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few iterations are sufficient to significantly decrease the normal-force
tracking error. Further, the proposed algorithm can cope with situa-
tions in which it is necessary to contour objects that are not perfectly
identical to each other or that are not positioned exactly in the same
location.
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[15] A. Visioli and G. Legnani, “On the trajectory tracking control of industrial
SCARA robot manipulators,” IEEE Trans. Ind. Electon., vol. 49, no. 1,
pp. 224–232, Feb. 2002.

[16] P. R. Belanger, P. Dobrolovny, A. Helmy, and X. Zhang, “Estimation of
angular velocity and acceleration from shaft-encoder measurements,” Int.
J. Robot. Res., vol. 17, no. 11, pp. 1225–1233, 1998.

[17] S. J. Ovaska and S. Valiviita, “Angular acceleration measurement: A
review,” IEEE Trans. Instrum. Meas., vol. 47, no. 5, pp. 1211–1217, Oct.
1998.

EMG-Based Control of a Robot Arm Using
Low-Dimensional Embeddings

Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos

Abstract—As robots come closer to humans, an efficient human–robot-
control interface is an utmost necessity. In this paper, electromyographic
(EMG) signals from muscles of the human upper limb are used as the
control interface between the user and a robot arm. A mathematical model
is trained to decode upper limb motion from EMG recordings, using a
dimensionality-reduction technique that represents muscle synergies and
motion primitives. It is shown that a 2-D embedding of muscle activations
can be decoded to a continuous profile of arm motion representation in
the 3-D Cartesian space, embedded in a 2-D space. The system is used
for the continuous control of a robot arm, using only EMG signals from
the upper limb. The accuracy of the method is assessed through real-time
experiments, including random arm motions.

Index Terms—Dimensionality reduction, electromyographic (EMG)-
based control, EMG signals, neurorobotics.

I. INTRODUCTION

Despite the fact that robots came about approximately 50 years ago,
the way humans control them is still an important issue. In particular,
since robots are being used more frequently in everyday life tasks
(e.g., service robots, robots for clinical applications), the human–robot
interface plays a role of utmost significance. In this paper, a new mean
of control interface is proposed, according to which, the user performs
natural motions with his/her upper limb, while superficially recorded
electromyographic (EMG) activity of the muscles of the upper limb is
transformed to kinematic variables that are used to control a robot arm.

EMG signals have often been used as control interfaces for robotic
devices. However, in most cases, only discrete control has been realized,
focusing only, for example, at the directional control of robotic wrists
[1]. This can cause many problems regarding smoothness of motion,
while from a teleoperation point of view, a small number of finite
commands or postures can critically limit the areas of application. Since
most previous studies focused on EMG signal discrimination, a variety
of algorithms have been proposed for this scope. A statistical log-
linearized-Gaussian-mixture-neural network has been proposed in [1]
to discriminate EMG patterns for wrist motions. A small number of
researchers have tried to build continuous models to decode arm motion
from EMG signals. The Hill-based muscle model [2], [3] is more
frequently used in [4]. However, only a few degrees of freedom (DOFs)
were analyzed (i.e., 1 or 2), since the nonlinearity of the model and
the large numbers of unknown parameters for each muscle make the
analysis rather difficult. A neural-network model was used to extract
continuous arm motion in the past using EMG signals [5]; however, the
movements analyzed were restricted to single-joint, isometric motions.
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Recent work in the field of biomechanics proposes that muscles
are activated collectively, forming time-varying muscle synergies [6].
This finding suggests that muscle activations can be represented into
a low-dimensional space, where these synergies can be represented
instead of individual activations. Studies in human–motor control have
also suggested that a low-dimensional representation is feasible at the
arm kinematic level (i.e., joint angles) as well [7]. Identifying those
underlying low-dimensional representations of muscle activations and
movements performed, one could come up with a more robust way of
decoding EMG signals to motion.

In this paper, a methodology for controlling an anthropomorphic
robot arm using EMG signals from the muscles of the upper limb is
proposed. Nine bipolar surface EMG electrodes record the muscular
activity of equal number of muscles acting on the shoulder and the
elbow joints. The system architecture is divided into two phases: the
training phase and the real-time operation phase. During the training
phase, the user is instructed to move his/her arm toward random posi-
tions in the three-dimensional (3-D) space. A position-tracking system
is used to record the arm motion (i.e., joint angles) during reaching.
The recorded muscle activations are represented into a low-dimensional
space through a dimensionality reduction technique. Joint angle pro-
files are also embedded into a low-dimensional manifold. The mapping
between those two low-dimensional spaces is realized through a linear
model whose parameters are identified using the previously collected
data. As soon as the linear model is trained, the real-time operation
phase commences. During this phase, the trained model outputs the
decoded motion using only the EMG recordings. A control law that
utilizes these motion estimates is applied to the robot arm actuators. In
this phase, the user can teleoperate the robot arm in real-time, while
he/she can correct any possible deviations since he/she has visual con-
tact with the robot. The efficacy of the proposed method is assessed
through a large number of experiments, during which, the user controls
the robot arm in performing random movements in the 3-D space.

II. METHODOLOGY

A. Background and Problem Definition

There is no doubt that the musculoskeletal system of humans is quite
efficient, yet very complex. Narrowing our interest down to the upper
limb and not considering finger motion, approximately 30 muscles
actuate 7 DOFs. In this paper, we are focusing on the principal joints
of the upper limb, i.e., the shoulder and the elbow. The wrist motion
is not included in the analysis for simplicity. Hence, 4 DOFs will be
analyzed from a kinematic point of view, as shown in Fig. 1.

In order to record the motion of the upper limb and then to extract the
joint angles of the four modeled DOFs, a magnetic position-tracking
system was used. The system is equipped with two position trackers
and a reference system, with respect to which the 3-D position of
the trackers is provided. In order to compute the four joint angles,
one position tracker is placed at the user’s elbow joint and the other
one at the wrist joint. The reference system is placed on the user’s
shoulder. The setup, as well as the four modeled DoFs, are shown
in Fig. 1. Let T1 = [x1 y1 z1 ]T ,T2 = [x2 y2 z2 ]T denote the
position of the trackers with respect to the tracker-reference system. Let
q1 , q2 , q3 , and q4 be the four joint angles modeled, as shown in Fig. 1.
Finally, by solving the inverse kinematic equations the joint angles are
given by

q1 = arctan 2(±y1 , x1 )

q2 = arctan 2(±
√

x2
1 + y2

1 , z1 )

Fig. 1. (Top) User performs random motion in the 3-D space. q1 and q2
axes of rotation are perpendicularly intersecting and, therefore, can model the
positioning of the elbow at the 3-D space due to the shoulder motion. q3
corresponds to shoulder internal–external rotation, while q4 corresponds to
elbow flexion-extension. (Bottom) The variability of the 3-D position of the
hand is shown through the histograms of each of the x, y, and z coordinate of
the hand with respect to the base frame located on the shoulder.

q3 = arctan 2(±B3 , B1 )

q4 = arctan 2(±
√

B2
1 + B2

3 , B2 − L1 ) (1)

and

B1 = x2 cos(q1 ) cos(q2 ) + y2 sin(q1 ) cos(q2 ) − z2 sin(q2 )

B2 = −x2 cos(q1 ) sin(q2 ) − y2 sin(q1 ) sin(q2 ) − z2 cos(q2 )

B3 = −x2 sin(q1 ) + y2 cos(q1 ) (2)

where L1 the length of the upper arm. The length of the up-
per arm can be computed from the distance of the first posi-
tion tracker from the base reference system, i.e., L1 = ‖T1‖ =√

x2
1 + y2

1 + z2
1 . Likewise, the length of the forearm L2 can be

computed from the distance between the two position trackers, i.e.,
L2 =

√
(x2 − x1 )2 + (y2 − y1 )2 + (z2 − z1 )2 . One out of the mul-

tiple solutions given by (1) is selected for each joint angle, based on the
range of motion for each human joint; if that is not enough to solve the
ambiguity, the solution selected is the one that is closer to the previous
value computed.

The position-tracking system provides the position vectors T1 ,T2

at the frequency of 60 Hz. Using an antialiasing finite-impulse response
(FIR) filter, these measurements are resampled at the frequency of
1 kHz to be consistent with the muscle activations sampling frequency.
An upsampling for the position tracker is selected instead of downsam-
pling EMG signals in order to achieve the highest frequency possible
for the proposed robot-control interface.

Based on the biomechanics [8], a group of nine muscles that are
mainly responsible for the studied motion is recorded: deltoid (ante-
rior), deltoid (posterior), deltoid (middle), pectoralis major, pectoralis
major (clavicular head), trapezius, biceps brachii, brachioradialis, and
triceps brachii. A smaller number of muscles could have been recorded
(e.g., focusing on one pair of agonist–antagonist muscles for each
joint). However, in order to investigate a wider arm motion variability,
where less-significant muscles could play an important role in specific
arm configurations, a group of nine muscles were selected. Surface
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bipolar EMG electrodes used for recording are placed on the user’s
skin, following the directions given in [8]. Raw EMG signals after
amplification are digitized at the sampling frequency of 1 kHz. Then,
a full wave rectification takes place, and the signals are then low-pass
filtered using a fourth-order Butterworth filter, with a cutoff frequency
of 4 Hz. Finally, the signals from each muscle are normalized to their
maximum voluntary isometric contraction value [3]. Three able-bodied
subjects were used (three males of 27 ± 3 years old), while during the
experiment, the subjects were standing close to the robot arm, with
their neck positioned looking at front. All experimental procedures
were conducted under a protocol approved by the National Technical
University of Athens Institutional Review Board.

As mentioned earlier, the system initiates with a training phase,
where EMG recordings and motion data are collected for model
training. Concerning EMG recordings, after data collection, we have
the muscle activations u

(i)
kT of each muscle i at time kT , where T

the sampling period, and k = 1, 2, . . .. Regarding motion data, using
the position-tracker readings and (1), the corresponding joint angles
q1k , q2k , q3k , and q4k are collected. The dimension of these sets is
quite large (i.e., nine variables for muscle activations and four for joint
angles) making the mapping between them excessively hard. In order
to deal with this dimensionality issue, a dimension-reduction technique
is applied.

B. Dimension Reduction

The problem of dimension reduction is introduced as an efficient way
to overcome the curse of the dimensionality when dealing with vector
data in high-dimensional spaces and as a modeling tool for such data. In
our case, muscle activations and joint angles are the high-dimensional
data that will be embedded into two manifolds of lower dimension.
The most widely used dimension-reduction technique is principal com-
ponent analysis (PCA) [9]. In this paper, the PCA algorithm will be
implemented twice: once for finding the new representation of the mus-
cle activation data and then once more for the representation of joint
angles. For details about the method, see [9]. In order to collect data
during the training period, the user is instructed to move the arm in the
3-D Cartesian space toward random locations, as shown in Fig. 1. The
variability of these locations during the training phase is also depicted
through histograms for each axis. Muscle activation and joint angles
are available after the preprocessing described earlier.

The PCA algorithm results in a representation of the original data
to a new coordinate system of lower dimension, using the first eigen-
vectors of the original data as axes. In our case, for muscle recordings,
the first two principal components were capable of describing 95% of
the total variance. Regarding joint angles, the first two principal com-
ponents described 93% of the total variance as well. Therefore, the
low-dimensional representation of the nine muscles activation during
3-D motion of the arm is defined by

Ξ = VT K (3)

where V is a 9 × 2 matrix, whose columns are the first two eigenvectors
resulting from the PCA method and K is the 9 × m matrix computed
from the matrix of EMG measurements after subtracting the mean
value of each muscle across the m measurements. Likewise, the low-
dimensional representation of joint angles during 3-D motion of the
arm is defined by

Φ = WT Λ (4)

where W is a 4 × 2 matrix, whose columns are the two first eigen-
vectors resulting from the PCA method, and Λ is the 4 × m matrix
computed from the matrix of joint angle measurements after subtract-
ing the mean value of each joint angle across the m measurements.

Fig. 2. Motion primitives computed from the first two principal components.
(Top) The motion described along the first eigenvector. (Bottom) The motion
described along the second eigenvector.

Using the aforementioned dimension-reduction technique, the high-
dimensional data of muscle activations and corresponding joint angles
were represented into two manifolds of fewer dimensions.

In particular for joint angles, using two instead of four variables
to describe arm movement suggests motor primitives, which is a gen-
eral conception that has been extensively analyzed in [6]. For analysis
reasons, it is interesting to see what these two variables describe in
the high-dimensional space. In other words, how the variation in the
two axes of the low-dimensional manifold can be represented back
into the high-dimensional space of the four joint angles and, conse-
quently, the arm movement. This is shown in Fig. 2. In the top of
Fig. 2, the arm motion depicted corresponds to the variation in the first
axis of the low-dimensional manifold, i.e., along the first eigenvector
extracted from the PCA on the arm kinematics. It is evident that the
first-principal component describes the motion of the arm on a plane
parallel to the coronal plane. Considering the second-principal compo-
nent, it can be regarded as describing motion in the transverse plane.
The authors do not claim that human–motor-control system uses these
two motor primitives to perform any 3-D motion in general. As noted
before, the proof of the presence of internal coordination mechanisms
of the human–motor control is way beyond the scope of this study.
On the contrary, this paper focuses on extracting task-specific motor
primitives and, by using the proper mathematical formulation, employ
them to control robots. It must be noted, however, that being able to
represent the motion of the human arm in Cartesian space by using only
two independent variables (i.e., the two low-dimensional representa-
tion of arm motion extracted through the PCA) restricts the variability
of performed motion. Therefore, if the strict notion of DOFs is adopted,
2 DOFs are actually decoded using EMG. However, based on the sug-
gestion of motor synergies, i.e., the human joint angles dependencies
present in arm movements, these 2 DOFs decoded can be represented
back in the high-dimensional space, where four human joint angles are
actuated, and the human arm is finally moving in the 3-D Cartesian
space, with limited workspace, however.

C. Decoding Arm Motion from EMG Signals

Having the low-dimensional embeddings, we can define the follow-
ing linear-state-space model used in our previous works to map muscle
activations to arm motion in real-time

xk+1 = Axk + Bξk + wk

zk = Cxk + vk (5)

where xk ∈ R
d is a hidden state vector at time instance kT, k =

1, 2, . . . , T is the sampling period, d is the dimension of this vec-
tor, ξ ∈ R

2 is the vector of the low-dimensional muscle activations,
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and zk ∈ R
2 is the vector of the low-dimensional joint kinematics.

The matrix A determines the dynamic behavior of the hidden state
vector x,B is the matrix that relates muscle activations ξ to the state
vector x, while C is the matrix that represents the relationship be-
tween the joint kinematics zk and the state vector x. wk and vk

represent zero-mean-Gaussian noise in the process and observation
equations, respectively, i.e., wk ∼ N (0,Ψ) and vk ∼ N (0,Γ), where
Ψ ∈ R

d×d and Γ ∈ R
2×2 are the covariance matrices of wk and vk ,

respectively. The hidden variables can model the unobserved, intrinsic
system states and thus facilitate the correlation between the observed
muscle activations and arm kinematics. Model training entails the esti-
mation of the matrices A,B,C,Ψ, and Γ. This is implemented using
an iterative prediction-error minimization (i.e., maximum likelihood)
algorithm [10]. The dimension d of the state vector should also be
selected for model fitting. This is done in parallel with the fitting pro-
cedure by deciding the greater number of states, where any additional
states do not contribute more to the model input–output behavior.

One could argue that from the physiological point of view, the mus-
culoskeletal system and, consequently, the human–motor-control sys-
tem is highly nonlinear. However, as noted before, an analytic model of
the musculoskeletal system, including the analyzed 4 DOFs of the arm,
would be very complex, with a large numbers of unknown parameters
to be identified. By choosing linear techniques (i.e., the PCA method)
and linear models with hidden states as in (5), we try to model the
relationship between EMG and arm motion from a stochastic point
of view. The latter enable us to use well-known and computational-
effective techniques, resulting in a practical, efficient, and easily used
method for controlling robotic devices using EMG signals.

Having the model trained, the real-time operation phase commences.
Raw EMG signals are collected, preprocessed, and then represented by
the low-dimensional manifolds using (3). Then, the fitted model (5)
is used. The model outputs the low-dimensional arm kinematics vec-
tor zk at each time instance kT . This vector is transformed back to
the 4-D dimensional space, representing the estimates for the four
joint angles of the upper limb. This is done by using (4) and solving
it for the high-dimensional vector of joint angles, i.e., qH k

= Wzk ,
where qH k

is the 4 × 1 vector with the four estimates for the arm
joint angles at time instance kT , i.e., the high-dimensional representa-
tion of arm kinematics. Having computed the estimated joints angles
qH k

= [q̂1k
q̂2k

q̂3k
q̂4k

]T , we can then command the robot arm.
However, since the robot and the user’s links have different lengths,
the direct control in joint space would lead the robot end-effector in a
different position in space than that desired by the user. Consequently,
the user’s hand position should be computed by using the estimated
joint angles and then command the robot to position its end-effector at
this point in space. This is realized by using the forward kinematics of
the human arm to compute the user’s hand position and then solving
the inverse kinematics for the robot arm to drive its end-effector to the
same position in the 3-D space. Hence, the final command to the robot
arm is in joint space. Therefore, the robot controller analysis assumes
that a final vector qd = [q1d q2d q3d q4d ]T containing the four
desired robot joint angles is provided, where these joint angles are
computed through the robot inverse kinematics, as described earlier.
An inverse-dynamic-control law is utilized to drive the robot arm and
is defined by

τ = I (qr ) (q̈d + Kv ė + KPe) + G (qr )

+ C (qr , q̇r ) q̇r + Ffr (q̇r ) (6)

where τ = [τ1 τ2 τ3 τ4 ]T is the vector of robot joint torques,
qr = [q1r q2r q3r q4r ]T is the robot joint angles, Kv and Kp

are gain matrices, and e is the error vector between the desired and

Fig. 3. Proposed system architecture. pd denotes the human-hand-position
vector computed from the estimated joint angles through the human-forward
kinematics.

Fig. 4. Human hand and robot end-effector trajectory along the x, y, and z
axes, for a 1-min period.

the robot joint angles, while I,G,C, and Ffr are the inertia tensor,
the gravity vector, the Coriolis-centrifugal matrix, and the joint friction
vector of the four actuated robot links and joints, respectively, which
are identified in [11]. A block diagram depicting the total architecture
proposed for decoding EMG signals into motion and the control of the
robot arm is depicted in Fig. 3.

III. RESULTS

A. Hardware and Experiment Design

The proposed architecture is assessed through a remote robot arm
teleoperation scenario. The robot arm used is a 7-DOF anthropomor-
phic manipulator (PA-10, Mitsubishi Heavy Industries). Details on the
experimental setup can be found in [12]. The user is initially instructed
to move his/her arm toward randomly selected points in the 3-D space,
as shown in Fig. 1, to collect training data. As soon as the model is
trained, the real-time operation phase takes place. The user is instructed
to move randomly the arm in the 3-D space, having visual contact with
the robot arm. The user’s hand trajectory in the 3-D space is depicted
in Fig. 4, along with the robot trajectory based on the EMG-based-
decoding method, during the real-time-operation phase. The proposed
system was tested by three subjects in total with similar results.

B. Efficiency Assessment

The root-mean-squared error (RMSE) and the correlation coefficient
(CC), whose definitions can be found in [12], will be used to assess
method performance. These criteria were used since they can well
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TABLE I
METHOD EFFICIENCY COMPARISON BETWEEN HIGH AND LOW-DIMENSIONAL REPRESENTATION OF DATA IN CARTESIAN SPACE

TABLE II
EFFICIENCY COMPARISON BETWEEN THE PROPOSED STATE-SPACE MODEL AND THE LINEAR-FILTER METHOD IN CARTESIAN SPACE

describe the correlation of the estimated trajectory with respect to the
real-arm motion. Real and estimated motion data were recorded for
ten experiments, of 30 s each. Using the hand kinematics to transform
joint angle estimates to hand trajectory in the Cartesian space, the
criteria values were computed and are listed in Table I. A chi-square
significance test to assess the system accuracy across different subjects
and in different cases was also conducted. The test hypothesized that the
error between the estimated and real-hand trajectories along the three
axes of the 3-D space was characterized by a zero-meaned distribution
of 2 cm variance. The probabilities concluded by the test were 0.78,
0.81, and 0.89, respectively, which means that the hypothesis that the
error is always small was quite probably true.

A characteristic of the method that is worth assessing is the use
of the low-dimensional representation of the muscle activation and
human kinematic variables. In order to conclude if this approach finally
facilitated the decoding method, we tried to estimate a model given by
(5) using the high-dimensional data for muscle activations and human
joint angles. The same training and testing data were used, as described
earlier, for the comparison to be meaningful. The results are shown
in Table I. One can see that the decoding method using the high-
dimensional data concluded to a model whose results were worse than
those of the proposed decoding in the low-dimensional space.

Another parameter worth assessing is the type of the model used (i.e.,
linear model with hidden states). The authors feel that a comparison
with an algorithm that is well-known and of similar complexity is
rational. Thus, a comparison with the linear-filter method was done.
The linear-filter method is a widely used method for decoding arm
motions (especially when using neural signals), which has achieved
exciting results so far [13]. Briefly, if Qk are the kinematics variables
decoded (i.e., joint angles) at time tk = kT and Ei ,k−j are the muscle
activation of muscle i at time tk−j , the computation of the linear-filter
entails finding a set of coefficients π = [a f1 ,1 . . . fi,j ]T so that

Qk = a +
v∑

i=1

N∑
j=0

fi,j Ei ,k−j (7)

where a is a constant offset, fi,j are the filter coefficients, v is the
number of muscles recorded, and the parameter N specifies the number
of time bins used. A typical value of the latter is 100 ms; thus, N = 100,
for a sampling period of 1 ms [13]. The coefficients can be learned from
training data using simple least-squares regression. In our case, for the

sake of comparison, the same training data were used for both the state-
space model and the linear-filter, and after training, both models were
tested using the same testing data as before. Values for RMSE and CC
for these two methods are reported in Table II. It must be noted that the
low-dimensional representation for muscle activations and kinematic
was used since linear-filter behaved better using those kinds of data
rather than using the high-dimensional data.

IV. CONCLUSION AND DISCUSSION

In this paper, a novel human–robot interface for robot teleoperation
was introduced. EMG signals recorded from muscles of the upper limb
were used for extracting kinematic variables (i.e., joint angles) in order
to control an anthropomorphic robot arm in real time. The novelty of
the method proposed here can be centered around two main issues that
are discussed in the following.

First, the dimensionality reduction is quite significant, since it not
only revealed some interesting aspects regarding the 3-D movements
studied, but it also aided the matching between the EMG signals and
motion since signal correlations were extracted, and the number of
variables was drastically reduced. The latter led to the fact that a simple
linear model with hidden states proved quite successful in mapping
EMG signals to arm motion. The fact that the 3-D arm motion is
somehow constrained by the use of only two independent variables that
describe arm motion does not hinder the applicability of the method.
This is based on the suggestion of motor synergies, which allows those
2 DOFs decoded to be represented back in the high-dimensional space,
where four human joint angles are actuated, concluding to motion
of the human arm in the 3-D Cartesian space with limited though
workspace.

The second important issue presented here is that, to the best of our
knowledge, this is the first time a continuous profile of the 3-D arm mo-
tion is extracted using only EMG signals. Most previous works extract
only discrete information about motion, while there are some works
that estimate continuous arm motion; however, they are constrained to
isometric movements, single DOF, or very smooth motions [5]. In this
paper, the method was tested for motions in the 3-D space, with vari-
able speed profiles. Moreover, this paper proposes a methodology that
can be easily trained to each user and takes little time to build the de-
coding model, while the computational load during real-time operation
is negligible.
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