
Analysis of neural circuits in vitro

by

Jennifer Lynn Wang

B.S., Physics, University of California, San Diego (2001)
B.A., Mathematics, University of California, San Diego (2001)

Submitted to the Department of Brain & Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Neuroscience

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES
AASSACHUSrTI S 1'4Sb 1-1FUTE

SEP 08 2

.kBRARIES

June 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

A uthor ..........................
Department of Brain & 0ognitive Sciences

May 12, 2010

Certified by ...........................

Accepted by..........

H. S4ebastian Seung
Professor of Computational Neuroscience

Thesis Supervisor

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Earl K. Miller
Picower Professor of Neuroscience

Chairman, Department Committee on Graduate Theses



Analysis of neural circuits in vitro
by

Jennifer Lynn Wang

Submitted to the Department of Brain & Cognitive Sciences
on May 12, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Neuroscience

Abstract

This thesis is a collection of manuscripts addressing connectivity of neural circuits in cul-
tured hippocampal neurons. These studies begin with an investigation of dopaminergic
modulation of excitatory synapses in small circuits of neurons grown on glial microislands.
We found that dopamine transiently depressed excitatory synaptic transmission. Scaling up
to larger circuits of neurons proved more challenging, since finding connected pairs became
combinatorially more improbable. The discovery and use of light-activatable ion channel
channelrhodopsin-2 (ChR2) promised to revolutionize the way in which we could map con-
nectivity in vitro. We successfully delivered the gene for ChR2 in hippocampal cultures using
recombinant adeno-associated virus and characterized the spatial resolution, as well as the
reliability of stimulating action potentials. However, there were limitations to this technique
that would render circuit maps ambiguous and incomplete. More recently, the engineering
of rabies virus (RV) as a neural circuit tracer has produced an exciting method whereby
viral infection can be targeted to a population of neurons and spread of the virus restricted
to monosynaptically connected neurons. We further investigated potential mechanisms for
previous observations which claim that RV spread is restricted to synaptically connected neu-
rons by manipulating neural activity and synaptic vesicle release. We found that RV spread
increased for blockade of synaptic vesicle exocytosis and for blockade of neural activity.

The underlying premise for pursuing these methods to elucidate connectivity is that the
computational power of the brain comes from changeable, malleable connectivity and that
to test network models of computation in a biological brain, we must map the connectivity
between individual neurons. This thesis builds a framework for experiments designed to
bridge the gap between computational learning theories and networks of live neurons.

Thesis Supervisor: H. Sebastian Seung
Title: Professor of Computational Neuroscience
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Chapter 1

Introduction

The following collection of papers comprising this thesis represents a progression of thought

and technique addressing the study of monosynaptic connections in circuits of cultured hip-

pocampal neurons. The major contributions of this thesis are as follows:

" Application of dopamine transiently depresses excitatory synapses in cultured hip-
pocampal neurons grown on glial microislands

- Developed microisland cultures which had small numbers of neurons isolated on

glial islands. This increased the probability that neurons were connected to each

other, and for isolated pairs of neurons, ruled out effects due to polysynaptic
interaction.

- Used the patch clamp technique to record simultaneously from monosynaptically
connected pairs of neurons. Excitatory synapses were identified by reversal po-
tential.

- Bath application of dopamine transiently depressed excitatory synapses.

" Investigation of the spatial resolution and reliability of laser stimulation of neurons

expressing ChR2 and assessment of ChR2 stimulation to map connectivity of neurons
in culture

- Delivered ChR2 gene to cultured hippocampal neurons using rAAV.

- Optical stimulation of action potentials was more reliable in neurons older than
DIV14.

- A 40 pm diameter laser spot stimulated a larger fraction of neurons to reliably
fire action potentials than a 10 pm diameter spot.

- Scanned laser spot over culture to stimulate potential presynaptic partners of a

patch clamped neuron.

- Proposed criteria distinguishing between monosynaptic and polysynaptic responses
recorded in a neuron postsynaptic to an optically-stimulated, ChR2-expressing
presynaptic neuron.



* Blockade of activity and synaptic vesicle release increased RV spread in hippocampal
culture

- Validated the use of monosynaptically restricted RV in culture

- Developed an image analysis pipeline to automate analysis of large numbers of
images to assess the effects of drug manipulations on RV spread

- Blocking synaptic vesicle release with botulinum toxin - A and tetanus toxin and
blocking neural activity with action potential blocker TTX and synaptic blockers
APV, CNQX, and bicuculline resulted in increased spread of RV. Application of
partial block of dynamin-mediated endocytosis with dynasore resulted in a slight
decrease of RV spread.

The study of neural circuits is the product of convergence in thought between the anatomical
studies of Ramon y Cajal [18] and the electrophysiological studies of Hubel and Weisel
[6]. There are many types of neurons in the brain, and how their connectivity could give
rise to the many functional properties neuroscientists have observed is both an inscrutable
and compelling problem [4]. That synapses are the intermediary unit between these two
descriptions, places a large emphasis on understanding them, in particular, the modifications
by which synapses increase or decrease in strength. This importance is underscored by the
sheer immensity of literature on the experimental observations of synaptic modification and
the structures and mechanisms involved[7].

The experiments presented here were motivated by the fact that reward is a powerful re-
inforcer of behavior [8] and the subsequent finding that activity of dopamine neurons signaled
reward [10]. Given the observation that stimulation of the ventral tegmental area modulated
cortical maps [1] and that dopamine could induce, as well as modulate certain forms of LTP
[5, 9], there was the possibility that dopamine could effect these changes by synapses being
the reward seeking agents themselves [11]. The hypothesis was that synaptic release, fol-
lowed by reward would result in an increased probability of release. Conversely, rewarding
synaptic failure would decrease the probability of release. Experimentally, this was a difficult
question to address, requiring measurements from neurons with small, stochastic synapses.
Because this was a hypothesis about vesicle release and failure, synaptically connected pairs
of neurons were required.

We chose to pursue this hypothesis using cultures of hippocampal neurons. The use of
culture to study connectivity is controversial because the endogenous 3 dimensional struc-
ture of the hippocampus is completely dissolved and networks regrown in a 2-dimensional
sheet. Arguably, it is unnatural and questionable whether the resulting connectivity has any
relationship to that of an intact brain. On the other hand, major phenomena observed in
culture, such as LTP and homeostatic plasticity, have also been observed in brain slice and
in vivo[2, 14], justifying the use of culture as a model system for investigating synapses. The
benefits to using culture are that it provides easy access for imaging, electrophysiological
recording, and genetic and pharmacological manipulation [13]. Our goal was not to claim
that the connectivity we observed in culture was a stand-in for an intact brain. Instead,
the goal was to verify a computational principle governing connectivity which might have
analogue in intact brain.



In chapter 2, we engineered connectivity in hippocampal culture by restricting growth

of neurons to glial microislands. Plating neurons at a low density on these microislands

resulted in circuits of neurons that had small numbers of neurons. Recording from islands

which contained only 2 synaptically connected neurons ensured that we were recording from a

monosynaptically connected pair, connections uncontaminated by polysynaptic input. From

those pairs we tested the effect of dopamine on excitatory synapses and found that dopamine

transiently depressed these synapses.
While this system held great promise for pursuing the hedonistic synapse hypothesis, we

found that microisland cultures were difficult to maintain, and the large synapses that were

characteristic of two neuron islands were not ideal for experiments which required small,
stochastic synapses. Using mass cultures provided a viable alternative. We found that

synapses in mass cultures were smaller than those in the microisland cultures, but finding

connected pairs of neurons was difficult. From pilot experiments, we observed a large range

of synaptic changes in response to contigent application of dopamine, resulting in the need

for many experiments to ensure reproducibility.
The search for a high-throughput method to identify small synapses begins in Chapter 3.

The report of successful transfection of neurons with ChR2 and the subsequent demonstration

that action potentials could be optically stimulated in these neurons with high temporal

precision [3] provided a promising way to screen for connected neurons in mass cultures.

We delivered the gene for ChR2 using recombinant adeno-associated virus and characterized

the reliability and spatial resolution of laser stimulation for producing action potentials in

neurons expressing ChR2. However, finding a criterion distinguishing between mono- and

poly-synaptic responses in a patch clamped postsynaptic neuron was elusive. Additionally,
there was a tradeoff between transfecting many neurons and preserving the spatial resolution

of the optical stimulation. The more densely packed ChR2 expressing neurons were, the

less likely sufficient optical stimulation would be guaranteed to stimulate only the targeted

neuron. Expressing ChR2 in fewer neurons meant having fewer potential presynaptic targets

to probe.
The engineering of monosynaptically restricted RV [17] appeared to be the ideal method

for elucidating connectivity in culture. By defining a population of host neurons and limiting

viral spread to neurons which were one synapse away, we could map all of the connections

onto a given neuron. Chapter 4 explores the use of monosynaptically restricted RV in cul-

ture, as well as the activity dependence of viral spread to putatively connected neurons. The

claim that RV spread is restricted to synaptically connected neurons comes from evidence

that systems with known connectivity can be traced with high precision using RV. Addi-

tionally, the lack of local spread outside these well-defined systems is a strong indication

of synaptic restriction [15, 12, 16]. Since synaptic transmission is a major determinant of

connectivity, we hypothesized that synaptic vesicle release should be required for the virus to

spread. Alternatively, neural activity might also be required. We investigated the effects of

activity blockade and synaptic transmission blockade on spread of RV and found that both

manipulations increased viral spread.
In closing, the hedonistic synapse hypothesis remains untested, but the framework and

methodology for finding monosynaptically connected pairs of neurons in hippocampal cul-

ture might be of use to researchers interested in probing such connections. With the notion

of cell type coming to the forefront of neural circuit analyses, there may be interest in inves-



tigating activity dependent plasticity mechanisms for different cell types. Additionally, the
interplay between activity dependent plasticity and homeostatic plasticity could be further
explored at the level of monosynaptically connected neurons. Recording from monosynapti-
cally connected pairs is a laborious task, and we hope that our contributions toward making
it more of a high-throughput endeavor will make it possible to try many more experimental
conditions, obtain larger samples and thus higher reproducibility of findings to enhance our
understanding of connectivity in the brain.



Chapter 2

Dopamine Transiently Depresses
Excitatory Postsynaptic Currents in
Cultured Rat Hippocampal Neurons

The following is a submitted manuscript.
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Abstract

Background: Dopamine is a leading candidate for a reward signal in the brain and has also been implicated

in many brain disorders. For these reasons, researchers have been interested in characterizing the effect of

dopamine on synaptic transmission and plasticity. The reported effects of dopamine in the hippocampus

have been diverse: different effects have been reported for different methodologies employed.

Methodology/Principal Findings: We have investigated the modulatory effects of dopamine on exci-

tatory synaptic transmission using dual perforated patch clamp recordings of dissociated hippocampal

neurons cultured from neonatal rats. Groups of a few neurons isolated on glial microislands were used

for our experiments. Immunostaining revealed both D1 /D 5 and D2 subtypes of the dopamine receptor in

our cultured neurons. Bath application of 10 pM dopamine (DA) caused a rapid depression of excitatory

postsynaptic currents. The effect was transient, in that synaptic currents recovered to baseline during

a 15 minute washout period. While the Di agonist SKF 38393 produced a weaker transient depression

that was on the edge of statistical significance, it did not fully replicate the effect of dopamine. The D2

agonist quinpirole did not produce a significantly different result from control, nor did the combination

of D1 and D2 agonists.

Conclusions/ Significance: Our results are similar to previous reports of immediate and transient

depression in brain slices of hippocampal CA1, as well as neocortical areas of the hippocampal formation.



Introduction

Dopamine has become a leading candidate for a reward signal in the brain [1, 2], and plays an important

role in current theories of reinforcement learning [3]. Dopamine has also been implicated in a number of

brain disorders, such as Parkinson's disease [4, 5], schizophrenia [6], and ADHD [7]. For these reasons,

researchers have been interested in characterizing the effects of dopamine on basic properties of neurons,

such as intrinsic excitability [8-10] and synaptic transmission.

Electrophysiological studies have found that dopamine and its agonists have diverse effects on glu-

tamatergic synaptic transmission. The effects depend on concentration, glutamate receptor subtype,

dopamine receptor subtype, and brain region studied, which makes comparing results in the literature

a confusing task. For brain slices of hippocampal CA1, researchers disagree over whether the effects

of dopamine and its agonists are transient or persistent. Some find that synaptic transmission changes

immediately upon bath application, and recovers to baseline within 10-15 minutes after washout. Others

report that changes begin up to tens of minutes after bath application starts, and persist for up to hours

after washout. As a rule, persistent changes have delayed onset, while transient changes develop rapidly

(though one exception is noted below [11]). Those finding persistent changes do not report transient

changes, and vice versa.

We now review the studies finding transient changes in more detail. Using intracellular recordings,

Hsu showed that dopamine transiently depressed synaptic responses to Schaffer collateral stimulation [12].

Agonist and antagonist experiments suggested that this effect was mediated by the D2 receptor. Using

field potential recordings, Otmakhova and Lisman found that dopamine had little effect on synaptic

responses to Schaffer collateral stimulation, except that the NMDA component was slightly depressed [13].

Instead, they found that dopamine transiently depresses synaptic responses to stimulation of the perforant

path, including both the AMPA and NMDA components. Antagonist experiments suggested that both

D1 and D2 receptors were involved.

In contrast to these findings of transient depression, Huang and Kandel found that D1/D 5 agonists

induce persistent potentiation of field potential responses to Schaffer collateral stimulation [14]. Later

on, Yang confirmed this result using intracellular recording via whole cell patch clamp [15], but Mockett

et al. could not replicate it using field potential recordings [16]. Using whole cell patch clamp recording,

Varela et al. found that a D1 /D 5 agonist could produce either persistent potentiation or depression [11].



They found evidence that the sign of the effect depended on whether the NMDA receptors included NR2B

subunits (potentiation) or NR2A subunits (depression). Since the NR2B subunit is predominant in the

Schaffer collateral pathway, the Varela et al. result is consistent with the Huang and Kandel report of

persistent potentiation. Since the NR2A subunit is predominant in the perforant pathway, the Varela et

al. result is partially consistent with the Otmakhova and Lisman report of transient depression, except

that their depression appears to be persistent and rapidly developing [13].

Finally, it should be mentioned that there is a subclass of the persistent studies in which dopamine is

regarded as a modulator of long-term potentiation, defined as persistent potentiation induced by tetanic

stimulation. Activation of D1/D 5 receptors enhances the amplitude of early LTP [17], or is required for

the maintenance of late LTP [18]. According to these studies, dopamine by itself is not sufficient to induce

persistent potentiation; tetanic stimulation is required.

The diversity of these results may not be surprising, in light of the complexity of molecular mechanisms

by which dopamine can affect glutamate receptors. Dopamine receptor activation can exert indirect

effects through the second messenger cAMP [19]. Another mechanism is direct, involving protein-protein

interactions between dopamine receptors and glutamate receptors [20]. Further complicating the picture

is the fact that dopamine can also directly block the NMDA receptor pore without mediation by dopamine

receptors [21-23].

Given the inconsistencies between physiological studies in the literature, we thought it worth using a

different method to reexamine the effects of dopamine on synaptic transmission in hippocampal neurons.

We applied the perforated patch clamp technique to record from pairs of hippocampal neurons cultured

on glial microislands. Dissociated cultures can be criticized as more unnatural than acute brain slices, but

our preparation also has a number of advantages. By recording from monosynaptically connected pairs

of neurons, we avoid potential confounds due to polysynaptic pathways in the brain slice preparation.

Compared to whole cell patch clamp, perforated patch clamp may have less adverse effects on intracellular

signaling pathways. The brain slice preparation contains endogenous stores of dopamine that can be

released by electrical stimulation [24], while our cultures presumably do not. Finally, wash-in and wash-

out of dopamine is presumably faster in our cultures than in brain slices.

We have found that bath application of dopamine causes a transient depression of excitatory transmis-

sion, with no sign of persistent effects. Furthermore, the D1 agonist SKF 38393 caused a weaker transient

depression on the borderline of statistical significance. The D2 agonist quinpirole, and a combination of



D1 and D2 agonists produced no statistically significant changes. We suggest that D1 receptors could

mediate the transient depression produced by dopamine, with the caveat that the effect of D1 agonist

was significantly different from that of dopamine. Our results are similar to those of Otmakhova and

Lisman for perforant path synapses [13], although it is unclear whether the synapses in our cultured

hippocampal neurons are homologous to those of the perforant path or Schaffer collaterals. Our work is

also related to the recent experiments of Zhang et al., who like us used dual intracellular patch recordings

of hippocampal neurons grown in dissociated cultures. They found that dopamine transiently depresses

the NMDA receptor-mediated component of glutamatergic currents [25].

Materials and Methods

Microisland cultures

Ethics Statement

P1 Sprague-Dawley rat pups were used. All animal procedures were approved by the MIT Committee

on Animal Care, in compliance with standards for the ethical use of laboratory animals set by the state

of Massachusetts, the city of Cambridge, and the United States Animal Welfare Act.

P1 rat pups were anesthetized by chilling on ice, followed by decapitation. Hippocampi were extracted

and solutions were prepared in a similar fashion to [26]. Hippocampi were collected with dentate gyrus

removed and cut into small (~ 1 mm) pieces in a dissection solution containing 25 mM HEPES in

Hank's Balanced Salt Solution (HBSS), pH 7.3. Some pieces were immediately dissociated for culture by

incubating the tissue for 30-40 min at 37C in HBSS containing 1 mM L-cysteine, 0.5 mM EDTA, 1.5

mM CaCl 2, 20 U/ml Papain (Worthington), and 0.1 pg/ml DNAase. The remaining pieces were stored

for later use at 4C in Hibernate E medium (Brain Bits), supplemented with 2% B27 (Invitrogen). The

enzymatically dissociated tissue was rinsed 3 times in culture medium containing 6 mg/ml glucose, 1 mM

Na-Pyruvate (Invitrogen), 10% fetal bovine serum (Hyclone), 0.1% Mito serum extender (Invitrogen), 2%

B27 (Invitrogen), and 1 mM HEPES in Basal Medium Eagle (Invitrogen), pH 7.3 and then mechanically

triturated with a fire polished plastic pipette in culture medium conditioned by incubating overnight at

37C with a monolayer of glial cells in a culture flask.

To prepare glial microislands, cells were plated by adding 0.5 ml of cell suspension at 10,000 cells/ml



on glass coverslips coated with rat tail collagen in a 24-well plate. After 1 day in the incubator, 100 pl of

24 pM cytosine beta-D-arabinofuranoside (Ara-C) in culture medium was added to dampen proliferation.

After 2 to 3 weeks, several microislands of glial cells were usually visible. The islands were generally 50-

100 pm in diameter. If neurons remained on the islands, the cultures were kept outside the incubator at

4C for a few hours to eliminate them.

Neurons were added to the glial islands 3-4 weeks later. These neurons were obtained by dissociating

hippocampi that were either freshly dissected or stored for 3 days as described above. The cells were

plated by aspirating culture medium from the well and adding 0.5 ml of cell suspension at 20,000 cells/ml

on the glial microislands. A day or two later, 100 pl of culture medium was added (100pl of 24 pM Ara-C

was added if needed to prevent glial proliferation). Neurons were used 8-14 days after plating on the glial

microislands. We used microislands containing a few neurons, often just two.

Immunostaining

The cell culture was assayed for D 1/D 5 and D2 dopamine receptor subtypes [27] using rabbit anti-

human dopamine Di (1:100) and goat anti-human dopamine D2 (1:50) primary antibodies (Santa Cruz

Biotechnology, Inc.). The respective binding of these antibodies to their substrates was detected using

secondary antibodies Alexa Fluor 488 donkey anti-rabbit IgG (1:400) and Alexa Fluor 546 donkey anti-

goat IgG (1:400) (Molecular Probes).

The cells were fixed in formalin for 20 min at room temperature, rinsed 3 times with phosphate buffered

saline (PBS), and permeabilized in 0.25% Triton in PBS for 10 min at room temperature. Random binding

of the primary was blocked with 4% donkey serum in PBS. The cells were then incubated at 37C for

1 hr with both primary antibodies. They were rinsed 3 times with PBS, incubated at 37C for 45 min

with the secondary antibodies, and rinsed 3 more times with PBS. To control for random binding of the

secondary antibodies, cells were fixed and permeabilized as above, and then incubated with the secondary

antibodies only.

The cells were visualized with an inverted, phase contrast microscope (Olympus IX70). Excitation

and emission of the secondary antibodies was produced using FITC and TRITC cubes (Chroma) with a

mercury arc lamp source. Images were acquired using a Sensicam QE high speed CCD camera (Cooke),

controlled by CamWare (Cooke) software.



Electrophysiology

Dual whole-cell perforated patch recordings were performed using the Multiclamp 700A patch clamp

amplifier (Axon Instruments). Signals were filtered at 6 kHz and sampled at 10 kHz using a PCI-6052E

A/D board (National Instruments). Micropipettes were pulled from glass capillaries (Warner) and had

a 2-3 MQ resistance. The pipettes were back-filled with an internal solution containing 300 pg/ml

amphotericin B (Sigma) in 1% DMSO for membrane perforation. The internal solution of the pipette

contained (in mM) potassium gluconate 136.5, KCl 17.5, NaCl 9, MgCl 2 2, pH 7.30. [28] We determined

that perforation had occurred when the access resistance stabilized and was no longer decreasing. This

generally happened when the access resistance was between 20 MQ and 40 MQ with fluctuations less

than 15%. The neurons were bathed in a HEPES-buffered saline (HBS) containing (in mM) NaCl 145,

KCl 3, HEPES 10, CaCl2 3, glucose 8, MgCl 2 , pH 7.30. [28] Recordings were done at room temperature.

To determine synaptic connectivity, the postsynaptic cell was stepped in voltage clamp, from -70

to -10 mV in 10 mV increments, while the presynaptic cell was stimulated in voltage clamp to fire an

action potential in voltage clamp with a +120 mV pulse applied for 1.5 msec. In this way, the synaptic

reversal potential could be determined. Typically, IPSCs reversed between -50 and -30 mV and had a

~100 ms time constant, while EPSCs (glutamatergic currents) showed no reversal for the given voltage

steps and had a shorter time constant of ~10 ms. The use of reversal potential to determine transmitter

type was verified for a few examples by blocking glutamatergic currents with 10 AM CNQX and 100

pM APV (Sigma). In the representative example shown in Figure 1A, the estimated reversal potential

was greater than -10 mV, so we classified the synaptic current as an EPSC. Application of CNQX was

sufficient to block synaptic transmission (Figure 1B), confirming glutamatergic transmission. Conversely,

in Figure 1C, the estimated reversal potential was -40 mV, so we classified the synaptic current as an

IPSC. Application of CNQX and APV did not alter synaptic transmission (Figure ID), which showed

that IPSCs were not mediated by glutamatergic transmission. We did not use synaptic blockers for all

experiments; we measured the reversal potential instead, since it seemed a reliable indicator of transmitter

type. For our experiments, we used pairs which had reversal potential greater than -10 mV.

To measure evoked EPSCs, the presynaptic cell was stimulated in voltage clamp by stepping from

-70 mV to 50 mV for 1 ms once every 30 sec while holding the postsynaptic cell at -70 mV. The PSC

amplitude was measured from a smoothed (0.5 ms boxcar) version of the current trace by taking the

difference between the current just before onset of the PSC and the trough. PSC amplitudes ranged from



50-700 pA and had simple shapes, indicating monosynaptic responses. Pairs selected for analysis had

access resistance between 15 and 40 MQ and leak current less than -150 pA. Additionally, recordings in

which postsynaptic currents exhibited correlated changes with access resistance were discarded. Custom

software written in Matlab was used to perform the experiments and analyze the data.

Dopamine and agonists

The dopamine (DA) solution was prepared immediately before bath application, as dopamine is known

to degrade rapidly through oxidation. If the solution was not freshly made, the effects reported in this

paper became weaker (data not shown). We avoided using ascorbic acid as an anti-oxidant, because of

its effects on neural excitability [29].

The D1 agonist R(+)SKF-38393 (Sigma) and D2 agonist (-)Quinpirole (Sigma) were kept at -20*C

as 10 mM stock solutions in Millipore filtered water. They were diluted to 10 pM in HBS immediately

before bath application.

Bath application of drugs

All experiments consisted of three periods: (1) a baseline lasting 5 minutes, (2) drug application for 5

minutes, and (3) washout for 15 minutes. The bath solution was continually renewed using a peristaltic

pump (Rainin) at a base flow rate of 40 ml/hr. At the beginning of the drug application period, the

intake of the peristaltic pump was exchanged to bath solution containing the drug. The flow rate was

increased to maximum for 30 seconds to rapidly exchange the new solution. For the rest of the drug

application period, the flow rate was returned to the base value of 40 ml/hr. At the beginning of the

washout period, the intake of the peristaltic pump was exchanged to bath solution with no drug, and a

similar procedure was followed.

In control experiments, the flow rate of the peristaltic pump was manipulated with the same time

course, but with no change of solutions.

Results

Using the procedures described in the Methods, we produced cultures containing glial microislands and

hippocampal neurons at very low density (see Figure 2A 1 for representative phase contrast image). In



vivo, the hippocampus receives dopaminergic innervation from the ventral tegmental area (VTA) [30]

and contains dopamine receptors [31,32]. Since our cultures presumably did not contain dopaminergic

neurons, it was unclear whether the hippocampal neurons would continue to express dopamine receptors.

This was checked by double immunostaining for D1 and D 2 receptors, which revealed that expression is

present in vitro (Figure 2B and C).

Synaptic transmission between pairs of neurons was measured using dual patch clamp recordings

(Figure 3A). For each recording, we located a glial microisland containing two to four neurons, and

voltage clamped two of them. The presynaptic neuron was stimulated to produce an action potential

while the postsynaptic neuron was recorded to measure synaptic transmission. If synaptic currents

were observed, the reversal potential was found by varying the voltage of the postsynaptic neuron (see

Methods). If the reversal potential was consistent with glutamatergic transmission, then an experiment

was performed.

Every experiment used the same protocol. After the access resistance of the recording stabilized

(see Methods), the presynaptic neuron was stimulated to generate a single action potential once every

30 seconds. The postsynaptic current was measured during three periods: (1) baseline for 10 minutes

(2) drug application for 5 minutes (3) washout for 15 minutes. For each recorded pair of neurons, the

time series of EPSC amplitudes was normalized by dividing by the average EPSC amplitude during the

baseline period. The normalized time series were averaged over neuron pairs to produce the graphs in

Figure 3. Three drugs were each applied singly: dopamine (DA), the D1 agonist SKF 38393, and the D 2

agonist quinpirole. In a fourth manipulation, both D1 and D 2 agonists were applied in combination. All

drugs were used at 10 pM concentrations.

Figure 3B shows the average time course of EPSC amplitude during the DA experiments. The

amplitude depresses immediately after the start of bath application of DA. By the end of the 5 minute DA

period, the EPSC amplitude is less than 40% of its baseline value. During the 15 minute washout period,

the EPSC recovers steadily. Shown for comparison is the average time series from control experiments

with no drug.

In Figure 3C, application of D1 agonist causes depression of the EPSC amplitude. The effect is

strongest at the end of the 5 minute period of agonist application. The average depression during the

agonist application is not as strong as that observed with DA. In Figure 3D, application of D 2 agonist

causes some depression of EPSC amplitude. This time the effect looks strongest near the beginning of



the 5 minute period of agonist application. Overall, the depression is even weaker than that observed

with D1 agonist.

It is not clear why DA produced a stronger depression than the agonists. We conjectured that DA

produces a stronger effect by stimulating both D1 and D2 receptors. To test this hypothesis, we applied

a combination of D1 and D2 agonists, but this produced little or no effect (Figure 3E).

To test for the significance of these effects, we performed two types of statistical analysis. The first

type of analysis is based on the various averages shown in Figure 3. In Figure 4A, each experiment

is summarized by a single number quantifying the amount of depression, calculated by averaging the

normalized EPSC amplitude during the 5 minute bath application period.

To compare the five conditions of (1) dopamine (n = 6), (2) D1 agonist (n = 8), (3) D2 agonist

(n = 8), (4) D1+D2 agonist (n = 7), and (5) control (n = 5), we performed an analysis of variance

(ANOVA), followed by the Tukey-Kramer test to identify pairs of conditions that were statistically

significant (MATLAB Statistics Toolbox). The ANOVA rejected the null hypothesis that all conditions

are the same. By the Tukey-Kramer test, dopamine is significantly different from the other conditions

2-5, which include both the control and the agonists. Conditions 2-5 are not significantly different from

each other.

As a second test of statistical significance, we did not time average the data during the bath application

period. Figure 4B shows these data for the different drugs. In this analysis, an experiment is not

represented by a single average number, but by several data points taken at times during the bath

application period. These data points are assumed to be statistically independent measurements. This

assumption would be true if the fluctuations were due only to measurement noise. However, there also

appear to be correlated fluctuations; the data points from a single experiment might tend to be all above-

average or all below-average. Therefore we apply the second test of statistical significance with the caveat

that its results are probably not conservative enough. We considered only data points from the second

half of the bath application period, because it can take some time for the effects of the drug to set in.

Again the ANOVA rejected the null hypothesis that all conditions are the same. By the Tukey-Kramer

test, the dopamine and D1 agonist experiments are significantly different from each other, and from all

other conditions. The other conditions (D2 agonist, D1+D2 agonist, and control) are not significantly

different from each other.



Discussion

We have found that bath application of dopamine causes a rapidly developing depression of excitatory

synaptic transmission in hippocampal neurons. During the 15 minute washout period, synaptic currents

recover to their baseline values, so that the depression is transient. Our finding of an immediate and

transient depression is similar to previous reports in brain slices of hippocampal CA1 [12,13].

The D1 agonist SKF 38393 also induced a weak transient depression. However, the effect was not

significantly different from control by the Tukey-Kramer test based on the time averages of experiments.

The effect was significant if the data points from an experiment were not averaged, but this statistical

analysis cannot be completely trusted because the fluctuations at different times are likely to be correlated.

We conclude that the effect of D1 agonist is on the borderline of significance. However, by both types of

statistical analysis, the effect of the D1 agonist is significantly different from that of dopamine. A weaker

effect is consistent with the fact that SKF 38393 is regarded as a partial rather than full agonist of the

D1 receptor [33]. The D2 agonist quinpirole caused an even weaker transient depression. The effect was

not significant by either statistical analysis.

We suggest that Di receptors could mediate the effects of dopamine on synaptic transmission. This

is similar to the conclusion that Otmakhova and Lisman reached for perforant path synapses using

antagonist experiments [13]. It does not match Hsu's finding that transient depression in the Schaffer

collateral pathway is mediated solely by D2 receptors [12].

Finally, we found that a combination of the D1 and D2 agonists was not significantly different from

control. In other words, the effect produced by the combination of agonists was less than the effect

produced by the D1 agonist. We speculate that this is related to the fact that the D1 and D2 receptors

have antagonistic effects on levels of the second messenger cAMP, as well as on phosphorylation of

DARPP-32 [19].

Based on the results with agonists, we cannot completely exclude the possibility that dopamine is

acting directly on the NMDA receptor pore, rather than indirectly through dopamine receptors [21-23].

Recently Zhang et al. published another study about the effects of dopamine on long-term plasticity

of glutamatergic synapses between hippocampal neurons grown in dissociated cultures [25]. As an aside,

they also mentioned that dopamine transient depresses synaptic transmission. They observed a significant

effect when AMPA receptor currents were blocked. They also observed a weaker effect without synaptic



blockers, but the effect was not statistically significant. They did not report whether these effects could

be replicated with dopamine agonists. To speculate about the slight differences between their results and

ours, we note there are two differences in methods. They used ascorbic acid to retard the oxidation of

dopamine in solution, and they cultured embryonic neurons rather than postnatal neurons.

In conclusion, we join the ranks of researchers who have reported transient depression of excitatory

hippocampal synapses by dopamine [12, 13], as opposed to persistent potentiation [14, 15]. Transient

depression is also a common finding in neocortical areas of the hippocampal formation. Behr et al.

showed that dopamine and a D1 agonist transiently depress excitatory synaptic currents in subicular

neurons, while a D 2 agonist did not [34]. Pralong and Jones found that dopamine transiently depressed

excitatory synaptic currents in entorhinal cortex neurons [35]. Based on antagonist experiments, they

tentatively concluded that Di receptors were more likely to be involved. Similar results have also been

reported in brain slices of prefrontal cortex [36], nucleus accumbens [37, 38], and basal forebrain [39].
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Figure 1. Validating reversal potential as a method to select glutamatergic synapses. In
panels (A) and (C), we show current-voltage (I-V) plots for two synapses, which serve as representative
examples. The open circles are EPSC amplitudes (y-axis) measured for varying postsynaptic holding
potentials (x-axis). The solid line is a least squares fit to indicate the estimated reversal potential
(intersection with dotted line). In (A), the estimated reversal potential is greater than -10 mV, so we
classified the synaptic current as an EPSC. Panel (B) shows that application of 10 1M CNQX is
sufficient to block transmission, confirming that excitatory synaptic transmission is glutamatergic. An
example of an inhibitory synapse is shown in (C) and (D). The estimated reversal potential was -40
mV (C), so we classified the synaptic current as an IPSC. Neither CNQX or APV had an effect on
synaptic transmission (D), consistent with the notion that IPSCs were not mediated by glutamatergic
transmission.
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Phase Contrast

Figure 2. Hippocampal culture expresses D 1 and D 2 subtypes of the dopamine receptor.
Phase contrast image at 40x magnification of culture grown on glial microisland (A1 ). A magnified
version is shown in A2. Pseudocolored fluorescent images showing Di (1:100) expression (B) and D 2
(1:50) expression (C) using the same field of view as in A2.
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Figure 3. Bath application of dopamine and D1 , D2 agonists results in a transient
depression of EPSC amplitude. Bath application of dopamine and D 1/D 2 agonists results in a
transient depression of EPSC amplitude. A schematic (white) of the dual patch clamp experiment is
shown in (A), overlaid on a 40x phase contrast image of two neurons isolated on a glial island. The
presynaptic neuron (left) was stimulated in voltage clamp to fire an action potential by stepping the
membrane potential of the cell from -70 mV to 50 mV for 1 ins. An EPSC was recorded in the voltage
clamped postsynaptic neuron (right). The time series of averaged, normalized EPSC amplitudes are
shown in (B-E, closed black circles) for the 3 phases of the experiment - baseline, drug application, and
washout. The control condition, where no drug was applied, is shown for comparison (open gray circles,
n = 5). The error bars represent the standard error. In (B), we applied 10 piM DA during the bath
perfusion period (n = 6). Above the time series are three representative EPSCs selected from the
corresponding phase of the experiment. In (C), we applied 10 piM D1 agonist R(+)SKF-38393 (n = 8)
during the drug application period, and in (D), we applied 10 piM D2 agonist (-)Quinpirole (nu 8). In
(E), we applied a combination of 10 piM R(+)SKF-38393 and 10 ptM (-)Quinpirole (n= 7).
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Figure 4. Summary of data from the bath application experiments. (A) Distribution of

average normalized EPSC amplitude during the drug application period for each pair. Drug is indicated

on the x-axis, and each point (x) represents a pair. The bold squares with error bars represent the

ANOVA estimate for the mean and standard error, respectively, for each group. The DA condition was

significantly different from control and all other conditions, using the Tukey-Kramer comparison test.

(B) Distribution of EPSC amplitudes taken from the second half of the perfusion period. Each point (x)
represents an individual, non-averaged value for EPSC amplitude. Drug is indicated on the x-axis. The

ANOVA estimate for the mean and standard error are also shown (bold squares and error bars,
respectively). The DA and Di conditions were significantly different from each other and all other

conditions, including control, by the Tukey-Kramer comparison test.
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ABSTR ACT

We present a method for studying synaptic transmission in mass cultures of dissociated hippocam-
pal neurons based on patch clamp recording combined with laser stimulation of neurons expressing
channelrhodopsin-2 (ChR2). Our goal was to use the high spatial resolution of laser illumination to come
as close as possible to the ideal of identifying monosynaptically coupled pairs of neurons, which is con-
ventionally done using microisland rather than mass cultures. Using recombinant adeno-associated virus
(rAAV) to deliver the ChR2 gene, we focused on the time period between 14 and 20 days in vitro, during
which expression levels are high, and spontaneous bursting activity has not yet started. Stimulation by
wide-field illumination is sufficient to make the majority of ChR2-expressing neurons spike. Stimulation
with a laser spot at least 10 pLm in diameter also produces action potentials, but in a reduced fraction of
neurons. We studied synaptic transmission by voltage-clamping a neuron with low expression of ChR2
and scanning a 40 pLm laser spot at surrounding locations. Responses were observed to stimulation at a
subset of locations in the culture, indicating spatial localization of stimulation. Pharmacological means
were used to identify responses that were synaptic. Many responses were of smaller amplitude than
those typically found in microisland cultures. We were unable to find an entirely reliable criterion for dis-
tinguishing between monosynaptic and polysynaptic responses. However, we propose that postsynaptic
currents with small amplitudes, simple shapes, and latencies not much greater than 8 ms are reasonable
candidates for monosynaptic interactions.

@ 2009 Elsevier B.V. All rights reserved.

1. Introduction

The cloning of channelrhodopsin-2 (ChR2) and subsequent
expression in mammalian cells promised to revolutionize neuro-
physiology because it enabled optical stimulation of neurons in a
spatially localized and temporally precise fashion (Boyden et al.,
2005; Nagel et al., 2003; Wang et al., 2007). ChR2 has been used to
identify presynaptic partners of an electrophysiologically recorded
postsynaptic neuron (Arenkiel et al., 2007; Petreanu et al., 2007;
Wang et al., 2007). Other applications include mapping neuronal
circuits, probing synaptic function in genetically defined popula-
tions of neurons, and inducing plasticity at single synapses (Atasoy
et al., 2008; Liewald et al., 2008; Wang et al., 2007; Zhang et al.,
2008; Zhang and Oertner, 2007). In principle, ChR2 could also be
used to study the responses of networks to complex spatiotemporal
patterns of stimulation.

* Corresponding author. Tel.: +1 617 452 2691; fax: +1 617 452 2913.
E-mail address: jenwang@mit.edu (J. Wang).

0165-0270/S - see front matter @ 2009 Elsevier B.V. All rights reserved.
doi: 10.1016/j.jneumeth.2009.06.024

Expression of ChR2 in neurons has been achieved by mouse
transgenesis (Arenkiel et al., 2007; Wang et al., 2007); in utero elec-
troporation (Petreanu et al., 2007), lentivirus (Boyden et al., 2005)
and recombinant adeno-associated virus (rAAV) (Bi et al., 2006).
A major drawback of lentivirus is that its DNA integrates into the
host genome. Therefore the transgene is potentially susceptible
to integration-induced epigenetic silencing (Ellis, 2005; Xia et al.,
2007). Furthermore, a host gene could be disrupted by lentivirus
DNA integration, which could affect normal neuronal function.
Although mouse transgenesis by oocyte DNA injection is a pow-
erful tool, integration of exogenous DNA at specific sites can lead to
integration-induced gene silencing (Clark et al., 1997; Robertson et
al., 1996) and position-effect variegation (Robertson et al., 1995)
with gene expression in some cells but not others. Although a
plasmid delivered by in utero electroporation remains extrachro-
masomal, which may alleviate the silencing problem, transfection
of early progenitor cells leads to mosaic gene expression in neuronal
populations of the postnatal brain (Borrell et al., 2005; Hatanaka et
al., 2004).

Recombinant adeno-associated virus gene delivery has been
successfully used to express ChR2 in mouse retinal neurons, and
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expression was reported to be stable for a year (Bi et al., 2006).
We chose rAAV for introducing ChR2 in cultured hippocampal
neurons for several reasons. First and foremost, genetic modules
introduced into rAAV are less prone to epigenetic gene silencing.
Second, long-term expression, from months to years, is achievable.
Due to high rate of infectivity, rAAV can be used to introduce mul-
tiple genes into the same neurons in pre-selected brain regions
(Shevtsova et al., 2005) without epigenetic silencing (Zhu et al.,
2007). This broadens the experimental possibilities so that other
genes whose products act as biosensors for different signaling sys-
tems, such as for calcium (Miyawaki, 2003; Palmer and Tsien, 2006;
Wallace et al., 2008) and neurotransmitter release (Miesenbock et
al., 1998), could also be introduced into the same neuron using
rAAV as the delivery method. This would make it possible to opti-
cally record functional neuronal connectivity without the need
to use patch pipettes. Moreover, by gene selective knockdown of
endogenous protein levels using small interfering RNA (siRNA)
(Fountaine et al., 2005), especially under control of the tetracycline-
controlled systems (Hasan et al., 2004; Sprengel and Hasan, 2007),
it should be possible to correlate how changes in gene activity affect
neuronal circuits and animal behavior (Grillner, 2006; Kandel,
2001).

Additionally, the rAAV gene delivery method allows targeting
of selective brain regions, which makes it especially powerful for in
vivo applications. ChR2 has also been targeted to genetically defined
populations of neurons through cell-type specific promoters and
Cre-dependent constructs to examine neural circuits based on cell
types (Atasoy et al., 2008; Liewald et al., 2008). Availability of differ-
ent AAV serotypes provides additional means to selectively target
different neuron types (Burger et al., 2004; Shevtsova et al., 2005;
Tenenbaum et al., 2004).

Another feature of rAAV is that it shows low immunogenicity
over a long time span (Sun et al., 2002), a key safety criterium
that has made rAAV gene delivery the method of choice for thera-
peutic treatment of animal diseases, including humans. Therefore,
rAAV-mediated delivery of ChR2 should not only help to investigate
functional brain circuits in living animals but it may also provide
a plausible approach to treat neurological diseases which require
deep brain stimulation (Gradinaru et al., 2007; Mehrkens et al.,
2008; Obeso et al., 1997).

The preceding considerations are general reasons for using rAAV
to introduce the ChR2 gene into neurons. Our goal in this paper
was to develop the ChR2 method specifically for studying evoked
synaptic transmission in mass cultures of dissociated hippocampal
neurons.

Dual intracellular recording from pairs of dissociated hippocam-
pal or neocortical neurons is a widely accepted method of studying
synaptic plasticity (Arancio et al., 1995; Bi and Poo, 1998; Goda and
Stevens, 1996; Kaplan et al., 2003). Such experiments are often done
with low density cultures. In one culture method, the substrate that
the neurons grow on is sprayed in a mist onto the coverslips, making
dots that are less than 1 mm in diameter. Then neurons are plated at
low density. The microdots physically limit the neurons' growth so
that some microislands end up with just a few neurons or even just
two (Bekkers and Stevens, 1991, 1995; Segal and Furshpan, 1990).
Within such a microisland, the probability of connection is high, so
that it is straightforward to find connected pairs of neurons (Kaplan
et al., 2003). In another culture method, neurons and glia are plated
at the same time at low density, and this also leads to growth of
isolated pairs of neurons (Wilcox et al., 1994).

While the microisland technique makes it easier to record from
pairs, culturing healthy neurons becomes more challenging at
lower densities. Furthermore, pairs of neurons on microislands
tend to be strongly coupled, probably by multiple synaptic con-
tacts (Segal and Furshpan, 1990). Evoked postsynaptic currents
are typically hundreds of picoamperes or more, while sponta-

neous postsynaptic currents ("mini"s) are tens of picoamperes or
less (Wilcox et al., 1994). A low calcium solution combined with
microperfusion of a high calcium, hypertonic solution (Bekkers
and Stevens, 1995) has been used to reduce the amplitude of
evoked postsynaptic currents by permitting activation of only a
small subset of synapses between two neurons. But without this
kind of manipulation, postsynaptic currents evoked in microisland
cultures are much larger than those recorded in brain slice experi-
ments.

For these reasons, we have been interested in using mass cul-
tures for synaptic plasticity experiments. These types of cultures
are relatively easy to grow and keep healthy, because neurons can
be cultured at higher densities. But in our experience, it is difficult to
find connected pairs by intracellular recording of randomly chosen
neurons, because the probability of connection is low. ChR2 could
potentially solve this problem, by allowing the screening of many
candidate neurons to find presynaptic partners of a single postsy-
naptic neuron. We could do this by expressing ChR2 in the culture,
and then stimulating presynaptic neurons with a laser while patch
recording from a single neuron. If a stimulated neuron is monosy-
naptically or polysynaptically connected to the recorded neuron, a
synaptic response should be observed.

For this purpose, we needed a delivery method for ChR2 that
reliably resulted in viable cells, adequate expression levels, and
expression during the right time window. We also needed a method
of optical stimulation that was spatially precise and reliably evoked
action potentials.

In dissociated cultured neurons, experiments on synaptic phys-
iology are typically done between one and three weeks in vitro
(Arancio et al., 1995; Bekkers et al., 1990; Bekkers and Stevens, 1995;
Bi and Poo, 1998; Goda and Stevens, 1996; Gomperts et al., 2000;
Kaplan et al., 2003). Earlier than one week, there is little or no synap-
tic transmission (Gomperts et al., 2000). After three weeks, there is
typically spontaneous synchronous bursting (Pasquale et al., 2008;
van Pelt et al., 2004a,b), which could interfere with plasticity exper-
iments. For this reason, we were interested in characterizing the
expression of ChR2 during this time window. Based on the fluo-
rescence of a ChR2-YFP fusion protein, expression starts at about
one week, and is strong after about two weeks in vitro. Infected
cells looked as healthy as uninfected cells, as they could not be
distinguished from each other in phase contrast images.

To characterize the effectiveness of optical stimulation, we per-
formed patch clamp recordings of neurons while simultaneously
illuminating them transiently. After two weeks in vitro, about 80%
of infected cells could be stimulated to generate action potentials
using wide-field illumination. Stimulation by laser was more dif-
ficult, and depended on the size of the illuminated spot. A 40 pLm
diameter spot stimulated approximately one third of infected neu-
rons, whereas a 10 pLm diameter spot stimulated only one quarter.
This demonstrated a trade-off between the fraction of cells that
can be stimulated, and the accuracy of spatial localization of stimu-
lation. The luminance of the spot had little effect, if it was above
a threshold value. If a cell could be stimulated to fire an action
potential, then this response was highly reliable every time it was
illuminated.

Our next goal was to investigate the best means of using ChR2
to study synaptic transmission. We performed patch clamp record-
ings of neurons that were not expressing ChR2, or only weakly,
in order to reduce the possibility or magnitude of direct stimula-
tion by light. Then we scanned the laser across multiple locations
arranged in a grid. Many types of responses were recorded in the
patch clamped neuron, which appeared to be direct, monosynap-
tic, or polysynaptic. Based on classification of these responses, we
propose a criterion for identifying possible monosynaptic pairs of
neurons using amplitude, shape, and latency of the recorded cur-
rents.
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2. Materials and methods

2.1. Preparation of rAAV

The viral expression construct rAAV-PhSYN-ChR2-YFP was con-
structed by subcloning the ChR2-YFP fragment (Boyden et al., 2005)
into an adeno-associated (serotype-2) viral expression cassette
with the human synapsin promoter (PhSYN), a woodchuck post-
transcriptionalregulatory element (WPRE), and a bovine growth
hormone (BGH) polyadenylation sequence (Shevtsova et al., 2005).
rAAV was prepared by transfecting HEK293 cells with the plasmid
rAAV-PhSYN-ChR2-YFP together with helper plasmids (Grimm et
al., 2003), pDp1 (serotype 1) and pDp2 (serotype 2)in a ratio of
3:1 harboring expression cassettes for replicase and capsid pro-
teins. Seventy-two hours after transfection, HEK293 cells were
washed once with phosphate-buffered saline (PBS) and collected
into 50 ml falcon tubes, pelleted by centrifugation and resuspended
in lysis and digestion buffer supplemented with benzonase (Sigma)
at 37 C for 30 min and with NaCl at 50 C for 30 min. Cell debris was
removed by centrifugation at 6000 rpm and clear supernatant was
frozen at -700C. For harvesting pure virus, the supernatant was
thawed on ice and layered on an idoxanol (Progen, Germany) gra-
dient (Auricchio et al., 2001). Centrifugation was done for 60 min,
and the virus located on top of the 40% idoxanol layer was removed
and placed into a 15 ml falcon tube. To remove salt and further
concentrate the virus, the idoxanol gradient fraction was washed
three times with PBS and concentrated to a volume of 200-300 pjl
using Amicon filters (Amersham). Infectious virus titers were deter-
mined in primary neuron cultures as described previously (Zhu et
al., 2007).

22. Primary dissociated cell culture

Dissociated primary cultures of rat hippocampal neurons were
prepared in 24-well plates as described previously (Hagler and
Goda, 2001). Hippocampi were extracted from PO rat pups, rinsed
three times in HBSS, incubated with an enzyme solution contain-
ing 1 mM L-cysteine, 0.5 mM EDTA, 1.5 mM CaC12 , 200 units Papain
(Worthington), and 0.1 pg/ml DNAse in a modified HBSS (con-
tains an additional 25 mM HEPES, pH 7.3) for 30-40 min, and then
mechanically triturated with a fire-polished pipette. The cells were
counted on a hemocytometer and diluted in culture medium con-
taining 6 mg/ml glucose, 1 mM Na-Pyruvate (Invitrogen), 10% fetal
bovine serum (Hyclone), 0.1% Mito serum extender (Invitrogen),
2% B27 (Invitrogen), and 1 mM HEPES (pH 7.3) in Basal Medium
Eagle (Invitrogen), so that the plating density was 50,000 cells/mL.
The cells were plated on 12 mm German glass coverslips (Elec-
tron Microscopy Sciences), coated with a mixture of 5.5 mM acetic
acid and 0.9 mg/ml rat tail collagen (BD Biosciences). After 2 days,
20 V.M Ara-C (Sigma) was added to prevent further growth of
glia.

The virus (rAAV-PhSYN-ChR2) was added either to the cell sus-
pension just before plating or 1 day after plating by adding 1-3 [L1
of solution containing the virus for each well. The culture medium
was not changed after adding the virus.

2.3. Electrophysiology

The culture was visualized using an inverted microscope (Olym-
pus IX-70) and a QICam CCD camera (Qimaging). Whole cell
recordings of membrane potential and currents were obtained
using a patch clamp amplifier (Axon Instruments). The bath solu-
tion contained (in mM): NaCI 145, KCl 3, HEPES 10, CaCl2 3, glucose
8, MgCl 2 2, pH 7.30 as described previously (Bi and Poo, 1998). To
prevent washout of the intracellular milieu, we used a perforated
patch solution containing (in mM): potassium gluconate 136.5, KCI

17.5, NaCl 9, MgCl 2 1, HEPES 10, EGTA 0.2, pH 7.20 as described pre-
viously (Bi and Poo, 1998) with 300 p.g/ml Amphotericin-B (Sigma).
Data were sampled at 10 kHz and collected using the Matlab XPC
target toolbox. Sutter micromanipulators were used to position the
patch pipettes.

The holding current for current clamp recordings was set to the
leak current, which was defined to be the current measured when
the neuron was voltage clamped at -70 mV.

2.4. Optical stimulation

Wide-field stimulation of patch clamped neurons was per-
formed with an unfiltered XCite lamp, attached to the epi-
fluorescence illumination port on the microscope.

Timing and synchronization with the electrophysiology for both
wide-field and laser stimulation were achieved by triggering a
mechanical shutter (Uniblitz) placed between the light source and
the microscope. However, the opening time of the shutter did not
occur synchronously with the trigger. We measured the time for
the shutters to open using a silicon photodiode (Thorlabs). The
delay in opening of the wide-field shutter (Model VS35) from the
trigger time was measured to be 3.4± 0.1 ms (mean± standard
deviation for five measurements), and the delay for the laser
shutter (Model VS25) was 3.3 ± 0.04 ms (mean ± standard devi-
ation for five measurements). The reported latencies for the
electrophysiological signals were calculated by measuring the time
between the point of interest and the shutter trigger signal and
then subtracting the mean shutter delay time from this differ-
ence.

A guided laser stimulation system was designed using a 30 mW
488 nm solid state laser (Coherent). The laser output was coupled
to a fiber optic (Point Source), beam diameter expanded to 3 mm,
passed through neutral density filters, directed into galvos (Cam-
bridge Technologies, model 6210H) to move the beam, and sent
through a scan lens so that the spot was focused in the image
plane of the microscope (Olympus IX-70). A schematic of the optical
system is shown in Fig. 3A.

The intensity of the laser measured at the sample ranged from
10 ItW to 1 mW. We measured the diameter of the laser spot size
by sandwiching a drop of fluorescein between two coverslips and
taking an image of the fluorescent excitation produced by the laser
spot. We plotted the intensity values across a line centered over
the spot. From the resulting profile, we calculated the diameter of
the spot as the full width at half maximum (FWHM) intensity. The
luminance was calculated using the intensity measurement at the
sample, divided by the area of the laser spot, calculated from the
FWHM.

To accurately stimulate specific locations in the culture, a map
of control voltages for the galvos and the corresponding laser spot
location in the image was created at intervals of 100 pixels. Values
were interpolated between these points. Custom software was writ-
ten in Matlab to guide the laser spot to particular spatial locations
and control the mechanical shutter.

3. Results

3.1. rAAV mediated delivery of ChR2-YFP into neurons

To monitor the expression levels of ChR2 in neurons, the ChR2
gene was fused to a yellow fluorescent indicator protein (YFP)
(Boyden et al., 2005) and cloned into a rAAV expression plas-
mid with the human synapsin promoter (PhSYN) (Shevtsova et
al., 2005) driving ChR2-YFP expression (rAAV-PhSYN-ChR2-YFP)
(Fig. 1A). Virus with capsid proteins of the serotype 1 and 2 was
prepared as described previously (Zhu et al., 2007). The culture
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Fig. 1. (A) Expression cassette for rAAV-PhSYN -ChR2. The human synapsin promoter (PhSYN) drives expression of ChR2-EYFP. Labels: synthetic transcription blocker (TB), a
woodchuck hepatitis virus posttranscriptional control element (WPRE), polyadenylation signal (pA), inverted terminal repeats of AAV2 (ITR). (B) Left column shows phase
contrast images of primary hippocampal culture at DIV 7, DIV 14, and DIV 21, magnified 20x. Right column has the same field of view as the left. The 50 p.m scalebar applies
to all images. Images were taken using an Excite lamp and YFP filter so that YFP fluorescence could be observed. Exposure time was fixed for all the fluorescence images so
that visual comparison could be possible.

was infected with the virus, rAAV-PhSYN-ChR2-YFP, 1-2 days after
plating.1 We observed YFP expression in the culture at 7, 14, and
21 days in vitro (DIV). Phase contrast and fluorescence images at
20 x magnification are compared in Fig. 1B for these different time
points. The exposure time is the same for all fluorescence images
(2 s), so that image intensity should be directly proportional to YFP
expression. Expression appears to begin around DIV 7, but does not
reach high levels until DIV 14.

3.2. Wide-field stimulation of neurons expressing ChR2

We then assessed the effectiveness of wide-field stimulation as a
function of days in vitro, spanning the time period from DIV 7 to DIV
27. Previous experiments performed on dissociated hippocampal

I Previous experiments in hippocampal culture have utilized lentiviral vectors for
delivery of ChR2, applied at DIV7 (Boyden et al., 2005; Schoenenberger et al., 2008).

neurons were done between DIV 14 and DIV 28 and made no dis-
tinction between different time points in ChR2 expression (Boyden
et al., 2005; Schoenenberger et al., 2008).

We performed current clamp recordings of neurons that were
visibly expressing YFP (see Fig. 2A for diagram of experiment). We
applied the synaptic blockers CNQX, APV, and bicuculline to ensure
that responses were due to direct stimulation by light, rather than
indirect stimulation through synaptic transmission. The neurons
were stimulated with 5 pulses of broadband visible light for 10 ms
per pulse. Sample traces from 3 neurons at DIV 7, 14, and 21 are
shown in Fig. 2B.

Stimulation was defined as "reliable" if the neuron spiked in
response to all 5 pulses of light. We quantified reliability as a func-
tion of days in vitro (Fig. 2D). The data were grouped so that week
1 included DIV 7 to DIV 13, week 2 included DIV 14 to DIV 20, and
week 3 included DIV 21 to DIV 26. In week 1, only 29% of neurons
showed reliable stimulation (n = 7), consistent with the weak YFP
signal reported above. This increased to 71% in week 2 (n= 14) and
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Fig. 2. (A) Schematic of experimental setup showing patched neuron stimulated with widefield illumination. (B) Example recordings from neurons in current clamp from
five light stimulations at three different time points in the development of the cultures. The stimulations are indicated with a blue dot and are 10 ms each with frequency
6.25 Hz. Dashed line indicates threshold set at -10 mV, used to determine if neuron fired an action potential or not. (C) Zoomed in example of an action potential that was
stimulated by light. The blue line indicates the 10 ms duration of light stimulation. The latency to depolarization, Atd, is the time from the onset of light to the beginning of
the photopotential. The latency to the peak of the spike, denoted At,p, is the time from the onset of light to the peak of the action potential. These measurements are shown
in the bottom panel of D for different time points in development. (D) Upper panel shows the fraction of neurons which spike for every photo stimulus for three different age
groups (week 1, n=7; week 2, n= 14; week 3, n=4). A neuron was considered to spike if for each of five stimuli (shown in B), the neuron fired an action potential. Lower panel

shows the average latencies for photostimulation. Open squares indicate mean latency to depolarization within and across neurons; errorbars indicate standard deviation
within and across neurons (week 1, n = 35 photostimulations; week 2, n = 70 photostimulations; week 3, n = 20 photostimulations). Solid squares indicate mean latency to the
peak of the action potential for the same age groups. The mean latency was calculated from the average spike latency for individual neurons (week 1, n=2 neurons; week
2, n= 11 neurons; week 3, n=4 neurons). Error bars denote the standard deviation for the population of neurons. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

100% in week 3 (n = 4), again consistent with stronger expression
levels as observed using fluorescence.

We calculated the mean and standard deviation of the
latency from the onset of light to the start of depolariza-
tion (Atd, see Fig. 2C). As shown in Fig. 2D, for week 1,
Atd =2.2 t 0.7 ms (n=7 neurons, 5 photostimulations/neuron);
for week 2, Ard=2.3 0.8ms (n=14 neurons, 5 photostimula-
tions/neuron); and for week 3, Atd = 1.8 ± 0.2 ms (n = 4 neurons, 5
photostimulations/neuron). The mean values show that the laten-
cies were about the same for all weeks. The standard deviations are
rather small, indicating that the latencies were about the same for
all neurons.

2

2 Note that all confidence intervals in this paper are standard deviations, rather
than standard errors. This is to give some idea of the variability across a population.

We also calculated the mean and standard deviation of the
latency from light onset to the peak of the action potential (Atsp, see
Fig. 2C) for neurons which could be reliably stimulated and aver-
aged the mean and standard deviation for the neurons by week. As
shown in Fig. 2D, for week 1, Atsp=8.8 2.3 ms (n=2 neurons);
for week 2, Atsp = 9.2 ± 2.1 ms (n = 11 neurons); and for week 3,
A tsp = 5.0 ± 0.8 ms (n = 4 neurons). Judging from the mean latency,
which decreased over time, and the standard deviation, the latency
to spiking is more variable than the latency to start of depolar-
ization. This is not surprising, given that the latency to spiking is
determined by the time to integrate to threshold, and therefore
depends on many factors like the amplitude of the ChR2 current and
intrinsic properties of the neuron. Previous measurements found
that the latency to spiking was 8.0 ± 1.9 ms for DIV 14 hippocampal
culture (Boyden et al., 2005), which is comparable to our measure-
ments.
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3.3. Laser stimulation

The preceding experiments were performed using wide-field
stimulation, which lacks the spatial resolution necessary for finding
connected pairs of neurons. In our laser stimulation experiments,
we chose to focus on the time period between DIV 14 and DIV
21. This is before spontaneous bursting emerges in mass cultures
(Pasquale et al., 2008; van Pelt et al., 2004a,b), and our wide-field
experiments suggested that it should be possible to stimulate neu-
rons during this time window.

Again we performed current clamp recordings of neurons, this
time stimulating them with a laser. Fig. 3B shows an example of a
patched neuron, and the blue dot indicates the location of a typical
laser stimulation. For these measurements, we targeted the optical
stimulation to the soma. The experiments were performed in the
presence of CNQX, APV, and bicuculline to ensure that responses
were direct rather than synaptically mediated.

Initially, we tuned the laser spot to be approximately 1 pLm
in diameter. Since the soma of the neurons varied between 10
and 20 pLm in diameter, this spot size would keep the stimulation
confined to the soma, resulting in high spatial resolution. While
depolarization responses were observed, no spikes were stimulated
(data not shown). Turning up the intensity caused saturation of the
amplitude of the subthreshold depolarization, but still no spikes
were observed.

Then we tried 10 and 40 pLm spot diameters, indicated by white
circles in Fig. 3B, with various intensity values. For both spot diame-
ters we used a 10 ms laser pulse. If a neuron did not spike, increasing
the duration beyond this value did not make any difference. This is
consistent with previous experiments showing that the photocur-
rent decays after about 10 ms of photostimulation (Wang et al.,
2007).

The threshold luminance for stimulation was about
500 mW/mm 2 3 . Below this value, none of the neurons would
fire action potentials when stimulated with the 10 pLm spot (n = 4),
and only one response was observed for the 40 pLm spot (n = 5).
For luminance values above this threshold, stimulation with the
10 pim spot was reliable for 20% of neurons (n = 5), and with the
40 pLm spot was reliable for 33% (n = 6) (Fig. 3C, upper panel).

These percentages are lower than for wide-field stimulation. The
40 pLm spot illuminated the entire soma and proximal dendrites.
Wide-field stimulation also includes more distant sites in the axon
and/or dendrites, which could account for its higher success rate.

3.4. Spatial resolution of laser stimulation

We next characterized the spatial resolution of laser stim-
ulation by recording responses in a neuron while illuminating
multiple locations arranged in a grid. The grid locations are indi-
cated by the blue circles in Fig. 4A and were spaced approximately
12 pLm apart. The locations were stimulated in random order, and
the photoresponses were measured. The peak amplitudes of the
photoresponses formed a two-dimensional map (Fig. 4B). Again,
stimulation was performed in the presence of synaptic blockers.

We estimated the spatial resolution of stimulation by calculat-
ing the second moment of distance from the soma, weighted by
the amplitude of the map. The square root of this number gave an
estimate of the spatial radius of stimulation. The estimation was
done separately for subthreshold and spiking responses, and for

3 We report luminance value because normalizing by laser spot area calculated
from the FWHM provided a clear threshold. Previous results from laser stimulation
of single neurons expressing ChR2 were reported for a range of intensity values and
spot sizes which were similar to ours (wang et al., 2007; Schoenenberger et al.,
2008).

each spot size. The standard deviation of the radius was also calcu-
lated, to characterize the variability across neurons. For the 10 ptm
spot, the radius of subthreshold responses was 102.4 15.4 pLm
(n = 2), and for the 40 pLm spot, the radius of subthreshold responses
was 69.5 ±2.3 ptm (n=3). Likewise, the radii of superthreshold
responses were as follows: 42.2 pLm (n = 1) for the 10 pLm spot and
33.7 ± 11.6 pLm (n = 2) for the 40 pLm spot. The resolution had little

dependence on the size of the laser spot, indicating that the mor-
phology of the neuron could be more important than the spot size
in determining the spatial extent of responses. This is perhaps due
to activation of ChR2 expressed in the proximal dendrites.

We could probably have obtained better spatial resolution by
lowering luminance to the minimum value necessary for pro-
ducing spikes by somatic illumination, as was shown previously
(Schoenenberger et al., 2008). However, it is also important to know
the spatial resolution that is possible at luminances above the min-
imum value.

We might also have obtained better spatial resolution by lower-
ing the spot diameter below 10 pim. However, our experience with
the 1 pLm spot suggests that better spatial resolution would come
only at the cost of drastically reducing the fraction of neurons that
can be stimulated reliably.

3.5. Response latencies for laser stimulation

We also measured the latencies from light onset to the peak of
the action potentials evoked by laser stimulation targeted to the
soma, similar to the measurements reported above for wide-field
stimulation. Data were pooled from both 10 and 40 pLm laser spots,
and various luminances greater than 500mW/mm 2. For each of
three neurons with action potential responses, we plotted the mean
and the standard deviation for the latency to the peak response
(Fig. 3C, lower panel). The average of the mean latencies across
neurons was 7.8 ±2.6 ms (n=3 neurons). The standard deviation
of the mean latency across neurons was greater than the standard
deviation of the latency for a single neuron.

We also measured the latency to the start of the depolarization,
including both super- and subthreshold responses of 11 neurons.
For a given spot size, there was little variability between neurons,
so all of the data was lumped together. The mean and standard
deviation of the latency were 0.9 ± 0.8 ms (n= 5) for the 10 pLm spot
and 0 ± 0.4 ms (n = 6) for the 40 pLm spot.

It is not surprising that the latency to spiking is quite variable
across neurons since it depends on the time required for the neuron
to integrate the ChR2 current to threshold. The latency to response
onset is less variable because it does not include this integration
time.

The latencies for laser illumination were similar to those for
wide-field stimulation, but slightly less. The latencies for wide-
field stimulation are useful for comparison to previous experiments
reported in the literature (Boyden et al., 2005). The latencies for
laser illumination are more relevant to our attempts to find synap-
tically connected pairs of neurons, which are reported below.

3.6. A latency criterion for distinguishing between direct vs.
synaptic responses

Up to now, we have discussed the case of direct stimulation,
intracellular recording in the same neuron that is being subjected to
laser illumination. To measure synaptic responses, we must record
from a different neuron than the one stimulated by the laser. In
an ideal experiment, the neuron chosen for intracellular recording
would not express ChR2 at all, so there would be no possibility of
direct stimulation. We were not able to find such neurons in our
cultures, due to the high rate of AAV infection, so we had to settle
for recording from neurons with low but nonzero expression levels.
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Fig. 4. (A) YFP image of neuron expressing ChR2 at 20x magnification. The blue circles indicate the locations of laser stimulation in a grid around the neuron. (B) Colorcoded
map of the photoresponse amplitudes in mV, measured from the neuron pictured in panel A. The numerical value of the amplitudes is shown in the colorbar to the right. The
spatial locations in the amplitude map correspond to the grid locations in A as indicated by the dashed lines. The white areas in the amplitude map are locations where the
laser stimulated action potentials.

As a consequence of this experimental limitation, there was indicate synaptic responses. The latter figure isjustified because the
always the possibility of direct stimulation. Because of the low latency of a synaptic response should be greater than the latency
expression levels, the responses to direct stimulation were weak, of spiking in the laser-stimulated neuron, which was measured in
and hence could be confused with synaptic responses, if amplitude the previous section. 4

were the only criterion. However, the results of the previous sec-
tion suggest that latency can be used to distinguish between direct
and synaptic responses. We propose that latencies between 0 and 4 There is substantial variability across neurons in the mean laten to spikin.3 ms idicat diret resonses wheras laencie greaer thn 8 m Furtermorytheerissomeeuceotantyni extrpolatnglthtlatecyttospikigifro

Furthermore, there is some uncertainty in extrapolating the latency to spiking from3 ms indicate direct responses, whereas latencies greater than 8 ms
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3.7. Finding synaptic responses by scanning laser stimulation

To test the criterion proposed above, we scanned a 40 pLm laser
spot across the neural culture while recording from a neuron in
voltage clamp which was expressing ChR2 at a very low level, judg-
ing from YFP fluorescence. We stimulated locations in a grid in
random order using the laser. The experiments were done both
with and without synaptic blockers to distinguish between direct
and synaptic responses, and the results were compared with the
latency criterion. We also used a 4x objective for a larger field of
view containing more possible laser targets.

For two experiments, Figs. 5 and 6 illustrate the locations in the
culture atwhich laser stimulation produces responses in the voltage
clamped neuron, along with a histogram of the observed latencies.
Initially, only a subset of locations yielded observable responses in

the case of a neuron with an electrode attached to the case of a neuron with no
electrode. Nevertheless, it seems improbable that the latency to spiking could drop
below 3 ms, the cutoff value we propose as the criterion for a direct response.

the voltage clamped neuron (Figs. 5A and 6A), indicating that the
laser stimulation has some spatial selectivity. After the addition of
synaptic blockers, this subset shrinks (Figs. 5C and 6C). The loca-
tions that remain tend to be closer to the cell body of the recorded
neuron, consistent with the idea that the synaptic blockers have
eliminated the synaptic responses.

To compare with the latency criterion proposed above, the laten-
cies of responses at the various locations are also histogrammed
in Figs. 5B and 6B. The addition of synaptic blockers eliminates
the responses with latencies greater than 8 ms, and the responses
with latencies less than 3 ms are left intact almost completely
(Figs. SD and 6D). Therefore the latency criterion is consistent with
the direct and synaptic responses as distinguished pharmacologi-
cally.

3.8. Classifying synaptic responses

While it was straightforward to distinguish between direct and
synaptic responses, it was more difficult to distinguish between
different types of synaptic responses. We were unable to solve
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Fig. 6. Another example illustrating the search for synaptic responses. Image of culture at 4x showing YFP fluorescence (A and C). Overlaid is a map of colored squares
indicating the latency from onset of light to the start of the photocurrent. The colorbarto the right indicates the magnitude of the latency in milliseconds. The white (X) marks
the location of the patch electrode. The (+) markers indicate a complex response, and the (O) markers indicate a simple response in the induced photocurrent. The numbers
overlaid in the images in panels A and C correspond to the plots in panel E. They are example traces of currents induced in the recorded neuron for stimulation occurring at
the location indicated by the number. Plots 1, 2,3, and 4 in panel E are examples of simple responses, and plot 5 is an example of a complex response. Panels B and D contain
histograms showing the distribution of latencies. The data for A and B were acquired without synaptic blockers. The data for panels C and D were acquired with synaptic
blockers.

this problem completely, but we can suggest some tentative cri-
teria.

Figs. 5E and 6E show some voltage clamp responses to laser stim-
ulation. Many responses have a simple shape, but sometimes they
are quite complex (Fig. 5E, second trace, and Fig. 6E, fourth and
fifth traces). Complex responses are presumably the summation
of many synaptic pathways, possibly including both monosynaptic
and polysynaptic. Complex responses often have large amplitudes,
suggesting that laser stimulation has directly or indirectly caused
many neurons in the culture to spike.

We suggest that simple responses with small amplitudes
and latencies between 8 and 18 ms are candidate monosynap-
tic responses. Of course, this criterion cannot be entirely reliable,
because the latency to spiking of the stimulated neuron shows sub-
stantial variability, as discussed earlier. Narrowing the window to a
shorter time interval after 8 ms should reduce the number of false
positives, but will also reduce the number of true positives.

4. Discussion

We employed rAAV gene delivery to transfer ChR2 to cultured
hippocampal neurons. In wide-field stimulation experiments we
found that action potentials could be reliably evoked in many neu-
rons after two weeks in vitro, as was previously reported for ChR2
delivered via lentivirus (Boyden et al., 2005; Schoenenberger et al.,
2008). We further quantified the fraction of neurons that could be
reliably stimulated, as a function of weeks in vitro.

We then experimented with laser stimulation, which has supe-
rior spatial localization compared to wide-field stimulation. These
experiments were similar to those of Schoenenberger et al. (2008),
except that we focused on the effectiveness of stimulation. We
found a decreased fraction of neurons that could be reliably stim-
ulated to generate an action potential through laser illumination
of the soma. For example, after two weeks in vitro, the fraction
of neurons that could be stimulated dropped to 0.35, from 0.8 for

.... .... ... I
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wide-field stimulation. Reducing the laser spot size produced an
even smaller fraction of neurons which spike (Fig. 3c). Therefore
the reduced effectiveness of laser stimulation is most likely due to
smaller photocurrents produced by stimulation of a smaller num-
ber of channels.

Finally, we experimented with the use of laser stimulation at
locations away from the soma to evoke synaptic responses. These
experiments were similar to the wide-field stimulation experi-
ments of Boyden et al. (2005), but with the possibility of obtaining
superior spatial resolution. Although we recorded from cells that
expressed low levels of ChR2, photostimulation still produced small
inward currents even in the presence of synaptic blockers. Based on
amplitude alone, these inward currents due to direct stimulation
could be confused with synaptic responses observed in the absence
of blockers. However, our measurements showed that direct vs.
synaptic responses could be distinguished on the basis of response
latency (Figs. 5 and 6). We propose that small inward currents that
begin less than 3 ms after light onset are the result of direct stimu-
lation.

It is known that synaptic interactions between cultured hip-
pocampal neurons can be very strong, especially in low density
cultures, presumably due to multiple synaptic contacts between
pairs of neurons (Bekkers and Stevens, 1995; Segal and Furshpan,
1990; Wilcox et al., 1994). The spiking of a single neuron can be
sufficient to drive its postsynaptic targets above the threshold for
spiking (Segal and Furshpan, 1990). Therefore, complex synaptic
responses due to the superposition of many polysynaptic pathways
are often observed. This is in contrast to brain slice experiments, in
which stimulation of a single neuron causes subthreshold responses
in its postsynaptic targets.

Most of our synaptic currents were about 100 pA or less, which
is smaller than the currents observed in microisland cultures of the
same age. Nevertheless, many synaptic responses to laser illumina-
tion were highly complex in their time courses. This could be due
to the recruitment of multiple polysynaptic pathways in parallel,
and/or stimulation of more than one neuron. Based on our measure-
ments of latency, we suggest that responses with small amplitudes,
simple shapes, and latencies between 8 and 18 ms are candidate
monosynaptic responses. This criterion cannot be entirely reliable,
but it could be a useful guide.

In comparison to other optical methods for stimulating neurons
in culture such as glutamate uncaging (Pettit et al., 1997) and opti-
cally stimulating neurons grown on silicon wafers (Colicos et al.,
2001; Starovoytov et al., 2005), ChR2 fulfills the requirement for
reversible, high-speed, spatiotemporal activation of select neuronal
populations (Boyden et al., 2005). Repeated trials of single pho-
ton photolysis of caged glutamate could release large amounts of
glutamate which might lead to toxicity or non-specific stimulation
(Callaway and Katz, 1993). Optically stimulating neurons grown on
silicon wafers (Colicos et al., 2001; Starovoytov et al., 2005) was
another promising method of non-invasive stimulation, but reliably
eliciting action potentials meant increasing illumination intensity,
which reduced spatial resolution. Additionally, the neurons could
only be stimulated to fire action potentials after three weeks in vitro
(Starovoytov et al., 2005).

Multi-electrode arrays (MEAs) have also been extensively used
to probe cultured neural networks (Corner et al., 2002; Pasquale et
al., 2008; van Pelt et al., 2004a,b; Wagenaar et al., 2005), namely
to characterize the bursting activity in developing cultured neu-
ral networks (van Pelt et al., 2004a,b) and control activity in these
networks by stimulating at different electrode sites (Madhavan et
al., 2006; Massobrio et al., 2007; Wagenaar et al., 2005). However,
the extracellular stimulation from the array suffers from poor spa-
tial localization (Heuschkel et al., 2002) and stimulation artifacts
(Wagenaar and Potter, 2004). These stimulation issues have been
circumvented by using optical stimulation of caged glutamate to

stimulate neurons, while recording exracellular signals viathe MEA
(Ghezzi et al., 2008). Laser stimulation of neurons expressing ChR2
could potentially be used in a similar fashion, with the advantage
that there would be no accumulation of glutamate in the bath.
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Abstract

The transsynaptic spread of rabies virus (RV) makes it a powerful tool
for mapping circuits of neurons in the brain. Current evidence strongly
suggests that the retrograde spread of the virus is restricted to synapti-
cally connected neurons. However, the mechanism which confers synaptic
specificity is still unknown. We explored the effects of chronic activity
blockade on spread of monosynaptically restricted RV in primary hip-
pocampal culture. Blocking both synaptic vesicle release and activity
resulted in increased spread of RV, measured by comparing the ratio of
putative presynaptic neurons to postsynaptic neurons in naive conditions
to conditions with blockers. Partial block of dynamin-mediated endocy-
tosis with dynasore slightly decreased spread. Although these results may
be challenging to interpret in light of homeostatic plasticity changes that
may be occuring as a result of chronic activity blockade, the fact that
modifying activity is correlated with changes in synaptic spread of RV
could be interpreted as further evidence in favor of synaptic restriction of
RV.

Introduction
Tracing neural circuits with rabies virus (RV) offers a greatly improved method
over conventional tracing techniques. Available evidence strongly argues for the
specficity of viral spread to synaptically connected neurons[27, 24, 12]. Addi-
tionally, the ability of the virus to rapidly replicate within a neuron allows for
amplification of signal [31, 14, 28, 6]. However, the mechanism which confers
exclusivity of viral spread between synaptically connected neurons is still in
question.[4] Elucidating such a mechanism would bolster the use of RV as a
tracing tool, since it would ensure that neurons labeled via infection with RV
were synaptically connected.

The main evidence for synaptic restriction of RV comes from previous studies
tracing model systems. In these studies, the number of infected neurons within



a nucleus did not increase with time and fibers of passage passing through an

infected nucleus did not become infected with RV, implying that there was no

local spread of the virus. [27, 28, 29, 12, 24]. Additionally, electrophysiological

verification of synaptic connectivity of neurons in slice, labeled with monosy-

naptically restricted RV, confirms transsynaptic labeling [32].

One explanation for synaptic restriction is that the receptors to which RV

particles bind to gain entry into a neuron could potentially be localized to

synapses[29, 15, 4]. In contrast, experiments in hippocampal culture show that

RV particles bind to the soma and dendrites of cultured neurons [16]. This

suggests that there could be non-synaptic specific spread of the virus. To coun-

teract that idea, glial sheathing has been proposed as a way of preventing viral

spread into the extracellular matrix [4].
The question of structural constraints on RV spread, as well as potential

synaptic mechanisms for viral spread can be addressed in hippocampal culture.

RV travels retrogradely, from postsynaptic to presynaptic neurons [12]. Synap-

tic transmission from a presynaptic neuron to a postsynaptic neuron is one of

the main determinants of connectivity. If spread of RV is indeed restricted to

synaptically connected neurons, we hypothesize that altering synaptic vesicle re-

lease could produce changes viral spread. In particular, blocking synaptic vesicle

release or compensatory endocytosis of synaptic vesicles following release could

impede viral spread. Alternatively, spread of RV could depend on postsynaptic

activity.
To test these hypotheses, we needed a system where we could measure the

populations of pre- and post- synaptic neurons. Using monosynaptically re-

stricted RV would allow targeting of a population of initial host neurons, with

viral spread limited to neurons which were putatively one synapse away [32],
preventing mass infection of the entire culture. The populations of pre- and

post- synaptic neurons could be distinguished by different fluorescent labels

and counted using image analysis.
Estimating the populations of putative pre- and post-synaptic neurons re-

quired imaging whole coverslips of hippocampal culture. Because we started

with a small number of postsynaptic neurons that was greater than 1, the loca-

tions of their putative presynaptic partners were unknown. Imaging as large of

an area as possible would hopefully minimize that confound.
Calculating the ratio of putative presynaptic to postsynaptic neurons pro-

vided a measure for comparing the effects of our manipulations. Due to the large

number of images acquired for each coverslip, we developed an image analysis

pipeline to automate counting neurons. We trained a convolutional neural net-

work to segment neuron somata in DIC images to obtain a total count of the

neurons in the culture and counted neurons expressing fluorescent labels using

bandpass filtered images.
Here we report the successful use of monosynaptically restricted RV to label

clusters of neurons in primary hippocampal culture. Surprisingly, we found that

application of synaptic vesicle release blockers botulinum toxin - A (BoNT/A)

and tetanus toxin (TeNT) [21, 9] increased the amount of RV spread. We also

tested the effect of activity blocker tetrodotoxin (TTX) combined with synaptic



blockers APV, CNQX, and Bicuculline to quench postsynaptic activity and
found that this manipulation increased RV spread as well. Applying a partial
block of dynamin-dependent endocytosis using dynasore [19] impeded the spread
of the virus, although not in a statistically significant way.

Our results could potentially be explained by changes to the underlying
structure of the network via homeostatic plasticity mechanisms. Even so, that
the spread of RV could reflect these changes provides another confirming piece
of evidence for the synaptic restriction of RV.

Methods

Constructs for monosynaptically restricted RV
The plasmid pUB-ETB was constructed by de novo synthesis of a tricistronic
open reading frame consisting of three genes coding for EGFP, the TVA trans-
membrane isoform [18], and the SAD B19 glycoprotein [5] separated by the
foot and mouth disease virus and Thosea asigna virus 2A elements [23], which
was cloned into the expression vector pUB-GFP [17] under the control of the
ubiquitin C promoter.

High titer stocks of G-deleted RV coding for mTagBFP [22], pseudotyped
with the avian sarcoma and leukosis virus subgroup A envelope protein (RV-
4BFP(EnvA)), were made according to [33].

Primary hippocampal culture

P1 rat hippocampi were extracted and solutions were prepared as described
previously [8]. All animals were treated humanely, in accordance with the MIT
Committee on Animal Care policies. Hippocampi were collected with dentate
gyrus removed and cut into small (~ 1 mm) pieces in a dissection solution
containing 25 mM HEPES in Hank's Balanced Salt Solution (HBSS), pH 7.3.
These pieces were dissociated for culture by incubating the tissue for 30-40 min
at 37C in HBSS containing 1 mM L-cysteine, 0.5 mM EDTA, 1.5 mM CaCl 2,
20 U/ml Papain (Worthington), and 0.1 pg/ml DNAase. The enzymatically
dissociated tissue was rinsed 3 times in culture medium containing 6 mg/ml
glucose, 1 mM Na-Pyruvate (Invitrogen), 10% fetal bovine serum (Hyclone),
0.1% Mito serum extender (Invitrogen), 2% B27 (Invitrogen), and 1 mM HEPES
in Basal Medium Eagle (Invitrogen), pH 7.3 and then mechanically triturated
with a fire polished plastic pipette in culture medium. The cell suspension
was diluted so that the plating density was approximately 200K cells/ml. The
neurons were plated on 12 mm round glass coverslips coated with 0.5 mg/mL
rat tail collagen and 4 pg/ml poly-D-lysine in a 24-well plate. After 2 days, 20
uM Ara-C (Sigma) was added to prevent further growth of glia.



Transfection, infection, and fixation

Primary hippocampal cultures were transfected with pUB-ETB at DIV 7 using

Invitrogen's calcium phosphate transfection kit, in a manner similar to [11].

Calcium phosphate precipitate containing the pUB-ETB plasmid was prepared

by combining 10 pL 2M CaCl2 with 10 pg pUB-ETB and 80 pL H20. The

DNA solution was added dropwise into 100 pL 2x HeBS, bubbled using a 1

mL pipette, and incubated at room temperature for 25 min to form calcium

phosphate precipitate. Cultures were transfered to DMEM with no L-glutamine

(Invitrogen) and incubated for 5-7 min before adding 15-20 pL (0.75-1 pug pUB-

ETB) precipitate. The cultures were incubated with precipitate for 20 min at

37 0C, then rinsed 3 times in pre-equilibrated DMEM, incubating for 10 min

after each rinse. After the last rinse, cultures were returned to original culture

medium.
Twenty-four hours after transfection with pUB-ETB (DIV 8), 1-2 1 L of RV-

4BFP(EnvA) was added to the medium. For activity manipulations, a combi-

nation of activity blockers, vesicle blockers, or 10 pM Dynasore (Sigma) were

added before infection with RV-4BFP(EnvA). The activity blockers included

1 pM TTX (Sigma), 100 pM APV (Sigma), 10 pM CNQX (Sigma), and 10

pM Bicuculline (Tocris), and the vesicle release blockers included 13-26 nM

BoNT/A (Sigma) and 10 nM TeNT (Sigma). Four to six hours after RV infec-

tion, the medium was replaced with either fresh medium for baseline conditions

or medium containing the previously listed drug concentrations.

Control cultures (no manipulations) were subjected to sham calcium phos-

phate transfection (no precipitate added) and received the same medium changes

at the times described above. For the medium exchange control, medium

was collected from pUB-ETB transfected, RV-4BFP(EnvA) infected culture 24

hours after the first medium exchange and added to naive culture.

Twenty-four to 48 hours after RV infection, the cultures (DIV 9) were trans-

ferred to 4% paraformaldehyde in PBS for 20min at room temperature for fix-

ation., followed by 3 - 10 min rinses in PBS. Coverslips containing cultures

were inverted onto slides containing a drop of Prolong Gold Anti-fade mounting

medium (Invitrogen).

Image aquisition

Tiled widefield images of the coverslips at 10x magnification were aquired using

Slidebook software (Intelligent Imaging Innovations) controlling an Olympus

BX61 with motorized stage (Prior). Tilings ranged in size from 12x14 to 16x21

and were acquired at full 1040x1392 pixel resolution of a 12 bit QiCam cooled

CCD camera (QImaging) with 5% overlap. Each of three channels were ex-

posed consecutively for each tile. We used DAPI (Semrock DAPI-5060B-OMF)

and FITC (Chroma 41017) filter cubes for widefield fluorescence excitation and

emission with a X-Cite light source. Exposure times were the same for all cov-

erslips as follows: widefield differential interference contrast (DIC) channel, 30

ms; DAPI channel, 5 s; FITC channel, 5 s. Slidebook's autofocus function was



applied using the DIC channel with a 30 msec exposure. Images were streamed
to disk in Slidebook format, then exported as TIFs.

Image analysis

Neurons in DIC images were counted using custom segmentation software writ-
ten in Matlab. A convolutional network (CN) classifier [101 with a field-of-view
of 55x55 pixels was trained on a test set using hand labeled neuron somas until
it achieved a 3.5% pixel classification error. Images were rescaled to have pixel
intensity values with 0 mean and unit standard deviation and passed through
the network. CN output was filtered using a gray scale morphological image
opening with a disk structuring element of radius 8 pixels. This filtered version
of the CN output was thresholded at 0.8, creating a binary image. Connected
components corresponded to neuron locations and were counted (NDIC) using
Matlab.

To count BFP expressing neurons, DAPI channel images were bandpass
filtered using guassian filters with 7 pixel standard deviation to detect BFP
expressing neuron somas and 60 pixel standard deviation to smooth the back-
ground. The filtered images were thresholded and connected components counted
as the number of BFP neurons (NBFP). Since we were only interested in count-
ing GFP expressing neurons which were also expressing BFP, we used the BFP
mask to find the number of GFP expressing neurons (NGFP) in the FITC chan-
nel images, defined as having a mean intensity value above threshold for a given
connected component in the BFP mask.

All images were manually reviewed for large artifacts which were inadver-
tently detected by the image processing algorithms and the counts for these
images were hand corrected. Addtionally, the images were cropped to exclude
overlap in the image tiling to prevent overcounting, and fluorescent images were
shifted so that they aligned with DIC images.

The proportion of BFP expressing neurons and GFP expressing neurons
wer clclaedasNBFP adNGFPwere calculated as and , respectively. The presynaptic/postsynaptic

neuron ratios were calculated as follows: NG . Statistical comparisons
between different experimental conditions were performed using ANOVA. Tests
of significance between conditions were performed using Tukey-Kramer post-hoc
analysis.

Results

Monosynaptically restricted RV infection and spread in pri-
mary hippocampal culture

It was not immediately obvious that observing RV infection in hippocampal
culture would be feasible due to the dense interconnectivity of culture. Like-
wise, the possibility that RV would spread indiscriminately as in non-neuronal
cell culture was also a potential issue. We tested monosynaptically restricted



RV by transfecting hippocampal cultures with the plasmid pUB-ETB, which

contained genes coding for eGFP, ASLV receptor TVA, and B19G RV glycopro-

tein and infected with G-deleted, EnvA pseudotyped RV coding for mTagBFP

(RV-4BFP(EnvA)).
First we observed eGFP expression in a subset of neurons following cal-

cium phosphate transfection of the culture. To ensure that this was also ev-

idence of functional TVA receptor expression and B19G (RV glycoprotein)
for viral transcomplementation, we infected transfected cultures and wildtype

cultures with RV-4BFP(EnvA). We expected that neurons infected with RV-

4BFP(EnvA) would be evidenced by BFP expression. Twenty-four hours after

RV-4BFP(EnvA) infection of pUB-ETB transfected cultures, we observed neu-

rons expressing both BFP and GFP as well as neurons expressing only BFP,
indicating successful infection of TVA expressing neurons with pseudotyped

virus. (Figure 1) Infection of wildtype cultures resulted in a negligible number

of BFP expressing neurons, providing evidence that pseudotyped virus could

not infect wildtype neurons and that the BFP neurons observed in the trans-

fected culture were the result of infection from successfully transcomplemented

RV-4BFP(EnvA) with B19G.
In pUB-ETB transfected cultures, BFP expressing neurons were primarily

clustered in regions of the culture which had GFP expressing neurons, indicating

that there was a spatial correlation between the locations of the initially infected

host neurons and the subsequently infected secondary population. To rule out

the possibility that we were observing non-specific spread of transcomplemented

virus into the culture medium, we removed medium from cultures which were

transfected with pUB-ETB and infected with RV-4BFP(EnvA), containing neu-

rons expressing BFP (evidence of synaptic spread), and transferred this medium

to naive cultures. Again, we observed negligible BFP expression in these con-

trols as compared to the experimental condition.

Measure of RV spread

To quantify our observations, we fixed and mounted the coverslips and imaged

them in widefield tilings using Slidebook's automated image collection process.

Figure 2 shows an example coverslip (14x17 tiling) and a schematic of the anal-

ysis used to count the neurons. An average of 250 locations were imaged for

each coverslip, resulting in an average of 750 images to process for each coverslip

after taking the 3 channels imaged into account. For the control conditions, we

needed to count the total number of neurons on the coverslip and the number of

BFP expressing neurons to statistically compare the differences in BFP expres-

sion. For the experimental manipulations, we also needed to count the number

of GFP neurons.
We generated the total count of neurons from DIC images. First we trained

a convolutional network to segment somas in DIC images by using a handlabeled

training set of images. The network was trained until the classification error

was 3.5%. The output of the network was a probability map for the likelihood

of pixels being in or out of a soma. Figure 2 shows example output of the



CN. To convert this grayscale map into a binary image, we performed a gray
scale opening on the CN output and thresholded the resulting image, creating a
binary image. We counted the connected components in the binary image and
used this as our count of DIC neurons. We evaluated this analysis using a test
set of 10 images. The opened output of the CN detected 76% of the neurons
correctly with a false positive rate of 20.3%.

To count BFP expressing neurons (NBFP), we bandpass filtered BFP images
and applied a threshold, creating a binary mask. The connected components
in this mask corresponded to locations of the BFP neurons and were counted
We used this mask to search for GFP expressing neurons in the GFP images,
since this would ensure that the GFP expressing neurons were also expressing
BFP. (These were the putative postynaptic neurons.) We calculated the mean
intensity in the GFP channel for each of the regions of interest in the BFP mask.
Regions with average above the GFP threshold were counted as a GFP/BFP
expressing neuron with the total number denoted by NGFP. The proportion
of BFP neurons relative to the entire culture was calculated as Nbfp/Ndic and
the proportion of neruons expressing BFP and GFP was calculated as N

NDIC

The number of putative presynaptic neurons was calculated as Npre=NBFP-
NGFP, and the ratio of presynaptic to postsynaptic neurons was calculated as
Npre -Na GFp . All fluorescent images were hand verified to correct forNpost NGFP

identification of large artifacts.

Quantification of control conditions

We used the measures described in the previous section to quantitatively com-
pare the control conditions. Since we were searching for spurious RV infection,
we quantified the proportion of BFP expressing neurons relative to the total
number of neurons on the coverslip in each condition. We computed this ratio
for each coverslip and averaged over all coverslips for each condition. The means
were compared for statistical significance using ANOVA with Tukey-Kramer
post hoc comparisons.

Cultures transfected with pUB-ETB and subsequently infected with RV-
4BFP(EnvA) (n=6) had a higher rate of BFP expression than 3 other control
conditions, which was statistically significant with p=0.0001. These other con-
ditions included sham transfection and no RV infection (nothing) (n=2), cul-
ture with sham transfection followed by infection with RV-4BFP(EnvA) (RV
only) (n=3), and culture containing medium from pUB-ETB transfected, RV-
4BFP(EnvA) infected cultures (medium exchange) (n=2). Figure 3 contains a
bar plot indicating the mean BFP proportion for these conditions with error
bars denoting standard error. The 3 control conditions were not significantly
different from each other.

This quantification confirms our observation that EnvA pseudotyped RV
infects only pUB-ETB expressing neurons and that virus released from the initial
host infection is not present in the bulk medium. This potentially rules out non-
specific local spread of RV in hippocampal culture.



Effects of activity manipulations on RV spread

We tested our hypothesis that blocking synaptic vesicle release would affect the

spread of RV by applying a cocktail of 13-26nM BoNT/A and 10nM TeNT (tox-

ins) to inhibit both glutamatergic and GABAergic vesicle release [2, 30, 21, 9].
These blockers were added to cultures transfected with pUB-ETB immediately

before infection with RV-4BFP(EnvA). We compared this to the effects of two

other activity manipulations: 10uM of dynamin-mediated endocytosis blocker

Dynasore (Dynasore) and a combination of activity blockers luM TTX, 1OOuM

APV, 10uM CNQX, and 10uM Bicuculline (blockers). Dynamin is required for

bulk retrieval of synaptic vesicles in hippocampal culture, for which Dynasore

provides a dose dependent blockade [19]. If spread of RV depends on synaptic

vesicle recycling, we expect this manipulation would decrease the number of sec-

ondary neurons infected with RV. We also applied action potential blocker TTX

with a combination of synaptic blockers APV, CNQX, and Bicuculline to test

the hypothesis that viral spread could be dependent on postsynaptic activity.

For all of these conditions, we observed infection of pUB-ETB transfected

neurons as well as spread to other neurons, evident by expression of BFP only.

Qualitatively, there appeared to be more BFP expressing neurons in cultures

treated with activity blockers than in the other conditions, and fewer BFP ex-

pressing neurons in the two synaptic vesicle treatments. Images representative

of areas with BFP clusters are shown in Figure 1. We quantified these observa-

tions using the counting method described above. Figure 4A shows the relative

proportions of BFP and GFP expressing neurons averaged over coverslips for

the control condition (n=6), toxins (n=5), Dynasore (n-5), and blockers (n=6).

The height of the bars indicates the mean proportion of neurons expressing BFP

(blue bars) and GFP + BFP (cyan bars), calculated by counting the number

of neurons for each case and dividing by the total number of neurons on a cov-

erslip. These numbers were then averaged across coverslips. Error bars denote

standard error.
To determine if there was a difference in amount of viral spread among

these conditions, we computed the ratio N, for each coverslip and averaged

over all coverslips for the control condition and 3 manipulations. We found

that the Npre increased for both the blocker and toxin conditions indicating
Npost

increased RV spread (Figure 4B). These increases were statistically significant

compared to the control condition (ANOVA, p=0.002, with post-hoc Tukey-

Kramer comparison). There was a slight decrease in amount of spread for the

Dynasore condition, but this was not statistically significant.

Discussion

We tested the activity dependence of transynaptic RV spread in primary hip-

pocampal culture using monosynaptically restricted, pseudotyped RV. This sys-

tem allowed us to target the initial RV host infection to a defined population of

neurons and restrict transsynaptic spread to neurons which were putatively one



synapse away[32]. This was important for measuring changes to spread, since
having well-defined populations of inital infections and secondary infections pro-
vided a basis for comparison. By counting the number of neurons which were
initially infected by RV and comparing to the number of neurons which were
infected by transsynaptic spread from this initial group, we could compare the
effects of activity manipulations.

Our results that blocking synaptic vesicle release and blocking activity in-
creased RV spread were surprising, given our intial hypothesis that they might
decrease spread. There are several possible explanations for these observa-
tions. The wealth of literature on homeostatic plasticity suggests that our
chronic blockade of activity could have induced modifications via synaptic scal-
ing [26, 25, 20]. How increases in quantal size could mechanistically be related
to an increase in the number of neurons to which RV spreads is unclear. Alter-
natively, our results could be explained by an increase in the number of spines
which might lead to additional presynaptic neuron contacts. However, this pos-
sibility seems unlikely, given the age of culture we used (DIV 7-9). Increases in
spine density in response to chronic activity blockade are reported for cultures
older than DIV 18 [34] and acute slices from rats between P20-22 [13].

That spread of RV was slightly impeded by partial block of dynamin-mediated
endocytosis [19] corroborates evidence that RV particles are endocytosed through
acidified endosomal compartments [16]. We were unable to increase the dose
of dynasore to completely block dynamin-mediated endocytosis due to negative
effects on the health of the culture for the prolonged application period.

The increase in spread due to application of both BoNT/A and TeNT has
a less clear interpretation. TeNT blocks GABAergic transmission in the hip-
pocampus and is thought to induce epileptic glutamatergic activity [1]. Co-
application with BoNT/A should counteract this effect by blocking excitatory
synaptic transmission[30]. That we did not observe decreased spread of RV by
turning off all synaptic transmission implies that RV spread could be indepen-
dent of synaptic transmission.

That the activity dependent manipulations had a statistically relevant effect
on the amount of viral spread suggests that synaptic activity, as well as neuronal
activity, are related to spread of RV, although the mechanism remains unclear.
That changes in RV spread were correlated with modifications to connectivity
and activity of neurons provides additional circumstantial evidence for synap-
tic restriction of spread. Further experiments, such as genetically targeting
inward-rectifying potassium channels to the population of postynaptic neurons
to selectively decrease activity in the initial host neurons [3] or selectively inac-
tivating clathrin-mediated endocytosis [7] could provide more resolution on the
matter.
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Figure 1: Images of culture transfected with pUB-ETB and infected with RV-
4BFP(EnvA). The rows contain images of the culture for each manipulation.
Images which had representative BFP clusters were selected. The first column
displays 10x DIC image with overlays of the FITC (GFP) and DAPI (BFP)
channels for comparison. The second column and third columns show the FITC
and DAPI channels separately. The scale bar is 25 pm.
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Figure 2: Schematic of data collection and analysis. Coverslips were imaged in

widefield tilings. Example image is a 14x17 tiling from a pUB-ETB transfected,
RV-4BFP(EnvA) infected culture. Below is the image processing pipeline with

example output shown for each step. To count all of the neurons on a coverslip,
we used a convolutional network, followed by image opening, and thresholding.

BFP neurons were counted by bandpass filtering DAPI images, thresholding

to create a mask. GFP neurons expressing BFP were counted using the BFP

mask to extract GFP fluorescence values from the FITC channels which were

thresholded to produce the GFP count.
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Figure 3: Percent of neurons in culture expressing BFP for control conditions.
The height of the bars indicates the fraction of BFP expressing neurons for each
coverslip averaged for each condition, and error bars denote standard error.
pUB-ETB transfected, RV-4BFP(EnvA) infected cultures had a larger propor-
tion of BFP expressing neurons which was statistically significant compared to
control conditions. (ANOVA, p=.0001 with Tukey-Kramer post hoc compari-
son)
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Figure 4: Statistical comparison of activity manipulations to cultures trans-

fected with pUB-ETB, infected with RV-4BFP. (A) Percent of neurons express-

ing BFP indicates the population of RV infected neurons (blue bars), and the

percent of neurons expressing both BFP and GFP (cyan bars) indicates the

population of initial host infections. To compare the amount of spread from

the initial host infection, the ratio NPr is shown in (B) for all conditions. The

amount of spread increased significantly for the conditions where blockers (TTX,
CNQX, APV, and Bicuculline) and toxins (BoNT/A and TeNT) were applied.

Application of dynasore decreased spread slightly but this decrease was not

statistically significant (ANOVA, p=0.002, with post-hoc Tukey-Kramer com-

parison).
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Chapter 5

Concluding Remarks

In summary, we began these studies with the intent to find monosynaptic connections in cul-

ture to test computational rules of connectivity. We found that there were limitations to the

standard method of patch clamping neurons to find connected pairs. Quite fortuitously, the

advances in molecular biology over the past decade have produced several new technologies

which promise to make dream experiments possible.
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