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Abstract: Several recent studies establish that crude oil and natural gas prices are 
cointegrated. Yet at times in the past, and very powerfully in the last two years, many 
voices have noted that the two prices series appear to have “decoupled”. We explore the 
apparent contradiction between these two views. We find that recognition of the 
statistical fact of cointegration needs to be tempered with two additional points. First, 
there is an enormous amount of unexplained volatility in natural gas prices at short 
horizons. Hence, any simple formulaic relationship between the prices will leave a large 
portion of the price of natural gas unexplained. Second, the cointegrating relationship 
does not appear to be stable through time. The prices may be tied, but the relationship 
can shift dramatically over time. Therefore, although the two price series are 
cointegrated, the confidence intervals for both short and long time horizons are large.   
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INTRODUCTION 

A number of recent academic studies have established that natural gas and crude 

oil prices are cointegrated.1 These results have had an impact on analysts in the business 

and policy community. For example, the recent World Energy Outlook 2009, published 

by the International Energy Agency, reprinted a table from of one of these studies 

showing how an increase in the price of crude oil would be mirrored over the subsequent 

12 months by a matching increase in the price of natural gas. No sooner had the results of 

these academic studies achieved widespread acceptance than the world witnessed a 

remarkable decoupling between these two prices. Starting in December 2008, the price of 

crude oil started to recover from its low of $31.41/bbl. By February 2009 it had already 

risen to $44.76/bbl. During the same time, the price of natural gas continued to fall from 

its already low level of $5.37/mmBtu, dropping to $4.03/mmBtu in February. For most of 

2009 the prices continued to diverge so that in October crude oil reached below $70/bbl 

while natural gas fell below $3/mmBtu. Natural gas then briefly spiked, but as of May 

2010 crude oil was $86.19/bbl and natural gas was $5.37/mmBtu to $3.86/mmBtu. The 

ratio of the price of natural gas to the price of crude oil now stands near its lowest point 

in decades. So what happened to the strong tie between the prices that these studies have 

documented? Some believe that the recent price movements reflect a permanent rupture 

of the old tie between the two price series, arguing that fundamental changes in the 
                                                 
1 The term cointegration is used to describe a certain relationship between two time series like the time 
series of oil and natural gas prices. This type of time series is likely to be non-stationary—for example, 
because each series may grow unboundedly with the growth of the economy or with inflation, or because 
the variance of each series grows or shrinks with time. It is difficult to properly characterize a relationship 
between two non-stationary time series. Sometimes it is a single process (or combination of processes) that 
underlies the two time series, causing them to be non-stationary. When this is the case, the relationship 
between those time series can be represented as a line, or a linear combination. Then the two series are 
considered cointegrated, and the line describing their relationship is the cointegrating equation. See, for 
example, Hendry and Juselius (2000). 
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marketplace have occurred. If so, then studies establishing cointegration are already 

outdated. 

This is not the first time the natural gas price has appeared to decouple from the 

oil price. In the late 1990s and early 2000s, the price of natural gas was regularly above 

the level one might have predicted based on the historical relationship and the then 

prevailing price of crude oil. In an earlier era, the United States experienced a so-called 

gas bubble that had kept natural gas prices low relative to the then prevailing price of 

crude oil. Nevertheless, the statistical fact of cointegration appears to characterize the two 

time series throughout these periods of ups and downs. How is one to rationalize these 

seemingly contradictory facts? What do we really mean by cointegration if the average 

ratio of prices is shifting so consequentially across decades, sometimes in one direction, 

and sometimes another? 

We attempt to answer these questions by elaborating on exactly what has been 

documented as cointegration, and putting it into context with the historically changing 

relationship between the two price series. We also seek to clarify what is meant when 

analysts assert that the two prices have “decoupled.” These assertions are often vague and 

open to alternative interpretations. “Decoupled” could mean any of the following:  

 (i) the prices have temporarily broken away from the usual relationship to 
which they will later return, or,  

 (ii) the prices have permanently broken away from the old relationship and 
moved into a new relationship, or,  

 (iii) the two prices no longer maintain a relationship with one another at 
all. 

Which is it? While we cannot guess the intended definition of decoupling by those who 

declare it has occurred, we do shed light on which of the three possible definitions of 
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decoupling fit the data and describe the relationship between the crude oil and natural gas 

price series. 

In this paper, we address these questions by revisiting the cointegration analyses 

reported by several researchers over the last twelve years. These include Serletis and 

Herbert (1999), Villar and Joutz (2006), Brown and Yücel (2008) and Hartley, Medlock 

and Rosthal (2008). Each of these papers implements a complicated set of statistical 

analyses of the two data series plus a number of related conditioning variables in order to 

determine if a relationship can be found with any statistical reliability, and, if so, to 

determine what that relationship is.2 These analyses involve testing for a cointegrating 

relationship between the two variables and estimating a vector error correction model 

(VECM) and a conditional error correction model (conditional ECM).3 The results in the 

                                                 
2 Villar and Joutz (2006) and Brown and Yücel (2008) directly model the relationship between natural gas 
and crude oil prices. Serletis and Herbert (1999) model the relationship between natural gas and fuel oil 
prices, among other energy prices, but do not include crude oil specifically. Hartley, Medlock and Rosthal 
(2008) model the relationship between natural gas and crude oil prices, but use the price of fuel oil as an 
intermediate step. The time windows examined vary across the studies, as does the role of exogenous 
conditioning variables. 
 
3 A Vector Error Correction Model (VECM) identifies and characterizes the cointegrating relationship(s) 
between two or more sets of time series data. The relationship is measured in the level of each time series 
variable. For both crude oil and natural gas, it also models the change in price for each as a function of past 
changes in the prices of both commodities. This is done to capture the effects of long-lived shocks to the 
price series. Price changes of both commodities are used in the model because we theorize that crude oil 
and natural gas prices are related to one another, so we would like to see whether changes in one 
commodity price provoke changes in the other. This second portion of the VECM is similar to a vector 
autoregression (VAR) model, except that a VAR only models the effect of the history of a single time 
series on itself. The other component is the error-correction mechanism (ECM, not to be confused with the 
VECM). The ECM measures the rate at which the time series returns to the cointegrating relationship after 
price shocks have caused it to deviate. So the VECM has three components: the cointegrating relationship 
(the long-run price relationship between the commodities), the effects of the lagged price changes (the 
shocks that push the commodity price away from its long-run relationship), and the ECM (the rate at which 
the commodity price is pulled back into its long-run relationship). The VECM models the relationship 
between crude oil and natural gas as if each commodity affected the other. But we theorize that crude oil 
prices should affect the natural gas price, not vice versa. The VECM identified the cointegrating equation 
and provided the ECM to measure the rate at which the natural gas price returns to its cointegrating 
relationship with the crude oil price. In order not to treat crude oil prices as being partially determined by 
natural gas prices, we turn to the conditional Error Correction Model (conditional ECM), which models the 
system as a VAR. Here, past price changes of Henry Hub natural gas prices affect the change in the natural 
gas price (pushing the gas price away from the cointegrating relationship). We add the ECM to measure the 
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four papers are broadly consistent with one another, although the details of the modeling 

and the parameter estimates vary. We report results based on our own modeling and tests 

along the lines of Brown and Yücel (2008), but include as well some more recent data 

than was available at the time of their analysis. We focus the discussion in the text on an 

exposition of the results, without walking the reader through the formal specifications 

and the full set of statistical tests performed. However, these are detailed in the 

Appendix. Our conclusions are as follows. 

Consistent with earlier studies, we find clear statistical evidence that the two 

series are cointegrated. Changes in the price of oil do appear to translate into changes in 

the price of natural gas. Movements in the price of natural gas away from the underlying 

co-integrating relationship tend to reverse, so that this relationship is re-established. 

However, recognition of the statistical fact of cointegration needs to be tempered with 

two additional points that we think have been insufficiently emphasized in the past 

literature.  

First, there is an enormous amount of unexplained volatility in natural gas prices 

at short horizons. The raw price series for natural gas—without controlling for 

cointegration and any explanatory variables—is approximately twice as volatile as the 

raw oil price series. Hence, any simple formulaic relationship between the price of oil and 

the price of natural gas will leave a large portion of the price of natural gas unexplained. 

The more statistically sophisticated approach of constructing a conditional Error 

Correction Model, which includes the cointegrating relationship, a set of exogenous 

explanatory variables, and accounts for the reversion of natural gas prices back to the 

                                                                                                                                                 
rate at which natural gas prices return to the cointegrating relationship found through the VECM, and also 
model the reaction that natural gas prices have to the concurrent change in the crude oil price. The 
conditional ECM thus conforms to our theory. 
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cointegrating relationship, still leaves a large portion of the volatility in natural gas prices 

unaccounted for.  

Second, the cointegrating relationship, while clearly present in any period of the 

data, does not appear to be stable through time. Natural gas prices may be tied to oil 

prices, but the relationship can shift dramatically over time. In the 1989 to 2005 period, 

the price of natural gas seemed to be shifting up compared to the price of oil, but in 

recent years this reversed. 

Therefore, although the two price series are cointegrated, the confidence intervals 

for both short and long time horizons are large. This paper explores the nature of this 

apparent contradiction in an attempt to better characterize the relationship between crude 

oil and natural gas prices. 

2. THE DATA 

Figure 1 shows the raw spot price series for WTI crude oil and Henry Hub natural 

gas from 1991-2010 plotted together on the same graph.4,5 The scale for the price of 

natural gas is shown on the left-hand-side, while the scale for the price of crude oil is on 

the right-hand-side. The eye can immediately detect some rough relationship between the 

                                                 
4 The starting point for our data is dictated by the history of the natural gas market in the US. The Natural 
Gas Policy Act of 1978 gradually led to the removal of price controls on the interstate sale of natural gas in 
the United States. As of January 1, 1985, ceilings were removed on the sale of new gas. This was followed 
by the 1987 repeal of sections of the Power Plant and Industrial Fuel Use Act that restricted the use of 
natural gas by industrial users and electric utilities and the Natural Gas Wellhead Decontrol Act of 1989 
which completed the decontrol of US natural gas prices. In addition, the Federal Energy Regulatory 
Commission pursued a policy of encouraging open access to natural gas pipelines, especially through Order 
636. Market depth grew quickly. By April 1990, the New York Mercantile Exchange initiated trading in a 
natural gas futures contract. 
 
5 Both series are weekly day-ahead prices of commodities on the trade date as sampled by Bloomberg. The 
natural gas prices are volume-weighted averages in $/mmBtu for delivery at Henry Hub in Louisiana. The 
crude oil prices are the arithmetic averages in $/bbl for West Texas Intermediate (WTI) crude oil traded at 
Cushing, Oklahoma. 
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two price series. The price spike of 2008 is the most dramatically clear example of this, 

but the price run-up from 2003 through 2007 also clearly reflects some tie. Even in the 

time period before 2002 this rough relationship seems to show up, though with less 

clarity.  

Figure 2 shows the same two price series, but now reported in logs. In a graph of 

the absolute price levels, like Figure 1, where prices started off low and rose through 

time, a given percentage change in an early period may be unnoticeable, while the same 

percentage change in a later period appears very dramatic. The large scale demanded by 

later price movements causes earlier price changes to appear negligible. In logs, a given 

percentage price change appears the same size regardless of the price level. This is why 

using logged prices is a useful way to display and work with the data. Looking at Figure 

1 it would be easy to conclude that natural gas prices have become more volatile, since 

there are several large spikes late in the series. But Figure 2 makes clear that, in 

percentage terms, there were comparably sized spikes earlier in the series, and there is no 

obvious suggestion that the series had become more volatile. Even the scale of the 

dramatic oil price spike of 2008 seems less unusual when reported in logs. 

It is clear in Figure 2 that the natural gas price series is much more volatile than 

the oil price series. The annualized volatility of the log natural gas price series is 69%, 

while the annualized volatility of the log crude oil price series is 39%, so natural gas was 

a little less than twice as volatile as crude oil.6 Much of the volatility in the natural gas 

                                                 
6 Volatility is annualized using this formula: Ann vol NG = Standard deviation(log PHH,t – log PHHt-1)* 52 . 
Assuming that the time series has some element of mean reversion, then the standard deviation of the 
annual price changes will typically be less than the annualized standard deviation of the weekly price 
changes. If the time series is a pure geometric Brownian motion, then annual and the annualized standard 
deviations will be the same. 
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price series appears to take the form of temporary spikes in the price. These spikes appear 

to have a relatively short duration. This will be key to the later discussion.  

3. MODELING THE NATURAL GAS-OIL PRICE RELATIONSHIP 

What is the structure of the relationship of the natural gas price with the oil price? 

It seems natural to imagine that the price of oil and the price of natural gas would tend to 

rise or fall in tandem. They are both energy carriers, with one barrel (bbl) of crude oil 

having approximately the same energy content as six million Btu (mmBtu) of natural 

gas.7 This rough logic would argue that the price of a barrel of crude oil should equal six 

times the price of an mmBtu of natural gas. If the price of natural gas rises by $1/mmBtu, 

then the price of crude oil should rise by $6/bbl.  

Economists would quibble with the presumption that the ratio of prices ought to 

be determined exactly by the energy content equivalence. For example, Adelman and 

Watkins (1997) and Smith (2004) warn against valuing reserves in terms of “barrel of oil 

equivalent” or “gas equivalent”. The two fuels have different costs of production, 

transportation and processing, and they serve different portfolios of end uses with only a 

modest overlap. One should expect these factors to enter into the determination of any 

relationship between the prices of the two commodities, and the equilibrium relationship 

is unlikely to match the energy content equivalence ratio. 

It is worth emphasizing, in particular, that the crude oil and natural gas price 

series on which we focus are determined in different regional marketplaces. While the 

WTI crude oil price is for delivery in Cushing, Oklahoma and refers to a specific type of 

                                                 
7 To be precise, 1 barrel of West Texas Intermediate crude oil contains 5.825 mmBtu. 
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oil produced in that region, it remains a benchmark price for crudes traded globally. The 

WTI price is tied to fluctuations in global demand and supply, moving relatively tightly 

with the prices of crudes delivered into other regions. In contrast, the price of natural gas 

for delivery into the Henry Hub, Louisiana is impacted much more strongly by 

fluctuations in supply and demand specific to the North American marketplace. While the 

natural gas price in North America is linked to the fluctuations in supply and demand 

elsewhere in the globe, prices in different regions can move markedly apart from one 

another at times.   

In fact, nothing like an energy content equivalence has been persistently observed. 

Looking only as far back as the 1990s, the ratio of the price of oil ($/bbl) to the price of 

natural gas ($/mmBtu) has sometimes been as low as 2.5-to-1, and other times as high as 

19-to-1. Natural gas prices sometimes spike dramatically, without there being any 

noticeable change in crude oil prices. So is the price of natural gas tied to the price of oil, 

or not?  

A casual reading of the industry press reveals no clear consensus on this issue. 

Some seem to take for granted that the two prices must maintain some rough parity with 

one another, although there seems to be uncertainty about where that parity level is 

properly drawn. The literature contains a variety of rules-of-thumb, including the simple 

10-to-1 ratio, as well as more sophisticated burner tip parity rules. What is the formula 

that best describes the relationship? 

Part of the problem is that a number of other variables have some short-run 

influence on the prices of both natural gas and oil. Fluctuations in one or more of these 

variables can lead to the price of either natural gas or oil temporarily diverging from its 
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long-run level. These short-run fluctuations mask whatever long-run relationship may 

exist, making the relationship a complicated one to properly identify.  

The simplest of these other variables is the seasonal fluctuation in the price of 

natural gas in the United States. The price of crude oil in the United States is not 

seasonal, so the ratio of the prices must vary through the calendar year. Other variables 

that complicate the relationship are stochastic, but observable and readily incorporated as 

conditioning variables in a statistical analysis. These include weather events such as 

unexpectedly severe winter storms that cause the price of natural gas to spike, or 

surprisingly mild winter weather that causes the price to fall. Finally, both the natural gas 

price and the oil price are subject to idiosyncratic shocks to supply and demand in their 

respective markets, shocks that briefly disturb the usual price relationship between the 

two and that are not easily translated into conditioning variables. To identify the 

underlying tie between the two commodity prices requires filtering out the effect of these 

various factors on the observed price relationship. This is a challenging task. 

We break the relationship into four components. First, there is the underlying or 

fundamental tie between the natural gas price and the oil price. This is called the 

cointegrating relationship. When we say this is the fundamental tie, we mean that this is 

the relationship that is generally reestablished after periods in which the two prices move 

away from one another. Second, there are a few identifiable and recurrent outside factors 

– such as seasonality, episodic heat waves and cold waves and intermittent supply 

disruptions from hurricanes – that temporarily shift this fundamental tie in predictable 

ways. Third, there are a myriad of uncatalogued temporary disruptions to the supply and 

demand for natural gas that pull the price of natural gas away from the fundamental tie. 
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Fourth, when the natural gas price has been pulled away from the fundamental tie, it will 

predictably drift back towards it. The statistical analysis attempts to identify and filter out 

the three identifiable components, the first, second and fourth. Once each of these  

identifiable components of the movements in the natural gas price have been filtered out, 

we are left with the residual or unexplained shocks to the natural gas price. 

The purpose of our analysis is to uncover these three identifiable components and 

describe them in an accessible way, and to determine how much of the volatility in the 

natural gas price is accounted for by them and how much is left unexplained. In the 

statistical analysis presented in the appendix the three components are modeled together 

in one system of equations, and the parameters are estimated simultaneously. However, 

in the discussion here in the body of the text, we focus one at a time on the separate 

components, beginning with the first: the underlying fundamental tie between the two 

prices.  

The Fundamental Tie Between the Natural Gas Price and the Oil Price 

In the beginning of Section 3, we reported one possible structure for this 

fundamental tie and that was an equality of price in terms of the energy content of the 

two commodities. This would predict a price of oil that is approximately six times the 

price of natural gas. Brown and Yücel (2008) and Hartley, Medlock and Rosthal (2008) 

each report a competing rule-of-thumb of 10-to-1, widely cited among players in the oil 

patch. Brown and Yücel (2008) also report two other rules-of-thumb known as burner tip 

parity rules. One is based on competition between natural gas and residual fuel oil, while 

the other is based on competition between natural gas and distillate fuel oil. Both account 

for the transportation cost differential from the wellhead to power plants and industrial 
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users. Both then translate the relationship back to the price of crude oil based on the 

typical ratio between the price of the fuel oil and the price of crude.8 For example, at a 

$10/bbl oil price, the residual burner-tip parity rule predicts a natural gas price of 

$1.10/mmBtu, while the distillate burner-tip parity rule predicts a natural gas price of 

$1.26/mmBtu. When the oil price is $60/bbl, the residual burner-tip parity rule predicts a 

natural gas price of $7.86/mmBtu, while the distillate burner-tip parity rule predicts a 

natural gas price of $11.56/mmBtu. 

Each of these four pricing rules is charted in Figure 3.  Although Figures 1 and 2 

show data through mid-2010, the empirical results reported in the remainder of this paper 

rely only upon data through February 2009. Therefore Figure 3 and those which follow 

show data through this shorter horizon. The horizontal axis is the price of oil and the 

vertical axis is the price of natural gas. The line for each rule gives the predicted price of 

natural gas as a function of the given price of crude oil. Figure 3 also shows the actual 

combinations of crude oil and natural gas prices observed in our data series as a 

scatterplot. Each data point represents a different week’s pair of prices, with the week’s 

crude oil price determining the point’s location along the x-axis, and the week’s natural 

gas price determining the point’s location along the y-axis. Note that the scale required to 

cover the full range of the oil price series means that there is a dense cluster of points at 

the lower end of the range. Therefore, in Figure 4 we reproduce the rule-of-thumb graphs 

                                                 
8 In Brown and Yücel (2008), the relationship generated by competition with residual fuel oil at the burner 
tip is given as 

tWTItHH PP ,, )287.6/%85(25.0  , where PHH,t is the price of natural gas at the Henry Hub, 

and PWTI,t is the price of West Texas Intermediate crude oil at Cushing Oklahoma. The relationship 
generated by competition with distillate fuel oil at the burner tip is given as 
PHH ,t  0.80  (120% /5.825) PWTI ,t

. 
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and the data, but focus only on the lower portion of the range of oil prices, i.e., those 

below $30/bbl. 

Neither Figure 3 nor Figure 4 shows the time dimension to the observed prices. 

Figure 5 provides a time-series representation of the performance of the rules of thumb, 

graphing the prediction errors through time, i.e. the actual log natural gas price minus the 

predicted log natural gas price. One can see the periods in which one or another rule 

appears to have more or less closely approximated the actual relationship. 

One can summarize the data in Figures 3, 4 and 5 as follows. Of the four rules of 

thumb, the residual burner-tip parity rule prices were on average closest to the actual 

natural gas prices over the full period, 1991-2009, with an average error in logs of -0.090, 

i.e. just slightly above actual prices. The 10-to-1 rule prices had the second smallest 

difference from the actual natural gas prices, with an average error in logs of 0.135, i.e. 

just below actual prices. The energy content equivalence rule prices were on average 

further away from the actual natural gas prices, with an average error in logs of -0.405, 

which was considerably higher than actual prices. The distillate burner-tip parity rule 

exhibited the largest difference from actual natural gas prices, with an average error in 

logs of -0.419, also considerably higher than actual prices. 

We can also evaluate the performance of each rule of thumb from two different 

perspectives: year-by-year and within crude oil price ranges in $/bbl. Which rule most 

closely approximated actual natural gas prices varied considerably over the spectrum of 

observed oil prices and over the 1991-2009 time period. Of the four rules of thumb, the 

residual burner-tip parity rule prices were closest to the actual natural gas prices, on 

average, in 9 of the 19 years examined (1993, 1996-1997, 1999-2002, 2004 and 2009), 
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and when WTI prices ranged from $25-30/bbl and from $40-65/bbl. On average, 10-to-1 

rule prices were closest to the actual natural gas prices in 7 of the 19 years (1991-1992, 

1994-1995, and 2006-2008), and when WTI prices ranged from $15-25/bbl and over 

$65/bbl. The energy content equivalence rule prices were closest to the actual natural gas 

prices in 2 of the 19 years between 1991 and 2009 (2003 and 2005), and when WTI 

prices ranged from $30-40/bbl. The distillate burner-tip parity rule prices were closest to 

the actual natural gas prices only in 1998, when WTI prices were at their lowest level, 

below 15/bbl. 

The graphs in Figure 5 clearly demonstrate that each of the rules suffers from the 

identical failing: there is much more volatility in the natural gas price over the 1991-2009 

period than can be accounted for by movements in the oil price, no matter what 

relationship is posited. Although a given rule may be systematically biased, if we center 

the mean absolute errors we obtain a measure of the minimum variation that could 

conceivably be achieved by each. The centered mean absolute errors for the four rules of 

thumb are very close to one another, ranging from 0.310 for the 10-to-1 and Energy 

Content equivalence rules to 0.324 for the distillate burner-tip parity rule. In short, the 

unaccounted-for volatility is relatively constant regardless of the rule of thumb. The 

differences between the centered errors are much smaller than the differences between 

the (un-centered) average errors in logs of the various rules. 

Figures 3 and 4 also show a graph of the cointegrating relationship derived from 

the vector error correction model described in more detail in the Appendix. The 

cointegrating equation, in logs, is:  

log PHH  = –1.0493 + (0.7342  log PWTI). 
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The cointegrating relationship is linear in the logged prices. Converted back into dollars, 

the log-linear relationship is a slightly concave curve. To illustrate, the cointegrating 

relationship predicts a natural gas price of $1.90/mmBtu when the oil price is $10/bbl. At 

$60/bbl, the predicted natural gas price is $7.08/mmBtu. Were oil prices to reach 

$150/bbl, the cointegrating relationship predicts a corresponding natural gas price of 

$13.87/mmBtu. The VECM estimates this relationship together with an estimate of the 

other exogenous factors that determine natural gas prices as well as the dynamic effects 

of past changes in the prices of each series. Because certain of the data for these 

exogenous factors is only available starting in 1997, the cointegrating relationship 

identified in the equation above and in Figures 3 and 4 is derived from the shorter time 

window of June 1997 through February 2009. 

Figure 6 depicts the performance of the cointegrating relationship at predicting 

the natural gas price from January 1991 through February 2009. The prediction error, 

measured by subtracting the natural log of the predicted gas price from the natural log of 

the actual natural gas price, is presented as a scatterplot comparable to those shown in 

Figure 5. We use the cointegrating relationship from the equation above in stand-alone 

form to calculate the predicted gas price used for Figure 6. None of the other variables 

from the larger VECM analysis have been included, nor have any of the dynamics from 

the VECM been included. The centered mean absolute error for the cointegrating 

relationship is 0.333, which is approximately the same as for the rules of thumb discussed 

above.9 This repeats the earlier observation that the natural gas price series is just too 

                                                 
9 Note that the VECM was estimated for the shorter 1997-2009 period. Focusing just on the 1997-2009 
price data, the centered mean absolute error for the cointegrating relationship is 0.259. For the rules of 
thumb over this shorter window it ranged from 0.284 for the 10-to-1 and the energy content equivalence 
rules to 0.298 for the residual burner tip parity rule, to 0.321 for the distillate burner tip parity rule. 
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volatile to be accounted for by any simple tie to the oil price including this cointegrating 

equation. Only by somehow accounting for this additional volatility could we reduce this 

error. The other components of the conditional ECM attempt to provide this accounting, 

and we now turn to examine how successfully they do so.  

Conditional Variation 

Typical Seasonality 

Figure 7 illustrates the estimated impact of predictable seasonality on the natural 

gas price. This is based upon a typical seasonal weather pattern between 1997 and 2009, 

meaning a typical pattern of Heating Degree Days and Cooling Degree Days. Using the 

coefficients from our conditional error correction model, and holding constant the crude 

oil price and all other exogenous variables, we simulated the path of the natural gas price 

through the typical annual cycle. Figure 7 is centered on the average price level, which 

occurs in the third week of June and again in the first week of December. From this 

benchmark, the price peaks at about 113.5% in March. The trough is at 86.3% in 

September. The total amplitude of the seasonal variation in the natural gas price is 27 

percentage points. At a base price of $7/mmBtu (the June and December price), this is a 

range of $1.90/mmBtu.  

Figure 8 compares the seasonal variation around the cointegrating relationship to 

the scale of the observed prediction errors in natural logs of the prices. This allows one to 

see how much larger is the actual range of variation than can be accounted for by the 

predictable seasonal component. For example, the standard deviation of the logged error 

series for the cointegrating relationship from 1991-2009 is 0.333. The seasonality 
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coefficient, however, only ranges as high or low as +/- 0.125, or less than half of a 

standard deviation. Using two standard deviations as a benchmark for capturing the vast 

majority of the range in gas volatility, the seasonal component could not account for any 

more than 19% of natural gas volatility. 

Unseasonably Cold or Warm Weather 

Unseasonably cold or warm weather is measured by deviations from the normal 

number of either Heating Degree Days (HDD) or Cooling Degree Days (CDD). To 

illustrate the impact of these weather variables, we use the estimated coefficients in the 

conditional ECM as reported in the Appendix, and construct the impulse response 

function shown in Figure 9. The impulse employed in the figure is a typical cold spell 

lasting two weeks, with the first week exhibiting an HDD level 20 degree days above the 

average and the second week exhibiting an HDD level 15 degree days above the 

average.10 The figure shows the resulting path of the natural gas price as estimated by the 

conditional ECM. This causes a deviation in price that peaks at 3.4% above the base 

level. To scale this, suppose that the oil price were at $50/bbl, and assume normal 

seasonal conditions; then the predicted natural gas price in the second week of March 

would be $6.71/mmBtu. Given this abnormal seasonal cold spell, the price is predicted to 

peak at $0.23/mmBtu higher than the predicted price under normal conditions. 

Thereafter, the price gradually falls back. The half-life of the price impact from the cold 

spell is approximately 7 weeks.  

An unseasonable warm spell in the summertime is reflected in the deviation from 

CDD variable. In our dataset, a typical warm spell lasts only one week and on average 

                                                 
10 Normal Heating Degree Days or Cooling Degree Days reflect the average value for each week from 
1971-2000. 
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involves a 10 degree day variation. The heat wave prompts an impulse response of 3.3% 

above the benchmark natural gas price. The price that would prevail under normal 

seasonal patterns in the first week of August when the oil price is held at $50/bbl is 

$5.33/mmBtu. The warm spell produces a peak impact on the natural gas price of 

$0.18/mmBtu in the first week of the temperature deviation.  

Figures 10 and 11 show that neither type of shock, on average, generates a very 

large impact on natural gas prices. In order to illustrate the small magnitude of the cold 

snaps and heat waves, we have plotted the actual natural gas price series in Figures 10 

and 11 as a dashed gray line. We plotted actual prices that occurred after episodes in 

which HDD and CDD deviations in the data set matched our impulse-response 

experiments. Note that Figures 10 and 11 plot actual prices against the unexpected 

weather impulse response. The effects of other exogenous variables are included in these 

actual prices, so not all of the price variation represents unexplained volatility. A 

statistical test of the contribution of the exogenous variables to actual natural gas price 

volatility is included in the Appendix. The purpose of plotting actual prices against the 

impulse response in Figures 10 and 11 was to illustrate the relatively minor impact of the 

abnormal weather variables to natural gas price changes in the conditional ECM. We do 

not attempt to remove the effects of all exogenous variables in these figures, which would 

represent all of the unexplained volatility in natural gas prices. The actual price 

movements dwarf the movements predicted by our model’s coefficients, and the effect of 

the HDD and CDD deviations is not even noticeable after the impulse. Where the cold 

snap was predicted to increase prices by 3.4% the week after initial impact, the actual 

prices fell by 0.56%. Where the heat wave predicted an instantaneous 3.3% price 
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increase, actual prices fell 30%. This illustrates the relative contribution of this 

exogenous conditioning variable to the volatility of the natural gas price. 

Although the impulse responses of HDD and CDD shocks are similar in form, the 

specific values are different. First, the typical scenario is a shorter spike in CDD than in 

HDD. Second, the coefficient on the deviation from CDD is larger than the coefficient on 

the deviation from HDD. As shown in Figure 9, the price after a CDD shock immediately 

begins to fall back to its original level with a half-life (identical to that of the HDD 

shock) of about 7 weeks. 

Shut-in Production Due to Hurricanes 

Figure 12 plots the impulse response function on prices from a shut-in of natural 

gas production as a result of a hurricane. We construct it using the pattern of shut-in that 

resulted from Hurricane Ivan in September of 2004. At its peak, Hurricane Ivan shut-in 

over 5.15 million mmBtu of natural gas production, representing what was estimated at 

the time to be over half the gas production capacity in the Gulf.11 The disruption lasted 

over 33 weeks, and the average shut-in during this time was 836,768 mmBtu. The 

average shut-in production level represented a curtailment of about 7.4% over the 33-

week period, which lasted until mid-April the following year. To plot the impulse 

response, we used the coefficients from our conditional ECM, and held constant the 

crude oil price and all other exogenous variables. The precise time pattern of the 

disruption is graphed with the dashed line in Figure 12 measured against the right-hand-

axis. The model’s estimated impact on price for a supply disruption with this profile is 

graphed with the solid line in Figure 12 measured against the left-hand-axis. As seen in 

                                                 
11 Revised data from the Energy Information Administration put the actual shut-in production capacity 
against August 2004 production levels at 47%. 
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the figure, the maximum impact of the shut-in is a price premium of about 5% over a 

seasonally adjusted benchmark price of $5.51/mmBtu. This is an impulse response of 

$0.27/mmBtu over the benchmark. The half-life of the shut-in itself is 3.4 weeks, and the 

half-life of the price impact is 34 weeks.  

Figure 13 superimposes the actual Henry Hub natural gas prices over the same 

period. The model’s estimated effect is much smaller than actual price movements over 

the period, which were also much more volatile than our set of exogenous variables were 

able to account for. This reveals the relative magnitude of the unaccounted-for volatility. 

Storage Levels 

Finally, we analyze the impulse response of deviations from normal storage levels 

on the natural gas price. Storage differentials arise and dissipate over a longer period of 

time than unseasonable weather. The dashed line in Figure 14 charts the storage 

differential that arose between January and October of 2003 and is measured on the right-

hand-axis. We used this sample of actual data rather than constructing an experiment due 

to the fact that the storage differential in this period almost perfectly matched the median 

storage differential over the entire 1997-2009 period in both duration and degree. The 

differential was not likely due to any shock, but rather simply a deviation from the 

average storage level over our period of study. The average shortfall over the 38-week 

episode was about 360 million mmBtu, although at its maximum the shortfall was nearly 

629 million mmBtu. Figure 14 also charts the model’s predicted price impact with a solid 

line. The maximum price impact was reached on the 22nd week of the disruption with a 
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price premium of 15% over the seasonally-adjusted base price of $6.30/mmBtu.12 This 

impulse response corresponds to a price increase of $0.93/mmBtu over the benchmark. 

The model’s estimated half-life of the impulse response to the storage shortfall from its 

peak was about 23 weeks. The impact of a supply overhang is roughly the mirror image 

of the supply shortfall. 

Figure 15 superimposes the actual price movements of Henry Hub natural gas 

onto Figure 14. As in the case with shut-in production, the actual price movements dwarf 

the impulse response estimated by the model. In the real world, there was more than 

simply the storage differential variable in play. However, even taking this into account, 

the model is unable to explain most of the price volatility in natural gas that actually 

occurred between January and October of 2003. 

Disturbances to the Relationship and the Rate of Recovery 

Even after accounting for the variation in the price of natural gas that is ascribed 

to fluctuations in the price of oil as well as the variation in the price of natural gas that is 

ascribed to seasonality and the identifiable exogenous disturbances already isolated, there 

is a large amount of unexplained volatility in the natural gas price. This is presumably 

attributable to many uncatalogued events and evolving changes in the natural gas 

marketplace that are not reflected in these exogenous variables.  

These unexplained movements are events that pull the price of natural gas 

temporarily away from the identified relationship with the price of crude oil. Gradually, 

the identified relationship is reestablished. How quickly one can expect this to occur is 

                                                 
12 A storage shortfall is likely to arise coincident with other events, such as a shut-in of production or a 
severe weather event. However, in Figure 14 we examine the impact of a sudden storage shortfall arising in 
mid-winter, one that is resolved quickly, and which arises in isolation. 
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shown in Figures 16 and 17. There is a coefficient in each of the error correction models 

that measures the rate at which the natural gas price returns to the cointegrating 

relationship, both after changes in the oil price and after deviations in the natural gas 

price from its cointegrating relationship with the oil price. This is the error correction 

term, and the next paragraphs illustrate its mechanics.  

Figure 16 depicts the estimated behavior of natural gas prices when the crude oil 

price rises 20%, from $50/bbl to $60/bbl, and all other variables are held constant. The 

dotted line represents the target price of natural gas based on the level of the crude oil 

price. The solid line shows the path of the natural gas price as it seeks the new 

equilibrium over a span of weeks. The half-life of this movement is nearly 11 weeks. 

Figure 17 shows the estimated behavior of the natural gas price after it is 

subjected to a shock that is not due to any of the variables that are included in the model. 

That is, the crude oil price and all of the conditioning variables are held constant. In this 

case, the natural gas price spikes up by 162%, or $10/mmBtu from its baseline of 

$6.19/mmBtu when the crude oil price is steady at $50/bbl. Under this scenario, the half-

life for the return of the natural gas price to its cointegrating relationship is nearly 8 

weeks. 

 

Explained and Unexplained Volatility 

The implementation of the VECM and conditional ECM modeling techniques 

resulted in general improvements over the rules of thumb in fitting the natural gas price 

series given the price of oil and the values of our six exogenous variables. The centered 

mean absolute errors are much smaller than any of the rules of thumb. For the conditional 
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ECM, the centered mean absolute error was 0.202, while the smallest centered mean 

absolute error of the rules of thumb for the 1997-2009 period was 0.284, shared by both 

the energy content equivalence and the 10-to-1 rules.  

Despite the considerable improvements in fit, a large amount of the volatility in 

natural gas prices could not be explained by the crude oil price and other exogenous 

variables. The portion of the volatility in the natural gas price explained by the 

combination of exogenous variables in the conditional ECM is approximately 16%. That 

means the fraction of variance in natural gas prices unexplained by our model is nearly 

84%. This result led us to explore possible reasons for this weak explanatory power. 

4. A CHANGING RELATIONSHIP OVER TIME? 

Has the fundamental relationship between natural gas prices and oil prices been 

changing over time? Have the prices decoupled? If so, in what sense? Have they 

permanently broken away from the old relationship and moved into a new relationship, or 

have they temporarily broken away from the usual relationship, only to return at a later 

date? Or has the relationship between crude oil and natural gas prices become completely 

broken, with no sign of any pricing relationship whatsoever? 

Villar and Joutz (2006) examined the 1989-2005 period and found that the 

cointegrating relationship between logged oil and gas prices shifted up by nearly half of a 

percent per month, with the price of natural gas relative to crude oil having increased. 

Hartley, Medlock and Rosthal (2008) examined a substantially overlapping period, 1990-

2006, which exhibited a similar increase in the price of natural gas relative to the price of 



 

 24

crude oil.13 They go a step further to specifically attribute this increase to the increased 

demand for natural gas arising from the installation of advanced CCGT power plants with 

significantly improved heat rates. 

Figure 18 illustrates the dramatic shift in the Villar and Joutz predicted 

cointegrating relationship between crude oil and natural gas prices from the beginning of 

their data set in 1989 to the end in 2005. The trend curves are circumscribed by the actual 

price range of WTI crude contained in the 1989 to 2005 monthly price dataset. The 

authors apparently captured a time period in which natural gas prices were rising relative 

to crude oil prices. In our dataset, covering 1997-2009, we find that the cointegrating 

relationship shifted downward slightly, so that the level of natural gas prices fell relative 

to the price of crude oil. This is despite substantial overlap.14 Given that the 1997-2009 

cointegrating relationship we uncovered lies between the 1989 and 2005 Villar-Joutz 

cointegrating relationships, something must have changed between crude oil and natural 

gas markets such that the natural gas price became relatively less expensive. However, 

despite this shift in the level, the evidence of a relationship between the two time series 

remains strong.  

To further understand the stability of the relationship, we split our dataset into two 

segments and re-estimated our system of equations separately on each segment. The first 

segment spans the weekly data from June 13, 1997 to December 16, 2005. The second 

segment covers December 23, 2005 through February 20, 2009. The results are that the 

                                                 
13 As mentioned earlier, according to Hartley, Medlock and Rosthal (2008), the tie between natural gas and 
crude oil prices is not direct, but mediated by residual fuel oil prices. 
 
14 Villar and Joutz modeled a rising trend in natural gas prices over their sample period using a constant 
coefficient on time. This captures the in-sample trend. They cautioned against erroneously extrapolating 
this trend beyond their sample period. 
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relationship has shifted, modestly, but a fundamental relationship continues to exist. The 

two different cointegrating relationships are: 

log PHH = -2.0142 + (0.986 x log PWTI) for the 1997-2005 period, and 

log PHH = -0.8598 + (0.6782 x log PWTI) for the 2006-2009 period. 

Figure 19 shows these two lines against a backdrop of the raw natural gas price 

and oil price combinations that separately lead to the two estimated equations. The line 

for the 1997-2005 segment is somewhat less steep than the Villar and Joutz December 

2005 cointegrating relationship, as one might expect given that the Villar-Joutz 

cointegrating relationship is a snapshot at the end of our 8-1/2 year segment. The 2006-

2009 segment lies somewhat closer to the Villar and Joutz January 1989 cointegrating 

relationship.  

The conditional error correction models based on each of the segmented 

cointegrating relationships also account for a greater portion of the volatility in natural 

gas than the model covering the 1997-2009 period as a whole. The 1997-2005 model 

accounts for nearly 21% of natural gas volatility through the crude oil price and the 

included conditioning variables. The 2006-2009 model accounts for nearly 31% of the 

price volatility in natural gas. These are considerable improvements to the 16% achieved 

by the original conditional error correction model. Nevertheless, there remains a large 

amount of unexplained volatility in the natural gas price even in each of these separately 

estimated time windows. 

In contrast to the Villar-Joutz cointegrating relationships, the segmented 

cointegrating relationships we conducted do not assume a continuously increasing trend 

in natural gas prices relative to oil prices. Our modeling exercise suggests that natural gas 
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actually shifted from one historical relationship with crude oil to one in which natural gas 

was relatively discounted to crude oil. This shift appears to have occurred some time 

between 2005 and 2009. 

While there are clearly two distinct lines representing cointegrating relationships, 

keep in mind that the division of the data was arbitrary. Figure 19 could simply be 

depicting two snapshots of a gradually shifting relationship over time, and our separation 

of the data into these segments may have simply reflected the partial extent of this 

shifting relationship. Therefore we do not try to identify a structural break like those 

identified by Dvir and Rogoff (2009) in the much longer crude oil price time series.  

The contrast between our findings and the Villar and Joutz results (which cover 

data only through the end of 2005) reinforce the hypothesis that the crude oil-natural gas 

price relationship is capable of shifting, and that it likely did so over the course of the 

1997-2009 period we examined. 

CONCLUSION 

Consistent with industry assumptions, we have shown that there is a statistically 

significant pricing relationship between crude oil and natural gas. Use of both vector 

error correction and conditional error correction model formats has enabled us to 

characterize this relationship. 

We have also been able to characterize the path of natural gas prices as they 

return to the pricing relationship with crude oil after gas price shocks. Including 

conditioning variables related to weather and supply issues concerning natural gas also 

enabled us to identify the mechanics of the seasonal fluctuation in natural gas prices, and 

to characterize the behavior of natural gas prices in response to hurricanes, heat waves 



 

 27

and cold waves, and deviations from normal supply levels. However, despite these 

insights, our model of the 1997-2009 period only accounts for about 16% of the volatility 

in natural gas prices. There are many events that cause a price response in natural gas that 

are not accounted for in our modeling exercise. 

The question of whether the price series of crude oil and natural gas have 

decoupled, and in what sense, required that we examine whether the price relationship 

had somehow changed over the course of our 1997-2009 data window. By breaking the 

data into distinct segments, we could determine whether more than one relationship 

existed, or indeed if a more recent segment failed to establish any cointegrating 

relationship whatsoever. This would allow us to ascertain whether any of the three 

interpretations of decoupling that we posited in the Introduction had occurred. 

To test the possibility of a changing price relationship between crude oil and 

natural gas, we segmented the data into a 1997-2005 period and a 2006-2009 period and 

ran the same modeling exercises. We also compared these results with selected results 

from a Villar and Joutz paper that covered the 1989 through 2005 period. The results 

showed that between the two periods there are distinct relationships between the 

commodities, though whether there are only two relationships, or whether the difference 

represents a gradual shifting relationship over time, are not ascertained. The performance 

of the modeling exercise across the two periods does improve the ability of the model to 

account for the volatility in natural gas prices, however. The conditional error correction 

model corresponding to the 1997-2005 period can account for about 21% of natural gas 

volatility, while the model for the 2006-2009 period accounts for about 31%. 
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To address the question of decoupling in the first sense: yes, natural gas prices 

often break away from their usual relationship with crude oil prices, and to a large 

degree. However, in the 1997-2009 period we studied, these “decoupling” episodes were 

temporary, and the natural gas price always returned to some stable relationship with the 

crude oil price. In the second sense of “decoupling,” our results suggest that the 

relationship between oil and natural gas prices has probably experienced at least a 

gradual shift over the 1997-2009 period. This is evidence that, at least once over the 

1997-2009 period, an initial crude oil-natural gas price relationship was permanently 

broken and a new equilibrium relationship was formed. As for the last interpretation of 

decoupling – that the two price series no longer maintain any relationship with each other 

at all – we find no evidence that this has occurred. Despite the appearances to the 

contrary, the statistical evidence of a cointegrating relationship between the two fuels, at 

least when measured from the end of December 2005 through February of 2009, has 

strengthened.  

In short, despite large temporary deviations, natural gas prices continue to exhibit 

evidence of a cointegrating relationship with crude oil prices, and gas prices consistently 

return to a long-run relationship. However, this relationship has apparently shifted at least 

once over a 12-year period to a new equilibrium. There is no statistical evidence to 

support the claim that a relationship between the two price series has been completely 

severed. 
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Figure 1. The Natural Gas and Crude Oil Spot Prices, 
1991-2010.



Figure 2. Log Values of the Natural Gas and Crude 
Oil Spot Prices, 1991-2010.



Figure 3. Price Benchmarks Versus Observed Prices
(Full Range, 1997-2009)
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Figure 4. Price Benchmarks Versus Observed Prices
(Low Range)
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Figure 5. Prediction Errors for 4 Rules of Thumb
(Actual Log Natural Gas Price minus Predicted Log Natural Gas Price)

These  prediction err ors 



Figure 6. Prediction Errors for the Cointegrating Relationship
(Actual Log Natural Gas Price minus Predicted Log Natural Gas Price)

Out of Sample In Sample



Figure 7. Seasonality in the Natural Gas Price.



Figure 8. Seasonality Relative to Prediction Errors



Figure 9. Impulse Response Function: The Impact of 
Unseasonal Weather on Natural Gas Prices.

The figure shows the impulse response in the natural gas price from typical episodes of unseasonably cold winter weather (HDD) and unseasonably warm summer weather (CDD). For 
HDD, at week 0 the HDD is 20 degrees above normal, at week 1 the HDD is 15 degrees above normal. In all other weeks HDD is normal. For HDD, week 0 is at the start of March. For 
CDD, at week 0 the CDD is 10 degrees above normal. In all other weeks CDD is normal. For CDD, week 0 is at the start of August. In both cases, the impulse response is shown 
assuming a base crude oil price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against the seasonally adjusted 
natural gas price. 



Figure 10. Impulse Response Function: The Impact of 
Unseasonal Cold Snap on Natural Gas Prices Against 

Actual Price ChangeActual Price Change.

The figure shows the impulse response in the natural gas price from typical episodes of unseasonably cold winter weather (HDD). At week 0 the HDD is 20 degrees above normal, at 
week 1 the HDD is 15 degrees above normal. In all other weeks HDD is normal. For HDD, week 0 is at the start of March. The impulse response is shown assuming a base crude oil 
price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against the seasonally adjusted natural gas price. 



Figure 11. Impulse Response Function: The Impact of 
Unseasonal Heat Wave on Natural Gas Prices 

Against Actual Price ChangeAgainst Actual Price Change.

The figure shows the impulse response in the natural gas price from typical episodes of unseasonably warm summer weather (CDD). At week 0 the CDD is 10 degrees above normal. In 
all other weeks CDD is normal. For CDD, week 0 is at the start of August. The impulse response is shown assuming a base crude oil price of $50/bbl and therefore a base natural gas 
price of $6.19/mmBtu. The impulse response is measured as compared against the seasonally adjusted natural gas price. 



Figure 12. Impulse Response Function: The Impact of 
Shut-in Production (Hurricanes).

The figure shows the impulse response in the natural gas price from a period of shut-in production like that following Hurricane Ivan in 2004. At week 0 the shut-in begins. The figure 
shows the scale and duration of the shut-in. The maximum production shut-in is just over 5 Bcf. The shut-in lasts over 33 weeks, with an average shut-in of 0.812 Bcf. The impulse 
response is shown assuming a base crude oil price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against the 
seasonally adjusted natural gas price. Week 0 is at mid-September. The Actual Price Change series is the price difference from the actual prevailing natural gas price at week zero.



Figure 13. Impulse Response Function: The Impact of 
Shut-in Production (Hurricanes) Against Actual Price 

ChangeChange.

The figure shows the impulse response in the natural gas price from a period of shut-in production like that following Hurricane Ivan in 2004. At week 0 the shut-in begins. The figure 
shows the scale and duration of the shut-in. The maximum production shut-in is just over 5 Bcf. The shut-in lasts over 33 weeks, with an average shut-in of 0.812 Bcf. The impulse 
response is shown assuming a base crude oil price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against the 
seasonally adjusted natural gas price. Week 0 is at mid-September. The Actual Price Change series is the price difference from the actual prevailing natural gas price at week zero.



Figure 14. Impulse Response Function: The Impact of 
a Storage Shortfall.

The figure shows the impulse response in the natural gas price from a period when gas in storage is less than normal for that calendar date. At week 0 the storage shortfall begins. The 
figure shows the scale and duration of the shortfall. The shortfall accumulates to a maximum of just over 500 Bcf, then plateaus and gradually dissipates to zero at the 37th week. The 
impulse response is shown assuming a base crude oil price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against 
the seasonally adjusted natural gas price. Week 0 is at mid-January.



Figure 15. Impulse Response Function: The Impact of 
a Storage Shortfall Against Actual Price Change.

The figure shows the impulse response in the natural gas price from a period when gas in storage is less than normal for that calendar date. At week 0 the storage shortfall begins. The 
figure shows the scale and duration of the shortfall. The shortfall accumulates to a maximum of just over 500 Bcf, then plateaus and gradually dissipates to zero at the 37th week. The 
impulse response is shown assuming a base crude oil price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against 
the seasonally adjusted natural gas price. Week 0 is at mid-January.



Figure 16. The Response of the Natural Gas Price to 
an Increase in the Crude Oil Price.
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The figure shows the impulse response in the natural gas price from a $10/bbl increase in the crude oil price, from $50/bbl to $60/bbl. The impulse response is measured as compared 
against the seasonally adjusted natural gas price.



Figure 17. Dissipation of a Temporary Shock to the 
Natural Gas Price.

The figure shows the impulse response in the natural gas price following an exogenous initial increase of $10/mmBtu, from $6.19/mmBtu up to $16.19/mmBtu. The impulse response is 
shown assuming a base crude oil price of $50/bbl and therefore a base natural gas price of $6.19/mmBtu. The impulse response is measured as compared against the seasonally 
adjusted natural gas price. 



Figure 18. Villar-Joutz Oil-Gas Cointegrating 
Relationship, 1989 and 2005



Figure 19. Segmented Oil-Gas Cointegrating 
Relationships (VECM)
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Appendix 

A1. THE DATA 

Our weekly price series for natural gas and for crude oil run from January 25, 

1991 through February 20, 2009. However, we only have a complete set of data for our 

exogenous variables—Heating and Cooling Degree Days, Deviations from Average 

Heating and Cooling Degree Days, Natural Gas Storage, and Shut-in Natural Gas 

Production—beginning on June 13, 1997. Therefore, we can discuss properties of the 

natural gas and oil price series beginning in 1991, but can only benefit from the 

information contained in the exogenous variables beginning in 1997. The primary body 

of statistical results reported is based on analysis using all of the exogenous variables and 

is therefore conducted using data from June 13, 1997 through February 20, 2009. To 

analyze how the fundamental relationship may have changed over time, we broke this 

time period up into two pieces with one running from June 13, 1997 through December 

16, 2005 and the second running from December 23, 2005 through February 20, 2009.  

The Natural Gas and the Oil Price Series 

Weekly spot pricing data for West Texas Intermediate (WTI) crude oil and Henry 

Hub natural gas was retrieved from the Bloomberg data terminal at the MIT Sloan School 

of Management. Each series represents the price for next-day delivery on the trade date. 

For the natural gas spot price series, the day-ahead price is a volume-weighted average of 

all trades in the Bloomberg sample on the given trade date for delivery at Henry Hub, 

Louisiana. For the WTI crude oil spot price series, the day-ahead price is an arithmetic 

average of all sampled trades for delivery of WTI crude oil at Cushing, Oklahoma. All of 



 A2

our analyses were conducted using the natural logs of the two price series. Any reference 

to the natural gas or oil price in this Appendix pertains to the natural logs of these price 

series. We confirmed the familiar fact that each of these series appears to be non-

stationary, while the first difference of each series is stationary—i.e., each series appears 

to be integrated of order one.1 

The Exogenous Variables 

The models in this paper utilize a series of exogenous variables that serve as the 

“fundamentals” of the natural gas price. Details of each of the variables are described 

below.  

                                                 
1 This was done by checking for a unit root, both with the Augmented Dickey-Fuller (ADF) test and with 
the Phillips-Perron test. On our statistical platform, Stata 8 Intercooled, the Augmented Dickey-Fuller test 
is called the Interpolated Dickey-Fuller test.  The command is “dfuller”.  For the Phillips-Perron test, the 
command is “pperron.”  
The results are presented in Tables A1 and Table A2.  Both logged WTI crude oil and Henry Hub natural 
gas prices fail to reject the null hypothesis that there is a unit root and that the data are non-stationary. The 
Augmented Dickey-Fuller coefficient for the natural log of the Henry Hub price series was -2.441, with a 
p-value of 13.1%.  The ADF coefficient for the natural log of the WTI crude oil price was -1.477, which 
corresponds to a p-value of 54.5%. Identical conclusions can be drawn from the Phillips-Perron test results.  
For the logged Henry Hub natural gas prices, the Z(rho) statistic is -9.103 and the Z(t) statistic is -2.262.  
These correspond to a p-value of 18.4%.  In the case of logged WTI crude oil prices, the Z(rho) statistic is -
3.204 and the Z(t) statistic is -1.399.  These correspond to a p-value of 58.3%.   The p-value is the 
probability that the prices observed are the prices one would expect to observe if the null hypothesis were 
true.  Normally, to reject a null hypothesis would require a p-value below the 5% level.  The ADF and 
Phillips-Perron test statistics thus indicate that both the Henry Hub natural gas prices and the WTI crude oil 
prices exhibit unit root processes.   
Often a time series of data that is integrated of order one can be made stationary by differencing.  That is, 
instead of modeling with weekly natural gas and crude oil price levels, we examine the price changes each 
week.  The Augmented Dickey-Fuller and Phillips-Perron tests confirmed that the differenced WTI crude 
oil and Henry Hub natural gas prices were stationary at the 1% level.  For the Henry Hub natural gas prices, 
the first differences yielded an ADF test statistic of -24.984 and a Phillips-Perron Z(rho) statistic of -
558.254.  The Phillips-Perron z(t) statistic was -25.164.  The equivalent statistics for the differenced WTI 
crude oil price series were -27.185, -664.208, and -27.207 respectively.  The results indicate that we should 
be able to use a regression model on the first differences of the two price series and avoid distortion due to 
the effect that previous price levels have on subsequent observations. 
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Seasonality – Heating Degree Days and Cooling Degree Days 

Data on Heating Degree Days (HDD) and Cooling Degree Days (CDD) were 

gathered from the Climate Prediction Center of the National Weather Service under the 

National Oceanic and Atmospheric Administration (NOAA). Both are calculated as a 

weighted average of weather station temperature data. HDD is the average number of 

degrees below 65°F. The greater the HDD figure, the greater the demand for heat. CDD 

is the average number of degrees above 65°F. The greater the CDD figure, the greater the 

demand for air conditioning. The HDD series we chose is weighted by regional gas 

usage. The CDD series is weighted by population. Weekly figures represent a weekly 

accumulation of each day’s HDD and CDD. 

Figures A1 and A2 depict the weekly HDD and CDD data over the 1997-2007 

period. The seasonal pattern is obvious. HDD levels tend to peak about three times higher 

than CDD levels. The peak for HDD is in the winter, with minimum values over the 

summer, while the converse is true of CDD figures. During our 1997-2009 data series, 

the HDD variable ranged from an average high of 205 in January to an average low of 1 

in July. The average HDD figure was 87.8, with a standard deviation of 79.8. The CDD 

variable typically ranged from a low of about 1 in January to a high of about 75 in July. 

CDD figures were much less volatile than HDD figures. The average CDD was 25.4, 

with a standard deviation of 28.2. 

Unseasonal Temperature Events – deviation from normal HDD or CDD 

We used deviations from normal HDD and CDD figures in order to characterize 

deviations from the normal seasonal temperature. These are labeled HDDDEV and 
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CDDDEV and are calculated and reported by NOAA by subtracting, respectively, the  

“normal” HDD and CDD figures from the actual observations in each given week. 

Normal HDD and CDD figures are also reported by the NOAA and represent the average 

of each week’s HDD and CDD reading over the 1973-2000 time period. 

Figures A3 and A4 graph the HDDDEV and CDDDEV variables over our data 

period. The graphs also show one standard deviation both above and below the mean for 

each.  

HDDDEV shocks tended to last about 2-3 weeks on average, reflecting the typical 

profile of a cold snap. Over the 1997-2009 period, deviations from normal HDD were, on 

average, negative, at -5.9, with a standard deviation of 21.5. The distribution of the 

deviations is skewed, with a large number of small deviations and a few large ones in the 

winter months. For example, the average deviation in January was -19. 

CDDDEV shocks tended to last 1-2 weeks before returning to normal. From 

1997-2009, the average CDDDEV figure was 2, with a standard deviation of 6.5. Shocks 

tended to be highest in September, with an average value of 5. 

Shut-in Gas Production – Hurricanes 

Figure A5 plots the amount of natural gas production capacity that is curtailed in 

the Gulf of Mexico in million cubic feet (mmcf, equivalent to 1,030.5 mmBtu). This is 

always a result of hurricane activity. The shut-in natural gas production in the Gulf 

(SHUTIN) serves as an alternative to a “hurricane dummy” variable in order to model the 

one-off effects of a hurricane’s impact on the Gulf of Mexico gas industry. However, the 

shut-in production figure could be considered superior in one aspect: prolonged 
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curtailments in production, perhaps due to damage caused by the hurricane to drilling rigs 

or gathering infrastructure, can be tracked according to their severity better than through 

the use of a binary dummy variable. The Minerals Management Service (MMS) posts 

weekly shut-in production statistics on its Gulf of Mexico webpage under Press 

Releases/Reports whenever hurricane activity prompts oil and gas producers to halt 

production at their offshore platforms.  

Gulf of Mexico natural gas production is roughly 10% of total U.S. gas 

production over the course of the year (according to the Energy Information 

Administration (EIA) of the Department of Energy). Over the 1997-2009 period, Gulf of 

Mexico natural gas production ranged from about 7 to 10 Bcf (7.2 to 10.3 million 

mmBtu) per day (MMS website). Hurricanes on the scale of the Katrina/Rita event 

managed to shut in over 80% of Gulf production (MMS website press releases). 

Hurricane disruptions to Gulf gas production have a characteristic pattern: a large spike 

in the week preceding hurricane impact, followed by a gradual decline in shut-in 

production. This reflects the initial evacuation before hurricane impact, the immediate 

return to production of undamaged wells after the hurricane has passed, and the gradual 

return to production of rigs that were damaged to different degrees by the hurricane.   

The shortest such disruption in our dataset was 34 weeks in response to Hurricane 

Ivan in 2004. The other two hurricane impacts in the dataset were actually combinations 

of two hurricane impacts in each case – Hurricanes Katrina and Rita in 2005 and 

Hurricanes Gustav and Ike in 2008. We thus cannot reliably calculate an “average” 

production impact for a single hurricane from our dataset – we have only one 

observation.  
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Storage Differentials 

Natural gas is stored in various locations throughout the United States, ranging 

from depleted oil and/or gas fields to LNG storage facilities. The EIA collects and sums 

the data on storage levels on a weekly basis and reports it on its website. The STORDIFF 

variable is the difference between a weekly gas storage level and the 5-year running 

average, reported in billion cubic feet (Bcf, equivalent to 1.03 million mmBtu). The 

average storage level from 1997-2009 was 2,256 Bcf (2.32 billion mmBtu) on any given 

week, with a standard deviation of 716 Bcf (737.84 million mmBtu). The average storage 

differential from 1997-2009 was 133 Bcf (137.06 million mmBtu), and the average 

amount of time that storage remained out of sync with the normal storage level was about 

39 weeks. The median duration of a storage differential was 17 weeks. Figure A6 shows 

a graph of this variable. 

A2. MODEL TESTS 

We construct a Vector Error Correction Model (VECM) that expresses a change 

in the current prices for natural gas and oil in terms of past price changes. In order to 

determine the appropriate number of lagged effects to include in the model we first fit a 

vector autoregression (VAR) model using the prices and exogenous variable series in 

levels and then conduct a series of selection order criteria tests. The VAR model (with the 

exogenous variables included) is as follows: 

                               n                              n                            6 

PHH,t = a + Σ biPWTI,t-i + Σ ciPHH,t-i + Σ djXj,t + εt 

                            
i=1                          i=1                        j=1 
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The log price of Henry Hub natural gas is determined by the previous 1 to n weeks’ 

prices of WTI crude oil in logged dollars per barrel (PWTI,t-n), with each week’s effect 

denoted by the corresponding coefficient bi; by the previous 1 to n weeks’ prices of 

Henry Hub natural gas in logged dollars per mmBtu (PHH,t-n), with each week’s effect 

denoted by the corresponding coefficient ci; and by the contemporaneous set of six 

exogenous variables (heating degree days (HDD), cooling degree days (CDD), deviations 

from normal HDD (HDDDEV), deviations from normal CDD (CDDDEV), shut-in 

natural gas production in the Gulf of Mexico (SHUTIN), and differences from average 

natural gas storage levels (STORDIFF). The effect of each of the exogenous variables is 

denoted by the coefficient dj. εt corresponds to a random error term with an expected 

value of zero. 

The point of running the VAR selection order criteria test is to determine the 

number of lags, n, of previous price changes to include in the model. It involves the 

estimation of a series of VAR models with varying lag lengths. Each model is compared 

with the aim of finding the model that best explains the data for the number of parameters 

it uses. The tests involved penalize the use of more parameters than necessary to 

adequately fit the model to the data. We ran a VAR selection order criteria test with a 

maximum of 12 lags on the series of weekly logged Henry Hub natural gas and WTI 

crude oil prices and included the exogenous variables in the VAR.2 Using up to 12 lags in 

the model allows for the effects of approximately one season’s duration to feed into the 

determination of the actual week’s natural gas price. The selection order criteria tests are 

the Likelihood Ratio (LR) test, Akaike’s Final Prediction Error (FPE), Akaike’s 

                                                 
2 Using the “varsoc” command on Stata 8 Intercooled. 
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Information Criterion (AIC) test, the Schwarz Bayesian Information Criteria (SBIC) test 

and the Hannan-Quinn Information Criteria (HQIC) test. Each test represents a slightly 

different mathematical method of statistically determining the model that achieves the 

best combination of fit and economy of parameters. Table A3 details the results of the 

VAR Selection Order Criteria tests. The Likelihood Ratio Test, the Final Prediction 

Error, and the Akaike Information Criteria tests all showed the closest fit at ten lags. The 

Hannan-Quinn Information Criteria test selected two lags, while the Schwartz Bayesian 

Information Criteria selected just one lag. We chose to use ten lags. A ten-lag VAR is 

equivalent to a nine-lag VECM. 

The next step was to determine whether there is in fact a linear combination of oil 

and gas prices such that the series becomes stationary. This phenomenon, discussed 

above, is cointegration. We tested for cointegration between the oil and gas price series 

using the Johansen test.3 The results of the Johansen tests are detailed in Table A4. 

Running the Johansen test using nine lags provided similar results and allowed us to draw 

identical conclusions. The Johansen test indicated a rank of one (at significance of 1%) 

based on the trace statistics, and both the SBIC and HQIC likewise implied a rank of one. 

This is strong evidence of a single cointegrating relationship between Henry Hub natural 

gas and WTI crude oil prices if exogenous variables acting on the Henry Hub price are 

included. 

 

                                                 
3 The “vecrank” command in Stata. Note that since there are only two data series here, the largest number 
of cointegrating relationships that can be found is one. The test is still useful in that it will identify whether 
the oil and gas prices are indeed cointegrated. 



 A9

A3. THE MODELS 

The VECM 

We then estimated our VECM.4 The VECM is essentially a VAR model with the 

addition of an error-correction term and a characterization of the cointegrating 

relationship between two time series. Our theory is that one commodity will “lead” the 

other in the cointegrating relationship. The price of the dependent commodity will 

commonly stray from its long-run relationship with the independent commodity in 

commodity markets. The error-correction term measures the “speed” at which the 

dependent commodity “corrects” its deviation (“error”) from this long-term equilibrium 

with the independent commodity by returning toward the long-run predicted relationship.  

To account for natural gas fundamentals that do not affect oil prices, as well as for 

the volatility in natural gas that is not observed in oil prices, the VECM also incorporates 

the previously-discussed exogenous variables that act solely on our hypothesized 

dependent variable of gas prices (HDD, CDD, HDDDEV, CDDDEV, SHUTIN, and 

STORDIFF). These fundamentals partially account for movements of the Henry Hub 

natural gas price either closer to or further from the calculated long-run target. 

As stated above, the difference between the actual Henry Hub price and the long-

run equilibrium price predicted by the VECM is the “error”. (This “error” is denoted by 

μt and is not the same as the epsilon error (εt), which is the difference between the actual 

Henry Hub price change and the model’s predicted Henry Hub price change.) An error-

correction mechanism moves the natural gas price closer to its long-term equilibrium 

                                                 
4 In Stata, the command for a Vector Error Correction Model is “vec”. 
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relationship with WTI to “correct” the error by a certain coefficient each week, thus 

narrowing the gap between actual prices and the VECM’s predicted equilibrium prices.  

The mathematical representation of the VECM is as follows: 

PHH,t = γ + βPWTI,t + μt 

                                                        n                                  n                               6 

PHH,t = a + α(μt-1) + Σ biΔPWTI,t-i + Σ ciΔPHH,t-i + Σ djXj,t + εt 

                                                     
i=1                              i=1                            j=1 

                                                        n                                  n                               6 

PWTI,t = a + α(μt-1) + Σ biΔPWTI,t-i + Σ ciΔPHH,t-i + Σ djXj,t + εt 

                                                     
i=1                              i=1                            j=1 

 

The top equation details the long-term relationship between Henry Hub and WTI 

prices. PHH,t is the logged Henry Hub natural gas price in week t, PWTI,t is the logged West 

Texas Intermediate crude oil price in week t, γ is a constant to be estimated, and β is a 

parameter to be estimated. μt is an error term in week t. The equation designates the 

“target” toward which Henry Hub prices will move over time.  

The second and third equations incorporate the error correction mechanism as 

well as the lagged effects of the two price series on Henry Hub and WTI logged prices, 

followed by the effects of the exogenous (seasonal) variables on both price series. μt-1 is 

the lagged set of equilibrium errors in the estimated cointegration equation. These are 

identical to the μ-series from the top equation, but lagged one week. Xj is the matrix of 

the six exogenous variables representing the fundamental drivers of the Henry Hub 

natural gas price. εt is the normal error term with a mean of zero. Finally, a, bi, ci, and dj 

are coefficient parameters of each of the variables – they will likewise be estimated by 

the model regression. 
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Note that the VECM does not simply assume that Henry Hub prices are 

determined by WTI prices. It mechanically returns results separately as if each price 

series were affected by the other. As such, the model also performs the regressions as if 

crude oil were the dependent variable and natural gas were the independent variable. That 

allows the effects of these exogenous variables to be measured on WTI crude oil, as well 

as an examination of the assumption that it is actually oil prices that are dependent on 

natural gas prices. However, the statistics alone will not allow us to conclude whether 

natural gas prices determine oil prices or vice versa. We need to resort to theory to draw 

such conclusions.  In this discussion, we will focus on our hypothesized relationship, in 

which natural gas prices are dependent on oil prices. 

Table A5 illustrates the results for the VECM models assuming Henry Hub prices 

and, alternately, WTI prices as the dependent variable. For the single cointegrating 

relationship, the β coefficient is 0.7342, and the γ coefficient is -1.0493. The β coefficient 

is highly statistically significant, with a p-value of 0.000.   

The equation for the long-term relationship is as follows: 

log(PHH,t) = -1.0493 + 0.7342log(PWTI,t) 

The equation for changes in the Henry Hub price has an R2 statistic of 0.1411, 

while the equation for changes in the WTI price has an R2 statistic of 0.1143. This 

implies that in the case of Henry Hub prices, about 14.1% of the volatility in Henry Hub 

prices can be described through the volatility of the WTI price and the values of the six 

exogenous variables. In the case of the WTI price-change equation, only about 11.4% of 

the volatility in WTI prices can be explained by volatility in the Henry Hub price and the 

values of the six exogenous variables. In line with our hypothesis, the model is better at 
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explaining Henry Hub natural gas price movements than it is at explaining WTI crude oil 

price movements. 

Examining the price-change equation in terms of the effect on the change in 

Henry Hub logged prices, we note that the modeled α-coefficient for reversion to the 

long-run predicted price relationship is -0.0828, with a p-value of 0.0000. Based solely 

on this single coefficient, the implication here is that if all else held equal, any spike in 

Henry Hub prices from the long-run relationship would be “corrected” (be diminished) 

by half of the original error value in about 8.4 weeks. We call this the half-life of the 

error correction mechanism. 

The significance of the exogenous variables representing the fundamentals of 

natural gas pricing as effects on the Henry Hub price varies widely. Only the variables 

accounting for unseasonal temperature events – HDDDEV and CDDDEV – showed p-

values below the 1% threshold. Of the rest of the variables, only STORDIFF had a p-

value below 10%, which is not individually significant enough for inclusion in the model. 

However, the joint statistical significance of the set of six exogenous variables was high, 

with a Chi2 statistic of 51.15. That corresponds to a joint p-value of 0.0000. In the end we 

included all of these variables in the overall Henry Hub price change equation. 

We also retained the effects of the lagged price changes in Henry Hub and WTI 

prices on the contemporary price change in Henry Hub prices. Individually, only the 

Henry Hub price change from three weeks prior and from nine weeks prior were 

statistically significant within the 5% p-value range, and the second, fifth, and eighth lags 

were significant at the 10% level. However, jointly the nine lagged price changes have a 

p-value of 0.0041, which is well within the 1% significance range. 
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None of the lagged WTI price changes were statistically significant, either alone 

or jointly. The joint significance test of the WTI lagged price changes returned a p-value 

of 0.6333, which implies that the probability that the combined effects of the nine lagged 

WTI prices are actually zero are around 63%. However, when included with the entire set 

of all variables in the regression, the Chi2 statistic is 75.86, corresponding to a 

statistically robust p-value of 0.0000. We thus included all of the coefficients in our 

modeling exercise for Henry Hub price changes. 

Thus far we have focused on the second equation in the VECM: the effects of the 

lagged HH and WTI price changes and the six exogenous variables on the change in 

Henry Hub prices. However, the third equation of the VECM also provides an 

examination of the effects of those same variables on the change in prices for WTI crude 

oil. Our working hypothesis has been that the WTI crude oil price series is exogenous to 

the system. The VECM, however, treats WTI as a jointly endogenous element in the 

system. The reason we used the VECM was not to determine whether one variable or the 

other was exogenous to the system. Our assumptions based on observable facts lead us to 

believe that WTI crude oil prices are indeed free of the influence of Henry Hub natural 

gas prices. The VECM was run so that we could find the cointegrating (or long-run) price 

relationship between Henry Hub prices and WTI prices, as well as the ECM coefficient 

that measures the rate at which Henry Hub prices return to the long-run relationship after 

deviating. Nonetheless, the statistics, while not definitive, support this assumption. 

The existence of the counterintuitive and spurious coefficients in the VECM 

model when applied to changes in the WTI crude oil price reinforce our theoretical 

assumption that the model does not hold any ability to estimate the price movements in 
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WTI crude oil based on the values of the exogenous and lagged natural gas price 

variables. We continue to assume that WTI crude oil prices are at least weakly exogenous 

to the system. Since we do not need the added complication of assuming that WTI prices 

are in part determined by Henry Hub natural gas prices, we construct a modified version 

of our error correction model called the conditional error correction model (conditional 

ECM). 

The conditional ECM 

The conditional ECM is a VAR model in which we can measure the relationship 

between Henry Hub natural gas prices conditioned on the assumption that the WTI crude 

oil price can be taken as predetermined. In our conditional ECM, we assume that the 

contemporaneous change in the logged WTI price imparts an immediate effect on the 

logged price of Henry Hub natural gas. This is really an assumption that there are market 

factors that affect both commodities contemporaneously such that knowing the WTI price 

movement can allow one to infer what the Henry Hub gas prices ought to be. 

Furthermore, the conditional ECM uses the cointegrating error term from the VECM as 

an exogenous variable. The cointegrating error term is the actual logged Henry Hub price 

minus the long-run predicted logged Henry Hub price as predicted by the VECM for each 

week. Finally, we retain the six exogenous variables utilized in the original VECM.   

The functional form for our conditional ECM is a vector autoregression. The 

error-correction term is provided solely because we took the long-run predicted 

cointegrating relationship estimated in the VECM as a given in the conditional ECM. 

Thus, the cointegrating equation is not actually estimated in our conditional ECM. The 

equation we estimated for changes in the Henry Hub gas price is as follows: 
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                                                                                    n                               6 

PHH,t = a + α(μt-1) + bΔPWTI,t + Σ ciΔPHH,t-i + Σ djXj,t + εt 

                                                     
                          i=1                            j=1 

 

Here, in the conditional ECM, a is a constant, α is the error-correction coefficient 

on the lagged errors in the cointegrating relationship from the original VECM (μt-1), and b 

is the coefficient on the contemporaneous change in the logged WTI crude oil price. The 

ci series of coefficients represent the effects of the lagged changes in the logged Henry 

Hub price. Since we used 9 lags in the VECM, we do so again in the conditional ECM, so 

n = 9. dj represent the coefficients for each of the exogenous variables used in the VECM 

(here denoted as Xj to represent HDD, CDD, HDDDEV, CDDDEV, STORDIFF, and 

SHUTIN). εt is, as before, a standard white noise error term with an expected value of 

zero. 

Table A6 reports the results of the conditional ECM. The R2 statistic has 

increased slightly to 0.1606, meaning that over 16% of the volatility in the Henry Hub 

natural gas price can be described through the fluctuations of the exogenous variables, the 

change in the WTI price, and the effects of the nine lagged weekly price changes in 

Henry Hub prices. The Chi2 statistic has increased to 114.8 from its VECM value of 94.3.   

The α coefficient for the error correction has intensified to -0.0952 and has 

remained statistically significant, with a p-value of 0.0000. The half-life for the error 

correction mechanism to eliminate differences from the long-run predicted relationship is 

7.3 weeks if the effects of the lagged Henry Hub price changes are ignored. Since the 

model also includes lagged price effects for Henry Hub prices, these additional 

coefficients also affect the rate at which the Henry Hub price can correct back to the 
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predicted long-run relationship. When lagged effects are included, one must consider 

specific scenarios in which the Henry Hub price can diverge from the long-run 

equilibrium. This is why the half-life for the error correction differs between the 

scenarios depicted in Figures 16 and 17.  

The statistical significance of the exogenous variables has increased for each of 

the variables that were significant in the VECM, with the STORDIFF p-value of 0.037 

bringing it into the 5% significance range and the CDD p-value improving to within the 

10% significance range at 0.069. Furthermore, the signs for each are what one would 

expect from a change in any of the variables: increases in HDD, HDDDEV, CDDDEV, 

and SHUTIN provoke increases in the Henry Hub price, while increases in CDD and 

STORDIFF provoke decreases in the Henry Hub price. The change in the WTI price is 

both robust, with a coefficient of 0.2872, but also statistically significant at 0.0000. 

Furthermore, the Chi2 statistics for each of the joint variable significance tests has 

improved considerably in every case. In the conditional ECM, the joint lagged Henry 

Hub price changes, the joint exogenous variables, and the combinations of lagged, WTI, 

and exogenous variables in joint significance tests all return p-values implying statistical 

significance at the 1% level or better. 

A4. INSIGHTS ON THE OIL-GAS PRICE RELATIONSHIP FROM THE 

CONDITIONAL ECM 

Comparisons to Other Models 

In order to compare how this model measures up to other models of price 

changes, we provide Table A7, partially sourced from the IEA’s World Energy Outlook 
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2009 (OECD, 2009). The table compares four models in two scenarios. The four models 

are the Villar-Joutz model used in their 2006 paper (Villar and Joutz, 2006), the Brown-

Yücel model from their 2008 paper (Brown and Yücel, 2008), and the VECM and 

conditional ECM as described in this paper. The two scenarios are: one in which the WTI 

price spikes up by 20% and holds steady thereafter (identical to that explored in Figure 

16), and one in which the WTI price spikes for one period up by 20% and then returns to 

its original value. The table shows how the price of Henry Hub natural gas should 

change, percentage-wise, from its original value given the price movements in WTI. The 

discrepancies in the predicted price changes in Henry Hub are rather small, especially 

considering the mismatch in the time periods being studied and the fact that Villar and 

Joutz use monthly data and a time trend (as well as monthly seasonal dummy variables) 

while Brown and Yücel and the authors of this paper use weekly data (and HDD and 

CDD data as proxies for seasonal trends). 

The Economic Significance of the Conditional ECM Coefficients 

The conditional ECM provides coefficients on the effects of HDD, CDD, 

HDDDEV, CDDDEV, STORDIFF and SHUTIN. There are coefficients for nine weeks 

of lagged changes in the logged price of Henry Hub and the contemporaneous change in 

the logged price of WTI. All are used to determine how the logged price at Henry Hub 

changes, but what does that mean in terms of $/mmBtu? Table A8 details the economic 

effects of the exogenous variables in the conditional ECM on the change in price at 

Henry Hub in $/mmBtu. The table provides an example of how a one-unit increase in the 

relevant variable will change the price of Henry Hub natural gas from $7/mmBtu. Note 

that the effect of a one-unit increase in any of the six exogenous variables is much, much 
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smaller than the effect of a one-unit increase in either lagged Henry Hub prices or the 

change in the WTI crude oil price when prices are in natural logs. For this reason the 

effects of a one-standard deviation increase in each of the variables is detailed in the last 

column of Table A8. The general magnitude of effect of a one-standard deviation 

increase on the price of Henry Hub natural gas is similar across all but three of the 

variables, ranging from about 3 to 6 cents/mmBtu. The three big outliers are the change 

in the WTI price, HDDDEV and CDDDEV. A one-standard deviation increase in 

HDDDEV can shift the price of Henry Hub natural gas up by 16 cents/mmBtu and the 

same increase in CDDDEV provokes an increase in the natural gas price of 15 

cents/mmBtu when the Henry Hub price begins at $7/mmBtu. A one-standard deviation 

increase in WTI prices under the same initial conditions would provoke a 12-cent/mmBtu 

increase in the Henry Hub price. Clearly, the change in WTI prices is economically on 

par with HDDDEV and CDDDEV in terms of effect on the price at Henry Hub. 

Methodology for the Simulation and Seasonality Exercises 

The methodology for representing the predictable seasonal price pattern due to 

movements in HDD and CDD (as in Figure 7) is as follows: we first averaged the HDD 

and CDD values over the dataset by week. We were left with a single year of weekly 

observations, in which each observation was the average value in that week for HDD or 

CDD over the 1997-2009 period. Next, we assumed a stable WTI price, and HDDDEV, 

CDDDEV, STORDIFF, and SHUTIN values of zero. We then used the conditional ECM 

coefficients for HDD and CDD and multiplied them by our average HDD and CDD 

values over the course of each year. We extended the simulation out for 90 years in order 

to settle the perturbations caused by the lagged changes in Henry Hub prices. The 



 A19

resulting series of predicted logged Henry Hub prices was examined. We subtracted the 

logged price for the average value in the series from each of the 52 weeks in the annual 

dataset. Then we took the natural exponent of the result. This provided us with 

normalized coefficients, in which the two points where the curve crosses the average 

level take on a value of 1 (100%), and each week has a value corresponding to that 

week’s relationship to the average of the seasonal variability. The process is equivalent to 

first taking the natural exponent of the logged price series and then dividing each week’s 

value by the average value of the seasonal benchmarks. 

We used a similar methodology when using the conditional ECM to examine the 

predicted effects of the four exogenous variables relating to weather and supply shocks: 

HDDDEV, CDDDEV, STORDIFF and SHUTIN. As with our examination of the error-

correction mechanism, when analyzing the effect of a single variable in the shock, we 

measured the effect of the shock by examining the difference in behavior of Henry Hub 

prices under their normal seasonal pattern (as defined by HDD and CDD above) and their 

behavior when affected by the shock. In order to smooth out the lagged price effects so 

that the seasonal pattern becomes consistent, in each case we implemented the shock in 

the 90th year of the simulation. 

A6. SEGMENTED TIME PERIOD MODELS 

The methodology for creating the VECM and conditional ECM for the 1997-2005 

and the 2006-2009 segments mirrors that of the full 1997-2009 period model. We will not 

go into too much detail here. However, we will present the relevant data and results in the 

following paragraphs. 
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The results of the Augmented Dickey-Fuller (ADF) Tests and the Phillips-Perron 

Tests for unit roots resulted in nearly identical conclusions for the 1997-2005 period, but 

this was not the case for the 2006-2009 segment. In the 1997-2005 period, only 

STORDIFF failed to reject the null hypothesis of a unit root outside of the 5% level, with 

a p-value of 11.8% for the ADF test and 13% for the Phillips-Perron test. Figures A9 and 

A10 present the results of the ADF and Phillips-Perron tests for unit roots over the June 

13, 1997 through December 16, 2005 period. 

Over the 2006-2009 period, three of the exogenous variables failed to reject the 

null hypothesis of a unit root at any credible level. The HDD series had a p-value of 22% 

in the ADF test and 21% in the Phillips-Perron test. The CDD series had a p-value of 

46% under the ADF test and 22% under the Phillips-Perron test methodologies. Since 

both HDD and CDD are weather-related data, there is no theoretical reason that one 

would suspect these to have a meaningful correlation with past observations despite 

suggestions to the contrary by statistical inference. They were kept in the model without 

modification. 

The STORDIFF series from December 23, 2005 through February 20, 2009 was a 

bit more problematic. The STORDIFF p-value in the ADF test was 58.6%, while the p-

value in the Phillips-Perron test was 36.9%. Both are strong evidence of autocorrelation. 

However, the STORDIFF variable was retained in the model in order to provide a model 

as similar as possible to the models reflecting the 1997-2009 and 1997-2005 periods for 

purposes of comparison. Tables A11 and A12 present the results of the ADF and Phillips-

Perron tests on the December 23, 2005 through February 20, 2009 period. 
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Another point at which the results of the pre-modeling tests diverged between the 

long 1997-2009 period and its shorter segments was the VAR selection order criteria 

tests. For the 1997-2005 period, the test suggested either seven lags or one lag. Since a 

VECM requires at least two lags, and since more tests selected seven lags, we used seven 

lags in our segmented model. Table A13 presents the results of the VAR selection order 

criteria test for the 1997-2005 segment. 

The VAR selection order criteria tests provided less decisive results for the 2006-

2009 segment. Two of the tests selected four lags, one test selected ten lags, one test 

selected three lags and one test selected a single lag. We used four lags, since it had a 

plurality of test results supporting it. Four lags also had stronger statistical significance 

when conducting the Johansen test (discussed below) for cointegration than three lags or 

one lag. Table A14 presents the data from the VAR selection order criteria test for the 

December 23, 2005 through February 20, 2009 period. 

Both segments of the longer 1997-2009 period were subjected to the Johansen 

cointegration tests to determine if there was a statistically significant, stable relationship 

between crude oil and natural gas prices. The test results showed cointegration between 

the crude oil and natural gas prices at the selected lag lengths discussed above. The 

results are detailed in Table A15 for the 1997-2005 segment and in Table A16 for the 

2006-2009 segment. 

The coefficients and results of the VECM for both segments are detailed in Table 

A17 for the 1997-2005 period and in Table A18 for the 2006-2009 period. Each table 

also includes the joint significance of various groupings of coefficients, as well as the 

overall fit and statistical significance-related statistics for each model. For the 1997-2005 
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segment, the R2 improved from about 14% to over 18%, while the Chi2 statistics 

remained highly statistically significant. The results for the 2006-2009 segment were 

slightly less clear-cut, but the R2 improved to nearly 30%, the root mean squared error 

improved by over one percentage point and the grouped coefficients all continued to 

exhibit statistical significance within the 10% level. This is despite the considerably 

smaller number of observations with which to conduct statistical testing. 

The coefficients and results of the conditional ECM for both segments are 

detailed in Table A19 for the 1997-2005 period and in Table A20 for the 2006-2009 

period. The conditional ECM, in both cases, has a more statistically significant fit with 

the data than the VECM model for each segment. Furthermore, the R2, Chi2, and joint 

significance test statistics for the 1997-2005 segment all show either an improvement 

over or parity with the corresponding statistics for the 1997-2009 period. The 2006-2009 

period does not achieve higher statistical significance in every category against the longer 

model. This is undoubtedly at least partially due to the fact that there are such fewer data 

points with which to analyze. However, the joint significance tests are all at the same 

significance level and the R2 for the segment is the strongest of all three models at nearly 

31%. The modeling exercise appears to perform best both at marking the cointegrating 

relationship and accounting for the idiosyncratic volatility in natural gas prices in this 

2006-2009 segment. 



Figure A1. US Average Weekly Heating Degree Days 
(HDD) 



Figure A2. US Average Weekly Cooling Degree Days 
(CDD) 



Figure A3. US Average Deviation from Normal 
Heating Degree Days (HDDDEV) 



Figure A4. US Average Deviation from Normal 
Cooling Degree Days (CDDDEV) 



Figure A5. Shut-in Natural Gas Production Capacity in 
the Gulf of Mexico (SHUTIN), mmcf 



Figure A6. Differential from Running 5-year Average 
US Natural Gas Storage Levels (STORDIFF), Bcf 














































