Intel Concurrent Collections for Haskell

Ryan Newton Chih-Ping Chen Simon Marlow
Intel Microsoft Research

Abstract. Intel Concurrent Collections (CnC) is a parallel programming model in which a network of steps (functions) communicate through message-passing as well as a limited form of shared memory. This paper describes a new implementation of CnC for Haskell. Compared to existing parallel programming models for Haskell, CnC occupies a useful point in the design space: pure and deterministic like Evaluation Strategies, but more explicit about granularity and the structure of the parallel computation, which affords the programmer greater control over parallel performance. We present results on 4, 8, and 32-core machines demonstrating parallel speedups over 20× on non-trivial benchmarks.

1 Introduction

Graph-based parallel programming models, including data-flow and process networks, offer an attractive means of achieving robust parallel performance. For example, programming systems based on synchronous dataflow (SDF) have been able to show fully automatic parallelization and excellent scaling on a wide variety of parallel architectures, without program modification (8), and without specializing the programming model to particular hardware. Graph-based programming can provide both more accessible and more portable parallel programming, and covers an application domain that is large and rapidly growing, including most data-intensive processing from signal processing to financial analytics.

Past research has explored the relationship between functional programming and synchronous dataflow (11) and the semantics of streams and signals (15; 19). But in practice, functional programmers have had few practical tools for parallelism available to them. That is gradually changing. Recent versions of the Glasgow Haskell Compiler (GHC) provide excellent access to pure parallelism (and, increasingly, to nested data-parallelism). Producer-consumer parallelism is also possible in GHC, but typically requires leaving purity behind for IO threads communicating with FIFOs—a low-level, nondeterministic form of programming that does not support the high-level transformations that can make graph-based programming efficient.

The Haskell edition of Intel Concurrent Collections (CnC) (10) is an attempt to bring an efficient multicore implementation of a graph-based programming model to Haskell, while exposing an interface that remains deterministic and pure. The primary contributions of this paper are the following:

– We bring a new parallel programming paradigm to Haskell, which occupies a useful point in the design space: pure and deterministic like Evaluation
Strategies (18), but more explicit about granularity and the structure of the parallel computation.
- Haskell CnC allows multiple scheduling policies to be provided, giving the programmer greater control over parallel execution. New schedulers can be readily developed, and we describe schedulers that we have already built.
- Compared to implementations of the CnC model for other languages, the Haskell implementation can guarantee determinism. The Haskell implementation is shorter, clearer, and easier to modify and extend.
- We report results on parallel machines ranging from 4 to 32 cores, and demonstrate speedups in the range of $7 \times$ to $22 \times$ on non-trivial benchmarks with the current implementation. We also identify some areas for improvement.

This work has stress-tested GHC's parallel capabilities, exposed one runtime bug, and highlighted the effects of improvements that will be available in the 7.0 GHC release. The lessons learned from this project and described in this paper are potentially useful to other projects aiming to achieve significant parallel performance on GHC.

2 The CnC Model

In the Intel CnC model, a network of steps (functions) communicate through message-passing as well as a limited form of shared memory. Steps are pure functions with one argument (a message), but may use the contents of that message to get data from, and put data into, shared tables called item collections. As a simple example, consider a wavefront computation in which we compute each position (i,j) of a matrix from positions $(i-1,j-1)$, $(i-1,j)$, $(i,j-1)$ (also known as a stencil computation). In Haskell CnC we would define a step that computes each (i,j) position of an item collection named matrix, as follows:

- Trivial example: add neighbors’ values to compute ours

\[
\text{wavestep} (i,j) = \\
\text{do } \text{nv ← get matrix (i-1,j-1)} \\
\text{w ← get matrix (i-1,j)} \\
\text{n ← get matrix (i,j-1)} \\
\text{put matrix (i,j) (nv + w + n)}
\]

Item collections are single-assignment key-value stores. That is, for each key, only one put operation is allowed, and more than one is a dynamic error\(^1\). If a step attempts to get an item that is not yet available, that step blocks until a producer makes the item available. This can be seen as an extension of synchronous dataflow—a step can only complete its execution when all of its inputs (in wavestep, the three gets) are available. But rather than reading from a fixed set of FIFOs, the step reads a data-dependent (but deterministic) set of

\(^1\) This makes item collections a table of IVars(2) similar to Haskell’s MVars
items. One way to think of it is that CnC dynamically constructs dataflow networks, where item collections contain an unbounded number of communication channels and coin new ones on demand. This makes CnC a desirable programming model—while still deterministic, unlike data-flow and stream processing the communication relationships can be data-dependent and dynamic.

Our proof of determinism(1) does not directly rely on the determinism of synchronous dataflow. It is instead based on the monotonicity of item collections acquiring new entries. The contents of an item collection—when available—will always be deterministic, and therefore the output of an individual step is also determined. Likewise the result of evaluating a network of CnC steps (the result being the final contents of item collections) is deterministic.

In CnC parlance the messages that cause steps to execute are called tags (a term that derives from the fact that these messages typically serve as keys for looking up data within item collections). A step can, in addition to putting and getting items, output new tags and thereby trigger other steps. These put and get commands give steps an imperative look and feel. The abstraction, however, remains pure; one can think of a step as executing only when its inputs are ready, reading immutable data from item collections, and producing a list of new items and tags as output, i.e. functional updates. Indeed, we provide both pure and imperative implementations of Haskell CnC (exposing the same interface) and our pure implementations represent steps in exactly this way.

Finally, in addition to item collections, CnC uses tag collections as an intermediary between steps. Each step is controlled by one tag collection. A tag collection receives new tags and broadcasts them to an arbitrary number steps. It is said to prescribe those steps. In fact even steps are seen as collections; wavestep above would be a step collection while each invocation wavestep(i,j) corresponds to a step instance. The name “Concurrent Collections” (CnC) is due to the symmetry between step, item, and tag collections.

Historically, CnC has primarily been concerned with static graphs of collections in which all step, item, and tag collections and their dependencies are declared statically (sometimes with metadata enabling index analysis). The result is called a CnC graph or CnC specification, and it enables a greater degree of offline analysis. Usually a CnC tool generates the code for constructing graphs, and therefore it can implement graph transformations (such as fusing steps based on profiling information). Haskell CnC, while compatible with this mode of operation also allows the dynamic construction of CnC graphs via the API described in the next Section (2.1), and, further, allows the use of steps/items outside of an explicit graph (Section 2.2).

2.1 Haskell CnC API

The Haskell CnC API is structured around two monads: StepCode and GraphCode. Computations in the GraphCode monad construct CnC graphs. The monad’s methods include newTagCol and newItemCol for creating tag and item collections, respectively. A call to prescribe has the effect of adding to the graph both a
step and an edge connecting it to exactly one tag collection\(^2\). The step itself is a function of one argument (its tag).

\[
\begin{align*}
\text{newTagCol} &:: \text{GraphCode} \ (\text{TagCol} \ a) \\
\text{newItemCol} &:: \text{GraphCode} \ (\text{ItemCol} \ a \ b) \\
\text{type} \ \text{Step} \ \text{tag} &= \text{tag} \rightarrow \text{StepCode} () \\
\text{prescribe} &:: \text{TagCol} \ \text{tag} \rightarrow \text{Step} \ \text{tag} \rightarrow \text{GraphCode} ()
\end{align*}
\]

Each step in a CnC graph is realized by a computation in the StepCode monad. A step interacts with its neighbors in the graph by getting and putting items and by emitting new tags.

\[
\begin{align*}
\text{get} &:: \text{Ord} \ a =\rangle \ \text{ItemCol} \ a \ b \rightarrow a \rightarrow \text{StepCode} b \\
\text{put} &:: \text{Ord} \ a =\rangle \ \text{ItemCol} \ a \ b \rightarrow a \rightarrow b \rightarrow \text{StepCode} () \\
\text{putt} &:: \text{TagCol} \ \text{tag} \rightarrow \text{tag} \rightarrow \text{StepCode} ()
\end{align*}
\]

One way to think of a tag collection TagCol tag is as a set of steps with type Step tag. Steps are added to the set by calling prescribe. The steps in a TagCol are executed by putt, which applies each step in the set to the supplied tag.

In the Haskell edition of CnC there are no explicitly established edges between item/tag collections and steps. Instead, item collections are first class values. The Haskell CnC idiom is to define steps within the lexical scope of the collection bindings, or to define steps at top-level and pass needed collections as arguments (a ReaderT monad transformer would do as well).

The above functions allow us to create graphs and steps. Only one thing is missing before we have a basic but useful interface: inserting input data and retrieving results from outside CnC. In CnC, we refer to the program outside the CnC graph as the environment. The environment can put an initial set of tags and items into the graph, run the graph until no more steps can execute, and finally retrieve output values in item collections.

A third monad could be used to represent environment computations that interact with CnC graphs. But to keep things simple we instead provide a way to lift StepCode computations into the GraphCode monad and we use it to both construct and execute graphs. We currently enforce a split-phase structure in which the environment executes one initialize and one finalize step for input and output respectively.

\[
\begin{align*}
\text{initialize} &:: \text{StepCode} a \rightarrow \text{GraphCode} a \\
\text{finalize} &:: \text{StepCode} a \rightarrow \text{GraphCode} a
\end{align*}
\]

Once a GraphCode computation is assembled, evaluating the graph to yield a final value is accomplished by runGraph. The final result is the value returned by the finalize step.

\(^2\) We support direct visualization and user manipulation of CnC graphs in other CnC implementations, but one advantage of programmatically constructing graphs is that the normal tools of abstraction can be used for building and reusing graph topologies.
runGraph :: GraphCode a → a

2.2 Discussion: Alternate Dynamic API

If the user imports the Intel.CncDynamic rather than Intel.Cnc, they can access a more basic interface that may be more convenient for some tasks, but which moves away from the explicit graph specifications in the CnC methodology. The idea behind this interface is that the StepCode and GraphCode monads become a single monad. Item collections may be constructed dynamically by steps, and computations may be spawned as (asynchronous) step instances. This can be used to implement a variety of different control constructs, for example, parallel for loops.

```
data CnC a
instance Monad CnC
runCnC :: CnC a → a
newItemCol :: CnC (ItemCol k v)
get :: Ord k => ItemCol k v → k → CnC v
put :: ord k => ItemCol k v → k v → CnC ()
forkStep :: CnC a → CnC ()
```

Like its graph-based counterpart, the above API provides deterministic parallel execution. It may even be more efficient in some situations, but it also precludes scheduling strategies that involve scheduling many of the same step.

3 Implementation

Haskell CnC provides several different modules that implement the same monadic interface. These include both pure implementations and imperative ones; the latter internally use the IO monad, but hide it through unsafePerformIO. Pure implementations provide a clear reference implementation that illustrates the CnC semantics—steps produce lists of new items, which can be lazily integrated into item collections in any order. The imperative implementations, on the other hand, currently provide better parallel performance on most benchmarks.

The key choice in implementing CnC for GHC is how much to rely on existing mechanisms in GHC for scheduling and synchronization. For example, the most simple implementation of CnC is nearly trivial—forkIO executes steps and MVars provide synchronization on missing items.

3.1 Runtime Schedulers

Haskell CnC version 0.1.4 provides schedulers based, respectively, on IO-threads, a global task queue, or sparks and which use either MVars or continuations for synchronizing access to items. These choices, in turn, determine how termination is handled. We go to the trouble of describing multiple schedulers because each
of them is best for at least one of the benchmarks we will see in Section 4—
switching between schedulers is part of optimizing parallel performance. Also,
because Haskell is an outlier among languages, particularly in implementing lazy
evaluation, it should not be assumed that conventional wisdom always applies.
(For example, global task queues beat work-stealing in most of our benchmarks.)

3.2 Blocking, MVar-based schedulers

Haskell’s MVars are essentially one-element FIFOs that support reading without
popping. An item can be represented by an MVar which is initially empty and
filled exactly once. IO-threads work together with MVars, blocking when an
MVar is read. Most Haskell CnC schedulers use MVars.

IO-Thread scheduler GHC has very lightweight user threads; for a long time it
won the “language shootout” Threadring benchmark. In the **IO-thread scheduler**
we map each CnC step onto its own thread (e.g. one forkIO per step). The
result is a simple and predictable scheduler. But, alas, it suffers on programs
with finer grained steps. Haskell threads, while lightweight, are still preemptable
(and require per-thread stack space). Thus they are overkill for CnC steps, which
need not be preempted. It is possible to get a clear idea for the implementation
strategy from the types chosen for the two CnC monads, and the representations
for tags and item collections.

- Step and graph code directly use the IO monad (safely):
  ```haskell
  newtype StepCode t = StepCode (IO t)
  newtype GraphCode t = GraphCode (IO t)
  ```

- Tag collections store executed tags (for optional memoization)
 and a list of steps that are controlled by the tag collection.
  ```haskell
  newtype TagCol a = TagCol (IORef (Set a), IORef [Step a])
  ```

- Mutable maps with support for synchronization:
  ```haskell
  newtype ItemCol a b = ItemCol (IORef (Map a (MVar b)))
  ```

Global task pool schedulers These work sharing implementations use a
global stack or queue of steps, with all worker threads feeding from that pool.
The number of worker threads is roughly equal to the number of processors.
The reason the correspondence is not exact is that blocking on an MVar will
stop the associated thread. At start-up, both task-pool-based schedulers fork
numCapabilities threads, but before blocking on a get, a worker thread must
fork a replacement.

When a blocked thread wakes up, over-subscription will occur (more workers
than processors). Our task-pool schedulers minimize, but do not prevent, over-
subscription. The strategy is to mark threads that block on an MVar operation
as mortal—when they wake up they will complete the step they were executing but then terminate rather than continuing the scheduler loop.

Here we will describe two schedulers, designated workQ_busy and workQ_lazy. Where they differ is in their treatment of termination. When the global task pool runs dry, each worker has a choice to make. Either spin/sleep or terminate; workQ_busy takes the former approach, and workQ_lazy the latter.

Under workQ_lazy, whenever a worker observes the task pool in an empty state, it terminates and sends its ID number back to the main scheduler thread through a Control.Concurrent.Chan. (The scheduler thread is the one that called runGraph.) By itself, this strategy creates a different problem—a serial bottleneck will cause workers to shutdown prematurely even if there is another parallel phase coming (i.e., a currently running step will refill the task pool). To compensate, it adopts the following method: upon enqueuing work in the task-pool, if the pool was previously empty, then reissue any worker-threads that are dead.

Both schedulers augment the representation of StepCode to include extra state that tracks the task pool, worker ID, and a pointer to the container for mortal threads:

```haskell
newtype StepCode a = StepCode (StateT (HiddenState) IO a)
```

3.3 Non-blocking, continuation or retry-based schedulers

When a step performs a get for unavailable data, rather than blocking on an MVar (which uses the underlying thread-scheduling mechanism to sleep and wake the thread), another option is to abort the step and try again later. Aborted steps are registered in a wait-list on the item itself. Whenever that item becomes available, steps on the wait-list can be requeued for execution.

There’s a design choice to be made as to exactly which function to place on the wait-list. Either (1) the step could be replayed from the beginning, or (2) its continuation could be captured at the point of the failed get and the computation resumed from that point onward. Typically steps acquire their input data before doing any real work, so the former strategy is not as bad as it sounds, and other CnC implementations use this approach where continuation-capture is not possible. However, this scheduler, which we call simply the ContT scheduler uses a continuation monad transformer to provide a limited form of continuation-passing-style (CPS)—specifically, the ability to capture continuations at the point of each get. The advantage of monads, in this case, is that they allow library code to CPS-transform a part of the user’s program, without modifying the compiler. Finally, the ContT scheduler can use either a global queue to manage tasks or work stealing (as in Cilk (7)). We refer to the resulting variants as ContT_Q and ContT_WS.

Spark-based Scheduling There’s one more scheduler that will appear in Section 4, which is based on a package we built called HCilk. GHC’s par mechanism
for pure parallelism implement futures which subsume the strictly nested (fork-join) parallelism of Cilk (7). In the GHC runtime, the work stealing deques are called spark pools. But there’s a limitation, sparks cannot safely be used for IO computations because sparks may be dropped at any time. None of the scheduler designs we’ve discussed thus far use GHC’s native work-stealing mechanism. In order to leverage it we built HCilk, which implements fork-join parallelism by sparking IO computations but also storing the sparks in the parent computation, which must sync on them before it may return. HCilk can be used to build a CnC implementation by simply forking on all tag or item puts, and syncing before a step completes.

3.4 Hash-Tables vs. Data.Map and Friends

All (non-Haskell) CnC implementations use some form of hash table to represent item collections. In Haskell, we have the choice of using either mutable data structures (Data.HashTable) or mutable pointers to immutable data structures (Data.Map). But because Haskell/Hackage do not presently contain a concurrent hash-table implementation, as of this writing we can only (easily) use hash tables concurrently via coarse-grained locking on each table. In our limited tests, we found that even when locking overhead was omitted, Data.HashTable-based item collections underperformed Data.Map implementations and we settled on Map-based implementations for the time being. For Haskell CnC we have built an implementation of a Map datatype based on indexed type families that allow for certain optimizations in data representation. The details are described in Appendix A.

3.5 Problems and solutions for the GHC runtime system

Parallel schedulers strive to balance load and reduce scheduling overhead; likewise, programmers try to increase locality and manage granularity, but in a complex runtime system (RTS), all of these efforts can be undermined by unforeseen RTS interactions. This section describes an improvement that was necessary for the GHC runtime to support effective parallel scaling in Haskell CnC (which it did not as of the 6.12 release).

The key issue in this case was the handling of “BLACKHOLE” objects used to synchronize when multiple threads try to evaluate the same thunk. We will return to this issue to quantify the impacts of the new BLACKHOLE architecture in Section 4, but first we discuss the structure of the problem and its solution.

Ultimately, we believe targeting new, high-level parallel abstractions to GHC is a mutually beneficial proposition, as evidenced by Haskell CnC’s (1) highlighting performance problems, (2) validating the new BLACKHOLE architecture, and (3) uncovering a GHC parallel runtime deadlock bug in the process!

Blocking and lazy evaluation in GHC Lazy evaluation presents an interesting challenge for multicore execution. The heap contains nodes that represent
suspended computations (thunks), and in a shared heap system such as GHC it is possible that multiple processors may try to evaluate the same thunk simultaneously, leaving the runtime system to manage the contention somehow.

Fortunately, all suspended computations are pure\(^3\), so a given thunk will always evaluate to the same value. Hence we can allow multiple processors to evaluate a thunk without any ill effects, although if the computation is expensive we may wish to curtail unnecessary duplication of work. It comes down to finding the right balance between synchronisation and work duplication: preventing all work duplication entails excessive synchronisation costs (9), but reducing the synchronization overhead may lead to too much work duplication.

The GHC RTS takes a relaxed approach: by default duplication is not prevented, but at regular intervals (a context switch) the runtime takes a lock on each of the thunks under evaluation by the current thread. The lock is applied by replacing the thunk with a BLACKHOLE object; any other thread attempting to evaluate the thunk will then discover the BLACKHOLE and block until evaluation is complete. This technique means that we avoid expensive synchronisation in the common case, while preventing arbitrary amounts of duplicate work.

It is important for the blocking mechanism to be efficient: ideally we would like to have no latency between a thunk completing evaluation and the threads that are blocked on it becoming runnable again. This entails being able to find the blocked threads corresponding to a particular BLACKHOLE. Unfortunately, due to the possibility of race conditions when replacing thunks with BLACKHOLEs, it was not possible in GHC to attach a list of blocked threads to a BLACKHOLE, so we kept all the blocked threads on a separate global linked list. The list was checked periodically for threads to wake up, but the linear list meant that the cost of checking was \(O(n)\), which for large \(n\) became a bottleneck.

This issue turned out to be important for the CnC implementation. An item collection is essentially a shared mutable data structure, implemented as a mutable reference in which an immutable value (the mapping from keys to values) is stored. In many cases, the contents of the reference is either unevaluated (a thunk) or partially evaluated, and since the reference is shared by many threads, there is a good chance that one of the threads will lock a thunk and block all the others, leading to at best sequentialisation, and at worst a drastic slowdown due to the linear queue of blocked threads. We observed this effect with some of the CnC benchmarks: often the benchmark would run well, but sometimes it would run a factor of 2 or more slower.

Noticing that the blocking scheme was becoming a bottleneck in certain scenarios, the GHC developers embarked on a redesign of this part of the runtime in GHC. We defer a detailed description of the new scheme for future work, but the key ideas can be summarized as:

- A BLACKHOLE refers to the owning thread.

\(^3\) except for applications of \texttt{unsafePerformIO}, which present interesting problems. A full discussion is out of scope for this paper, however.
– Blocking is based around message passing; when blocking on a BLACKHOLE, a message is sent to the owning thread.
– The owner of a BLACKHOLE is responsible for keeping track of threads blocked on each BLACKHOLE, and for waking up threads when the BLACKHOLE is evaluated.

Together with some careful handling of race conditions, this scheme leads to a much more efficient and scalable handling of blocked threads. A blocked thread will be woken up promptly as soon as the thunk it was blocked on is evaluated. Since the owner of a BLACKHOLE can be identified, the scheduler can give extra runtime to the owner so as to clear the blockage quickly.

Following the implementation of the new scheme, we noticed significant improvements in many of the Concurrent Collections benchmarks (Section 4).

4 Evaluation

We evaluate Haskell CnC on three platforms, termed: desktop, small server, and large server, the first two representing common platforms today, and the latter representing the coming generation of hardware (or today’s very high-end). Most of the benchmarks below are direct ports of their counterparts included in the distribution package for the C++ version of CnC and these provide a natural point of comparison (see Table 1, Figure 1).

– Black-Scholes – a differential equation used in finance that describes how, under a certain set of assumptions, the value of an option changes as the price of the underlying asset changes. This benchmark achieved a maximum speedup of $18.4 \times$ (Figure 3).
– Cholesky Decomposition – an algorithm in linear algebra that factors a symmetric, positive definite matrix A into LL^* where L is a lower triangular matrix and L^* its conjugate transpose. Cholesky was the largest of the benchmarks we ported (see Table 1).
– N-body problem – quadratic algorithm to compute accelerations on N bodies in 3D space. Maximum speedup achieved was $22.1 \times$ over single threaded execution.
– Mandelbrot – compute each pixel of a Mandelbrot fractal in parallel. Max speedup was $11.8 \times$ (Figure 2).
– Primes – naive primality test in parallel. Max speedup was $25.5 \times$.
– Queens – the N-queens problem (place N queens on a NxN chessboard so none threatens another).

Experimental setup: Our desktop platform consisted of a single-socket 3.33 GHz quad-core Core i7, Nehalem architecture; the small server was a dual-socket 2.27 GHz 8-core Nehalem, whereas the large server was a 32-core platform consisting of four 2.27 GHz 8-core processors, Westmere architecture. Hyperthreading (SMT) was enabled on the desktop and disabled on both servers. Speedup
Table 1. A table comparing non-comment, non-blank lines of code in C++/CnC benchmarks and Haskell CnC. A 62% reduction in size is achieved on average, in large part by reducing type-definition and boilerplate code. However, serial speed is also lower; dramatically so for nbody.

<table>
<thead>
<tr>
<th></th>
<th>blackscholes</th>
<th>cholesky</th>
<th>mandel</th>
<th>primes</th>
<th>nbody</th>
<th>queens</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++ LOC</td>
<td>293</td>
<td>390</td>
<td>147</td>
<td>84</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Haskell LOC</td>
<td>90</td>
<td>158</td>
<td>51</td>
<td>29</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>Serial Slowdown</td>
<td>0.78</td>
<td>2.47</td>
<td>12.45</td>
<td>2.75</td>
<td>77.3</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Best parallel speedup with any number of threads or Haskell CnC scheduler. All Haskell results used the GHC development compiler. C++ results are from the large server platform using identical input sizes; speedups are relative to C++ serial times. (Superlinear speedup on Cholesky was to 34.1×.)
results across our benchmark suite are summarized in Figure 1. All results reported are from the 6.13.20100607 development version of GHC. In contrast, GHC 6.12 produced highly chaotic results and typically parallel slowdown rather than speedup. We verified that the improvement is due to the new BLACKHOLE architecture (Section 3.5) by rewinding to exactly before and after that patch to the compiler. Nevertheless, the programmer must be on the lookout for unpredictable speedups. For example, one culprit is loops that don’t allocate, as we found when we implemented a simple multiply-add benchmark. (A thread must allocate to be preempted by the GHC scheduler.)

Examining Figure 1, the reader will notice speedups exceeding $4 \times$ on the four-core desktop platform. In our earlier experiments, enabling hyperthreading on larger (8, 32 core) platforms did not provide much benefit and in fact increased unpredictability. On the desktop platform, however, hyperthreading was useful, and as Figure 1 shows, the Black-Scholes benchmark achieved a $6.28 \times$ speedup on four cores. Further, all but one benchmark (Cholesky) achieved their best speeds at six or eight (rather than four) threads.

Another striking thing about the results was that superlinear speedups on the small server platform were quite common. Using both processors on a dual-socket system increases the available memory bandwidth and processor cache, which can have a non-linear effect on some applications. Our benchmarks tended produce a lot of memory traffic, a subject to which we will return when we discuss garbage collection.

![Graph showing results](image)

Fig. 2. Mandelbrot benchmark’s parallel scaling on large server platform. Three runs per data-point, median time shown. Includes plot for simulated scalable garbage collector (contT Q hypothetical). The graph also demonstrates the well-known “last core parallel slowdown” when running GHC on Linux.
The effects of garbage collection

To determine the bottlenecks limiting our test suite’s scaling on the large server, we used the performance analysis tools built-in to GHC itself, which include heap residency profiles, multi-threaded system event traces, and simply recording garbage-collection statistics. In addition to the fundamental concerns of scheduler overhead, task granularity, synchronization cost, and locality, we found that the architecture of the garbage collector (GC) is a primary barrier to scaling parallelism to larger numbers of cores with GHC. We can determine this by examining the amount of time spent in garbage collection as a function of the number of threads. Typically it descends from under 10% on one thread to over 40% on 32 threads (sometimes much over). The amount of time spent in garbage collection is sufficient to explain the relative lack of scaling in the Cholesky and Mandelbrot benchmarks. For visualization purposes we included bars in Figure 1 that correspond to a simulated scalable garbage collector, which is assumed to consume a constant amount of time as the number of cores scales. You can see a line representing the same simulated scalable collector on Figure 2.

At the time of writing, GHC is using a stop-the-world parallel garbage collector (12) in which each processor has a separate nursery (allocation area). The garbage collector optimizes locality by having processors trace local roots during parallel GC and by not load-balancing the GC of young-generation collections (13), and this strategy has resulted in reasonable scaling on small numbers of processors.
Table 2. (32 threads) The effects of suggested heap size (-H) on parallel performance and number of collections—different right answers for different benchmarks. All benchmarks slow down at massive heap sizes (we tested up to 110 gigabytes), but N-body increases in performance up to 500M, whereas Black-Scholes, for example, peaks much earlier and is suboptimal at heap size 500M.

However, the stop-the-world aspect of the garbage collector remains the most significant bottleneck to scaling. The nurseries have to be kept small (around the L2 cache size) in order to benefit from the cache, but small nurseries entail a high rate of young-generation collections. With each collection requiring an all-core synchronization, this quickly becomes a bottleneck, especially in programs that allocate a lot. Hence, the most effective way to improve scaling in the context of the current architecture is to tune the program to reduce its rate of allocation; we found this to be critical in some cases.

This locality trade-off means that the common technique of increasing the heap size to decrease the overall GC overhead often doesn’t work. As shown in Table 2, the best selection for one benchmark can do badly on another. (All our results from other figures are reported without any per-benchmark tuning parameters, heap-size or otherwise.) A new garbage collector is currently under development that allows individual processors to collect their own local heaps without synchronizing with the other processors, and this should give a significant boost to scaling.

It is difficult to predict the interaction of the heap size, scheduler, and a CnC program. For example, the Mandelbrot benchmark on the large server: using a 10G heap did not significantly lessen the performance (with either one thread or up to 32) for all schedulers except the IO-thread based one, where the larger heap size had a catastrophic effect. (It became 2× slower in the serial case, 15.8× slower in the 32-thread case.) Because of the compounded complexity of memory effects and parallelism we recommend auto-tuning approaches. Reinforcing this view is the issue of scheduler choice: every scheduler presented here performs the best in at least one benchmark.4

In this study, we experimented systematically with some runtime parameters and informally with others. The GHC runtime can optionally make use of the

<table>
<thead>
<tr>
<th>heap MB</th>
<th>N-body: time / collects</th>
<th>Black-Scholes: time / collects</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8.9s / 6705</td>
<td>1.63s / 716</td>
</tr>
<tr>
<td>100</td>
<td>6.3s / 1080</td>
<td>1.63s / 574</td>
</tr>
<tr>
<td>250</td>
<td>6.23s / 421</td>
<td>2.1s / 387</td>
</tr>
<tr>
<td>500</td>
<td>6.2s / 211</td>
<td>2.96s / 386</td>
</tr>
<tr>
<td>1,000</td>
<td>6.2s / 103</td>
<td>5.29s / 386</td>
</tr>
<tr>
<td>10,000</td>
<td>9.45s / 14</td>
<td>93.5s / 386</td>
</tr>
<tr>
<td>100,000</td>
<td>44s / 5</td>
<td></td>
</tr>
</tbody>
</table>

4 Fortunately, because GHC’s concurrency abstractions are composable, separately compiled modules can use different Haskell CnC schedulers.
OS’s affinity APIs to pin threads to particular cores (the -qa flag), and we found that this consistently helped performance. The -qb flag disables load balancing within parallel garbage collections (aiding some parallel programs). But across our benchmark suite, enabling the flag results in a geometric mean slow-down of 23% (measured by the best wall-clock time achieved for each benchmark under any number of threads).

Detailed Benchmark Discussion

Granularity of computation is a universal problem in parallel scheduling (though it has been overshadowed by memory concerns in these tests). It is easy to write programs whose step granularity is too small, or allocation rate is too high, to get any parallel speedup whatsoever (or worse, dramatic and unpredictable slowdown), in spite of a large amount of parallelism being exposed. Requiring some support for user control of granularity is typical of systems that rely on dynamic scheduling (e.g. TBB (6), or Haskell CnC) as opposed to static scheduling (e.g. StreamIT (8)).

The Black-Scholes and Cholesky benchmarks, ported from C++ already had a blocked structure, wherein steps, rather than operating on individual elements, process batches of elements of a configurable size, thus addressing the granularity problem but requiring tuning of block size. Black-Scholes performed well after its initial port, but Cholesky did not. It turns out that Cholesky performance in Haskell is not affected greatly by block size, rather, on the large server it reaches peak performance at four or eight threads where it hits a memory wall. Cholesky manipulates a large matrix, and in this case suffers greatly from inefficient in-memory data representations.

Many of these benchmarks have fairly high allocation rates. Mandelbrot, primes, Black-Scholes, Cholesky and N-body all produce output of the same size as their input—by allocating arrays or individual items within the steps. N-body, when first ported, achieved no speedup. It allocated two gigabytes over a 2.5 second execution. It allocated two gigabytes over a 2.5 second execution. N-body’s inner loop for each body sums over the other bodies in the system to compute an acceleration. This loop was written in idiomatic Haskell (over lists), and while the lists were being deforested, the tuples were not being unboxed/eliminated. After manually inlining the loops, deforesting, and unpacking the tuple loop-state, N-body’s allocation decreased by a mere 25% and yet it started achieving excellent speedups. This is indicative of the kinds of sensitivities in parallel performance given the state of the tools at this moment.

5 Discussion and Related Work

CnC is situated in a landscape of graph-based computational models. These include data-flow, stream processing, task graphs, actors, agents, and process networks. These models appear in disparate parts of computer science ranging from databases to graphics to cluster computing, leading to many divergent terminologies. For our purposes, a graph-based computational model is one in
which message-passing along defined channels (edges) is the only form of communication between separate computations (nodes). We summarize some of the basic design choices in Table 3.

<table>
<thead>
<tr>
<th>Set of nodes</th>
<th>dynamic, static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge data rates</td>
<td>dynamic, static</td>
</tr>
<tr>
<td>Nodes</td>
<td>processes, stateless tasks, stateful tasks</td>
</tr>
<tr>
<td>Node/edge synchronization</td>
<td>read all inbound edges at once, read edges in deterministic order, read edges in nondeterministic order (event-driven / asynchronous)</td>
</tr>
</tbody>
</table>

Table 3. Major choices to build-your-own graph-based model.

First, the nodes of a computation graph may be either continuously running processes or discrete tasks that execute for a finite duration after receiving data on incoming edges. Discrete tasks may or may not maintain state between invocations. The set of tasks may be known statically, as in synchronous data-flow (11) and “task scheduling” (16), or change dynamically (as in most streaming databases (3)).

Stream processing systems typically have ordered edges and statically known graph topologies. Generally, they allow both stateful and stateless tasks (the latter providing data parallelism). They may be based on synchronous data-flow (e.g. StreamIt (8)) and have known edge data-rates, or dynamic rates (e.g. WaveScope (14)).

A key choice is how nodes with multiple inbound edges combine data. They can, for example, read a constant number of messages from each inbound edge during every node execution (SDF). Alternatively, edges can be read in an input-dependent but deterministic order (e.g. Kahn networks (4)). Or, finally, edges can be processed by a node in a nondeterministic order, as when handling real time events or interrupts (e.g. WaveScope (14) and most streaming databases).

In contrast with these systems, CnC has unordered communication channels (carrying tags) and stateless tasks (steps). (Unordered channels with stateful tasks would be a recipe for nondeterminism.) CnC also has item collections. In a purely message-passing framework, item collections can be modeled as stateful tasks that are connected to step nodes via ordered edges that carry put, get, and get-response messages. That is, a producer task sends a put message to the item collection and a consumer task first sends a get message and then blocks on receipt of a value on the response edge. The edges must be ordered to match up get requests and responses. This also requires a formulation of steps that allows them, once initiated, to synchronously read data from other incoming edges. Thus CnC can be modeled as a hybrid system with two kinds of edges and two kinds of nodes.
In addition to the above mentioned systems, there are many less obviously related precedents as well, including graphical workflow toolkits (such as Labview and Matlab Simulink) and Linda/Tuple-spaces. Also, the functional programming literature includes several projects that explore the connection between functional programming, stream processing, and synchronous data-flow (15; 5), but not all projects have achieved (or aimed for) effective parallel performance.

6 Conclusion and Future Work

We overcame a number of obstacles to achieve a platform for effective parallel programming in Haskell, delivering excellent performance on the multicore desktop and server platforms that comprise the majority of today’s computing landscape. Moreover, while Haskell CnC delivers reasonable performance on larger-scale shared memory machines, it has also concretely identified the areas for future improvements that will enable further scaling.

Future work will refine the data structures used by Haskell CnC, incorporating, perhaps, low-level implementations of concurrent data structures (hash tables and work stealing deques). Second, an overhaul of the GHC garbage collector to enable independent per-thread collections is already underway and Haskell CnC is helping to test the new architecture.
Bibliography

There are many improvements to be made to a basic Data.Map implementation. In particular, the Haskell CnC distribution includes its own implementation of “generic maps” (GMap) using indexed type families. GMaps can take on different physical representations based on their key types (and potentially value types as well). All key types must provide an instance of the class GMapKey, a simplified version of which follows:

- A simplified class GMapKey

```haskell
  class GMapKey t where
    data GMap t :: * → *
    empty :: GMap t v
    lookup :: t → GMap t v → Maybe v
```

We can then define instances for each different key type we are interested in. For example, Data.IntMap is more efficient than Data.Map when keys are integers. Also, pair-keys can be deconstructed and represented using nested maps. Likewise, Either, Bools, and unit key types also have specialized implementations.
The problem with this approach is that GMaps are not a drop-in replacement for Data.Map. The user would have to be aware that item collections are implemented as GMaps and define their own GMapKey instances. They are not derivable, and have no “fallthrough” for index types that satisfy Ord but do not have explicit GMapKey instances defined. Such a fallthrough would constitute an overlapping instance with the specialized versions. The language extension OverlappingInstances permits overlaps for regular type classes, but not for indexed type families.

Fortunately there is a work-around for this type-checking limitation, suggested by Oleg Kiselyov on the Haskell-cafe mailing list. The idea is to use an auxiliary type class to first classify a given key type, and then dispatch on it (without overlaps) in the indexed type family. The “categories” are represented by newtypes, and might include things like PairType or EitherType, but here we consider only two categories: those types that can be packed into a single word, and those that cannot.

– We will classify types into the following categories

\[
\begin{align*}
\text{newtype } \text{PackedRepr } t &= \text{PR } t \text{ deriving } (\text{Eq,Ord,Show}) \\
\text{newtype } \text{BoringRepr } t &= \text{BR } t \text{ deriving } (\text{Eq,Ord,Show})
\end{align*}
\]

Next, we assume a class FitInWord that captures types that can be packed into a machine word. (Template Haskell would be useful for generating all tuples of scalars that share this property, but this is not yet implemented.)

\[
\text{class FitInWord } v \text{ where}
\]

\[
\begin{align*}
toWord & :: v \rightarrow \text{Word} \\
fromWord & :: \text{Word} \rightarrow v
\end{align*}
\]

– Example: Two Int16’s fit in a word:

\[
\begin{align*}
fI x &= \text{fromIntegral } x \\
\text{instance } \text{FitInWord } (\text{Int16,Int16}) \text{ where}
\end{align*}
\]

\[
\begin{align*}
toWord (a,b) &= \text{shiftL } (fI a) 16 \uplus (fI b) \\
\text{fromWord } n &= (fI\$ \text{ shiftR } n 16,
 fI\$ n \&. \text{.0xFFFF})
\end{align*}
\]

Next, we introduce the class ChooseRepr, which permits overlapping instances and does the “classification”. We generate an instance for every instance in FitInWord that selects the packed representation.
Auxiliary class to choose the appropriate category:

```haskell
class ChooseRepr a b | a -> b where
    choose_repr :: a -> b
    choosen_repr :: b -> a
```

Choose a specialized representation:

```haskell
instance ChooseRepr (Int16, Int16) (PackedRepr (Int16, Int16)) where
    choose_repr = PR
    choosen_repr (PR p) = p
```

Fall through to the default representation:

```haskell
instance (c ~ BoringRepr a) => ChooseRepr a c where
    choose_repr = BR
    choosen_repr (BR p) = p
```

It is then possible to create non-overlapping instances of GMapKey that use `IntMaps` where applicable and `Maps` otherwise.

```haskell
import qualified Data.IntMap as IM
import qualified Data.Map as Map

-- For PackedRepr we pack the key into a word:
instance FitInWord t => GMapKey (PackedRepr t) where
    data GMap (PackedRepr t) v = GMapInt (IM.IntMap v)
    empty = GMapInt IM.empty
    lookup (PR k) (GMapInt m) = IM.lookup (fI$ toWord k) m

-- For BoringRepr we use Data.Map:
instance Ord t => GMapKey (BoringRepr t) where
    data GMap (BoringRepr t) v = GMapBR (Map.Map v)
    empty = GMapBR Map.empty
    lookup (BR k) (GMapBR m) = Map.lookup k m
```

Finally, there is one last basic data structure trade-off to make. Haskell CnC’s use of Maps requires storing them in a mutable variable and performing atomic updates to that variable. In our implementation we currently include a toggle to select between `TVar`s, `MVar`s, and `IORef`s for all “hot” mutable variables in the CnC implementation. We reach the same conclusion as previous authors (17), and select `TVar`s by default.