
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-012 March 9, 2011

Fleets: Scalable Services in a Factored
Operating System
David Wentzlaff, Charles Gruenwald III, Nathan
Beckmann, Adam Belay, Harshad Kasture, Kevin
Modzelewski, Lamia Youseff, Jason E. Miller, and
Anant Agarwal

Fleets: Scalable Services in a Factored Operating System
David Wentzlaff Charles Gruenwald III Nathan Beckmann Adam Belay

Harshad Kasture Kevin Modzelewski Lamia Youseff Jason E. Miller
Anant Agarwal

CSAIL Massachusetts Institute of Technology

ABSTRACT
Current monolithic operating systems are designed for uniprocessor
systems, and their architecture reflects this. The rise of multicore and
cloud computing is drastically changing the tradeoffs in operating sys-
tem design. The culture of scarce computational resources is being re-
placed with one of abundant cores, where spatial layout of processes
supplants time multiplexing as the primary scheduling concern. Efforts
to parallelize monolithic kernels have been difficult and only marginally
successful, and new approaches are needed.

This paper presents fleets, a novel way of constructing scalable OS
services. With fleets, traditional OS services are factored out of the
kernel and moved into user space, where they are further parallelized
into a distributed set of concurrent, message-passing servers. We eval-
uate fleets within fos, a new factored operating system designed from
the ground up with scalability as the first-order design constraint. This
paper details the main design principles of fleets, and how the system
architecture of fos enables their construction.

We describe the design and implementation of three critical fleets
(network stack, page allocation, and file system) and compare with
Linux. These comparisons show that fos achieves superior performance
and has better scalability than Linux for large multicores; at 32 cores,
fos’s page allocator performs 4.5× better than Linux, and fos’s net-
work stack performs 2.5× better. Additionally, we demonstrate how
fleets can adapt to changing resource demand, and the importance of
spatial scheduling for good performance in multicores.

1. INTRODUCTION
Trends in multicore architectures point to an ever-increasing num-

ber of cores available on a single chip. Moore’s law predicts an
exponential increase in integrated circuit density. In the past, this
increase in circuit density has translated into higher single-stream
performance, but recently single-stream performance has plateaued
and industry has turned to adding cores to increase processor per-
formance. In only a few years, multicores have gone from esoteric
to commonplace: 12-core single-chip offerings are available from
major vendors [3] with research prototypes showing many more
cores on the horizon [26, 19], and 64-core chips are available from
embedded vendors [30] with 100-core chips available this year [2].
These emerging architectures present new challenges to OS design,
particularly in the management of a previously unprecedented num-
ber of computational cores.

Given exponential scaling, it will not be long before chips with
hundreds of cores are standard, with thousands of cores following
close behind. Recent research, though, has demonstrated problems
with scaling monolithic OS designs. In monolithic OSs, OS code
executes in the kernel on the same core which makes an OS ser-

vice request. Corey [10] showed that this led to significant perfor-
mance degradation for important applications compared to intelli-
gent, application-level management of system services. Prior work
by Wentzlaff [29] also showed significant cache pollution caused
by running OS code on the same core as the application. This be-
comes an even greater problem if multicore trends lead to smaller
per-core cache. Wentzlaff also showed severe scalability problems
with OS microbenchmarks, even only up to 16 cores.

A similar, independent trend can be seen in the growth of cloud
computing. Rather than consolidating a large number of cores on
a single chip, cloud computing consolidates cores within a data
center. Current Infrastructure as a Service (IaaS) cloud manage-
ment solutions require a cloud computing user to manage many vir-
tual machines (VMs). Unfortunately, this presents a fractured and
non-uniform view of resources to the programmer. For example,
the user needs to manage communication differently depending on
whether the communication is within a VM or between VMs. Also,
the user of an IaaS system has to worry not only about constructing
their application, but also about system concerns such as config-
uring and managing communicating operating systems. There is
much commonality between constructing OSs for clouds and mul-
ticores, such as the management of unprecedented number of com-
putational cores and resources, heterogeneity, and possible lack of
widespread shared memory.

The primary question facing OS designers over the next ten years
will be: What is the correct design of OS services that will scale up
to hundreds or thousands of cores? We argue that the structure of
monolithic OSs is fundamentally limited in how they can address
this problem.

fos [31] is a new factored operating system (OS) designed for
future multicores and cloud computers. In contrast to monolithic
OS kernels, the structure of fos brings scalability concerns to the
forefront by decomposing an OS into services, and then paralleliz-
ing within each service. To facilitate the conscious consideration of
scalability, fos system services are moved into userspace and con-
nected via messaging. In fos, a set of cooperating servers which
implement a single system service is called a fleet. This paper de-
scribes the implementation of several fleets in fos, the design prin-
ciples used in their construction, and the system architecture that
makes it possible.

Monolithic operating systems are designed assuming that com-
putation is the limiting resource. However, the advent of multi-
core and clouds is providing abundant computational resources and
changing the tradeoffs in OS design. New challenges have been
introduced through heterogeneity of communication costs and the
unprecedented scale of resources under management. In order to
address these challenges, the OS must take into account the spatial
layout of processes in the system and efficiently manage data and
resource sharing. Furthermore, these abundant resources present
opportunities to the OS to allocate computational resources to aux-
iliary purposes, which accelerate application execution, but do not
run the application itself. fos leverages these insights by factoring

1

OS code out of the kernel and running it on cores separate from
application code.

As programmer effort shifts from maximizing per-core perfor-
mance to producing parallel systems, the OS must shift to assist
the programmer. The goal of fos is to provide a system architecture
that enables and encourages the design of fleets. In this paper, we
make the following contributions:

• We present the design principles used in the construction of
fleets: fleets are scalable, and designed with scalability fore-
most in mind; fleets are self-aware, and adapt their behavior
to meet a changing environment; and fleets are elastic, and
grow or shrink to match demand.

• We present the design of three critical fleets in fos (network
stack, page allocator, and file system). Additionally, we present
the first scaling numbers for these services, showing that fos
achieves superior performance compared to Linux on large
multicores or when considering application parallelism.

• We present studies of self-aware, elastic fleets, using a proto-
type file system fleet. These studies demonstrate the impor-
tance of good spatial scheduling in multicores and the ability
of fleets to scale to meet demand.

This paper is organized as follows. Section 2 presents fos’s archi-
tecture. Section 3 presents the design principles of fleets. Section 4
presents the design of several important fleets. Section 5 presents
a case study of fos scaling across the cloud, and exercises the full
system with a real application. Section 6 presents our results. Sec-
tion 7 relates fos to previous work, and Section 8 concludes.

2. SYSTEM ARCHITECTURE
Current OSs were designed in an era when computation was a

limited resource. With the expected exponential increase in number
of cores, the landscape has fundamentally changed. The question
is no longer how to cope with limited resources, but rather how
to make the most of the abundant computation available. fos is
designed with this in mind, and takes scalability and adaptability
as the first-order design constraints. The goal of fos is to design
system services that scale from a few to thousands of cores.

fos does this by factoring OS services into userspace processes,
running on separate cores from the application. Traditional mono-
lithic OSs time multiplex the OS and application, whereas fos spa-
tially multiplexes OS services (running as user processes) and ap-
plication processes.1 In a regime of one to a few cores, time mul-
tiplexing is an obvious win because processor time is precious and
communication costs are low. With large multicores and the cloud,
however, processors are relatively abundant and communication
costs begin to dominate. Running the OS on every core intro-
duces unnecessary sharing of OS data and associated communi-
cation overheads; consolidating the OS to a few cores eliminates
this. For applications that do not scale well to all available cores,
factoring the OS is advantageous in order to accelerate the appli-
cation. In this scenario, spatial scheduling (layout) becomes more
important than time multiplexing within a single core.

However, even when the application could consume all cores to
good purpose, running the OS on separate cores from the applica-
tion provides a number of advantages. Cache pollution from the
OS is reduced, and OS data is kept hot in the cache of those cores
running the service. The OS and the application can run in parallel,
pipelining OS and application processing, and often eliminating ex-
pensive context switches. Running services as independent threads
1While spatial multiplexing is the primary scheduling medium in
fos, it also supports time multiplexing.

PS PS

PS PS PS

FS FS

app2

blk

FS

NS

File System Server, fleet member
Block Device Driver
Process Management server, fleet member
Name server, fleet member
Network Interface

Applications
Page allocator, fleet member

app3
app1

app4 NS

NS

PS

app5

Name Server

microkernel

nif

File system
server

microkernel

Application 5

microkernel

libfos

FS

NS

Figure 1: A high-level illustration of the fos servers layout in a mul-
ticore machine. This figure demonstrates that each OS service fleet
consists of several servers which are assigned to different cores.

of execution also enables extensive background optimizations and
re-balancing. Although background operations exist in monolithic
OSes,2 fos facilitates such behavior since each service has its own
thread of control.

In order to meet demand in a large multicore or cloud environ-
ment, reduce access latency to OS services and increase through-
put, it is necessary to further parallelize each service into a set of
distributed, cooperating servers. We term such a service a fleet.

Figure 1 shows the high-level architecture of fos. A small mi-
crokernel runs on every core. Operating system services and ap-
plications run on distinct cores. Applications can use shared mem-
ory, but OS services communicate only via message passing. A
library layer (libfos) translates traditional syscalls into messages to
fos services. A naming service is used to find a message’s destina-
tion server. The naming service is maintained by a fleet of naming
servers. Finally, fos can run on top of a hypervisor and seamlessly
span multiple machines, thereby providing a single system image
across a cloud computer. The following subsections describe the
architecture of fos, and the next section covers how fos supports
building fleets.

2.1 Microkernel
In order to factor OS services into fleets, fos uses a minimal mi-

crokernel design. The microkernel provides only: (i) a protected
messaging layer, (ii) a name cache to accelerate message delivery,
(iii) rudimentary time multiplexing of cores, and (iv) an application
programming interface (API) to allow the modification of address
spaces and thread creation. All other OS functionality and appli-
cations execute in user space. However, many OS system services
possess special capabilities that grant them privileges beyond those
of regular applications.

Capabilities are extensively used to restrict access into the pro-
tected microkernel. For instance, the memory modification API al-
lows a process on one core to modify the memory and address space
on another core if appropriate capabilities are held. This approach
allows fos to move significant memory management and schedul-
ing logic into userland processes. Capabilities are also used in the
messaging system to determine who is allowed to send messages to
whom.

2.2 Messaging
2E.g., kernel threads such as kswapd and bdflush in Linux.

2

fos provides interprocess communication through a mailbox-based
message-passing abstraction. The API allows processes to create
mailboxes to receive messages, and associate the mailbox with a
name and capability. This design provides several advantages for a
scalable OS on multicores and in the cloud. Messaging can be im-
plemented via a variety of underlying mechanisms: shared mem-
ory, hardware message passing, TCP/IP, etc.. This allows fos to run
on a variety of architectures and environments.

The traditional alternative to message-passing is shared mem-
ory. However, in many cases shared memory may be unavailable
or inefficient: fos is architected to support unconventional archi-
tectures [18, 19] where shared memory support is either absent or
inefficient, as well as supporting future multicores with thousands
of cores where global shared memory may prove unscalable. Re-
lying on messaging is even more important in the cloud, where
machines can potentially reside in different datacenters and inter-
machine shared memory is unavailable.

A more subtle advantage of message passing is the program-
ming model. Although perhaps less familiar to the programmer,
a message-passing programming model makes data sharing more
explicit. This allows the programmer to consider carefully the data
sharing patterns and find performance bottlenecks early on. This
leads to more efficient and scalable designs. Through message
passing, we achieve better encapsulation as well as scalability.

It bears noting that fos supports conventional multithreaded ap-
plications with shared memory, where hardware supports it. This
is in order to support legacy code as well as a variety of program-
ming models. However, OS services are implemented strictly using
messages.

Having the OS provide a single message-passing abstraction al-
lows transparent scale-out of the system, since the system can de-
cide where best to place processes without concern for straddling
shared memory domains as occurs in cloud systems. Also, the flat
communication medium allows the OS to perform targeted opti-
mizations across all active processes, such as placing heavily com-
municating processes near each other.

fos currently provides three different mechanisms for message
delivery: kernelspace, userspace, and intermachine. These mecha-
nisms are transparently multiplexed in the libfos library layer, based
on the locations of the processes and communication patterns:

Kernelspace The fos microkernel provides a simple implementa-
tion of the mailbox API over shared memory. This is the default
mechanism for delivering messages within a single machine. Mail-
boxes are created within the address space of the creating process.
Messages are sent by trapping into the microkernel, which checks
the capability and delivers the message to the mailbox by copy-
ing the message data across address spaces into the receiving pro-
cess. Messages are received without trapping into the microkernel
by polling the mailbox’s memory. The receiver is not required to
copy the message a second time because the microkernel is trusted
to not modify a message once it is delivered.

Userspace For processes that communicate often, fos also pro-
vides shared memory channel-based messaging inspired by URPC [9]
and Barrelfish [8]. The primary advantage of this mechanism is that
it avoids system call overhead by running entirely in user space.
Channels are created and destroyed dynamically, allowing compat-
ibility with fos’s mailbox messaging model. Outgoing channels
are bound to names and stored in a user-level name cache. When
a channel is established, the microkernel maps a shared page be-
tween the sender and receiver. This page is treated as a circular
queue of messages. Data must be copied twice, once by the sender
when the message is enqueued in the buffer and once by the re-

Core 1
Microkernel

Application

- Userland Messaging (URPC)
- User-Space Naming Cache (UNC)

POSIX

L
ib

fo
s

Multicore Server

- uk Messaging
- uk Naming Cache

libc

Core 2
Microkernel

fos server

- Userland Messaging (URPC)
- User-Space Naming Cache (UNC)

POSIX

L
ib

fo
s

libc

- uk Messaging
- uk Naming Cache

31

2a

2b

Figure 2: fos messaging over kernel (2a) and userspace (2b).

ceiver when the message is dequeued from the buffer. The second
copy is needed for security and to ensure the queue slot is available
for future messages as soon as possible. As shown later in this pa-
per, this mechanism achieves much better per-message latency, at
the cost of an initial overhead to establish a connection.

Intermachine Messages sent between machines go through a proxy
server. This server is responsible for routing the message to the
correct machine within the fos system, encapsulating messages in
TCP/IP, as well as maintaining the appropriate connections and
state with other proxy servers in the system.

Figure 2 shows the two intra-machine messaging transports. Mes-
sages from an application are sent through libfos, which chooses to
send them via kernel (2a) or userspace (2b) messaging. The libfos
on the receiving side then delivers the data to the fos server.

It is important to note that these mechanisms are completely
transparent to the programmer. As messaging is fundamental to fos
performance, making intelligent choices about which mechanism
to use is critical.

2.3 Name Service
Closely coupled with messaging, fos provides a name service

to lookup mailboxes throughout the system. Each name is a hi-
erarchical URI much like a web address or filename. The names-
pace is populated by processes registering their mailboxes with the
name service. The key advantage of the name service is the level
of indirection between the symbolic identifier of a mailbox and its
so-called “address” or actual location (machine, memory address,
etc.). By dealing with names instead of addresses, the system can
dynamically load balance as well as re-route messages to facilitate
and processes migration.

The need for dynamic load balancing and process migration is
a direct consequence of the massive scale of current cloud sys-
tems and future multicores. In addition to a greater amount of
resources under management, there is also greater variability of de-
mand. Static scheduling is inadequate, as even if demand is known
it is rarely constant. It is, therefore, necessary to adapt the layout of
processes in the system to respond to where the service is currently
needed.

The advantage of naming is closely tied to fleets. Fleet mem-
bers will each have an in-bound mailbox upon which they receive
requests, and these mailboxes will all be registered under a single
name. It is the responsibility of the name service to resolve a re-
quest to one member of a fleet.

Load balancing can be quite complicated and highly customized
to a specific service. Each service can dynamically update the name
system to control the load balancing policy for their fleet. The name
service does not determine load balancing policy, but merely pro-
vides mechanisms to implement a policy. To support stateful op-
erations, applications or libfos can cache the name lookups so that

3

all messages for a transaction go the same fleet member.3 Alter-
natively, the fleet can manage shared state so that all members can
handle any request.

In fos, another design point is to explicitly load balance within
the fleet. This approach may be suitable when the routing deci-
sion is based on state information not available to the name service.
In either approach it is important to realize that by decoupling the
lookup of mailboxes using a symbolic name, the OS has the free-
dom to implement a given service through a dynamic number of
servers.

The name service also enables migration of processes and their
mailboxes. This is desirable for a number of reasons, chiefly to
improve performance by moving communicating servers closer to
each other. Migration is also useful to rebalance load as resources
are freed. The name service provides the essential level of indirec-
tion that lets mailboxes move freely without interrupting commu-
nication.

3. FLEETS
The previous section covered the system architecture compo-

nents of fos. This section discusses how fos supports building
fleets, and the principles used in building them. The programming
model used to construct fleets is also discussed, highlighting the
tools and libraries provided by fos to ease their construction.

3.1 Overview
Services in fos are implemented by cooperating, spatially-dis-

tributed sets of processes. This idea is the cornerstone of fos. Whereas
prior projects have demonstrated the viability of microkernels, fos
aims to implement a complete distributed, parallel OS by imple-
menting service fleets. The core design principles of fleets are:

• Scalability. Fleets are designed with scalability as the pri-
mary design constraint. Fleets employ best practices for scal-
ability such as lockless design and data partitioning, as well
as the best available data structures and algorithms.

• Self-awareness. Fleets monitor and adapt their behavior to
the executing environment. Load between members is rebal-
anced, and members are migrated to improve communication
latency.

• Elasticity. Fleets are elastic, and can expand and shrink to
match changing demand. Performance is monitored such
that the optimal number of servers is used to implement each
OS service.

Each system service is implemented by a single fleet of servers.
Within a single system, there will be a file system fleet, a page allo-
cator fleet, a naming fleet, a process management fleet, etc.. Addi-
tionally, the fleet may span multiple machines where advantageous.
For example, in order to provide local caching for fast access, it is
good practice to have a member of the file system fleet on every
machine. The same general principle applies to many OS services,
and for some critical services (viz., naming) it is required to have
an instance on each machine.

Fleets must support a variety of management tasks. Fleets can
grow and shrink to meet demand, and must support rebalancing
when a new member joins or leaves the fleet. Currently many ser-
vices designate a single member, termed the coordinator, to per-
form many of these tasks.
3For example, the name lookup of /foo/bar results in the sym-
bolic name /foo/bar/3, which is the third member of the fleet.
This is the name that is cached, and subsequent requests forward to
this name, wherever it should be.

3.2 Programming Model
fos provides libraries and tools to ease the construction of fleets

and parallel applications. These are designed to mitigate the com-
plexity and unfamiliarity of the message-passing programming paradigm,
thus allowing efficient servers to be written with simple, straight-
line code. These tools are (i) a cooperative threading model inte-
grated with fos’s messaging system, (ii) a remote procedure call
(RPC) code generation tool, and (iii) a library of distributed objects
to manage shared state.

The cooperative threading model and RPC generation tool are
similar to tools commonly found in other OSs. The cooperative
threading model lets several active contexts multiplex within a sin-
gle process. The most significant feature of the threading model
is how it is integrated with fos’s messaging system. The threading
model provides a dispatcher, which implements a callback mecha-
nism based on message types. When a message of a particular type
arrives, a new thread is spawned to handle that message. Threads
can send messages via the dispatcher, which sleeps the thread until
a response arrives. The use of a cooperative threading model al-
lows the fleet server writer to write straight-line code for a single
transaction and not have to worry about preemptive modification of
data structures thereby reducing the need for locks.

The RPC code generator provides the illusion of local function
calls for services implemented in other processes. It parses reg-
ular C header files and generates server and client-side libraries
that marshall parameters between servers. The tool parses stan-
dard C, with some custom annotations via gccxml [4] indicating
the semantics of each parameter. Additionally, custom serializa-
tion and deserialization routines can be supplied to handle arbitrary
data structures. The RPC tool is designed on top of the dispatcher,
so that servers implicitly sleep on a RPC call to another process
until it returns.

The libraries generated by the RPC tool provide more general
support for constructing fleets. For example, they can be used to
pack and unpack messages without RPC (send, sleep, return) se-
mantics. This is useful in order to pipeline requests with additional
processing, broadcast a message to fleet members, and support un-
usual communication patterns that arise in constructing fundamen-
tal OS services.

One challenge to implementing OS services as fleets is the man-
agement of shared state. This is the major issue that breaks the
illusion of straight-line code from the RPC tool. fos addresses this
by providing a library of distributed data structures that provide the
illusion of local data access for distributed, shared state.

The goal of this library is to provide an easy way to distribute
state while maintaining performance and consistency guarantees.
Data structures are provided matching common usage patterns seen
in the implementation of fos services. The name service provides
a distributed key-value store, implemented via a two-phase commit
protocol with full replication. The library provides another key-
value store implementation that distributes the state among par-
ticipants. These implementations have different cost models, and
usage dictates when each is appropriate. Similarly, the page alloca-
tor uses a distributed buddy allocator; this data structure could be
leveraged to provide process IDs, file pointers, etc..

These data structures are kept consistent using background up-
dates. This is achieved using the cooperative dispatcher discussed
above. The distributed data structure registers a new mailbox with
the dispatcher and its own callbacks and message types.

We are currently exploring the set of data structures that should
be included in this library, and common paradigms that should be
captured to enable custom data structures. Later in the paper, we
discuss how each parallel service manages its shared data in detail.

4

3.3 Design Principles
This section discusses the three core design principles in greater

depth including how the fleet architecture facilitates them.

3.3.1 Scalability
Fleets are designed to scale from a few to very many servers.

They are not tuned to a particular size, but designed using best
practices and algorithms to scale over a large range of sizes. This
is important for multicore and cloud computing, as current trends
in increasing core counts are likely to continue for the foreseeable
future. Furthermore, different processors, even within a single pro-
cessor family, will have variety of core counts. Therefore, fleets
are designed to scale to different number of cores to address these
needs.

In order to facilitate the scalability of fos fleets, fleets are de-
signed in a message-passing-only manner such that layout of the
data is explicit and shared memory and lock contention do not be-
come bottlenecks. Our results show that lock contention in Linux
has major scalability impact on the page allocation service, whereas
fos is able to achieve excellent scalability through lockless design.

3.3.2 Self-awareness
A natural advantage of separating OS services from applications

is the ease of performing background optimizations and re-balanc-
ing of the service. Although such optimizations are possible in
monolithic designs, giving each service its own thread provides a
natural framework in which to perform such tasks. Interference
with application performance can be minimized by performing tasks
only when necessary or when the service is idle.

Fleets monitor their environment and adapt their behavior to im-
prove performance. For example, fleet members can migrate to
minimize communication costs with cores they are serving. Sim-
ilarly, when a new transaction begins, it is assigned to the clos-
est available fleet member. Active transactions can be migrated to
other members if a server becomes overloaded, and these perfor-
mance statistics also motivate growing or shrinking the fleet.

Fleets often must route requests themselves, independent of the
name service. One important reason is resource affinity – if a re-
quest uses a resource under management of a particular fleet mem-
ber, then the request should be forwarded to that member. A sim-
ple example of this is local state kept by each fleet member for a
transaction, for example a TCP/IP connection. In this case, routing
through the name service is insufficient because state has already
been created during connection establishment, and the connection
is associated with a particular fleet member when the first message
on that connection arrives (see Section 4.1). Another example is
if a request uses a hardware resource on a different machine. In
this case, the request must be forwarded to the fleet member on the
machine that has access to the hardware.

3.3.3 Elasticity
In addition to unprecedented amounts of resources, clouds and

multicores introduce unprecedented variability in demand for these
resources. Dynamic load balancing and migration of processes go
a long way towards solving this problem, but still require over-
provisioning of resources to meet demand. This would quickly
become infeasible, as every service in the system claims the max-
imum amount of resources it will ever need. Instead, fleets are
elastic, meaning they can grow to meet increases in demand, and
then shrink to free resources back to the OS.

Monolithic OSs achieve elasticity by “accident”, as OS code runs
on the same core as the application code. This design has obvious
advantages, since the computational resources devoted to the ser-

App	 1	 App	 0	

Network	 Stack	 Fleet	

NS	 0*	 NS	 1	 NS	 2	 NS	 n	 …	

Network	 Interface	 Fleet	

NetIf	 0	 NetIf	 1	 NetIf	 n	 …	

port	 13	 port	 22	 port	 5518	

*	 Netstack	 0	 acts	 as	 the	 coordinator.	

Figure 3: Logical diagram of network communication components

vice scale proportionally with demand. There are disadvantages,
however: monolithic designs relinquish control of how many cores
to provision the service. This can lead to performance degrada-
tion if too many threads are accessing a shared resource simul-
taneously. fos can avoid this by fixing the size of a fleet at the
point that achieves maximal performance. One example of “elas-
ticity by accident” running awry occurs when a single lock is highly
contended. In this case, when more cores contend for a lock, the
performance of all cores degrades. Limiting the numbers of cores
performing OS functions (contending for the resource) can actually
improve performance in such cases. Our results show examples of
this phenomenon where by limiting the number of cores dedicated
to a fleet, fos can achieve higher performance with fewer resources
than Linux simply because Linux has no means to limit the number
of cores running the OS services. Additionally, for applications that
rely heavily on the OS it may be best to provision more cores to the
OS service than the application. The servers can then collaborate
to provide the service more efficiently. These design points are not
provided in monolithic operating systems.

A fleet is grown by starting a new server instance on a new core.
This instance joins the fleet by contacting other members (either the
coordinator or individual members via a distributed discovery pro-
tocol) and synchronizing its state. Some of the distributed, shared
state is migrated to the new member, along with the associated
transactions. Transactions are migrated in any number of ways,
for example by sending a redirect message to the client from the
“old” server. Shrinking the fleet can be accomplished in a similar
manner.

4. FOS FLEET IMPLEMENTATIONS
This section presents parallel implementations of several system

services in fos. We present four fos services: a TCP/IP network
stack, a page allocator, a process management service, and a proto-
type file system.

4.1 Network Stack
fos has a fully-featured networking service responsible for pack-

ing and unpacking data for the various layers of the network stack
as well as updating state information and tables associated with
the various protocols (e.g., DHCP, ARP, and DNS). The stack was
implemented by extending lwIP [14] with fos primitives for paral-
lelization to create the network stack fleet. The logical view of this
service is depicted in Figure 3. In this diagram the dashed lines rep-
resent the paths that a given TCP/IP flow may take while travers-
ing the network stack. In this diagram we can see that the flows
are multiplexed between the different network stack fleet members.
The distribution of these flows amongst the fleet members is man-
aged by the fleet coordinator.

The design employs a fleet of network stack servers with a single

5

echo_client
proxy

netstack
netif

netif
netstack

proxy
echo_server

Processor cycles (x1000)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ethernet Network

Figure 4: Echo client and echo server communicating via the net-
working service

member designated as the coordinator. The fleet coordinator is re-
sponsible for several management tasks as well as handling several
of the protocols.

When the kernel receives data from the network interface it de-
livers it to the network interface server. The network interface
server then peeks into the packet and delivers it to one of the fleet
members depending on the protocol the packet corresponds to. The
handling of many stateless protocols (UDP, ICMP) is fairly straight-
forward, as they can be passed to any member. Likewise, low-
frequency stateful requests (DNS, DHCP, ARP) can be handled by
a single fleet member, broadcasting information required to all fleet
members. Therefore, the remainder of this section discusses TCP,
which is the dominant workload of the network stack and exposes
the most challenging problems.

Since TCP flows are stateful they must be handled specially,
demonstrating how fleet members can coordinate to handle a given
OS service. When an application wishes to listen on a port it sends a
message to the coordinator which adds state information associated
with that application and port. Once a connection has been estab-
lished, the coordinator passes responsibility for this flow to a fleet
member. The coordinator also sets up a forwarding notification
such that other packets destined for this flow already in the coordi-
nator’s queue get sent to the fleet member who is assigned this flow.
While this approach potentially re-orders packets, as the forwarded
packets can be interleaved with new input packets, TCP properly
handles any re-ordering. Once the fleet member has accepted the
stream, it notifies the network interface to forward flows based on a
hash of the (source IP, source port, destination IP, destination port).
Once this flow forwarding information has been updated in the net-
work interface server, packets of this type are delivered directly to
the fleet member and then the application. Note that these mecha-
nisms occur behind libfos and are abstracted from the application
behind convenient interfaces.

Figure 4 shows a real network trace from fos of an echo client
and echo server communicating via the network stack. Each arrow
represents a message between servers. The request from the client
is sent out over Ethernet via the proxy server, network stack and
network interface; the networking service on the server receives
this message, passes it on to the echo server which sends a reply
back to the echo client.

4.2 Page Allocator
The page allocator service is responsible for managing all the

available physical memory in the system. Requests for physical
pages, whether from a user application or from another system ser-
vice, are handled by the page allocator, as shown in Figure 5.

The page allocator service is implemented as a fleet of identi-
cal servers which together implement a distributed buddy alloca-
tor. Each server in the fleet is capable of servicing requests for
the allocation or freeing of pages. In addition, the page allocator
service also exposes an allocate-and-map functionality where the

App	 2	
Process	
Mgmt	
Server	

App	 1	

Page	
Alloca4on	
Server	

Local page pool

Page	
Alloca4on	
Server	

allocate allocate

allocate

free

free
rebalance

Page allocator fleet

Free pages

Allocated pages

Figure 5: The page allocator fleet handling requests for physical
memory from other system services and user applications

allocated pages are also mapped in the requester’s address space
by the server. Fleet members coordinate to ensure that each page is
only allocated to one process at a time, and that freed pages become
available again for allocation.

Like a typical buddy allocator, the page allocation service only
allocates and frees blocks of pages whose size is a power of two.
At system start-up, each fleet member is assigned an initial set of
pages to manage. When a server receives an allocation request, it
tries to service it from its local pool of pages. If this is not possi-
ble, the request is forwarded to another server that it believes has
enough pages. Requests to free pages can be sent to any server,
regardless of which server allocated them (this might be desirable
if the server that allocated the pages is congested, has crashed, or
has been migrated to a distant location).

When the servers are not busy servicing requests, they perform
background optimizations to improve performance. For instance,
the distribution of free pages within fleet members is kept uniform
via the use of a low-watermark. When a server notices that the
number of free pages it has has fallen below the low-watermark, it
requests pages from other servers.

Another background optimization is aimed at mitigating the prob-
lem of distributed fragmentation. This occurs when there are enough
free pages in the system, but they are distributed among various
servers and are thus unable to be coalesced. As a result, requests
for large contiguous page blocks can not be satisfied. The page allo-
cator service combats this problem by dividing up the page-space
into large chunks, and assigning each chunk to a “home server”.
While pages may be freed back to servers other than their home
server, they are periodically rebalanced in the background. This
rebalancing is triggered whenever a server hits a high-watermark
of free pages, causing it to send pages back to their home servers,
where they can be coalesced with other free pages. Since this and
other optimizations happen in the background, they have minimal
impact on the latency experienced by the clients.

4.3 Process Management
The process management service handles a variety of tasks in-

cluding process creation, migration, and termination, as well as
maintaining statistics about process execution. Like other system
services in fos, the process management service is implemented as
a fleet of servers.

The process management service performs most of the tasks in-
volved in process creation, including setting up page tables and
the process context, in user space. Traditional operating systems
perform these tasks in kernel space. Pulling this functionality out
of the kernel allows fos to significantly shrink the size of the kernel
code base, and allows the implementation of a scalable process cre-

6

ation mechanism using the same techniques used for writing other
scalable system services in fos. The role of the kernel is reduced
to simply validating the changes made by the process management
service; this validation is done via capabilities.

A process creation request from a user process is forwarded to
one of the process management servers. The server then queries the
file system to retrieve the executable to be spawned. The physical
memory needed for the page tables as well as the code and data in
the spawned process’s address space is allocated via the page allo-
cation server. Writing to this memory requires special capabilities
which need to be presented to the microkernel. Finally, the service
sets up the new process’ context and adds the process to the sched-
uler’s ready queue. This operation is also guarded by a microkernel
capability.

Because process creations are handled by a separate set of servers,
fos implements asynchronous process creation semantics, where a
process can fire off multiple process creation requests and continue
doing useful work while these processes are being set up. It can
then check for a notification from the process management service
when it needs to communicate with the newly spawned processes.

The service also collects and maintains statistics during process
execution, such as resource utilization and communication patterns.
These statistics can then be made available to other system services
such as the scheduler.

Lastly, the service also handles process termination, including
faults encountered by the process. Upon process termination, re-
sources used by the terminating process (e.g., memory) are freed
and the state maintained within the process management server is
updated to reflect this.

4.4 File System
fos implements a prototype file system fleet based on the ext2

file system. The file system fleet is supported by the block de-
vice server, which manages disk I/O. Application interaction is
handled by libfos, which intercepts POSIX file system calls and
generates messages to the file system fleet. In response to these re-
quests, the file system interacts with the block device server to re-
trieve the data, and responds via a message to the application when
the response is ready. Each file system server communicates with
the block device through libfos, which provides caching of blocks.
This limits traffic to the block device service, preventing it from
becoming a bottleneck for repeated requests.

fos contains a parallel file system fleet (currently read-only) that
consists of several servers interacting with the same block device.
This implementation requires no data sharing between fleet mem-
bers, but for correctness all requests to an open file must go to the
same file system server. This is achieved by libfos caching the
filesystem name lookup while any files are open. If no files are
open when a request is made, then the cache is refreshed and a new
(possibly different) fleet member is contacted to serve the request.

The primary purpose of the file system is to demonstrate the self-
aware and elastic abilities of fos fleets. The file system is self-
aware, and monitors its utilization to determine when to grow and
shrink. Utilization on a per-fleet-member basis is determined by
checking if new requests are available on its input mailbox when
the service is idle. The time spent waiting for messages and the
time spent processing requests yields utilization. The global utiliza-
tion of the fleet is then determined by passing utilization messages
around the fleet in a ring fashion. When the fleet coordinator has
determined that the utilization is above or below desired thresholds
the size of the fleet is adjusted accordingly.

5. CASE STUDY: FOS IN THE CLOUD

A unique capability of fos is its ability to use more resources than
can be contained within a single machine. In order to achieve this,
fos launches additional fos VM instances on different machines.
These new VMs natively join the currently running fos instances
and the building blocks of fos, naming and messaging, are trans-
parently bridged via the proxy server. Previous work [31] describes
how a proxy server is used to transparently build a single system
image across a cloud.

To demonstrate fos’s cloud functionality, its ability to scale across
a cloud computer and as a full system test, we have constructed
an application which mimics the key parts of a website such as
YouTube. This test exercises the network stack, the file system,
and the messaging system (including proxy service) in a large-scale
application. In this test, a user accesses a webpage served by the
fos webserver; in response to this request, the webserver launches
copies of ffmpeg 1.5.0 to transcode a video into two different file
formats. Finally the user downloads the files from the webserver.
For this test, we used fos to transcoded the first YouTube video,
"Me at the zoo", from Flash Video (H.263) to two output formats
- an AVI encoded in Windows Media 8, and an AVI encoded in
MPEG2. Each video is between 600KB - 700KB.

Eucalyptus Cloud Manager

Multicore Server

fos
VM

ffmpeg

netstack

Net
Driver

Multicore Server

httpd

Proxy

netstack

Cloud
Manager

File
system

Block
Driver

Net
Driver

Proxy

Disk

Ethernet Switch

Figure 6: Servers used in the video transcode application. Arrows
show messages sent while ffmpeg accesses remote file system.

Figure 6 shows the key components of this test. The test begins
by spawning the fos VM on the right. The Cloud Manager Server
in the right fos VM contacts the Eucalyptus Cloud infrastructure to
start a second fos VM on a different machine (the fos VM on the
left in Figure 6). This VM joins the currently running fos instance
and messaging and naming are transparently bridged via the Proxy
Servers. Next a user accesses a CGI page hosted on the webserver
to begin the transcoding process. The httpd server messages the left
fos VM which launches ffmpeg to transcode the input FLV file into
two AVI outputs. The fos VM containing ffmpeg does not have
a file system attached therefore all of the file system access are
proxied over the network between machines to the right fos VM.
After the transcoding is complete, ffmpeg writes the result files to
the file system and client downloads the transcoded video from the
httpd server. This whole transaction takes 4:45 minutes with the
bulk of the time spent in the transcode followed by the time taken
to serve the final transcoded files. It should be noted that due to the
transparency at the messaging layer, no code in either ffmpeg or
any associated libraries needed to be changed to do inter machine
file system access, thus demonstrating the power and utility of fos’s
single system image across the cloud.

7

User Sh
User
N-Sh

Kernel Sh
Kernel
N-Sh

Linux Sh
Linux
N-Sh

0 10 20 30 40 50

5 ´ 104

1 ´ 105

5 ´ 105

1 ´ 106

Num. messages

C
yc

le
s

el
ap

se
d

Figure 7: Performance of messaging for different transports. Re-
sults are included for cores with a shared cache (“Sh”) and without
(“N–Sh”). For reference, UNIX domain sockets in Linux are also
included (“Linux Sh” and “Linux N–Sh”).

6. EVALUATION
This section presents results for the fleets described above. Ad-

ditionally, we provide results and analysis for several of the un-
derlying mechanisms that are critical to system performance. The
methodology is first described. Performance of messaging is shown,
including tradeoffs between different schemes and their performance
bottlenecks. Then scaling numbers for each OS service are pre-
sented using microbenchmarks, with comparison against Linux in-
cluded. We conclude with two studies using the file system: a study
on the impact of spatial layout, and a study of elasticity.

6.1 Methodology
fos runs as a paravirtualized OS under Xen 4.0 [7]. This is

done in order to facilitate fos’s goal of running across the cloud,
as the cloud management platforms Amazon EC2 and Eucalyptus
both exclusively support Xen domUs. The use of Xen also reduces
the number of hardware-specific drivers that needed to be written,
which is a challenge for any experimental OS. The ideas used in fos
as well as the fleet design presented here are independent of running
on a hypervisor, and we plan to construct a bare-metal implemen-
tation of fos in the future. All numbers presented in this paper, for
both fos and Linux, are presented running in Xen domU’s. A stock
Ubuntu 9.04 DomU is used to gather Linux numbers. fos instances
run with all cores under a single VM. Our current Xen configura-
tion limits VM instances to 32 VCPUs, which limits the scale of
some studies. Dom0 is running a custom Linux kernel based on
Debian Lenny.

For scalability results, numbers are presented as service through-
put. This throughput is calculated based on the median of service
latency over n requests, where n is at least 1000 requests.

This data is gathered on currently available multicores. As fos
separates OS and application code, this limits the scale of studies
that are able to be performed. Numbers are gathered on two ma-
chine configurations: (i) a 48-core (quad-12 core) machine with 1.8
GHz AMD Opteron 6168 processors and 64 GB of RAM, and (ii) a
16-core (quad-quad core) machine with 2.3 GHz Intel Xeon E7340
processors and 16 GB of RAM. Unless otherwise mentioned, as-
sume configuration (i) is used for all studies.

6.2 Messaging
In this study, the performance of kernelspace and userspace mes-

saging on both the Intel and the AMD system is evaluated. In each

AMD Opteron
6168

Intel Xeon
E7340

fos Userspace shared cache 1311 (279) 858 (216)
no shared cache 1481 (452) 1278 (297)

fos Kernelspace shared cache 9745 (1288) 6594 (432)
no shared cache 10303 (1410) 8999 (723)

DomU Linux syscall 874 (120) 573 (82)

Table 1: A latency comparison of null fos system calls (roundtrip
messaging) and null Linux system calls. Measurements are in
nanoseconds (σ).

case, latency is measured as the round-trip messaging time between
a client and a fos system service — This can be considered a null
system call in fos because messaging is frequently used as an alter-
native to operations that monolithic OSs would normally perform
by trapping into the kernel. Table 1 compares the steady-state la-
tency of a null Linux system call (in a Xen DomU) with a null fos
system call.

The cumulative latency of a series of messages on the Intel ma-
chine is also explored, as shown in Figure 7. Measurements of stan-
dard Unix domain sockets (as implemented in Linux) are provided
for reference. Setup costs are included with the first message mea-
surement, showing overhead for channel creation and other types
of initialization.

For all tests, two spatial placements are explored. This first is to
schedule communicating processes on the same die with a shared
cache. The second is to schedule communicating processes on sep-
arate physical packages and thus without shared cache resources.
Heterogeneity in messaging latency is observed, especially on the
Intel machine.

6.3 Fleet Microbenchmarks
This section presents microbenchmark results for each parallel

OS service. Results are first shown as throughput plotted versus
the number of clients (i.e., application cores) making requests to
the OS service. This shows the scaling of each service and how
scaling is affected by allocating additional resources to the service.

6.3.1 Network Stack
This test compares the latency experienced by small sized pack-

ets through the network stack in both Linux and fos for various
numbers of streams. The experiment consists of several echo servers
running in domU that receive a packet and provide an immediate
response, and one client for each flow in dom0 that continuously
performs requests. Both the clients and the fos VM were run on
the same machine to avoid network latency. In fos, the number of
servers in the network stack fleet is varied.

Figure 8a presents our results. The figure plots the number of
fleet clients on the horizontal axis and system throughput on the
vertical axis. Results are presented for fos using 1-8 network stack
servers as well as for Linux. As depicted in the graph, when the
number of clients increases the throughput does not scale propor-
tionally for Linux. fos is able to achieve near ideal scaling with
a single network stack. This demonstrates that for this particular
communication pattern the number of members of the fleet can be
quite low. We believe this performance is achieved through re-
duced cache pollution and because the network stack can pipeline
processing with application responses.

6.3.2 Page Allocator
Figure 8b shows the throughput and scalability of the page allo-

cator service for different numbers of clients and servers. Results

8

2 4 6 8 10
0

5

10

15

20

Number of clients

T
hr

ou
gh

pu
tH

re
qs

�m
ill

io
n

cy
cl

es
L

(a) Network stack

5 10 15 20
0

200

400

600

800

Number of clients

T
hr

ou
gh

pu
tH

pa
ge

s
�m

ill
io

n
cy

cl
es

L

(b) Page allocator.

5 10 15 20
0

50

100

150

Number of clients

T
hr

ou
gh

pu
tH

tr
an

s.
�m

ill
io

n
cy

cl
es

L

(c) File system.

Linux

fos H1L

fos H2L

fos H4L

fos H8L

Figure 8: Performance and scalability of parallel services vs. number of clients making requests to the service. Results are shown for Linux
and fos with differently-sized service fleets. fos (n) designates fos running with n servers in the service fleet.

fos (Sync) fos (Async) Linux (F+E) Linux (F)
Latency (ms) 108.55 0.11 1.17 0.21

Table 2: Process creation latencies in fos and Linux

are collected for Linux by running multiple, independent copies of
a memory microbenchmark that allocates pages as quickly as pos-
sible, touching the first byte of each to guarantee that a page is ac-
tually allocated and mapped. Results are collected from fos by run-
ning multiple client processes and a page allocator fleet comprised
of multiple servers. Again, the client processes allocate pages as
quickly as possible and no lazy allocation occurs.

As can be seen from the figure, the page allocator service with
one server in the fleet quickly reaches a bottleneck in the speed
at which that server can map pages into the clients’ page tables.
Increasing the number of servers increases the maximum through-
put achievable, allowing the system to satisfy a higher number of
clients.

Linux exhibits similar behavior to fos for small numbers of cores,
however its throughput peaks (at 4 cores) and then decreases steadily
as more clients are added. fos on the other hand shows a contin-
ual increase in throughput as the number of clients is increased for
higher page allocator core counts. As prior work by Wentzlaff et
al [29] indicates, this is a result of increased lock contention. As
the number of clients increases, each client tends to spend higher
and higher amounts of time contending over locks that protect the
central page pool as pages are transferred between it and the core
local page pools (with a large chunk of the time being spent in the
functions rmqueue_bulk and free_pages_bulk). As [29] indicates,
lock contention soon dominates total execution time, with more
than 70% of the time spent contending over locks for 16 clients.

6.3.3 Process Management
The semantics of process creation in fos doesn’t have a direct

Linux analogue, and therefore it is difficult to directly compare
process creation latencies. The closest Linux equivalent to a syn-
chronous spawn on fos is a fork followed by an exec, while the
asynchronous spawn semantics is similar to a Linux fork (since
fork employs copy-on-write optimization in creating a clone of the
process). Table 2 presents average latencies for these four oper-
ations, averaged over 100 operations. Linux outperforms fos on
synchronous spawns, mainly because this aspect of fos hasn’t been
optimized yet. For example, all the pages in the process’ address
space are loaded into memory at process creation time in fos, while
in Linux pages are only loaded on first access, resulting in sig-

nificant gains in process creation latency. The asynchronous pro-
cess creation semantics in fos mean that process creation latency
can be hidden by doing useful work concurrently in the parent pro-
cess, as reflected in the significantly lower latency number for asyn-
chronous process creation presented in Table 2.

6.3.4 File System
The file system study evaluates the throughput achieved by file

systems in Linux and fos. For this study, each client performs 5000
transactions, where each transaction consists of opening a unique
file, reading its contents and closing the file. Our parallel file sys-
tem fleet is a prototype and is currently read-only (we do implement
a sequential read-write file system as well). Consequently, in Linux
the file system is mounted read-only. Figure 8c presents the overall
throughput achieved in each configuration.

The decrease in file system throughput for Linux as the num-
ber of clients increases can be attributed to contention over shared
data [10]. The fos file system achieves higher throughput than
Linux when the number of clients is large. For fos, the achieved
throughput flattens for large number of clients when the number of
servers is small; the small degradation with a single server as the
number of clients is increased can be attributed to contention over
the server mailbox. However, higher throughput can be achieved
by using more servers in the fleet as shown in Figure 8c.

6.4 Spatial Scheduling
This experiment demonstrates the impact of proper spatial schedul-

ing on performance in multicores. It uses the read-only filesys-
tem fleet with ‘good’ and ‘bad’ layouts. Experiments were run
on the 16-core Intel Xeon E7340. This machine has very low
intra-socket communication cost using userspace messaging, which
exposes significant communication heterogeneity (46%) between
intra-socket and inter-socket communication.

The filesystem fleet consists of four servers, and the number of
clients increases from one to ten (two cores are consumed by the
block device and xenbus servers). In the good layout, one file sys-
tem server resides on each socket. The filesystem component of
libfos is self-aware, and selects the local filesystem server for all
requests. In the bad layout, all servers reside on a single socket
and clients are distributed among remaining sockets (forcing inter-
socket communication for each request).

Results are shown in Figure 9. The good layout is uniformly
better than the bad layout, and averages around 10-20% better per-
formance. There are some anomalous peaks where performance
goes to 40% or 97% better for the good layout, and these data are
consistent between runs. As can be seen on the figure, these data

9

2 4 6 8 10
0

20

40

60

80

100

120

20

40

60

80

Number of clients

T
hr

ou
gh

pu
tH

tr
an

s.
�m

ill
io

n
cy

cl
es

L

Pe
rf

or
m

an
ce

im
pr

ov
em

en
tH

%
L

Good

Bad

% Gain

Figure 9: Performance of good vs. bad spatial scheduling. The
file system fleet with 4 servers scales from 1 to 10 clients. Figure
shows system throughput for good and bad layouts, as well as the
performance improvement (dashed) of good vs. bad. The ‘good’
layout achieves 10-20% better performance on average.

are due to divergent fluctuation in performance at ten clients, which
is similar to fluctuations in Figure 8 and we don’t believe to be sig-
nificant. There is also a slight trend towards increasing separation
as the number of clients increase.

For large multicores with hundreds of cores, we can expect com-
munication heterogeneity to increase further. Global structures that
achieve symmetric performance, e.g., buses, will not scale to large
core counts, and new on-chip interconnects will expose heteroge-
neous communication costs. This trend can already be seen in re-
search prototypes [26, 19] and available multicores [30]. The ma-
chine used in this experiment had 46% heterogeneity in commu-
nication cost, which led to 10-20% performance difference. Fu-
ture multicores will feature much greater heterogeneity, and com-
mensurately higher end-to-end performance disparity from spatial
scheduling.

6.5 Elasticity
This study focuses on the elastic features of fleets. In this exper-

iment, four clients make queries to the file system service. Each
client repeats a single transaction (open a file, read one kilobyte,
and close the file) 10,000 times. In order to demonstrate the elastic
capabilities of our file system fleet, we constructed the clients to
vary their request rates through five different phases. Each phase
consists of 2,000 transactions. First, each client request rate is
throttled initially to one transaction per two million cycles. The
throttling gradually decreases between the 1st and 2,000th transac-
tions. In the second phase, the request rate is kept constant through
the phase duration. At the 4,000th transaction, the clients’ request
rates suddenly increase before gradually decreases again within
phase three. The clients’ request rates in phase four – between the
6,000th and 8,000th transactions – demonstrate a constant low rate
which jumps in phase five to a higher constant request rate.

The file system service is implemented as an elastic fleet. The
service starts initially with a single server, which acts as the coor-
dinator. This server monitors the utilization of the service, and de-
tects when the service has become saturated. At this point, the fleet
grows by adding a new member to meet demand. Similarly, the
coordinator detects if utilization has dropped sufficiently to shrink
the fleet, freeing up system resources.

Load balancing is performed through the name server, as dis-
cussed previously. Each file system server is registered under a

0 2000 4000 6000 8000 10 000
0

10

20

30

40

50

1

2

3

4

Number of transactions

Sy
st

em
th

ro
ug

hp
ut

Htr
an

s
�m

ill
io

n
cy

cl
es

L

Fl
ee

ts
iz

e

Figure 10: A demonstration of an elastic file system fleet. The
number of servers in the fleet is adjusted on the fly to match de-
mand. The solid curve represents the system throughput while the
dotted curve represents the fleet-size.

single alias. At the beginning of each transaction, a name look-up
is performed through the name server. This name is cached for the
remainder of the transaction. The names are served round-robin,
performing dynamic load balancing across the different servers in
the fleet. This load balancing is performed transparently through
libfos, by counting the number of open files and only refreshing the
cache when no files are open.4

Figure 10 shows the results for the elastic fleet of the file sys-
tem service. Aggregate throughput from the four clients is plotted
against the number of transactions in the test. The dotted line rep-
resents the size of the file system fleet against the number of trans-
actions in the test. It portrays how the file system fleet responds
to the varying clients’ request rates by automatically growing and
shrinking the number of servers deployed for this service. This
configuration briefly saturates a single file system server, before
expanding the fleet to two servers. Subsequently, it immediately
achieves the throughput of the two server before further expanding
the fleet. At the 4,000th transaction, the fleet responds to the sud-
den increase in the clients’ request rates by growing the fleet size
to four servers. When the clients request rates again decreases, the
fleet shrinks to use fewer resources . Finally, when the request rate
again increases in the fifth phase, the fleet deploys more servers to
meet the demand.

Figure 10 shows that the elastic fleet throughput follows closely
the clients’ varying request rates through the different phases of
the test, and that there is negligible overhead for performing dy-
namic load balancing through the name service. The elastic fleet
consumes as few cores as needed to meet to the demand for this ex-
periment, only expanding between the “grow” and “shrink” actions
when the demand changes.

6.6 Summary
fos can exceed Linux performance and scalability, even when

accounting for dedicated OS cores. Figure 11 shows the perfor-
mance of the page allocator microbenchmark when accounting for
the total number of cores consumed, including those dedicated to
OS services in fos. Results were similar for omitted benchmarks,
as can be inferred by inspection of Figure 8. These graphs demon-

4This ensures that there is no local state stored on the file system
server, and removes the need to distribute the state for open files.

10

5 10 15 20 25 30
0

200

400

600

800

1
2

4

6

8

10

12

14

Number of cores

T
hr

ou
gh

pu
tH

pa
ge

s
�m

ill
io

n
cy

cl
es

L

N
um

.s
er

ve
rs

in
be

st
co

nf
ig

ur
at

io
n

Linux

fos

Figure 11: Comparison of fos and Linux for differently-sized mul-
ticores. System throughput is plotted against the number of cores
consumed in the test (including clients and servers for fos). For
fos, the number of servers at each point is chosen that yields best
performance. The gray plot indicates the number of servers chosen
in each configuration.

strate that fleets achieve much better performance and scalability
than Linux services for large numbers of cores. Linux performs
better for small numbers of cores, where time multiplexing the
OS and application is a clear win. But in all of our microbench-
marks, Linux displayed inferior scalability when going beyond a
few cores, and in two cases serious performance degradation. Here
fos’s design proved superior. Perhaps surprisingly, the transition
where fos beats Linux occurs at a fairly small number of cores –
smaller than currently available multicores.

Data for fos in Figure 11 was generated by selecting the opti-
mal tradeoff between servers and clients. The number of servers
used for each point is indicated by the square, gray plot. The data
indicates a roughly 1:1 ratio of OS and application cores. If this
seems unbelievably high, bear in mind that these microbenchmarks
stress the OS service more than a regular application. In reality,
one would expect a single microbenchmark client to correspond to
several application cores.

fos is able to achieve scalability and performance through fleets.
By separating the OS from the application, performance interfer-
ence between the two is eliminated. More importantly, fleet design
ensures the service is designed as an independent, parallel, self-
aware entity from square one. This leads to scalable, adaptable
services — crucial qualities for multicore success.

7. RELATED WORK
There are several classes of systems which have similarities to

fos: traditional microkernels, distributed OSs, and cloud computing
infrastructure.

Traditional microkernels include Mach [5] and L4 [21]. fos is de-
signed as a microkernel and extends the microkernel design ideas.
However, it is differentiated from previous microkernels in that in-
stead of simply exploiting parallelism between servers which pro-
vide different functions, this work seeks to distribute and parallelize
within a server for a single high-level function. fos also exploits the
“spatialness” of massively multicore processors by spatially dis-
tributing servers which provide a common OS function.

Like Tornado [15] and K42 [6], fos explores how to parallelize
microkernel-based OS data structures. They are differentiated from
fos in that they require SMP and NUMA shared memory machines
instead of loosely coupled single-chip massively multicore machines
and clouds of multicores. Also, fos targets a much larger scale of

machine than Tornado/K42. The recent Corey [10] OS shares the
spatial awareness aspect of fos, but does not address parallelization
within a system server and focuses on smaller configuration sys-
tems. fos is tackling many of the same problems as Barrelfish [8]
but fos is focusing more on how to parallelize the system servers as
well as addresses the scalability on chip and in the cloud. Also, in
this work we show the scalability of our system servers which was
not demonstrated in previous Barrelfish [8] work.

The structure of how fos can proxy messages between different
machines is similar to how Mach [5] implemented network proxies
with the Network Message Server. Also, Helios’s [22] notion of
satellite kernels is similar to how fos can have one server make a
function call to a server on a different machine.

Disco [11] and Cellular Disco [17] run multiple cooperating vir-
tual machines on a single multiprocessor system. fos’s spatial dis-
tribution of fleet resources is similar to the way that different VM
system services communicate within Cellular Disco. Disco and
Cellular Disco argue leveraging traditional OSs as an advantage,
but this approach likely does not reach the highest level of scal-
ability as a purpose built scalable OS such as fos will. Also, the
fixed boundaries imposed by VM boundaries can impair dynamic
resource allocation.

fos bears much similarity to distributed OSs such as Amoeba [28],
Sprite [23], and Clouds [13]. One major difference is that fos com-
munication costs are much lower when executing on a single mas-
sive multicore, and the communication reliability is much higher.
Also, when fos is executing on the cloud, the trust model and fault
model is different than previous distributed OSs where much of the
computation took place on student’s desktop machines.

The manner in which fos parallelizes system services into fleets
of cooperating servers is inspired by distributed Internet services.
For instance, load balancing is one technique taken from clustered
webservers. The name server of fos derives inspiration from the
hierarchical caching in the Internet’s DNS system. In future work,
we hope to leverage many distributed shared state techniques such
as those in peer-to-peer and distributed hash tables such as Bit
Torrent [12] and Chord [27]. fos also takes inspiration from dis-
tributed services such as distributed file systems such as AFS [25],
OceanStore [20] and the Google File System [16].

fos differs from existing cloud computing solutions in several
aspects. Cloud (IaaS) systems, such as Amazon’s Elastic com-
pute cloud (EC2) [1] and VMWare’s VCloud, provide comput-
ing resources in the form of virtual machine (VM) instances and
Linux kernel images. fos builds on top of these virtual machines
to provide a single system image across an IaaS system. With
the traditional VM approach, applications have poor control over
the co-location of the communicating applications/VMs. Further-
more, IaaS systems do not provide a uniform programming model
for communication or allocation of resources. Cloud aggregators
such as RightScale [24] provide automatic cloud management and
load balancing tools, but they are application-specific, whereas fos
provides these features in an application agnostic manner.

8. CONCLUSION
New computer architectures are forcing software to be designed

in a parallel fashion. Traditional monolithic OSs are not suitable
for this design and become a hindrance to the application when the
number of cores scales up. The unique design of fos allows the OS
to scale to high core counts without interfering with the application.
Furthermore, the abstractions provided allow an application written
to our programming model to seamlessly span across a cloud just
as it would across a multicore chip. We have demonstrated that
this design is suitable for the multicore architectures of the future

11

while providing better scalability than existing solutions. While a
functional base system has been presented here, there still remains
many areas open for exploration.

9. REFERENCES
[1] Amazon Elastic Compute Cloud (Amazon EC2), 2009.

http://aws.amazon.com/ec2/.
[2] Tilera Announces the World’s First 100-core Processor with

the New TILE-Gx Family, Oct. 2009. http://www.tilera.com/.
[3] AMD Opteron 6000 Series Press Release, Mar. 2010.

http://www.amd.com/us/press-releases/Pages/amd-sets-the-
new-standard-29mar2010.aspx.

[4] GCC-XML project, 2010. http://www.gccxml.org/.
[5] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Proceedings of the USENIX
Summer Conference, pages 93–113, June 1986.

[6] J. Appavoo, M. Auslander, M. Burtico, D. M. da Silva,
O. Krieger, M. F. Mergen, M. Ostrowski, B. Rosenburg,
R. W. Wisniewski, and J. Xenidis. K42: an open-source
linux-compatible scalable operating system kernel. IBM
Systems Journal, 44(2):427–440, 2005.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[8] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new OS architecture for scalable multicore
systems. In SOSP ’09: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
29–44, 2009.

[9] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. User-level interprocess communication for shared
memory multiprocessors. ACM Transactions on Computer
Systems, 9(2):175 – 198, May 1991.

[10] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. D. Y. Zhang, and
Z. Zhang. Corey: An operating system for many cores. In
Proceedings of the Symposium on Operating Systems Design
and Implementation, Dec. 2008.

[11] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors.
In Proceedings of the ACM Symposium on Operating System
Principles, pages 143–156, 1997.

[12] B. Cohen. Incentives build robustness in bittorrent, 2003.
[13] P. Dasgupta, R. Chen, S. Menon, M. Pearson,

R. Ananthanarayanan, U. Ramachandran, M. Ahamad, R. J.
LeBlanc, W. Applebe, J. M. Bernabeu-Auban, P. Hutto,
M. Khalidi, and C. J. Wileknloh. The design and
implementation of the Clouds distributed operating system.
USENIX Computing Systems Journal, 3(1):11–46, 1990.

[14] A. Dunkels, L. Woestenberg, K. Mansley, and J. Monoses.
lwIP embedded TCP/IP stack.
http://savannah.nongnu.org/projects/lwip/, Accessed 2004.

[15] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. In Proceedings of the
Symposium on Operating Systems Design and
Implementation, pages 87–100, Feb. 1999.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proceedings of the ACM Symposium on Operating
System Principles, Oct. 2003.

[17] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum.
Cellular Disco: Resource management using virtual clusters
on shared-memory multiprocessors. In Proceedings of the
ACM Symposium on Operating System Principles, pages
154–169, 1999.

[18] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic processing in
Cell’s multicore architecture. IEEE Micro, 26(2):10–24,
March-April 2006.

[19] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom,
F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van
Der Wijngaart, and T. Mattson. A 48-core ia-32
message-passing processor with dvfs in 45nm cmos. In
Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2010 IEEE International, pages 108 –109, 7-11
2010.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Proceedings of the Conference on Architectural Support for
Programming Languages and Operating Systems, pages
190–201, Nov. 2000.

[21] J. Liedtke. On microkernel construction. In Proceedings of
the ACM Symposium on Operating System Principles, pages
237–250, Dec. 1995.

[22] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing with
satellite kernels. In SOSP ’09: Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,
pages 221–234, New York, NY, USA, 2009. ACM.

[23] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson,
and B. B. Welch. The Sprite network operating system. IEEE
Computer, 21(2):23–36, Feb. 1988.

[24] Rightscale home page. http://www.rightscale.com/.
[25] M. Satyanarayanan. Scalable, secure, and highly available

distributed file access. IEEE Computer, 23(5):9–18,20–21,
May 1990.

[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A many-core x86 architecture for visual
computing. In SIGGRAPH ’08: ACM SIGGRAPH 2008
papers, pages 1–15, New York, NY, USA, 2008. ACM.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. pages 149–160, 2001.

[28] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating system. In
Proceedings of the International Conference on Distributed
Computing Systems, pages 558–563, May 1986.

[29] D. Wentzlaff and A. Agarwal. Factored operating systems
(fos): the case for a scalable operating system for multicores.
SIGOPS Oper. Syst. Rev., 43(2):76–85, 2009.

[30] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,

12

C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal. On-chip interconnection architecture of the Tile
Processor. IEEE Micro, 27(5):15–31, Sept. 2007.

[31] D. Wentzlaff, C. Gruenwald III, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. An operating system for multicore and clouds:
Mechanisms and implementation. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC), June 2010.

13

