
Kaleido: Individualistic Visual Interfaces

for Software Development Environments

Agnes Chang
B.A. Media Arts and Sciences,Japanese Language and Literature

Wellesley College
May 2007

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

September 2010

© Massachusetts Institute of Technology, 2010. All rights reserved.

MASSACHUSETTS INSI TUTE
O F T E CHNOLO"

SEP 14 2010

LIBRARIES

ARCHNES

z-1

Author Agnes hang
Program in edia Arts and Sciences

// I A i

.*- . . .' .'f V :V.
Certif/'d by David Small
Assistant Professor of Media Arts and Sciences

Thesis Advisor

Accepted by Pattie Maes
Associate Academic Head

Program in Media Arts and Sciences

Kaleido: Individualistic Visual Interfaces

for Software Development Environments

Agnes Chang
B.A. Media Arts and Sciences,Japanese Language and Literature

Wellesley College
May 2007

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

September 2010

Abstract

Programming, especially programming in the context of art and design, is a process of reconciling and

shifting between individual creative thought and rigid conceptual models of code. Despite advances of

programming support tools, the discrepancy between the contextual specificity of the author's intent and

the uniformity of program structure still causes people to find the software medium unwieldy. Taking

inspiration from the way in which sketching supports the creative process, in this thesis I argue that in-

corporating individualistic visual elements into the interface of our programming environments can make

the creative coding process more intuitive.

I present Kaleido as one implementation of a programming environment that augments traditional textual

representations of a program with user-generated graphical elements that act as an additional interface

to the code. Kaleido enables users to create personally meaningful visuals for their code, thus allowing

individuals to plan, organize, and navigate code in the idiosyncratic way we each think. This document

presents the motivations, research, and design process that led to the creation of Kaleido, as well as a pre-

liminary evaluation of a number of users' experience with using Kaleido, and finally a discussion of future

and alternative possibilities.

Thesis Advisor:
David Small
Assistant Professor of Media Arts and Sciences

Kaleido: Individualistic Visual Interfaces

for Software Development Environments

Agnes Chang

Thesis Reader

Mitchel Resnick
LEGO Papert Professor of Learning Research
Lifelong Kindergarten Group
MIT Media Laboratory

Kaleido: Individualistic Visual Interfaces

for Software Development Environments

Agnes Chang

Thesis Reader

Casey Reas
Professor
Design I Media Arts
University of California, Los Angeles

For my teachers

Acknowledgements

It takes a very special place and some very special people to foster genuine interdis-

ciplinary work. One small page of acknowledgements does little justice to the many

people who contributed to the web of forces that produced this work. I am merely

a person who happened to organize and document the interconnected gossamer of

ideas developed by people before me and around me. At those moments when I felt

utter defeat, these people urged me on by renewing my confidence and by never

wavering in their high expectations. In the end, really, this work is theirs, and not

mine.

Dave, for the beginning of everything,
Richard and Jeff, without whom none of this work would ever have begun, or

continued, or reached anywhere,
Mitch, for setting the standard, and for always believing,
Casey, for his dedication to students, even those who aren't his students,
Info Eco, for all that is the wacky, hacky, and happy big Eco family,
EricR, for setting off the spark on fine Friday at 4pm at an ML Tea,
Sajid, although many after me will claim to be his advisee, I'm going to be the first

one to actually do so,
Nadya, for the beers and hugs that came to the rescue innumerable times and

thankfully still do,
Susie, for being the very best UROP,

Friends at the lab, Santiago Alfaro, Doug Fritz,Wu-hsi Li, Amon Millner, Andy

Cavatorta, Elly Jessop, Noah Feehan, Karen Ann Brennan, Taemie Kim,
Pranav Mistry, the little band of folk that comprise taiwan@media, and many

others, for the daily camaraderie, discussion, and inspiration,
Eclipse Foundation, for producing a tool that saved me thousands of hours despite

my spending thousands of hours with it already,

Santiago Alfaro, Jonathan Bobrow, Andy Cavatorta, Keywon Chung, Timothy Gard-

ner, Mary Huang,Taemie Kim, Wu-hsi Li, Kyle McDonald, Lia Napolitano,
Jeff Orkin, Keith Pasko, Peter Torpey, for participating in the studies,

Eugene Wu, for being the goofball fellow thesiser at Tosci's,
Human Dynamics, Sandy, Taemie, Ben, and Daniel, and Sociable Media, Drew, Or-

kan, and Dietmar, for sowing the seedlings of questions in my head early on,
My roommates, Stewie, Noah, and John, for keeping me balanced,
My family, for never asking and never knowing but always being there,

sMITe, for making me a better and stronger person.

A Colophon (Of Sorts)

Omitting the napkins and pieces of scrap paper on which thoughts were first put

into words, the original source of this document was created in the form of numer-

ous fragmented plain text files. Preliminary formatting, editing, and management of

references were completed in a LaTeX draft. Illustration management, layout, and

final edits was completed in Adobe InDesign CS4.

The fonts used in this document are, for body text, Bembo, revived by Stanley

Morison in 1929 based on the design of Francesco Griffo in 1495; for image cap-

tions,Whitney, designed by Tobias Frere-Jones in 2004; and Glypha, designed by

Adrian Frutiger in 1977, for titles and subtitles.

In this document, there are 145 pages, 23,478 words, 218 illustrations, and 146,587

characters, including this sentence.

The creation of this document was fueled in part by mochas from Toscanini's Ice

Cream in Cambridge, Massachusetts and lattes from Caf6 Grumpy in Brooklyn,
NewYork.

Finally, every large undertaking that is accomplished while listening to music

will forever be associated with that music. Last.fm tells me that most of this work

was done while listening to the soundtracks by Joe Hisaishi, Masuda Toshio (for

Mushishi), andYann Tiersen; and to Anathallo, The XX, Explosions in the Sky, Max

Richter, Kim Hiorthey, Loreena McKennitt, and Iron & Wine.

Contents

Abstract

Acknowledgements

1 Introduction

2 Context

3 Design

4 Investigation

5 Implementation

6 Evaluation

7 Conclusion

References

Appendices

17

29

43

55

69

79

95

105

111

How frequently must users think about how it works in
order to make it work?

Andrea diSessa

Introduction

In this first chapter I explain the motivations behind this work,

define a common vocabulary for discussion, and outline the

goals and scope of this thesis. I demonstrate that programming

is still unintuitive for artist-coders due to the "mental gap" that

exists between individuals' creative intentions and software

structures. I present my arguments for a an interface that sup-

ports the simultaneous and integrated creation of sketches and

the creation of code to bridge the mental gap. I then explain my

intuitions regarding such an interface's potential to assist in

the programming processes of ideation, navigation, documenta-

tion, and learning. Finally, I conclude with a summary of this

thesis presented in the form of an overview of this document.

Foundations

... Noticing that the ball motion is slightly skewed she stops the

output to review her code. Recalling that she programmed it after she wrote the painting code,
she searches her paintingfilefor the code fragment that governs the motion. Yet she does not

find it there. Perhaps, because of the way the Java language structures animations, it is in the

main loop instead... Certainly, in her mind the ball is a part of the wall, but because the ball

has motion, the codefor it is not located with the rest of the architectural elements, either...

As she repeatedly scrolls through her many code files for this project, she remembers that she

had recently reorganized her code to handle programmatic events. She reads through that file,
and eventually she locates the code responsible, but by now she has forgotten what change she

originally wanted to see in the motion.

Programming has evolved a great deal over the years to bring the power of com-

putation to non-programmers.Yet, software remains an unintuitive medium for the

creative work of artists, designers, and hobbyists.The true difficulty lies in a discrep-

FIGURE 1-1 Xerox Star (1981), the successor of Xerox
Alto, had one of the first graphics programs for non-
programmers.

FIGURE 1-2 The interface of Design By Numbers
(1999)[41], a platform designed for artists and
designers to learn programming..

ancy between a person's intentions and the software constructs that will produce

the desired results. Meanwhile, creative people regularly employ visual sketches

to externalize their thoughts and to develop their intentions. If sketches could be

developed digitally side-by-side with code, could we facilitate the creative process

by integrating people's sketches as individualistic visual interfaces in our software

development environments?

This thesis is an attempt to implement and evaluate some preliminary intuitions

regarding the design of individualistic visual interfaces, with the primary aim of

presenting a set of guidelines for the design of such interfaces and a starting point

for further development to support creative coding.

The Creative Coding Process

Software for designers shipped with the earliest desktop

machines such as the Xerox Alto (1973). Such graphics programs were WSIWYG

editors that revolutionized many fields of design; however, the true powers of com-

putation remained the exclusive realm of programmers. In the 1990s,John Maeda at

the MIT Media Lab led an effort to develop Design By Numbers[41](Figure 1-2),
a platform designed especially for designers and artists to learn to program in a gen-

eral purpose language. In 1999, the popular rich-media environment Adobe Flash

acquired scripting support with the advent of Flash 4 (then developed by Macro-

media) [61]. Through efforts such as these, the interactive, dynamic, and generative

powers of computational code were made available to the artist who did not have

formal programming training.

Since that time, the activity of programming began to diversify from the industry

paradigms of programming in large teams of software engineers. Today, a variety

of creative code development environments allow individuals programming on

personal machines to produce digital media and to choose software as their creative

medium.

The process of designing with digital toolsjust as with any other design material,

has to do with the joint achievements of "doing" and "thinking"[43]. Certainly, the

computer as a medium requires a new set of creative skills, especially regarding the

handling of complex symbolic abstractions[ibid.]; toward this end, programming

environments have developed a variety of programming paradigms and tools to as-

sist the non-programmer.

-1 - I- - - ----- ----

CD7
~1

c(ass AT
5$f0flMt.

FIGURE 1-3 The creative process: ideation, mental model, code, output.

The individual starts with intentions, sometimes well-informed but often just a

"hunch" (Figure 1-3). He will revise, reflect upon, and refine these intentions in his

mind by externalizing them through visual sketches, or other manifestations that

can be perceived through the senses.

Once the artist is ready to test his idea more concretely he will then transfer his

process to the software development environment, to implement his idea in code

and see how it looks as software output. Usually, the result is not satisfactory, and the

artist revises the concept in his head and begins the cycle anew. As he reiterates over

the creative process, the artist develops his intentions more filly as he learns about

the affordances and limitations of the medium[29].

f~r

FIGURE 1-4 Iterations of sketches for architectural design (from [40]).

C7_z

Q~N ~V~ei

FIGURE 1-5 The artist-sculptor-musician Trimprin's externalizes his quartet via visuals[50].

0
0

0

The Mental Gap

Advancements in the design of creative coding en-

vironments have optimized language structure for visual-audio production and

minimized programming minutiae through assistive tools. (I provide a review of

such environments in Chapter II) Yet, despite the success of many of these efforts,
programming remains generally difficult for artists, designers, and hobbyists because

support tools can help with factual knowledge and factual representation but not

with ways-of-thinking. Fundamentally, the difficulty in programming is caused by a

mental gap -- a dissociation between an individual's mental conception of his piece

of work, and the system structures of software.

Individuals exhibit a variety of approaches to thinking about problems[64]. A

preliminary examination of some individuals' visual representations of their own

mental models (Fig. 3) demonstrate that mental models comprise a variety of infor-

mation: some are functional descriptions, such as "bounce a ball" (Fig. 3(a)), while

others are system elements, such as "interface" and "buttons" (Fig. 3(c)). Donald

Norman distinguishes between mental models and structural models as follows:

[structural models are] an accurate, consistent and complete representation of the

target system... These are useful for understanding and teaching about systems.

Mental models, on the other hand, are created by users as they interact with

target systems and may not be equivalent to [structural] models. These are "what

people really have in their heads and guide their use of things. "[46]

Indeed, each individual's mental model is a combination of mental and structural

models formed from personal experience[20], experience with various program-

ri~afe~ I _ J
&OV

ape-Z
lrQtL4L 9"4

FIGURE 1-6 Three individuals' conceptualization of the classic two-player pong game.

L

ming paradigms, experience with the platform of choice, and experience with the
specific context of the project they are trying to create.

In the particular case of creative coding, due to the iterative nature of creative work,
the individual is continuously revising his mental model as he develops his con-
cept. Furthermore, the artist's intention, and thus mental model, also continuously
changes in scale and scope during this process: for example, when the artist is plan-
ning his intention could be a complete project description, but when he is tweaking
and his intention could be as basic as "make it brighter".

In this way, the mental model is individualistic, context-specific, and continuously
changing in the creative coding process. In contrast, programming languages are
designed to allow correct program performance predictions in uniform terms across
diverse tasks[20]. To write code, therefore, the artist must translate the mental model
of his intention into a model that conforms with affordances of the given program-
ming language. Since it would be impractical, if not impossible, to devise and master
a programming language for every context in which a person would want to write
a program, the cognitive translation from mental model to structural model is an
unavoidable and integral part of programming.

For the software engineer, whose tasks have unambiguous pre-defined goals, his
programming task comprises translating those goals into the most accurate, precise,
and efficient structural model he can devise. For the artist however, each revision
of his intentions and each adjustment in scale requires a corresponding translation,
such that the artist must translate innumerable times in the process of creating a
single software application.

At the same time, mental models are not completely imperceptible or immaterial
prior to the completion of the finished product. Many people, especially visual-

FIGURE 1-7 The Funky Forest installation (2007)[661 thinkers, externalize their ideas by making sketches and use the sketching process

by Theodore Watson is a project that is a result of to develop creative concepts. Thus an artist's sketches visually represents his personal
creative code. It is built with openFrameworks. conception of his program.

If this visual information was digitized and made interactive so that it could act as
an additional interface to the artist's code, an interface which was adapted to the
artist's personal approach to his code, it could shorten significantly the number of
cognitive steps between the artist's forming an intention to make a change to his
project, and the code-level change required to affect his program output. Certainly,
as creative programmers, the artist's focus should be spent on figuring out what he
wants to make work, rather than how to make it work.

This thesis documents the development of a tool called Kaleido as an example of
an individualistic visual interface. The concept of the individualistic visual interface

is motivated by the desire to help visual-thinkers program and endeavors to do so

by enabling them to create personally meaningful visuals and to use these visuals to
plan, organize, and navigate code in the individualistic way in which we each think.

Individualistic Interface

While the mental translation occurs in numerous places
throughout the programming process, my intuition is that individualistic visual
interfaces can assist in four interrelated aspects of programming: ideation, navigation,
documentation, and learning.

Ideation

By supporting the creation of sketches side-by-side with code, the individualistic
visual interface should help with new methods of idea-generation and idea-focusing

while programming. First, by better supporting the consequential (as opposed to

sequential) modes of problem-solving that are characteristic of the design pro-

cess[54], and secondly by recording external representations and analogical connec-
tions that can be the catalyst for new ideas or serve as a reference point for the next
divergence in path of design exploration[33].Tightly integrating sketching into the

creative cycle should shorten the feedback loop between idea and code. Meanwhile,
since different types of drawing occur at different stages of design[28], the interface
cannot claim to replace the many original sketching tools; rather, this work aims to

discover the kinds of ideation possible with digital sketching.

Navigation

Navigation concerns the interface's ability to support the artist in finding the dif-
ferent parts of his program when he needs it. Once the artist establishes connection
between his digital sketch and his code, the sketch essentially becomes a hyper-

linked map of his program. This enables him to utilize visual dimensions, viz. color,
shape, and spatial location, to organize and access different parts of his code. The
challenge for designing the interface, however, will be to determine which visual

dimensions to allow, and at which threshold might the breadth of visual variety
yield more confusion than information to its reader.

Documentation

Digital sketches should be effective sources of secondary information that help

people understand the program.Whether documentation is used when the pro-

gram's original author returns to his program after a length of time, or when others

try to understand a program written by another person, the digital sketch can act as

FIGURE 1-8 An electronic music composer's ideation
sketch (from [16]).

........... --- -- : :

0

0

a visual means of documentation.Visual documentation should excel at capturing
higher-level information as well as at abstracting over some of the more minute id-
iosyncrasies of code. Code lends itself well to a bottom-up approach to comprehen-
sion but is much less helpful when reconstructing a higher-level view, and while the
method by which people comprehend programs depends on complex factors[65]
[14] [59], the visual interface should be able to help this process by offering alterna-
tive methods of comprehension. The difficulty in this case will be to design an in-
terface for which documentation is easy to create and easy to keep up-to-date with
changes in code, since documentation that is out-of-date will only cause confusion.

Leaming

An interface that documents the author's thought processes should provide many
opportunities for its reader to gain knowledge about programming and the use of
software as a creative medium. Many forms of learning occur in the programming
process, from the individual learning by revisiting his own old projects, to online
communities sharing knowledge. Since the individualistic visual interface captures
the author's strategy, which numerous studies have shown to be the most difficult
part for novices learning to program[13][19], such interfaces could be effective in
helping novices become more effective programmers. Further, individualistic visual
interfaces foster interaction, experimentation, and visualization of code, all of which
are characteristics which previous research has identified as essential elements in
software environments for learning purposes[37].

For the purpose of this thesis I will be addressing creative code, and in particular
creative code by artist-, designer-, and hobby-coders. Although the mental gap ex-

FIGURE 1-9 Sketches from a brainstorming session (from [40]).

ists in other forms of coding, and applies to software engineers as well as artist- and

designer-programmers, I believe that artist and designer stand to benefit most from

an individualistic visual interface for three reasons: firstly, software engineers are
often well-trained through their education to habitually approach problems via a

structural model and thus the cognitive translation is much less of a burden to them;

secondly, as I mentioned before, the creative solution is open-ended and therefore

the artist's mental model is continuously changing while software projects gener-

ally have well-defined goals from the onset; and finally, artists and designers are

predominantly visual-thinkers who naturally think of their code in visual terms, and

for whom visual representations are particularly evocative.

There are limitations to the individualistic approach, of course. Since mental models

vary per individual, the interface should not and cannot make any assumptions

about the mapping between visual components and program structural elements.

It follows, therefore, that the interface cannot assume an exhaustive mapping and

should support multiple relationships for a given object. For the same reasons, this

project does not attempt to replicate any of the benefits of system-generated visuals:

that is, the interface will not attempt to generate code from the model, or a model

from the code.

While the lack of auto-generative functionality forestalls those unpredictable

automated processes so opaque to novices, the trade off is that more responsibility

is placed upon the programmer to create everything explicitly. A major challenge

for the interface therefore will be to ensure that the process of working by hand

is simple enough that the utility of the visuals outweigh the costs of creating and

maintaining them.

Meanwhile, for the scope of this project, I will focus on the integration of mental

models, externalized as sketches, with programming. As such, other representations

of code such as data flow, control flow, and event flow, while each indispensable
to our understanding of programs and helpful when integrated with the coding
process, will be considered insofar as they are part of individuals' mental models, but

not as models of information to integrate with the sketch and coding process.

Finally, the nature of mental imagery has traditionally been the subject of much
scholarship and debate in the field of cognitive science. Researchers have sought to

answer questions such as whether cognitive memory and computational processes

are visual or spatial[24], pictorial (visual) or propositional (verbal) [8], or whether in

fact mental models, propositional representations, and images are each one of three

major kinds of representation[34], etc. For the purposes of this thesis, however, I will

avoid such questions regarding the nature of human perception; rather, my primary

concern with mental models will be its individualistic quality and the externaliza-

tion process thereof when applied to the programming and creative processes.

FIGURE 1-10 Process 11 by Casey Reas[51]. Each of
the Process series is a text that defines a process
and a software interpretation of the text.

FIGURE 1-11 Dismap by Benjamin Fry (2003)[271. A
project that visualizes the operation of code.

. . - -........

0

0

Overview of Thesis

In this first Introduction chapter I have outlined the moti-
vation behind this work, defined a common vocabulary to aid discussion, and laid
out the goals and scope of this thesis.

In Chapter II Context, I provide an overview of past and current software tools that
also explore the intersection of visual- and textual-programming, and discuss their
contributions in relationship to the goals of this work.

In Chapter III Design, I identify a framework for the design of individualistic inter-
faces based on a review of some of the relevant literature, particularly those explain-
ing the sketching and programming processes from a cognitive perspective.

In Chapter IV Investigation, I describe the methodology and results of a preliminary
study conducted to gather empirical insight into the ways people naturally use
sketches in their coding process.

In Chapter V Implementation, I describe the workings of the current version of the
Kaleido system, as well as the implementation methods which include a manual for
future developers.

In Chapter VI Evaluation, I evaluate the strengths and weaknesses of Kaleido by
reviewing users' experiences as gathered from various venues.

In Chapter VII Conclusion, I summarize the findings and contributions of the Ka-
leido development environment, and I discuss points for future improvement as well
as some alternative approaches to address the disconnect between individual creative
thinking and the rigidly structural conceptual models of code.

The Appendices contain all original materials that were a part of this work. In
particular, Appendix A contains all published materials used to explain, present, and
support public use of Kaleido; Appendix B contains the study materials and anony-
mized results of the preliminary study; and Appendix C contains all study materials
and anonymized results of the alpha (evaluative) study.

0
C-

05
O

Mathematical reasoning may be regarded as the exercise
of a combination of two facilities, which we may call
intuition and ingenuity.

... intuition consists in making spontaneous judgements
which are not the result of conscious trains of reasoning.

... ingenuity consists in aiding the intuition through suit-
able arrangements of propositions, and perhaps geo-
metrical figures or drawings.

Alan Turing

Context

In this chapter I provide an overview of past and current

software tools that also explore the intersection of visual- and

textual-programming, and discuss their contributions in relation

to the goals of this work. In particular, I review the approaches

of tools that support digital sketching, visualize programs,
employ graphical interfaces for program exploration, enable

programming via visuals, etc., as well as a group of creative

environments that also integrate hybrid visual and textual

programming paradigms.

Digital Sketching

Mainstream end-user graphing tools include Microsoft

Visio[3] (Figure 2-?), FreeMind[1] (Figure 2-1), ConceptDraw MINDMAP[15]

(Figure 2-2), and OmmGraffie[32]. These tools each support multiple types of

graphs such as system diagram, mind map, and hierarchical trees, and thus exhibit

complex interfaces, or at least multiple modes that each have a specialized interface.

The general paradigm of shape creation among these tools is a palette window from

which the user can drag a shape onto the canvas (e.g.Figure 2-2, 2-4). A large num-

ber of palettes provide a great variety of shapes and icons. In the case of OmniGraf-

fle, this drag-and-drop method of visual editing was implemented even for text-for-

matting (Figure 2-4). Unfortunately, the palette window often requires a significant

amount of screen area. In contrast, the industry standard Adobe Illustrator[62] and

Photoshop[63] employ the paradigm of tools which take parameters (Figure 2-5).

This allows the user more expressive freedom, although it also places more responsi-

bility and effort on the user. The corresponding interface uses tool trays that expand,

organizing tools by category and minimizing the screen area of the interface.

-- -

FIGURE 2-1 Microsoft Visio[3] also features vari-
ous clip art palettes.

~*0

FIGURE 2-2 ConceptDraw MINDMAP[15] offers
rich clip art galleries and uses a drag-and-drop
paradigm for visual creation.

1k:~

FIGURE 2-3 FreeMind[], a mind-mapping applica-
tion that allows the user to edit of a hierarchical set
of ideas around a central concept.

11 111,1111, I I I I I I :::: ww1ZZMuu:::: :::::: - :::::: :- - - - _ - - - 999ft=M1 , - - - - - - - - ::: ::: ::::::::::::::::: __ .-

STENCIL LIBRARY
vilCommon

Sconneesion.

Ffti

* Fonts

-1-t N"141 H W "ff
HOGD N&

Fwes

Wcata GvnW 8Wa

Stapngle
Sine:w: 134 pth:20 pt

Beyond the mouse-monitor-keyboard input paradigm, the field of Human-Com-
puter Interaction has a long-tradition of research in systems that support digital
whiteboard sketching with freehand drawing. The main research concern and
design challenge for these input systems is the tension between enabling system
recognition of discrete shapes and preserving the freedom of gestural input. Some
systems support domain-specific recognition[47][39] while one system attempted to
implement recognition across multiple domains[31]. In the case of individualistic vi-
sual interfaces, developing recognition systems is difficult when individual sketches
vary so significantly. Instead, the system should probably simply let the user define
discrete visual elements.

* 1.1*9", ':IW.,

C,''

P.

4:

FIGURE 2-5 Adobe Photoshop[63] with tool trays
for selection of similar tools, and the upper proper-
ties panel allows customization of the selected tool..

FIGURE 2-6 Tivoli (1993), an electronic whiteboard
for informal workgroup meetings, integrated free-
form input with discrete visual elements[47].

FIGURE 2-4 OmniGraffle's text-formatting palette
that uses a drag-and-drop paradigm to apply effects
[32].

Luoda Grande

Programming As Visual Output

Many creative environments that are optimized for pro-
ducing visual output via code include Adobe Flash[61] (Figure 2-7) and Dream-
weaver[60] (Figure 2-8), where the paradigm is that of the system being aware of
every discrete element of the visual output, and the artist dictating the actions of
each element by attaching code to it.

With visuals acting as an interface to the code, these environments claim many of

the benefits of individualistic visual interfaces; however, the visual representations
in these cases must necessarily be composed of discrete output elements. Such
paradigms work very well in cases where the artist's mental model is mimetic of the
output but compromises the capacity to fully depict a mental model that includes
abstract representations.

c-rn 0 owW o P O

-3 t

Q34W

4-O

P-0-. DA sm

j S 4 SAIIn LA

2.1

ut W, BP IS 1; V CD QD 0 1
Sow A-

14; I'mi I-)
11M I
In

10
in
IAI If A,)
1-2 22 1;

In '"W W 7

F1 ftawn Mw6011AP^
fm

low
ma.

bao-m
*W
a "D
bu-1
Wtl
knot

*WN -- bo

4-

* cie3

FIGURE 2-8 Adobe Dreamweaver interface (2010)
with toolbar, code view, design view, and properties
panels[60].

FIGURE 2-7 Adobe Flash interface (2010) with toolbar, timeline, canvas, code, and properties panels[61].

K
Program Visualization

Many software comprehension tools focus on illustrating
the hidden mechanisms of the software, i.e. the structural model, such as data flow

and control flow. However, this information is presented often at the cost of omit-
ting functional and context-specific information. Further, both software visualiza-
tion tools and graphical modeling languages operate separately from the program-

ming activity itself - that is, these computer-generated visuals, whether interactive
or static, are meant to be studied in a separate activity from programming.

Software visualization designs vary from the aesthetic, the analytic, to the animated.
"Botanical visualization of huge hierarchies" [35] visualizes hierarchical tree struc-
tures in the manner of 3D virtual botanical trees.The source code analysis program

"Imagix"[17] (Figure 2-9) allows people to view both static and run-time informa-

tion about their program - control flow, dependencies calculation tree, function
calls with variables, etc. Similarly, the "SeeSoft"[23] (Figure 2-10) system allows

users to map row-representations of code to program statistics such as version

control, structural state (e.g. references), and run-time state (profiling)."Jeliot3"[44]
(Figure 2-11), meanwhile, visualizes a program in action. It illustrates in real-time
how a Java program is interpreted: method calls, variables, operation are displayed
on a screen as the animation goes on, allowing the student to follow step by step the

execution of a program.

Graphical modeling languages, such as the industry standard Unified Modeling Lan-

guage[6], specify a standard visual language to describe system structures. Behavior

Trees (Figure 2-12) employ a well defined notation to unambiguously represent the
needs for a large-scale software-integrated system. However, neither of these are us-
able or even applicable to the work of artist and designer hobby-coders.

FIGURE 2-9 Imagix interface guides, top: function
call tree and function metrics; bottom: variable
dependencies[171.

FIGURE 2-10 An example of the SeeSoft visual-
ization showing locations of characters within a
text[23].

FIGURE 2-11 Jeliot 3[44] visualizes Java program
execution through animation.

-io des w request

FIGURE 2-12 Unified Modeling Language class
diagram[6].

Eume car cspiy apoy form abfIraclr obect, t i Cm dso) js
spky m Irwr Ct4.d-CCC s the weeryCC midC 1CCCJIs .dCdym
rMe of the frM bdf (for examp- a lbl). The classad1 of an
Vm~tekf*fCrPmdb- --- yC-'eCrefermeacWCC.i.*om- C-ConrCt

..............

t procesing~APP

No- import declarations
V & DrawingArea 131 4 19/10 11 57 PM achar

A editor Editor

A graphPanel: interna!frame

A graphComponent: mxGraphCompore

A eventSource: mxtventSource

A modified: boolean

ASF TOOL_CURSOR: Cursor
A F PAINT CURSOR: Cursor

A toolMode: 5trirg

A currentFiliColor: String
codeWindows : ArrayList<kCodeWinoo

A codeWindowsEnabled boolean

A lockEnabled : boolean

A rubberband: mxRubberbard

A shapeToolband : ShapeToolbind

A connectorToolband : kCornectionHand

A colorToolband: ColorToolband

A codeWindowDocUstener: CodeWindow

A popupMenu :JPopupMenu

1 C C DrawingArea(Editor)
V A' helloWorld(mxGraph)

G new mxlEventListenerO {...}
helloWorld20
getTooMpForCell(Object)

* getCraphComponentO
* getCurrentFillColorKey0

setCurrentFllColor(String)
o beginToolMode(String)
o endToolMode(boolean)
o getToolModeO
o setModified(boolean)
o isModifledO
" setCodeWlndowsEnabled(boolean) V

FIGURE 2-13 Eclipse outline view displaying program
components (e.g. methods and variables)[26].

Program Exploration
Software exploration tools present graphical representa-

tions of static software structures linked to textual views. The distinction between

these tools and software visualizations is that it is integrated with the program-

ming activity and it is interactive - namely, it is an interface for accessing code.

The open-source platform Ecipse[26] offers an outline tool that lists the structural

elements of the currently open file. The information presented includes structure

names, types (e.g. class, field, or method), and hierarchical relationships. The popu-

larity of this tool demonstrates the need for different methods of navigating code

beyond the list of project files and the scroll bar.

Past research projects include SHriMP[59] (Figure 2-14), whose authors defined
a framework of cognitive dimensions intended as a guide for designing software

exploration tools. They point out the problems that few tools support top-down

comprehension models, and more support is needed for mapping domain knowl-

edge to code. However, the SHriMP implementation suffers from visual usability
problems, and while it considers cognitive dimensions, it imposes a specific graphi-

cal representation and therefore a particular model on the program. Further, it is
also not optimized for creating as much as it is for understanding.

FIGURE 2-14 The SHriMP tool, designed to support the construction of a mental model during software
exploration[59].

FIGURE 2-15 The Max/MSP visual programming
language[18].

FIGURE 2-16 A complex project in Max/MSP en-
counters the problem of cluttered wires.

FIGURE 2-17 The vvvv programming environment
demonstrating a video project[7].

Visual Programming Languages

Visual programming languages let users create programs

by manipulating program elements graphically rather than by specifying them tex-

tually. Many are based on the "boxes and arrows" paradigm where boxes represent

the program's structural entities, connected by arrows which represent relation-

ships. Visual programming languages draw from the Human-Computer Interaction

concept of direct manipulation[55] that advocates allowing users, especially novices,
to "access powerful facilities without the burden of learning to use complete syntax

and lengthy lists of cards" [ibid.]. The rationale was also that visual representations

are mapped more closely to how people thought about programs and thus were

more intuitive than code.

However, visual programming languages suffer from many drawbacks. Early critics

argued that visual programming languages could not ever be the solution to the dif-

ficulty of programming:

Fundamentally.., software is very difficult to visualize. hether one diagrams

controlfiow, variable-scope nesting, variable cross references, dataflow, hierarchi-
cal data structures, or whatever, one feels only one dimension of the intricately
interlocked software elephant. If one superimposes all the diagrams generated by

the many relevant views, it is difficult to extract any global overview.[13]

Green and Petre provide a thorough analysis of visual programming languages and

identify a set of dimensions for language design, in particular a number of compet-

ing qualities, from the cognitive perspective of the user[30].They point out, for

example, that a "closeness-of-mapping" between program structures and problem

domain is crucial, but that increasing the number of abstractions, which is power-

ful in certain scenarios, leads to hidden dependencies, which are confusing in other

scenarios. The authors believe that in order for visual programming language to be

as effective as their textual counterparts, further work must be done to resolve the

cluttered wires problem (Figure 2-16), to support secondary notation (i.e. visual

dimensions of color, pattern, etc.), and to support the ease with which a user can

make a change in the program. Myers, when making a taxonomy of visual pro-

gramming languages[45], similarly noted that poor representations made the visual

program hard to understand once created and difficult to debug and edit, and that

programs were tedious to edit once they got large.

0

CD
X

FIGURE 2-18 The Quartz Composer visual programming language and environment[9].

Currently, the only visual programming languages that have successfully gathered
a broad user-base are those that employ structural perspectives which align closely
with common mental models for specific types of tasks.Visual languages based on
data flow, such as Max/MSP[18] (Figure 2-15), vvvv[7] (Figure 2-17), and Quartz
Composer[9] (Figure 2-18) aptly employ the metaphor of river and tributaries
for projects based on streaming audio and video. Each visual object acts as a filter
that takes data input and outputs modified data, and that path which data travels
is visually mapped out. This paradigm is referred to as node-based. However, such
metaphors are not easily generalizable to other tasks.

The fundamental problem remains that the visuals are in general ill-mapped to
people's mental imagery and the fact remains that no language can map to people's
mental imagery in every case; any complex cross-domain visual programming lan-
guage must necessarily need many abstractions, which increases the exact difficulty
which the visuals were originally intended to alleviate.

00

0

Hybrid Creative Environments

In recent years, a number of hybrid visual-code environ-

ments have been developed, each with various design goals.These hybrid creative

environments allow multiple perspectives and multiple interfaces to the program-

mer s code.

BlueJ

BlueJ[38] (Figure 2-19) is a software development environment for programming

Java, developed mainly for teaching programming. The main window displays a
graphical representation of the program's class structure (a UML-like diagram, albeit

many time simplified) and objects can be interactively created, edited, and tested,
allowing easy experimentation. Object-oriented concepts such as classes, objects,
and method calls are represented visually. The only drawback is that users don't have

control over the creation of the graphical representation.

FIGURE 2-19 The BlueJ environment developed for teaching Java programming. The interface here shows a
code view on the left, and the program view on the right[381.

CO

0

CD

CodeBubbles

CodeBubbles[12] (Figure 2-20) provides a new paradigm for interacting with code
by breaking code fragments down into small simple graphical containers which
the user can then spatially arrange and navigate between. Significant design effort
was put into displaying code comprehensibly within a restricted screen area, bubble
layout options, as well as user-created bubble groups as identified by the color of
the halos. Bubbles are "opened" or "created" as needed by the user. This paradigm
breaks away from the sequential model, and by allowing the user a large amount of
control over how they access code, it is in many ways an individualistic interface.
The limitation is only that the user does not have much control over the visual
expressiveness of the code bubbles aside from layout.

FIGURE 2-20 The CodeBubbles interface, each bubble created by the programmer containing a fragment of
code[12].

0

x
cD

NodeBox

NodeBox is an environment for 2D animation in Python, and NodeBox2[4]

(Figure 2-21) provides a visual interface with a node-based paradigm that sup-

ports users frequently writing code to create custom nodes.The result resembles an

environment such as Quartz Composer integrated with a code editor.The user has

control over spatial organization of graphical elements and he/she can create their

own nodes, but unfortunately the visual space does not support graphical elements

without a structural counterpart, e.g. each node must be a method and is required

to have an input/output.

FIGURE 2-21 The NodeBox2 interface, the output on the top left, parameters on the top right, python code on
the bottom left, and nodes on the bottom right[4].

Field

The Field programming environment[22] also takes a multi-paradigm approach, and
more specifically, complements textual code with user-defined visual abstractions of
code. The Field canvas (Figure 2-22) enables the user to arrange custom visual ele-
ments (boxes/buttons), with GUI elements (variable sliders), with elements of visual
output (Bezier curve and control points). The result is an individualistic interface
comprised of a mixture of visual UI elements that is created by the user throughout
the programming process.

However, Field implements a visual paradigm distinct from this work, where visual
elements are functionally powerful but semantically less so. For example, a particular
variable that the user might need to tweak extensively during pilot testing could
be attached to a slider element and made accessible at any time by placing it in a
prominent location on the canvas; the slider element, however, is thus restricted to
indicating a single variable, and cannot represent other types of information such
as "ball bouncing math" or "3rd scene". In this way, the paradigm of Field's canvas
is more similar to assembling your own control panels than sketching and integrat-
ing your sketch for different purposes. Nonetheless, Field demonstrates a successful
approach to individualistic visual interfaces that offers intuitive and direct manipu-
lation of the program from the visuals, and the design of individualistic interfaces
could benefit from integrating aspects of this approach.

FIGURE 2-23 The code window of the Field environ-
ment[22].

FIGURE 2-22 The Field canvas[22] enables the user to arrange custom visual elements (boxes/buttons),
with GUI elements (variable sliders), with elements of visual output (B6zier curve and control points).

Artistic activity is a form of reasoning, in which perceiv-
ing and thinking are indivisibly intertwined.

A person who paints, writes, composes, dances... thinks
with his senses.

Rudolf Arnheim

Design

In this chapter I identify a framework for the design of indi-
vidualistic interfaces based on a review of some of the relevant
literature. I draw heavily upon research explaining the sketch-
ing and programming processes, particularly from a cognitive
perspective, to identify a set of design considerations, as well
as the competing tensions among them, which guide the subse-
quent parts of this work.

Va A. r% l

FIGURE 3-1 Site design sketch (from [16]).
r -7

N

RIF

A MV

4-

FIGURE 3-2 A choreographer's sketch (from [16]).

0-

_FIGURE~ .3-3 A Acets'srsac- sec fo

[161).tA (W -?i

Individuality

At the fundamental level, this thesis is about integrating

more elements of individuality, the basis of creativity[28], into the hitherto compar-

atively formal programming process. From the design perspective, it has long been

established that design thinking is episodic, non-linear, and based upon prior per-

sonal experience[54]. Programming, however, is an equally individualistic activity; as

Turkle puts it, "Your style of solving logical problems is very much your own"[64].

Each individual's mental model of their program is a combination of mental and

structural models formed from personal experience[20], experience with various

programming paradigms, experience with the platform of choice, and experience

with the specific context of the project they are trying to create. Empirical stud-

ies of programmers' mental imagery have also demonstrated that mental imagery is
"complex and non-uniform"[49].

Thus, an underlying theme for designing individualistic visual interfaces is paying

especial care when making assumptions regarding the user's actions. For example, as

discussed under the Expressivity guideline later in this chapter (page 48), any design

of an individualistic visual interface should avoid system-generated visuals so that

the interface neither selectively supports nor implies creations of a certain type.

Neither should the interface assume that a certain code structure should be con-

nected with a specific visual element, or vice versa.

At the same time, an interface cannot manifestly claim to support every possible

visual depiction; instead care should be taken to identify the range of diversity and

support variance when possible. More concretely, this work should identify, and the

interface should support many ways of approaching the task: visual creation, code

creation, program navigation, visual editing, etc.

FIGURE 3-4 An educator's sketch to organize his
lecture (from [16]).

Reflectivity

According to Donald Sch6n, "Designing is a conversation
with materials conducted in the medium of drawing"[57]. In this reiterative cycle
of the creative process, sketching serves as a method of thinking. Critically different
from analytical problem-solving, the solution to designing is emergent rather than
planned, and the sketch, as an externalization of mental imagery, also informs the
development of mental imagery at the same time; which is to say, when sketching,
"perception and conception occurs simultaneously." [10]

The first implication of a reiterative process is that a critical aspect of the visual cre-
ation component in individualistic visual interfaces will be the quality of"viscosity",
defined as the ease with which edits can be made[30]. If changes are difficult to
make, the interface can cause friction in the design process, thus causing frustration
with the tool, or lower-quality creations.

The second observation is that reflective design also relies critically upon the avail-
ability of multiple versions of the design or a rich history of past design explorations
and decisions from which to derive the next iteration[10]. Erasure marks on paper
and pencil, for example, records rich information that shows the designer the trail of

FIGURE 3-5 Table design studies (from [16]).

W - - - -

17

17",

CD

his thought. It is also common design practice to create not one sketch but a series

of drawings.Thus the individualistic visual interface that aims to support ideation

must necessarily consider supporting history-keeping, as well as possibly cross-refer-

ence functionalities between the immediate version of the sketch and older versions.

FIGURE 3-6 Stieglitz's sketch of the Stieglitz resi-
dence (from [16]).

Ambiguity

Another notable characteristic of sketches is their

depiction of ambiguous information. As mentioned earlier, design is a process of

gradually discovering the solution in the sketch, and thus sketches "... that contain

information that is fluid, vague, ambiguous, indeterminate, play an important role

in solving ill-structured problems like design."[28] Interpretation-rich visuals helps

creativity; while graphics are monosemic visual elements for which the meaning of

each sign is known prior to the observation of the whole, sketches are polysemic,

i.e. the perception of which consists of decoding the image[11].Thus, designers-

in-training are urged to develop versatile and facile sketching skills so they develop

more flexible and creative solutions[40}. Further, designers often intentionally make

drawings vague or ambiguous to reflect the yet-indeterminate state of that particu-

lar design factor[31].

Yet, the fine gradient of indicators of ambiguity, such as a formless or blob- like

shape, or lines drawn in a lighter hand, are difficult to fully capture in a digital

system, and the creation of a digital mark that carries the same subtle information

of a simple pencil mark, while certainly possible, could easily become a task in and

of itself that detracts from the main task of designing. If rich-input systems such as

pressure-sensitive digital pens are unavailable, one solution is to translate ambiguity

into a binary state as a compromise between usability and functionality.

A closely-related consideration is that sketches are often incomplete, i.e. designers

sketch more detail at certain levels and less detail for others[25]. Even in the design

of software, engineers have been noted to pay different amounts of attention to

different parts of the design as part of their unique perspective on the problem[42].

The implication for individualistic visual interfaces is that the interface should not

assume that there is a "completeness" for the visuals, nor an exhaustive mapping

between visuals and code.

FIGURE 3-7 Conceptual sketch (from [40]).

GUR t o S

FIGURE 3-8 Sketch of Siena, Italy (from [40]).

CD

0

Expressivity
The quality of expressivity concerns itself with the visual

style and type of visuals that the interface should enable such that users are able to
visually express what they wish. The extent to which the user-created visuals can
express people's mental models is fundamental to the interface's ability to support
the various programming activities of ideation, documentation, navigation, learning,

7A r.tetc.

The question therefore, is what types of visual representations do people naturally
use to externalize their mental images. Arnheim observes that people use a range of
visuals that form a gradient between the mimetic and non-mimetic, as well as "dis-
embodied" shapes to depict perceptual features such as the expansiveness of a color,
or the aggressiveness of a sound[10]. Meanwhile, in a study of programmers' mental
imagery, Petre and Blackwell revealed that "many of the visual images described
bore some resemblance to standard external representations, although often these
would be dynamic in the mind, changing with different dimensions, or augmented
by other views or additional information." [49]

Classical semiology from Peirce asserts that there are three kinds of visual-meaning
relationships: iconic, symbolic, indexical[48]. An icon, also known as a semblance or
likeness, is mimetic and possesses the character of the object it signifies (e.g. a pencil
streak represents a geometric line); a symbol refers to its object through a conven-
tional agreement (e.g. the meaning of a word is determined by societal agreement);
and an index indicates through logical connection (e.g. a bullet-hole is the sign of a
shot).

FIGURE 3-9 Sketches from a study, where partici-
pants were asked to depict the abstract concept of
"past, present, and future". Sketches here are from
four individuals (from [10]).

One implication is that any tool supporting the visual representation of mental
imagery should enable the entire spectrum of mimetic, symbolic, and indexical vi-
suals to allow the user to depict in the manner he finds most intuitive. This implies
also that each type of visual representation should be equally simple to create with
the interface. Meanwhile, the decision to prioritize expressivity for the individual
necessarily occurs at the expense of other people trying to understand the visual is a
fact of which the designer of the individualistic visual interface should be aware.

A second implication is the necessity of supporting a range of secondary nota-
tions such as texture, color, and layout so that users can convey additional meaning
beyond the symbol. The competing factor in this case is visual cohesiveness and
comprehensibility, the latter not just for the benefit of others but also for the user
himself.Visual clutter quickly renders the individualistic visual interface ineffective,
and so principles of visual communication must be considered when choosing the
visual possibilities to enabled, to choose a set of possibilities such that visual coher-
ence is optimized.

Finally, it should be noted that expressivity is often, although not always, in tension
with the goal of simplicity (this chapter, page 53). If taken to the extreme, expressivity
could take the form of support for innumerable visual options but such a decision
would result in too steep a learning curve.

FIGURE 3-10 Graphic diagram of a house (from
[40]).

PROXI~rryL(NKAC-E

0
00T- '
00

oO

IDENTITY

Am

c~c

154A. VALUE

FIGURE 3-11 Graphical organizing systems (from
[16]).

6YMBOL

4rz77J7~Ff'tWfFYIT
([QV] wo.jj) Apnjs jo spij sfloi2 A q pqsn

AjlqO 12nSIA JO sqjdwexq @w OS ZL-E 3mfl9I3

.0_ __ 0

.4C((Cc(((Cc(Lcu(CCCCC..((((

+ +

ccIj

vWYX

el 7

-t d h o g

** ? o on
on

N

Q0<<<<V<<<<<<<<V<<X

go ME
EE Fr-1 71
7 Fit I I I

Spatiality

This quality endeavors to implement functionalities
analogous to ways people intuitively use spatiality in their mental imagery to convey
meaning and to navigate. In drawings, not only do the individual elements convey
meaning, but designing is also crucially dependent on a spatial gestalt (such as "two
L's back to back") kind-of-seeing[57]. Petre and Blackwell also record that many
people described mental imagery consisting of a landscape in which information is
variously located, dynamic, and too large to focus on all at once[49].

My own guiding intuition is the analogy of organization of one's own bedroom;
a person can always quickly find his sneakers even if he is unsure where exactly
they are located because he knows that he keeps his shoes in the back corner of
the closet. In this way spatial information can be an effective method of organizing
thought, and even a two-dimensional graphic can be spatial in the same way that
items on a two-dimensional map are in spatial relationship to each other.

The first message is that the visuals in an individualistic visual interface need fluid
means of navigation, such as pan, zoom, z-layer, abstraction, etc. that allows the user
more dimensions for expression as well as a means to be able to access different
parts of visual information easily.The corollary to that is to support efficient non-
linear methods of navigation; namely first, making it possible to juxtapose any two
parts of the code or visuals side-by-side, and secondly being able to easily jump to
another region. The latter requirement almost certainly begs for a search function in
the visual component.

'~-----1

2~ ~
~ ?' o ,,a

E~ 4
~

I io

FIGURE 3-13 Sketches for a computational music
algorithm (from [16]).

FIGURE 3-14 A concept map for a home (from
[40]).

_7
77-

FIGURE 3-15 Sketch of a car (from [401).

Connectivity

Connectivity in individualistic visual interfaces governs

the creation, maintenance, and functionalities of cross-references between visual and

code. As with the visuals, these cross-referenced links are determined by the user.

This "hyperlinkage" functionality is a direct benefit of transferring the sketch pro-

cess from analog to digital, and one of the primary motivations behind integrating

sketch and code is the ability to access code via a mapping to user-defined visuals.

As mentioned before, mental models are individualistic, incomplete, and ambiguous.

As such, links between code and visual elements are multi-modal and unpredictable:

code-visual relationships can be many-to-many, many-to-one or none at all. The

ideal interface would enable the user to create any of these links at any point in the

process, from any scenario (e.g. when the user is writing code, when user to draw-

ing, when user is editing, when user to about to draw, etc.).

Since links are complex, non-exhaustive, and non-uniform, clear indication of the

state of the connections becomes of primary importance to the user. Embedded vi-

sual depiction is necessary to allow the user to see any connection in context at any

point in time, however the visual solution is not immediately obvious since drawing

visual lines between elements would be impractical in many ways, and presenting

connections in a list would hardly be helpful. Another vital piece of information

that the user needs to know at the same time is which visual elements are linkable,
if the environment makes a distinction between linkable and not-linkable elements

at all.

Finally, the power of sketch-code integration lies in how the linkages are carried

through various programming activities ranging from writing, editing, to debug-

ging. Thus, it is important to enable as many associated or synchronized operations

as possible (without making assumptions) both to fully realize the potential of using

visuals as "avatars" of the code, but also to prevent the code and the sketch from

getting out-of-sync by reduce the workload of user to keep both sides constantly

updated. Additionally, operations on linked elements need to be carefully considered

because in different scenarios the user could want different treatments/outcomes of

the linked relation.

Transparency

I refer to the transparency of the system as the system's

ability to provide continuous feedback and indication of the system state as the user

interacts with it.When designing a system for non-experts to program, understand-

ability and simplicity should be valued over efficiency[21).While ambiguity and

01

CO.

unpredictability in sketching are important, the system itself should be unambigu-

ous about what it knows so that the user may spend a minimal amount of effort

predicting the results of his actions. In the case of individualistic visual interfaces,

transparency is particularly important due to the extra layer of complex non-uni-

form information, and the multiple modalities in which the user could be working.

The modality should be made clear whether the user is in drawing mode or coding

mode without the user needing to search for or process additional information;

indication should be obvious but not obtrusive.The user should always know on

which layer of information is the current focus of the interface, as well as which

options are available to him in the current situation, and which are not. The same

guidelines hold for other modes such as linking and editing visuals.

Simplicity

The interface components of the individualistic visual

interface should be minimally intrusive so as not to detract from the main goal of

doing creative work. As the popularity of writing tools that bring back "typewriter

basics" [58] demonstrate, simpler functionality and minimal distraction is what is

needed for creative tasks. As exemplified by the Processing IDE[5], for non-experts

it is preferable to have fewer functionalities all of which operate in a way clearly

understood in all scenarios so that the user never feels out of control.

Also, as discussed in the previous chapter, a basic but influential aspect is the amount

of screen real-estate that the interface elements occupy, which should be as little as

possible to maximize the space for creating (Context chapter, page 29).

Many creativity support tools[56] and applications for non-programmers [53]

discuss a "low floor, high ceiling, wide walls" principle, referring to the combined

characteristics of a low threshold to entry, higher-level complex functionality,
and wide cross-domain applicability. For the developer, it means designing effec-

tive component parts that immediately function in very basic configurations, but

which can also be configured to perform complex functionalities. The tension here,

however, is that atomic building blocks can build theoretically everything, but at a

certain threshold the immense effort required to assemble the blocks for a higher-

level functionality renders the tool unusable.

Finally, simplicity notably comes into conflict with expressivity and ambiguity. For

example, to avoid confusion over the identity or boundaries of a visual element

which is important knowledge for establishing links to code, visuals elements should

be discrete and distinct, characteristics which forgo the expressivity of gestalts.

In the method of design, of small differences in start
points leading only to the unpredictable, I looked into the
non-linear and its special character, and was intrigued.

Cecil Balmond

Investigation

In this chapter I supplement the theoretical findings of the

previous chapter with empirical observations of my own. In par-

ticular, I conducted a preliminary study to gain insight into the

ways people naturally use sketches in their coding process, and

I document the methodology, results, and implications of this

study. In the study I asked people who thought of themselves

as "visual-thinkers who program" to create drawings as if they

were preparing to write code, and to do this for three differ-

ent types of programs. The results were tabulated and used to

inform the design of the Kaleido prototype.

Approach

Thus far, few studies have been conducted to examine

people's mental models of code. Petre and Blackwell[49] is the exception; however,
they did not study the visualization of the imagery but rather relied upon verbal de-

scription, and further, they had limited their subjects to expert programmers. Thus,

this study was conducted to discover the coding process of people who are creative

coders, self-proclaimed visual-thinkers, and not generally of software engineering

background.What types of visual styles do people naturally use? How do they use it

in their coding process? Which parts of their current coding process do they feel is

unintuitive, difficult, or needs support?

StencilsC

v STENCIL LIBRARY

ir Common

i connec*On

Methodology

In order to recruit a greater diversity of participants (Pro-

cessing users are distributed internationally), the study was designed to be accom-

plishable remotely and independently, such that subjects could do the tasks on their

own time and at their own pace.The study consisted of three drawing tasks and a

post-task questionnaire per person. Instructions were identical for all participants.

*Mazd

Txhaes

a Shapes

And Gal*0
Size: w: 0.5 in, h: 0.5 in

FIGURE 4-1 The Shapes palette from OmniGraf-
fle[32] demonstrating the visual elements available.

TASK NUMBER

Drawing I
Drawing 11

Drawing Ill

Topic NAME

Two-player Pong

Mario side-scroller

Your program

INSTRUCTIONS

napkin sketch

use provided visual palette of shapes

use any tools, be creative

The first drawing task was designed to discover what visuals users naturally use to

depict their mental representations. Users were instructed to treat the drawing as a

"napkin sketch", and "draw a sketch as if you were organizing your thoughts before

starting to program."The program scenario given was a traditional two-player Pong

game, chosen to reflect the real-time interactive nature of the digital art projects

which Processing and Kaleido seeks to address.

The second drawing task sought to discover what visuals users would use when

given a limited, discrete set of visual elements, as is the custom when using con-

temporary graphing software like OmniGraffle (usage of text was unrestricted). The

defined set of visuals consisted of equilateral polygons, flowchart symbols, power-

point shapes (e.g. speech bubble, explosion symbol), and some system icons (e.g.

human figure, keyboard, sound). The scenario chosen was a Mario-style side-scroller

game, which incorporated elements of narration and interactivity as well as a game

victory system. Further, users were encouraged (but not required) to choose three

different colors in which to render their drawings, and to use legends if they found

it useful for themselves.

The third drawing task was designed to try and discover unexpected ways in

which people think about their programs. Users were simply instructed to choose

a program whose source code they were willing to share with me, and to submit a

creative visual depiction of it ("What if you could make a collage of your program?

What if you could dance your program?").

Eli

217

7D

K~Z2

0
K2~ KID

Ar!_

0

K?)
LI

0

4------

0-

0- U--

FIGURE 4-2 The given palette for the second drawing task.

The questionnaire consisted of ten short-answer / multiple choice questions that
asked about the user's demographics, programming work, and experience, as well as
six additional free-response questions regarding their creative process and how they
thought current programming activity could be visually augmented. Participants
were instructed to complete the questionnaire after the drawings, in hopes that,
through the process of working through the drawings, they will already have had a
chance to reflect upon their own processes.

The study was advertised to Processing community, OpenProcessing.org, Open-
Frameworks.org, and through the mailing lists of university Media/Digital Art
programs. Participants were given a brief overview of the Kaleido project, the
purpose of the preliminary study, and were recruited specifically as "visual thinkers
who program".

Sbs: w 40 px h: 40 pX

FIGURE 4-3 The Connectors palette from Om-
niGraffle[32] demonstrating the visual elements
available.

Results

Demographics

A total of 11 people participated, one of whom completed only the survey and not

the drawings. Of the participants, nine were men and two were women; nine were

students and two were professionals. When asked to characterize their work, the top

three keywords were "interactive" (90.9%),"graphics" (81.8%), and "web" (45.5%).

Their averaged 8.45 years of programming experience, with a range of one to 23

years. Most (81.8%) had programming classroom experience in college, while 63.6%

also said they were self-taught. 27.3% of participants' first programming language

was Processing, 18.2% was each Logo and BASIC.The top three languages people

were comfortable using (81.8% each) were C/C++,Actionscript/Javascript, and

Processing.

Drawings

I used a loose categorization system for the types of information that people re-

corded in their drawings:

CATEGORY

output

DESCRIPTION IMAGE EXAMPLE

graphic representations of pro-

gram's actual output

organization of object-oriented

classes

4Pea

functional modules program subdivisions created ac-

cording to function

class structure

61.
I 1J.3"

C (ba> s.94

CATEGORY DESCRIPTION IMAGE EXAMPLE

graphic representation of com-

puter's decision flow

-

~ j -

code fragments in loose syntax

itemized list of programmer tasks
0-.

used three colors in the drawing

made a legend (either for colors or

for shapes)

-E -

logic flowchart

pseudo-code

task list

UNIQUE To DRAWING ||

three colors

legend

..................

CATEGORY DESCRIPTION IMAGE EXAMPLE

FIGURE 4-4 Flowchart as the base for information
organization, with pseudo-code and output overlaid.

-,

F

SA I-A
V

FIGURE 4-5 Output as the base for information or-
ganization with class structure information overlaid.

The response breakdown for Drawing I: Pong was:
TYPE NUMBER OF USERS

output

class structure

functional modules

logic flowchart

pseudo-code

task list 3

The response breakdown for Drawing II: Mario was:
NUMBER OF USERS

2l ill illl

output

class structure

functional modules

logic flowchart

pseudo-code

task list

UNIQUE TO DRAWING II

three colors

legend

According to this categorization system, all drawings ranged between two and four
types, confirming the hypothesis that people combine multiple types of representa-
tions in their mental model. Most drawings used one type of information organiza-
tion as the basis for laying out all the other information, e.g. using a flowchart as
the basis with pseudo-code and output overlaid (Figure 4-4), or output as basis with
class structure overlaid (Figure 4-5). Most drawings comprised one single drawing,
while others drew multiple distinctly separable diagrams although each possibly
comprised of multiple types of information (Figure 4-6).

In Drawing II, users used colors to distinguish different types of information. Ex-
amples of legend include "code/data", "user input", "game objects" (Figure 4-7),
"wires", "comments/gist", "experience" (Figure 4-8), "objects", "actions", "controls"
(Figure 4-9).

CDCQ

CQ
0>

6::

FhA

FIGURE 4-6 This drawing was composed of mul-
tiple separate diagrams.

tl "'

liiE

L,

5 -CW C,

FIGURE 4-7 A legend that distinguished between
code/data, user input, and game objects.

FIGURE 4-8 A legend that distinguished between
"wires", "comments", and "experience"

U . W-b

~- .>

al

FIGURE 4-9 A legend that distinguished between
objects, actions, controls

............................... -

YOUR COLORS OF 0CE

In Drawing II the most commonly used shape was the humanoid and the plain
- co O_________ rectangle (Figure 4-15).The non-flowchart shapes were often used in depiction

of on-screen elements in the game; for example, a star shape as a good object, a
triangle shape as a bad object (Figure 4-10), or a cloud symbol as part of the back-
ground (Figure 4-11), and the flag as checkpoints or goals (Figure 4-11, 12). System
symbols were very commonly used, with all but two participants using at least one
of the system symbols. After the humanoid, the keyboard was most often used to
indicate user input.

Two participants created custom shapes that were not explicitly made available in
the given palette, but could be created from the given shapes (Figure 4-13).

Text was often the predominant element of the drawings. However, there was not
much variance in text appearance - a few participants made distinctions via all-
capitalizations (Figure 4-14), and one artistically rendered (Figure 4-13), but those
were the exceptions.

FIGURE 4-10 This participant used a star shape to
signify a good object, and a triangle shape to signify
a "bad guy" in the game.

vouaCOLORS OF CHOICE * 2A
.8 b.
65r j'
NIL '&~I c~

Y" COM OF 00a

- -------- ------

Uq

1.& -,10
0E_

r1.,: .., F_
I" Ai

104.f

lift,~

if

rclevel

L

FIGURE 4-11 This participant used the cloud symbol
to illustrate the game scenery, and the flag symbol
to signify a checkpoint in the game.

C.\4.w"

El N-

FIGURE 4-12 This participant used the flag symbol
to signify a checkpoint in the game.

C)

CD

&.~.k C

h~to

FIGURE 4-14 This participant created his own
shape to indicate enemy game characters, and also
morphed text to give added meaning.

FIGURE 4-13 This participant used capitalization for
emphasis.

0 % of participants who used it one or more times
u % of usages that used only one instance

'.-t,

£711 - Ci1

47-----

0-

IF-

U

FIGURE 4-15 Palette shape usage frequency chart.

-L

Lily

0
KID

4(;D

6-"" AviW

41M

<IOM-

The responses for Drawing III were widely diverse. Most participants used im-
ages of their sketchbook from when they were working on their project (Figure
4-15), which reveal more of their process of conceiving the project rather than
implementing it. Some participants collaged these images and annotated them as if
explaining the concept to other people (Figure 4-16). Other participants created a
visual representation of their program as if a poster (Figure 4-17). Many probably
took the approach of explaining their program to other people (viz. me, the inves-
tigator) seeing as one user who used flowcharts in his two previous drawings opted
for a visual depiction of the different types/layers of information his program would
show to the user.

FIGURE 4-18 This participant illustrated her process using images from various stages of the work.

'N"LT P*oM5 '%~At SACO
4he Cof"me..,

OFS191 O f% 14l d4

iechwL4, bsw"+O X.0% W.Fb#cgjL SLV# ALSO rW phces

4C*" q*e W#^ 04 +0 onty ProYicE 'i'AcWie4e

00 Zkse ttS1W5 . ~ Z4it

FIGURE 4-16 This participant copied her process
sketchbook as a representation of her project.

FIGURE 4-17 This participant sent an artistic inter-
pretation of his project.

.....

0

0

Questionnaire

Participants revealed that they approached programming tasks in many ways: some
start with sketching out the front-end user interface, based on the rationale that
"the UI reflects the logical functionality of the program"; others enjoy starting with
some existing code and "hacking" while they figure out what they would like to
create:"I like gradually adding to code and refining an idea as I go". Most claimed
that they take multiple approaches, whether it be a combination of pseudo-code,
flowchart, UI sketch, code hacks, or descriptive prose. One participant confirmed
the need for approaching drawing and coding simultaneously: "[once I start coding]
I'll often go back to sketching... it's not a linear process of working in one medium
and then moving to another".

Regarding the contents of their personal sketchbook, responses were split between
doodles that included all variety of content (text, diagrams, visuals, both project-
related and unrelated), and not using one to begin with. A minority of participants
claimed not to own a sketchbook; some claimed they make project-related sketches
anyway on loose-leaf paper, or digitally (one cited a dislike of the "permanence of
order" of a sketchbook).

As expected, the idiosyncrasies that code allows become some of the hardest parts
to recall when a programmer revisits their own old code. Naming conventions
(e.g. xcount, xsize, xlen, xnum, xn) are easy to forget and hard to search for with
a "Find...", but a fundamental problem was "how all the parts interact with each
other". Part of this is the problem of "how I serialized [my program] (where each
function is in the file, that sort of thing)", and part of it is "how events are received
by other parts of the program". Other responses mentioned unusual arithmetic
sequences that require re-evaluation to figure out their purpose, and specific project
scenario details (e.g. formulas for musical scales and harmonics, official US military
taxonomy, etc.)

The last section of the questionnaire asked participants how they thought current
programming activity could be visually augmented. The most common responses
called for call/stack traces and data/event flow, particularly for debugging. A couple
of participants wanted visual navigation of program methods, put succinctly as "the
equivalent of sticky notes in a book". Finally, another participant notably wanted
the ability to isolate one portion of the code so "you can check it and tweak it until
it works, then put it back."

Limitations of the Study

While the results of the study were revealing about the
visual styles and the types of drawings people produced, some of the questions
which this study did not address include:

- differences in drawings due to nature of the task
- reading other people's drawings
- development of the drawing over time / over the course of programming
- z-layering, visible vs. invisible grouping
- layout mechanisms (grid, snapping, etc.)
* scales / zoom-in

Beyond the observation of the end-results of sketching, future investigations should
include an observational study of how users develop their drawing while program-
ming - for example, some questions could be: how often do they switch between
drawing and coding, when do they switch, and how does the result of their code
affect what they draw, etc. For the visual interface navigation methods, a paper-pro-
totype approach might be able to shed some light on these questions.

Summary of Findings

The study reveals that a limited number of discrete
visual elements are sufficiently expressive, and that a drawing platform should allow
functionally-representative visual elements such as the humanoid shapes and the
keyboard shapes, or at least allow easy functional-representation via simpler visual
elements that could be used as building blocks.

As expected, the drawings varied widely in style, but most significantly, all drawings
were found to be a composite of multiple drawing systems; e.g. an illustration of the
output, a diagram of the class structure, a logic flowchart, programmer's task list, etc.

It was discovered that, although users were creating visual representations, support
for text is critical: comparing the drawings of users across the first two tasks reveal
that people use a lot more text than expected, especially as their task grows more
complex.

FIGURE 4-19 Examples of the paper-prototyping
method.

............ .

You cannot expect the form before the idea, for they will
come into being together

Arnold Schoenberg

Implementation

In this chapter, I describe the detailed workings of the Kaleido
system in its current version. I reference the design guidelines
developed earlier, and I explain the rationale behind my design
decisions for this particular implementation of an individual-
istic visual interface. I present an introductory user's manual
to describe the system's functionalities, and finally, I provide a
basic manual to guide future developers through the software
engineering setup of the system.

FIGURE 5-1 The Kaleido software development environment.

........................

FIGURE 5-2 The Processing Development Environ
ment version 1.0.5.

FIGURE 5-3 Typeface by Mary Huang creates a fo
that changes with your facial expression in real-
time. Built in Processing.

Project Setup

Kaleido is a simple software development environment

based on the Processing integrated development environment (IDE) (Figure 5-2).
Processing is a programming language based on Java, designed for the electronic arts

and visual design communities with the purpose of teaching the basics of com-

puter programming in a visual context[52]. The decision to implement this work
in the Processing IDE is based primarily on a coincidence of purpose - namely

the philosophy that "software is a unique medium with unique qualities" and that

"programming is not just for engineers" [ibid.]. Another consideration was that

members of the Processing community comprise the primary user base that this

work intends to target. An alternative implementation in the form of an Eclipse
Plugin was considered but dismissed due to its predominantly expert programmer

user base.

On the left side of Kaleido's environment (Figure 5-1) is the drawing area, and on

the right, the text area. Each project, when opened, appears in a separate editor

window. For any given project, the text area might contain multiple code files, but

a single drawing area and a single drawing is shared across the multiple files. The

lower half of the editor displays the debugging console. A basic toolbar above the

drawing area offers all drawing functionalities. Keyboard shortcuts provide access to

more advanced functions.

Drawing Area
nt The drawing area is a canvas that enables users to create

digital drawings by means of the drawing tools. Users can control the placement,
size, color, and labels of any of the visual elements. They can edit the text label of

any drawn element by selecting it, and then clicking once to summon the label edi-

tor (Figure 5-7). The canvas size dynamically grows as elements are inserted, and to

access empty space the user can simply zoom out. Drawings larger than the drawing

area window can be panned via mouse and scroll bars, or the viewer on the far

right of the drawing toolbar (Figure 5-5).

FIGURE 5-4 The New York Talk Exchange data visu-
alization by Aaron Koblin[36]. Built in Processing.

- M - - 11)

fl FLXk,);

*ft0(ft,.(

Visual Vocabulary

The decision to use discrete graphical elements (Figure 5-6) rather than free-form
drawing was made early in the design process, the primary motive being implemen-
tation efficiency in consideration of the timeframe of this work. Alternative visual
styles and input interfaces, for which many of Kaleido's shortcomings become a
non-issue although other difficulties are introduced (e.g. gestural drawing input), are
discussed in the Future Work section of the Conclusion chapter (page 98). Mean-
while, this decision also simplified the visuals for easier comprehension - with dis-
crete visual elements there would be no confusion over the boundaries of a object
and with it the object to which a link applied.

As the preliminary investigation revealed, a limited number of shapes as well as a
limited number of colors is sufficient to express mental models, while good support
for text is necessary (see Investigation chapter, page 60 and 62).Thus, I chose to make
available a handful of the most frequently used shapes, connectors, and created a
"text box" shape with a transparent background that only contained text. To con-
strain complexity, text boxes and arrows were made not-linkable. The hypothesis
was that people would use them to annotate their drawings rather than expressly
denote a piece of the program.

The preliminary investigation also revealed that few if any users employed stylistic
distinctions of text (e.g. size, weight, font, etc.) to differentiate meaning. Thus, for
Kaleido I decided to focus on differentiating meaning via shape instead, and reduc-
ing complexity by removing all text styling options except the most basic bolded
"title" and regular weight "description" fields in the shape labels (Figure 5-8).

Drawing Toolbar

SHAPES

Click and hold down to see other options such as and .All shapes hold a title and descrip-
tion, and can be linked to code. Any new shape will be filled with the color indicated in the Color
Fill button at the time of creation.

CONNECTORS

Plain basic connections in three style options (arrow, dotted, etc.), which can be attached to
shapes or left dangling. Connectors can be labelled, but not linked to code.

FIGURE 5-5 The viewer on the far right of the draw-
ing toolbar can serve as a means of navigating the
drawing.

FIGURE 5-6 A demonstration of the available
shapes and the shape menu drop-down.

....

CD

ST

T TEXT Box
Creates a text box with a transparent background that holds a description.

Shape Labe
Ut enim ad minimFILL

veniamr, quis nost.. Select this tool and click on a shape to fill it with the selected color. The currently selected color

will be used to fill newly created shapes.

CODE WINDOW

Opens code windows on selected shapes that have been linked to code. will hide the code

windows of the selected shapes.

LOCK

"Locks" drawn elements to prevent them from being moved or resized. Elements can be unlocked

via the ? button. Drawn elements that are in locked mode will appear as if they are pinned to

the canvas, while unlocked elements drop a shadow and appear as if "floating".

FIGURE 5-7 A demonstration of the label editor, as ~LINK
well as the display of labels. Initiates a link between visuals and code, starting with the current selection in either drawing

area or text editor. If a link currently exists (each drawn element can be linked only to one code

fragment at a time, although any given code fragment can be linked to multiple drawn elements),

the link can be removed by using the ** button.

Locking

An implementation of a dimension of ambiguity on discrete predefined visual ele-

ments, a locking functionality was implemented, allowing users to individually lock

visual objects to prevent them from being affected by editing functionalities.Visually,
unlocked objects dropped a shadow and appeared to float on the canvas whereas

locked objects, without any shadow, appeared to be glued directly onto the canvas.

The locking functionality, in addition to being a convenience when manipulating

multiple objects in a single vicinity, enables the user to make a distinction between

visual elements which they felt were comparatively finalized versus elements which

they were uncertain about.While ambiguity in sketches is important for enabling

the artist to discover additional ideas, the locking functionality here is limited by its

implementation of only a binary state of ambiguity.

FIGURE 5-8 A demonstration of connectors and
textboxes in Kaleido. Code Windows

Once a shape is linked, the user can open a separate code window on the shape

to access the associated code. Code windows pop up on linked shapes and contain

removable and resizable mini-code-editors (Figure 5-9). A code window can be

opened on any link at any time, allowing the user to access code obscured from the

small window that is the main text area. This enables a non-sequential and user-

customized pattern of accessing code.

Text Area

The text area is the main code editing area, which func-

tions in the exact same way as traditional programming text editors (the text area

implementation is predominantly inherited from the Processing implementation),
with the exception of the code margins.The code margins serve as an indicator

of links.When a piece of code has been linked to a shape, the line of code will be

marked on the margin with a strip of color that corresponds to the color fill of the

linked shape (Figure 5-10).The text area can contain multiple tabs, each holding a

code file within the project.

I Visual-Textual Connections

Linking and Unlinking

The linking interface button was designed to function under multiple scenarios,
including linking text to code, code to text, code to a new shape, as well as an un-

linking functionality for shapes with existing links. Also, since linking is a multi-step

action (user must select at least one shape and one area of text), it is imperative to

give an indication when the interface recognizes that the user is in the midst of a

multi-step action.Thus the link button also serves as an indicator of the link status

(Figure 5-11).

Synchronization and Integration

It is critical to ensure that visual-textual connections are made clear and helpful to

the programmer as he or she is at various stages of programming process, be it writ-

ing, editing, and debugging. This is a particularly important design issue since the

mapping from visual to text is not exhaustive nor absolute in individualistic visual

interfaces.

The first indication of a link is the selection synchronization, which occurs at every

user action (Figure 5-12). Between the visual and the text sides, the selection that

was actively created by the user highlights in the primary selection color (in this

case, yellow) while its linked counterpart on other side highlights in the secondary

selection color (gray).

Pronounced visual indicators in both visual and code side clearly demonstrate an

entity's linked status at all times with minimal visual disturbance to the visual or

textual appearance. On the visual side, linked shapes are filled with a bright shade of

color, while linked code is marked with the associated shape's fill color in the code

margin.

FIGURE 5-9 A demonstration of code windows,
which can be freely moved and resized by the user.

FIGURE 5-10 A demonstration of code margins to
indicate a connection between visual and text.

FIGURE 5-11 A bright yellow link button indicates
that the user is currently in the process of creating
a link.

FIGURE 5-12 Synchronized selection across visual
and textual representations of the program.

Finally, designs were made for visual-textual associations to be also integrated with
debugging. Ultimately unimplemented, these included matching the font color of
error printouts with the fill color of the shape linked to the culprit code, an analo-
gous "visual error printout" highlight in the visuals, etc. (Figure 5-13).

Operations on Linked Elements

The following table describes the results of performing certain common operations
upon linked shapes. In the current implementation, for all cases the link is destroyed
in the process; this decision was made in the interest of both ease of implementation
and predictability of behavior, particularly since the way links should be processed
when copy-pasting across multiple files is not immediately obvious. However, as
noted in the next chapter, in some scenarios users wanted to maintain the connec-
tion through the operation (see page 88); thus, future implementations should include
options for a connection-perserving versus a non-perserving copy function.

RESULT

a duplicate of the shape

a duplicate of the code to which the shape was linked

a new text box containing a duplicate of the text

a duplicate of the text

FIGURE 5-13 An early-stage mock-up to integrate
connections with debugging mechanisms.

Keyboard Shortcuts

Keyboard shortcuts were implemented to help users work with the interface more
fluidly.With the exception of a few more advanced graph-navigation functions,
all other keyboard shortcut actions are also accessible from the right click pop-up
menus or from the menu bar at the top.

UNDO

REDO

CUT

Copy

PASTE

Pasting text into the drawing area will create a new text box to hold the clipboard

contents. Pasting a linked shape into the code editor will paste a copy of the code

linked to the copied shape.

X A SELECT ALL

SOURCE

linked shape

linked shape

linked text

linked text

DESTINATION

drawing area

text area

drawing area

text area

(D

0)

N D SELECT NONE

26/ COMMENT/ UNCOMMENT

NI INCREASEINDENT

N [DECREASE INDENT

X F FIND...

This search function currently only searches the code. Search functionality for the
drawing area is planned for future releases.

" G FIND NEXT

N T OPEN CODE WINDOW

ONT CLOSE ALL CODE WINDOWS

X L LOCK SELECTED ELEMENT

0 N L UNLOCK SELECTED ELEMENT

+ ZOOM IN

N - ZOOM OUT

N 0 ACTUAL SIZE

0 N drag PANNING

<spacebar> EXPAND ELEMENT (IN NESTED ELEMENTS)

<backspace> COLLAPSE ELEMENT (IN NESTED ELEMENTS)

<delete> DELETE ELEMENT

F2 EDIT ELEMENT DESCRIPTION

T SELECT CONTAINER ELEMENT (IN NESTED ELEMENTS)

SELECT CONTAINED ELEMENT (IN NESTED ELEMENTS)

SELECT PREVIOUS ELEMENT

-+ SELECT NEXT ELEMENT

V app/src
P antir

b antir.java
processing

p rocessngapp

Basejaa 3
Commander java

i DrawingAreajavaP
fl Ed itoriava

EditorConsolejava
l EditorDrawingHeaderjava

0 L EditorLineStatusjavale 4

EditorStatusava - -

LJ EditorTextHeader ava
Li EditorToolbardava 2

F ji rinldeplacejava 1 3

) LibraryFolderdjava: 7

P Platformjava.'2 P

d . Preferencesijava
P PresentMode.java

P J Sketchjava 6 -

> L SketchCodedava
> 2 StreamRedirectThreadjava

I J TextAreaListenerjava

> L: Themedava 2 z
b L UpdateCheckjava
- Li WebServerjava - F

{iB processing.app.debug
3 processing.app.graph

f) kCanvas.java 1 9

P 1 kCellEditor.java a 4 P:

P [I4 kCellVaue.java I2 4 P

> J kCodeWndow.java n

P N kCodeVndoYdistenerJava

P ,IkGraph.java . z9 4
o ft kCraphComponent.java 4

0 Lij kGraphModel.java
{$ processingapp.linux
{f. processing.app.macosx
P processing.app.preproc

0
1

processing.app.syntax
P processing.app.syntaxim

processing.app.tools
{o $3 processing.app.tools.android

1 7 processing.app.toolsformatsrc
{ fj processing.app.tools format.tool

V j processing.app.util
1 kConstantsjava 3

, , kDrawngKeyboardHandlerjava 4

L kEvent.Java -

PJ L kModelCodeceava +

)- kndoableEditjava
J kUndoManager.java

k ldtilsjava -i -

(f processing.app.windows

P jRE System Ubrary UW
E g Referenced Libraries

6 6a app
core

FIGURE 5-14 Package organization for the Kaleido
code base.

Developer's Manual

Libraries

The current system is primarily based on the Processing Integrated Development

Environment (IDE) [5], available under the GNU General Public License, and

the drawing component is currently implemented via a version of the JGraphX

library[2] that is also available under the GNU Lesser General Public License.

The bulk of the source code is from the Processing project, and the Java packages

still retain their original names. As such, the system depends on Java 2 SE 1.5.

The graphing library upon which the Drawing Area is built is an open-source

graphing library whose Java distribution (i.e. the one used here), nominally referred

to as "JGraphX", is in reality a port of the "mxGraph"JavaScript library written by

the same developers. The Java package names of the graphing library is thus named

"mxgraph".To minimize confusion, the remainder of this section will refer to the

graph library as mxGraph.

The mxGraph library was developed with a basic graphing tool in mind (Figure

5-15), and thus for Kaleido's purposes it was chosen over alternative Java graphing

libraries that focused on creating charts (i.e. bar charts and pie graphs) rather than

flowchart-style graphs.

Kaleido Setup

The main Java package of Kaleido is still Processing's processing . ap p.

Significant changes were made to the Processing Editor . j ava class to incorpo-

rate the OrawingArea component, which is a JOesktopPane that holds J In-
ternalFrames (in order to implement code windows).The drawing area visuals

are all part of the kGraphComponent class, derived from mxGraphComponent

in the com. mxgraph . swing. mxGraphComponent library.This is placed in an

internal frame at the base-most layer and maximized at all times within the JDesk-

to p P ane. Meanwhile, each code window is a combination of three internal frames,

all of which are also placed inside the DrawingArea.

Aside from the DrawingArea, which was placed in processing . app to be on

the same hierarchical level as the Sketch, all Kaleido-only classes are placed in

processing . app . graph and processing. app. util. Kaleido classes gener-

ally extend mxgraph classes, leaving the bulk of the mechanism declared within the

original graph library while only containing minimal Kaleido-purpose customiza-

tions.

....................

CD

UI theme and color settings etc. use Processing settings whenever possible. For

drawing area elements, rather than mimicking Processing's text file approach to

storing settings, the Java class k C onstants stores all fixed values for Kaleido (with

the unfortunate drawback that none of it can be changed by the user).

The mxGraph library comes with a robust event handling system which Kaleido

adopts. Kaleido classes for this purpose as bundled in the proces sing . app . util

package. Processing on the other hand, has no event handling (tracking text selec-

tion changes accurately, for example, proves tricky).

File I/O

Kaleido saves project files in the same way as Processing, namely in a folder named

after the sketch, with *. p d e text files storing the code. The drawing is stored in an

*-graph. xml file in the same folder. In this way, the user may open and edit Ka-

leido project files in Processing, and vice versa. In the case of using the Processing

IDE to open a Kaleido project with a drawing, the drawing will simply not display

and the user cannot edit it, but the stored file will remain.

FIGURE 5-15 The JGraphX[2] graph editor example program.

Start with a problem, forget the problem, the problem
reveals itself or the solution reveals itself and then you
re-evaulate it. This is what you are doing all the time.

Paul Rand

Evaluation

In this chapter I evaluate the strengths and weaknesses of

Kaleido by reviewing users' experiences with the prototype. An

initial evaluation was conducted on a small-scale. I describe my

observations of a small number of users with varying program-

ming backgrounds working directly with the prototype, and the

results of my interviews with them individually. Kaleido was

also made publicly available on the Internet and was promoted

in various similar-interest online communities, and the general

response was positive.

Approach

Since the prototype is in the early stage of develop-

ment where it is difficult to predict users' reactions, to avoid making assumptions

by imposing quantitative measures I took a qualitative approach to evaluation. The

primary goal of the project was to improve people's coding experience, a measure

I deemed more easily evaluated via free-form responses from individuals, rather

than variously-interpreted quantitative metrics. Further, since one of the purposes

of the evaluation is to discover how users appropriate the tool in ways the designer

(myself) did not expect, I did not think that a quantitative study would be able to

capture such user responses.

Feedback was primarily gathered from observation and interviews with a small

number of users during individual sessions, working in Kaleido on specific tasks

I designed for the purpose. I will refer to this part of the evaluation as the "Alpha

Study". Aside from the Alpha study, I also exchanged conversation and files with a

few individuals who worked on tasks in Kaleido independently. Finally, to obtain

feedback from the general community, a demo video, website, and documentation

for the project was published online.A general Kaleido experience survey that was

00

0l)

0

Kaleido Demo OX
by Agnes Chang

More Add

Skiew mtoe my videos See Alt

KateMo Demo
Agne Chng

just. enough.
shade.

Agnes Chng

kaleido.media.mit.edu

FIGURE 6-1 The vimeo video page of the Kaleido project.

co

0

given to Alpha Test interviewees was also advertised online and a small number

of internet visitors participated. In this way, some user response was also gathered

from internet social media sites on which the project was publicized, such as vimeo,

(Figure 6-1) twitter, and the forums of various online communities with shared

interests.

Alpha Test Methodology

For the Alpha Test, I sat down individually with each user

for approximately an hour per person. For their first of two tasks, users were asked

to use Kaleido starting from a blank file, and try to implement a two-player Pong

game. The goal of this task was to observe how users might adopt the tool to their

own workflow. The time allotted to this task was about 40-50 minutes, but users

were asked to stop whenever they felt they had developed a good sense of how the

tool might fit into both their short-term and longer-term workflow habits, and

could discuss it with me. Most users did not complete the first task.

For the second task, users were instructed to make a small modification to a rela-

tively complex program that was accompanied with a set of visuals I had created

beforehand (Figure 6-2). The goal of this task was to study how the accompanied

visual affected the user's ability to comprehend a complex program that they did

not write. This task was allotted 10-15 minutes, and again users were asked to dis-

cuss their reactions.

At the end of the session, users were asked to fill out the same questionnaire that

was made available to the public. Each of the tasks, as well as the survey, was de-

signed to spark discussion. Screen capture and audio recording of the entire session

(with the exception of a couple technical difficulties that resulted in loss of data)

was archived for each Alpha Test user.

ballparkles

BaLL[] baits =
aLL(100, 400, 20),

ne, Bal(700, 400, 30)

ne Pdr (2.15, -1.05),
o r(-1.65, 2.42)

ParticeSystem[] ps = {
nw Particle~ystem(1, e .te(width/2,height/2,0)),
n-, ParticleSystem(1, - :--(width/2,hetght/2,0))

<-(640, 360);
le (RGB, 255, 255, 255, 100);
0;

i-0; i< 2; i++){
baLls[i].x += vels[i].x;
baLLs[i].y +- vels[i].y;
ps[i].run();
if (frameCount 1 2 == 0) {

ps[i].adcPartice(balts[i].x,baLLs[i].y);

- i (180,180,180,60);
i0(10,180,10,60);

FIGURE 6-2 The "ball particles" program and output used for the second task in the Alpha Study.

.......

CKD

Users were asked to watch the Kaleido Demo video beforehand so that they gained

a general understanding of the tool's capabilities prior to working with the interface.

At the beginning of the session, users were requested to do whatever they usually

do when programming - whichever way they usually approach tasks. Users were

asked to keep a running commentary about their thoughts as they worked, e.g.

what they were trying to do, if they found that a particular button wasn't working

the way he/she expected, etc.

To allow users to adhere to their habitual workflow as much as possible, they were

also allowed external resources: I offered the Processing online reference, and users

were free to access Google and the rest of the internet. Meanwhile, I also acted as

a reference to save time. Subjects were free to ask me what different parts of the

interface were, or if they wanted to do something how they could achieve it (i.e.

which combination of button presses), but I would not actively offer suggestions for

what they could do (i.e. link code). They were also free to ask me Processing syntax

questions (i.e. what the four parameters of the ellipseO command were).

Users were all students at the Media Lab with diverse backgrounds ranging from a

user who has programmed over 20 years to a user who started learning program-

ming two years ago. A couple of users were also participants of the earlier Kaleido

preliminary investigation (in which participants were also asked to think about a

two-player Pong game), but these two studies were conducted four months apart.

0

Alpha Test Results

First User: Karen

To the first interviewee, whom I shall call Karen, maintaining a consistency in her
drawing was important. As she started her first task, one of the troubles she encoun-
tered was deciding what each of the visual elements should mean. She said,

At the beginning, with that rectangle, I couldn't make up my mind, what that
should represent, because there was no constraint of what type of thing they're
supposed to be, so I decided to snap onto the flowchart model, because I want to
get this working so I don't want to come up with a whole new scheme... so just
relying on that existing sort of notion.

As she discovered new functionalities of the drawing tool, she would go back over
her drawing and update them to utilize the new expressions ("I want to make sense
of the two labels...") At the end of her first session, every shape she had created was
linked.

Karen found the interface was most useful when she used it for navigation. For her
second task, Karen immediate navigated to the method checkBoundaryColli-
sion () by using the rectangle labeled "check if balls hit wall". She first modified
the drawing, and then wrote the code to finish the task. She finished very quickly.

A point of frustration occurred for Karen when she discovered that the drawing
interface was too "slow" to use for ideation; drawing one shape at a time was not
immediate enough to jot down thoughts that were moving rapidly at that point in
the workflow. Instead, she suggested using some auto-generation to create many
shapes at once which the user can then layout and modify:

It would be great to allow users to make the diagramfaster... type a [bulleted]
list that is the flow of the program that will generate a diagram for you and then
you can drag it out.

As a reference, she suggested the SmartArt functionality available in Microsoft Pow-
erpoint.

As she revealed in the survey, Karen thought that the visuals were extremely helpful
for navigating your code, very helpful for reminding yourself of the program struc-
ture, and barely helpful for planning the program logic. She thought she would use
the tool more for teaching than ideation or sharing with others.

FIGURE 6-3 "Karen"'s workflow (read top to bottom, left to right)

17
1 7......

............

0

Second User: Will

"Will" is a software engineer. He started his first task by making a rectangle, but he
did not make any more activity on the drawing side by the time he finished the
programming task. Neither did he make any comments in his code. During our
discussion,Will explained that he did not avoid the visuals on purpose, but rather
once he started writing code, he got into his usual workflow, and focusing on the
task, forgot that the drawing side was available to him.

The thing is, it's a habit - if you are already very comfortable with program-
ming, like I've been programming for like 90% of my life, then I won't use the
visuals...

He said, however, that it was also his habit not to do any planning before he wrote
code, but just to write methods as they occurred to him. He said he usually works
on documentation as a separate phase after coding. He didn't claim to be a visual-
thinker, but he thought that on a longer-time scale he could see himself adopting
the tool for documentation. He said he often will restructure and organize his code
by starting over with a blank file and copy-pasting the old parts back as needed,
and he could see himself using something like Kaleido in his restructuring process.
He did say, however, that he wished that the visuals were more informative regard-
ing the program structure, e.g. he wanted some way of distinguishing between a
method definition and a call to that method, and also some way of seeing whether
something was iterative or recursive.

In his second task,Will again finished in record time. He found the visuals hugely
effective in helping him navigate the program. He thought that visuals for naviga-
tion purposes doesn't need as much structural accuracy or detail to be very effective,
but for writing purposes the lack of structural description in the visuals is prohibi-
tive.

One additional suggestion Will had was that it would be convenient to be able to
generate text boxes (since they appear like comments) from comments typed in
the code. A special markup such as "///" could denote a comment to be synchro-
nized and linked with a text box in the drawing area. In his surveyWill said that the
visuals were extremely helpful for navigating your code, very helpful for reminding
yourself of the program structure, and barely helpful for planning the program logic.
For him, the tasks for which Kaleido was most suited was for documentation and
sharing with other people, and least suited for ideation.

LwJ

FIGURE 6-4 "Will"'s workf low (read top to bottom, left to right).

.....

co

Third User: Tori

"Tori" was a user who used the visuals concurrently with writing code - she would
make a few shapes, then write code; adjust those shapes, then adjust the code, etc.
Like Karen, she put a lot of thought into what each visual element meant ("these
are both paddles so I want them to be the same size, same shape, and same color.")
She found she could use the visuals to replace commenting:

Oh, I don't have to comment as much, because I was going to put a comment
here but I have this already.

In her second task, Tori's method of using visuals became an obstacle when she
tried to work with another person's visual system:

I think the visuals are very helpful if the author was also there to explain
them, but I don't think it can stand-alone as, like, a "read me" documentation,
because the visuals were diferent from what I expected so it ended up causing
more confusion.

Tori also repeatedly ran into the situation where she wished to copy-paste linked
shapes or linked code and maintain the link information through the process; how-
ever, in Kaleido's current implementation, all copy-paste operations lose the object's
link information in the transfer process (see Implementation chapter, page 74).

Thus, unlike Karen and Will, Tori concluded that visuals were extremely helpful
for planning the program logic, very helpful for reminding yourself of the program
structure, and barely helpful for navigating your code. Tori thought she would use
Kaleido primarily for ideation, documentation, and sharing with project collabora-
tors.

89 1 Evaluation

I

I I

I [.

11 I I

Fourth User: Sam

Sam started his first task immediately by illustrating the various visual components
of the Pong game in the drawing area. He added descriptions of each object's (func-
tional) behavior in text boxes alongside, and then proceeded to write those same
behavior descriptions as comments in the text area. It was then that he wished the
two would automatically synchronize:

If I'm using pseudo-code on the left side and writing the same thing as com-
ments on the right side, then maybe they could just go over automatically

After finishing the comments he proceeded to code, using the comments as guide-
lines, and did not make any changes to the visuals for the rest of the task. He also
thought that this wasn't a conscious decision of his, and he reasoned that:

... maybe because I planned it all at the beginning I didn't need it anymore...
but also I think writing pseudocode as you program is a habit that you have to
train yourself to do, so this is like that, you have to train yourself to use it.

FIGURE 6-6 "Sam"'s workflow (read top to bottom, left to right).

FIGURE 6-7 "Phil"'s final version of Pong.

Fifth User: Phil

Phil started by creating and labeling a rectangle "Constants", and then wrote a fair
amount of code before returning to update his drawing. He also wished for auto-
generation and synchronization of documentation between visual and text:

It would be nice if [when] I entered a comment on the right side, it would show
up on the left side and then I can position it... because I want the same thing
on the left side as the right.

In the survey, he summarized his experience:

I used the visuals as aform of documentation of the conceptual structure of the
program. By the prominence of the visuals alongside of the code, Ifelt compelled
to keep the visual representation up-to-date with the code as I worked. This is
very diferent from how I usually approach code documentation (e.g.Javadoc),
which is to go back and add it at the last moment before giving the code to oth-
ers. hile working, I considered that the visual representation would provide not
only useful documentation to others, but to myself if I were to revisit the code in
a couple of days' time or longer. If the code in the task given became substantial-
ly longer, the visuals would have made an excellent navigation tool. As it was in
the first task, having only one class that was short enough to scroll easily, Ifelt
like I was navigating mostly in the code view. In the second task, I thought the
visual representation was essential to quickly apprehending someone else's code
(a task which I usually find tedious and very unpleasant). In this case, I used it

FIGURE 6-8 "Phil's final version of the "ball par-
ticles" program.

.. - __ _ - - _V ' - I

Q0

0

as a quick glance of the structure and behavior of the code, rather than reading
through all of the classes before even getting started tackling the problem. Hav-
ing the visual be a navigational index into the code was invaluable.

Phil concluded that visuals were extremely helpful for reminding yourself of the
program structure, very helpful for navigating your code, and somewhat helpful for
planning the program logic. Thus he thought he would use Kaleido primarily for
sharing, documentation, and learning, but last for ideation and teaching.

Other Methods

Via twitter, the Kaleido demo video spread quickly among the digital media com-
munity and sustained a couple hundred viewers per day for the first week. The proj-
ect was also publicized on the forums of Processing, openFrameworks, and Arduino.
General comments on the video and concept were very positive, although the
website showed low traffic on the Download page, and no activity on the Kaleido
Forum.

Through a mailing list for Processing Educators, educators responded very posi-
tively, and were generally excited about the prospect of using Kaleido to explain
code to students. As one educator who tried Kaleido independently and filled out
the survey said:

I am very interested in using it to explain examples to students. I would love
to provide it to students as a tool so that they can see what code links to what
object without further instruction.

Limitations of the Study

Further methods of gathering feedback, while beyond
the scope of this thesis, would be based upon long-term evaluation. First, it would
be ideal to conduct workshops and work with educators to introduce the tool.The
nature of Kaleido is such that, as part of an individual's workflow which is guided
by habit, its usage, mastery, and thus full-potential, can only be acquired through
practice (compare the acquisition of the habit of writing pseudo-code in the pro-
gramming process). Thus, in order to overcome initial user reluctance to break habit
and adopt new tools, a more thorough evaluation method would be to introduce
the tool actively and to observe users over time.

Further, the projects in the alpha study were controlled, and thus Kaleido's role in
fostering higher-levels of creative ideation remains to be examined through us-
ers developing self-initiated projects. Finally, the interviews I was able to conduct

also skewed in the direction of people with significant programming experience

(although often not Processing experience), rather than the initial target audience of

novice programmers, so future evaluations should aim to achieve a balanced repre-

sentation of user backgrounds.

Summary of Findings

It was observed, and confirmed by many of the interviewees, that people have

ingrained coding habits that they've already developed over many years without use

of the new tool. Thus, it is difficult to evaluate in a short time frame before people

have time to adopt the tool into their workflow. Regardless, educators demonstrated

particularly positive response about the potential of the tool to explain program-

ming to novice programmers.

Most users found the drawing immediately effective for use in modifying other

people's code. However, users also generally wished for faster ways to create visuals,
including semi-automated methods (e.g. Figure 6-9), saying that more immediate

visual-creation would raise Kaleido's potential as an ideation tool. One user thought

that a more inductive UI design (i.e., inviting, proactive, "draw something here!"-

sort of UI) would help make the visual-creation process smoother.

General users, meanwhile, differed widely on their opinion of the best use of tool.

Some users thought the tool was most suited for ideation, and worst for navigating

(because they had a certain idea in their head of what each visual should mean, and

another person's drawing just confused them); while other users thought the op-

posite (because it's not fast enough for ideation, or the lack of precision in structural

description doesn't allow you to plan.)

That fact that there were no guidelines or conventions for mapping visuals to
meaning perplexed some users, while other UI functionality designs such as the

shape label editor trigger and the unpredictable effects of copy-paste operations on

linked shapes posed difficulties to multiple users. Finally, a few users also inquired
about creating custom shapes by combining multiple shapes to act as one, but in
general users did not seem to experience any dissatisfaction with the tool's ability to
create the graphics they wanted.

li\ A ~. AZ

Title -
U
B
U

FIGURE 6-9 Microsoft PowerPoint's SmartArt
functionality that quickly generates diagrams from
bulleted lists, etc. This was suggested by one of the
study participants to improve Kaleido's utility as an
ideation tool.

.. ------__ --

The real voyage of discovery consists not in seeking new
landscapes but in having new eyes.

Marcel Proust

Conclusion

In this chapter I summarize the findings and contributions of

this work, and I discuss points for improvement of the current

Kaleido system. While certain usability issues must be resolved

before Kaleido can fully support the declared goals, preliminary

evaluation demonstrated that integrating sketches as individu-

alistic visual interfaces can indeed facilitate the programming

process for people with a variety of programming styles. I

discuss some successes and shortcomings of this work that can

be generalized for the benefit of similar endeavors in the future.

Further, within this topic there remains many unexplored possi-

bilities, and I outline some alternative approaches to address-

ing the dissociation between individual creative intention and

mechanical models of software. Finally, I conclude this work

with some projections ahead.

Successes
Preliminary evaluation demonstrated that individualistic

visual interfaces are effective for documentation and navigation. While a few cases

occurred where a person reading another's Kaleido drawing - in essence attempt-

ing to "read their mind" - caused more confusion than if the person had simply

read the code, the majority of users responded positively to the interface's potential

as a navigation aid. The qualities of individuality, expressivity, and connectivity, as

outlined in the design guidelines for individualistic visual interfaces, were successful

in supporting these activities.

Regarding expressivity in particular, the visual vocabulary made available in the

drawing area appeared successful. Users did not express discontent or feelings of

0-)

0

0

being restricted despite the limited range of visual elements, and drawing com-
positions reflected a variety of styles.

Overall, while users differed widely on their opinion regarding the best use of
the tool, everyone found at least one functionality very helpful to their way of
working. In this way, the interface also successfully accommodated a variety of
programming styles.

General positive feedback to the project concept reveals that people have a
need for tools that would support the visualization, documentation, and use of
context-specific information. Although further evaluation work needs to be
conducted to determine how novice programmers in particular use Kaleido,
digital media educators were particularly receptive to the concept, concurring
with the belief that inclusion of context-specific information could overcome
some of the difficulties novice programmers have in comprehending computer
programs.

Shortcomings

A number of improvements can be made to the
Kaleido interface; indeed, while the current release is stable, certain refinements
are prerequisite to bringing the software prototype to a stage where its usability
fully supports the software goals. However, more importantly, certain design
guidelines for individualistic visual interfaces outlined in Chapter II were
not implemented in Kaleido, while others need improvement. While sugges-
tions for improvement to methodological aspects of this project have been
incorporated into their respective chapters in this document, in this section I
summarize the design shortcomings of this work and identify areas of further
development.

Perhaps the most critical aspect in which Kaleido fell short of expectations was
the immediacy of the visual-creation mechanism, and thus, the reflectivity of
the interface. Evaluations revealed that the effectiveness of individualistic visual
interfaces in supporting ideation, which was one of the original motivations
for this work, is highly dependent on how quickly users can create the visuals
they want. Kaleido currently implements a mouse-drag-and-buttons paradigm
of producing visuals that was modeled after popular graphics editing applica-
tions. However, this paradigm was found to be too unwieldy by most users to
keep up with rapid trains of thought, and alternative methods of creating visu-
als, such as those discussed later in this chapter, need to be explored for future
implementations of this work to fully support ideation.

CD

0

0

A related issue is that users expressed discontent with the visual-creation mechanism

when they wished to create information duplicated in both drawing and text areas.

Kaleido's lack of support for any visual auto-generation, while purposeful, caused

users to find repetitive operations tedious, e.g. duplicating drawing annotations as

code comments, or vice versa. It should be noted that influencing factors may in-

clude the difficulty of visual creation as well as habit fostering the need for informa-

tion to be duplicate across code and visual. In any case, this led to user suggestions

that special commenting codes, e.g. "///" at the beginning of a line, be enabled to

automatically generate a basic shape.

Transparency and simplicity appeared well-received as users quickly mastered usage

of the interface, and once familiar, did not express confusion for the remainder of

their use of Kaleido. Spatiality proved useful for the purposes of documentation and

navigation; however it has not yet been completely evaluated since users did not

create complex or large enough drawings to require visual navigation.

While connectivity proved successful in helping navigation, it is also an aspect in

which Kaleido could be developed further so that linkages are integrated with more

parts of the programming process. For example, the performance of familiar object

operations such as cut-copy-paste upon linked objects versus unlinked objects (see

Evaluation chapter, page 95) needed further refinement while the use of the visual

representation for debugging (e.g. Figure 5-13 in Implementation chapter, page 74)

was not fully implemented.

Qualities that were unable to be implemented in Kaleido and remain for future

work include the history-keeping functionalities to support reflectivity, as well

as ambiguity. Complementing the decision to implement Kaleido with discrete

graphical elements was the decision to simplify the dimension of ambiguity to be

represented as a binary state of "lock" versus "unlock" (see Implementation chapter,

page 72). This aspect of the drawing was not used by users in the evaluation, most

probably due to the short amount of time spent on the tasks.

Finally, further work is needed to gather more conclusive evidence about the suc-

cesses and shortcomings of Kaleido. Long-term evaluation, particularly with novice

programmers, self-initiated projects, and in classroom contexts, would shed light

on the roles in which an individualistic visual interface assist in the creative coding

process.

Q0

0

0

Future Work

Kaleido is one implementation of an individualistic visual
interface. Based on the same set of design guidelines, many other possibilities exist.
The following section explores alternative approaches to fostering the vision that,
"As a carrier for pluralistic ideas, the computer holds the promise of catalyzing
change, not only within computation but in our culture at large."[64]

Gestural Input .

Kaleido's current implementation could immediately benefit from using a pen
input system to create the visuals; for example, a rectangle gesture with the pen
would create a rectangle shape, an 'X gesture could delete the shape, etc. As users
of Kaleido revealed, the current method of visual creation via tool buttons lacked
immediacy and hampered the expression of their thoughts.With the use of a pen
tablet or a touch-input device, a gestural input system could dramatically improve
Kaleido's utility as a sketching and ideation tool.

Free-form Drawing

While Kaleido's adoption of discrete graphical elements is arguably easier to com-
prehend, manipulate, and use as an interface, a partially-restricted form of pen draw-
ing could preserve some of the benefits of discrete visual elements while allowing
more dimensions of individualistic visual expression. Pen pressure, angle, etc. could
be used to generate visual distinction between shapes. The drawing interface of the
CrayonPhysics game[10], for example, allows the user to create a distinct shape with
its own behavior (in this case, physics) as soon as the user closes the loop on any sin-
gle line. Further, as the game demonstrates, the visual appearance of the pen input
can also be partially controlled so as to yield a harmonious overall aesthetic while
still allowing the user a large degree of personalization.

Specialized Graphical Palette

On the other hand, the choice of visual elements could not only be a question of
"which are the ones users habitually use?", but rather a question of "could there ex-
ist a new graphical set of symbols designed specifically for depicting mental models
in the programming process?"We find it intuitive to attach meanings to flowchart
symbols and stick figures simply because most of us have acquired familiarity with
the conventions in which they are used.While a new palette might be difficult to
adopt in the early stage, a novel graphical system designed to depict both indi-
viduals' intentions as well as program architecture could potentially reduce mental
bottlenecks in the programming process.

F
I

FIGURE 7-1 A screen shot of the Crayon Physics game. The player draws shapes that behave according to
physical laws (gravity, mass, momentum, etc.) to solve the puzzle. From [10].

Visual Overlay of Drawing and Code

Finally, in Kaleido's current interface, the visual information is segregated from

the code in two distinct panels, while the connections between these two layers of

information lack a direct visual representation. An alternative approach to recording,

presenting, and navigation between individualistic visual information and text-based

structural information is to overlay these two layers of information visually on top

of each other.

Since a significant portion of the programming process involves navigation be-

tween disconnected locations in code, a carefully-designed system for visual travel

between these layers, e.g. zoom and pan at multiple levels, could be an effective way

to express the relationships, that is the visual-textual connections, between these lay-

ers. The additional spatial dimension grants users the freedom to place not just the

associated visuals but also the code itself in a personalized organization system that

is restricted by neither program structure, alphabetization of file name, or output

of the program. Further, an execution scope tool could select specific areas of the

canvas and execute only the code within the selected area.

For example, the code body could be used to create a visual map of the entire proj-

ect which maintains an identifiable "code topography" (Figure 7-2),This visual layer

allows the user to identify sections of code via visiospatial memory, and it could be

overlaid and augmented with a canvas layer of free-form graphical annotations. By

zooming at multiple scales, the user can selectively highlight or hide different types

of information as they code.

mm =onON-.

mm== um m --
mmL ms Mamul mmn mm mm

m mum mu Mai mm m
*ao, ao ON -=mnmom

-- IN an :AE

=o "mm461111moo mi
mu= u u mM 11m

1161110 1umt

u m mu mm

mWN IN um mai mm mm al mwm
lonm IN 0OM mm mu

mu u m in m
uE an mummA

mmm mmma=m
un muum m Maine =a~ MEI a 11mm1
mm mmi

ua usmomm muinmm mu uN
m= mu mm

-m - -- m

mmn m mm. -a mn Mm.me mmmm =u mmmm
-m m - m n

mu. omlimna

mm son - - m
mmmm Mm.

EnAm am..

-n mm
-- m

me ~ m m
mu.L- 6i ~. MuLml

mme mwl mm mM" i
11in11 Sol I mm Mai :I

o l g s I IN- - 1

m wmu

ITU W. m =Mmmilm067 ME mm mmMam
amiI Ian=I = I I an=I ME m Mu.l

FIGURE 7-2 A "code topography" as one of multiple information layers.

EuU.
mu. *

* m

IN -

IN m

le m
Mmu mu u

=Nmu

- I.

~ 4.~,* I.

'4..- ~

~ ~4:

- ..

Ii -~ I.

$

FIGURE 7-3 Multiple levels of information from code, annotation, to the project
landscape.

I,-...,

r r - VI.< d itY 1.)

i+N41- U t].xt,

CD

0

0

Projections

... With the atmosphere offireflies at dusk in her mind, she
imagines the dance-like path of the ball... perhaps it would appear a little hesitant as it
approaches and lively as it recedes; or maybe, the hue of the sky changes to echo to the ball
movement. She floats her display to the upper-left of her project space where she had placed
the cluster of codefragments that represent her motion experiments. Her code floats in the
background as her doodles hover infront. She nudges some aside to select her approach-and-
recede doodle, and duplicates it along with its associated code. She reshapes the new doodle,
giving it a slight convexity in the middle, and the ball seems to acquire a twist in its behavior.
As the same time, she wonders what sort of dance would result if she mixes the underlying
mathfunctions with one of the sky variables? She does not know, but she makes a second
copy, and sends the doodles back to bring the code intofocus. With afew keystrokes the code is
altered, and a moment later, the output reveals an unexpectedly beautiful motion spiraling and
growing across the space...

Programming tools today visualize various aspects of programming activity ranging
from code representation, program structure, to program execution, with the aim of
making programming more intuitive.While these tools are tremendously helpful for
reading and comprehending programs, the fundamental difficulty of programming
remains the dissociation between the structural nature of code and the unstructured
nature of individual creativity. Computer programs must necessarily be structured
in order for the computer to execute them, but each person's way of thinking about
their programs is their own.

Visual sketching in traditional creative disciplines such as music, architecture, and
design, are a process through which the artist develops, discovers, and documents his
creative ideas. In the same way, software development environments should enable
users to think about code via our visual senses. By allowing users to create and as-
sociate personalized visuals with their code, we can reduce the difficulty of translat-
ing between creative concept and code structure. The goal is not to do away with
writing code, or to replace visualization thereof, but rather, to realize that to truly
explore the creative possibilities of computation, we need to reconsider current
tools that restrict us to thinking about code in specific ways.

This thesis is about recognizing that while code is fundamentally structural, com-
putational media is created in the same way a child builds a sand kingdom on the
beach: forming, reforming, and experimenting; placing, relocating, combining, and
exploring all different directions at once. It's about recognizing that, in order to fully
embrace the creative possibilities of the computational medium, we should explore
the many ways in which we can design tools to support this special creative process
that blends the uniformly structural with the individually unique.

CD
O0

References

[1] Freemind. http://freemind.sourceforge.net/.
[2] Jgraph. http://www.jgraph.com/.
[3] MicrosoftVisio. http://office.microsoft.com/en-us/visio/.

[4] Nodebox 2. http://beta.nodebox.net/.
[5] Processing. http://www.processing.org/.
[6] Unified modeling language. http://www.uml.org/.

[7] vvvv. http://www.vvvv.org/.
[8] J. R. Anderson. Arguments concerning representations for mental imagery.

Psychological Review, 85(4):249-277, 1978.
[9] Apple Computer, Inc. Quartz composer. http://developer.apple.com/graphicsi-

maging/quartz/quartzcomposer.html.
[10] R. Arnheim. Visual Thinking. Faber and Faber, London, 1970.

[11] J. Bertin. Semiology of Graphics. University ofWisconsin Press, Madison,WI,
1983. translated by William J. Berg.

[12] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri,W Cheung,J. Kaplan, C.

Coleman, E Adeputra, and J.J. L.Jr. Code bubbles: A working set-based inter-

face for code understanding and maintanence. In Proc. of the 28th International

Conference on Human Factors in Computing Systems (CHI), 2010.

[13] F P. Brooks, Jr. No silver bullet: essence and accidents of software engineering.

IEEE Computer, 20:10-19, 1987.
[14] R. Brooks. Towards a theory of the comprehension of computer programs.

InternationalJournal of Man-Machine Studies, 18:543-554, 1983.

[15] ConceptDraw. Mindmap. http://www.conceptdraw.com/en/products/mind-
map/.

[16] N. Crowe and P. Laseau.Visual Notes for Architects and Designers.Wiley, New

York, 1983.
[17] Imagix Corporation. Imagix 4d. http://www.imagix.com/.

[18] Cycling74. Max 5. http://cycling74.com/products/maxmsp jitter/.

[19] S. P. Davies. Models and theories of programming strategy. InternationalJournal

CD

0)

0

0

of Man-Machine Studies, 39:237-267, 1993.
[20] A. DiSessa. Models of computation. In D.A. Norman and S.W Draper,

editors, User Centered System Design; New Perspectives on Human-Computer
Interaction. L. Erlbaum Associates Inc., 1986.

[21] A. diSessa and H. Abelson. Boxer:A reconstructible computational me-
dium. Communications of the ACM, 29(9):859-868, 1986.

[22] M. Downie. Field. http://openendedgroup.com/field/.
[23] S. G. EickJ. L. Steffen, and E. E. SumnerJr. Seesoft: a tool for visualizing

line oriented software statistics. IEEE Transactions on Software Engineering,
18(11):957-986, 1992.

[24] M.J. Farah, K. M. Hammond, D. N. Levine, and R. Calvanio.Visual and
spatial mental imagery: Dissociable systems of representation. Cognitive
Psychology, 20(4):439-462, 1988.

[25] J. Fish and S. Scrivener. Amplifying the mind's eye: Sketching and visual
cognition. Leonardo, 23(1):117-126, 1990.

[26] The Eclipse Foundation. Eclipse. http://www.eclipse.org/.
[27] B. Fry. Dismap (2003). http://benfry.com/dismap/.
[28] V Goel. Sketches of Thought. MIT Press, 1995.
[29] G. Goldschmidt. The dialectics of sketching. Creativity Research Journal,

4(2):123-143, 1991.
[30] T. R. Green and M. Petre. Usability analysis of visual programming envi-

ronments: A 'cognitive dimensions' framework.Journal of Visual Languages
and Computing, 7:131-174, 1996.

[31] M. D. Gross and E.Y-L. Do. Ambiguous intentions:A paper-like interface
for creative design. In Proc. of ACM Conference on User Interface Software Tech-
nology (UIST), pages 183-192, 1996.

[32] T. 0. Group. Omnigraffle. http://www.omnigroup.com/products/omni-
graffle/.

[33] T. T. Hewett. Informing the design of computer-based environments to
support creativity. InternationalJournal of Human Computer Studies, 63:383-
409, 2005.

[34] P. N. Johnson-Laird. Mental models: Towards a cognitive science of language, in-
terference and consciousness. Harvard University Press, Cambridge, MA, 1986.
Harvard Cognitive Science Series,Vol. 6.

[35] E. Kleiberg, H. van de Wetering, and J.J. van Wijk. Botanical visualization
of huge hierarchies. In Proc. of IEEE Symposium on Information Visualization,
2001.

[36] A. Koblin. NewYork Talk Exchange (2008). http://www.aaronkoblin.
com/work/NYTE/index.html.

[37] M. Kolling. The problem of teaching ob ject-oriented programming, part
2: Environments.Journal of Object-Oriented Programming, 11(9):6-12, 1999.

[38] M. K6lling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system and
its pedagogy. Computer Science Education, 13(4):249-268, 2003.

CD

CD

[39] J. A. Landay and B.A. Myers. Interactive sketching for the early stages of in-

terface design. In Proc. of the SIGCHI conference on Human Factors in Computing

Systems, pages 43-50, 1995.
[40] P. Laseau. Graphic Thinkingfor Architects and Designers.Wiley, 3rd edition, 2001.

[41]J. Maeda. Design By Numbers. MIT Press, 2001.

[42] A. Malhotra,J. C.Thomas,J. M. Carroll, and L.A. Miller. Cognitive processes in

design. International Journal of Man-Machine Studies, 12:119-140, 1980.

[43] M. McCullough. Abstracting Craft :The Practiced Digital Hand. MIT Press, 1997.

[44] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.Visualizing programs with

Jeliot 3. In Proc. of the Working Conference on Advanced Visual Interfaces, 2004.

[45] B.A. Myers. Taxonomies of visual programming and program visualization.

Journal of Visual Languages and Computing, 1(1):97-123, 1990.
[46] D.A. Norman. Cognitive engineering. In D.A. Norman and S.W Draper, edi-

tors, User Centered System Design: New Perspectives on Human-Computer Interaction.

L. Erlbaum Associates Inc., 1986.
[47] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Hulasz. Tivoli: an electronic

whiteboard for informal workgroup meetings. In Proc. of the INTERACT '93

and CHI '93 conference on Human Factors in Computing Systems, pages 391-398,

1993.
[48] C. S. Peirce. Peirce on Signs: Writings on Semiotic. University of North Carolina

Press, Chapel Hill, NC, 1994. edited by James Hoopes.

[49] M. Petre and A. F Blackwell. Mental imagery in program design and visual pro-

gramming. International Journal of Human-Computer Studies, 51:7-30, 1999.

[50] K. Quartet. Trimpin sketches from 4cast. http://www.kronosarts.com/pages/

trimpinsketches. html.
[51] C. E. B. Reas. Process 11 (2006). http://reas.com/iperimage.php?section=work

s&view=&work=p1 1install1&id=0.

[52] C. Reas and B. Fry. Processing: a programming handbook for visual designers and art-

ists. MIT Press, 2007.
[53] M. Resnick. Computer as paintbrush: Technology, play, and the creative society.

In D. G. Singer, R. M. Golinkoff, and K. Hirsh-Pasek, editors, Play = Learn-

ing: How play motivates and enhances children's cognitive and social-emotional growth.

Oxford University Press, 2006.
[54] P. G. Rowe. Design Thinking. MIT Press, 1991.
[55] B. Schneiderman. Direct manipulation: A step beyond programming languages.

Computer, 16(8):57-69, 1983.
[56] B. Schneiderman. Creativity support tools: accelerating discovery and innova-

tion. Communications of the ACM, 50(12):20-32, 2007.

[57] D. A. Sch6n and G.Wiggins. Kinds of seeing and their functions in designing.

Design Studies, 13(2):135-156, 1992.
[58] Hog Bay Software.Writeroom: Distraction free writing software for Mac and

iPhone. http://www.hogbaysoftware.com/products/writeroom.
[59] M.-A. D. Storey, F D. Fracchia, and H. A. Meller. Cognitive design elements to

support the construction of a mental model during software exploration. The

journal of Systems and Software, 44:171-185, 1999.
[60] Adobe Systems. Dreamweaver. http://www.adobe.com/products/dreamweav-

er/.

[61] Adobe Systems. Flash. http://www.adobe.com/products/flash/.
[62] Adobe Systems. Illustrator. http://www.adobe.com/products/illustrator/.
[63] Adobe Systems. Photoshop. http://www.adobe.com/products/photoshop/.
[64] S. Turkle and S. Papert. Epistemological pluralism: Styles and voices within the

computer culture. Signs, 16(1):128-157, 1990.
[65] A. K. von Mayrhauser and A. M.Vans. Comprehension processes during large

scale maintenance. In Proc. of the 16th International Conference on Software Engi-
neering, pages 39--48, 1994.

[66] T.Watson. Funky Forest (2007). http://www.theowatson.com/site-docs/work.
php?id=41.

CD

CD

CD

Appendix A

Kaleido Materials:

Website Pages

Demo Video Script and Screenshots

CL

c0

(D

C)
(D
CO)

Home

Kaleido is a tool that is designed
to help visual-thinkers program.
You can use Kaleido to create
personally meaningful visuals for
your code. Kaleido allows
individuals to plan, organize, and
navigate code in the idiosyncratic
way we each think.

Download Kaleido a

See what others have been
doing with Kaleido in the
Kaleido is based on the

project.

0430

- - from on

Updates! Mke otes
Uke the writing process, jot down ideas, daydreams, to-do's, etc.

26.Apr.2010 In the margins as you compose your program.
The source code has been
made available via
github. Illustrate

20.Apr.2010 Be freed from the restrictions of code diagrams - use Kaleido to

Please help us make Kaleldo depict what makes the most sense to you.
better by filling out
about your experience. Plan

20.Apr.2010 Make digital napkin sketches to plan before you program and
Kaleldo website going live then use those sketches to navigate your project.

-I

..

cD

CD-
(D

X http://kaleido.media.mit.edu/download

Software Download
THE Kaleido SOFTWARE IS PROVIDED TO YOU "AS IS," AND WE MAKE NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE, INCLUDING, WITHOUT LIMITATION, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR INFRINGEMENT. WE
EXPRESSLY DISCLAIM ANY LIABILITY WHATSOEVER FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR
SPECIAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST REVENUES, LOST PROFITS, LOSSES RESULTING FROM
BUSINESS INTERRUPTION OR LOSS OF DATA, REGARDLESS OF THE FORM OF ACTION OR LEGAL THEORY UNDER WHICH
THE LIABILITY MAY BE ASSERTED, EVEN IF ADVISED OF THE POSSIBILITY OR LIKELIHOOD OF SUCH DAMAGES.

By downloading the software from this page, you agree to the specified terms.

Mac OS X 1 14.0 Mb 1 . 2010.04.22

Source Code
The source code is available for browsing and download from th github repository.

Thesis Documents
For the curious, since this is part of my Master's thesis, here are some relevant formal documents which have been
created with the assistance of many mochas.

PDF 1 1.3 Mb 1 2009.12.14

-I

................................

1 L JILlh tp :/ / k aIeIdoI IIedIa.m it .e d u / g e tI 1ng s t a11e d c o oi e

L Getting Started FM

Tutorial

Interface Guide

Reference

Welcome! Kaleldo is a programming environment interface that was created to make it easier for visual-thinkers to
develop applications by providing the means to create personal meaningful visual Interfaces to their own code. While
many software engineering tools exist to automate code visualization, we wanted a tool that could allow individuals to
visually plan, organize, and navigate through code in the idiosyncratic way we each think. We thought that, If so many of
us make napkin sketches to lay out our thoughts before we program, why don't we build a tool that allow ourselves to use
these sketches as an interface to our code?

The t -m-t of this guide is a simple and fun tutorial to demonstrate some of the ways Kaleido can help you in the coding
process. The I explains each of the different parts of the interface in further detail, and includes a
comprehensive listing of the I i , I . You can also look at the example projects provided with the
Kaleido application package by accessing them from the Fe - Example menu.

Kaleido is based on the P -F project, acting as an augmented interface for the Processing Development
Environment and the Processing Language. This guide assumes you're already familiar with Processing. If you would like
a refresher course on Processing you can take a look at their tn t guide.

The latest version of Kaleido can be found at the C page.

Hello Sall Tutorial

In this tutorial we will learn to use Kaleldo to help us write a simple program In which a ball will follow your mouse

around. This means that, in each frame of the animation, our program will fill the canvas background and draw a ball at

the the mouse position.

So first let's make a ball shape to represent our ball. Click on the shape tool and hold

21086Y6 __ - - - MMMW_

CD
CL

(D

.4, Vhttp //kal eido. media. mit.edu /gettingstarted

Link the setup method code to the setup shape by clicking on the shape, clicking on

the link button in the toolbar (notice that the link button stays highlighted lke this +4),

and selecting the code. A linked shape appears brighter and linked code is marked in the

margin. Selecting any part of linked code will cause the shape to be highlighted in gray,

and selecting the shape will cause the linked code to be highlighted.

Next let's also make a shape for the draw method. This time let's select the code first, and

then select the rectangle tool . Notice now that the cursor is a crosshair and the link

button is highlighted. Draw a shape, and the link will automatically be established. Let's

label this shape "draw loop" and color it blue.

We can also use code windows to write our code. Double-click on "draw loop", or click on

the code window button to open the shape's code window.

Inside the code window, fill in the draw method with the code on the left. As you type, you
void draw()

/A*Att can see that any changes you make in the code windows is reflected in the main text area.
background(255);

//bll This can be particularly useful when you are working with multi-file projects.
t±11(0,0,255);
ellips(monseZ,

uons.Y,40,40);

Our program is pretty complete, and just to finish our drawing, let's link the line of code

that draws the ball to the our ball shape 0 by selecting the code, clicking on the link

button , and clicking on the shape. Notice that any code can be linked to multiple

shapes, although each shape can only be linked to one continuous fragment of code.

(D

(DCQ

Itht:/klko~wi~nteugettingstarted IU G L9u

So first let's make a ball shape to represent our ball. Click on the shape tool and hold

down the mouse button to see the available shapes. Click on the circle tool 0and your

cursor should change into a crosshair .

Make a circle on the drawing area by clicking and dragging the size of the shape. When a

shape is selected, it will have a yellow highlight around it S. and the small square

handles allow you to resize the shape.

Open the label editor by clicking once on our selected ball. Let's type in "draw ball" in the

first field, and "use mouse position" in the bigger field. When you're done, click outside the

label editor to save. Whenever you want to cancel out of the label editor without saving,

simply hit the escape key on your keyboard.

Next let's make a shape to represent our program setup. Let's use the rectangle shape

again U and this time simply label it "setup". Since we think of "setup" and "ball" as very

different sorts of things, let's color the setup rectangle a different color by clicking and

holding down the paint bucket button to select green . Once your mouse has changed

to a paint bucket cursor 6, click on the shape you want to color.

vodA setp() {
sis.(400,400); Now let's link some code to our shapes. Type the code on the left into the text area. This
mostroke();

prepares the canvas we need, and gives us a code stub in which to fill in the animation

void draw() { code.

Unk the setup method code to the setup shape U by clicking on the shape, clicking on

1Ihtp://kaleido.media.mitedu/gettingstartedQ u)I

Let's run the program! Click on the run button

To learn more about Kaleido, explore the rest of this guide, take a look at the example projects by accessingthem from

the File - Example menu, and join the discussions in the

Interface Guide

Visual-Code Associations

Our primary motivation was to enable programmers to make personalized sketches of their
code digitally, and be able to use their digital drawings as a idiosyncratic interface to their
code. Thus Kaleido enables the programmer to create visuals along side their code editor,
and associate individual visual elements (i.e. link) with any given fragment of code, giving
programmers visual ways to organize and navigate their projects.

Drawing Area

On the left side of Kaleido's environment is a canvas that enables you to create digital
drawings via the drawing tools. You can control the placement, color, and labels of any of
the visual elements. Edit any drawn element by selecting it, and then clicking once: the
label editor (as pictured) should show up.

Code Windows

It you have linked a particular visual element with a code fragment, you can open a code
window to gain an additional view of your code regardless of where you navigate to in your
code editor. You can edit code through code windows just like the main text editor.

1 -- 3M Text Area

This is the main code editing area, which functions the exact same way as traditional
1-((programming text editors.

- (baIIsrIl.x, batIsT

Ckid draw()
background(

Aeilip'.(xqy,40,4I
x . dx;
y +dy;

if (x , width ||
dx *- -1;
f ii L(random(25'

}

Drawing Toolbar

Code Margin

When a piece of code has been linked to a shape, the line of code will be marked on the
margin with a strip of color that corresponds to the color fill of the linked shape.

Shapes

Click and hold down to see other options such as and U. All shapes hold a title
and description, and can be linked to code. Any new shape will be filled with the color
indicated in the Color RN button at the time of creation.

Connectors

Plain basic connections in three style options (arrow, dotted, etc.), which can be
attached to shapes or Ift dangling. Connectors can be labelled, but not linked to code.

Text Box

Creates a text box with a transparent background that holds a description.

Color Fill

Select this tool and click on a shape to fill it with the selected color. The currently
selected color will be used to fill newly created shapes.

Code Window

Opens code windows on selected shapes that have been linked to code. will hide
the code windows of the selected shapes.

Lock

,x A "2969- , -

IL http://kaleido.media.mit.edu/gettingstarted A ogl

Lock

"Locks" drawn elements to prevent them from being moved or resized. Elements can

be unlocked via the Ubutton. Drawn elements that are in locked mode will appear
as if they are pinned to the canvas, while unlocked elements drop a shadow and
appear as itflfoating".

Link

Initiates a link between visuals and code, starting with the current selection in either
drawing area or text editor. If a link currently exists (each drawn element can be
linked only to one code fragment at a time, although any given code fragment can be

linked to multiple drawn elements), the link can be removed by using the button.

Keyboard Shortcuts

Note: the current Kaleido release is available for Mac only, although we're working on changing that soon!

X Z Undo

X Y Redo

X X Cut

X C Copy

X V Paste
Pasting text into the drawing area will create a new text box to hold the clipboard
contents. Pasting a linked shape into the code editor will paste a copy of the code
linked to the copied shape.

X A Select All

X D Select None

X / Comment / Uncomment

X] Increase Indent

X [Decrease Indent

X F Find...
This search function currently only searches the code. Search functionality for the
drawing area is planned for future releases.

(D

C)
(D
CO)

9http://kaleido.media.mit.edu/gettingstarted A' oogle

X) Increase Indent

X C Decrease Indent

X F Find...
This search function currently only searches the code. Search functionality for the
drawing area is planned for future releases.

X G Find Next

X T Open Code Window

O X T Close All Code Windows

X L Lock Selected Element

1 K L Unlock Selected Element

X - Zoom In

X - Zoom Out

X 0 Actual Size

0 X drag Panning

<spacebar> Expand Element (in nested elements)

<backspace> Collapse Element (in nested elements)

<delete> Delete Element

F2 Edit Element Description

t Select Container Element (in nested elements)

Select Contained Element (in nested elements)

- Select Previous Element

Select Next Element

(D

(D-
U)

F -jr Contact

Bugs and Questions
To report bugs, please see the If you have questions, check out the , or ask them in the

E-mail
To join the mailing list, participate in a study, or express any other concerns, please email n

Who are we?
Kaleido is currently developed and maintained by This project was initiated as a Master's thesis in the

at the . Past developers include Susie Fu. Other people to whom this work owes its
existence include jwarren, rthe, ericr, sajid, rdf, mres, etc. etc.

Other projects that have inspired this work include and

a i!created the drawing on the software package's "About" graphic.

-77

1% http://kaleido.media.mit.edu/forum G oogle

L - to post new content in the forum.
Forum

g News and Arwume rrent -

What's happering? Find out the p"Mr s latest status.

O Genr DIscuss:::ion

Is Kaleldo the tool you ahways Ised? 1s it absolutely useless? Sham yow experience
and help us detemne futue direonw

What did you make with Kaleldo? Share and discuss each otheus work and Works-In-

SBugs and

Technical difficulties? Report them here!

Forum FAQ

Topics Posts Last post

1 2 7 weeks I day ago
by done

2 3 1 week 5 days ago
by marlonj

a weeks days ago
by adhang

by day o

-I

XAHWKT ,

1]tJ~ .http://kaleido.media.mit.edu/faq el Q'ok-

1101EidaU
FAQ

Is Kaleido compatible with Processing projects?

Yes! Opening PDE-created projects in Kaleido will simply yield a blank drawing to start, but the project should run and
execute with out any problems. Opening a Kaleido project in the PDE simply omits the drawing area and all associated
functions, but your code will appear and function In exactly the same way.

Is Kaleido open source?

Uke the initiative on which it is based, the Kaleido environment is released as open source under the
. The source code will be made available via an easy-to-access interface soon.

How do I get started?

Check out the page. Ask in the - e if you have any questions about the process.

Who works on this project?

Right now it is just me, and it used to be more people, but since the very beginning the project has been the result of
s input.

Why is it called Kaleido?

Kaleidoscopes allow us to a myriad of visual patterns, and the Kaleido project also aims to allow people to see their code
in myriad ways. This project was based on the belief that we all have our own individual ways of thinking about and
approaching programming problems, and that if programming tools could allow us to visually document these
idiosyncratic ways of thinking, the process of creating with code could be made more intuitive.

I nn what nhatfna nan I run kaInidn?

(D

CD

-4 A lkhttp://kaleldo.media mit~edu/faq Gogle

execute with out any problems. Opening a Kaleido project in the PIDE simply omits the drawing area and all associated
functions, but your code will appear and function in exactly the same way.

Is Kalsido open source?

Like the -Pi . initiative on which it is based, the Kaleido environment is released as open source under the GNU
.The source code will be made available via an easy-to-access interface soon.

How do I got started?

Check out the Gtngtatedpage. Ask in the turo if you have any questions about the process.

Who works on this project?

Right now it is just me, and it used to be more people, but since the very beginning the project has been the result of
IT s input.

Why is It called Kaleido?

Kaleidoscopes allow us to a myriad of visual patterns, and the Kaleido project also aims to allow people to see their code
in myriad ways. This project was based on the belief that we all have our own individual ways of thinking about and
approaching programming problems, and that if programming toots could allow us to visually document these
Idiosyncratic ways of thinking, the process of creating with code could be made more Intuitive.

On what platforms can I run Kaleido?

Mac is the current release, and I don't mean to be discriminating against other platform users but I'm currently prioritizing
getting at least one stable release on one platform before going cross-platform. As soon as I'm confidence about the Mac
release, I'II package and test PC and Linux versions, promise!

It orashed! It's broken! I found a bug; what do I do?

Hielp us make Kaleido better by reporting all bugs big and small, hairy and otherwise, on the b

I disagree with this whole Idea.

We want to hear what you think! After all, our motivation in developing Kaleido Is to find out empirically whether or not
this Is a good Idea. Please share your opinions with us in the aum

C-
CD

CD

Kaleido Demo Video Transcript

Kaleido is a tool that is designed to help visual-thinkers program. Kaleido makes

the creative process easier by letting you create personally meaningful visual inter-

faces for your code.

Kaleido can help you quickly remember the different parts of your program. This

program, for example, is a single player Pong game built in the Processing language.

Everyone knows how a Pong game works, namely that you have a user-controlled

paddle that moves left and right to catch a bouncing ball. However, there is a gap

between knowing how the program works and knowing how the program is built.

With Kaleido, you can make drawings as you program to help your process. Here

we see a ball-shape, and if we select it, it points us to the pieces of code that paints

the pixels of the ball to the screen. This box next to it is linked to the code that

makes the ball bounce.

If we click on this rectangle that looks like a paddle, it points us to the code that

paints the paddle, and meanwhile this keyboard symbol is linked to the code that

moves the paddle when the user presses on the arrow keys.

(D

(D
CO)

With the help of visuals, the mass of code quickly becomes understandable. As we
are jumping back and forth working on different parts of the program, we can look
to the drawing area at any time to find the piece of code we need.

For example, when I run this Pong game I might discover that the ball is moving
too slowly and I would like to make it faster.

So where do I put in the adjustment? It is hard to do a normal text search because
I don't know if the code I am looking for called "speed" or "ballspeed", or even
something else?

But I have a blue block here that says "ball properties" and by clicking on that
block now, I see that I had named the variables "dx" and "dy" instead. So let's
change those values to make it twice as fast. Now let's save, and run it again.

Now that looks much better.

Co

CD

C)
CD

So Kaleido helps you edit your program without wasting a lot of time just looking

for the piece of code you want to change. Kaleido can also help when you are start-

ing out with a new project.

Let's say for example that I want to make a bouncing ball that changes color every

time it bounces.

Let me quickly think through what parts of the program I am going to need:

I will need to setup because I want a square canvas. So I'm going to make a box

here, but I'm also going to write the code skeleton for this. I can link my code to

the box by selecting the code, clicking on the link button, and then selecting the

shape. Now the box is now a little brighter, and in the code margins here there is a

marker to let us know that the code is linked.

Then, in the draw method that is called every animation frame I know I'll need to

change the ball's position and paint it so it moves a short distance each frame. So

let's make a box and a skeleton for that too. Notice that you can also establish links

by first selecting the shape and then the code.

Let's also give the draw shape a different color using the color tool.

I will also need the ball properties as the Pong game, which I will also color blue to

make it easy to remember.

And just to make sure I don't forget anything, I'm going to make a quick list here of

what I need.

This looks like a good enough outline to me for now, so I'm going to start filling in

some code. Let's write the variables to define the ball's speed and position and link

that to the ball properties.

You can also open code windows on linked shapes to see the linked pieces of code

while looking at other parts of your program in the main text area. Of course, you

can also make edits in the code windows.

(D

CD

Now that I've setup the canvas I'm going to paint an ellipse in the draw loop and
update the ball's position variables.

Now I think I have enough code to run the application. Let's see how it looks so
far. That looks about right except I haven't put in the bounce.

So now every time I move the ball I'm going to also check that if the ball's position
has gone out of bounds I need to change it's direction.

To help me find this code later, I'm going to add another shape. If you select some
code and click on the shape tool, the new shape will automatically be linked to the
code. Let's give this shape a different color too.

Finally, each time the ball bounces I also need to give it a random color. So here
we go.

Kaleido is a free open-source project available from kaleido.media.mit.edu. Kaleido
is based on the Processing project. Welcome to Kaleido.

Appendix B

Investigation Materials:

Instructions

Drawings

Questionnaire

-o
CD
Cl

CD-

KALEIDO PRELIMINARY STUDY

Dear [participant name],

First of all, we really appreciate your taking the time to participate. Below you will find step-by-step

instructions for completing this preliminary study, The entire activity should take about an hour, although

you are of course welcome to take as much time as you like. Feel free to work through it in multiple ses-

sions. Our only request is that you email everything to us by January 25th, which is the end date of this

study. If you have any questions please do not hesitate to contact us at ka/eido@media.mitedu.

Thanks again,

Agnes Chang

STUDY CONTENTS

- Consent form
- Drawing 1: Two-Player Pong
- Drawing 2: Mario-style Traveler
- Drawing 3: Your Program
- Online Questionnaire

INSTRUCTIONS

1. Read through the consent form and sign and date the last page.
2. Complete the drawing activities in order.
3. Complete the questionnaire available online at http://www.surveymonkey.com/s/kaleido (Your participant ID is

4. Please scan and email the consent signature, and your three drawings to kaleido('Jmedia.mit.edu
(if scanning poses a difficulty let me know, I can send you a postage-paid snail-mail envelope instead.)

5. Email us your code for Drawing 3, and PayPal account name or your name and mailing address for a check.

6. I will transfer $15 U.S.D. to you by check or PayPal.
7. Thank you so much!

KALEIDO PRELIMINARY STUDY DRAWING 1: Two-player Pong

Imagine that you will be coding a traditional two-player Pong game: a computer program that two
paddles controlled by two players using the keyboard, and the ball that bounces back and forth between
the walls and the paddles. Players earn a point when the other player's paddle misses the ball.

Using a pencil or pen in the space below, please draw a sketch as if you were organizing your thoughts
before starting to program, Treat this as a "napkin sketch" for yourself to think through how you would
code the Pong program: it doesn't need to make sense to other people, and there is no such thing as a
better or worse sketch.

PARTICIPANT D 21

PAGE 1 OF 1

KALEIDO PRELIMINARY STUDY DRAWING 2: Mario-style Traveler

Imagine that you will be coding a Mario-style Traveler game (a.k.a. "side-scrolling video game"): a central
character with a basic background story sets off on a virtual journey. The player will be able to experience
some short narrative, then navigate the character safely through a space that contains benevolent objects
as well as some harmful obstacles. At the end of the journey there is something to indicate to the player
that they have completed the game.

Using three different colors of pencil or pen (e.g. black, red, & blue), please use the following shapes and
connector styles to draw a mental depiction of your Traveler game. Color in the three mini boxes at the
top to let us know which three colors you chose, but you are not required to use all three colors. You are
free to use text any way you like, and feel free to make a legend if you find it useful for yourself. You are
also encouraged to use more paper,

SHAPES

El?

1:7

0
K2~

0/
KID

0

CONNECTORS

0-

PAGE 1 OF 2

6"o,

KALEIDO PRELIMINARY STUDY DRAWING 2: Mario-style Traveler (cont.)

PARTICIPANT D

YOUR COLORS OF CHOICE

___ ___ ___I
PAGE 2 OF 2

KALEIDO PRELIMINARY STUDY DRAWING 3: Your Program

Select a program that you have written. t doesn't matter what language it is in, or what type of pro-

gram you choose, as long as you feel comfortable sending us the source code with your drawing, Draw a

visual depiction of your program. This time, feel free to use digital tools (Photoshop, Illustrator, graphing

programs, etc.) or mixed media, or any combination thereof. What if you could make a collage of your

program? What if you could dance your program? Needless to say, your representation need not fit in

the box below -- be creative and have fun!

PARTICIPANT ID

PAGE 1OF I

KALEIDO PRELIMINARY STUDY QUESTIONNAIRE

PARTICIPANT ID

NAME

CITY, STATE/COUNTRY

GENDER

AGE

OCCUPATION

male

18-22

student

female

22-30

educator

30-40

professional

40+

HOW WOULD YOU CHARACTERIZE THE NATURE OF YOUR WORK? (circle any that apply)

graphics video audio robotics web

interactive installation animation 3D-modelling other

HOW MANY YEARS HAVE YOU BEEN PROGRAMMING?

FORMAL PROGRAMMING CLASSROOM EXPERIENCE (circle all

high school college graduate school

that apply)

none/self-taught

PROGRAMMING LANGUAGES YOU KNOW (circle all that

BASIC Logo C/C++

Python Ruby Processing

apply, circle your F IR

Java

MaxMSP/vvvv

ST language twice)

Action-/Java-script

other

HOW DO YOU APPROACH PROGRAMMING TASKS? (rank 1 as first, and leave blank if not applicable)

___ write pseudo-code ___ research other people's solutions

draw a diagram/sketch ___ start coding and figure it out as you go

other (please describe);

PAGE 1 OF 2

KALEIDO PRELIMINARY STUDY QUESTIONNAIRE (cont.)

PARTICIPANT ID

Note: feel free to illustrate, or to use extra paper to answer any of these questions.

HOW WOULD YOU DESCRIBE THE CONTENTS OF YOUR PERSONAL SKETCHBOOK?

WHAT ARE THE HARDEST PARTS TO REMEMBER WHEN YOU REVISIT YOUR OWN OLD CODE?

WHAT VISUAL FEEDBACK CAN YOU IMAGINE WOULD BE HELPFUL WHEN.

WRITING CODE?

RUNNING THE PROGRAM?

DEBUGGING?

PAGE 2 OF 2

Appendix C

Evaluation Materials:

Questionnaire

cD

CDCf

KALEIDO EVALUATION STUDY QUESTIONNAIRE

NAME

CITY, STATE/COUNTRY

GENDER

AGE

OCCUPATION

male

18-22

student

female

22-30

educator

30-40

professional

40+

HOW WOULD YOU CHARACTERIZE THE NATURE OF YOUR WORK? (circle any that apply)

graphics video audio robotics web

interactive installation animation 3D-modelling other __

HOW MANY YEARS HAVE YOU BEEN PROGRAMMING?

FORMAL PROGRAMMING CLASSROOM EXPERIENCE (circle all

high school college graduate school

that apply)

none/self-taught

PROGRAMMING LANGUAGES YOU KNOW

BASIC Logo

Python Ruby

(circle all that

C/C++

Processing

apply, circle your FIRST

Java

MaxMSP/vvvv

language twice)

Action-/Java-script

other

HOW DO YOU APPROACH PROGRAMMING TASKS? (rank 1 as first, and leave blank if not applicable)

write pseudo-code research other people's solutions

___ draw a diagram/sketch ___ start coding and figure it out as you go

other (please describe):

PAGE 1 OF 3

KALEIDO EVALUATION STUDY QUESTIONNAIRE (cont.)

FOR HOW LONG DID YOU USE THE KALEIDO ENVIRONMENT?

average ___ hours per day for __ days

HOW EASY WAS iT TO CREATE THE VISUALS YOU WANTED?

intuitive
somewhat
intuitive

neutral somewhat
difficult

PLEASE DESCRIBE HOW YOU USED THE VISUALS IN YOUR CODING PROCESS?

HOW MUCH DID THE VISUALS HELP YOU...

PLAN YOUR PROGRAM LOGIC?

very helpful somewhat
helpful

barely helpful

REMIND YOURSELF OF PROGRAM STRUCTURE?

extremely
helpful very helpful

NAVIGATE YOUR CODE?

extremely
helpful very helpful

somewhat
helpful

somewhat
helpful

barely helpful

barely helpful

not helpful

not helpful

OTHER (please specify):

DO YOU THINK THE VISUALS WERE WORTH THE EFFORT?

yes somewhat neutral not really not at all

PAGE 2 OF 3

very difficult

extremely
helpful not helpful

KALEIDO EVALUATION STUDY QUESTIONNAIRE (cont.)

WHAT CHANGES WOULD YOU SUGGEST FOR THE INTERFACE?

WOULD YOU USE THIS TYPE OF INTERFACE REGULARLY FOR YOUR WORK? WHY OR WHY NOT?

DO YOU THINK THIS TYPE OF INTERFACE IS MORE SUITED FOR PARTICULAR KINDS OF WORK? FOR
WHOM DO YOU THINK IT WOULD BE PARTICULARLY USEFUL? PLEASE EXPLAIN.

FOR WHAT KINDS OF WORK DO YOU THINK THIS TYPE OF INTERFACE IS UNSUITED? PLEASE EX-
PLAIN.

FOR WHICH OF THE FOLLOWING DO YOU THINK YOU WOULD USE THIS TOOL MORE? (rank the fol-
lowing from 1 through 7, where 1 is "most often")

_ problem-solving

ideation

learning

teaching

___ documentation

sharing with project collaborators

sharing with the open-source community

___ other (please describe):

PAGE 3 OF 3

