-

amplitude 3-D gravity-capillary solitary depression wave either decays into dispersive

waves or evolves into an oscillatory state near a stable steep 3-D gravity-capillary soli-

tary depression waves. This chapter provides the theoretical proof for the existence

of stable steep 3-D gravity-capillary solitary depression waves observed in the com-

panion experiment.

Chapter 3 deals with the nonlinear dynamics of forced 2-D gravity-capillary soli-

tary depression waves with viscous dissipation. This chapter is a preliminary study

leading into the investigation of forced 3-D gravity-capillary solitary depression waves

with viscous dissipation. Based on the unsteady simulation, three different behav-

ioral states are identified according to the forcing speeds. When the forcing speed is

low, a simple 2-D depression was calculated just below the moving forcing. This is

essentially linear response. However, as the forcing speed is increased towards Cmin, a

steady 2-D gravity-capillary solitary depression wave following just behind the mov-

ing forcing is identified. Finally, near the resonance when the forcing speed is close to

Cmin, 2-D gravity-capillary solitary depression waves are shed outward in the stream-

wise direction in a time-periodic manner and decay due to viscous dissipation. This

work provides a partial explanation for the three different behavioral states in the

companion 3-D experiments.

Chapter 4 deals with the nonlinear dynamics of forced 3-D steep gravity-capillary

solitary depression waves with viscous dissipation. A theoretical model equation is

proposed accounting for the effects of three-dimensionality, unsteadiness, nonlinearity,



dispersion, dissipation and forcing; these physical effects are included in a straightfor-

ward manner and play important roles in providing a physical explanation for the dy-

namic behavior of 3-D gravity-capillary solitary depression waves in the experiments.

Based on the unsteady simulation, three different behavioral states are identified ac-

cording to forcing speeds. When the forcing speed is low, a simple 3-D depression was

calculated just below the moving forcing. This is essentially the linear response and

corresponds to state I in the companion experiment. However, as the forcing speed

is increased towards cmin, steady 3-D gravity-capillary solitary depression waves fol-

lowing just behind the moving forcing is identified. This state corresponds to state II

in the companion experiment. Finally, near the resonance when the forcing speed is

close to Cmin, 3-D gravity-capillary solitary depression waves are shed in the oblique

directions in time-periodic manner and decay due to viscous dissipation. Based on

the numerical continuation, the transitions from state I to II and from state II to III

oberserved in the companion experiment turn out to be associated with certain limit

points in the steady-state response diagram. In addition, in state II, the response of

maximum depression is independent of the forcing strength, in agreement with the

companion experiment.

5.2 Further studies and possible applications

The proposed model equation approach in the present thesis work is generic. This

approach can be used in any wave system where the dispersion relation is known.

Particularly, this approach will be useful in studying the wave system where the

linear phase speed features a minimum at non-zero wavenumber. Physical examples

are flexural-gravity waves on floating ice sheet (Hosking, Sneyd & Waugh 1988),

envelope solitary waves on a thin shell (Wu et al. 1987), interfacial waves between

two liquids (Kim & Akylas 2006).

There are possbile scientific and engineering applications related to the physics of

3-D gravity-capillary solitary waves revealed in the present thesis work.

The first example is the generation mechanism of ripples by wind (Zhang 1995).



The ripples can be modeled as 3-D gravity-capillary solitary depression waves, and

wind can be modeled as multiple moving forcings which have both normal and tan-

gential components to the water surface.

The second example is the study of the wave drag associated with the motion

of a small body on a free surface (Burghelea & Steinberg 1996). In this case, the

small body on a free surface acts as a forcing. This study may be useful in drag

calculations which are essential in the engineering design of small biomimetic robots

or small unmanned vehicles on the water surface.

The third example is the possible application in micro-scale or nano-scale pattern-

ing using moving probes such as an Atomic Force Microscope (Rapha8l & de Gennes

1996). In this case, for the clean and stable patterning and, also for the fast pro-

duction, the physical results revealed from the present thesis work may provide the

optimal working criteria (for example, optimal rigidity of materials, optimal speed

range of moving probes).

The final example is the study of the wave drag assocated with the motion of

ocean vehicles on the surface of ice-covered ocean in the arctic area (Takizawa 1988).

People continue to explore this area for the possible natural resources and for water

sources. In this arctic area, frequent fuel supply to the ocean vehicle is often very

difficult. This study may be useful in drag calculations which may be helpful in the

design of low fuel-consumption ocean vehicles operating on the ice-covered surface.



Appendix A

Spectral method: steady, free,

inviscid model equation

Spectral method is used to solve the following steady, free, inviscid equation.

(a-)r - (#q2) - I' {TI + 2ry, - 7}1= 0 (A.1)

Rather than solving the above partial differential equation in the real domain ((,y),

we can solve it in the wavenumber (spatial frequency) domain (k,l). In other words,

using spatial Fourier Transform, we transform the partial differential equation (A.1)

into the following algebraic equation in the wavenumber domain.

[(a - 2)ik - lisgn(k)(k2 + 212 + 1)] = #ik7 2  (A.2)

where, i(k, 1) = FT {r/((, y)}. The above algebraic equation (A.2) is solved numeri-

cally in the wavenumber domain. The solution found in the wavenumber domain is

then transformed into the solution in the real domain using Inverse Fourier Transform.
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Appendix B

Quadratic and cubic nonlinearities

In the derivation of the model equation, rather than using only quadratic nonlinearity,

we can adopt both quadratic and cubic nonlinearities with coefficients #1 and #2

respectively, as follows.

rq + (a - j)gg - (01,q2 + #2r,3) - 1iH {TI + 2yy - } = 0 (B.1)

In the small-amplitude limit near a = 1, the solution of (B.1) can be expanded as

= {S(X, Y)e' + c.c.} + }E2 (S 2(X, Y)e2i + c.c.} .+ - - - (B.2)

As a result, the associated nonlinear Schr6dinger equation for S is governed by

-S + !(Sxx + 2Syy) + 1(16)32 - 3,32)S2S* = 0. (B.3)

In addition, the relation between S and S2 is

S2= -43S2. (B.4)



On the other hand, if the expansion (B.2) is used in the full water wave equations,

we find the following two equations which correspond to (B.3) and (B.4) respectively.

-S + {(Sxx + 2Syy) + I1S2S* = 0. (B.5)

S2 = -S2. (B.6)

From (B.3)-(B.6), by comparison, the coefficients of quadratic and cubic nonlineari-

ties are found to be #31 = 1/4 and 32 = -1/8.
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Appendix C

Pseduo-arclength continuation

method: steady, forced,

inviscid /viscous model equation

Pseudo-arclength continuation method is used to solve the following steady, forced,

inviscid/viscous equation.

-D(77 + yy) + (a - ! n - (T2) - -IR {g + 2yy -qj = Apg (C.1)

where, F/ > 0. Since the above equation (C.1) is a nonlinear partial differential

equation, multiple solutions can exist for a certain value of a in the abstract (a, 7)

space. To find out multiple solutions q(, y), instead of treating a as a fixed parameter,

we treat a as another solution in the given equation (C.1) as follows.

G(7, a) = -i(7 + YY) + (a - {),g -#(72) - !7-( {H + 2yy - q} - Ap = 0 (C.2)

Therefore, to find the solution set (a, ?), another equation, which is related to pseudo-

arclength, is introduced.

F(q, a) = s(iq -ro) + o-(a - ao) - AS = 0 (C.3)
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Here, (ao, ro) is a previous solution set, (a, I) is the adjacent solution set to be found

on the solution branch, t = (o, s) is a unit-length tangent or a unit-length pseudo-

arch at (ao, r/o) on the solution branch, and AS is the pseudo-arclength which can

be controlled. The simultaneous equation system (C.2) and (C.3) for (o, r) can be

solved numerically. The newly found solution set (a, r/) plays a role as (ao, 7o) in

finding out the next solution set on the solution branch, and this procedure can be

continued.

102



Appendix D

Spectral method in space and

predictor-corrector method in

time: unsteady, forced, viscous

model equation

Spectral method in space and predictor-corrector method (Semi-implict Euler or Im-

proved Euler) in time are used to solve the following unsteady, forced, viscous equa-

tion.

r/t -- P(r ± rj) ± (a - } - #8(r 2 ) - 'H {re + 2ryy - r/} = Ap (D.1)

Rather than solving the above partial differential equation in the real domain ((,y),

we can solve it in the wavenumber (spatial frequency) domain (k,l). In other words,

using spatial Fourier Transform, we transform the partial differential equation (D.1)

into the following ordinary differential equation in the wavenumber domain.

f/t =-[(k 2 + 12) + (a - {)ik - lisgn(k)(k 2 + 212 + 1)|i^ + 3ik/ 2 + ikAp (D.2)
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where, i(k, 1, t) = FT {r1 ( , y, t)} and f(k, l) = FT {p( , y)}. Now, the predictor-

corrector method is used to solve the above ordinary differential equation (D.2) in

the wavenumber domain. For simplicity, we can denote the right hand side of (D.2)

as F().

= F(s) (D.3)

The predictor-corrector method is composed of two steps. The first step is the pre-

diction step.

n+1 = n + AtF(") (D.4)

where, At is the numerical time step, in+' denotes the predicted i(k, 1, (n + 1)At)

and " denotes the i(k, 1, nAt). The second step is the correction step.

n+1 = " + 2 {F( n+') + F(")} (D.5)

where, jn+1 denotes the i(k, 1, (n + 1)At). The solution found in the wavenumber

domain, then, will be transformed into the solution in the real domain using spatial

Inverse Fourier Transform.
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