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Abstract
Transcription of mRNA appears to occur in random, intermittent bursts in a large

variety of organisms. The statistics of mRNA expression can be described by two
parameters: the frequency at which bursts occur (burst frequency) and the average
number of mRNA produced within each burst (burst size). The mean steady-state
abundance of mRNA is the product of the burst size and burst frequency. Although the
experimental evidence for bursty gene transcription is abundant, little is known about its
origins and consequences. We utilize single-molecule mRNA imaging and simple
stochastic kinetic models to probe and understand both the mechanistic details and
functional responses of transcriptional bursting in budding yeast. At the molecular level,
we show that gene-specific activators can control both burst size and burst frequency by
differentially utilizing kinetically distinct promoter elements. We also recognize the
importance of activator residence time and nucleosome positioning on bursting. This
investigation exemplifies how we can exploit spontaneous fluctuations in gene expression
to uncover the molecular mechanisms and kinetic pathways of transcriptional regulation.
At the network level, we demonstrate the important phenotypic consequences of
transcriptional bursting by showing how noise itself can generate a bimodal, all-or-none
gene expression profile that switches spontaneously between the low and high expression
states in a transcriptional positive-feedback loop. Such bimodality is a hallmark in
decision-making circuitry within metabolic, developmental, and synthetic gene regulatory
networks. Importantly, we prove that the bimodal responses observed in our system are
not due to deterministic bistability, which is an often-stated necessary condition for all-
or-none responses in positive-feedback loops. By clarifying a common misconception,
this investigation provides unique biological insights into the molecular components,
pathways and mechanisms controlling a measured phenotype.

Thesis Supervisor: Narendra Maheshri
Title: Assistant Professor of Chemical Engineering
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1. Thesis overview

This thesis attempts to provide a dynamical view of transcriptional regulation in

eukaryotes. The questions motivating this thesis are: What are the crucial parameters of

the transcription process? How to change those parameters? How to link those

parameters to phenotypic consequences? Yet, these apparently simple questions are

difficult ones to answer. The complex and multiscale nature of biological processes

makes it non-straightforward to develop quantitative models that describe the numerous

interactions and components involved. This complexity is further complicated by the

stochastic nature of chemical transformation inside a cell. So how can one model the

transcription process to gain a good deal of scientific insight? One approach is to capture

the essence of a biological process with a phenomenological model that involves just a

few crucial, observable parameters. In this spirit, we utilize simple stochastic models of

gene activation and transcription to probe and understand the biochemistry of eukaryotic

gene expression. Experimentally describing stochastic gene expression requires the

application of novel techniques for imaging gene products. We use a method for imaging

individual mRNA molecules in fixed cells to obtain extremely quantitative measurements

of gene expression states in budding yeast.

Although the evidence for stochastic fluctuations in gene expression is abundant,

little is known about the molecular basis of these fluctuations. Most previous studies that

set out to recount transcriptional dynamics concentrate on describing how gene products

evolve in time and space. The molecular events and detailed kinetics receive only brief

treatment. In an attempt to further develop mechanistic principles underlying stochastic



gene expression, we describe the molecular and kinetic origins of transcriptional bursting,

a phenomenon widely observed in a large variety of organisms. In particular, we show

that the same transcription activator can control both the frequency and magnitude of the

bursts by differentially utilizing kinetically distinct promoter elements. Moreover, we

uncover the importance of activator residence time and nucleosome positioning on the

utility of different kinetic pathways, highlighting some unique features of protein-DNA

interactions. This investigation exemplifies how we can exploit stochastic gene

expression to uncover the molecular mechanisms and kinetic pathways of transcriptional

regulation, and how single-cell dynamical studies can complement static biochemical

methods and provide a richer description of cellular processes.

At the network level, we demonstrate the important phenotypic consequences of

transcriptional bursting by showing how noise itself can generate a bimodal, all-or-none

gene expression profile that switches spontaneously between the low and high expression

states in a transcriptional positive-feedback loop. Such bimodality is a hallmark in

decision-making circuitry within metabolic, developmental, and synthetic gene regulatory

networks. Importantly, we prove that the bimodal responses observed in our system are

not due to deterministic bistability, which is an often-stated necessary condition for all-

or-none responses in positive feedback loops. By clarifying a common misconception,

this investigation provides unique biological insights into the molecular components,

pathways and mechanisms controlling a measured phenotype.

While this thesis is ultimately about fundamental aspects of transcriptional

regulation, its subject is not of just academic interest but also of overwhelming practical

and technological importance. The regulation of gene expression is what shapes the



modem practice of metabolic engineering, functional genomics and synthetic biology.

Single cells are capable of performing a vast array of physical and chemical

transformations under tight regulation at the transcriptional level. Many industries,

spanning agriculture, energy, the environment, biotechnology and health care, can benefit

from the controlled application of these transformations.



2. Transcriptional control overview

2.1 A molecular view of eukaryotic transcription

Transcription is arguably the most central process of life and is controlled by a

complex regulatory system. It is a process in which the genetic information in DNA is

processed by the synthesis of complementary mRNAs by RNA polymerases. The

regulatory system of transcription triggers the production of specific gene products to

meet the current functional needs of the cell.

Eukaryotes possess three different forms of RNA polymerases (I, II and III).

RNA polymerase II (RNA Pol II), which is composed of 12 subunits in humans and

yeast, transcribes all protein coding genes and is the main target of transcriptional

regulation (Roeder et al., 1969). Biochemical studies revealed the existence of multiple

transcription cofactors for RNA polymerase II (Matsui et al., 1980). These were termed

general transcription factors (GTFs), as they are involved in the transcription of all genes.

The GTFs (TFIIB, D, E, F and H) and the TATA-binding protein (TBP) help RNA Pol II

recognize the start site(s) on a gene.

The promoter is a specific sequence of DNA that defines the regulatory region for

RNA synthesis. The GTFs and RNA Pol II assemble at the promoter to form the pre-

initiation complex (PIC) initiated by the binding of TBP to the TATA element of the

promoter (Lue and Kornberg, 1987). Further studies on the promoter led to the

identification of gene-specific enhancer/operator elements, which are DNA sequences

that bind gene-specific activator proteins (Johnson and McKnight, 1989). However, it

was found that RNA Pol II, the GTFs, and the TBP only support basal transcription and



do not respond to gene-specific activators. This observation motivated the discovery of

Mediator, a complex composed of about 20 subunits (Kelleher et al. 1990). The role of

Mediator is to relay signals from gene-specific activators to RNA Pol II and the GTFs.

Other coactivators such as the TBP-associated factors (TAFs) also interact with the basal

transcription machinery and regulate the binding of TBP to the TATA element.

In eukaryotes, the DNA is bound to histone proteins and packaged in higher-order

forms of chromatin (Kornberg, 1974). Chromatin constitutes an additional layer of

regulation between the gene-specific activators and RNA Pol II since the chromatin

structure needs to be disrupted before transcription can proceed. Indeed, activators can

recruit complexes that modify chromatin to allow the promoter to interact with RNA Pol

II and GTFs (Figure 2.1). These complexes either have histone acetyltransferase (HAT)

activity or ATP-dependent chromatin-remodeling activity (Cairns, 1998).

Upstream

Nucleosome activating
sequences

Figure 2.1. The RNA Pol II transcription machinery in yeast.



Transcription is thought to be a sequential process consisting of multiple distinct

steps (Fuda et al., 2009). To initiate transcription by RNA Pol II, activators must recruit

the transcription machinery to the promoter and form a PIC. The ability of PIC to

assemble at the promoter is also influenced by chromatin-modeling events, which govern

the accessibility of activators and GTFs to their target sites. The rate of initiation is

usually regarded as the rate-limiting regulatory step of transcription. After the first round

of initiation, a subset of factors in the PIC remains at the promoter to form a scaffold

complex that facilitates reinitiation. Reinitiation allows high rates of continuous

transcription (Yudkovsky et al., 2000). Transcription activity can also be regulated

during elongation. The elongating RNA Pol II complex can be paused transiently and

reactivated upon stimulation (Margaritis and Holstege, 2008).

Even with the knowledge of an almost complete set of proteins involved in

transcription, many mechanistic aspects remain obscure. Much of the "textbook"

knowledge of transcription described above comes from static biochemical and structural

studies. However, these in vitro reconstitution studies rely on purified protein

components and a controlled environment, which may not accurately reflect the complex

intracellular environment. In addition, like other cellular processes, transcription is

characterized as operating far out of equilibrium, and the transcription machinery

maintains its organization through energy-consumptive processes. For example,

interactions between protein factors and chromatin are constantly destabilized by ATP-

dependent regulatory factors, such as chaperones, proteasomes and chromatin remodelers

(Hager et al., 2009). Indeed, recent studies show that gene-specific activators (Karpova

et al., 2008) and TATA-binding proteins (Sprouse et al., 2008) are highly mobile in vivo,



in contrast to in vitro reconstitution studies that suggested a static and stable RNA Pol II

complex (Yudkovsky et al., 2000). Because transcription is dynamic and dissipative,

single-cell, single molecule studies are best suited to gain new insights into the kinetics of

transcription since they eliminate the population averaging that occurs in traditional in

vivo assays. Imaging of nucleic acids and proteins in situ can also provide a first glimpse

into the mechanisms that underlie the spatiotemporal organization of the transcription

process.

2.2 A dynamical view of eukaryotic transcription

Individual cells in a genetically identical population often exhibit significant

variation in gene expression. Fluctuations in gene expression can be caused by

stochasticity in biochemical reactions, which becomes significant when rate-limiting

reactions involve small numbers of biological molecules (Spudich and Koshland, 1976).

These fluctuations are conventionally referred to as 'intrinsic noise'. Variability is also

caused by differences among individual cells in cell size, stage of metabolism, abundance

of regulatory molecules, etc. This type of cell-to-cell variability is referred to as

'extrinsic noise' (Elowitz et al., 2002). In this thesis, we focus on intrinsic noise, which

is largely determined by the underlying stochastic chemical kinetics of transcription (Raj

and van Oudenaarden, 2009).

Experimental and theoretical frameworks for studying intrinsic gene expression

noise have become readily available over the past decades (Maheshri and O'Shea, 2007;

Raj and van Oudenaarden, 2008; Raj and van Oudenaarden, 2009). Single cell and single



molecule studies have revealed that gene activation occurs in random intermittent

transcriptional bursts. In particular, Raj et al. (2006) were able to directly visualize

mRNA in HeLa cells using fluorescent DNA probes and suggested that fluctuations in

gene activation was intrinsically random and was largely unaffected by extrinsic factors.

The mRNA molecules were produced in transcriptional bursts as if the gene was

randomly toggling between transcriptionally active and inactive states. The statistics of

mRNA expression can be described by two parameters: the frequency at which bursts

occur (burst frequency) and the average number of mRNA produced within each burst

(burst size). The mean steady-state abundance of mRNA is the product of the burst size

and burst frequency. It should be noted that bursting does not always occur - mRNA

statistics from a few housekeeping genes in yeast suggests those genes spend significant

time in the active state where they produce mRNA in a Poissonian manner (Zenklusen et

al., 2008).

A possible origin of transcriptional bursting is chromatin remodeling: when the

surrounding chromatin is in an open, acetylated state, the gene can transcribe effectively,

whereas when chromatin is condensed, transcription is also repressed. This seems to be

the case in higher eukaryotes as Raj et al. (2006) found that bursts are correlated between

proximal genes, and suggested long-range chromatin remodeling as the reason for the

correlations. However, there is still no direct evidence that chromatin remodeling is

responsible for stochastic changes in gene activity. Although there are correlations

between noisy expression of a particular promoter and the lack of chromatin-remodeling

agents (Raser and O'Shea, 2004), global studies of noise in yeast have concluded that

chromatin remodeling/modifying complexes are neither necessary nor sufficient for gene



expression to be noisy (Newman et al., 2006; Bar-Even el al., 2006). In fact, local

factors such as number and placement of binding sites and TATA elements can also

control noise (Blake et al., 2006; Murphy et al., 2007). Therefore, another possible

origin of bursting is the variability in the recruitment and assembly of the RNA Pol II

transcription complex.

Bursting is conveniently attributed to infrequent promoter fluctuations between an

inactive state and active state (Raj et al., 2006). However, this is mechanistically an

oversimplification as the promoter likely adopts a series of different states involving

binding of various gene-specific and general transcriptional machinery that lead to

productive transcription. What does it mean to be an "active" promoter state? One idea

is to consider the active promoter state as one where rapid initiation and reinitiation is

possible. For example, for most inducible RNA Pol II-dependent promoters,

transcriptional initiation is often rate-limiting and hence the active promoter state

corresponds to the successful formation of a PIC (Hahn, 1998). In this case, the burst

frequency corresponds to the initiation frequency. The burst size is related to the stability

of the reinitiation intermediate (Yudkovsky et al., 2000) formed at the promoter, and the

rate of reinitiation (Figure 2.2).



Preinitiation complex
Initiation

Frequency -1
Re-initiation scaffolc

Reinitiation

Figure 2.2. The initiation-reinitiation model underlying bursty gene transcription.
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3. Kinetic roles of gene-specific activators and promoter

architecture revealed by bursty gene transcription

3.1 Introduction

Biological processes, such as transcription, follow the laws of chemistry.

Defining the reaction steps and kinetic pathways involved in transcription programs

remains an unmet challenge (Fuda et al., 2009). A question that is central to the

understanding of transcriptional biochemistry is: how does a gene-specific activator exert

its positive regulatory effect on the selected promoter? Ultimately, environmental signals

modulate transcriptional regulation through gene-specific activators. Activators are now

viewed as rheostats or actuators rather than switches. With a large variety of coactivator

protein complexes, activators often control transcription in a more elaborate, precise

manner (Figure 3.1). Indeed, previous biochemical studies show that activators can

regulate transcription through modification of chromatin template and/or direct

influences on PIC formation and function (Roeder, 2004). However, enhancers and

operators are often located at distant sites and it remains unclear how bound activators

modulate the rates of PIC formation, initiation, and reinitiation. In particular, we do not

fully understand how activators control multiple kinetic steps in the transcription process,

and how promoter architecture and properties influence the kinetic roles of activators.



(

Figure 3.1. Roles of activators. Activators can interact with various coactivators to

facilitate chromatin remodeling and modulate the formation and function of the general

transcription machinery.

How transcription activators control the stochastic kinetics of intrinsic

biochemical reactions determines the resulting expression heterogeneity. For example,

activators could increase population-averaged expression by either increasing the

transition from inactive to active states or stabilizing the active state. The resulting

heterogeneity in expression is dictated by the specific kinetic role of the activator. The

effect of activators on both the mean level of expression and expression heterogeneity is

succinctly and quantitatively described by their effect on the kinetic parameters in the

two-state stochastic model detailed in Section 3.2.3. A bursty eukaryotic promoter rarely

a
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makes transitions to the active state (at a rate denoted as burst frequency), transcribing a

number of mRNAs (burst size) over the short period of active state. If we were to coarse-

grain the events involved in transcription, the burst frequency corresponds to the

initiation frequency and the burst size is related to the rate and duration of reinitiation. In

yeast, gene-specific activators function mostly by recruiting coactivator complexes to the

promoter region (Ptashne and Gann, 1997). Coactivator complexes have been found to

regulate both initiation and reinitiation (Fuda et al., 2009). For example, the SAGA

complex is responsible for chromatin modification, elongation, and mRNA export;

whereas the Mediator complex can interact with and stabilize the GTF's and

phosphorylate the C-terminal domain (CTD) of RNA Pol II. Acidic activators such as

tTA can recruit both the SAGA and Mediator complexes (Weake and Workman, 2010),

and thereby increase gene expression by regulating burst frequency, burst size, or both.

Promoter binding and recruitment of various coactivators could occur at different

thresholds of activator levels, resulting in complicated changes in mRNA statistics.

Inferring kinetics from steady-state mRNA statistics offers a tremendous

opportunity to determine how activators and various cis-factors influence initiation and

reinitiation. Many transcriptional activators in yeast appear to function by modulating

the burst frequency by increasing the rate of transcriptional initiation (Bar-Even et al.,

2006; Newman et al., 2006). However, activators can also modulate the burst size, as

shown in a mammalian study (Raj et al., 2006). In this work, we reconcile these past

findings by showing experimentally that activators can affect both burst size and burst

frequency, depending on the TATA configuration and the activator binding site affinity



within a set of synthetic promoters. In particular, we show that in this case burst size

regulation requires both a strong activator binding site and a canonical TATA element.

3.2 Materials and methods

3.2.1 Experimental system: the Tet-OFF system

We employ the synthetic inducible Tet-OFF system, adapted for budding yeast

(Gari Yeast 1997). TetO promoters are fusions of two palindromic tet operator (tetO)

binding sites to a core CYC1 TATA-containing promoter. The tet-transactivator (tTA), a

fusion of the prokaryotic tet repressor and a Herpes simplex VP 16 activation domain

(Gossen and Bujard 1992), can bind tetO and activate expression. Doxycycline-bound

tTA cannot bind tetO, allowing tuning of functional tTA levels (Figure 3.2). Synthetic

genetic components can be treated as physical models or even replicas of existing natural

systems. One advantage of choosing synthetic components over natural ones is that

combinatorial libraries of many possible variants can be investigated simultaneously

without impairing cellular functions.

3.2.2 Single-molecule mRNA FISH

Time-lapse microscopy provides an accurate determination of the kinetics of gene

expression but it is experimentally challenging and low throughput. Instead, we can

conveniently infer the kinetics of transcription from static snapshots obtained at steady-

state using a stochastic model of gene expression (see Section 3.2.3). Although

fluorescent proteins enable us to monitor gene expression at the single-cell level, they



have low sensitivity, and are only detectable when hundreds and thousands of proteins

are present in a single cell. In addition, the fluorescence signal emitted by a single cell is

of arbitrary unit. A reference standard is required to convert the fluorescence signal into

the number of fluorescent proteins in a cell. Furthermore, the slow decay rate of

fluorescent proteins can effectively time-average temporal fluctuations due to rapid

changes in gene activation and inactivation and obscure the underlying dynamics. We

can circumvent these setbacks by directly detecting single mRNA molecules in a single

cell. Indeed, methods for obtaining single-cell, single-molecule mRNA statistics are

readily available (Raj and van Oudenaarden, 2009). In this work, we employ the

fluorescence in situ hybridization (FISH) method for detecting single mRNA molecules

in fixed yeast cells (Raj et al., 2008). Briefly, we use a large set of fluorescently-labeled

20-mer oligonucleotide probes that bind to the mRNA of the gene of interest. The

specific binding of multiple probes to a single mRNA molecule results in an intensely

bright, diffraction-limited spot detectable with a conventional light microscope (Figure

3.2). Importantly, this method also captures the spatial information about the location of

the mRNAs detected.
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Figure 3.2. Bursty gene transcription in the Tet-OFF system. The transcriptional

dynamics of the Tet-OFF system can be probed with single molecule mRNA FISH.

3.2.3 Stochastic models of gene regulation

As discussed in Section 3.2.2, single-molecule mRNA detections in vivo provide

us a tremendous opportunity to study the detailed dynamics of the transcription process.

To interpret steady-state, single-cell mRNA distributions, we need to model the

stochastic chemical kinetics of the transcription process. The burst statistics of mRNA

can determined based on the reaction scheme of (Raj et al., 2006)

[3.1]

Iyi

1-3

A

I

A+M
0

where I denotes an inactive promoter state, A denotes an active promoter state, and M

denotes a mRNA. In the reaction scheme given by [3.1], the promoter fluctuates between



an inactive and active state. In the active state, it is capable of generating mRNA M that

is eventually degraded. Raj et al. (2006) found a steady-state solution to the Chemical

Master Equation describing this set of reactions. However, they also focused on a regime

where p is larger than the other rates in the system. Here, mRNA number is reasonably

large and we consider mRNA production and degradation as deterministic, and all the

randomness comes from promoter fluctuations. The steady-state solution is then given by

the Beta distribution:

[3.2] P(A)= -X ( -.1-
F(f?)T7() j7

All rates (1= 'l = 1/=/13) have been non-dimensionalized with respect to the

mRNA degradation rate, 6, and are denoted with a tilde. Here, A is the burst frequency,

#/ f is the burst size. The continuous variable Xc = x/p represents a non-dimensional

mRNA quantity, normalized by the maximum amount of mRNA possible. If gene

activation is rare compared to inactivation, and promoter fluctuations are faster than the

mRNA lifetime, the mRNA distribution can be described by a two-parameter Gamma

distribution:

[3.3] P(X)

This is equivalent to the result of (Friedman et al., 2006) in which the same argument has

also been applied to translational bursts where rare mRNA production events result in

bursts of protein expression. We again emphasize that in this model, mRNA fluctuations

are considered negligible and all the noise comes from transcriptional bursts due to



promoter fluctuations. Note when A, f are both < 1, this distribution is bimodal - i.e.

when promoter fluctuations are slower than the mRNA degradation rate, the mRNA

distribution, even in the absence of feedback, will be bimodal. Finally, the two-

parameter Gamma distribution is equivalent to the discrete negative binomial distribution

(Shahrezaei and Swain, 2008):

[3.4] p(n)- )-
r(n +1)r( ) 1 +/ 1+/

3.2.4 Parameter estimation and uncertainty analysis for stochastic

models

To illustrate how we can combine mRNA FISH measurements with a stochastic

model of gene expression to determine the burst statistics of mRNA, we obtained the

steady-state mRNA statistics of two 1xtetO promoter constructs under basal expression.

The two constructs were integrated at the leu2 and ura3 loci, respectively. FISH

measurements were done in 6 replicate samples per strain. The resulting probability

mass functions (PMFs) are plotted in Figure 3.3.
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Figure 3.3. Steady-state mRNA distributions of the 1xtetO promoter under basal

expression. The wild-type 1 xtetO promoter was integrated at the leu2 and ura3 loci,

respectively. Shown are the probability mass functions obtained by mRNA FISH. Error

bars are standard deviations of 6 replicate samples.

Although simpler analytical expressions for the mRNA distribution are available,

we first fit the FISH data sets to numerical simulations of this reaction scheme in [3.1],

using maximum likelihood estimation (MLE). To do so, we first computed the mRNA

distributions based on the scheme using a finite Markov approach under no assumptions



(Munsky et al., 2006). Then, we used maximum likelihood to estimate the three

parameters A, f, f . As in the mammalian study (Raj et al., 2006), close examination of

the fits showed a ridge of constant likelihood for constant P / f , implying that a two-

parameter negative binomial model was appropriate and activation was rare compared to

inactivation (see Figure 4.4 for an example). It should be noted that although there is

good agreement between parameter estimates from the full and negative binomial

models, the negative binomial model seems to predict higher burst frequencies but lower

burst sizes in general (but not always). Such systematic discrepancy will be the subject

of future research.

Assuming a negative binomial model, the burst size and frequency can be

extracted simply from the moments of this distribution:

2

[3.5] Z P
2

[ 3 .6 ] p / r - - -

Using this method, we found that the ura3 construct has a burst frequency of 0.55 and a

burst size of 0.97, whereas the leu2 construct has a burst frequency of 0.24 and a burst

size of 0.75. In general, the method of matching moments and MLE yield similar

parameter estimates for the negative binomial model. An advantage of estimating

parameters from moments is that we can propagate the uncertainty in the mRNA

measurements into the uncertainty in parameter estimates. To quantify the technical and

biological variations, we propagated the error in mRNA measurements across the 6



replicate samples to the first two moments of the PMF, and then propagated the error in

the moments to the burst size and burst frequency. For the two promoter constructs under

investigation, the error in burst frequency and burst size estimates due to technical and

biological variations is around 30%.

The method of matching moments returns a uniquely defined burst frequency and

burst size for a given sample. When MLE was used, however, we observed a ridge of

similar likelihood scores for a constant multiple of burst frequency and burst size. This is

not surprising since the estimates are constrained by the mean expression, which is equal

to burst frequency times burst size. As such, there is often anti-correlation between the

burst frequency and burst size estimates, which leads to a loss of parameter

determinability. Nevertheless, by closely examining the likelihood scores we found that

the uncertainty in the parameter estimates due to fitting error is substantially smaller than

the 30% error due to technical and biological variations.

To assess sampling errors, we performed bootstrapping to determine the

variations in burst frequency and burst size due to random sampling. The bootstrap

statistics suggest that the errors in burst frequency and burst size are less than 20% for

most samples. Hence, the dominant source of error is technical and biological in nature,

which is estimated to be 30%. Therefore, the mRNA FISH results in this work will be

presented with this 30% error.

3.2.5 Position specific affinity matrix (PSAM) for tetO mutants

We designed the tetO mutants in this study using the information from an in vivo

single base-pair mutagenesis study (Sizemore et al,, 1990). We estimated the changes in

Gibbs' free energy due to single point mutations, and constructed the position specific



affinity matrix (PSAM) for the relative free energy changes at different positions (Figure

3.4). The distribution of dissociation constant, KD, of the mutant can be predicted using

the PSAM and an additive model which assumes that base-pairs at different positions

contribute independently to the free energy of protein-DNA interaction:

[3.7] expAG

where AAGjb is the energy change due to point mutation to base b at positionj, L is the

length of the sequence, KD (S,g) is the dissociation constant of the wild-type sequence,

and KD (Smu) is the dissociation constant of the mutant.

*123456789

tetO 5 ' -TCGAGTTTACCACP 'CTTATCA( TGATAGAGA AAA(TGAAAGGTAC-3'
3 ' -CAAATGGTGAAGATAGTCACTATCTCTTTTCACTTTC-5'

Position
1 2 3 4 5 6

A -032 -0.48 0 -020 0 A.02

T o -0.23 -I-15 0 -0.20 4A1

C -0.32 -232 -0.87 -0.46 -20 -0.44

G -0.14 0 -1.66 -1.36 -2.00 0

Figure 3.4. The position specific affinity matrix (PSAM) for the tetO operator. The

sequence of the wild-type tetO operator is shown (top). The relative free energy changes

(in kT units) at different positions are based on Sizemore et al. (1990).

Additional materials and methods can be found in the Appendices.



3.3 Results

3.3.1 Activators control burst size or burst frequency depending on

TATA elements

We titrated tTA activators using doxycycline and measured the quantitative

response of various tetO promoter variants at the single cell level in hundreds of cells

using the mRNA FISH assay (Section 3.2.2). For each condition and strain, we grew

cells for at least 6 doublings to ensure a steady-state had been reached. In principle, to

accurately measure the fast kinetics associated with promoter fluctuations, the intrinsic

noise should be decoupled from extrinsic noise and analyzed to determine the burst

frequency and burst size. Although extrinsic noise can be significant at the protein levels,

mRNA noise in eukaryotes appears to be primarily intrinsic in nature (Raj et al., 2006,

Maamar et al., 2007). Therefore, we expect the contribution of extrinsic factors to

mRNA noise to be negligible.

To obtain the kinetic parameters we fit the measured mRNA distributions arising

from each titration to a negative binomial distribution, the solution to the simplified

bursting model (Section 3.2.3). This model is only strictly applicable when the

inactivation rate is larger than the mRNA degradation rate and much larger than the

activation rate. For each titration point, we inferred the burst frequency and burst size

using the negative binomial model and the method of matching moments (Section 3.2.4).

To summarize the effect of activator levels on the two kinetic parameters, we plot the

burst size versus the burst frequency for individual samples in the titration series (Figure

3.5).
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Figure 3.5. Activators increase gene expression level by a combined burst frequency

and size regulation. The wild-type 1xtetO promoter was integrated at three different

loci (his3, leu2, ura3). An ADH1 promoter was used to constitutively express tTA. The

active tTA level was modulated by 100-3000 ng/mL doxycycline. The burst frequency

and burst size were inferred by fitting the steady-state mRNA distributions to the 2-state

stochastic model (Section 3.2.3). Error bars represent the estimated technical and

biological errors (Section 3.2.4).

We began by determining the burst statistics of mRNA for a wild-type 1 xtetO

integrated at the his3 locus. At low levels, tTA activators exclusively regulate burst

frequency (initiation). At intermediate levels, activators regulate mainly burst size

(reinitiation). Importantly, in this regime, the burst frequency remains low and almost

constant. At high levels, activators increase primarily the burst frequency by regulating

initiation. The burst size in this regime is high but constant. The same qualitative trends

are also observed when the same promoter is integrated at the ura3 or leu2 loci (Figure

3.5). A previous study of the same promoter (To and Maheshri, 2010) found that



activators primarily affected burst frequency but measurements were made at higher

levels of activator. It is only by titrating activators at lower levels and using promoter

variants that we were able to clearly discern the two regulatory modes.

Interestingly, we never observed a simultaneous increase in burst size and burst

frequency when increasing expression from low to intermediate levels in the 1 xtetO

promoter. This observation points to the possibility that burst frequency and burst size

are independently regulated via different pathways. Evidence for multiple initiation

pathways exists. For example, the yeast HIS3 gene contains two distinct TATA

elements: a canonical TATA element for regulated expression (TR) and a weaker non-

canonical element for constitutive expression (Tc). The two TATA elements correspond

to different transcription start sites and are differentially utilized at different levels of

HIS3 expression (Struhl, 1986; Iyer and Struhl, 1995). Indeed, the yeast CYC1 core

promoter also contains several functional TATA elements (Hahn et al., 1985) although it

shows a strong preference for utilizing the upstream canonical TATA elements (Li and

Sherman, 1991). Since both canonical and non-canonical TATA elements appear to be

able to recruit TBP and TFIID (Hahn et al., 1989), the origins and functional

consequences of this redundancy are not clear. Furthermore, the kinetic properties

associated with the distinct initiation pathways have not been reported.
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Figure 3.6. Design of the TATA mutants. Shown are the DNA sequence of the CYC1

core promoter and the mutations (red) used to generate the TATA mutants used in this

study.

It is known that a canonical TATA element is related to robust transcription

mediated by rapid reinitiation (Yean et al., 1997), which can cause bursting. Indeed,

mutating the canonical TATA significantly reduces gene expression noise (Raser and

O'Shea, 2004; Blake et al., 2006). The kinetics associated with the non-canonical TATA

elements, however, is not known. Moreover, it is unclear how gene-specific activators

differentially modulate the utility of the TATA elements. To determine how the distinct

TATA elements influence the kinetic roles of activators, we created two types of TATA

mutants within the CYC1 core promoter (Figure 3.6). In Type I mutants, we modified the

canonical TATA element with mild (TATA mutant 1), medium (TATA mutant 2) and

severe (TATA mutant 3) mutations. In Type II mutants, we eliminated all known non-

canonical TATA elements (TATA no weak sites). Then, we titrated tTA activator and

measured the resulting mean expression profiles (Figure 3.7) and burst statistics (Figure

3.8) for each of these TATA mutants.
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Figure 3.7. The dose response curves of the TATA variants. Shown are the mean

YFP expression (top) and mean mRNA expression (bottom) of the TATA variants at

different levels of doxycycline. The Type I mutants (TATA Mutants 1 and 2) are colored

orange whereas the Type II mutant (TATA no weak sites) is colored purple. All TATA

variants are integrated at the his3 locus.



Both types of TATA mutants are capable of increasing gene expression in

response to activators. However, burst statistics, and thereby the gene expression noise,

is vastly different between the two types of TATA mutants. Activators predominately

regulate burst frequency in the Type I mutants. The burst size largely remains at the

basal level in these mutants and only increases slightly at very high activator levels (data

not shown). In contrast, activators effectively regulate burst size in the Type II mutant.

However, although the Type II mutant exhibits a burst frequency similar to that of the

wild-type promoter at very high activator levels (data not shown), it requires a higher

activator threshold for full burst frequency modulation. Our results show that both types

of TATA elements are capable of supporting initiation independently. The reduced

ability of the Type II mutant in regulating initiation at intermediate levels of activators

suggests that activators may opt to utilize the non-canonical TATA elements to further

increase the rate of initiation. This result implies non-redundant functions for the non-

canonical TATA elements. In contrast, only the canonical TATA element can facilitate

rapid reinitiation, suggesting that a long TBP residence time at the promoter is crucial to

the stability of the reinitiation scaffold.

Interestingly, the Type II mutant has higher burst frequency and mean expression

than the wild-type promoter at intermediate activator levels (Figure 3.7). An

interpretation of this result is that the non-canonical TATA elements can compete with

the canonical TATA element and lead to non-productive initiation. This competition

inhibits initiation from both types of TATA elements and thereby reduces the overall

burst frequency. Likewise, the Type I mutants allow more efficient initiation at the

expense of a lower reinitiation rate, suggesting that the canonical TATA element can



inhibit initiation events from the non-canonical sites and reduce the overall burst

frequency. Taken together, our results support the idea that competition exists between

the initiation and reinitiation pathways (Huisinga and Pugh, 2007).

30
30 -4-TATA wild-type25

"0-TATA mutant 1

. 2TATA mutant 2
z15

WTATA no weak sites
- 101

0

N
-Vi 51
U) N

0.. ._._ ............ _

0 0.5 1 1.5 2

Burst frequency [bursts per mRNA life-time]

Figure 3.8. Burst frequency and burst size are differentially controlled by activators

in TATA mutants. Activators regulate predominately burst frequency in the Type I

mutants (orange) and largely burst size in the Type II mutant (purple). The burst

frequency and burst size were inferred for each titration point in Figure 3.7 by fitting the

steady-state mRNA distribution to the 2-state stochastic model. Error bars represent the

estimated technical and biological errors.

The kinetic roles of the distinct TATA elements allow us to develop a molecular

model to explain how activators differentially modulate burst frequency and burst size

(Figure 3.9). At low activator level, RNA Pol II recruitment could be rate-limiting.

Since both TBP and RNA Pol II appear to be always present at the canonical TATA



element of the CYC1 core promoter (Martens et al., 2001), activators likely regulate

initiation through RNA Pol II recruitment to the non-canonical elements.

At moderate activator levels, there is increased occupancy of the TATA elements.

Higher levels of overall transcription are associated with increased utilization of both

types of TATA elements. At a certain activator level, initiation at the canonical TATA

element exceeds a threshold that depends on the inherent stability of the complex

assembled. There is a shift to predominant canonical TATA utilization. The reinitiation

rate and thereby the burst size increase as the canonical TATA element is preferentially

utilized. Here, activators function primarily through the recruitment of Mediator, which

increases the stability of reinitiation complex. In this regime, robust reinitiation from the

canonical TATA may suppress initiations from the non-canonical sites and reduce the

overall burst frequency.

At high activator levels the reinitiation rate, which is limited by the inherent

stability of the reinitiation scaffold, attains a maximum. Further addition of activators

increases the initiation rate from the canonical TATA element through elevated

recruitment of RNA Pol II or downstream factors such as the Mediator and SAGA

complexes. Therefore, burst frequency regulation dominates in this regime. The reduced

ability of the Type II TATA mutant to support high initiation rates suggests that non-

canonical TATA elements are utilized at high activator levels. However, if the model

were true, the overall burst size would decrease at high activator levels since initiation

events from the non-canonical elements have a low burst size. This seems to be the case

for the wild-type 1 xtetO promoter at his3. To confirm that both types of TATA elements

are utilized at high activator levels, we can fit the mRNA distributions to a mixed



negative binomial distribution describing independent bursting from the two different

types of TATA elements.

Biochemical assays are required to confirm the detailed molecular mechanism by

which a strong acidic activator dictates the pathways to initiation and reinitiation. For

instance, to show that activators utilize different TATA elements at different levels, we

can perform high resolution ChIP on TBP to estimate the occupancy of different TATA

sites. Additional biochemical tests can be performed to quantify the percentage of

transcripts initiating at different transcriptional start sites (TSS's), since initiation from

different TATA elements appears to result in different TSSs for the CYC1 core promoter

(Li and Sherman, 91). Such experiments will be the subject of future research.
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3.3.2 Strong activator binding is required for burst size regulation

An important finding in Section 3.3.1 is that a canonical TATA element is

required for burst size regulation. This implies that the residence time of TBP at the

promoter contributes to the overall stability of the reinitiation complex. This result led us

to hypothesize a long residence time at the promoter is also required for the activator to

attain a high burst size, since the reinitiation complex also contains the activator

according to an in vitro biochemical study (Yudkovsky et al., 2000). To test this

hypothesis, we decreased the residence time of the activator by creating five tetO mutants

based on the PSAM in Section 3.2.5 (Figure 3.11).

*1234 56789

3' -CAAATGG3TGAG AT ACTATC T-TTCACTTTC-5

Wild-t pe TOATAGAGA PAM xD = I

Mutant 12 AGAcC"AIT POAM KD = 25.0
Mutant 17 AOATAGAGT PBAM KD 1.38
Mutant 21 OGATAAACT P A1 KDP= 1.17

Mutant 22 GGATATAGT PSAM ED 2.06

Mutant 23 C CTAOAGT PSAM KD = 3.28

Figure 3.11. Design of the tetO mutants. Shown are the DNA sequence of the wild-

type tetO operator and the mutations used to generate the tetO mutants. The dissociation

constants (KD) are predicted using the PSAM and an additive model (Section 3.2.5).

We titrated tTA activators using doxycycline and measured the mean expression

profiles (Figure 3.12) of these tetO mutants. Except for Mutant 17, the measured

expression profiles generally agree with the Kb values predicted by PSAM. All tetO

mutants are capable of increasing gene expression in response to activators. The burst



statistics of the tetO mutants reveal that burst size regulation requires the activator to bind

the promoter with a high affinity (Figure 3.13). Although burst frequency is also reduced

by a lower binding affinity, the effect is less profound. For example, while burst size

regulation is abolished in the weakest mutants (Mutants 12 and 17), activators can still

effectively increase the burst frequency, possibly through the utilization of non-canonical

TATA mutants. These results further demonstrate that promoter architecture is sufficient

to determine the kinetic roles of activators.
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Figure 3.12. The dose response curves of the tetO variants. Shown are the mean YFP

expression (top) and mean mRNA expression (bottom) of the tetO variants at different

levels of doxycycline. All tetO variants are integrated in the his3 locus.

While the activator titrations indicate that binding site affinity determines the

burst size, the pathway by which strong activator binding supports reinitiation is not

obvious. The simplest explanation is that a long activator residence time at the promoter

is required for the formation of a stable reinitiation complex, which can then sustain

multiple rounds of rapid reinitiation. Multiple mechanisms exist (Figure 3.14). One

possible mechanism is that a certain activator residence time is required for covalent

modifications of proteins within the reinitiation complex to maintain stability. An

alternative mechanism is that longer activator residence times result in a particular form

of PIC which will become stable reinitiation complex, as certain forms of PIC contain

additional GTFs or coactivators responsible for stabilizing the reinitiation complex. A

third possibility is that the initiating activator remains in the reinitiation complex during



the burst. The additional affinity from the binding site increases the stability of the

reinitiation complex through cooperative interactions. However, this model is less likely

to be correct given the recent finding that gene-specific activators are highly mobile in

vivo (Karpova et al. 2008). To distinguish these possibilities, more detailed mechanistic

models are required to make explicit connection between physical events (e.g. activator

binding and unbinding) and phenomenological results (e.g. steady-state fluctuations).

Previous modeling studies (Blake et al., 2006; Murphy et al., 2007; Sanchez et al.,

unpublished results) have demonstrated that longer residence times of TBP and activators

at the promoter lead to higher gene expression noise. These mechanistic models can be

further extended by the incorporation of multiple TATA elements, non-productive

pathways, and refractory periods.
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Figure 3.13. Burst size regulation by activators requires a strong activator binding

site. The burst frequency and burst size were inferred for each titration point in Figure

3.12 by fitting the steady-state mRNA distribution to the 2-state stochastic model. Error

bars represent the estimated technical and biological errors.



3.4 Discussion

While a good deal is known about how activators affect the mean level of gene

expression, less is known about how activators affect the kinetic pathways underlying

expression heterogeneity. Understanding the kinetic roles of activators allows us to gain

insights into how a cell determines the utility of a particular kinetic pathway to fulfill

functional needs. This work demonstrates that gene-specific activators can act during

both the initiation and reinitiation steps depending on activator levels. Whether

activators generally affect both rates of initiation and reinitiation remains an open

question, but likely depends on the promoter architecture and the activator type. The

ability of an activator to stimulate both slow and fast steps may allow robust and efficient

gene activation via kinetic synergism (Herschlag and Johnson, 1993). In addition, such

ability allows the same activator to control multiple genes in a kinetically distinct

manner.

Although the proposed molecular model (Figures 3.9 and 3.10) is consistent with

experimental observations, direct biochemical evidence is lacking. In order to determine

the major steps in the assembly process and the binding rates involved, our approach is

best supplemented with biochemical assays such as protein-DNA crosslinking

technologies with high temporal and spatial resolutions. A kinetic ChIP experiment with

high temporal (< 10 minutes) and spatial (< 20 bp) resolutions will allow us to confirm

the differential utility of the multiple TATA elements over the course of a burst. A

perhaps more promising but less accessible method is to use highly sensitive microscopy

or spectroscopy to examine the recruitment of various factors in real-time.



The importance of residence time has broad implications for the stochastic

assembly process of transcription machinery. Many components in the transcription

machinery, such as the activators and TBP, exhibit highly dynamic interactions with their

promoter. Quantitative FRAP experiments have shed light on the dynamics of

transcription machinery assembly (Hager et al., 2009). Extensive evidence exists for

transient interactions between transcription factors and their chromatin target sites. In

particular, different components of the pre-initiation complex appear to arrive at the

promoter at different times and only sporadically form a complete functional complex

(Sprouse et al., 2008). If this view is indeed true, the residence times of individual

components are important since they determine the likelihood of complete assembly. It

will be interesting to see how stochastic and reversible protein binding may lead to a

fundamental tradeoff between specificity and efficiency of the transcription machinery.

Perhaps our finding is related to a recent study (Luijsterburg et al., 2010) where the

recognition of DNA lesions by the mammalian nucleotide excision DNA repair (NER)

machinery arises from stochastic assembly of multiple NER proteins at the chromatin

template. This is an example of kinetic proofreading (Hopfield, 1974), which greatly

increases the specificity of the overall assembly process.

Importantly, we show that distinct kinetic pathways can be encoded by a short

regulatory region of TATA elements whose mode of regulation is determined by a single

type of activator. By configuring the TATA elements, we can specify the utility of these

pathways (Figure 3.10). Our findings also illustrate how small changes at TATA-

containing promoters may lead to vastly different transcriptional responses and noise

levels, highlighting the molecular origin of evolvability of gene expression. This study



provides a plausible mechanism to explain the finding of Landry et al, (2007), which

demonstrates that sensitivity of gene expression to mutations increases significantly with

the presence of a TATA box.

This work shows how various cis-factors influence the distribution of regulation

between the initiation and reinitiation pathways. Importantly, distributed control of

kinetic processes enables the cell to control gene expression heterogeneity independent of

expression level. Therefore, our findings have implication for the regulation of various

inducible genes that are known to be epigenetically regulated (Octavio et al., 2009).

Understanding how activators regulate promoter transitions will allow us to engineer

strains with well-defined levels of expression heterogeneity, which can have

consequences on phenotypic and population-level fitness. In Chapter 4, we link cell

physiology and transcriptional dynamics by showing how a small change in burst

statistics can lead to a qualitatively different response in a transcriptional positive

feedback loop.
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Figure 3.14. Possible mechanisms by which activator residence time influences the

stability of the reinitiation complex.
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4 Transcriptional bursting can lead to bimodal gene expression

in positive transcriptional feedback loops without bistability

4.1 Introduction

When a cell must unambiguously commit to a particular gene expression

program, often a digital change occurs in a key regulator's expression (Alon, 2006).

Decision-making circuitry within metabolic (Acar et al., 2005), developmental (Xiong

and Ferrell, 2003), and synthetic gene regulatory networks (Ingolia and Murray, 2007;

Issacs et al., 2003; Ajo-Franklin et al., 2007) uses positive transcriptional feedback loops

to provide bimodal, all-or-none expression of a regulator.

In all these cases, the promoter response in the absence of feedback was either

measured or assumed to be sigmoidal. For example, in synthetic regulatory constructs

where a TF regulates its own expression, a Hill-type equation is often used to model the

open-loop response. Open-loop responses with Hill coefficients greater than 1 are often

attributed to direct cooperative binding of TFs to promoters, or indirect cooperativity via

nucleosome displacement (Miller and Widom, 2003). The resulting sigmoidal response

is a necessary system property for the existence of bistability in deterministic theoretical

models (see Section 4.2.2 for details).

Meanwhile, it has become increasingly appreciated that stochastic noise in gene

expression can alter the qualitative behavior of transcriptional regulatory networks.

Recent single molecule approaches have revealed that gene expression often occurs in



bursts of transcription and/or translation (Maheshri and O'Shea, 2007; Raj and van

Oudenaarden, 2008). The burst statistics can be characterized by two parameters: the

burst size (number of mRNA or proteins produced per transcriptional activation event)

and the burst frequency (number of transcriptional activation events per mRNA or protein

lifetime). The mean level of gene expression is set by the product of burst size and burst

frequency, but the noise in gene expression is proportional to the burst size (see Chapter 3

for details).

The effect of noise in gene expression on the properties of the positive feedback

motif has been studied both theoretically (Kepler and Elston, 2001; Friedman et al., 2001;

Karmakar and Bose, 2007). Interestingly, both Friedman et al. (2006) and Karmakar and

Bose (2007) predict that a bimodal expression distribution can occur with positive

feedback even when the open-loop response is linear and graded with a Hill coefficient

<= 1 (see Section 4.2.3 for details). This is similar to another theoretical study

demonstrating that noise in enzymatic futile cycles can induce bimodal activity when a

deterministic description only admits one stationary solution (Samoilov et al., 2005).

Here, we demonstrate experimentally that a transcription factor (TF)-promoter

pair with a non-cooperative, graded open-loop response can exhibit an "all-or-none"

steady-state bimodal response when reconfigured in a positive feedback motif. As

predicted from the theory, a robust bimodal response occurs only when the timescale of

transcriptional bursts is less than the lifetime of the TF; in other words, the promoter

possesses a low maximum burst frequency but a corresponding burst size large enough to

trigger expression. Further stabilization of the TF eliminates the response. However,

while a simple stochastic model qualitatively describes these results, it fails to capture the



observed stability of the two states. This prompted a further investigation that revealed

the importance of a third process - nuclear transport of the TF. The simple stochastic

model compared well to experimental results when the TF was tagged with a strong

nuclear localization signal (NLS). Interestingly, a weaker NLS leads to an enhanced

bimodal response.

4.2 Theory

4.2.1 A deterministic model of gene regulation

To describe the steady-state, mean level of expression of protein p for open-loop

constructs, we employed a Hill-like model to describe the gene regulatory function (Bintu

et al., 2005):

[4.1] (T1K)"
(T/K) +1

Here kmin and knax are production rates of protein expression already normalized by the

protein degradation rate, and hence have units of protein concentration or number. In this

simple thermodynamic model, the affinity of TF to its binding site and the transcription

factor concentration dictate the probability of particular promoter states (bound or

unbound TF). The transcription rate from the promoter, and hence the protein

expression, is proportional to these states. For example, if the TF is an activator,

expression is typically modeled as proportional to the bound TF promoter state.



For our particular system (Tet-OFF, see Section 3.2.1 for details), the dissociation

constant (K) between tTA () and the promoter can be modulated by addition of

doxycycline. The explicit dependence of K on doxycycline levels [dox] is:

[4.2] K = K,(1+2[dox]/ K + ([dox] / Ks) 2)

where Ko is the dissociation constant in the absence of doxycycline and Ks is the

dissociation constant between tTA and doxycycline. The quadratic [dox] dependence of

K arises from the fact that there are two binding sites for doxycycline on the tTA dimer

and that only unbound tTA was active, as even single doxycycline-bound tTA has its

DNA binding affinity reduced by 103 fold (Henssler et al., 2005). A similar approach

has been taken by Murphy et al. (2007).

4.2.2 A deterministic model of positive feedback and bistability

The above model can be easily reformulated to describe the steady-state response

of a positive transcriptional feedback loop. A definitive feature of the positive feedback

loop (Figure 4.1-A) is bistability in its gene expression. This feature can be explained by

modeling its dynamics with minimal model that couples transcription and translation.

dT T"n
[4.3] =Tmin +(T MaxTmin) -T

T denotes the concentration of transcription factor which activates its own expression.

There are two terms for production - basal production (Tin) and activator mediated

production (the second term of R.H.S.). The degradation (the last term of R.H.S.) is



assumed to be first-order. Although the above equation can be solved to obtain steady-

state fixed-points, it is best to be analyzed graphically. The intersection points of

production and degradation curves represent the fixed points. The key parameter is n, the

Hill coefficient, which signifies the sharpness of response towards activator

concentration. For n = 1, there can only be one fixed point for any Tmin> 0 (Figure 4.1-

B). This fixed point is stable. Shifting the production curve (by changing K, for

example) can result in a different fixed point, but cannot switch the stability of the fixed

point since there is no bifurcation possible.

Qualitatively different behavior can be observed for n = 2. Physically, the

sharpness of response increases as n increases. In order words, n > 1 signifies

cooperativity in production. The outcome for n > 1 is that the production curve becomes

sigmoidal and ultrasensitive. For n = 2, the production curve can intersect the

degradation curve three times (Figure 4.1-C) to give 3 fixed points. However, only the

leftmost and rightmost fixed points are stable. Notice that as K gets larger, the

production curve shifts in a way such that it only intersects with the degradation curve

once. When the production curve becomes tangential to the degradation curve, the

unstable and one of the stable fixed points collide and annihilate, resulting in a saddle

node bifurcation. To predict the behavior of the system for different values of the

parameters K and Tmin, we construct the analytical bifurcation diagram to illustrate where

bifurcation occurs for n = 2 (Figure 4.1 -D). Bistability can be attained under a fairly

wide range of parameter values. In summary, cooperativity (n > 1) is necessary (though

not sufficient) for bistability, as it is necessary for the production curve to intersect with

the degradation curve at 3 points.
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Figure 4.1. Positive feedback and the emergence of histability. (A) An autocatalytic

gene in which the transcription factor (T) activates its own expression. (B) In the absence

of cooperativity (n = 1) the system can only admit 1 stable steady state. Other parameters

are Tmin = 0.5 and Tmwc,, = 12. (C) Bistability is possible with cooperativity (n = 2). Other

parameters are Tmin = 0.5 and Tnm, = 12. (D) Bifurcation diagram illustrates that

bistability is achievable under a wide range of parameters.



4.2.3 Friedman model for positive feedback

When burst frequency is regulated by TF, (Friedman et al., 2006) showed that the

steady-state protein distribution in the presence of transcriptional position feedback loop

is:

A,(x /K)
[4.4] P(x) --r (x / K)'O' exp(- R )(I +K /)

R

where we have reparameterized their results with C =1 - 1/ + g and R = , /yK

The qualitative effect of the burst size and burst frequency on the occurrence of

bimodality can be conveniently understood by considering equation [4.4] and its

corresponding phase plot (Figure 4.2). C (y-axis of the phase plot) is determined by the

maximum burst frequency. R (x-axis of the phase plot) is a measure of the maximum

expression level relative to K. When expression levels are larger than K, the linear

promoter response begins to saturate. Frequent bursts will always lead to some non-zero

level of activation with basal expression. If C > 1 (region I), a unimodal, non-zero

expression level is always observed. The mean expression level can be increased

independently of C by changing R, either by increasing the burst size, or by decreasing K,

thereby increasing the actual (not maximum) burst frequency. For C < 1 the activator

degradation rate is larger than the maximum promoter activation rate and bimodal

expression is possible. At low levels of R, expression is peaked at zero (region II), but

the distribution gets a longer tail as R increases. Finally, upon entering region III, the

distribution becomes bimodal. Although formally the model continues to predict a

bimodal distribution for larger values of R, the actual percentage of OFF cells drops to



vanishingly small values. Region IIb demarcates a region where the percentage of OFF

cells is < 5% of the total population, to provide a sense of the bimodal region.
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Figure 4.2. A phase diagram describing the qualitative behavior of the closed-loop

response. Using the Friedman model (Section 4.2.3), the closed-loop response is

predicted by parameters characterizing the open-loop promoter response. Bimodal

expression occurs when the maximum burst frequency is low and the burst size is large

enough (compared to the TF dissociation constant) that the promoter can turn on in

positive feedback (Region I1a).



Figure 4.3 describes the essential physics of how noise and positive feedback

could combine to convert a linear open-loop response into an "all-or-none" bimodal

closed-loop response. Consider an autoregulatory gene at low levels of expression.

Transcriptional bursts of mRNA lead to bursts of activator protein. If the activator is

very long-lived, it will feedback on its promoter and the system will proceed to the

deterministic steady-state. This corresponds to the case of high burst frequency. If the

activator is shorter-lived though, it may degrade before activator levels are high enough

to sustain high expression. Rare, infrequent events, made possible by large burst sizes

and small burst frequencies, lead to high activator levels and switch the system to high

expression levels. Because the activator is still short-lived, infrequently all activators will

degrade before the next burst occurs. This switches the system back to low expression

levels. Therefore the burst frequency, determined by both promoter firing and activator

stability, plays a crucial role in determining whether noise-induced bimodality will occur

in positive feedback.
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Figure 4.3. A simulated time series describing expression in a bursty positive

feedback. Infrequent promoter firing and an unstable activator lead to a bimodal closed-

loop response.

4.3 Materials and Methods

4.3.1 Estimation of kinetic parameters for the deterministic model

Using the results of the open-loop experiments, we simultaneously fit 7xtetO and

1 xtetO titration data to Equations [4.1] and [4.2], demanding that Ks was the same in both

cases. We estimated the ratio T/KO as we could not estimate T directly. However,

because in the most of the open-loop experiments tTA was constitutively expressed from

the ADH1 promoter, we defined 1 effective tTA unit as the tTA level expressed from the

ADH1 promoter in the absence of doxycycline. A Ks ~ 500 (ng/mL doxycycline) worked



consistently for all our datasets. We always obtained Hill coefficients very close to 1,

which was not surprising as the measured open-loop responses appear non-cooperative

(see Section 4.4.1). However, because the response never saturates, it was impossible to

accurately estimate kma,. Therefore, to confirm the accuracy of equation [4.1] over the

full promoter response and to accurately estimate km,, we increased tTA level using the

positive feedback loop. We assessed the tTA levels relative to ADHi promoter-driven

tTA expression (1 effect tTA unit) by employing a tTA-CFP fusion protein and

comparing the relative fluorescence levels. The transcriptional activity of tTA was not

affected by the CFP tag. However, we note that in the presence of doxycycline, the

observed CFP signal of the tTA-CFP fusion does not represent the active tTA level as

some fraction is bound by doxycycline. We corrected for this by using equation [4.2] to

estimate the active tTA fraction. We then converted the active tTA level in the feedback

context into effective tTA units using the CFP signal from tTA-CFP driven by ADH1

promoter in the absence of doxycycline.

Using the full promoter response obtained in the feedback context, we determined

the three macroscopic kinetic parameters for the gene regulatory function - namely kmin,

kmax, and K. The kmin was directly obtained from the minimum reporter response for a

given promoter in the absence of tTA. To obtain kma and K of the gene regulatory

function, we determined the promoter response curves using both protein and mRNA

measurements. We fit these curves to Equation [4.1] using MATLAB's nlinfit program

(MathWorks) to obtain kma and K (Table 4.1).



4.3.2 Estimation of kinetic parameters for the stochastic model

We fit mRNA FISH data to numerical simulations of the reaction scheme [3.1] in

Section 3.2.3, using maximum likelihood estimation (MLE). As in the case described in

Section 3.2.4, close examination of the fits showed a ridge of constant likelihood for

constant f / f (Figure 4.4), implying that a two parameter burst size / burst frequency

model was appropriate and activation was rare compared to inactivation. There is

uncertainty with respect to how the values of f and f change between the IxtetO and

7xtetO cases because only the burst size can be accurately estimated. We favor a model

where it is f that changes when additional tetO binding sites are introduced because a

increased number of TF's keeps the promoter in a "active" conformation longer,

decreasing the promoter inactivation rate. As such, we held f fixed, and used MLE to

determine A and f from the experimental data. In doing so, we assume the

transcriptional initiation rate in the active state (which ft represents) is the same for

IxtetO and 7xtetO. We chose a fixed value of 500 for f for both IxtetO and 7xtetO,

and obtained values for A and ft / f at different tTA levels. The value of ft was

estimated to be slightly larger than the maximum number of mRNAs observed in a cell

(467, from 7xtetO grown with no doxycycline).
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Figure 4.4. The parameters y and I cannot be estimated independently. The mRNA

distributions obtained by FISH experiments were fit to numerical simulations of the

reaction scheme [3.1]). The likelihood values are plotted as a function of 7 and p for

two samples in Figure 4.9 in Section 4.4.2. The color bar represents the negative log-

likelihood score. The fits show a ridge of constant likelihood for constant p / . Similar

results were obtained for other samples in Figure 4.9.

4.3.3 Relating the microscopic kinetic parameters to the stochastic

model

When we plotted the logarithm of the mRNA noise versus the logarithm of

mRNA abundance (Figure 4.12), we observed a slope ~ -0.5, the expected scaling law for

the open-loop response in both the presence and absence of feedback. This implies the

burst frequency is being regulated by the transcriptional activator, and the intercepts give

the mean burst size (Table 4.1). The scaling law has been observed generally in global

studies of noise at yeast promoters (Bar-Even et al., 2006; Newman et al., 2006).

Therefore, we model activation as:

[4.5] + = iA(+ k)
x+±K



where K denotes the dissociation constant between TF and the promoter, k denotes the

maximum burst frequency and e denotes basal bursts in the absence of the TF. The kmax

and kmin parameters of the deterministic model can be explicitly related to the parameters

of the stochastic model:

k - p

[4.6]

(1+)

If inactivation rates are always higher than activation rates (even with saturating amounts

of transcription factor) and E <<1, then equation [4.7] reduces to

[4.7]

where kma, (of mRNA production) is simply the product of the maximum burst frequency

times the burst size. If burst size is constant across activator levels for a given promoter

(which seems to be the case for tetO, Figure 4.11), 2 and e can be determined once km,

and kmin are known and all parameters required for the positive feedback model are

defined.

Additional materials and methods can be found in the Appendices.



4.4 Results

4.4.1 A bimodal, "all-or-none" response in a transcriptional positive

feedback loop without evidence of bistability

To understand how promoter structure relates to the Hill coefficient, we employed

the widely used tet-OFF system, adapted for budding yeast (Gari et al., 1997). The tet-

Transcriptional Activator (tTA) binds to a tet operator (tetO) sequence in the absence of

doxycycline. We constructed yeast strains without (open-loop) and with feedback

(closed-loop) using previously designed promoters with 1 (1xtetO) and 7 (7xtetO)

binding sites. With IxtetO in positive feedback, the reporter exhibits a graded steady-

state response to changes in feedback strength, while 7xtetO exhibits a bimodal response

(Figure 4.5). One explanation is that 7xtetO has a sigmoidal open-loop response due to

cooperative binding of tTA to multiple binding sites, resulting in bistability (Ajo-Franklin

et al., 2007; Becskei et al. 2001). Yet, if one accounts for the binding of doxycycline to

the tTA dimer (Section 4.2.1), both IxtetO and 7xtetO exhibit a graded open-loop

response, with a Hill coefficient of-1 (Figure 4.6). To eliminate the possibility of altered

doxycycline-binding, we directly titrated tTA levels using a galactose-inducible

promoter, and confirmed the non-cooperative response (Figure 4.7). In addition, the

open-loop response of both promoters in a strain that contains a closed-loop promoter is

also non-cooperative (Figure 4.8).
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Figure 4.5. Bimodal gene expression in positive feedback with multiple binding sites.

Yeast strains engineered with 1 xtetO and 7xtetO in a closed loop configuration were

grown to steady-state. Feedback strength was modulated by varying doxycycline from 0

to 2000 ng/mL. Resulting steady-state expression distributions were obtained from flow

cytometry.
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Figure 4.6. The open-loop response of the 1xtetO and 7xtetO promoters. The dose

response curves determined by titration with 0 -2000 ng/mL doxycycline are non-

cooperative with a Hill coefficient of~1. Flow cytometric analysis confirms the response

is graded at the single cell level (Inset). The effective tTA level was calculated from
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doxycycline concentration using equation [4.2]. Error bars indicate the s.d. of triplicate

samples.
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Figure 4.7. The open-loop response of the 1xtetO and 7xtetO promoters by direct

titrations. The dose response curves determined by direct titration of tTA with 0 - 0.5%

galactose are non-cooperative with a Hill coefficient of 1. (A) Activator levels were

directly controlled by the GAL] promoter. (B) Population averaged YFP versus CFP for

cultures under various galactose concentrations (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.08, 0.1, 0.2, 0.3, and 0.5 %). Biological triplicates were cultured and measured. (C)

YFP versus CFP at the single-cell level measured by microscopy. Individual cells were

pooled from all cultures in (B).
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FACS, or microscopy and (B) the mean number of mRNA per cell measured by FISH.

One effective tTA unit is defined as the tTA level expressed from an ADH1 promoter in

the absence of doxycycline. We increased the tTA level beyond 1 effective tTA unit by

expressing tTA with positive feedback. The relative tTA levels between open-loop

(ADH1 promoter) and open-loop in feedback context (IxtetO driving tTA expression)

were assessed using a tTA-CFP fusion protein. The YFP measurements were normalized

by the fluorescence from a positive control strain carrying integrated copies of ADH1

promoter-YFP at the leu2 locus.

4.4.2 The bimodal response requires a bursty promoter

As described in Section 4.2.3, a bimodal steady-state expression distribution can occur

with positive feedback even when the open-loop response is graded with a Hill

coefficient <= 1. This occurs when the maximum burst frequency is low, the burst size is

large enough to turn the promoter on in positive feedback, and the activator regulates

burst frequency (exact conditions in Figure 4.2).

Based on the model, we hypothesized that the 7xtetO promoter had a lower

maximum burst frequency and larger burst size versus the 1 xtetO promoter. Independent

support for this hypothesis comes from a study of stochastic gene expression using the

tet-OFF system in mammalian cells (Raj et al., 2006). As in that study, we combined

mRNA FISH measurements (see Section 3.2.2 for details) with a stochastic model of

gene expression to determine the burst statistics of mRNA (see Sections 3.2.3 and 4.3.2

for details). The 7xtetO promoter has a burst size 2-fold higher than the IxtetO promoter

(Figure 4.11) while the mRNA distributions are consistent with burst frequency

regulation (Figures 4.9 and 4.10). Both mRNA and intrinsic protein noise scale with the

inverse square root of abundance (Figures 4.12 and 4.13, and Table 4.1), suggesting that



mRNA noise is dominated by intrinsic fluctuations (Elowitz et al., 2002; Bar-Even et al.,

2006) and tTA regulates burst frequency. Although there is sizeable extrinsic noise in

protein abundance as measured by fluorescence proteins, yet it does not appear to have a

major effect (see Section 4.5).
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Figure 4.9. Steady-state mRNA distributions of the 1xtetO and 7xtetO promoters

determined by mRNA FISH. Shown are the steady-state mRNA distributions under



250, 500, 750, 1000 and 1250 ng/mL of doxycycline. The effective tTA level was

calculated based on the doxycycline concentration using equation [4.2]. These

distributions were analyzed in using a stochastic model of gene expression [3.1] to

generate the bursting statistics in Figures 4.10 and 4.11 and also used to calculate the

mRNA noise in Figure 4.12.
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Figure 4.10. The mRNA burst frequency of the IxtetO and 7xtetO promoters. Error

bars reflect 95% CI's for maximum likelihood estimates.
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Figure 4.11. The mRNA burst size of the 1xtetO and 7xtetO promoters. Error bars

reflect 95% Cl's for maximum likelihood estimates.

<lxtetO
z

0 *7xtetO
0 0.5 1 1.5

_o log (mean mRNA molecules per cell)

Figure 4.12. The scaling law between mRNA noise and mean mRNA level. A slope

of-0.5 on the log-log plot suggests mRNA noise is primarily due to intrinsic sources

and burst frequency regulation. Error bars representing 95% CI's were obtained by

bootstrapping.
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Figure 4.13. Protein noise measurement in diploid strains using the dual-reporter

assay. YFP and CFP were expressed from identical tetO promoters at the his3 locus on

homologous chromosomes as diagramed in (A). Fluorescence levels were measured by

microscopy and the intrinsic and extrinsic noise components were calculated as in (Swain

et al., 2003). Total (B), extrinsic (C) and intrinsic (D) noise as functions of population

averaged expression. The mean expression was modulated by titrating tTA with 0 - 500

ng/mL doxycycline. (E) The scaling law (slope ~ -0.5 on the log-log plot) between

protein noise and mean protein level is consistent with burst frequency regulation. Error

bars representing 95% CI's were obtained by bootstrapping.

Table 4.1. Comparison of regression coefficients

Open-loop mRNA noise (Figure 4.12) lxtetO 7xtetO

Scaling exponent -0.45±0.05 -0.56±0.14

Relative burst size 1.00±0.34 2.00±0.44

Open-loop intrinsic protein noise (Figure 4.13-E) 1xtetO 7xtetO

Scaling exponent -0.44±0.13 -0.48±0.12

Relative burst size 1.00+0.18 4.46±0.20



In the open-loop context, the ADH1 promoter-driven tTA level was never high

enough to saturate either promoter. Therefore, we used the closed-loop data, where tTA

levels are much higher, to estimate the maximum burst frequency (Figure 4.8).

Consistent with our hypothesis and the mammalian study (Raj et al. 2006), 7xtetO has a

5-fold lower maximum burst frequency than ixtetO (Table 4.4). Taken together,

multiple tetO binding sites make a promoter more sensitive to tTA, with a lower burst

frequency and a higher burst size. We are unable to determine if the increased burst size

is due to a longer duration burst or a more intense burst (Figure 4.4).

Table 4.2. Parameters from fitting the gene regulatory function

YFP mRNA

kmax K kmax K

lxtetO 2.10±0.55 14.1±6.2 272±220 15.6±17.2

7xtetO 0.75±0.06 2.08±0.39 121±11 3.38±0.62

Interestingly, a 1 xtetO promoter variant containing the yeast ADH1 terminator

upstream of the 1xtetO site has a non-cooperative open-loop response (Figure 4.15) and

also exhibits a bimodal response in positive feedback (Figure 4.14). This promoter has a

higher burst size and lower maximum burst frequency compared to IxtetO (Figure 4.16

and Table 4.3). Therefore, as expected by the theory, the noise properties of the promoter

are responsible for the bimodal response and not multiple binding sites, per se.
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Figure 4.14. Closed-loop response of the ADHiterm-1xtetO promoter is bimodal.

The Adhlterm- 1xtetO promoter was created by inserting an ADH1 terminator upstream

of ixtetO in the sense direction. The feedback strength was modulated by varying

doxycycline from 0 to 1000 ng/mL.
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Figure 4.15. Comparison of open-loop response between 1xtetO and Adhiterm-

ixtetO promoters. An ADH1 promoter was used to express tTA constitutively from a

yeast centromeric plasmid and the effective tTA level was calculated from doxycycline

concentration using equation [4.2]. The AdhIterm-IxtetO promoter has (A) graded

steady-state response, (B) a Hill coefficient of-1 (see also Figure 4.8 for full response)

and (C) higher total protein noise.
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Figure 4.16. Measuring mRNA noise in closed-loop as a function of TF level. The

burst statistics of mRNA in closed-loop configuration was determined by measuring the

mRNA distributions of tTA within a bin of YFP expression (A). A tight bin of YFP

represents a relatively constant tTA level across one cell-cycle (B). The expected scaling

law (a slope ~-0.5 on the log-log plot) for mRNA is observed in closed-loop

configuration, implying that burst frequency is being modulated by the transcriptional

activator. As in the open-loop case 7xtetO and Adhl1term-l1xtetO are noisier than 1 xtetO.

Error bars were obtained by bootstrapping.

Table 4.3. Regression coefficients of closed-loop mRNA noise (Figure 4.16)

1lxtetO 7xtetO Adhilterm 1 xtetO

Scaling exponent -0.47±0.22 -0.48±0.04 -0.46±0.03

Relative noise strength 1.00±0.80 1.35±0.49 1.67±0.47



4.4.3 The bimodal response requires an unstable TF

A strong prediction of our model is that stabilization of tTA will increase the

maximum burst frequency and eliminate the bimodal expression pattern. Global

measurements of protein stability in yeast reveal that TFs tend to be less stable than

typical proteins (Belle et al., 2006). While tTA (a fusion between tet repressor and the

VP 16 activation domain) stability has not been determined, the in vivo half-life of a lexA-

VP16 fusion protein in yeast was 6 minutes (Salghetti et al., 2001). Moreover, mono-

ubiquitination of lexA-VP 16 was required to license the activator for transcriptional

initiation, but lead to subsequent polyubiquitination via Met30p, targeting it for

degradation (Salghetti et al., 2001). To stabilize tTA, we expressed the active mono-

ubiquitinated version and deleted MET30. MET4 must also be deleted, as single

delection of MET30 is lethal (Salghetti et al., 2001). As expected, the closed-loop

response of the stabilized tTA is more graded (Figure 4.17).
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Figure 4.17. Stabilizing transcription factor reduces stochastic fluctuation and

eliminates bimodality. To create a stabilized TF, an ubiquitin-tTA fusion was expressed

in a met30A met4A background (upper panel). The closed-loop reporter response

measured by flow cytometry becomes more graded for 7xtetO (lower panel). Feedback

strength was modulated by varying doxycycline as in Figure 4.5.

To verify whether a stochastic model could quantitatively describe our results, we

measured tTA mRNA and protein half-lives. To determine the mRNA stability, we

stopped transcription in a 7xtetO closed-loop strain by adding doxycycline and the

transcriptional inhibitor thiolutin. Cells were fixed at specific time points after inhibition

and tTA and YFP mRNA abundance was measured by FISH. Both transcripts have a



half-life ~15-20 minutes (Figure 4.18). We determined the stability of tTA at the

population level with promoter shut-off experiments followed by Western blotting

(Figure 4.19). Surprisingly, tTA appears to have a ~70 minute half-life, much longer

than the 6 minute half-life of lexA-VP16 (Salghetti et al., 2001). With this half-life the

maximum burst frequency is too high and the Friedman model cannot even qualitatively

describe bimodal expression.
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Figure 4.18. Stability of mRNA. We grew a 7xtetO closed-loop strain (Y161) to steady

state and stopped transcription by addition of high levels of doxycycline and the

transcriptional inhibitor thiolutin. Cells were fixed at specific time points after inhibition

and the abundance of both tTA and YFP mRNAs were measured by FISH. Lines are for

the eye. We found that both transcripts follow first-order decay kinetics and have a -15-

20 minute half-life (Table 4.4).
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Figure 4.19. Stability of tTA variants. To determine tTA stability, its expression was

halted via a galactose-inducible promoter and levels were followed by quantitative

western blotting. Lanes contain equivalent amount of total protein as determined by

Bradford Assay. After accounting for the 60-minute lag required for mRNA depletion

and tTA folding, tTA was found to have a -70 minute half-life. The stabilized tTA

variant has a -175 minute half-life similar to the doubling time. The SV40 NLS-tagged

tTA has a -15 minute half-life, suggesting that nuclear transport was rate limiting.
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4.4.4 The importance of nuclear transport

Given the short half-life of the lexA-VP 16 fusion, we suspected that multiple

forms of tTA were present in the cell and only the active form was unstable. Because

activation-coupled degradation of tTA occurs only in the nucleus, we hypothesized that

cytoplasmic tTA was stable and nuclear transport of tTA was slow. Nuclear transport of

the reverse (r)tTA has been shown to be limiting in yeast, and addition of nuclear

localization signals (NLS) alters its subcellular distribution (Becskei et al., 2004).

To test the effect of nuclear transport, we fused a mammalian NLS to tTA,

confirmed the nuclear localization (Figure 4.20), and measured the open- and closed-loop

responses. As before, the NLS-tTA open-loop response was graded and non-cooperative

(Figure 4.21). The closed-loop responses remained bimodal for 7xtetO (Figure 4.22)

although more cells were found with intermediate expression levels compared to tTA

(Figure 4.5). NLS-tTA stability was reduced to a -10 minute half-life (Figure 4.19),

suggesting that the increased stability of tTA was indeed due to a stable cytoplasmic

fraction not susceptible to rapid degradation. Incorporating both nuclear transport and

the shorter tTA half-life in our model (Figure 4.23), we can recapitulate the closed-loop

responses for NLS-tTA (Figure 4.24) using measured in vivo parameters for the open-

loop promoters (Table 4.4). The more pronounced bimodal response from nuclear

transport-limited tTA (Figure 4.5) compared to NLS-tTA remains unclear, but likely

depends on details of tTA transport. Finally, our preliminary simulations with this type

of cell-cycle dependent nuclear transport of tTA indicate an increased separation of ON

and OFF peaks (Figure 4.25) but not near what we measured experimentally.



Figure 4.20. Localization of untagged and SV40-NLS tagged tTA-YFP fusion

proteins. Both tTA variants were constitutively expressed from an ADH1 promoter in

the absence of doxycycline. The black "holes" in the tTA-YFP panel are vacuoles, NOT

the nucleus.
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Figure 4.21. Open-loop response of NLS-tTA is graded. An ADHi promoter was used

to express NLS (SV40)-tTA constitutively from a yeast centromeric plasmid and

doxycycline was added to reduce the active fraction. (A) The steady-state expression

distributions of both ixtetO and 7xtetO promoters are graded and unimodal. (B) The

promoter response curves are well fit to a Hill coefficient of-1 and resemble those of the

regular tTA (Figure 4.6). Error bars indicate s.d. of triplicate samples.
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Figure 4.22. Closed-loop response of NLS-tTA. A SV40 NLS was fused to the N-

terminal of tTA and the closed-loop reporter response at steady-state was measured by

flow cytometry. The feedback strength was modulated by varying doxycycline as in

Figure 4.5. The measured expression profiles for NLS-tTA remain bimodal, but less so

compared to normal tTA.
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Figure 4.23. The schematic of the full stochastic model. All the states and elementary

steps considered are shown. The description of each parameter can be found in Table



4.4. This model was used to simulate the steady-state reporter distributions in Figures

4.24 and 4.25.

Table 4.4. Parameters used in the stochastic model

Description Value / Error Unit

1 xtetO 7xtetO

Maximum TF mediated

promoter activation

Basal burst factor

Y Promoter inactivation

K TF-promoter
dissociation constant

Transcription

'P Translation

11 Nuclear translocation

mRNA degradation

Reporter degradation

Cytoplasmic TF

degradation

6
TFN Nuclear TF degradation

25 (16, 39)

0.04±0.02

50 (40, 74)

12500±5500

5 (3.5, 6.8)

0.015±0.01

25 (20, 32)

2500±460 # Nuclear TF

500 a

23.1 b

0.2 C

0.04±0.009

bm

min-

min-'

min-'

min-'

min-'

min~'0.07±0.03 e

Range of dissociation
K dto 1K d # Nuclear TF

constants

a. y and pt cannot be estimated independently

b. Average translation rate in S. cerevisiae based on (Ghaemmaghami et al., 2003; Bell et al., 2006)

c. Inferred from the nuclear-cytoplasmic partitioning of NLS-tTA and (Becskei et al., 2004)

d. Assumed equal to the dilution rate

e. Obtained by fitting the Western blot data in Fig 3C to a biexponential rate describing the process:

Cytoplasmic TF -> Nuclear TF - 0. A nuclear translocation rate of 0.2 min-' was assumed.

f. Inferred from equation [4.2] and range of doxycycline concentrations used in our experiments

6
RPT

bTFC
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Figure 4.24. Simulation of closed-loop response. Stochastic simulations were

performed using the scheme in Figure 4.23 and parameter values in Table 4.4. Results

capture differences between the graded versus bimodal expression profiles between

lxtetO and 7xtetO and generally agree with experimental closed-loop NLS-tTA data

(Figure 4.22).
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Figure 4.25. Simulation of closed-loop response with a periodic, cell-cycle dependent

nuclear transport rate. Period nuclear transport leads to a better separation between the

ON and OFF states of reporter expression. The periodic nuclear translocation rate was

modeled as rq(t) 0.1 cos(1 + 2frt /100)mt1in-1 . The 7xtetO parameter set in Table 4.4 was

used.

4.5 Discussion

Surprisingly, a stochastic model that only accounted for intrinsic noise was able to

describe our experimental results when the NLS-tTA was employed. Extrinsic noise is

significant in fluorescent reporter proteins, but the corresponding mRNA noise appears

completely intrinsic in nature. This suggests the source of extrinsic noise is likely due to

global fluctuations in translational expression capacity (Colman-Lerner et al., 2005).

Clearly, in comparing IxtetO to 7xtetO, intrinsic noise is necessary for bimodal

expression, but because protein feeds back on its own expression, extrinsic noise might

be expected to play a role in dictating the steady-state response. Introducing slow,

uncorrelated fluctuations in translational capacity with an autocorrelation time of the cell

cycle cause should cause both the ON and OFF peaks to widen, leading to less well

separated distributions. It may be that extrinsic noise plays less of a role because the

variation in fluorescent protein we measured does not accurately reflect variation in

nuclear tTA activity. It is also formally possible that extrinsic noise in translational

capacity is somehow correlated with whether the feedback loop is ON or OFF, although

we have no evidence in support of this idea.



In principle, the result in Figure 4.17 should remove any lingering doubts about

the non-cooperative open-loop response of 7xtetO. If the response were truly

ultrasensitive and the measurements in Figures 4.6 and 4.7 were incorrect, than

stabilizing the activator would not abolish the bimodality but rather alter the range of

positive feedback strength over which it occurs.

Another possibility is that non-linear degradation or dilution of the TF results in a

deterministic bistability. A recent study (Tan et al., 2009) demonstrated that in a synthetic

positive feedback circuit of T7 RNA polymerase in E. coli, bistable gene expression can

be generated with non-cooperative activation because of non-linear growth retardation

caused by high levels of T7 RNA polymerase. We do not consider this mechanism as the

cause for bimodal expression in our system for multiple reasons. First, no growth

retardation was observed with the 7xtetO positive feedback strain in the bimodal regime

(500-1000 ng/mL doxycycline). Second, although both lxtetO and 7xtetO positive

feedback strains exhibited slight growth retardation (a -120-150 minute doubling time

versus -100 minute in the normal case) when cultured with 0-200 ng/mL doxycycline, no

bimodality was observed with IxtetO positive feedback. In addition, the IxtetO promoter

variant containing an ADH1 terminator upstream showed no retarded growth at 0-200

ng/mL doxycycline, and yet it yielded bimodal expression profile in this regime. Third,

the degradation rates of the TF (Figure 4.19) are first order with respect to TF levels.

We were not able to completely account for the better separations between the

ON and OFF states in the case of tTA with our model. One possibility is that multiple

steps or delays involved in the nuclear transport of tTA increases the stability. When

mRNA and protein half-lives are comparable, a 3-stage model with explicit transcription



and translation does lead to better separation and stability versus a 2-stage model with

coupled transcription/translation (Section 4.2.3). This, however, is related to the faster

degradation rates of the 3-stage model compared to the "equivalent" 2-stage model. The

effect of delays or additional first order steps has little effect on the distribution. A

second possibility is a true steady-state has not been reached in our experiments and the

bimodal expression observed is a transient phenomenon. A previous set of studies

demonstrated that the HIV- 1 Tat positive feedback loop is non-cooperative and can yield

a bimodal transient response (Weinberger et al., 2005; Weinberger and Shenk, 2007;

Weinberger et al., 2008). The Tat system possesses a single OFF steady-state that must

be transiently excited by Tat addition and eventually relaxes. It is unlikely for our system

to only have an OFF steady-state in the bimodal regime, since longer experiments (>30

hours) never resulted in a completely OFF population (Figures 4.26 and 4.27).

Moreover, we did not transiently add doxcycline addition to vary the feedback strength;

the concentration was kept constant.
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Figure 4.26. Induction kinetics in positive feedback strains. Before induction, cells

were cultured in mimimal medium containing 5,000 ng/mL. To induce high tTA

expression, cells were diluted in fresh medium containing 250 ng/mL doxycycline at time

= 0 hour. To maintain OD600 < 1.0, cells were back-diluted at 12 hours. For both tTA

and NLS-tTA, transient bimodality is observed with 7xtetO but not with IxtetO.
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Figure 4.27. Stochastic dynamics switching of bimodal population. (A) An initial

bimodal population of 7xtetO positive feedback strain grown at 750 ng/mL doxycycline

was sorted by fluorescent activated cell sorting (FACS) into ON and OFF populations

defined by low and high levels of YFP. Cells that were undergoing transition between

the two states, as indicated by an intermediate expression level, were not considered. For

the initially OFF population, steady-state distribution was recovered between 24-30

hours. For the initially ON population, relaxation to the steady-state required more than

30 hours. (B) The same experiment was performed with NLS-tTA bearing 7xtetO

positive feedback strain grown at 1000 ng/mL doxycycline. Both populations relaxed to

the steady-state within 24 hours.

A third possibility for the increased stability is variability and periodicity in the

nuclear transport of tTA. While we have not directly examined these dynamics, static

snapshots of cells constitutively expressing a tTA-YFP fusion indicate variability in its

nuclear localization (Figure 4.20). One possibility for this variability is cell-cycle

dependent transport. Fungi have a closed mitosis where the nuclear envelope does not

break down, but some fungal proteins do exhibit cell-cycle nuclear transport due to

enhanced nuclear permeability during mitosis (Ovechkina et al., 2003). In addition,

proteins in budding yeast with cyclin-dependent NLS's display cell-cycle dependent

nucleocytoplasmic shuttling (Kosugi et al., 2009). Whatever the effect, varying the

strength of the NLS of tTA and possibly other TFs seems to have unexpected

consequences on target genes when feedback loops are present.

To conclude, this work is related to examples where stochastic views of positive

feedback in enzymatic cycles (Smoilov et al., 2005) and spatial organization (Altschuler

et al., 2008) possess bimodal activity when a deterministic description admits an

intermediate activity. In addition, a stochastic view of a non-cooperative positive
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feedback loop involved in HIV escape from latency leads to a transient bimodal response

(Weinberger and Shenk, 2007), but our work demonstrates a steady-state bimodal

response. The hallmarks of noise-induced bimodality in gene expression - positive

feedback loops and unstable proteins - are characteristic of many TFs and promoters and

likely widespread in biological systems (Table 4.5). This work also suggests that

multiple binding sites may be associated with all-or-none response not by virtue of

cooperative binding but because of increased noise. Finally, this work provides new

guidelines for the construction of a bistable switch based on positive feedback for

applications in synthetic biology and metabolic engineering.

Table 4.5. Transcription factors known to display the hallmarks of noise-induced

bimodality.

Evidence for
TF half-life # of binding Evidence for

Organism TF direct positive
autreglaton (minutes) sites variability

B. subtilis ComK

S. cerevisiae PDR3

S. cerevisiae REB]

C. elegans ELT-2

van Sinderen et

al., 1994

Delahodde et

al., 1995

Wang et al.,

1998

Fukushige et

al., 1999

Schier et al.,

15

(Nanamiya et

al., 2003)

51

(Belle et al.,

2006)

12

(Belle et al.,

2006)

N/A

7-40

4

(Hamoen et aL.,

1998)

2

(Delahodde et

al., 1995)

3

(Wang et al.,

1998)

Multiple

(Fukushige et

al., 1999)

6

Maamar et al.,

2007

Downstream

readout PDR5

(Zenklusen et

al., 2008)

N/A

protein

(Fukushige et

al., 1998)

protein
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1992 (Kellerman et

al., 1990)

Boyer et al.,

2005

Majerus et al.,

1992

Angel et al.,

1988

90 (Oct4)

(Saxe et al.,

2009)

70-80

(Nishida et al.,

2007)

(Schier et al., (Surkova et al.,

1992)

N/A

3

(Majerus et al.,

1992)

150 2

(Bhoumik et (Angel et al.,

al., 2004) 1988)

2008)

protein

(Kalmar et al.,

2009)

protein

(De la

Houssaye et al.,

2008)

N/A

N/A - not available

a) Also indirect autoregulation through Oct4-Sox2
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5 Future directions

5.1 Overview

We exploited spontaneous fluctuations in gene expression to describe the

molecular mechanisms and kinetic pathways underlying transcriptional bursting. By

quantifying the effect of activators on the dynamics of mRNA production, we were able

to describe how activators selectively utilize different promoter elements to control the

kinetics of initiation and reinitiation. However, this work only represents a small

contribution to a much larger picture of transcriptional regulation. The transcriptional

machinery has evolved to be complex and redundant to allow integrations of multiple

signaling pathways and provide biological robustness. In eukaryotes, an additional

complexity lies in the fact that protein binding sites are often wrapped in nucleosomes.

How do transcription factors, nucleosomes, and the underlying DNA sequence act

together to determine the kinetics of RNA Pol II transcription? Although there is still

debate about the relative contribution of DNA sequence preference and chromatin

remodeling factors in determining nucleosome positions (Jiang and Pugh, 2009), the

universal nature of the nucleosome-positioning code has been established. It is widely

accepted that both individual nucleosome locations and higher-order chromatin structure

are explicitly encoded in the genome (Kaplan et al., 2009). The most common view for

how nucleosome positioning regulates gene expression is via controlling the accessibility

of the core promoter. It would be interesting to see how promoter accessibility influences

the transcriptional dynamics. In Section 5.2, we describe our attempts to characterize the
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effects of nucleosome positioning on gene expression noise and uncover the mechanism

by which such effects are mediated.

Defining the detailed kinetic pathway by which activators mediate the steps

involved in PIC formation remain a major scientific challenge. Although our approach

provides a coarse-grained view of how activators regulate the rates of initiation and

reinitiation, it does not reveal how activators modulate the formation and function of the

biochemical intermediates involved in these steps. These biochemical intermediates

often involve additional transcriptional coactivators, such as the Mediator complex. In

order to propose a more detailed kinetic pathway of transcriptional activation, we need to

better define the kinetic roles of coactivators. In Section 5.3, we describe our initial

efforts at determining the kinetic roles of the Mediator by direct recruitment to the

promoter.

At the network level, transcriptional regulation alone offers a rich set of

dynamical behaviors, spanning multistability, oscillation and noise suppression. These

irregular dynamic behaviors have important implications for human disease and

developmental programs (Maheshri and O'Shea, 2007; Raj and van Oudenaarden, 2008).

As demonstrated in Chapter 4, relatively small changes in the promoter region can have

large effects on the network dynamics. Therefore, the molecular mechanisms of

transcription regulation constitute an important knowledge since disturbances in

transcriptional programs can have profound physiological consequences. In Section 5.4,

we describe our efforts in further connecting molecular level changes in the promoter to

the emergence of bimodal gene expression, a hallmark in cellular decision-making.
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5.2 Defining the effect of nucleosome positioning on the kinetics of

transcription

While the strong effect of chromosome positioning on gene expression noise has

been previously identified (Becskei et al., 2005; Batuda et al., 2007), little is known

about the effects of local nucleosome positioning on transcriptional noise. Strikingly, we

observed substantial differences in mean expression and variability when the same

1 xtetO promoter is placed at different loci using different integrating constructs. The

promoter variants at leu2 and ura3 have higher dynamic ranges of expression than their

his3 counterpart (Figure 3.5). The burst statistics reveal that for the leu2 and ura3

promoter variants, the basal burst size is lower while the maximum burst size is higher.

The burst frequency does not vary significantly among these promoter variants. We

concluded from this preliminary finding that nucleosome positioning affects how burst

size is regulated by activators.

To determine if burst size regulation was correlated to nucleosome positioning or

accessibility, we applied an in silico nucleosomal occupancy model (Kaplan et al., 2009)

on our promoter variants. For the leu2 and ura3 variants, the in silico model suggests the

region upstream of the tetO binding site is nucleosome-free but the tetO binding site, and

part of the CYC1 core promoter lie in a nucleosome-occluded region (Figure 5.1). For

the his3 variant, on the other hand, the CYC1 core promoter is relatively nucleosome-free.

The nucleosome-free region immediately upstream of tetO in the leu2 and ura3 variants

is likely caused by the flanking sequences of the integration construct, rather than an

intrinsic property of those loci. Indeed, the in silico model predicts a similar upstream

nucleosome free region at the his3 locus when an ADH1 terminator sequence is upstream
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of the 1 xtetO site or the 1 xtetO is replaced with 7xtetO (7 tetO binding sites in tandem).

We experimentally measured the burst statistics of these two promoter variants (see

Chapter 4 for the results of 7xtetO), and obtained results similar to the leu2 and ura3

variants. Taken together, a nucleosome-free region upstream of the binding site leads to

a larger dynamic range of burst size regulation.
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Figure 5.1. Predicted nucleosome occupancy of the tetO promoter variants. The

maps of nucleosome occupancy were obtained using the computational model by Kaplan

et al. (2009). The nucleosome occupancy on the CYC] core promoter increases when

nucleosome-excluding sequence is placed upstream of the tetO site.

Interestingly, by introducing a nucleosome-excluding sequence upstream of the

promoter region, we could increase the dynamic range and variability of gene expression

significantly. Our findings lend support to the idea that statistical positioning of

nucleosomes can directly affect the kinetic roles of activators and hence the heterogeneity

of gene expression. Here, by preventing nucleosome formation, the upstream sequence

may confer higher equilibrium nucleosome occupancy on the core promoter by
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repositioning the nucleosomes in the region thereby leading to lower basal expression.

However, the mechanism by which this sequence upregulates reinitiation at high activator

levels is unclear. One explanation may rely on the regional accessibility of the promoter.

By preventing nucleosome formation, the upstream sequence may create a more open

chromatin state within the promoter that is permissive to reinitiation events. An obvious

future direction then is to test these possibilities. Initially, we will test how far an anti-

nucleosomal sequence can be from the activator binding site and still has an effect. To

test the regional accessibility hypothesis, the chromatin state of the region can be assayed

by ChIP.

5.3 Probing the kinetic roles of the Mediator by direct recruitment

We lack complete knowledge of the biochemical intermediates that occur during

the slow initiation step that governs burst frequency and how activators regulate these

intermediates. Since both TBP and RNA Pol II are present at the CYC1 core promoter in

repressed conditions (Martens et al., 2001), RNA Pol II recruitment is not rate-limiting

for our promoters. One possibility is the rate-determining step may depend on SAGA

and its composition; gene-specific activators may control the utility of the SAGA

pathway. However, a recent study (Lee et al., 2010) shows that SAGA occupies the

CYC1 promoter under both repressed and induced conditions, whereas Mediator is

present only under induced conditions. Because SAGA is not required for activation at

the CYC1 promoter, we hypothesized that the main regulatory role of the VP 16 activation

domain in tTA is to recruit a certain form of the Mediator. Indeed, recruitment of

Mediator can be rate-limiting in many contexts (Weake and Workman, 2010).
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To demonstrate that recruitment of Mediator (but not SAGA) is sufficient to

induce gene expression, we created a tetR-Med2p fusion protein. Med2p is found in the

tail domain of the Mediator complex and it is known to be a potent activator by itself

(Chang and Ptashne, 2004; Wang et al., 2010). By directly recruiting the tetR-Med2p

fusion protein to the tetO-CYC1 core promoter, we can circumvent the need of an

activator for gene activation. Moreover, the Med2p fusion protein may utilize canonical

and non-canonical TATA elements differently because of possible changes in the

conformation and stability of the resulting transcription complexes. Indeed, titrations of

tetR-Med2p lead to markedly different dose-response curves (Figure 5.2). Surprisingly,

the wild-type 1 xtetO promoter remains fully activated oven a large range of doxycycline

concentrations corresponding to a ~100-fold range of tetR-Med2 levels. Moreover, the

dynamic range of expression increases for a number of tetO and TATA mutants,

implying that burst size may be up-regulated. One possibility that explains these findings

is that since tetR-Med2p makes direct contact with the DNA, it does not unbind as easily

as when brought to the promoter via interaction with an activator. The prolonged

effective residence time of Mediator then leads to a longer life-time of the transcription

complex. As a result, the saturation of the canonical element occurs at a low level of

activator (in this case tetR-Med2) since the life-time of the reinitiation complex is

intrinsically longer. This model predicts that the burst size attains a maximum at a low

level of tetR-Med2p, and that tetR-Med2p enables TATA and binding site mutants to

realize a higher maximum burst sizes. Moreover, since Mediator recruitment could be

rate-limiting, direct recruitment of Mediator to the canonical TATA may also increase to

burst frequency. These predictions can be tested by mRNA FISH measurements.
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Figure 5.2. Mean YFP expression of IxtetO promoter variants under the control of

tetR-Med2p. An ADHI promoter was used to constitutively express tetR-Med2p. The

active tetR-Med2p level was modulated by doxycycline. All promoter variants are

integrated at the his3 locus.

5.4 Bridging molecular details and functional consequences: tuning of

bimodality in transcriptional positive feedback loops

Most previous investigations of gene expression noise, including our own

described in Chapter 4, have found or assumed the characteristic signature of burst

frequency regulation by transcription regulators. However, our findings in Chapter 3

strongly suggest that transcription activators can regulate both burst size and burst

frequency, and they have broad implications for functions. As demonstrated in Chapter

4, transcriptional positive feedback loops can lead to bimodal gene expression and

provide a mechanistic ground to cellular decision-making. How activators modulate
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burst size and frequency regulation can have important outcomes when the positive

feedback loop is involved.

It has been previously shown the deterministic bistable states in a positive

feedback loop can be stabilized by burst frequency regulation (Friedman et al., 2006;

Carmaker and Bose, 2007). In contrast, theoretical and computational investigations

(Quinn and Maheshri, unpublished results) demonstrate that burst size regulation has the

opposite effect of destabilizing deterministic bistable states, and that mixed burst

frequency and size regulation can lead to very different outcomes depending on the

relative amount of regulation between burst size and burst frequency. It would be

interesting to see if these model predictions can be realized in our synthetic positive

feedback system. For example, we can use the Type II TATA mutant (Section 3.3.1) to

create a positive feedback circuit with primarily burst size regulation. By relating

molecular level changes to profound functional outcomes on decision making, we can

gain a deeper understanding on how tunability and plasticity of gene regulatory networks

underlie the evolvability and survival strategies of an organism, and thereby achieve a

highly mechanistic genotype-phenotype map. Such pursuit is, beyond any doubt, a grand

goal of systems biology.
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Appendices

Appendix 1 Yeast strains and plasmids

Appendix 1.1 Yeast strains

Strain Name Relevant Genotype

Y88 MATa ura3A::Pxteto-YFP-HIS3Mx6

Y123 MATa leu2A::PAdhlterm-7xtetO-YFP-HIS3

Y124 MATa leu2A:Pixteto-YFP-HIS3

Y128 MATa his3::Pixteto-tTA-HIS3 leu2A::PAdhlterm7xtetO-YFP

Y139 MATa his3::PixtetO-YFP-HIS3

Y 139M MATa/a his3/his3::Plxteto-YFP-HIS3/ PIxteto-CFP-HIS3

Y145 MATa his3::PxtetO-tTA-CFP-HIS3 leu2A::PAdhlterm7xtetO-YFP

Y161 MATa his3::P7xtetO-tTA-HIS3 leu 2 A::PAdhlterm7xteto-YFP

Y162 MATa his3::.P7xteto-tTA-CFP-HIS3 leu2A:.PAdhlterm7xtetO-YFP

Y163 MATa his3::PxtetO-YFP-HIS3

Y163M MATa/a his3/his3:.P 7xtetO-YFP-HIS3/ P7xteto-CFP-HIS3

Y253 MATa met4A::TRP] met30A::LEU2 his3.: Pixteto-Ub-tTA-HIS3

leu2A::PAdhlterm7xtetO-YFP

Y254 MATa met4A.: TRP1 met30A::LEU2 his3.: P7xteto-Ub-tTA-HIS3

leu2A::PAdhIterm7xteto-YFP

Y286 MATa his3::PAdhlternlxtetO-YFP-HIS3

Y290 MATa his3::Pixteto-NLS-tTA-HIS3 leu2A::PAdhlterm7xtetO-YFP

Y291 MATa his3::P7xteto-NLS-tTA-HIS3 leu2A::PAdhlterm7xtetO-YFP

Y293 MATa his3:: PAdhIterm-IxtetO-tTA-HIS3 /eu2A::PAdhlterm7xtetO-YFP

Y349 MATa his3::Pixtet(Mutant 12)-YFP-HIS3

Y350 MATa his3::PixtetO(Mutant 17)-YFP-HIS3

Y352 MATa his3::PixtetO(Mutant2l)-YFP-HIS3

Y353 MATa his3::PIxteto(Mutant 22) -YFP-HIS3
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Y354 MATa his3: :Plxteto(Mutant 2 3)-YFP-HIS3

Y355 MATa his3:.P IxtetO(TATA mutant 1)-YFP-HIS3

Y356 MATa his3::PIxtet(TATA mutant 2)-YFP-HIS3

Y487 MATa his3::PIxtetO(TATA no weak sites)-YFP-HIS3

Y488 MATa his3::PxtetO(TATA mutant 3)-YFP-HIS3

Y500 MATa leu2 A::PIxteto(TATA mutant l)-YFP-HIS3

Y501 MATa leu2 A::PxtetO(TATA mutant 2)-YFP-HIS3

Y502 MATa leu2A::PlxtetO(TATA no weak site)- YFP-HIS3

All S. cerevisiae strains were derived from the W303 background. All transformations

were carried out using the LiAC/ssDNA/PEG method (Guthrie et aL, 2004)

Appendix 1.2 Yeast plasmids

Plasmid Name Description

B56 Yeast centromeric PADHi-tTA PixtetO-YFP PPGKl-tdTomato

B059Y Yeast centromeric Plxteto-YFP

B117Y Yeast centromeric P7xteto-YFP

B126 Yeast centromeric PGAL1-tTA

B172 Yeast centromeric PGAL1-tTA-CFP

B179 Yeast centromeric PADH-tTA-CFP

B179b Yeast centromeric PADHI-tTA-YFP

B228 Yeast centromeric PADHI-tTA

B314 Yeast centromeric PADH-NLS-tTA

B317 Yeast centromeric PADH-NLS-tTA-YFP

B328 Yeast centromeric PADH1-Ub-tTA

B329 Yeast centromeric PGAL1-Ub-tTA

B499 Yeast centromeric PADH-NLS-tetR-Med2

All yeast centromeric plasmids used in this study were based on pCM 189 (Gari et al.,

1997)
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Appendix 2 Protocols

Appendix 2.1 Growth conditions

Yeast cultures were grown at 30'C in 96-well deep-well plates on a Variomag*

Teleshake electronic stirrer (Thermo Scientific) at a speed of 1200 rpm/minute in

synthetic minimal medium supplemented with the appropriate sugar and amino acids.

For doxycycline titration experiments, a freshly grown overnight culture was diluted to

an A 6 0 0 nm of 0.05 and induced with doxycycline (Sigma-Aldrich), then grown for 12

hours to reach A600nm of 1. Cells were further diluted to an A600nm of 0.1 and grown an

additional 8-12 hours to ensure steady-state fluorescence expression. For galactose

induction experiments, freshly grown cells were diluted to an A600nm of 0.05 and grown in

synthetic dextrose medium to an A600nm of 1, then transferred to synthetic medium

containing galactose from 0 to 2%, balanced by raffinose, such that the total sugar

content remained at 2%. Cells in galactose/raffinose media were grown an additional 8

hours before the measurement of fluorescence expression.
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Appendix 2.2 Fluorescence measurements

Population-averaged fluorescence intensities were evaluated with a Varioskan*

Flash spectrofluorimeter (Thermo Fisher Scientific). Single cell fluorescence

measurements were taken using either flow cytometry, using an HTS equipped LSRII

flow cytometer (BD Biosciences), or fluorescence microscopy. Microscopic studies were

performed with a Zeiss AxioObserver inverted microscope and Metamorph data

acquisition software (Universal Imaging). For each sample, 700-2000 cells were

imaged. Average cell fluorescence was obtained by dividing total cell fluorescence by

cell area. For all fluorescence measurements the cellular autofluorescence was measured

using a W303 strain without fluorescent reporters. For all experiments performed, W303

strains carrying integrated copies of ADH1Pr-XFP at the leu2 locus were always used as

positive controls to account for any changes in illumination intensity and/or growth

conditions. These fluctuations were small, less than 10% of the expression level. After

correcting for autofluorescence, all population-averaged fluorescence measurements were

normalized by using the corresponding positive control value.

Appendix 2.3 Fluorescence in situ hybridization (FISH) for detecting

single mRNA molecules

Oligonucleotide probes targeting YFP and tetR transcripts (Table A2. 1) were

designed using the web-based probe designer at http://www.singlemoleculefish.com and

obtained from Biosearch Technologies, Inc. An additional amine group was introduced

at the 3' end of the oligonucleotide for coupling to the tetramethylrhodamine (TMR)

fluorophore. Probes were purified on an HPLC column and only the highly TMR-coupled
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probes were retained. Fixation, hybridization and washing were performed as described

in (Raj et al. 2008). The hybridization solution and wash buffer contained 10%

formamide. Oligonucleotide probes at -5 pM were diluted 50-fold into the hybridization

solution. Imaging was performed on a Zeiss AxioObserver inverted microscope

equipped with an X-Cite* 120 PC mercury arc lamp (EXFO), a 100X/1.40 objective

(Zeiss) and a rhodamine-specific filter set (Chroma Technology Cat. No. 31 000v2).

Table A2.1. Oligonucleotide probes

Sequence

AATTCTTCACCTTTAGACAT

AATTGGGACAACACCAGTGA

CATCACCATCTAATTCAACC

GACAGAAAATTTGTGACCAT

CATCACCTTCACCTTCACCG

AAGGTCAATTTACCGTAAGT

ACCAGTAGTACAAATTAATT

GTTGGCCATGGAACTGGCAA

ATAACCTAAAGTAGTGACTA

ATCTAGCAAAACACATTAAA

TGTTGTTTCATATGATCTGG

CATGGCAGACTTGAAAAAGT

CTTTCTTGAACATAACCTTC

GTCATCTTTGAAAAAAATAG

CAGCTCTGGTCTTGTAGTTA

GTATCACCTTCAAACTTGAC

TAATTCGATTCTATTAACTA

TCTTCTTTAAAATCAATACC

TTTGTGACCTAAAATOTTAC

used in fluorescence in situ hybridization

Probe Name

YFPO1

YFPO2

YFPO3

YFPO4

YFP05

YFP06

YFP07

YFP08

YFP09

YFP1O

YFP1 1

YFP12

YFP13

YFP14

YFP15

YFP16

YFP17

YFP18

YFP19
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GAGAGTTATAGTTGTATTCC YFP20

TCAGCAGTGATGTAAACATT YFP21

CTTTGATACCATTCTTTTGT YFP22

TTGTGTCTAATTTTGAAGTT YFP23

TTGAACACCACCATCTTCAA YFP24

TTTGTTGATAATGGTCAGCT YFP25

GGACCATCACCAATTGGAGT YFP26

AATGGTTGTCTGGTAACAAG YFP27

AAGGCAGATTGATAGGATAA YFP28

CTTTTCGTTTGGATCTTTGG YFP29

CTAACAAGACCATGTGGTCT YFP30

ATACCAGCAGCAGTAACAAA YFP31

ACAATTCATCCATACCATGG YFP32

CTTTTATCTAATCTAGACAT tetR 01

CTAATGCGCTGTTAATCACT tetR_02

ATTCCGACCTCATTAAGCAG tetR_03

GTTTACGGGTTGTTAAACCT tetR_04

TCTACACCTAGCTTCTGGGC tetR_05

ATGCCAATACAATGTAGGCT tetR_06

GCAAAGCCCGCTTATTTTTT tetR_07

ATCTCAATGGCTAAGGCGTC tetR_08

GTGAGTATGGTGCCTATCTA tetR_09

TTTCCCCTTCTAAAGGGCAA tetR 10

TTACGTAAAAAATCTTGCCA tetR 11

CACATCTAAAACTTTTAGCG tetR 12

CCATCGCGATGACTTAGTAA tetR 13

TGTACCTAAATGTACTTTTG tetR_14

CATACTGTTTTTCTGTAGGC tetR 15

GGCTAATTGATTTTCGAGAG tetR 16

GTGAAAAACCTTGTTGGCAT tetR 17

AGTGCATATAATGCATTCTC tetR 18
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AAGTAAAATGCCCCACAGCG tetR_ 19

TGATCTTCCAATACGCAACC tetR_20

CTTCTTTAGCGACTTGATGC tetR_21

TCAGTAGTAGGTGTTTCCCT tetR_22

TCGTAATAATGGCGGCATAC tetR_23

GATCAAATAATTCGATAGCT tetR_24

AAGGCTGGCTCTGCACCTTG tetR_25

GATCAATTCAAGGCCGAATA tetR 26

GTTGTTTTTCTAATCCGCAT tetR 27

GCGGACCCACTTTCACATTT tetR 28

Appendix 2.4 Image acquisition and analysis for FISH

The sample was placed on a coverglass coated with poly-lysine to enhance

adhesion. Z-stacks of 17 images 0.3 microns apart spanning the full cellular volume were

taken for each sample. Well-defined signals from diffraction-limited spots were observed

in cells with low levels of mRNA expression, with each spot representing a single mRNA

molecule (Raj et al, 2008). The mRNA molecules in each cell were counted using

custom software written in MATLAB (Mathworks). Briefly, the algorithm applied

region-based thresholding, identified local maxima as potential spots, and counted the

number of connected components in three dimensions. We could only reliably detect -20

mRNA molecules per cell both manually and via the algorithm, because at higher levels

signals were intense with large overlap between diffraction-limited spots. As such, we

created calibration curves for the integrated rhodamine intensity versus the number of

molecules obtained by the counting algorithm for test cells that had low expression

levels, and obtained a linear correlation for up to 15 mRNA molecules. The simple linear
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relationship allowed us to extrapolate the number of molecules from integrated

fluorescence intensity in cells with large number of mRNA (i.e. > 15). Extrapolation was

only used to obtain mRNA numbers if fluorescence signals were greater than the y-

intercept of the calibration curve. The mRNA numbers from particle counting were used

when the fluorescence signals fell below the y-intercept.

Appendix 2.5 Quantification of tTA half-life

Degradation rate of tTA was measured by GALl promoter shutoff experiments

followed by quantitative western blotting. Briefly, strains with tTA expression under a

galactose-inducible promoter were grown in 0.5% galactose and 2% raffinose for 6 hours

to allow tTA expression. Then, cells were transferred to 2% glucose to stop expression.

Samples were collected and frozen at specific time points after the promoter shutoff. Cell

lysates were prepared according to the protocol in (Belle et al. 2006). Western blotting

was performed according to standard procedures. Blots were stained with a 1:2000

dilution of an affinity purified mouse monoclonal antibody raised against the wild type

bacterial Tet repressor (MoBiTec Cat. No. TETO2). Membrane images were acquired by

the Alphalmager* (Alpha Innotech).

The half-life of tTA variants was determined from Western blots as in (Belle et aL.

2006). To generate densitometric data, images of the immunoblots were processed with

ImageJ (NIH). The 8-bit image was converted to grayscale and inverted such that the

dark areas (protein bands) became light. Background intensity was then subtracted from

the image. A rectangular box was defined manually to enclose a single band completely,

and the integrated density within the box was recorded. We observed a lag of ~60

minutes before the protein started to degrade for all tTA variants. This lag is likely due to

125



the time required for complete mRNA depletion and protein maturation. After the lag,

protein levels based on densitometric data followed reasonably first-order decay kinetics.

Appendix 2.6 Quantification of mRNA half-life

To measure the degradation rate of mRNA, we grew a closed-loop strain

expressing both tTA and a YFP reporter for 18 hours with dilution to ensure steady-state

expression and then stopped transcription by adding 10 ptg/mL doxycycline and 3 pg/mL

transcriptional inhibitor thiolutin (Sigma-Aldrich). Cells were fixed at specific time

points after inhibition. The abundance of both tTA and YFP mRNAs were measured by

FISH as described above.

Appendix 2.7 Stochastic simulations

Direct stochastic simulations were performed using Dizzy

http://magnet.systemsbiology.net/software/Dizzy/) (Ramsey et al.s, 2005)
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Appendix 3 A high-throughput, distribution-based approach to

parameter estimation in deterministic models

Appendix 3.1 Introduction

In this section, we propose and test a methodology to rapidly and quantitatively

characterize a library of genetic components. The concept is as follows: we define one

component as a single gene (with promoter) and any gene-specific transcription factors.

Its steady-state behavior is captured using a model defined by a small set of

thermodynamic and kinetic parameters, such as the model in Section 4.2.1. Next, we

create a library of this component by mutagenesis (e.g., of the promoter) - each member

then has a potentially different set of parameters. Rather than looking at individual

members, we quantitatively characterize the entire library with high-throughput single-

cell measurements.

Appendix 3.2 Results and Discussion

To demonstrate this approach, we employed the Tet-OFF system (Gari et al.,

1997) and monitored single-cell gene expression state with YFP and flow cytometry.

Because there is a distribution of responses even in a genetically homogeneous

population, we used a constitutively expressed RFP reporter to account for non-genetic

but correlated variation due to plasmid fluctuations and global noise. Both reporters were

put on the same centromeric plasmid.
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PADHFP
1xtetO library

Figure A3.1. The one-component system. The system is composed of a constitutively

expressed tTA activator, an 1 xtetO promoter driving the expression of YFP, and a

constitutively expressed RFP that serves as a global reporter. All three parts were placed

on the same centromeric plasmid.

Microscopic analysis (Figure A3.2) of YFP expression from the one component

indicates a bimodal expression profile. The high peak is likely due to the doubling of

centromeric plasmid. The non-genetic variation effectively accounts for over 80% of the

cell-to-cell variation since RFP is highly correlated with YFP in this case.

60 50

10 YFP =0.12RFP - 48
50- 40 R2 

= 0.86

40
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220
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0 30
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Figure A3.2. Correlated variation due to global noise and plasmid fluctuations.

Effectively over 80% of the cell-to-cell variation can be accounted for by the RFP global

reporter.

We designed two tetO libraries (diversity 103), termed Library 3 and Library 4

(Figure A3.3), based on the PSAM in Section 3.2.5 (Figure 3.4). The distribution of

dissociation constant KD of the library can be predicted using the PSAM and equation
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[3.7]. Figure A3.4 shows the KD distribution of Libraries 3 and 4 predicted by the

additive model. The KD distribution spans two orders of magnitude. Figure A3.5 shows

the density plots of steady-state YFP expression profiles at various doxycycline

concentrations before (left) and after (right) correction with the global reporter. The

noise in the wild type strain can be reduced by over 80% with the global reporter. In

contrast, there is no significant noise reduction in Libraries 3 and 4 since genetics

differences account for much of the variation.

*123456~789
base CCAC TITA2CA& ;Ct1;tATGAAAc. CAJCCa AC3#

fi05ry 5 -TeCAcrTqACCAC15e c umacocAtilACcAAAAcTcAAnAcGAC -3'
ibrary3 5' -TCGAGTTTACCACCT T T aNANHNAGAAAAGTGAAAGGTAC- 3'

Iibrary4 a -wcGTnomAec e 7$ r W U A :;AxAGTAAAGwome

Figure A3.3. Design of tetO promoter mutant libraries. The design was guided by the

position specific affinity matrix of tetO (Figure 3.4). Codes for degenerate bases: N -

G,A,C,T; D - G,A,T; H - A,T,C.

LIbrary 3 & 4

6W-

400

200

10 10 10 10
K(mutant)/ K(wild-type)

Figure A3.4 The KD distributions of Libraries 3 and 4. The KD value of each library

member in Figure A3.3 was predicted using the PSAM (Figure 3.4) and the additive

model (equation [3.7]).

129



100 10

10 102
z

100 100 500 1000 1010 50 10
[Dox] (ng/mL) 0Dox] 500g/mL)

Libraries 3&4 Libraries 3&4

104 10

C10 o 102

10 001 10

z

1010 100 500 1000 10 101 05 0 1 0

[Dox] (ng/mL) 0 100x] 500 1000

Figure A3.5. Density plots of steady-state YFP expression profiles of the mutant

libraries. Shown are the profiles at various doxycycline concentrations before (left) and

after (right) correction with the global reporter.

We looked at individual mutant clones to determine how mutations in the tetO

sequenice affected the regulatory response of the promoter. Figure A3 .6 shows the dose

response curves of the wild-type strain and four selected individual mutant clones along

with fits (solid line) to the model in Section 4.2.1. The only one parameter varied across

these clones is the dissociation constant KD (K in Section 4.2.1). The good agreement

between data and model confirms that the model can describe the steady-state expression

of the mutant library with a distribution of Kp values. To rapidly obtain the KD

distribution, we performed dox titrations on the entire library, and back calculated the KD

130

Wild-type strain Wild-type strain



distribution using the model. We could not, however, differentiate KD values greater than

25 since they corresponded to the off population in the absence of dox. Indeed, the

library KD distribution spans a much larger range (Figure A3.7) and agrees qualitatively

to the KD distribution predicted by the PSAM model (Figure A3.4).

tetO wild-type

i. tetO mutant I
Atet mutant 2SO0.8-

- ~ tetO neutant~

002 4
N tetO mutant 4

100

01 102 1 10'

[Dox] (ng/mL)
Figure A3.6. The dose response curves of four selected individual tetO mutants.

The solid lines are fits to the model in Section 4.2.1.
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Figure A3.7. The probability density functions of KD. The KD distributions were

inferred from the data in Figure A3.5 using equations [4.1] and [4.2].
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Appendix 4 Abbreviation list

chIP chromatin immunoprecipitation

FACS fluorescence activated cell sorting
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FRAP

FISH

GTFs

HAT

MLE

NER

NLS

PIC

PMF

PSAM

RSC

RNA Pol II

SAGA

SV40

TAF

TBP

tetO

TF

TFBS

TSS

tTA

VP16

133

fluorescence recovery after photobleaching

fluorescence in situ hybridization

general transcription factors

histone acetyltransferase

maximum likelihood estimation

nucleotide excision DNA repair

nuclear localization signal

preinitiation complex

probability mass function

Position specific affinity matrix

remodels the structure of chromatin

RNA polymerase II

Sptl -Ada-Gcn5-acetyltransferase

Simian virus 40 large T-antigen

TATA box binding protein associated factor

TATA box binding protein

tet-operator

transcription factor

transcription factor binding site

transcriptional start site

tet-transactivator

viral protein 16 from herpes simplex 1


