
Delivery, Design, and Mechanism of

Antimicrobial Peptides MASSACHUSES INSTIJTE
OF TECHNOLOGY

by SEP 16 2010
Tanguy Chau

B.S., Chemical Engineering LIBRARIES
University of California, Berkeley, 2004

ARCHNES
Submitted to the Department of Chemical Engineering

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Chemical Engineering Practice

at the
Massachusetts Institute of Technology

May 26, 2010

@ 2010 Massachusetts Institute of Technology
All rights reserved

Signature of the author

Tanguy M. Chau
Department of Chemical Engineering

May 26, 2010

Certified by

Gregory N. Stephanopoulos
Bayer Professor of Chemical Engineering

Thesis Supervisor

Accepted by

William M. Deen
Professor of Chemical Engineering

Chairman, Committee for Graduate Students



Abstract

Each year, 2 million people contract hospital-acquired bacterial infections, which causes the

death of 100,000 patients and costs the US healthcare system over $21 billion. These infections

have become dangerously resistant to our existing line of antibiotics and are rapidly spreading

outside of hospitals and into communities. As molecular targets to develop new antibiotics are

becoming exhausted, clinicians and scientist are concerned that antibiotic resistant infections will

wipe out most of the major health benefits acquired over the last century. The work described in

this thesis develops new antimicrobials strategies against bacterial infections, focusing on

antimicrobial peptides (AmPs).

We first delivered genes inducing the toxic expression of AmPs and other lytic agents

directly into bacteria using reengineered bacteriophages. Expression of these lytic agents in

lysogenic bacteriophages resulted in bactericidal activity, and demonstrated, for the first time, a

long-term cidal effect for over 20 hours. We then enhanced the efficacy of our approach by

expressing the same agents in lytic bacteriophage, which resulted in complete suppression of the

bacterial culture and prevented bacterial regrowth and resistance to bacteriophages.

Since a large fraction of medical infections originates at the surface of implantable devices,

we developed film coatings that release active AmPs to cover these surfaces and prevent bacterial

colonization. We incorporated AmPs in layer-by-layer films and demonstrated that the kinetics of

AmP release can be adjusted. These released AmPs still actively prevented bacterial growth and

remained non-toxic towards mammalian cells.

While natural AmPs have broad activity against pathogens, they are not optimized for a

specific antimicrobial function or bacterial target. Thus, researchers have tried for decades to

design highly active and specific de novo AmPs. One approach is to design new peptides using

conserved motifs identified from the amino acid sequence of natural AmPs. We improved this



approach by measuring the antimicrobial activity of a large database of natural AmPs and

incorporating this activity information in the design algorithm. This strategy improved the success

rate of designing de novo peptides from 45% to 73% and increased the antimicrobial strength of the

designed peptides.

Finally, we developed new potentiating strategies by studying the mode-of-action of the

family of ponericin AmPs. First, we measured their cidal behavior and differentiated bactericidal

ponericins from bacteriostatic ones. Using a modified AFM and a microfluidic device, we observed

that the action of AmPs led to cellular death through the corrugation of bacterial, while sub-

population of cells resisted the action of the AmPs longer than others. Focusing on the ponericin G1

AmP, we correlated these visual observations with various membrane stress sensing mechanisms.

We concluded that bacteria's ability to develop resistance to ponericin G1 requires the sensing and

repair of misfolded membrane proteins via the CpxAR system, as well as DNA repair via induction

of the SOS response by RecA. Using microarrarys, we showed that ponericin G1 targets tRNA

synthetases in the ribosome. Finally, we demonstrated 99.999% killing of antibiotic resistant

bacteria by potentiating ponericin G1 with the ribosomal antibiotic kanamycin, whereas no killing

is observed when these two agents are applied independently. untreta

The PhDCEP capstone requirement finalizes the work of this thesis by analyzing market

entry and expansion strategies for an antimicrobial company commercializing genetically

engineered bacteriophages. In conclusion, this thesis establishes new advances in the delivery, the

design and the potentiation of AmPs in order to eradicate resilient bacterial infections.
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Chapter 1. Critical need for new antibiotics

1.1. The rise of antibiotic resistant infections

Antibiotic-resistant microbes infect more than 2 million Americans and kill over 100,000 each year

(1). They are one of the biggest and fastest growing clinical problems today (2) and constitute a global

threat that has the potential to wipe out many of the major health benefits that have occurred over the

last century (3).

These infections pose a risk to everyone from infants, to college athletes, to elderly in nursing homes

and hospitals. For example, the 2009 MRSA outbreak at Beth Israel Hospital maternity ward infecting

over 30 mothers and infants. In 2008, New England Patriot's quarterback Tom Brady contracted an

MRSA during a knee surgery and required several IV antibiotics treatment to eradicate the infection,

which ended his football career for the year. Antibiotic resistant infections have spread beyond the

hospital settings and now threaten communities. Nationwide outbreaks have already occurred shutting

down in schools, and athletic events while claiming many lives. MRSA alone kills more Americans than

AIDS, Parkinson's disease or homicide. (4)

The populations with the highest risk of mortality following infection are infants and young children,

elderly and immuno-suppressed patients (5). These groups are at increased risk as a result of a

suppressed immune system, increased exposure to numerous pathogens, or because of restriction on the

antibiotics they can be administered. Thus, infections are the fourth most common cause of death for

children in their first year (6), are the most common cause of hospitalization for older adults, and are

responsible for 30 percent of the deaths in senior citizens (7). Patients with particular medical conditions

such as cancer, diabetes, HIV/AIDS, transplants, etc. are also extremely vulnerable to infections. Even the



healthiest individual becomes exposed to antibiotic-resistant pathogens every time they enter hospitals,

even for the most benign interventions (8).

Infections are not only a health problem but also an economical one. Resistance to antibiotics

significantly extent the length of hospital stay typically by 6 additional days and increases the total cost of

treatment by $24,000 per patient (9). John Paul, retired CFO of the University of Pittsburgh Medical

Center explains that the ability to control hospital-based infections would add tens of millions of dollars

straight to a medical center's bottom line (10).

Consequently, there is an unmet need to develop new antimicrobial solutions that decrease morbidity

and mortality in patients, to reduce hospital costs or to prevent and control nationwide outbreaks.

1.2. A multifaceted problem

The problem of antibiotic resistance in bacterial infections is multifaceted and the reasons for their

recent rise are multiple. Firstly, the sheer number of infections has increased rapidly by 200% in the last

5 years, with over 2 million cases and 99,000 deaths per year in 2007 (11).

Figure 1-1: Methicillin-resistant S. aureus and vancomycin-resistant Enterococcus are two resistant

pathogens spreading rapidly. Figure adapted from (12).

Secondly, these infections are becoming increasingly difficult to treat. Figure 1-2 shows the rapid

spread of resistant strains. Methicillin resistance in staphyloccal infections (MRSA), one of the most

. .............



common hospital pathogen, rose from just 3% in the 1980s to over 60% by 2007 (12). Over 30% of

hospital infections today are due to infections resistant to all but one antibiotic, vancomycin which is

considered to be the last resort antibiotic (13). Already, cases of high-level resistance to vancomycin are

being reported worldwide. Many physicians worry that if these strains were to spread like MRSA has,

death rates would likely increase to pre-antibiotic era at greater than 50% (14).
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Figure 1-2: Rise in resistance strains. The green curve shows the increase in methicillin resistance

nosocomial Staph. infections. Less than 3% of those infections were resistant to methicillin by 1980,

whereas today over 60% are resistant to methicillin and other commonly used antibiotics. The red

and silver curve shows the rise in vancomycin-resistance enterococcus infections and

fluoroquinoline-resistant Pseudomonas aeruginosa. Figure adapted from (12).

Antibiotic resistance in bacterial infections result in increased morbidity and mortality in patients

(15). A study by the Duke University medical center shows that patients infected by methicillin resistant

S. aureus were seven times more likely to die and 35 times more likely to be readmitted within 90 days

than those infected by S. aureus sensitive to methicillin (9). Figure 1-3 shows the increase in number of

death either directly caused or correlated with the methicillin resistant infections in England and Wales.
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Figure 1-3: Rise in mortality. Number of death certificates mentioning Staphylococcus aureus by

methicillin resistance in England and Wales. The number of death certificates mentioning

Methicillin-resistant Staphylococcus aureus (MRSA) decreased to 1,593 in 2007 and then decreased

further to 1,230 in 2008, a fall of 23 per cent The number of death certificates in England and Wales

mentioning Staphylococcus auras (including those not specified as resistant) was 1,500 in 2008, a

decrease of 27 per cent compared to 2007.

Finally, the threat of antibiotic resistant bacteria is further accentuated by a decline in the

development of new antibiotics. Although the $25B global market for antibiotics is attractive, drugs for

chronic diseases offer much greater return on investments says Steve Projan, vice president of biological

technologies at Wyeth. Pharmaceutical companies developing new antibiotics are also faced with a Catch-

22; the better their antibiotic, the less health experts want to see it used to avoid the development of

resistance. This led to an exodus of pharmaceutical companies from antibiotic development starting in

the 1980s. Of the 15 major pharmaceutical companies that once had flourishing antibiotic discovery

programs, only five - GlaxoSmithKline, Novartis, AstraZeneca, Merck, and Pfizer - still have antibiotic

discovery efforts. As a result there has been a decrease in the number of new antibiotics available to

clinical doctors to treat infections and many researchers also suggest that the intracellular metabolic
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targets for antibiotic discovery are being depleted (16). Figure 1-4 shows the decrease in the number of

antibiotic products approved by the FDA over time (12). These antibiotics actually only constitute two

new classes of antimicrobials discovered since the 1980s - oxazolidinones (linezolid) and cyclic

lipopeptides (daptomycin). All of these new classes of antibiotics target only Gram positive bacteria and

no new Gram-negative antibiotics have been developed since quinolone in the 1960s (17). Gram-negative

bacteria tend to be harder to kill because of their cell membrane which the antibiotics needs to penetrate

and additional defense mechanisms such as shutting down protein channels through which the antibiotic

penetrates or activating efflux pump to excrete the antibiotics.
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Figure 1-4: Timeline of antibiotic drug discovery and new antibiotics approved by FDA. Only two new

classes of antibiotics have been discovered in the past 50 years and the number of new antibiotics

approved by the FDA has been decreasing continually since the 1980s. Figure adapted from (12).

1.3. Thesis objective and organization

This thesis aims at providing an advance in the development of new antimicrobial therapies. The

work explores the use and the design of novel antimicrobial peptides and engineered bacteriophages to

treat bacterial infections. The thesis is organized into the following six chapters:

" Chapter 2. Antimicrobial peptide overview - provides background and review on antimicrobial

peptides, the central element of this thesis and introduce them as new human antimicrobial

therapeutics.

" Chapter 3. Engineered bacteriophages expressing AmPs - offers an approach to deliver genes

expressing antimicrobial peptides and other lytic antimicrobial agents using bacteriophages.

* Chapter 4. Controlled delivery of AmPs from LBL surfaces - describes an approach for the

controlled release of antimicrobial peptides using layer-by-layer biodegradable polymer films

coated on the surfaces of implantable devices.

- Chapter 5. Motif-based rational design of AmPs - discusses advances made in the design of novel

peptides using conserved sequences founds in natural AmPs.

* Chapter 6. Mechanism and potentiation ofAmPs - gives insight on the mechanism of antimicrobial

peptides, their intra- and extra-cellular targets, and outlines an approach to potentiate AmP-

based therapeutics.

* Chapter 7. Therapeutic opportunities for engineered bacteriophages (PhDCEP Capstone) - describes

a market entry and expansion strategy for an antimicrobial start-up company commercializing

genetically engineered bacteriophages.
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Chapter 2. Overview of antimicrobial peptides

2.1. Executive summary

Antimicrobial peptides are part of the innate immune systems of many living organisms and serves

as a first line of protection against invading bacterial, viral or fungal infections. They represent an

exciting potential new class of antibacterial therapies as their novel mode of action prevents bacteria

from easily evolving resistance to AmPs. AmPs are small cationic amphipatic peptides between 15 and

30 amino acids that typically form alpha helices ad intercalates within the bacterial cell membrane to

form pores; eventually leading to cell lysis. In order for bacteria to evade the action of AmPs, they are

required to significantly alter their cell membrane composition, which drastically decreases their

viability. For these reason, resistance to AmPs is uncommon which constitutes one of their greatest

advantage of the tradition small-molecule antibiotics used in hospitals today.

2.2. Antimicrobial peptides as antibiotics

Antimicrobial peptides (AmPs) are an exciting potential new class of antibiotic because their unique

mode of action is unlikely to introduce drug resistance. AmPs are typically short peptides composed of 15

to 30 amino acids that have strong antimicrobial properties. AmPs are an important component of the

innate defense mechanism of many living organisms where they constitute a first non-specific line of

defense against invading pathogens (18). For example, many AmPs are been isolate from skin secretions

of, such as dermaseptin from the South American frogs, where they protect against pathogens in the

natural living environment. AmPs, such as histatins from human saliva or magainin from the Xenopus

laevis frog, play a role in protection from ingested pathogens. Cathelicidins, another family of AmPs, have



been isolated from many mammalian species, such as mice, rabbits, sheep, horses, and humans. Defensins

from human neutrophils are found inside the host body indicating varied biological roles in host defense.

To date, more than 800 AmPs have been reported. Their range of antimicrobial activity is unusually

broad as their primary role is non-specific. AmPs have been found to be active against Gram-positive (e.g.

S. aureus) and Gram-negative (e.g. E. coli) bacteria, viruses (e.g. HIV, Herpes virus), protozoa (e.g. T.

brucei) and fungi (e.g. C. albicans). More recently, they have been shown to bind selectively and prevent

the growth of cancer tumors (19) and also to play an important role in recruiting the innate immune

systems (20, 21).

(A)(B) (C)

(D) (E)

(F)

Figure 2-1: Structural classes ofAmPs. (A) Mixed structure of human f-defensin-2; (B) looped

thanatin (C) #-sheeted polyphemusin; (D) rabbit kidney defensin-1; (E) a-helical magainin-2; (F)

extended indolicidin. The disulfide bonds are indicated in yellow, and the illustrations have been

prepared with use of the graphic program MolMol 2K.1. Figure adapted from Jenssen 2006.
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In contrast with their enormous diversity in activity, AmPs share several common characteristics and

are generally categorized into four structural classes: a-helix, p-sheet, loop or extended structure (Figure

2-1). These short peptides are predominately positively charged. AmPs typically assume an amphipatic

three-dimensional structure where, for a-helix peptides, the hydrophilic positively charged residues are

localized on one side of the helix and the hydrophobic residues are on the other side. This amphipatic

structure and the net positive charge give AmPs an affinity for bacterial membranes over eukaryotic

membranes. AmPs selectively coalesce and bind to bacterial membrane leading to membrane permeation

and the death of the bacteria through cell lysis. While the exact mechanism of action by which killing

occurs is not clearly understood, several models have been proposed (22) and are explained below.

2.3. Mode of action of AmPs

One model describing the killing mechanism of AmPs is the barrel-stave model shown in Figure

2-2A. The AmPs aggregate and insert perpendicularly into the membrane bilayer so that the hydrophobic

peptide regions align with the lipid core region and the hydrophilic peptide regions form the interior

region of the pore. In a second model, the toroidal model shown Figure 2-2B, the AmPs aggregate and

induce the lipid monolayers to bend continuously through the pore so that the aqueous core is lined by

both the inserted peptides and the lipid head groups. In this model, the peptides are always associated

with the lipid head group even when they are perpendicularly inserted in the bilayer, which is not the

case in the barrel-stave model. Finally, in the carpet model in Figure 2-2C, the peptides disrupt the

membrane by orienting parallel to the surface of the lipid bilayer and forming an extensive layer or

carpet. Some AmPs do not induce cell lysis but instead they permeate through the membrane and kill the

bacteria by acting on intracellular targets (23). Such AmPs have been shown to inhibit DNA, RNA and

protein synthesis. Inhibition of enzymatic activities and of the formation of structural components, such

as the peptidoglycan or cell walls, are other known intracellular targets for AmPs.



Because the uptake of AmPs is self-promoted -- based on peptide charge-- and non-specific,

bacteria are less likely to develop resistance to AmPs since it would require the bacteria to completely

change the properties and structure of their membranes (20). As a result, AmPs have been killing bacteria

for millions of years, yet bacteria have developed very little resistance and the few resistant strains have

significantly reduced viability because of the numerous changes introduced to their membranes (24).

(A) barrel-stave model

(B) toroidal model

(C) carpet model

Figure 2-2: Proposed models of AmPs induced killing. (A) In the barrel-stave model, the AmPs insert

perpendicularly into the membrane bilayer. (B) In the toroidal model, the AmPs induce the lipid

monolayers to bend continuously through the pore. (C) In the carpet model, the peptides align

parallel to the surface and disrupt the membrane. Hydrophilic regions of the peptide are shown

colored red, hydrophobic regions of the peptide are shown colored blue. Figure adapted from

Brogden 2005 (22).

2.4. AmPs compared to traditionnal antibiotics

Several characteristics make AmPs particularly attractive compounds to develop as novel

antibiotics (20). Firstly, because AmPs are non-specific and act on multiple targets, bacteria are less
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likely to develop resistance to them. On the other hand, traditional antibiotics typically act on single

metabolic or intracellular targets, which the bacteria can modify to evolve antibiotic resistance. Gram

negative bacteria also posses additional defense mechanism such as the ability to modulate their protein

channel to reduce the uptake of antibiotic or to activity efflux pump to secrete and reduce intracellular

antibiotic concentration. Secondly, AmPs exhibit a broad spectrum of activities including against Gram-

negative, Gram-positive, multi-drug resistant bacteria and non-bacterial target such as viruses, fungi, or

cancerous cells. Traditional antibiotics are only efficacious on bacteria and are sometimes specific to sub-

classes of bacteria. For example, vancomycin is active only against gram-positive bacteria as it inhibits

the biosynthesis of cell wall, which gram-negative bacteria do not posses. Thirdly, AmPs kill bacteria in a

rapid and bactericidal manner through cell lysis where as some antibiotics are bacteriostatic and only

prevent the growth of bacteria with out actually killing them. Finally, AmPs have the additional effect of

boosting and recruiting the overall innate immune system of the host (25). These properties give AmPs

great advantages over traditional antibiotics.

The main obstacles for the clinical development of AmPs are their high manufacturing cost, their

short in-vivo lifetime due to protease degradation, and a general lack of understanding of their systemic

toxicity. However, recent scientific and technological improvements have addressed some of these issues.

Improvement in solid phase chemical synthesis of custom peptides has driven down the manufacturing

cost of a typical 20-mer peptide from $500 to $30 per peptide (26). Other synthesis methods such as

recombinant production have been developed for larger size manufacturing and are continuously

improved upon. Researchers were also able to improve the stability of AmPs to protease degradation by

introducing unusual or D- (rather than L-) amino acids, the use of non-peptidic backbones, and special

formulation such as in liposomes (25). Finally, the concern about systemic toxicity can be addressed by

developing topical applications for AmPs or through local drug delivery methods such the immobilization

or release of AmPs from the surface of implantable devices.



Table 2-1: Selected characteristics of AmPs vs. traditional antibiotics

2. Activity spectrum Broad spectrum: Gram +/- bacteria, Bacteria only and can be specific to

viruses, fungi sub-classes

4. Additional effect Recruit and supports the host innate

immune system

1. Manufacturing cost Expensive (-$100/gram) Cheap (<$1/gram)

- Shorter peptides manufactured by

chemical synthesis, decreasing costs

3. Toxicity Systemic toxicity not well studied Well studied and relatively safer

- Localized delivery
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Chapter 3. Engineered bacteriophages express antimicrobial peptides

3.1. Executive summary

The rise of antibiotic resistant infections has led to a renewed interest in alternative treatments

such as bacteriophage therapy. However, the therapeutic use of bacteriophage has been contested, as

bacteria are able to rapidly evolve resistance to bacteriophages. In this work, we engineered

bacteriophages to overexpress antimicrobial peptides and lytic enzymes to enhance their cidal activity.

We demonstrate that M13 lysogenic bacteriophages expressing the lytic CHAP+ enzyme result in a

10,000-fold decrease in viable cell counts relative to the unmodified phage and the effect is maintained

for over 20 hours. Engineered T7 lytic bacteriophages expressing CHAP+ lead to long term suppression of

bacteria culture and prevent the evolution to bacterial resistance to bacteriophages. This work

establishes an engineering approach to confer new functionalities to bacteriophages and enable them to

eradicate difficult-to-treat bacterial infections.

3.2. Introduction

3.2.1. Bacteriophages and their therapeutic potential

A naturally occurring countermeasures to bacteria are bacteriophages, viruses that infect and

multiply in bacteria. Phages specifically recognize and attach to bacterial membranes, inject their

genomes and utilize the host replication system to multiply. This process subsequently leads to new

phage progeny that are released either through extrusion in the case of lysogenic phages or by inducing

cell lysis in the case of lytic phages. The therapeutic potential of lytic bacteriophages was recognized

early (27, 28) when they were successfully used in the 1920s to treat and control the spread of cholera

and to disinfect water sources. The discovery of cheap, broad-spectrum antibiotics in the 1950s halted



the development of bacteriophages in the West though some efforts have continued up to this day in the

former Soviet Republic (29, 30). The spread of antibiotic resistance has led to a recent regained interest

in bacteriophage therapy (31) with several clinical trials carried out worldwide (32-36). However,

criticism for phage therapy still remains. Two primary concerns are their high specificity and the rapid

evolution of bacterial resistance (37). Modern molecular biology has now made it feasible to re-engineer

bacteriophages and express foreign proteins to address these concerns and confer new functionality.

We have previously shown that expression of a biofilm-degrading enzyme (DspB) from a T7

bacteriophage infecting E. coli increases the disruption of bacterial biofilms (38). In another model, we

showed that expression of a repressor protein of the SOS response (LexA3) from an M13 bacteriophage

administered as an antibiotic adjuvant suppressed the evolution of bacterial resistance to antibiotics and

increased bacterial susceptibility (39). Both models demonstrated the feasibility of engineering

bacteriophages without compromising their natural infectivity, replication, packaging and lytic activity.

3.2.2. Engineered phages expressing AmPs and lytic enzymes

In this work, we address the concern of bacterial resistance to phages by overexpressing

antimicrobial peptides and lytic enzymes during infection and increase bacterial killing. Antimicrobial

peptides were introduced in the Chapter 2. Lytic enzymes (lysins) are another new class of prospective

antimicrobials. These biologics range in size from 50 to several hundreds of amino acids, and are typically

used by bacteriophages to lyse bacterial membranes and escape from their hosts (40, 41). Lysins act in

concordance with holins, which permeabilize cell membranes (42) while lysins degrade peptidoglycan

cell walls (43). When applied exogenously, phage lysins exhibit immediate and strong bacteriolytic

activity (44). One well-studied phage lysin is the CHAP+ protein, an optimized derivative of the LysK

staphylococcal phage K endolysin truncated to the first 165 amino acids of its active domain (45).

While promising, peptide and enzyme-based therapeutics suffer several practical challenges for

systemic application. They are subject to protease degradation when administered in-vivo. Their

distribution and pharmacokinetics and pharmacodynamics are also not well characterized. As a result,



their toxicity levels and potential immune reactions at required active physiological concentrations are

undetermined (46-48). More practically, their cost of production and purification is still prohibitively

high compared to that of small molecule antibiotics.

We first determined the minimum inhibitory concentrations (49) and the bactericidal activities of

a panel of five AmPs. We selected the two most active AmPs candidates, Ponericin W3 and Ponericin WS,

along with the CHAP+ lytic enzyme for expression in our bacteriophage system. To confer cidality to

lysogenic bacteriophages, we expressed these lytic proteins fused to an ompA secretion signaling peptide

in an M13 phage infecting E. coli EMG2 K12. To further increase bacterial killing, we then combined the

activity of these proteins with the innate lytic activity of a T7 bacteriophage (Figure 3-1). Through this

work, we demonstrate that overexpression of broad-spectrum lytic agents increases the efficacy of

bacterial killing, prevents bacterial resistance to bacteriophages and enables the long-term suppression

of bacterial cultures for at least 40 hours.

Initial nfection with Bacteriophage replication Cell lysis, phage release, Regrowth of
unmnodified T7 phage and continued infection phage resistant Ceas

Initial infection with T7 phage Bacteriophage replication Cel lysis, phage and lyic protein Protein induced lysis of
expressing lytic protein and expression of lytic protein release, continued infection phage resistant cell

Figure 3-1: Engineered bacteriophages expressing lytic proteins. Upon initial infection,

bacteriophages multiply and express lytic agents in the bacterial host New phages progeny and lytic

agents are released upon cell lysis. The phage system then enters a continued infection cycle leading

to the complete eradication of the bacterial culture where phage resistant bacteria are suppressed

by lytic agents.

........... ................... .... ...... ..... ................. .



3.3. Materials and Methods

3.3.1. Synthesis of Cationic Antimicrobial Peptides

All antimicrobial peptides were synthesized by Fmoc (fluorenylmethoxycarbonyl) chemistry on

an Intavis Multipep Synthesizer (Intavis LLC, San Marcos, CA) at the Massachusetts Institute of

Technology's Biopolymers Lab core facility. Mass spectrometry was routinely used to confirm the

accuracy of the synthesis and typical purities obtained with the synthesizer were >85%.

3.3.2. Bacteriostatic of Antimicrobial Peptides

The Minimum Inhibitory Concentration (MIC) was measured using a standard assay based on the

NCCLS M26A and the Hancock assay for cationic peptides (50). Serial two-fold dilutions of peptides were

performed, starting with a base concentration ten times higher than the highest assay concentration, i.e.

at 2560[ig/ml in 0.2% Bovine Serum Albumin and 0.01% Acetic acid. E. coli and S. aureus were grown in

Mueller Hinton Broth (Becton-Dickinson, Franklin Lakes, NJ) to an OD 60 0 = 0.1 - 0.3 and diluted down to

-5 x10 5 CFU/ml in fresh MHB. Ten ptL of the peptide dilutions were incubated with 90 tL of the target in

a 96-well plate (Corning Life Sciences, Lowell, MA) for 16-20 hrs. The MIC was defined as the minimum

concentration that prevented growth based on OD 60 0.

3.3.3. Bacteriocidality of antimicrobial peptides

E. coli and S. aureus were inoculated from a -802C culture the day before the assay, into 3ml LB

plus any appropriate antibiotic, in a 14ml Falcon snap-cap tube (BD Biosciences), incubated overnight,

shaking at 300rpm and 37"C. On the day of the assay the overnight stationary phase culture is diluted

1:5000 into 50ml LB + any appropriate antibiotic in a 250ml Erlenmeyer flask, shaking at 300rpm at

372C. The culture is monitored by taking samples and measuring the absorption of the culture at 600nm

to determine the optical density (OD600). The culture is grown until it reaches an OD600=0.2-0.4, but

preferably 0.3. A 96-well plate (Corning) is loaded with 180[pL of the bacterial culture and 20[pL of AmP



stock solution to yield a final concentration of 192pg/ml or 640 ig/ml. The plate is sampled every 5

minutes using an automated 96-well optical assay plate reader (Bio-Tek, Winooski, VT) capable of

reaching and maintaining a temperature of 372C and orbital shaking between reads.

3.3.4. Construction of Recombinant M13 Expressing Antimicrobial Peptides and

Polypeptides

To construct recombinant M13 expression AmPs, we used M13mp18 as a backbone (Novagen /

EMD Biosciences, Gibbstown, NJ) as a starting point. Ponericin W5 was built by combining two long DNA

oligomers and amplifying them via PCR to form the initial template for cloning 5'-

AGTAAACATATGTTTTGGGGCGCGCTGATTAAAG-3'and 5'-

ATCGAGGATCCTTACTGTTTTTTTTTTTTAAACAGGCCCACCACG-3'. The resulting fragment is cloned

between the Kpn I and Hind II cut sites of M13mp18, yielding phage M13mp18.PonW5. In order to

facilitate export into the extracellular space, an ompA-signal peptide sequence was attached via PCR-

elongation of the initial amplicon of PonW3 using primers 5'-GGTACCATGTTTTGGGGCGC-3' and 5'-

AAGCTTTTACTGTTTTTTTTTAAACAGGCCCACCACGCTC-3'. Again the construct is ligated into M13mp18

between the Kpn I and Hind III cut sites, yielding phage M13mpl8.ompA.PonW5. Similarly, the CHAP+

fragment was initially amplified from phage K gDNA using 5'-

CATATGATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTAGCGCAGGCC-3' and

5'-ATCGACCTAGG-3'. An ompA-signal peptide was added using primers 5'-

GCAGCTTTCGAACTATGCTTTTACAGGTATTTCAATGA-3' and 5'-

GCAGCTGGTACCATGGCTAAGACTCAAGCAGAAATA-3' and the resulting amplicon inserted into M13mp18

between Kpn I and Hind III for phage M13mpl8.ompA.CHAP+. The two phages containing the signal

peptide were transformed into E. coli XL-10.



3.3.5. Construction of Recombinant T7 Expressing Antimicrobial Peptides and Polypeptides

Engineered T7 bacteriophages were created starting from the T7SELECT415-1 phage display system

(Novagen / EMD Biosciences, Gibbstown, NJ) and using standard molecular biology techniques (51). We

designed the T7SELECT phage to express the inserted antimicrobial products intracellular, instead of on

the surface as is intended through the SELECT system. The AmP ponericin WS (PonW5) was built by

combining two DNA oligomers and amplifying them via PCR to form the initial template for inserting into

the T7-shuttle vector pET9a; 5'-AGTAAACATATGGGCATTTGGGGCACCCTGGCGAAA-3'and 5'-

ATCGAGGATCCTTACTGTTTTTTTTTTTTCAGCATGCTAATCACG-3'. The amplicon is inserted into pET9a

via Nde I and Bam HI cut sites, forming pET9a-PonW5. To amplify CHAP+ from phage K gDNA and insert

it into pET9a, the following primers were used 5'-AGTAAACATATGGCTAAGACTCAAGCAGAAATA-3' and

5'-TAGCTGGATCCCTATGCTTTTACAGGTATTTCAATGA-3', yielding pET9a-CHAP+. The shuttle vectors are

then amplified with two primers to yield compatible insertion ends for ligation into the T7 arms; 5'-

TACTCGAATTCTTAAGTAACTAACGAAATTAATACGACTC-3' and 5'-

AAATATAAGCTTCGGGCTTTGTTAGCAGCC-3'. The constructs are ligated to the T7 arms using Eco RI and

Hind III restriction cut sites, yielding T7.PonW5 and T7.CHAP+, respectively.

All amplicons CDS were therefore placed under the control of the strong T7 p10 promoter downstream

of the T7select415-1b 10B capsid gene and stop codons in all reading frames to create T7.PonW5 and

T7.CHAP+ precursors. Packaging of the recombinant genome was achieved with the T7SELECT

packaging extracts using the manufacturers recommended protocol, with the modification of only using

0.5ptL of the packaging extract. The control phage, T7control-precursor, was generated previously (38).

All bacteriophage constructs in their packaging were allowed to infect a mid-log culture of BL21 for

amplification.



3.3.6. Preparation of Infective Bacteriophage Solution

Bacteriophages were amplified in a re-diluted overnight culture of E. coli XL-10 in the case of

M13mp18-based phages or BL21 in the case of T7415-lb-based phages. The culture was grown until it

reached mid-log phage at approximately an OD60o=0.3, at which point 104 - 106 PFU/ml of the respective

phage was added. Following clearing or lysis of the culture, the culture was centrifuged for 5 min at

16,100g. The supernatant was collected and filtered through a 0.2[tm filter for sterilization. The infective

phage solutions were tittered through the standard plaque assay described earlier. All phage solutions

were normalized to a concentration of 109PFU/ml via dilution into LB media. Before treatment, the T7

bacteriophages were amplified on E. coli BL21 and purified.

3.3.7. Bacteriophage Plaque Assay

The appropriate host strain is inoculated in LB medium and incubates shaking at 37'C and

300rpm until an OD600 = 1.0 is reached. A sufficient volume of top agarose (0.5%) to provide 5 ml for

each dilution being plated is melted in a heat block or microwave. The molten agarose is transferred to a

45-50'C water bath and allowed to adjust temperature. A dilution series is conducted using an initial

1:100 dilution of 10ptL of sample to 990[pL of medium. Serial dilutions were performed by adding 20pL

first to 1:100 dilution to 180pL medium. For plating 100ptL of the respective dilutions of the phage are

combined with 300 ptL of overnight E. coli BL21 culture and 4-5 ml of 50'C LB top agar [0.7% (wt/vol)

agar]. This solution was mixed thoroughly, poured onto LB agar plates, inverted after hardening, and

incubated for 4-6 h at 37'C until plaques were clearly visible. In the case of M13mp18, modifications to

the protocol were made. in order to facilitate blue/white screening based on lacy activation/inactivation,

XL-10 cells were mixed in with 3 ml top agar, 1mM IPTG, and 40pL of 20 mg/ml X-Gal, and poured onto

LB agar containing chloramphenicol (30[ig/ml). After overnight incubation at 37 'C, plaques were

counted.



3.3.8. Bacteriophage Lytic Assay

The host strain to be assayed is inoculated from a -80*C culture the day before the assay, into 3ml

LB plus any appropriate antibiotic, in a 14ml Falcon snap-cap tube (BD Biosciences), incubated over night

shaking at 300rpm and 379C. On the day of the assay the overnight stationary phase culture is diluted

1:5000 into 50ml LB + any appropriate antibiotic in a 250ml Erlenmeyer flask, shaking at 300rpm at

37 C. The culture is monitored by the measuring the absorption of the culture at 600nm to determine

the optical density (OD600). The culture is grown until it reaches an OD600=0.2-0.4, but preferably 0.3. A

96-well plate (Corning) is loaded with 180pL of the bacterial culture and the appropriate amount of

bactericidal agents. The plate is sampled every 5 minutes using an automated 96-well optical assay plate

reader (Bio-Tek, Winooski, VT) capable of reaching and maintaining a temperature of 372C and orbital

shaking between reads.

3.4. In vitro bactericidal activity of lytic proteins

To determine optimal lytic protein candidates to express from bacteriophage, we measured the

minimal inhibitory concentrations (MICs) of natural AmPs against 10s CFU/ml of Escherichia coli (ATCC

25922) and/or Staphylococcus aureus (ATCC 25923) in accordance to standard MIC determination

protocols (49). A panel of five AmPs with strong MICs was assembled and tested for hemolytic activity

against human red blood cells as a measure of toxicity (Table 3-1). Since MICs do not necessarily

correlate with lytic activity, we determined the bactericidal activity of these AmPs against log-phase

bacterial cultures with optical-density-based killing assays over time (Figure 3-2). We found that there

was little correlation between MICs and killing behavior (Figure 3-2). For example, Dhvar5 delayed

growth but did not demonstrate significant bactericidal or bacteriostatic activity against E. coli or S.

aureus. Though Hyphancin IIIE has a very low MIC against E. coil, it only exhibited significant bactericidal

activity at very high concentrations. Moronecidin showed bacteriostatic activity against both E. coli and

S. aureus at low and high concentrations. Finally, both Ponericin W3 and Ponericin W5 (Figure 3-2E and



F) showed strong bactericidal behavior for E. coli and S. aureus. We observed a rapid drop in OD upon

treatment with high concentrations of Ponericin W3 and Ponericin W5, which was indicative of cell lysis

and also observed no cell regrowth up to at least 10 hours after treatment.

Table 3-1: Minimum Inhibitory Concentration (MIC) of selected panel ofAmPs measured against E.

coli and S. aureus. HCso denotes the 50% hemolytic concentration indicative of the peptide's toxicity.

AmP Name

Dhvar5

Hyphancin IIIE

Moronecidin

Ponericin W3

Ponericin W5

Amino Acid Sequence

LLLFLLKKRKKRKY

RWKFFKKIERVGQNVRDGLIKAGPAIQVLGAAKAL

FFHHIFRGIVHVGKTIHKLVTG

GIWGTLAKIGIKAVPRVISMLKKKKQ

FWGALIKGAAKLIPSVVGLFKKKQ

MIC ( .g/ml)
E. coli S. aureus

16

256

64

8

4

HCso

( Ig/ml)

512

256

256

64

32
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Figure 3-2: In vitro bactericidal activity of selected AmPs was measured against E. coli (EC) and S.

aureus (SA) at an intermediate concentration of 192pg/ml and a high concentration 640ug/ml and

compared to (A) the growth profile for the untreated culture. All experiments were carried out in

.......... .. ... ..... .......... - .- ..... ............................ ...... .... .. ........



duplicates and the averaged OD, which was within standard error, is reported. (B) Dhvar5 is

inefficient at killing the cultures and only slightly delays the growth of E. coli and S. aureus. (C)

Hyphancin IE induces strong killing of E. coli at high concentration but shows no effect on S.

aureus. (D) Moronecidin has bacteriostatic activity against both E. coli and S. aureus and the

magnitude of the effect is concentration dependent. (E-F) Ponericin W3 and Ponericin W5 induce

growth arrest for both E. coli and S. aureus at the intermediate concentration with slight decrease of

OD towards the end of the 10-hour treatment period. At high concentrations, the peptides induce

strong killing and no re-growth.

3.5. Engineered lysogenic bacteriophage expressing antimicrobial agents

Since Ponericin W3 and Ponericin W5 had strong bactericidal efficacies, low MICs, and minimal

bacterial regrowth, we selected them as candidates for expression in our engineered bacteriophage

platform. In addition, we chose to express CHAP+, a lytic protein derived from the first 165 amino acids of

the LysK lysin of Staphylococcus phage K.

We engineered lysogenic M13mp18 phages to overexpress Ponericin W3, Ponericin W5, and

CHAP+. Because M13 phages are non-lytic, we fused an OmpA-derived signal peptide (52-54) to the

amino end of the antimicrobial agents to target the translated precursor for secretion. Upon secretion of

the precursor, the OmpA signal sequence is cleaved, leaving the attached protein in its natural

unmodified state in the bacterial periplasm (55). The gene coding for the expression of these

antimicrobial agents was placed under the regulation of the synthetic PLtetO promoter (56) followed by a

synthetic ribosome-biding-sequence. The PLtetO promoter is inducible in the presence of the TetR

repressor, and is, thus, constitutively expressed in EMG2 cells that lack TetR.

To test the antimicrobial activity of our phages, we performed killing assays with engineered

phage against E. coli wild-type EMG2 cells (Figure 3-3:). We calculated viable cell counts by counting

colony-forming units (CFU) during treatment with no phage or with 108 plaque-forming-units/ml



(PFU/ml) of phage. Figure 3-3: demonstrates that cells infected with engineered phage expressing

Ponericin W3 (M13.ompA.PonW3) eventually regrew by 6 hours after infection to levels similar to that of

cells infected with control phage (M13.Unmodified). In contrast, cells that were infected with engineered

phage expressing CHAP+ (M13.ompA.CHAP+) demonstrated a strong and long-term bactericidal effect

starting at 2 hours. M13.ompA.CHAP+ exhibited a 10,000-fold increase in bacterial killing compared to

control phage (M13.Unmodified) with no bacterial regrowth up to 20 hours.

Figure 3-3: Viability and time course treatment of E. coli EMG2 cultures with 108 PFU/ml of

unmodified M13 phage or engineered phage expressing Ponericin W3 or CHAP+. Treatment with

phage expressing CHAP+ resulted in a long-term decrease in viable cell counts by 10,000-fold

compared to treatment with the unmodified M13 phage. All experiments were carried in triplicates

with the standard error shown. The horizontal dotted line denotes the detection limit of our viable

cell count assay.
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3.6. Engineered lytic bacteriophage expressing antimicrobial agents

Although we demonstrated that lysogenic bacteriophage that express antimicrobial agents can

indeed increase bactericidal activity and suppress cultures, we sought to combine the bactericidal activity

of lytic phage with antimicrobial agents to obtain even better bacterial killing. To do so, we cloned

antimicrobial peptides under the control of the strong T7 promoter into T7 bacteriophage. Since lytic

phage break open their host cells using their own native lysozymes, we chose to omit the ompA signal

sequence from the expression cassettes inserted into our engineered lytic bacteriophage (57, 58).

Initial optical-density-based killing studies showed that at least 104 PFU/ml of engineered phage

expressing CHAP+ (T7.CHAP+) suppressed bacterial regrowth for at least 14 hours. Thus, we tested

control phage (T7.Unmodified), engineered phage expressing Ponericin W5 (T7.PonW5), and engineered

phage expressing CHAP+ (T7.CHAP+) at varying phage concentrations from 104 PFU/ml to 108 PFU/ml

against E. coli BL21 cells up to 40 hours. We found that the control phage was able to rapidly kill E. coli

populations but allowed bacterial regrowth to occur starting at about 10 hours, indicating the presence of

phage-resistant populations. In contrast, we determined that T7.PonW5 at 108 PFU/ml was sufficient to

suppress bacterial cultures up to 40 hours while it was unable to prevent regrowth at 106 PFU/ml or 104

PFU/ml. This threshold effect suggests that there are important dynamics involving AmP production,

phage replication, bacterial growth, and evolution of phage resistance that determine whether a

substantial phage-resistant population can develop. In comparison, T7.CHAP+ showed significant long-

term bactericidal efficacy against E. coli at concentrations ranging from 104 PFU/ml to 108 PFU/ml up to

40 hours.
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Figure 3-4: Optical density and time course treatment of an E. coli BL21 culture with unmodifled T 7

phage and engineered T7 phage expressing Ponericin W5 and CH AP+ with an initial phage count of

108, 106, and 104 PFU/ml. (A) Treatment with unmodified T7 phage results in a rapid drop in optical

density resulting from the natural lytic action of the bacteriophage. However, after 10 hours of

treatment the culture is able to regrow due to bacterial resistance to T7 regardless of the initial

phage concentration. (B) Treatment with T7 phage expressing Ponericin W5 is able to overcome the

cell regrowth for initial phage counts at 108 PFU/ml or above. (C) Treatment with T7 phage

expressing CHAP+ completely suppresses regrowth of resistant cells starting at phage counts of 104

PFU/ml or above thereby resulting in long-term suppression of the bacterial culture.



To confirm the accuracy of the optical-density-based killing assays, we obtained viable cell counts

of treated cultures (Figure 3-5:). In Figure 3-5:, 104 PFU/ml of phage was applied to bacterial cultures

that were sampled every 12 hours. T7.Unmodified and T7.PonW5 showed a decrease in viable cell

counts between 12 and 24 hours that were not statistically significant from each other. These results are

consistent with the optical-density-based assay which showed bacterial regrowth occurred at about 10

hours for both T7.Unmodified and T7.PonW5 when 104 PFU/ml phage were applied. In contrast, we

found that T7.CHAP+ reduced viable cell counts to our detection limit without any significant regrowth

up to 36 hours. We also diluted T7.CHAP+ treated cultures into fresh media at a ratio of 1:1000 at each

time point and determined that none of the sub-dilutions showed re-growth, a result that is consistent

with sterilization or near-sterilization of the treated cultures.
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Figure 3-5: Viability and time course treatment of E. coli BL21 cultures with 104 PFU/ml of

unmodified T7 phage or phage expressing Ponericin W5 or CHAP+. Treatment with phage

expressing CHAP+ resulted in a long-term decrease in viable cell counts by 10,000-fold compared to

treatment with the unmodified T7 phage, resulting in a viable cell count below our assay detection

limit of200 CFU/ml. All experiments were carried out in triplicates with the standard error shown.

The horizontal dotted line denotes the detection limit of our viable cell count assay.

3.7. Expression of other lethal proteins from bacteriophages

In this work, we demonstrated that the expression of lytic proteins confers long-term cidality to

lysogenic bacteriophages and suppresses bacterial culture and regrowth caused by phage resistance in

the case of lytic bacteriophages. We demonstrated our approach with two classes of lytic proteins, phage-

based lysins and antimicrobial peptides. We selected the optimized antimicrobial enzyme CHAP+ derived

.......... ... .. ............... .... .. I .. ..



from the phage K lysin and the antimicrobial peptides, Ponericin W3 and Ponericin W5, based on their

low in vitro MIC values and bactericidal activities.

For expression in the M13 lysogenic phage model, an ompA signaling sequence was fused to the

antimicrobial agents. This sequence allows for extracellular export and release of expressed protein,

which was necessary since M13 does not induce cell lysis. We found that while Ponericin W3 has a low

MIC value and strong cidal properties, its expression from the M13 phage vector only resulted in a

moderate lytic effect upon infection. Though we observed a decrease in viability at 4 hours post

treatment, the culture eventually regrew to untreated levels at 6 hours. These results are similar to those

reported by previous authors who have delivered lethal genes in lysogenic bacteriophages. Hagens (59)

observed regrowth starting at 3 hours for recombinant M13 phage expressing holins and for phages

encoding restriction enzymes. Westwater (60) observed increased viable cell counts beginning at 4 hours

for M13 phagemids expressing toxins. Both authors infected E. coli ER2738, a strain engineered to

maintain the F-plasmid that is required for M13 infection. Loss of the F-plasmid is one of the primary

modes of resistance to M13 bacteriophages (61). We, on the other hand, used a more challenging

bacterial target and benchmarked our activity measurements against a wild-type strain of E. coli EMG2

K12, which has the ability to lose the F-plasmid. Expression of CHAP+ from M13 bacteriophages led to the

long-term suppression of cellular viability, by 6,000-fold over 20 hours compared to treatment with

unmodified M13 phage. The strong cidal activity and lack of bacterial regrowth in our engineered phage

are key improvements over previously published M13 phages expressing lethal agents. While the M13

phage expressing CHAP+ did not completely sterilize the culture, the significant decrease in bacterial cell

counts could be sufficient to allow the immune system to counteract the infection if applied in a

therapeutic setting (42).

Expression of lytic agents in T7 did not require the ompA signaling sequence for release since T7

naturally lyses its host as part of its normal lifecycle. We demonstrated that expression of the CHAP+ lytic



protein increased the bacterial killing efficacy of T7 bacteriophages by 10,000-fold and completely

suppresses bacterial resistance to phages.

3.8. Possible expansion to target other pathogens

While our proof-of-concept bacteriophages target E. coli, we believe our approach could be

extended to different lytic agents expressed from the multitude of phages already isolated to target other

relevant bacterial pathogens (62, 63). For example, 60% of MRSA infections today are resistant to all but

one antibiotic, vancomycin (64). Already, cases of high-level resistance to vancomycin are being reported

worldwide (65) raising concerns that if these were to spread as MRSA did, death rates would increase to

those in the pre-antibiotic era and wipe out many of the health benefits of the last century (14, 66).

Human clinical trials using bacteriophages are currently ongoing in Belgium to address multi-drug-

resistant S. aureus as well as P. aeruginosa infections (36). The difficulty in treating P. aeruginosa results

from it high-level resistance to antibiotics and its ability to form protective biofilms. Legionella

pneumophila also shares these characteristics, making them difficult to eradicate. As a result these two

pathogens are common causes of infections but are also present in industrial settings such as HVAC

systems in hospitals (67, 68). Current methods of treating industrial HVAC systems and hospital surfaces

have been less than successful (69-72). However, the increasing interest in alternative antimicrobial

strategies led to the first report of bacteriophages infecting Legionella (73), while Pseudomonas phages

are now becoming utilized for these purposes (74). Thus, our ability to increase the bacterial killing

efficacy of engineered phage extends far beyond medical settings into the decontamination of industrial,

agricultural and food processing settings as well (75-84).

3.9. Addressing the concerns of both bacteriophage and AmP-based therapy

The approach presented here is novel in that it combines and addresses concerns associated with

both phage therapy, namely the evolution of resistance to phage, as well as protein-based antimicrobial

therapy, namely delivery issues to the site of infection. Phage resistance can occur in many ways as



bacteria have developed different mechanisms to counteract each step of the phage lifecycle. These

mechanisms involve blocking phage adsorption and injection, preventing early and late replication

including suppression of the host transcriptional machinery, and inhibiting packaging and escape from

the bacterial host that can occur via lysis or continuous extrusion (85). Our approach prevents bacteria

from evolving phage resistance not by combating individual phage resistance mechanism but by

optimizing the lethality of bacteriophages through the expression of extracellular lytic factors. The

antimicrobial agents expressed and released during infection target adjacent bacteria that may have

otherwise escaped the initial phage infections and evolved resistance.

Traditional AmP- or protein-based antimicrobial therapies also suffer difficulties of their own. For

example, these proteins are subject to protease degradation in vivo, they may elicit immune reactions and

their systemic toxicities at the active concentrations are not well understood. As a result, the in vivo

delivery of synthesized AmPs and proteins can be challenging. However, our approach to deliver genes

encoding and exporting these proteins circumvents many of these problems. We achieve the effects of

combination treatments without the need to produce, purify and deliver antimicrobials and the

bacteriophages separately. The actual antimicrobial agents are produced and released directly at the sites

of infection by virtue of the targeting and multiplication of bacteriophages without requiring high

systemic concentrations.

3.10. Limitations of the approach

3.10.1. Production of antimicrobials vs. phage-induced cell lysis

However, the approach presented in this work has some limitations. We rely on the cell's ability

to produce antimicrobial agents before the cell is killed. There is thus a competition between the

production of antimicrobials from the cell and its killing, especially in the case of lytic phages. It would

thus be of interest to model and compare the kinetics of cell growth, antimicrobial production and phage

replication and lysis. One approach to optimize the efficacy of our engineered phage would be to alter the



kinetics of the phage lifecycle such as by increasing the phage replication time or delaying lysis. Slower

lytic kinetics can be achieved through mutations in the phage holing (86, 87) or deletion of the lysin gene

and mutations in the transglycosylase domain of the entry protein (57, 88). This optimized system would

produce more antimicrobial agents prior to cell lysis and may be able to treat heterogonous cultures

where the antimicrobials agents suppress the growth of a strain of bacteria that is not affected by the

phage. Other future improvements could include any number of combinations of antimicrobial agents,

factors targeting intracellular processes (39), agents secreted extracellularly such as biofilm degrading

enzymes (38) or cell wall degrading enzymes (89-91).

3.10.2. Specificity of bacteriophages

The high specificity of bacteriophages also limits the spectrum of the technology. Rather than

looking to supplant antibiotics, phage therapy should be used to enhance the effect of broad-spectrum

antibiotics. Our ability to suppress the regrowth of a bacteria culture for over 40 hours suggests the

potential that combining these phages with broad-spectrum antibiotics could have significant benefit for

treating clinical infections. The antibiotic would target the potentially broad heterogeneous bacterial

population while our engineered phage would effectively eradicate the resistant population. Despite their

potential benefits, phage have yet to be accepted into clinical practice because of a number of other

issues, such as phage immunogenicity, efficacy, target bacteria identification and phage selection, host

specificity, and toxin release (59, 92, 93). To reduce the risk of leaving lysogenic particles in patients after

treatment, our adjuvant phage could be modified to be non-replicative (93). We do also recognize that

real-world usage may necessitate the use of phage cocktails to ensure efficacy. The prospect for such

combination treatment appear positive as the FDA is currently establishing new and faster development

pathways specifically for drug cocktails (94).

There also exists other ways to address the concern of phage specificity that do not rely on

combination treatments. Phage specificity results from the interaction between their tail fibers and their

recognized receptor domains on the surface of bacterial cells (95, 96). While phages are able to infect



closely related sub-species of bacteria, they are rarely able to infect bacteria from different strains (97).

Recent work has, however, shown that this specificity is an artifact of historical isolation procedures,

which selects for the greatest burst size and infectivity within one bacteria species (98). It is feasible to

alter the isolation protocols to select for broad-host-range bacteriophages capable of infecting multiple

bacterial host species (99). The isolation of broad-spectrum bacteriophages with only minor alterations

in isolation protocols makes the use of single bacteriophages in anti-infective settings more feasible.

3.11. Chapter conclusion

In conclusion, the rise of antibiotic resistance has led to a regained interest in phage therapy.

However, the ability of bacteria to develop resistance to bacteriophages has been a major concern and

hurdle to the adoption of phage therapy. By overexpressing lytic antimicrobial proteins, we suppressed

bacterial resistance to phages and significantly increased the cidal activity of lytic and lysogenic phages.

In addition to prior designs (38, 59, 60, 100), this work demonstrates the potential for engineering

platforms that confer new functionalities to phages that enable them to eradicate difficult-to-treat

bacterial infections in clinical, environmental and industrial settings.
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Chapter 4. Controlled release of AmPs from surfaces

4.1. Executive summary

The ability to eradicate and prevent the formation of bacterial biofilm on implantable medical devices

provides an invaluable tool for the medical community. In this chapter, we present the fruits of a joint

collaboration with the Hammond lab that led to the tunable release of antimicrobial peptides from

degradable polymer coatings. We demonstrate the successful incorporation and release of three different

antimicrobial peptides: melittin, dermaseptin, and ponericin G1. We developed techniques to alter the

release profile and loading of AmPs by altering the number of film layers or by co-releasing of other

therapeutic agents. Finally, we show that incorporation of the AmPs in the film did not affect their activity

and that the release media was both non-toxic to mammalian cells, and effective at inhibiting the growth

of bacteria and thus of biofilms.

4.2. Motivation for surface release of AmPs

One of the most serious complications with bacterial infections occurs with the formation of biofilms

at the surface of medical devices and scar tissues. These bacteria colonies are difficult to eradicate

because secrete an exopolysaccharide matrix that protects them against antimicrobial treatments and the

host immune systems (1). These resistant bacteria give rise to planktonic cells that spread the infections

and lead to implant failure (2). One approach to prevent biofilm formation is to prevent the initial

attachment of the bacteria by coating antimicrobial agents on the surface of implantable surfaces (3). In

the field of AmPs, Semprus Bioscience is developing novel chemistries to immobilize AmPs on polymer,

membranes and device surfaces (4).



More recently, researchers are have been able to build layer-by-layer constructs to deliver in a

controlled manner therapeutic agents (6). The layer-by-layer assembly allows for multiple agents to be

incorporated and released sequentially, which would otherwise be difficult with single layer coatings.

Novel antimicrobial agents, such as AmPs, are one particular agent of interest to coat and release from

these LbL films. Thus, work has been done to incorporate AmPs but so far only in fixed, non degradable

layer-by-layer polymer constructs (5). In this chapter, we describe a tuneable drug delivery technology

for the controlled release of AmPs from LbL films. These films may serve as coatings of implantable

medical surfaces to deliver AmPs locally and ensure the implant sterility. This work was performed in

collaboration with Jeffrey Easly, Helen Chuang, and Anita Shukla from Paula Hammond's research group

at MIT and the results were published in Biomaterials (3). Helen and the author conceptualized and

designed the experiments together; the author measured the antimicrobial activity of AmPs towards S.

aureus and guided the choice of active peptides; Helen built the LbL films independently; Helen, Jeffrey

and the author collected sample release and measured AmP concentration together.

4.3. Layer-by-layer degradable polymer films

Layer-by-layer films are polymer films that can be applied as coatings to virtually any surface

material. Their fabrication is based on alternate deposition of positively and negatively charged

electrolytes one layer at a time, introducing the drug of choice in alternate layers. The drug delivery

coating then erodes when placed under physiological conditions releasing the compounds of interest in

inverse order (Figure 4-1).
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Figure 4-1: Schematic of layer-by-layer films and the time-release profile of therapeutic drugs.

Figure adapted from Chuang 2007 (7).

The method by which these films are assembled is shown schematically in Figure 4-2. The

process involves the formation of thin films through the alternating adsorption of positively and

negatively charged polymer species at room conditions. Each adsorbed layer in the films can range from

1 to 20 nm or more in thickness (7). Total film thicknesses are anticipated to range from 100 nm to as

much as 1 to 2 microns. Modulation of the film growth is achieved by changing adsorption conditions

such as pH or salt content of the deposition solution. The LbL assembly technique is mild, versatile, low-

cost and non-destructive, thereby allowing the incorporation of a broad range of functional polymers and

therapeutic agents.
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Figure 4-2: Schematic of alternating layer-by-layer assembly to create thin films. The substrate is

dipped successively in a polycation and polyanion solution resulting in the build up of a film of

alternating polymer layers. Figure adapted from Chuang 2007 (7).

AmPs being small natural polycations, they can easily be incorporated into LbL films as a structural

and active component. Through sequential depositions of a biodegradable polycation (e.g. poly (P-amino

ester)), AmPs, and a biocompatible polyanion (e.g. hyaluronic acid, heparin, chondroitin sulfate, and dextran),

we have constructed LbL films that can release in a controlled manner therapeutically relevant amounts of

AmPs.

4.4. Methods for the release of AmPs from LbL films

Experimental methods described in section 4.4 were reproduced from Helen Chuang's PhD thesis

(7) with her consent.

4.4.1. Choice of bacterial target and AmPs

S. aureus is one of the most common bacteria colonizing implantable medical devices and is thus

chosen as the pathogenic target in this work. We selected three antimicrobial peptides active against S.

aureus or E. coli. These were melittin, dermaseptin and ponericin G1.

Table 4-1: AmPs incorporated in the LbL films

Honeybee venom GIGAVLKVLTTGLPALISWIKREK

Ponericin G1 Ant venom GWKDWAKKAGGWLKKKGPGMAKAALKAAMQ 8

................ 11I .:::::-,---,-.-...-.. - . ..... ...... ..... .



4.4.2. Preparation for the AmP LbL films

Briefly, Poly(p-amino esters) (referred to as Poly X, X = 1, 2, and 6) were synthesized as previously

described (8). Silicon wafers (test grade n-type) were purchased from Silicon Quest (Santa Clara, CA).

Linear poly(ethylenimine) (LPEI, Mn = 25k) was received from Polysciences, Inc. Poly (sodium 4-

styrenesulfonate) (PSS, Mn = 1M) and sodium alginate (or alginic acid) were purchased from Sigma-

Aldrich (St. Louis, MO). Sodium hyaluronate (or hyaluronic acid (HA), M. = 1.76 MDa) was purchased

from Lifecore Biomedical, Inc. (Chaska, MN). Dipping solutions containing Poly X and HA were made at a

concentration of 10 mM with respect to the polymer repeat unit in 100 mM sodium acetate buffer (pH 5.1

by glacial acetic acid). AmPs dipping solutions were prepared by dissolving the AmPs sample with

sodium acetate buffer and glacial acetic acid. Nondegradable base layers were deposited from dipping

solutions of LPEI and PSS in deionized water pH adjusted to 4.25 and 4.75, respectively. Deionized water

used to prepare all solutions was obtained using a Milli-Q Plus (Bedford, MA) at 18.2 Mfl.
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Figure 4-3: Structure of the polycations and polyanions used to build the LbL films. Three different

polyanions and four polycations with carboxyl (hyaluronice acid and algenic acid) and sulfonate

groups (chondroitin sulfate and dextran sulfate) were studied to obtain large diversity in the LbL

films constructs and span a range of affinity for the AmPs. Figure adapted from Chuang 2007 (7)

All polyelectrolyte LBL thin films were constructed according to the alternate dipping method. A

ten-bilayer nondegradable base film ((LPEI/PSS) 10 ) was deposited by submerging plasma treated silicon

substrates in an LPEI dipping solution for 5 minutes, then a cascade rinse cycle consisting of three

deionized water rinsing baths (15, 30, and 45 seconds, respectively). Substrates were then submerged in

a PSS dipping solution for 5 minutes followed by the same cascade rinsing cycle, and the entire process

was repeated ten times. Next, degradable films were deposited on the existing polyanion-terminated

base layer by repeating the above procedure with the [(Poly X/HA)a(AmP/HA)b]n architecture, dipping for

10 min in each of the Poly X, HA, and AmPs solutions and repeating the (Poly X/HA)a(GS/HA)b structure as

many times (n) as desired. Poly X and HA dipping solutions were re-made every 24 hours. Following

deposition, films were immediately removed from the final rinsing bath and air-dried.

4.4.3. Release experiment

The release experiments were carried out by placing a fixed size piece of silicon plate coated with

the LbL coating containing the AmP in 1 ml of PBS and incubating at 37 'C. At different time points a

250ul aliquot of solution is withdrawn and replaced with fresh PBS. The aliquots are frozen at -20 'C until

the end of the experiment. The AmP quantification assays are performed on the aliquots collected at

different times to determine the time-release profile of AmPs from the LbL film.

4.4.4. Monitoring AmP release using BCA assay

Methods typically used to monitor the release of therapeutic agents from the LbL film are

fluorescence tagging and micro bicinchoninic acid (BCA) protein assay. Fluorescence assay requires the

attachment of fluorescein tag to the one end of the AmPs. It is unclear whether the attachment of such



functional group interferes with the release of the peptide from the LbL films and the peptide's

antimicrobial activity; thus Micro BCA assay (Pierce, Rockford, IL) is preferred to monitor the release of

AmPs.

In the BCA assay, the peptide bonds of the AmP reduce the Cu2+ions from the BCA reaction

mixture to Cul+, which then chelates with the bicinchoninic acid forming a purple product, which absorbs

light at 562nm. The intensity of colorimetric absorption is proportional to the total level of the AmP in

the solution and the is compared to dilutions of known concentration of the peptide (9).

4.4.5. Osteoblast toxicity assay

Briefly, MC3T3-E1 Subclone 4 was maintained in minimum essential medium supplemented with

10% fetal bovine serum, 100 U/mL penicillin, and 100 mg/mL streptomycin. Cells were split 1:15 every

3-4 days, with the medium refreshed in between.

During the toxicity assays, cells were seeded at 104 cells/mL in a 96-well plate at 150 iiL per well.

Cells were monitored daily until they reached 50% confluence, at which point the medium in each well

was replaced with the medium released from the AmP-LbL films, [(PolyX/HA)(AmP/HA)]n, to be tested.

For concentration of AmP above 64ug/ml, dilutions with known concentration of the natural AmP were

used instead. All test media were sterile-filtered through 0.2um membranes prior to use. Three wells

were left untreated as negative controls.

Cells were incubated with the test media for the defined test period. At the end of the test period, medium

in each well was replaced with fresh untreated medium, and 15uL of alamarBlue was added to each well.

Cells were incubated at 37'C for 4 hours, examined visually for color change then read at 570 nm and 600

nm using a microplate spectrophotometer. Cell metabolic activity was computed from the

spectrophotomeric readings based on manufacturer's specifications.



4.5. Controlled release of AmPs from LbL films

4.5.1. Initial burst followed by continuous release of AmPs

Melittin was released from layer-by-layer films of [(Poly1/HA)(Mel/HA)]n with twenty and

seventy layers (n=20, n=70) and monitored using a BCA assay. Figure 4-4 shows the release of melittin

over a period of 8 days. The films exhibited an initial burst release of the AmPs during which -80% of the

total AmP content was released within the first 8 hours. This burst profile is associated with the rapid

diffusion of the AmPs across the different layers of the LBL film to the AmPs' small molecular size. The

burst release was then followed by a sustained linear release of the AmPs for a period of over 8 days. The

slower linear profile is associated the gradual degradation of the LBL film and subsequent release of

AmPs from the layers.

The initial burst followed by continuous released demonstrated here can be of great benefit in a

therapeutic settings. The risks of infection are greatest immediately after surgery and the implant of

medical devices. A larger dose of antimicrobial agent is necessary to prevent an initial infection and kill

the pathogens not just at the surface but also in the direct vicinity of the implant, thus requiring an initial

burst release of agent. The following continuous release of antimicrobial agent will then ensure the

sterility over longer time period and prevent attachment of bacteria at the surface of the device.
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Figure 4-4: Melittin release from [(Poly1/HA)(Mel/HA)]n films (n= 20 or 70). Melittin release from

the films follows a burst profile in the first 8 hours followed by a sustained linear release for the

following 8 days. The amount of melittin released from the film constructed with 70 layers is 5-times

higher than that released from the 20-layers film. Figure adapted from Chuang 2007 (7)

Several parameters can be altered during the films manufacturing process to alter the time-

release profile of the AmPs. These parameters include increasing the number of layer, varying the nature

and size of the AmPs, adding a co-release agents to slow down inter-layer diffusion of the AmPs and to

change the nature of the polyanions to control the rate of degradation. The effect of these parameters will

be explored individually in the following sections.

Increasing the number tetralayers from 20 to 70 tetralayers increased the film capacity for AmPs.

However, the correlation between number of layers and capacity is not linear. While the number of layers

was increased from 20 to 70 and thus by a factor of 3, the overall film capacity increased from 13ug/cm 2

to 73ug/cm 2, a 5-fold increase. This suggests that the outer layer have a higher capacity for AmPs than

the inner ones. The tendency to have such a superlinear growth is supported by other authors as well

.......... ....................... ................



(10). The thicker outer layers is also the reason for the initial burst release as they incorporate and thus

release a greater amount of AmP than thinner inner layers.

4.5.2. Similar surface loading for different AmPs

To investigate the surface loading of different AmPs, two identical hyaluronic acid-based LbL

films with 70 tetralayers were constructed using a 1mg/ml solution of melittin in a first film and of

dermaseptin in a second one. Figure 4-5 shows the 8-day release profile of two films. Both films feature

an initial burst followed by continuous release as described in Section 4.5.1. However, the total amount

incorporated in the dermaseptin film, 160ug/cm2, is twice that incorporated in the melittin film,

73ug/cm 2. The difference is justified, as the dermaseptin stock concentration, 0.6mM, was twice that of

melittin, 0.3mM due to its smaller peptide size. This suggests that regardless of the size or nature of the

AmPs and their stock solution concentration, a constant AmP loading of 40-6Onmol/cm 2 was achieved for

the [(Poly1/HA)(AmP/HA)]70 films.

Dermaseptin and melitin release
from films with n= 70 tetralayers

200

160+

120

80

40< + Dermaseptin

EMelitin
011

0 2 4 6 8
Time (days)

Figure 4-5: Dermaseptin and melittin release from [(Poly1/HA)(Mel/HA)] 7o films. The films were

able to incorporate 160ug/cm2 of dermaseptin and 73ug/cm2 of melittin, which correspond to a

constant AmP surface loading of 40-60nmol/cm 2. Figure adapted from Chuang 2007 (7)
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4.5.3. Co-release of growth factors slows and extends release profile

In order to slow the release, we have tried to co-release large agents alongside with the

therapeutic compound of interested. We used basic fibroblast growth factors (bFGF), large molecules of

size 24kD, as co-release agent from the AmP LBL films. These factors promote wound healing and

provide significant therapeutic benefit to patient recovery (11). Two types of films were built to study the

effect of co-release on the release profile. The first films, [(P1/HEB)(Derm/HEP)]1oo, with 100 tetralayers

incorporating dermaseptin only. The second film, [(P1/HEB)(bFGF/HEP)] 20 [(P1/HEB)(Derm/HEP)]1oo,

with 20 tetralayers incorporating bFGF on top of which 100 teralayers incorporating dermaseptin were

deposited.

Figure 4-6 shows the release profile of dermaseptin measured using BCA with and without the

bFGF underlayer. It appears that the bFGF slows down and extent the release profile of the AmP.

Without the underlayer, all of the dermaseptin was release within 10 days while with the bFGF

underlayer the release profile was extended beyond 17 days, thereby extending the length of the

release and active life of the antimicrobial coating.

The underlayer also slowed down the release of the AmPs during the burst phase. Without the

underlayer, 70% of the total dermaseptin content was released within the first 8 hours, while only 50%

was released when the underlayer was present. Most importantly, the duration of the burst release

phase was reduced from 1 day to 8 hours when the bFGF underlayer was added. These effects are

explained by the inter-diffusion of dermaseptin into the bFGF underlayer, thereby lowering its

effective concentration in the top layer and countering the rapid release due to diffusion of the AmP

the media. A similar effect for the bFGF underlayers was observed and documented by Chuang for the

release of gentamycin from similar LbL film (7).
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Figure 4-6: Co-release of dermaseptin with bFGF underlayer. The growth factor underlayer allows

for diffusion of the AmP and slows down the burst release profile of the AmPs thereby extending the

realease time from the LbL coating. Figure adapted from Chuang 2007 (7), films were built by Mara

Macdonald.

4.6. Antimicrobial activity of the released media

The antimicrobial activity of the released solution was tested for films incorporating ponericin G1

using a micro dilution growth inhibition assay. Briefly, the ponericin content in the PBS-based release

media was measured using the BCA assay. 160ul of the released media were then added to 40ul of 5X

concentrated LB in a flat bottom 96 well plate seeded with 105 CFU/ml of Staph. aureus bacteria from a

mid-log culture at OD=0.4. The plate was incubated at 37*C for 8 hours and the resulting OD was



measured with a plate spectrophotomer.

Activity of [(Polyl/HA)(Pon/HA) 100
released media against S. aureus

1
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Ponericin concentration in released media (ug/ml)

Figure 4-7: Antimicrobial activity of the released media. Ponericin G1 was released from

[(Poly1/HA)(Pon/HA)]Joo and the ponericin content was estimated using BCA. The released media

prevented the growth of S. aureus when the ponericin content reached 22 ug/ml. Figure adapted

from Chuang 2007 (7)

The released media prevented the growth of Staph. aureus when the Ponericin concentration

reached 22ug/ml. This is slightly higher but comparable to the 8ug/ml MIC of native ponericin G1. The

discrepancy may be due by the presence of charged polyanions and polycations that interfere and

somewhat shield the AmPs. Most importantly, Figure 4-7 shows the incorporation and release of

ponericin from the films did not degrade the peptide antimicrobial activity thus validating the possible

application of this technology for antimicrobial coatings.

4.7. Non-toxicity of released media towards mammalian cells

The non-toxicity of the LbL films release towards mammalian cells was assessed using the mouse

osteoblast MC3T3 toxicity assay with alamarBlue. The toxicity assay measures the metabolic activity of

MC3T3 cell after 2 days and 4 days of exposure to the media released from a [(PolyX/HA)(Pon/HA)] 70

...... ...... ....... . .... ........ .



film. Two-fold dilutions of natural ponericin were carried out to test mammalian toxicity to concentration

as low as of 4ug/ml. The metabolic activity was normalized with respect to the negative control with no

released media was added. After two days of incubation, no significant decrease in metabolic activity

were observed for ponericin concentration up to 64ug/ml. Above that concentration, ponericin showed

effect on mammalian cell growth and a >50% decrease in metabolic activity. After four days of exposure

to ponericin, metabolic activity of the cells were decreased only by -50%. In combination with Figure

4-1, these results show that ponericin at concentration above 20ug/ml is effective at preventing bacterial

growth while little toxicity to mammalian cell is observe even after 2 or 4 days of exposure.

MC3T3 mammalian toxicity assay

.i 100%

cc 2 days
%. 80% -4 days -

60%
PC

40%
P."

20%

0%

0 4 8 16 32 64 128 256 512

Ponericin concentration (ug/ml)

Figure 4-8: MC3T3 mammalian toxicity assay. Ponericin had little effect on metabolic activity of the

MC3T3 cell up to 64ug/ml after 2 days of exposure. Metabolic activity was reduced to 50% after 4

days of exposure to ponericin concentrations up to 128ug/ml and reduced to 20% above for

concentration up to 512ug/ml. Figure adapted from Chuang 2007 (7)

4.8. Chapter conclusion

In this chapter, we demonstrated the ability to integrate and release AmPs from degradable LbL

films. We showed the ability to control the kinetics of the drug release by altering the loading of the film,

..........



the nature of the polymers and by co-releasing large other therapeutic agents. We also showed that the

incorporation process does not affect the antimicrobial activity of the AmPs and that the released media

is non-toxic to mammalian cell. This technology is readily applicable to provide an antimicrobial coating

for implantable devices and prevent the formation of bacterial biofilms and infections in patients. This

work and its extension was also published in Helen Chuang's PhD Thesis (7) and in Biomaterials as

Controlling the release of peptide antimicrobial agents from surfaces (3).
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Chapter 5. Rational Design of Antimicrobial Peptides

5.1. Executive summary

In this work, we improved the accuracy of our peptide design algorithm by accounting for the

activity of the peptide from which the conserved motifs in amino acid sequence were derived and

incorporating specific structural design criteria common to natural AmPs. We first measured the

antimicrobial activity of the all 163 AmPs from which the motifs were derived against 4 different

organisms. Using this activity information, we assigned the motifs to different antimicrobial activity

zones. The motifs that best describe the activity of underlying peptides were then tiled together to form

proto-peptide, which in turn filtered for strength in predicted activity. The instances of the parent

peptides that best match structural criteria common to natural AmPs were selected, synthesized and its

antimicrobial activity tested.

5.2. Natural AmPs-based therapeutics

The typical approach to developing AmPs as therapeutics agents relies on screening organisms

for new AmPs or optimizing known natural sequences. For example, magainins (113), gaegurins (114)

and pentadactylin (115) are all natural AmPs that were isolated from the skin secretions of amphibians.

Piscidins (116) and hepcidin (117) were isolated from marine life, while cathelicidin and defensins from

humans (118), and plectasin from fungi (119). Optimization of natural AmPs aims at increasing the

activity of natural peptides. Typically optimization approaches increase the peptide's positive charge

(120), hydrophobicity (121, 122), mutate selected amino acids (123), incorporate non-natural ones or

modify the N-terminus (124) or C-terminus (26). While a few isolated or modified natural AmPs have

gone through the therapeutic development process (26), the screening organisms and isolation and

identification of active peptides is a slow and laborious process to producing therapeutic leads.



Additionally, the therapeutic leads are tightly confined to sequence space surrounding the starting AmP.

Because of the great similarity between the optimized and native AmPs, the optimized peptides often

have similar efficacies against the same microbes. A better approach is to produce AmPs candidates with

little homology to existing natural peptides as these can display significant improvements in the breadth

and potency of their antimicrobial properties.

5.3. Existing approaches to designing de novo AmPs

5.3.1. Undirected AmP design

One approach to producing de novo AmPs that is with the undirected high-throughput screening

and selection of peptides expressed from combinatorial libraries in vivo (125-128). However, the large

sequence space to explore posses formidable screening challenges and no peptide discovered with this

approach have reached clinical trials (129).

5.3.2. Computational AmP design

Computational tools have also been used to guide the design of de novo peptides and predict

peptide secondary structures (130), find highly charged regions (131) or identify peptide portions likely

to form helices (132). More sophisticated tools includes quantitative structure activity relationship

(QSAR) analysis and neutral network analysis (133, 134) have been used to model the

peptide/membrane interactions. However, these methods are most applicable within a highly conserved

set of sequences and focus on a known subset of natural peptides

5.3.3. Motif-based AmP design

An alternative approach is to base the design of de novo peptides on conserved structures across

AmPs. Conserved amino-acid motifs (135-137) and conserved three dimensional structures (138-140)

have been identified across a diversity of sequences across subclasses of AmPs and have been shown to

play a role in converting antimicrobial activity to the peptides. These structures have persisted over



millions of years of evolution (25) and are now used as a basis for peptide design. In our previous work,

we showed that the conserved motifs in amino acid sequence can be utilized to produce de novo

antimicrobial peptides (141) that span a large sequence space diversity.

Because of their small size AmPs do not depend on their ternary structure for activity (24).

Instead their activity is derived from their secondary structure, which is tightly correlated with their

amino acid sequence. AmPs within the same family are known to share highly conserved patterns in their

amino acid sequence (Figure 5-1). Some of these patterns can be recognized easily while more complex

patterns require pattern discovery softwares, such as IBM's Teiresias, in order to be identified. The

strong correlation between antimicrobial function and primary structure of AmPs suggests that these

motifs encode in part for the antimicrobial activity of peptides.

QSEAGGLKKLGK
QSEAGWLKKIGK
QSEAGWLKKLGK
QSEAGWLRKAAK
QTEAGGLKKFGK
QTEAGGLKKLGK

Cecrovin QTEAGRLKKLGK
7QTEAGWLKKIGKI

QjST]EAG.L[KRJK.[GA]K

Figure 5-1: Highly conserved patterns in cecropins. Alignment of cecropins from a variety of

organisms reveals a highly conserved pattern. This pattern can be represented by a motif, the

bottom sequence. In the motif, bracketed terms indicate a specific set of amino acids that may be

selected at a position, and a period indicates that any amino acid may be selected at a position.

... .......... ........................



More loosely conserved motifs exist across the different classes of AmPs, and are utilized in the

motif-based design algorithm. Figure adapted from Jensen 2006 (142).

Recent studies have confirmed that many more such motifs can be found throughout the entire

space of known AmPs. These motifs can be recombined to design novel peptides that share little

homology with natural peptides (143). The AmPs designed using the motifs populate a region of the

sequence space that deviates significantly from the space of known peptides while maintaining a high

probability of having antimicrobial function (Figure 5-2).

sequence
space

known / .
AmPs

space
functioning

AmPs

Figure 5-2: Representation of a motif based search space. Sequence space for a typical 20 amino acid

AmP contains approximately 1026 sequences; only hundreds of these AmPs are known. The motif-

based design ofAmPs focuses on peptides inside the "motif space," while allowing deviation from

natural AmP sequences. This allows the design peptides that show no significant homology to any

naturally occurring sequences, but have the desired antimicrobial properties. Figure adapted from

Jensen 2006.
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5.4. Blind motif-based approach to AmP design

In order to understand the improved peptide design algorithm described in Section 5.5 of this

thesis, it is important to first understand the structure and the limitations of the original motif-based

design algorithm. A brief description of the original motif-based design algorithm is provided below

while a more complete acount were already published (26, 142, 143). This original motif-based approach

is <blind because it performs without any knowledge of the actual activity of the natural AmPs from

which the motifs are derived. Taking the activity of the natural AmPs in consideration to improve the

efficacy and activity of the design algorithm is one of the improvements that will be descripbed in Section

5.5.

Teiresias is an algorithm that discovers patterns in any database of biological sequences including

DNA and peptides (144). Patterns are discovered given the following parameters:

- Pattern length, L: Patterns must be at least L characters long.

- Pattern occurrence, K: Patterns must occur at least K times in the dataset.

e Window size, W: Patterns must have a minimum fraction of L/W non-wild card characters over

any window of length W.

An example of patterns discovered using these parameters are shown in Figure 5-3. After pattern

discovery is executed, the discovered patterns are filtered to ensure their statistical significance.



ACGTCGCTAGCTCTC CA ATCGA

GTACCGGCAT CTGACTCATACGTAG

CGACGG ATGACTCGGCTAGTACTAC

G CAG CACATCGTGGGTGGCTTTT

TTTTTGATGAT GGCGCGAGTAGTAG

CTGCTACGTAGTGTT GCGTACCGGC

GTCAGCGATACGTAC CAGT GATGC

ATGCATCGTACG TCGACACACGAGCA

CCAACAGTA CTATGTTCATGCTAGCT

CAGTAC GGTACCGCGCATGCTGCTAG

CT ACA ACTGCTGGTAACTGCAT

ACGATTGACGTAC GCTAGTCGATC

TAGCTCGTACGTTTTGGAT CTACG

TCGATCGTCGTACGATCGA C G
CGACATCGTACTAGCT CTAGCTCAGA

TCAGCTAGCTAGC CTGCAGTACCGCG

ATCT TCAC CGACTATCAGCTACGA

Wildcard ACACAA Density = 6/6
AC[AT]C. .G Density = 4/7

Bracketed GGA.T. [CT ]CCA.GA Density = 9/13 or 4/7
expression

A

Figure 5-3: Sample results of a Teiresias search. Patterns which meet an L/W of 6/6, 4/7, and 9/13 are

shown. An L/W of 4/7 means that in a sliding window of 7 characters, at least 4 must be uniquely

specified (not brackets or wild card). Figure adapted from Jensen 2006.

Teiresias pattern discovery was applied to a database (University of Nebraska, Antimicrobial

Peptide Database (145)) of 526 well characterized eukaryotic AmPs sequences to identify motifs

encoding for antimicrobial activity. Peptides naturally contain short, highly conserved, and reoccurring

sequences of amino acids, which may not necessarily convey antimicrobial activity. The first step in the

discovery algorithm is to identify these short highly-conserved segments and hide them from the

database to allow for the subsequent discovery of more loosely conserved sequences of peptides.

Teiresias was run with the following settings: L = 6, W = 6, and K = 2 to identify these short, highly

conserved sequences. The sequences identified were then masked from the input sequence database. The

motifs, which were hypothesized, encode for antimicrobial activity are more loosely conserved.

Discovery of these loosely conserved motifs across the natural AmP database was done by repeating the



Tereisias discovery using L = 7, W = 15, K = 5 and the following amino acid equivalency groups [[AG],

[DE], [FYW], [KR], [ILMV], [QN], [ST]] (144). Teiresias identified 684 sequence motifs from this set of 526

natural peptides.

Teiresias outputs its motifs in regular expressions using wildcards, which are each displayed as a

dot (Figure 5-3). According to Teiresias terminology, a wildcard can be replaced by any one amino acid.

However in order to remain closer to the set of original peptides, the wildcards in these motifs were

instead de-referenced. That is the wildcards were replaced by the set of possible amino acids observed in

the peptides from the natural database. To facilitate the future reconstruction of a designed peptide, we

divided each motif into sub-motifs using a sliding-window of size 10. This resulted in 1551 motifs of

length ten.

The 1551 ten-amino acid motifs characterize conserved segments in the sequences obtained from

the database. However, these motifs do not necessarily encode for the active portion of the antimicrobial

peptides. To improve selectivity of the derived motifs, the motifs were searched for in a nearly exhaustive

list of all known antimicrobial peptides, approximately 1000 sequences, compiled from the AMSdb

database (http://www.bbcm.univ.trieste.it/-tossi/pagl.htm) and the AmP section of Swiss-Prot

database (146). To identify motifs unlikely to encode for antimicrobial activity, the motifs were searched

for in the list of non-AmPs sequences in Swiss-Prot. Based on these two searches, motifs that were not at

least 80% selective for antimicrobial peptides were eliminated. The resulting final set contained 684 ten-

amino acid motifs and was used to design novel AmPs.

5.5. Refined motif-based approach to AmP design

In this work, we improved the accuracy of the peptide design algorithm by accounting for the

activity of the peptide from which the conserved motifs in amino acid sequence were derived and



incorporating specific structural design criteria common to natural AmPs. We first measured the

antimicrobial activity of all 163 AmPs from which the motifs were derived against 4 different organisms.

Using this activity information, we assigned the motifs to different zones of antimicrobial activity. The

motifs with strong activity were then tiled together to form proto-peptide. The instances of the parent

peptides that best matches structural criteria common to natural AmPs were selected, synthesized and its

antimicrobial activity tested.

5.5.1. Selection and scoring of conserved motifs

5.5.1.1. Identifying motifs from existing AmPs

The Nebraska Antimicrobial Database (http://aps.unmc.edu/AP/) assembles a list of peptides

with known antimicrobial characteristics. We used the database as published in 2004 with its 526

peptides to perform our motif discovery (145). An updated database was later published in 2009 with

over 1500 peptides (147). Conserved motifs in the amino acid sequence of the antimicrobial peptides

published in the Nebraska database were identified using the IBM's Teiresias pattern discovery algorithm

(144). Details of the method to identify patterns were previously described (26). Briefly, a library of 380

conserved proto motifs was extracted from the database by enforcing 7 minimum literals, up to 8

wildcards and requiring a minimum of 5 motif occurrences in the database. These motifs were then cut

into 10mer segments by a moving window of size 10 sequence positions to obtain 1551 motifs. After

duplicate and redundant entries were removed, the library contained 894 unique 10-mers motifs (Figure

5-4:).
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Figure 5-4: Creation the motifs library.

(A) TEIRESIAS motif discovery was applied to the Nebraska Antimicrobial Peptide Database

containing 526 natural AmPs and other previous designed AmPs. (B) 380 proto-motifs with 5

occurrences in the database and containing a minimum of 7 literals and a maximum of 8 wildcards

are identified. (C) The proto-motifs were then cut into 1551 motifs of size 10 amino acids using a

sliding window. (D) Duplicate entries were removed to constitute the complete motif library of 894

10-mer motifs.

5.5.1.2. MIC of existing AmPs

The strong correlation between antimicrobial function and primary structure of AmPs (141)

suggests that these highly conserved motifs may encode for antimicrobial activity of the peptides. To

determine which motifs actually contribute antimicrobial activity, the activity of the originating peptides

needs to be measured.



240 peptides from which these 894 unique motifs originated were identified in the Nebraska

Database. We furthermore restricted the allowed length (shorter than 40AAs) and shape (short linear) of

the peptides that need to be tested due to constraints on peptide synthesis using FMOC

chemistry. Finally, a total of 163 peptides satisfied these requirements and were synthesized. These 163

peptides contained only 667 of the original 894 identified motifs. The antimicrobial activity of the

peptides was determined using a standardized microdilution MIC determination assay (49) against

clinical isolate of E. coli (ATCC 25922), P. aeruginosa (6294), S. aureus (ATCC 25923) and S. epidermidis

(ATCC 14990). The MIC values of these 163 natural AmPs are reported in

Table 5-2: . Since all of the tested peptides demonstrated antimicrobial activity against E. coli, the

pepdides MIC value against E. coli served measurement criteria for antimicrobial activity.

5.5.1.3. Scoring motif's potentialfor antimicrobial activity

In order to project antimicrobial activity information to the motifs given which peptide they

originated from, the content matrix T is defined. Each row of matrix T represents one of the 667 motifs

identified and each column represents one of the 163 peptides tested. A value of 1 (represented by dot in

Figure 5-5: ) at location (m,n) indicates that motif Mm is present in peptide Pn, whereas a value of 0

indicates it is not present.

The columns of content matrix T are then sorted by decreasing activity level of the peptides

against E. coli. Three zones of peptides activity are created namely strong activity peptides (S shown in

green) where MIC values are less than 32ug/ml, medium peptides (M shown in yellow) where MIC values

are between 32ug/ml and 128ug/ml and weak peptides (W shown in red) where MIC values above

128ug/ml.
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Figure 5-5: Assigning peptides activity to motifs. (A) The complete peptide and motif database was

restricted to only short, linear peptides with less 40 amino acids to make up (B) the starting peptide

database of 163 and motif library of 667. (C) each of these 163 peptides was synthesized and the

antimicrobial activity measured against 4 different pathogenic organisms. (D) The content matrix T

relates associates peptides from the database to motiffrom the library. Each rows of the matrix

represents one of the 667 motifs identified and each column represents one of the 163 peptides

tested. A blue dot indicates that the motif is present in peptide. (E) The peptides were then sorted by

decreasing activity level and partitioned in three activity zones: strong peptides in green with MIC

<32ug/ml, medium peptides in yellow with MIC between 32ug/ml and 128ug/ml, and weak peptides

in red with MIC >128ug/ml.

As shown in Figure 5-5:, there are many more weak activity (W) peptides than there are medium

(M) or strong (S) ones. The strong activity zone contains 7 peptides, the medium activity zone contains

84
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39 peptides wide, while the weak activity zone contains 117 peptides. Therefore, any analysis on the

motifs representation within the activity zones must account and correct the bias introduced by the

difference in the total number of peptides contained in the activity zones.

Our ranking algorithm determines the putative activity of the motif based on its relative

occurrence in each activity zone. For example, assume that a particular motif occurs in 4 of the 7 peptides

present in the strong activity zone, and in 58 of the 117 weak peptides.

A simple comparison of the relative ratio may suggest that the motif is predominant in the strong zone

(Strong activity zone: 4/7=0.57 > Weak activity zone: 58/117=0.49). However a more rigorous analysis

should take into consideration the uncertainty associated with the difference in sample sizes of each

activity zone. The mathematics for sorting by average rating while accounting for observation

uncertainty were derived by Edwin B. Wilson in 1927 (Ref: Wilson, 1927). A lower bound requiring a

95% confidence interval is found for the adjusted ratio and defined as the the motif's score for the

particular activity zone.

For the above example, the motifs score is thus 0.41 for the strong activity zone and is 0.45 for

the weak activity zone. Therefore, adjusting for the sample size bias shows that the motif is in fact more

characteristic of peptides in the weak zone since its score is highest for the weak zone. The motif is thus

classified as a weak motif.
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Figure 5-6: Motif scoring and activity zone assignment. (A) The sorted T matrix contains a total of 7

strong, 39 medium and 117 weak peptides. (B) Motif M234 for example is found in 2 of the 7 strong, 4

of the 39 medium and 6 of the 117 weak peptides. The motifs respective representation is given by

the ration where it is found. (C) The score of the motif is the adjusted ratio computed to account for

the uncertainty introduced by the different size of each activity zone. The adjusted ratio accounts for

sample size uncertainty in the motif score. p is the observed unadjusted ratio, za2 is the (1-a/2)

quantile of the standard normal distribution, and n is the total number of observations. (D) The

score of the motiffor each activity zone is computed and (E) the motif is assigned to the activity zone

with the highest score. The motifs are then ranked according to their activity scores and the highest-

ranking motifs are selected to form the motif basis function to design new peptides. 25, 75, and 150

motifs were selected to form the basis function for the strong, medium and weak zone respectively.



This motif-scoring algorithm is repeated for each of the 667 motifs. Motifs are assigned to their

appropriate activity zone and sorted by ascending score. 71 motifs were assigned to the strong activity

zone, 146 to the medium activity zone and 359 to the weak zone. The remaining 91 motifs were omitted

for lack of stastical accuracy as they were present in less than two peptides either the medium or weak

zones and thus had activity scores is close to zero.

The highest scoring motifs from each activity zone form a motif basis function used to designing

new peptides. For the validation of this algorithm and for the actual design of new peptides, we selected

the 25 highest scoring motifs from strong activity zone, 75 from the medium activity zone and 150 from

the weak zone.

5.5.2. Algorithm validation

5.5.2.1. Training and testing set of peptides

Before using the selected set of motifs as basis to design new antimicrobial peptides, we validated our

motif selection algorithm using the measured activities of the 163 naturally occurring antimicrobial

peptides from the Nebraska Database. The dataset is divided into two groups (Figure 5-7): a training set

of 83 AmPs from which motifs are selected, and a testing set of 80 AmPs, whose activity zone is predicted

using the motifs selected from the training set. The original dataset was divided such that the training

and testing set had similar motif content for a more accurate assessment of our activity predictions.

Applying the motif selection and scoring algorithm to the training set, a total of 250 motifs were selected

and assigned to an actity zone. These motifs were then used to predict the antimicrobial activity of the

peptides in the testing set.

5.5.2.2. Activity prediction of test peptides

The activity of peptides is determined from its motif content and by assinging the peptide to the

activity zone with the highest representation based on the motif content. That is for a peptide containing



2 strong motifs and 5 weak ones, the activity is weak. The algorithm validation is done by comparing the

activity prediction of the peptide in the test set with their actual measured MIC values.

We define over-prediction as a successful event given the overall goal to design peptides, which

will ultimately be screened experimentally. Thus over-predictions are false-positive assignment. On the

other hand, lower-prediction than the activity are false-negative assignment and would result in the

incorrect dismissal of potentially strong peptide sequences. Our validation algorithm is able to exactly

predict or over-predict the activity of 84% the peptide in the test set. Only 5% of the predictions made

inaccurate false-negative assignments. If several activity zones are equally represented in the peptide

then the algorithm makes no prediction on the actual activity of the peptides. This was the case for 11%

of peptides present in the testing set.
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Figure 5-7: Algorithm validation. (A) The database of 163 tested peptides is divided into (B) a

training set of 83 peptides used to train the algorithm and (C) assign motifs to a particular activity

zone as described in Figure 5-5:. The remaining peptides constitute (D) a testing set of 80 peptides.

Measured Weak

Measured Medium

easured StroMng

....... ................ .. ...... .. .... .. ........... ........................ .. ...... .
m

t



(E) The activity of the testing set is predicted based on the peptide's motif content. (F) The algorithm

is able to accurately predict the activity of 84% of the peptides in the testing set. Accurate prediction

is defined at predicting the exact or a higher activity zone, which allows for false negative. Only 5%

were incorrect false-positive predictions while 11% could not be predicted due to equal motif

representation in the peptide.

5.5.3. Designing de novo AmPs

5.5.3.1. Tiling motifs to create parent peptides

Given our working hypothesis that motifs play a role confining antimicrobial activity, we use

these motifs as building blocks to design de novo peptides. Since both strong and weak motifs are found

in activity peptides, we replicate the same behavior in our peptide design strategy and incorporate motifs

of various activity zones. We tile motifs together to design new peptides and incorporated as many motifs

as possible to increase the chances of creating peptides with antimicrobial activity. For practical reasons

including peptide synthesis limitations, therapeutic applications and manufacturing cost, the size of the

designed peptides is limited to exactly 20 amino acids, an common peptide size for natural AmPs.

The tiling algorithm overlaps 9 amino acid locations at each tiling step and thus increasing the

size of the motif by one amino acid. The algorithm creates a 20 positions long motif that we will call a

parent peptide (Figure 5-8: ). Using the 250 motifs identified above (25 strong, 75 medium and 150

weak), the tiling process creates 5,579 unique parent peptides. Each parent peptides can be enumerated

to create individual of peptides instances by choosing one amino acid for each position from the set of

allowable options. Thus, each parent peptide encodes for millions of possible peptides instances.



5mer Motif 1 [ALV] [L]

5mer Motif 2 [GPS)

5mer Motif 3 [ALV]

5mer Motif 4 [L]

8mer Parent peptide [GPS] [ALV] [L]

= [L][GPS][AKSV][ALV][L][K][IL][G]

Figure 5-8: Tiling of motifs to created parent peptide.

In this example, four 6-mer motifs are tiled to form an 8-mer parent peptide. All 72 instances of the

8-mer parent peptide are enumerated by picking one amino acid from the choice in the brackets for

each location.

5.5.3.2. Scoring parent peptides

Given our assumption that motif content plays a role in the determining the bioactivity of

peptides and since all instances of a parent peptide contain the same motifs, it is possible to predict the

activity to parent peptides without enumerating all of its instances. This does not however mean that all

instances have the same activity since certain amino acid choices will be better than others for certain

locations. These issues will be addressed by implementing specific peptide design criteria.

Ranking of the parent peptides is done by counting the number of Strong, Medium and Weak

motifs represented in each parent peptide. The parent peptide is then assigned the activity zone most

represented by the motifs content. Since we aim at creating peptides with strong bioactivity, only parent

peptides assigned to the strong activity zone are maintained and medium and weak parent peptides are

eliminated. This reduces the size of the parent peptide library to 2,255 strong parent peptides.

The parent peptides are then ranked with peptides and preference is given to peptides containing

more of the strong motifs. Starting from the strongest candidate a set of 15 parent peptides that share the

least amount of common motifs are selected such that the resulting set of candidate have a diverse motif



content to eliminate biases that a similar motif content might introduce. This selection is done by starting

from the highest ranking parent peptide (highest number of strong motifs), then comparing its motif

content to that of the other 2,255 strong parent peptides and then selecting the next strongest one with

the least amount of common motifs. The third candidate is then the strongest parent peptide with the

least common motifs from the combined list of motifs from the first two candidates. This process is

repeated until the desired number of parent peptides, fifteen, are selected. This selection results in the

following 15 parent peptides.

Table 5-1: Final parent peptide

Posrb-on
1 2 3 4 5 ' 6 7 ' 8 9 10 i11 12 13 14 15 16 17 18 19 i 20

02 KLMW S GIKL AILV K FK IV A IK :L A ',A K V FLV P AS ILV FIV CG

#4 AG K EFKT IV AG K ET V A iK 'ET (,V A K 'EHQT AV A K AEGHQT- ACLQV

06 AFGILV AG K IFKS IL V AG K F LV'AG K F LV AG K FT LV AG K DEFNQT

#8 KLMW S GIKL 'ALV K DE iV AG K E V AG K EN A AG K AELNT A AGFA
810 AFKLQS AFGILV AG K FKS ILV 'AG K F 'LV IAG' K FT ILV ' AG 'K IDEFNQT AGLQV 'AGILMY K

#12 LM KLMW 5 GlKL AILV K 'f V -A K L I- A Y LV FLV P AS LV FM1Y

$14 K -[)FGKT IV G K EFK,'IV#1AL; K'ET'V A' K EKqT; AV A K 'AEGHqT uA(G V ANI

5.5.3.3. Applying specific design criteria to guide the choice of amino acid

Each of the 15 parent peptides in Table 5-1 above yields millions of unique peptides sequences,

not all of them may be active. Factors such as amino acid content, distribution and motif location will

have an effect on the activity of the peptides. A review of literature reveals that common features of

natural antimicrobial peptides include distribution of hydrophobic and hydrophilic amino acids, high

content of cationic amino acids and cationic N-terminus (148-154). We then take into account these

natural characteristics of AmPs to guide our choice of amino acid selection at each position from the

parent peptide. The three different selection criteria utilized are:

...................A .............



- Maximize Hydrophobicity: At each position select the most hydrophobic amino acid. If there are

more than one with the same hydrophobicity value then select one of them randomly.

- Maximize Cationic Charge: At each location select an amino acid with cationic charge. If there are

more than one options select one of them randomly.

" Mixed - Cationic Tail, Maximum Hydrophobicity: For the first 5 positions apply maximim cationic

charge and for the rest of 15 positions maximize hydrophobicity.

Applying these rules and counting how many times they are satisfied them (i.e. there are 20

positions but some of them are fixed with no choice of amino acids) we generated 3 sets of 15 peptides

for each rule and then selected from each the top 5 sorted by highest number of rule satisfied. In total, 15

designed peptides, 5 satisfying different design criteria, were synthesized and tested for activity. To

ensure that the bioactivity of the designed peptides is a direct result of their motif content, we created a

negative control by shuffling their amino acid sequence and ensured that the shuffled control did not

contain any of the motifs from the 667 large motif libraries.

The activity of the designed and shuffled peptides was measure against E. coli, S. aureus, S.

epidermidis, and P. aeruginosa. We also tested the peptides' activity against a methicillin resistant strain

of S. aureus (ATCC 700698, Mu3 designation) and measured their hemolytic activity as a measured of

toxicity towards human cells.

5.5.4. Results and Discussion

5.5.4.1. Methods for the synthesis of peptides

The antimicrobial peptides are synthesized using solid phase Fmoc chemistry by the MIT

Biopolymers Laboratory on the Intavis Multistep Synthesizer (San Marcos, CA). Briefly, the peptides are

built backwards starting with tentagel resin, from the C-terminus to the N-terminus. After synthesis, the

peptides are cleaved from the resin, yielding the crude form of the peptides. The peptides are provided as

a dry powder and are used in their crude form (non-desalted). Mass spectrometry is used to confirm the



accuracy of the synthesis. Typical purities obtained in prior work with the synthesizer were greater than

85%.

5.5.4.2. Methods for MIC determination

A microdilution growth inhibition assay was used to determine the minimum inhibitory

concentration of the peptides against 4 strains of bacteria Escherichia col, Staphylococcus aureus,

Staphylococcus epidermidis, and Pseudomonas aeruginosa. The microdilution assay is particularly suited

to determine the MIC of our peptide library because the assay can test for a large number of peptides in a

high-throughput manner. The assay proposed here was developed as a modification of the method

described in NCCLS M-26A (Ref: NCCLS 1999) and by the Hancock laboratory.

Briefly, 10ul of serial dilutions of peptides in 0.2% Bovine Serum Albumin and 0.01% acetic acid

are made at 10x the desired testing concentration, which ranges from 2 to 256ug/ml, in sterile

polypropylene microtiter plates (Ref. 3790, Corning Inc., Corning, NY). Next, 90ul of 2x10 5 to 7x10 5

CFU/ml of bacterial suspension in Cation Adjusted Mueller Hinton II Broth (CMHB, Ref. 212322, BD,

Franklin Lakes, NJ) are added. The cultures are incubated under mild shaking at 37 oC for 18 to 24 h.

Cultures without the peptides are used as a negative control. The tests are carried out in duplicates. The

MIC is determined based on visual inspection of optical density and is defined as the minimum peptide

concentration that prevents growth.

5.5.4.3. Activity of existing AmPs

A total of 163 natural AmPs and designed peptides were used to identify a library of 667 motifs.

The MIC of these peptides against the four pathogens, E. coli, P. aeruginosa, S. epidermidis, S. aureus is

reported in Table 5-3. The activity distribution of those peptides is reported in Figure 5-9A. 29% of the

tested peptides were ineffective at preventing growth of any of the four pathogens, even at

concentrations up to 256ug/ml. This shows that the AmPs in listed in the antimicrobial peptide database

are in fact not necessarily active. Other authors have showed that peptides classified as AmPs may in fact



act not be antimicrobial under physiological conditions but rather recruit and direct the response of the

innate immune system (148). 71% of the peptides in the database demonstrated growth inhibition

properties against one or more of the tested pathogens. Of those, 22% showed weak activity

(256 MIC>128ug/ml), 23% medium (128 MIC>32ug/ml) and 25% showed strong activity

(32ug/mlMIC).



Table 5-2: Activity table of the 163 tested natural AmPs.

Sequence ID# MIC [ug/mi]
E.coli S.aureus S.epi Raeru

AALKIGAKLLPKLVCKFKKK CACDO02 64 >256 128 128
AGKVLPSIFGLAAKLFPSVF DT0007 >256 >256 >256 >256
AGLGKKVLPSIAGLAAKVFP DT0002 >256 >256 >256 >256
AIKVLPSIFGLAAKVLPSII HPCDO05 >256 >256 >256 >256
ALWKDILKNVGKAAGKAVLNTVTDMVNQ AP00163 256 >256 >256 NA
ALWKNMLKGIGKLAGKAALGAVKKLVGAES AP00159 8 32 16 NA
ALWKNMLKGIGKLAGQAALGAVKTLVGAE AP00165 32 64 128 NA
ALWKTIIKGAGKMIGSLAKNLLGSQAQPES AP00164 64 64 128 NA
ALWKTLLKKVLKA-NH2 Dermaseptin 16 256 8 NA
ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ AP00157 128 >256 >256 NA
ALWMTLLKKVLKAAAKALNAVLVGANA AP00160 64 32 16 NA
AMWKDVLKKIGTVALHAGKAALGAVADTISQ AP00293 256 256 >256 NA
APSIAKLAAKLFPSIAKAAA CACDO05 >256 >256 >256 >256
AVLKVGAKLLPAVICAISKK A392 >256 >256 NA >256
FFPIVAGVAGQVLKKIYCTISKKC AP00455 256 32 32 NA
FGLPMLSILPKALCILLKRKC AP00358 256 64 32 NA
FILKIGAKLVPAVFCKVTKR C321 >256 >256 NA >256
FLFPLITSFLSKVL AP00408 >256 128 >256 NA
FLFRVASKVFPAIFCKLTKR DT0001 64 32 16 64
FLFRVASKVFPALIGKFKKK D51 128 32 16 NA
FLGGLIKIVPAMICAVTKKC AP00513 256 32 32 NA
FLGGLMKAFPAIICAVTKKC AP00515 >256 32 32 NA
FLGVVFKLASKVFPAVFGKV D28 128 8 16 128
FLPAIAGVAAKFLPKIFCAISKKC AP00466 256 32 64 NA
FLPAIFRMAAKVVPTIICSITKKC AP00071 256 8 16 NA
FLPAIVGAAAKFLPKIFCVISKKC AP00467 >256 16 32 NA
FLPAIVGAAGKFLPKIFCAISKKC AP00454 256 16 32 NA
FLPFIAGMAAKFLPKIFCAISKKC AP00463 128 16 32 NA
FLPFIAGVAAKFLPKIFCAISKKC AP00465 128 8 16 NA
FLPFIARLAAKVFPSIICSVTKKC AP00117 128 4 8 NA
FLPIIAGVAAKVFPKIFCAISKKC AP00469 256 8 16 NA
FLPIIASVAAKVFPKIFCAISKKC AP00472 256 8 16 NA
FLPIIASVAAKVFSKIFCAISKKC AP00470 >256 16 16 NA
FLPIIASVAANVFSKIFCAISKKC AP00471 >256 128 128 NA
FLPILINLIHKGLL AP00111 >256 >256 >256 NA
FLPIVGKLLSGLL AP00112 >256 >256 >256 NA
FLPLFASLIGKLL AP00105 >256 64 256 NA
FLPLIGKVLSGIL AP00098 >256 256 256 NA



FLPLLAGLAANFLPKIFCKITRKC
FLPLLAGLAANFLPTIICKISYKC
FLPMLAGLAASMVPKLVCLITKKC
FVLKIGAKLLPSVVCLVTRK
FWGALIKGAAKLIPSVVGLFKKKQ
GAAAKIAAKVLPAIFCKIKK
GCWSTVLGGLKKFAKGGLEAIVNPK
GEKLKKIGQKIKNFFQKL
GFLGPLLKLAAKGVAKVIPHLIPSRQQ
GFVDFLKKVAGTIANVVT
GFVDLAKKVVGGIRNALGI
GGLKKLGKKLEGVGKRVFKASEKALPVLTGYKAIG
GIGAAILSAGKSIIKGLANGLAEHF
GIGALSAKGALKGLAKGLAEHFAN
GIGASILSAGKSALKGFAKGLAEHFAN
GIGASILSAGKSALKGLAKGLAEHFAN
GIGGALLSAGKSALKGLAKGLAEHFAN
GIGGKILSGLKTALKGAAKELASTYLH
GIGGVLLSAGKAALKGLAKVLAEKYAN
GIGTKILGGVKTALKGALKELASTYAN
GILDFAKTVVGGIRNALGI
GILDSFKGVAKGVAKDLAGKLLDKLKCKITGC
GILDSFKQFAKGVGKDLIKGAAQGVLSTMSCKLAKTC
GILDTLKQFAKGVGKDLVKGAAQGVLSTVSCKLAKTC
GILDVAKTLVGKLRNVLGI
GILLDKLKNFAKTAGKGVLQSLLNTASCKLSGQC
GIVDFAKKVVGGIRNALGI
GIWGTALKWGVKLLPKLVGMAQTKKQ
GKAAKIAAKVVPAIICLILK
GKKVLPTVAKLAAKLLPSIF
GKLLPSIFGLAAKLVPSVYA
GLFDIAKKVIGVIGSL
GLFDIIKKIAESI
GLFDIIKKVASVIGGL
GLFDIVKKIAGHIAGSI
GLFDIVKKIAGHIVSSI
GLFDIVKKVVGTIAGL
GLFDVIKKVASVIGGL
GLFGVLGSIAKHVLPHVVPVIAEK
GLFKVLGSVAKHLLPHVVPVIAEK
GLFLDTLKGAAKDVAGKLEGLKCKITGCKLP
GLFSVLGAVAKHVLPHVVPVIAEK
GLKIGAKLVPSIFCAITRKC
GLLDIVKKVVGAFGSL
GLLDSIKGMAISAGKGALQNLLKVASCKLDKTC
GLLDSLKGFAATAGKGVLQSLLSTASCKLAKTC
GLLDTIKGVAKTVAASMLDKLKCKISGC
GLLGVLGSVAKHVLPHVVPVIAEHL
GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ
GLLNTFKDWAISIAKGAGKGVLTTLSCKLDKSC
GLLQTIKEKLESLESLAKGIVSGIQA
GLLSKVLGVGKKVLCGVSGLC
GLLSSLSSVAKHVLPHVVPVIAEHL
GLLSVLGSVAKHVLPHVVPVIAEHL
GLLSVLGSVAKHVLPHVVPVIAEKL
GLLSVLGSVAQHVLPHVVPVIAEHL
GLLSVLGSVVKHVIPHVVPVIAEHL
GLMSVLGHAVGNVLGGLFKS
GLVSSIGKALGGLLADVVKTKEQPA
GTLAGLASKVLPSVFCMFQT
GVFLDALKKFAKGGMNAVLNPK
GVIDAAKKVVNVLKNLP
GVLSNVIGYLKKLGTGALNAVLKQ
GWASKIGQTLGKIAKVGLKELIQPK
GWGSFFKKAAHVGKHVGKAALHTYL
GWGSFFKKAAHVGKHVGKAALTHYL
GWLRKAAKSVGKFYYKHKYYIKAAWQIGKHAL
HRRRHILGHIAKGAHIAGKILWGFF
ILGPVLGLVGNALGGLIKKI
ILGPVLSLVGNALGGLLKNE

AP00073
AP00090
AP00461
A046
AP00390
CACDO04
AP00425
AP00499
AP00424
AP00262
AP00317
AP00133
AP00053
AP00049
AP00419
AP00050
AP00054
AP00060
AP00061
AP00058
AP00319
AP00118
AP00093
AP00088
AP00322
AP00078
AP00316
AP00389
MXCDO04
DT0008
DT0009
AP00019
AP00012
AP00353
AP00020
AP00022
AP00017
AP00351
AP00248
AP00247
AP00115
AP00245
DT0006
AP00014
AP00508
AP00075
AP00120
AP00241
AP00281
AP00091
AP00263
AP00507
AP00243
AP00240
AP00345
AP00242
AP00244
AP00434
AP00251
DT0017
AP00426
AP00325
AP00209
AP00239
AP00166
AP00493
AP00330
AP00339-Rev
AP00526
AP00065

128
>256
>256
>256

64
128
256
256
64

>256
>256

2
>256
>256
256
256
256
32

128
32

>256
128
256
256
256
256
256
64

256
>256
>256
>256
>256
>256

256
256

>256
256

>256
>256
>256
>256
>256
>256
>256
>256

256
>256

64
256

>256
32

>256
>256
>256
>256
>256
>256
>256
>256
>256
>256

128
64
64
32
2
8

>256
>256

8
>256

8
128

4
>256
>256
>256

16
>256
>256
>256
256

>256
>256
>256
>256

32
16

256
>256
>256
>256
>256

256
>256
>256

8
128

>256
>256
>256
>256
>256
>256

256
>256

256
>256

256
>256
>256
>256
>256
>256
>256
>256

256
>256
>256
>256

256
>256

128
128

>256
256
128

>256
256

>256
>256

256
>256
>256

256
32
16

256
>256

16
>256

32
NA

8
>256

256
64
16

>256
>256
>256
>256
>256
>256
>256
>256

16
32
64

>256
>256
>256
>256

128
>256
>256

8
64

>256
>256
256

>256
>256
>256

128
>256
256

>256
>256
>256
>256
>256
256

>256
>256
>256
>256
>256
>256
>256

32
>256

256
256

>256
>256

128
>256

64
>256
>256

256
256
128
256

4
16

>256
>256

NA
NA
NA

>256
NA
128
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

256
>256
>256

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

>256
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

>256
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA



ILQKAVLDCLKAAGSSLSKAAITAIYNKIT AP00510 >256 NA 256 >256
INLKAIAALAKKLL AP00448 128 NA 128 256
INLKALAALAKKIL AP00201 128 NA 128 256
INVLGILGLLGKALSHL AP00070 >256 NA 64 64
ISRLAGLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPE AP00498 64 NA 256 >256
IVAKVAAKVVPAlICLITKD HPCDO03 256 >256 128 128
KIAKVGAKVLPSVICLILKR M587 256 256 NA 256
KIGAKVLPSVFGLAAKVVCA MXCDO05 >256 >256 256 >256
KIKWFKTMKSIAKFIAKEQMKKHLGGE AP00517 2 NA 32 256
KKLAKVAAKVVPAIICLILK MXCDO01 64 128 32 64
KKLAKVAAKVVPAIICLITT MXCDO03 256 256 64 128
KKLAKVGAKVVPSIICAVTK M724 256 >256 NA >256
KLAKLAKKLAKLAK AP00506 256 NA >256 >256
KLAKLGAKVLPAIICKLKKK C706 256 256 NA >256
KLFGIGSKVVPAVVCAVTKR M386 256 >256 NA >256
KVAKLAAKVVPAVICAVTKR M600 256 256 NA >256
KVFGLGSKVLPSIVCLILKR M375 256 256 NA 256
KVLGLAAKVVPAVYCKATRK C568 >256 >256 NA >256
LGAVLKVASKVLPSVFCAIA A725 >256 >256 NA 128
LGKALKIGAKLLPKLVCKFK CACDO03 16 64 64 >256
LGVASKVLPSVAGLAAKVFC DT0003 >256 >256 >256 >256
LGVILGIAAKVVPAIICLIL HPCDO01 >256 >256 >256 >256
LKNVAKLGAKVLPSLFCKIL DT0018 256 128 >256 >256
LLKELWTKIKGAGKAVLGKIKGLL AP00384 64 NA 16 256
LLPILGNLLNGLL AP00096 >256 NA >256 >256
LLPIVGNLLKSLL AP00095 >256 NA >256 >256
LLPNLLKSLL AP00100 >256 NA 256 >256
NFLGTLINLAKKIM AP00110 256 NA 128 256
NLAKLAAKVLPSIFCAFQKK DT0013 >256 >256 >256 >256
PKAFKLGSKVLPSIFCKVTK DT0016 >256 >256 >256 >256
PVAFGIAAKVLPAIYCSATR DT0015 >256 >256 >256 >256
SALKIAAKVLPAVICKIKKK C618 256 256 NA >256
SALKKGAKLLPKLVGKFKKK CACDO01 >256 >256 >256 >256
SALKKVAKVAAKVVPAIICL MXCDO02 128 256 128 256
SIGAKILGGVKTFFKGALKELASTYLQ AP00062 64 NA 64 64
SIGSALKKALPVAKKIGKIALPIAKAALP AP00414 64 NA 256 >256
SLFSLIKAGAKFLGKNLLKQGACYAACKASKQC AP00085 32 NA 32 32
SLGGVISGAKKVAKVAIPIGKAVLPVVAKLVG AP00416 >256 NA >256 >256
SLGSFLKGVGTTLASVGKVVSDQFGKLLQAGQ AP00315 >256 NA >256 >256
SMLSVLKNLGKVGLGFVACKINKQC APOO114 128 NA 64 64
SMLSVLKNLGKVGLGLVACKINKQC AP00122 128 NA 64 128
SVVKKGGKVLPKLVGKLKKK C724 >256 >256 NA >256
TAFKLGKKVLPSIFCLITRK DT0012 256 128 64 128
TVLKIGAKLLPSIVCAVTRK A012 >256 >256 NA >256
TVLKNGAKVLPKVVCKITKR DT0020 >256 >256 >256 >256
TVVKIGAKVLPSIICAITKK HPCDO02 >256 >256 128 256
VAKLLPSVFGLAAKLVPAIF DT0005 >256 >256 >256 >256
VILKIGAKVVPSVVCLILKK HPCDO04 256 >256 64 128
VIPFVASVAAEMQHVYCAASRKC AP00072 >256 NA >256 >256
VLPIIGNLLNSLL AP00097 >256 NA >256 >256
VLPLISMALGKLL AP00109 >256 NA 256 256
VVLKIGAKLLPKLVCLVSKD A076 >256 >256 NA 256
WLGSALKIGAKLLPSVVGLFKKKKQ AP00386 32 NA 2 2
WLGSALKIGAKLLPSVVGLFQKKKK AP00387 32 NA 4 4
WLPTLFGIGSKLLPAVICKI DT0014 >256 >256 256 256

NA = data not available

>256 = MIC value is above 256 ug/ml and could not be measured



5.5.4.4. Activity of the designed peptides

The activity of fifteen de novo AmPs designed in section 5.5.3.3 was measured using the standard

MIC protocols against found pathogens (Table 5-2). Their activity distribution is reported in Figure 5-9B.

27% of the designed peptides did not show any activity against any of the four pathogens. 13% of the

designed peptides show strong activity against a least one of the peptide with MIC <32ug/ml, and 53%

had medium activity while only 7% of the designed peptides had weak activity.

The addition of peptide activity information and design criteria to the algorithm resulted in

significantly higher success in designing active peptides. We used the peptides designed in previous work

(143) as point of comparison. Only 45% of those designed peptides were active when the "blind" design

algorithm was used (Figure 5-9D). A higher portion of those peptides had weak activity (18%) and only

5% showed strong activity. Thus, factoring in peptide activity information and design criteria had a

strong positive impact on increasing the success rate of the design algorithm.

It appears that the current algorithm is successful at designing peptides with at least medium

activity (66%) but it not yet optimized to exclusively design peptides with strong activity. While strong,

medium and weak motifs were incorporated in the design of parent peptides, using strong motifs only

would not necessarily increase the activity of our designed peptides. That is because the algorithm

already selected for fifteen parent peptides with the strongest motifs content (Table 5-1). One approach

to further increase the activity of our designed peptides is to refine the peptide leads using the optimizing

techniques described in section 5.3.1. This second tier optimization strategy to peptide design has

already been demonstrated by other authors (26). Thus the value of the improvements made to the

peptide design algorithm lie in the ability to design diverse therapeutic leads with a higher rate of success

(73% versus 45%) in with higher levels of antimicrobial activity (66% medium and strong peptides

versus only 27%).



5.5.4.5. Activity of the shuffled peptides

To demonstrate that the activity of the peptide lies in the conserved motifs, we measured the MIC

of shuffled versions of those peptides. The shuffled peptides have the same amino acid content and bulk

physical and chemical properties as their unshuffled counterparts except that they do not contain any

conserved motifs in their amino acid sequence. The MIC of the shuffled peptides is shown in Table 5-1

and their activity distribution in Figure 5-9C. 73% of the shuffled peptides show no activity against any of

the four tested pathogens, while only 7% and 20% had weak and medium activity. None of the shuffled

peptides had strong activity. These results show that elimination of the conserved sequences by shuffling

the amino acid sequence destroys the activity of the peptides. As a result, we infer that the conserved

motifs encode for antimicrobial activity since we demonstrate that simple alignment of these motifs

predominantly leads to peptides with antimicrobial activity and that shuffling of the sequences.

Table 5-3: Hemolytic activity and MIC of designed and shuffled peptides against E. coli, P.

aeruginosa, S. epidermidis, S. aureus and MRSA.

ID# Sequence

J9072.C2 KKLGKKIGKTVAKHVAKHGA
J9072.C3 KVGKKIGKTVAKHAAKHLMK

J9072.C4 TGLKKLVKGVAKHAAKHLLK

J9072.C5 IGKKVGKTVAKTVAKHVAKH

J9072.C6 TALKKLAKGVAKHVAKHLYK

J9072.C7 KLVGKFVGKFLGKTLGKFVI
J9072.C8 IMSLIKFVAKLAAKLLPSVI

J9072.C9 FIGKFIAKFLGKTVGKTLLK
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Figure 5-9: MIC activity distribution for (A) database of existing peptide, (B) designed peptides, (C)

their shuffled peptides equivalent; and (D) the blind peptide designs from (143).

5.5.4.6. Specificity of the designed peptides

Two of the 15 designed peptides (J9072.C12, J9072.D4) showed strong activity against three or

more pathogens. J9072.C12 is particularly strong and has an unusually broad activity spectrum with MIC

values of 16ug/ml across all four tested organism, both gram positive and gram negative (Figure 5-10).

The design algorithm here uses E. coli MIC values to rank the motif strength (see Figure 5-5: ). As a result

the designed peptides tend towards higher activity against E. coli with ten active peptides (Figure 5-10).
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Also, the designed peptides are also slightly more active against gram-negative pathogens (EC and PA)

then against gram-positive pathogens (SE, SA).

The algorithm allows changing the motif ranking criteria from the MICE. co to any other kind of

activity measurement. For example, the motifs could be ranked to maximize their activity on S. aureus or

gram-positive pathogens, or to minimize mammalian toxicity. The incorporation of activity information

could thus enable us to control the selectivity and targeting of the designed peptides via the selection and

ranking of the conserved motifs used by the algorithm.

U Strong peptide 0 Medium peptide M Weak peptide U Inactive peptide

10

8
C

0
W 6
V

4 >256
256

S128 (umi)o ~32 U/1

EC PA SE S6
SA

Pathogenic target

Figure 5-10: MIC activity distribution for the designed peptides against the different pathogens

tested. In green are strong peptides with MICS32ug/ml, in yellow medium peptides with

32<MICS128ug/ml and in red 128ug/ml<MICS256ug/ml. The peptides were designed using an

algorithm that favors activity against E. coli. Thus, the designed peptides tend to have slightly

higher activity towards E. coli and gram-negative pathogens.

Controlling the motifs used by the algorithm via an activity ranking is one of two parameters to

control selectivity of the designed peptides (Figure 5-6: ). The second parameter lies in enforcement of

specific design parameters to guide the choice of amino acid in parent peptides (section 5.5.3.3). In this
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iteration of the algorithm, we enforced general design criteria but one can imagine a different choice of

different amino to modify the specificity of the peptides for example.

5.5.4.7. Methods for measuring the hemolytic toxicity

Systemic antibiotics require a large drug dosage to maintain therapeutic concentration

throughout the body. At such therapeutic concentrations, many peptides could impart significant toxicity

to human hosts. The first toxicity screen typically carried out is used to look for hemolytic activity.

Hemolytic activity is defined as the maximum peptide concentration at which less than 50% hemolysis of

Human Red Blood Cells (HC5o) occurs as measured using standard high-throughput methods. A high

value for HCso thus implies that the peptide is less toxic.

Briefly, 20 ul of serial dilutions of peptides in 0.2% Bovine Serum Albumin and 0.01% acetic acid

are made at 5x the desired testing concentration, which ranges from 4 to 512 ug/ml, in sterile microtiter

plates. A stock of human red blood cells (Ref. R407-0050, Rockland, Gilbertsville, PA) is diluted by 40x

with a buffer of 150 mM NaCl and 10 mM Tris at pH 7.0. Next, 80 ul of the red blood cell solution is added

to the peptides and incubated for 1 hour at 37 'C after which the cells are centrifuged and spun down at

6000 G. The tests are carried out in duplicates. The HCso is determined based on visual inspection of

optical density and is defined as the maximum peptide concentration at which less than 50% hemolysis

occurs.

5.5.4.8. Toxicity of the designed peptides

The 50% hemolytic concentration of the designed peptides was measured and is reported in

Table 5-3. The balance between antimicrobial agents activity towards bacterial cells and their toxicity is

measured by computing the therapeutic index.

Therapeutic Index = Hemolysis concentration (HCso) /Antimicrobial concentration (MIC)
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We used the lowest MIC value against the four pathogens as antimicrobial concentration to

calculate the therapeutic index for active designed peptides in Table 5-3. The therapeutic index of the

designed peptides is reported in Table 5-4. The therapeutic index ranges from a value of 0.06 for

J9072.C9 to a value of 8 for J9072.D4. The therapeutic index indicated the range of peptide concentration

for which antimicrobial activity is achieved and before hemolysis occurs. Seven of the ten designed

peptides have therapeutic indexes <1 indicating that they may also induce hemolysis at their active

concentration. The other peptides had a therapeutic range >1, which implies the peptides has higher

affinity toward bacterial cells. J9072.D4 is particularly interesting because it is both strong activity (32

ug/ml) and extremely low toxicity (254ug/ml). Several optimization strategies could be implement to

reduce the hemolytic activity of the designed peptides. The current design algorithm does currently

account peptide toxicity. One approach would be to incorporate toxicity information in the design

algorithm to select for motifs that are associated with peptides of lower toxicity. Another approach would

be to increase the therapeutic index by modification of the peptide terminus as reported previously other

authors (26). These is methods would help reduce toxicity concerns and design peptides that specifically

target bacterial cells.

Table 5-4: Therapeutic index (TI) of active designed peptides. The therapeutic index is calculated as

the ratio between the MIC antimicrobial concentration and HCso hemolytic concentration.

ID# Sequence MIC HCso TI

J9072.C4 TGLKKLVKGVAKHAAKHLLK 256 64 0.25

J9072.C6 TALKKLAKGVAKHVAKHLYK 128 256 2

J9072.C7 KLVGKFVGKFLGKTLGKFVI 128 8 0.06

J9072.C8 IMSLIKFVAKLAAKLLPSVI 64 8 0.12

J9072.C9 FIGKFIAKFLGKTVGKTLLK 64 4 0.06

J9072.C10 IGKFVGKFLGKFLAKTVGKT 128 32 0.25

J9072.C11 AKFIAKFVAKFLAKTLGKFV 16 4 0.25

J9072.C12 KKFAKFIAKFVGKFLGKFLI 128 4 0.03

J9072.D2 KVGKKVGKFLAKTVGKTLLK 128 512 4

J9072.D4 IKSKLKFVAKLAAKLVPSII 32 256 8
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5.6. Chapter conclusion

In this chapter, we present a method to combine conserved motifs in the sequence of AmPs to

create novel peptides with antimicrobial activity. We first measured the antimicrobial activity of starting

database of 163 peptides and assigned the identified motifs to different zones of antimicrobial activity.

We then tile the motifs to form 20-mer parent peptides and selected the fifteen parents peptide with the

highest representation of the motifs belonging to the strong antimicrobial activity zone. We applied

specific design criteria to guide the selection of amino acid in the parent peptide. These specific criteria

tried to mimic naturally occurring peptides and maximized hydophobicity or cationic charge. One major

benefit of the methodology presented is the low cost of computations to design the peptides with desired

properties. Instead of enumerating all possible outcomes and clustering them, we rank the parent

peptides. The specific design step further reduces the number actual peptide instances to those that are

more likely to be active. Finally, the incorporation of the antimicrobial activity information and specific

design criteria resulted in an algorithm that was significantly more successful at designing active

peptides (73% success rate instead of 45%).
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Chapter 6. Mechanism and resistance to Ponericin antimicrobial peptides

6.1. Executive summary

The development of new AmP-based therapeutics requires an understanding of the targets and

mode of action of the peptides. These issues are addressed in this chapter by studying the AmP family of

ponericins, and focusing specifically on ponericin G1.

- In section 6.2, we argue that the MIC is an incomplete determinant for the antimicrobial potential

as AmPs and that cell viability is more a representative measurement for bactericidal activity.

- In section 6.3, we screen a panel of AmPs for bactericidal activity against E.coli and S.aureus We

selected a series of four AmPs with strong growth inhibition and bactericidal activity for further

mechanistic studies - ponericin G5, ponericin W3 and the natural and amidated versions of

ponericin G1.

- In section 6.4, we study the stress response caused by these AmPs on the membrane of E.coli

using a novel high speed AFM and a microfluidic device to visualize the cellular membrane

disruption.

e In section 6.5, we identify two sensing pathways that play an important role in allowing the cell to

resist the cidal activity of these AmPs. We also show that cells who are enable to engage the SOS

response through recA were more susceptible in section 6.6.

- In section 6.3.2, we explore in greater details the effect of C-terminal amidation of ponericin G1

and show that C-terminal amidation results in a change in the mode of action and cidal activity.

- In section 6.7, we correlate using DNA micro arrays these changes in cidal activity with

differences in the gene regulation that the cell undergo when stressed with natural and amidated

version of ponericin G1. We concluded that the bacteriostatic amidated ponericin G1 acts on the
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iron import system and subsequently slows down the TCA cycle while the bactericidal natural

ponericin G1 targets tRNAs synthetases in the ribosome.

In section 6.8, we apply this newly gained mechanistic knowledge to design a synergistic

therapeutic treatment using natural ponericin G1 as adjuvant to kanamycin, antibiotic also

targeting the ribosome. The combination treatment results in a 10-fold increase in bacterial

killing over kanamycin treatment alone.

The work described in this chapter was performed in close collaboration with Dr. Michael Koeris

and Dr. Timothy Lu from the laboratory of James Collins at Boston University. The results of this

collaboration particular regarding the differences in mechanism between the natural and the amidated

versions of ponericin G1 constitute a manuscript in progress.

6.2. Current understanding of AmP mechanism

Albeit the growing interest in developing AmPs as novel therapeutics, relatively little is know as

to their mechanism of action. This is because there are many different families and classes of AmP and

each have different targets and mode of action. Some AmP cause disruption of the cell membrane (1, 2),

others acts on intracellular targets (1), or act by recruiting and boosting the host innate immune system

(3). Before AmPs can be developed as therapeutics, there is thus a need for a clearer understanding of

their mechanism of action. The work described in this chapter offers some understanding particularly

focusing on the family of ponericins isolated from ant venom (4).

6.2.1. MIC incomplete determinant for antimicrobial activity

The scientific community typically compares the therapeutic potential of AmPs using minimum

inhibitory concentration assays (MIC) (5). The MIC is the lowest concentration at which the peptide

prevents growth of an inoculum of 105 cells/ml of exponentially growing bacteria. Using the MIC as

determinant for antimicrobial activity provides many benefits:
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- the MIC determination can be performed in a fast high throughput manner using micro-

dilution assays, thereby testing large libraries of peptides is feasible.

e MIC determination is can be standardized such that the MIC obtained by different

researchers can easily be compared to one another - at least, theoretically as the

community still needs to decide which protocol to use.

- the MIC is a familiar notion in the field of antimicrobial discovery and development since

many small molecule antibiotics also compared using this standard.

- finally, MIC values do provide useful information regarding the peptides antimicrobial

ability to inhibition growth.

Thus, the MIC provides a single quantifiable and easily measurable point of comparison among

different peptides. However, there are also many drawbacks to using MIC as sole determinant for

antimicrobial activity:

- lack of information on actual killing of the bacterial cells, which is the true criteria for

determining antimicrobial activity.

- lack of differentiation between bacteriostatic and bactericidal activity.

- lack of any kinetics consideration considerations

Based on this understanding, the MIC measurements were thus used as a first screening method

that was complement with in-depth studies to evaluate the peptides bactericidal and kinetics properties.

6.3. Bactericidal activity of antimicrobial peptides

While growth inhibition properties in AmPs are necessary characteristics, they are not sufficient

to assess the full antimicrobial potential of the peptides. The family of ponericin AmPs was selected for

further studies based on its generally low MIC values against E. coli (EC) and S. aureus (SA) (Table 2-1).
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Table 6-1: MIC (ug/mli) and bactericidal activity of natural and amidated ponericins against E. coli

(EC) and S. aureus (SA)

Name Sequence MIC Cidality
EC SA EC SA

PonG1 GWKDWAKKAGGWLKKKGPGMAKAALKAAMQ 2 8 Rebound Cidal

PonG1-NH2 GWKDWAKKAGGWLKKKGPGMAKAALKAAMQ-NH2 2 4 Cidal

PonG5 GLKDWVKIAGGWLKKKGPGILKAAMAAATQ 16 64 Rebound Reboun

PonG7-NH2 GLVDVLGKVGGLIKKLLPG-NH2 16 8 Rebound

PonW2 WLGSALKIGAKLLPSVVGLFQKKKK 32 4

PonW3 GIWGTLAKIGIKAVPRVISMLKKKKQ 8 4 Cidal Cidal

PonW3-NH2 GIWGTLAKIGIKAVPRVISMLKKKKQ-NH2 64 8 Cidal Cidal

PonW4 GIWGTALKWGVKLLPKLVGMAQTKKQ 64 4 Cidal Cidal

PonW5 FWGALIKGAAKLIPSVVGLFKKKQ + 256 Cidal Cidal

PonW6 FIGTALGIASAIPAIVKLFK + 16
PonW6-NH2 FIGTALGIASAIPAIVKLFK-NH2 25 + Rebound Cidal

6.3.1. Study of the ponericin family

The kinetic and bactericidal properties of ponericins was assessed by exposing a exponentially

growing bacterial culture at 1O8CFU/ml (0D 600=0.4) to 10-fold excess of the peptide's MIC reported in

Table 2-1. A sample of the treated culture was removed at desired time points and the number of viable

cells was counted by plating ten-fold dilutions on growth agar overnight. The kill curve for each AmP is

shown in Figure 2-2. Three distinct bactericidal behaviors are observed: static AmPs, rebounding AmPs,

and cidal AmPs.

PonW2, PonW6 and PonGl-NH2 are all static AmPs (Figure 2-2A). With an MIC value above

>512ug/ml, PonW6 is barely effective against E. coi. On the other hand, PonGl-NH2 has a very low MIC

against E. coi of 2ug/ml (and against staph. aureus 4ug/ml) but does not show any cidal activity against

E. coii even at concentrations 10-fold above its MICE., 0Ihwhich is 4Oug/mI. PonG1-NH2 's action on E. coi

is thus purely bacteriostatic. However when tested against Staph. aureus (Figure 2-21)), PonGl-NH2

shows very strong bactericidal properties also 10-fold its MIC.aureus, which is 4Oug/ml. The difference in

cidal activity against E. coi and S. aureus is rationalized by the large difference in membrane structure
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and composition between gram-negative and gram-positive bacterial kingdom, of which E. coli and S.

aureus are two representative of respectively.

Rebounding AmPs (Figure 2-21B) kill the bacteria through cell lysis and reduce the viability count

from 108 CFU/ml to as low as 103 CFU/ml within 2 hours post treatment. However, the bacterial cells are

able to adapt to the presence of the peptides and start regrowing, typically after 3 hours and reach

similar cell counts as the untreated cell control 6 hours after treatment (~108 CFU/ml). Possible causes

for this adaptation include resistance due to changes in the cell membrane structure, degradation of

exogenous AmPs by proteases, excretion of AmPs acting intracellularly, etc. (6). In all, the cells adapt

rapidly to the challenge posed by the AmPs. Ponericins for which this rebounding effect was observed,

even at 10-fold their MICE.coIi value, include PonG1, PonG5, PonW6-NH2 and PonG7-NH2, all of which do

in fact demonstrate favorable growth inhibition qualities and low MIC.

Cidal AmPs (Figure 2-2C) show a strong, rapid and permanent killing effect on the cells and

reduced to the CFU count from 108 CFU/ml to below the minimum detection level of 200 CFU/ml

(corresponds to 1 viable bacteria per 5ml plated). Four ponericins were identified with such strong

bactericidal activities -PonW3, PonW3-NH2, PonW4, PonW5- all of which also posses medium to strong

growth inhibition behaviors
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Figure 6-1: Kill curve for (A) bacteriostatic, (B) rebounding and (C) bactericidal ponericins against

E. coli and S. aureus.
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As demonstrated in Figure 2-2, classification of AmPs based on their organism of origin appears

debatable. Small differences in the amino acid sequence have drastic effects on the peptide's cidal activity

and mode of action. Instead a classification based on the peptide's cidal activity is preferred. This

reclassification enabled us to identify a series of cidal AmPs that possess excellent growth inhibition

properties as well as strong bactericidal behaviors against E.coli making them more likely candidates for

drug development.

6.3.2. C-terminal amidation significantly alters cidal activity of ponericins

The previous section (Figure 2-2) included bactericidal activity of several natural and amidated

ponericins such as ponericin G1, ponericin W3 and ponericin W6. The kill curve for these peptides was

rearranged in Figure 6-2 to compare the cidal activity between the natural and amidated version of these

peptides.

Ponericins: Ineffective AMPs

- PonG1 -A - PonGl-NH2
-0- PonW3 -A* - PonW3-NH2

10 -6- PonW6 - r- PonW6-NH2

6
C

0 4

2
0 2 4 6-
0 2 Time (h) 4 6

Figure 6-2: Kill curve for natural and amidated ponericin G1, W3 and W6.

Amidation at the C-terminus has been reported to increase activity and reduce the MIC of AmPs

because it shields the negative charge of the C-terminus of the peptide. However, this understanding is

simplistic and fails to understand the complete impact of the C-terminus amidation. Figure 6-2 instead

suggests that the simple change from a C-carboxyl group to a C-amide group has much broader

implication and directly affect the cidal activity and the mode of action of the peptide. While C-terminal
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amidation may reduce the MIC of some peptides, it is however not necessarily beneficial for the peptides

cidal activity. For example, C-terminal amidation can turn a cidal peptide in to a static one (PonG1) or a

static one into a cidal AmP (PonW6). The natural version of Ponericin G1 has shows cidal activity and

suppresses E. coli culture from 108CFU/ml to 103CFU/ml in the first hour post treatment (Figure 2-2). On

the other hand, its amidated version, PonGl-NH2, does not show any bactericidal activity. Thus, C-

terminal amidation can be both detrimental, or positive. Such sharp contrast in the peptides cidal activity

hints at different targets and mode of action although these two peptides are identical except for the C-

terminus modification. We elaborate in greater details the difference in the peptide's mechanism in

section 6.7.

6.4. Visualization of the membrane disruption action of AmPs

6.4.1. Microscopic visualization using high speed atomic force microscopy

Our effort to understand the different mechanisms and cidal activity of AmPs starts by visualizing

the stress they impose on cellular membrane. To that extent, we collaborated with Georg Fantner from

the laboratory of Angela Belcher at MIT and utilized a homemade high-speed atomic force microscope to

follow in real time the deformation of live E. coli cells subjected the antimicrobial peptide, Cecropin A

Melittin. Cecropin A Melittin (CAM) was selected as AmP for this study because it has been reported to

have strong membrane disruption membrane ability (7) and was available in quantities necessary for this

experiment.
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Figure 6-3: Imaging using high-speed atomic force microscopy shows E. coli cell disruption induced

by the AmP CAM.

The addition of CAM induces change the morphology and surface roughness of the bacterium cell

membrane. Prior to the addition of CAM, the cells were smooth. However after addition of CAM the cells

become corrugated (Figure 6-3A). Changes in cell morphology occurred within 13 seconds for the upper

bacterium #1 while the lower bacterium #2 was able to resist the action CAM for over 78 seconds. A

larger view was taken after 12 minutes and shows that most, but not all bacteria, had become corrugated

(Figure 6-3B). Bacterium #3 for example was still smooth after 16 minutes (Figure 6-3C) but became

corrugated after 30 minutes (Figure 6-3D). These results demonstrate that the membrane disruption

action of the AmPs is very rapid, on the order of a few seconds only. Such rapid killing action have been
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hypothesized for other AmPs (8) however this work is the first report of a direct visualization on the

killing for CAM using AFM imaging.

However, there appears to be a large spread in the time required killing as some cells are able to

resists the action of the AmP for up to 30 minutes before a morphological change to the membrane is

observed. Given the AmP concentration was made homogenous through the sample by pipette mixing,

the timing difference is not due to differences in the local AmP concentration. Instead, some cells appear

to have the ability to resist the action of the AmP for extended time period.

Gaining a true understanding of the mechanism that allows these cells to resist the action of AmP

requires the cells to be placed in an environment in which they are able to divide and growth. These

growth conditions cannot be achieved in the high speed AFM because of technical limitation on the

apparatus and thus these studies were carried out using a microfluidic device (section 6.4.3). The kinetic

results obtained with the AFM instrument were published by Dr. Georg Fantner in Nature Nanotech (9)

where our contribution was also acknowledged.

6.4.2. Macroscopic validation of the time scale for the membrane disruptive action of

AmPs

The short time frame for membrane disruption observed at a microscopic level with the AFM was

validated on a macroscopic level using a luminescent variant of E. coli. The strain, E.coli-Xen14 was

donated by Calipers, CA and contained a stable copy of the Photorhabdus luminescens lux operon on the

bacterial chromosome (Xen14 strain from CALIPERS). Xen14 cells were grown to a mid-log phase at 108

CFU/ml (OD600= 0.4) from an overnight culture and the luminescence intensity was measured in a 96

well plate reader.

Cecropin A melitin (CAM) was added to E.coli-Xen14 culture to a final concentration of 128ug/ml.

A complete and immediate drop in luminescence of the bacterial culture was detected within one-minute
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(Figure 6-4) post CAM addition. The quenching of luminescence suggests a loss of the proton gradient

due to a disruption of the cell membrane and leakage of intracellular ATP. These experiment confirm the

rapid membrane disruption and killing observed on a microscopic level to macroscopic level applied to a

whole batch culture. The luminescence cause by the few individual cells that resisted the action of the

AmP could not be detected, as it was likely below the minimum level of detection of the reader.

E.coli luminescence quenched 1-min post CAM additon

60,000

-Addition of AmP

40,000 -

8 ~ "'-+''-Xen14

0,0--Xenl4 + AmP _20,000 __

0

-2 0 2 4
Time (minutes)

Figure 6-4: Luminscence reading of Xen14 luminescent E.coli subjected to XXug/ml of cecropin A

melitin. The immediate drop in luminescence caused by disruption of the cell membrane Effect on

intracellular A TP concentration and preventing the A TP driven cell luminescence.

6.4.3. Microscopic visualization using microfluidic device

In order to properly study the cell's stress and adaptation to AmPs in a potential therapeutic

setting, they should be maintained in normal growth and division conditions. However, AFM imaging

described in section 6.4.1 does not allow such growth condition to be replicated - instead the cells are

kept alive in PBS but in a non-dividing state. Therefore, we continued our microscopic visualization

studies using a specially constructed microfluidic device developed by Dr. Ahmad Khalil from the

laboratory of James Collins at Boston University.
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The microfluidic device is made from PDMS using standard soft lithography techniques and is

composed of a 1 um high culture chamber that enable monolayer of E.coli cells to grow and through

which growth media, nutrient, drugs, etc are perfused in a controlled manner. A microscope is mounted

on top of the chamber to visualize and follow cell growth. The microfluidic device offers several

advantages over visualization with the AFM; namely

- it is more representative of actually physiological condition in patients in terms of

temperature, growth environment, etc

- bacterial cells are maintained in pseudo-exponential phase state, i.e. alive and dividing

- the control of the local concentration of antimicrobial agent is more accurate

- it allows for the formation of bacterial biofilms with long term cultures, which are harder to

kill

e it provides a more challenging assay and more clinical relevant target for the design of

antibiotics

We studied the effect of two AmPs - bactericidal PonW3 and rebounding PonG1 - on E.coli cells

using the device. The sequence and MIC of these peptides is provided in Table 2-1 and their cidal activity

profile in Figure 2-2. Figure 6-5 shows time profile of cell growth in under microfluidic device after SX

MIC of AmP (8ug/ml for PonW3 and 2ug/ml for PonG1) is perfused continuously starting at 0 seconds.

A change in the membrane morphology is observed within the first 12 minutes of continuous

perfusion of the bactericidal peptide ponericin W3 through the chamber (Figure 6-5A). The cells

membrane appears corrugated, and collapsed. The cells that displayed this collapse were also no longer

able to divide. This change in cell morphology is indicative of a disruption of the cell membrane and a

dead state of the bacteria. After 25 minutes of perfusion, all the bacteria in the view area underwent cell

membrane collapsed. One possible future experiment would be to stop flow of AmP at a given time point

and perfuse straight growth media to observed if the cells can be rescued. However, since none of the
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cells that underwent the experiment were able to regrow after being plated overnight, this suggest that

the change in membrane morphology indicates a strong bactericidal behavior for PonW3 at the

concentration used.

When the rebounding peptide ponericin G1 was perfused through the chamber at 5X MIC, a

similar changes in membrane morphology was observed for some cells within the first 10 minutes

(Figure 6-5B). However, the PonG1 does not affect all the cells equally. In fact, some cells are able to resist

the membrane disruption action of the peptide and continue to multiply in the chamber. This indicates

that PonG1 is not as effective an antimicrobial as PonW3 and that some cells are able to resist PonG1 and

regrow, which is also seen in the kill curve in Figure 2-2. It should also be noted that because of the

particular chamber conditions - media perfusion, low partial pressure - cell growth occurs about 25%

slower in the microfluidic device and the E.coli cell divide every 25 minutes instead of the 20 min

doubling time under optimal conditions. As cells continue to grow, some channeling effect may be

observed temporarily and some cells may be exposed to higher local concentration of AmPs. After 30

minutes, the cells colonized the entire width of the device resulting in a more homogenous distribution of

the media. It also appears that only the cell that were not affected by the AmP are able to divide and

grow; while the cells that are corrugated stay in place and do not divide, thus indicating the cells are in

fact dead.
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Figure 6-5: Imaging using a microfluidic flow chamber shows resistance to Ponericin G1 and cidal

action of Ponericin W3. Treatment with Ponericin W3 at 1OX MIC induces a membrane disruption

manifested by a morphological change starting within 10min and affecting all the cells in the

reactor. The cells are no longer able to divide and multiply resulting in the cidal effect of the peptide

(Panel A). The morphology change is manifested through deflation of the cells and surface

corrugation at the cell membrane. For cells disrupted during division, the septal ring at the

centerline is even visible (Panel C). Treatment with Ponericin W3 affect some cells that become

corrugated and cannot grow while others appear not affected and colonized the entire microfluidic

chamber (Panel B and D).
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6.4.4. Correlating visual observations with gene regulation response for PonG1, G5, W3

Both the AFM and the microfluidic device indicate that stress with cidal AmPs lead to a change in

the cell membrane morphology and result in corrugated bacterial cells with permeabilized cell

membrane. The microfluidic device shows that some cells gain the ability to resist the action of the AmPs.

Understanding the mechanisms by which those cells derive resistance to AmPs is invaluable for the

development of AmPs-based therapeutics. It is thus necessary to correlate these visual observations with

changes on the gene regulation level to identify the pathways involved in activating and leading to AmP

resistance.

Having observed significant perturbation to the cell membrane, we first study membrane stress

sensors systems by the cells in section 6.5. Two separate systems were studied, the cpxAR system and the

dpiAB system. These two component cell sensory pathways were studied for the action of AmP LL-37 and

PG-1 against B. subtilis (10) but this is the first report of such study for the family of ponericins.

6.5. Membrane stress sensors induce cellular resistance to ponericins

6.5.1. CpxAR senses and corrects for misfolded envelope protein due to AmP membrane

action

Based on our AFM and microfluidics observation, we hypothesize that AmPs lead to an alteration

in membrane structure and the misfolding of envelope proteins. The CpxAR two-component system is

responsible for sensing misfolded envelope protein and for regulating the cell response. Misfolded

protein in the cell envelop protein stimulate CpxA autokinase, which in turns phosphorylates CpxR

causing the upregulation of genes involved with the degradation and synthesis of membrane proteins,

and transcription regulation (11). The CpxAR system has thus the ability to restore the cell membrane

after the disruptive action of the AmP. Additionally, CpxAR activation has been shown to induce
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expression of intrinsic multidrug exporter genes and lead to resistance to antimicrobials such as

carbenicilin. Therefore, CpxAR system is a regarded as a potential target to overcome drug resistance

mechanism (12). We studied the viability of a CpxA knockout mutant (CpxA-) subjected to treatment with

1oX MIC of PonG1, PonG5 and PonW3 and compared it with the viability of the wild type cells (wt). CpxR-

knockouts show strong negative growth defect and are not amenable to comparison and thus were not

studied.

PonG1 is a rebounder AmP to which wild type cells are able to adapt and derive resistance

against. However, when the cell's ability to sense and correct for membrane protein misfolding (CpxA-),

the cells are unable to adapt and resist the action of PonG1 (Figure 6-6A). This suggests that the CpxAR

mediated cellular sensing and response is uniquely necessary to evolve resistance to PonG1.

A similar detrimental effect is observed for CpxA- mutants treated with PonG5, another

rebounder AmP (Figure 6-6B). However, the CpxA- knockouts were able to derive resistance to the AmP

after 10 hours of treatment and the culture starts to regrow slowly. This indicated that while CpxAR

sensing is important in the evolution of resistance but not crucially and that its knock out significantly

delays the activation of the resistance mechanism. This suggests several input are present to the

transcription program involved in resistance to PnG5, CpxAR being one of them.

Finally, PonW3 (Figure 6-6C) is a strong bactericidal AmP and remains so for CpxA- knockout

mutants. The PonW3 lead to cell lysis indicated by a drop in optical density and completely sterilized the

culture as no viable cells were detected after overnight plating. Thus, the cells ability to sense and

respond to misfolded proteins via the CpxAR two-component systems plays an important role in enabling

the cells to gain to the AmPs.
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Figure 6-6: Optical density of culture of CpxA- knockouts challenged with 1ox MIC of PonG1, PonG5

and PonW3. CpxA- knockouts show CpxAR system play an important role in the cell's ability to adapt

and derive resistance to AmPs.

6.5.2. DpiAB sensing plays a role in bacteria resistance to PonG1

We tested the action of a second membrane stress sensor, the DpiAB system. DpiAB is a dual

transcriptional regulator involved in anaerobic citrate catabolism. It also serves as a defense mechanism

that utilizes bacterial two-component signal transduction system to induce the SOS response and

temporarily inhibit cell division during exposure to antimicrobials, consequently limiting their

bactericidal effects of these drugs (13). DpiAB thus regulates transcription but also binds to A/T-rich

sequences in the replication origins of the E. coli chromosome thereby affecting DNA replication and

inhibiting cell division. Since the DpiAB is involved evolution of resistance to commonly used
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antimicrobials b-lactams, which act on the cell membrane, we decided to study whether the system also

played a role in resistance to AmPs. We studied the viability of DpiA- and DpiB- gene knockouts mutants

exposed to 1oX MIC concentrations of PonG1 (MIC= 2 ug/ml), PonG5 (MIC= 16 ug/ml) and PonW3 (MIC=

8ug/ml) and compared it to viability of the wild type E.coli (Figure 6-7).

Wild type E.coli cells are able to adapt to the action of rebounder peptide Ponericin G1 and start

regrowing typically after 1 hour of treatment. The DpiA- and DpiB- knockouts (Figure 6-7A, B) show 2.5

fold increased susceptibility to the PonG1 and 2 hours delay in the adaptation and regrowth to AmPs for

both knockouts. Once AmP resistance was acquired, the growth rate of wild type and the knockout

mutants was similar. This suggests that, while not essential for the evolution of PonG1 resistance, DpiAB

sensing allows for earlier detection and faster response to the membrane stress caused by PonG1.

On the other hand, when exposed to rebounder peptide PonG5, deficiency in DpiAB sensing,

either through DpiA- or DpiB- knockout (Figure 6-7C, D), results in a slight protective effect in the first

three hours of treatment as the AmP kills more wild type cells. Past 3 hours, the wild type cells adapt

better to the AmP and are able to adapt and regrow faster as the wild type viable trajectory at 4 hours

overtakes that of both DpiA- or DpiB- knockouts.

Changes in viability due to DpiA- or DpiB- knockout could not be detected when the cells were

exposed to the strong bactericidal PonW3 because the number of remaining viable cells was below the

detection limit of the assay (Figure 6-7E, F)

DpiAB mediated membrane stress sensing thus plays a mixed but non-essential role in the cell's

ability to adapt to the presence of different AmPs. Activation of the system is beneficial when the cells are

exposed to PonG1 but is unfavorable when the cells are exposed to PonG5. These observations are

internally consistent for both DpiA and DpiB knockouts and were validated with 2 independent

experimental repeats.
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Figure 6-7: Survival of DpiA and DpiB knockouts challenged with 1OX MIC of PonG1, PonG5 and

PonW3.

6.6. Cellular resistance involves RecA data

Section 6.5.2 establishes that the cell's ability to sense AmP stress on the membrane the DpiAB

system is beneficial to the cells and leads to the early development of adaptation and resistance to Amp
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action such as that of PonG1. One of the gene targets of DpiAB is induction of the cell's SOS response to

repair DNA. Thus, we hypothesize that PonG1 mode of action leads to DNA damage and that the cell

adaptation and resistance is mediated by the SOS response. This hypothesis is reasonable given other

peptides have been shown to block DNA replication and induce SOS response (B17 Blocks DNA

Replication and Induces the SOS System in Escherichia coli). However, these studies have never been

shown for any of the ponericins nor have they correlated the SOS activation with two-component stress

membrane and bactericidal activity.

Two proteins play key roles in the regulation of the SOS response: the repressor LexA and the

inducer RecA. The SOS response is activated with increasing level of DNA damaged after the DNA

polymerase is blocked by intracellular antimicrobials resulting in accumulation of single stranded

(ssDNA) regions at replication forks. RecA forms a filament around these ssDNA regions and becomes

activated. The activated form of RecA promotes the self-cleavage of the LexA repressor from the operator

and the gradual induction of the various SOS genes. The first repair mechanism to be induced is

nucleotide excision repair, whose aim is to fix DNA damage without commitment to a full-fledged SOS

response. If that does not suffice, later SOS genes will stop cell division, cause cell filamentation, and

induce mutagenic repair (14). Since many antibiotics lead to DNA damage, and all bacteria rely on RecA

to fix this damage, one strategy to enhance the toxicity of antibiotics - or to create new oness - is to block

RecA function and preclude the induction of the SOS repair in the cell (15, 16). Thus, RecA activity is

synonymous with the development of antibiotic resistance, and inhibitors serve to delay or prevent the

appearance of resistance (17). Here, we challenged recA- knockout mutants that are unable to activate

the SOS system and repair DNA damage with 1oX MIC of PonG1, PonG5 and PonW3.

While wild type E.coli starts regrowing after 2 hours of treatment with Ponericin G1, the recA-

knockout mutants lose the ability to adapt and resist to the action of peptide and no regrowth is

observed. Even after 4 hours of treatment, the count of viable cells was still below the assay detection
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level of 200 CFU/ml and no regrowth is observed. These observations imply that first the action of PonG1

leads, directly or indirectly, to extensive DNA damage in the cell and second that the cells ability to repair

this DNA damage is absolutely necessary for the evolution of bacterial resistance to PonG1.

On the other hand, recA- knockout mutants are still able to adapt and resist to PonG5, a

rebounding AmP. Since DNA repair is not essential for resistance, the initial cidal action of PonG5 does

not center or cause lethal DNA damage. The recA- mutants are however more sensitive to the peptide and

the lack of SOS response delays regrowth by -1 hour. Thus, the activation of the SOS response is

somewhat beneficial but not necessary for cell adaptation to PonG5.

Finally, PonW3 is has a strongly cidal activity regardless of whether the cell are able to repair

DNA. This suggests that either the DNA damage is so extensive that even SOS cannot rescue the cell or

that the mechanism causing cidality does not center on DNA damage.

In order to gain a holistic approach to put into perspective our finding as part of a grander

understanding of the networks involved in resistance, we next performed a complete study of gene

regulation using microarray. We chose PonG1 and its amidated version PonG1-NH2 as subject of our in-

depth studies.
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Figure 6-8: Survival of RecA knockouts mutants challenged with 1OXMIC of PonG1, PonG5 and

PonW3.

6.7. Microarray validation of the cellular targets of Ponericin G1

To gain a holistic understanding of the evolution mechanisms of bacterial resistance, we

complement our previous findings with a study of the gene regulation using DNA microarray. The

microarray enables us to identify the activated gene networks leading to resistance to PonG1 and infer

the peptide's intracellular targets. Additionally, since sharp differences in cidal activity were observed

between the natural and amidated version of PonG1 (Figure 6-2), we compare the cellular gene response

upon treatment with these two peptides to understand the difference in target and mechanism resulting

from the C-terminal amidation of PonG1. Section 6.7.1 describe the generalized experimental and

analysis methods of the microarray study and was reproduced from Dr. Koris's PhD Thesis with the

author's consent (18).
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6.7.1. mRNA isolation and microarray hybridization

To elucidate the differences between the mode of action of the two AMPs, we ran an 8h

microarray time course following the treatment of an exponentially growing culture with either AMP. We

compared the microarray-determined mRNA profiles (GeneChip@ E. coli Genome 2.0 Array, Affymetrix,

Santa Clara, CA) of untreated wild-type E. coli K12 EMG2 cultures with cultures treated with 10x MIC of

PonG1 and PonG1-NH2. For both samples, overnight cultures were diluted 1:1000 into 5 mL LB medium

in a 14mL flask for collection of total RNA. Initial, untreated samples for microarray analysis were taken

at an OD600 - 0.6 and then 1h, 2h, 3h, 6h, 7h and 8h post treatment with the AMPs. Treatment with the

cidal natural PonG1 resulted in a significant cell lysis and not mRNA could be collected for the 1h, 2h, 3h

time point.

Total RNA was obtained using the RNeasy Protect Bacteria Mini Kit (Qiagen) according to

manufacturer's instructions. RNAprotect (Qiagen) was added to culture samples at a 2:1 volume:volume

ratio, which were then incubated at room temperature for 5 minutes prior to pelleting by centrifugation

at 3,000xg for 15 minutes and stored overnight at -80'C. Total RNA was then extracted using the RNeasy

kit, and samples were DNase treated using the DNAfree kit (Ambion, Austin, TX). Sample concentration

was measured using the ND-1000 spectrophotometer (NanoDrop, Wilmington, DE). cDNA was prepared

from 10 pg total RNA by random primed reverse transcription using SuperScript II (Invitrogen, Carlsbad,

CA). The RNA was digested by adding 1 M NaOH and then incubating at 65'C for 30 min. The mixture was

neutralized by the addition of 1 M HCl. The cDNA was purified using a QlAquick PCR purification column

(Qiagen) following the manufacturer's protocol. The cDNA was fragmented to a size range of 50-200

bases with DNase 1 (0.6 U/pg cDNA) at 370 C for 10 min, followed by inactivation of the enzyme at 98'C

for 10 min. Subsequently, the fragmented cDNA was biotin labeled using an Enzo BioArray Terminal

Labeling kit with Biotin-ddUTP (Enzo Scientific). Fragmented, biotinylated cDNA was hybridized to the

arrays for 16 h at 45'C and 60 r.p.m.
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Following hybridization, arrays were washed and stained according to the standard Antibody

Amplification for Prokaryotic Targets protocol (Affymetrix). This consisted of a wash with non-stringent

buffer, followed by a wash with stringent buffer, a stain with strepavidin, a wash with non-stringent

buffer, a stain with biotinylated anti-strepavidin antibody, a stain with strepavidin-phycoerythrin and a

final wash with non-stringent buffer. The stained GeneChip arrays were scanned at 532 nm using an

Affymetrix GeneChip Scanner 3000. The scanned images were scaled and quantified using GCOS v1.2

software.

6.7.2. Differential gene expression analysis

We added the microarrays to the E. coli compendium used (E-coli-v3_Build_3 - download at

http://m3d.bu.edu) and normalized all the CEL files together (19) using the robust multichip average

(RMA) method (20-22). The normalization is necessary to reduce the experimental variability across

different array spots while maintaining biological variability (23). Briefly, the RMA algorithm performs a

probe-level quantile normalization only on perfect-match (PM) probes of an Affymetrix chip and

quantifies a log2-transformed expression value for each gene based on a median polish algorithm that

down weighs outlier probes, yielding a normalized expression for each gene. The mean normalized

expression for each gene was subtracted from the respective normalized expression for each individual

experiment and then divided by the respective standard deviation (calculated across all experiments) of

that gene. A Z-score for each gene i was computed as follows where X is the log2-normalized expression

value of gene i, X is mean expression of gene i and oi standard deviation of gene i across all experiments.

The Z-score normalization of microarray expression values is calculated with the following equation:

Zi = i_
U

We compared the expression level of each gene in the chips of interest with the respective level in

the rest of the compendium. For that purpose, the average of expression across the compendium was

calculated for each gene. Furthermore, to assess how each gene's expression level changes upon
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treatment with the AMPs, we determined if there are significant changes in the expression levels between

the treated versus the untreated chips. Performing this analysis we identified the genes that have a

statistically significant fold-change in expression value when the Amps are added. Expression changes

and the associate P-value were recorded for the genes in the biochemical network of interest and are

reported in Table 6-2 where a negative Z-score reflects a down regulation of the gene of interest while a

positive Z-score reflects up-regulation of the gene.
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Table 6-2: Z-score change for amidated PonG1-NH2

Amidated PonG1-NH2 treatement

lb 2h 3h 6h 7h 8h

gudP 3.8 garP 3.7 garP 3.5 yffP 5.8 gutQ 2.4 ychS 2.0 yqeA 2.5 accC 2.5 recE 2.0 ymgF 2.1 accC 2.0 rsxD 2.5

garP 3.6 gudP 3.5 gudP 3.5 gInB 4.8 rsxC 2.4'iscA 2O pphA 2.5 aceB 2.71recO 2.1 ymgj 2.6 aceA 2. 1 1secA 2.5

cyoE 3.5 feoB 3.4 tdcA 3.3 yffM 4.7 yfhB 2.4 pspF 2.0 yeaX 2.5 acs 2.3 rfaE 3.2 ynbE 2.2 aceB 2.81serS 3.2

cdaR 3.2 cdaR 3.1 garD 3.3 yffN 4.5mokC 2.4 jrsxG 2.0 ynaK 2.5 actP 3.0 rfal 2.1 yneK 2.0 acrF 2.3 sgbE 2.1

feoB 3.1 garD 3.1 sodA 2.8 yffQ 4.3 amiA 2.4 nrdG 2.0 ninE 2.5 ahpF 2.0 rfbX 2.1 yoeA 2.8 acs 2.8 sgcR 2.5

cyoD 3.0 tdcA 3.0 ykgE 2.8 garP 4.1 IplA 2.4 nirD 2.0 yeeO 2.5 aldB 2.7 rffA 2.1 lyojO 2.2 actP 3.7 sgrS 2.0

sodA 2.9 feoA 3.0 feoB 2.7 feoB 4.1 ldegS 2.4 fieF 2.0 ygcj 2.5 argR 2.4 rffH 2.1 ypdB 2.1 aldB 2.51smpB 2.7

feoA 2.8 sodA 3.0 cspA 2.7 garD 4.1 rplI 2.4 narQ 2.0 pgaC 2.5 argT 2.7 ribA 2.4 ypfj 3.0 amiA 2.1 srIR 2.2
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putP 3.5 rpmC 2.5 yigB 2.1 acrF 2.4 nusB 2.2 yjgN 2.21 prpR 2.91

trpR 3.5 aroB 2.5 nagA 2.1 ygfK 2.41 ompA 2.8 yjgQ 3.1 queF 3.81

fucO 3.7 yghB 2.5 viaA 2.1 frvB 2.4/ ompX 2.3 yjiE 3.1w ravA 3.1

yjiM 3.8 fecA 2.4 ycel 2.1 hlyE 2.4/ parE 2.SiyjiG 4.61 rcsF 2.41

IsrD 3.9 pmrD 2.4 yejK 2.1 ecH 2.4 pdxj 2.2 IyjiH 4.11 recE 2.61

lsrR 3.9 nudL 2.4 mepA 2.1 jyjiK 2.4 pfkA 3.7 yjiK 2.11 recO 2.21

lsrK 3.9 era 2.4 IlpxL 2.1 IwcaD 2.41 pm 2.3 yjiL 3.2 rfaE 2.41

yjiL . 4.0 malK 2.4 wbbj 2.0 dgoT 2.41 pIdA 2.2 IyjiM 4.1 ribA 2.11

lsrC 4.0 yffS 2.41ispG 2.0 yjdQ 2.41 ppa 3.0OyjiS 2.0 rihA 2.61

mtr 4.0 nipE 2.4 uof 2.0 yjbl 2.4 ppdB 2.6 yj 2 .1 1 rpmG 2.2

IsrA 4.3 rihC 2.4 panE 2.0 yigM 2.4/ ppiC 2.1 ykgC 2.1 rpoE 2.6

1srF 4.6 speA 2.4 mqo 2.0 yaiP 2.41 pqiB 2.1 ykgE 3.01 rpoS 2.51

lsrB 4.6 rpmG 2.4 ymfl 2.0 htpX 2.4 prmA 2.3 ykgF 3.31 rpsO 2.31

yjiE 4.6 secA 2.4 rplB 2.0 glcC 2.4 proX 2.5 ykgG 3.0; rrsG 2.21

yjiH 5.1 pal 2.4 ompT 2.0 xylE 2.41 prpR 2.1 ykgQ 2.0 rsd 2.1

lsrG 5.1 tppB 2.4 yfaY 2.0 ygbF 2.5/ pspF 2.1 ylaB 2.31 rseA 2.41

iadA 5.4 cysT 2.4 rob 2.0 ydjH 2.5 pykF 2.1 ylcG 2.71 rsmE 2.21

yjiG 5.6 tff 2.4/selC 2.0 jyfhR 2.5j queF 2.3 ymfl 2.11 rssA 2.71
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Table 6-3: Z-score change for natural PonG1

Natural PonGI treatement

6h 7h 8h

abrB 2.7 pfkA 2.1 amiC 2.3 asnA 2.7

amiC 2.6 pstC 2.1 cdaR 3.6 cdaR 2.6

apt 2.3 raiA 2.4 cobC 2.1 feoB 2.7

bcr 2.1 ravA 2.3 cspF 2.2 fhuB 2.1

cdaR 3.9 rbsA 2.1 cspH 2.8 fimF 2.0

cobC 2.41rnd 2.0 fimF 2.1 garK 2.5

dcuC 2.0 1rraA 2.4 fiml 2.4 gudD 2.1

deoR 2.1 sdaB 2.4 fliL 2.1 gudX 2.2

dgsA 2.0 tdcA 3.7 fliN 2.0 nirB 2.1

feoA 2.4 ttdR 2.9 fliO 2.0 tonB 2.1

feoB 2.6 uspC 2.2 folK 2.3 ybhG 2.3

fimC 2.2 yadB 2.5 fruK 2.0 yfgJ 2.0

fiml 2.6 yaeH 2.1 ftsP 2.0 ylaC 2.2

focA 2.3 1yahN 2.4 garD 2.2 yoeA 3.7

foiB 2.0 lybjS 2.6 garK 2.9

folK 3.4 ycbj 2.5 garP 2.8

frdB 2.1 yceA 2.4 garR 2.2

fucP 2.3 lydeN 2.6 glnB 2.0

garD 3.8 ydjY 2.2 gudD 2.9

garK 3.5 yecF 2.1 gudP 2.9

garL 2.9 IyehD 2.3 gudX 2.7

garP 4.5 1yfbS 3.0 hypA 2.3

garR 3.3 yfcZ 2.3 nagB 2.3

gidB 2.1 yfeC 2.7 nikA 2.0

gicB 2.1 yfeD 2.4 rraA 2.1

glcF 2.3 lyfeH 2.0 ryeC 2.5

glcG 2.2 1yfiD 2.0 sgrS 2.2

gudD 3.0 ygcO 2.3 tdcA 3.4

gudP 3.6 ygdE 2.6 tsr 2.1

gudX 3.2 yghB 2.1 xseA 2.6

hcp 2.1 yghZ 2.4 ydeN 2.0

hypA 2.7 ygjR 2.1 yfeC 2.7

hypB 2.1 yhbT 2.0 yfeD 2.1

lpxH 2.2 yhbU 2.3 yfeH 2.2

lpxT 2.lyjdK 2.3 yggl 2.1

mdoC 2.1 yjfN 3.2 yjfN 3.2

meiR 2.2 yjfO 2.5 yjfO 2.6

menA 2.3 yjjM 2.7 ylaC 2.9

mgsA 2.0 ykgE 3.4 ymjA 2.2

mtfA 2.3 ykgF 2.5 yoeA 2.8

nagB 2.4 ykgG 2.4 yqgA 2.6

napC 2.3 ylaC 2.7 ysaA 2.3

napF 3.5lyliG 2.1 zraS 2.1

narK 2.1 ymjA 2.2

nikA 3.2 ,yoeA 3.4

nikB 2.1 jypfM 2.2

nikC 2.1 yqgA 3.5

nikD 2.0 yraL 2.2

nirB 3.1 ysaA 3.8

nirC 2.11 ytfB 2.0

nirD 2.5 zraS 2.8

pepE 2.2
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A map of the Z-score gene expression levels after treatment with the rebounding amidated

PonG1-NH 2 is provided in Figure 6-9. A total of 798 genes were significantly affected (up or down

regulated) upon treatment of wild-type E. coli K12 EMG2 with 10x MIC PonGl-NH 2. These genes were

clustered according to similar expression patterns using simple hierarchical routine of the open source

Cluter 3.0 software and were visualized using Java Treeview.
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Figure 6-9: Gene expression levels rebounding amidated Ponericin G1-NH2

2h 3h

Figure 6-10: Gene expression map for cidal natural Ponericin G1.
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A closer look a the gene expression levels along with the GO enrichments analysis detailed in

section 6.7.4 show a strong and constant down regulation of the iron import genes upon treatment with

Ponericin G1-NH2 (Table 6-4). We also performed a GO enrichment analysis on the gene expression data

from treatment with Ponericin G1 alone but no clear pattern in pathway enrichment could be detected

with strong statistical accuracy. This is primarily because differential expression analysis measures gene

expression level, but does not differentiate primary targets from downstream secondary effects.

Table 6-4: Z-score change of iron import related gene upon treatment with PonGl-NH2.

Amidated PonG1-NH2 treatement

1 2h 3h 6h 7h 8h

fecC 2.2 fecE 2.2 fecE 2.2 fecB 2.6 fecA 2.2 fecA 2.4

fecB 2.1 fecB 2.1 fecA 2.0 fecA 2.4 fecB 2.3 fecB 2.8

fecE 2.1 fecC 2.1 fecB 2.0 fecE 2.3

fecD 2.1 fecA 2.1 fecC 2.0

6.7.3. Mode-of-action by Network Identification (MNI) analysis

While the whole genome differential expression profile shows up-and-down regulated genes, it

does not distinguish the initial genes targets or mediators of the AMP treatment from the many genes

that respond secondarily to the initial effects. We therefore performed a Mode-of-action by Network

Identification (MNI) analysis to distinguish the AMPs' actual pathway and gene targets from the indirect

responders (24). The MNI approach performs well at identifying treatment mode-of-action because it

makes use of information on the gene-regulatory network underlying the expression change (25), where

as differential gene expression analysis uses no knowledge of regulatory influences.

The RMA normalized gene expression data of Table 6-2 and Table 6-3was loaded in the Matlab

version of the MNI algorithm (http://gardnerlab.bu.edu) and analyzed using the default values of 1/3 for

Kfrac, 3 for NROUNDS, 0.25 for thP and 100 for TopN. The raw output of the MNI algorithm identifies the

top 100 highest ranked putative mediators and gene targets for PonG1-NH 2 and PonG1 at different time

point and is shown in Table 6-5.
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Table 6-5: MNI output showing the 100 highest ranked putative gene targets.

The putative targets underlying the mode of action of PonG1-NH2 and PonG1 are shown for each

time point. Pathway analysis was then performed on the MNI gene list using Gene Ontology

enrichement and the gene associated with the identified pathways are shown in red (refer to Section

6.7.4 for details on GO enrichment analysis).

Mode-of-action by Network Identification (MND1 analysis
Amidated PonG1-NH 2 treatement Natural PonG1 treatement

1h 2h 3h 6h 7h 8h 6h 7h 8h
anhA notD viiM nerT vdhC bax sdaB vdhC vsaA
cadA codB ansB vffM modA viiM birA xseA vtfi
fimG mtr outP vdhC mtr veiO aut fruB asnA
tdcE putP cpdB vffP xvIF modA ispH vlaC vbiH
vdhV fucR vdhV exoD viiM maeB vlaC IpxK vbdD
vcbi ansB vhaL veeY der fadH vehS vlaB vbiD
katG viiM iadA rsxD vdcH iraP rbsR chiA dctA
hybE alsE ftnB vciD fucO mtr vedE folK vahN
vahN katG cstA viiB vtf] vrbK oroX rnd maeB
pepE iadA katG tfaD vffP vffN fim vhiY DroX

ccmC fimG maeB viiE dctA dctA vlaB rluB tnaA
vdiY alsA viiE iadA vciD vdcH oboG ftsP veeE
iadA cstA vdiY vfaA vlcG xvF folK vedE mppA
ock vhaL RinH vedT usDF vedB ootD apt acnB
tdcG einH iraP vfbM iadA fadA chaA fadR vdeN
ansB alsK vccA kbaZ vffL htrG eitP fliF vaEG
cpdB viiH fucR ansB VffO aabT vgcF ispH vkeG
dcuB xviF IsrA vffR vafM xvH vfcL vehS veeD
vehZ troR potD modA vffM mhDR einS rsxE cpdB
vnfE fimH rihA viiM viiE modB tppB vdiY tabA
vhiA acnB vibA voaE veiO vtfi hemN vbiP esiC
hvbO htrG gltK rsmC viiG vciD vfiH csoF tdcA
nrfF hvbC vobB vffO vhbT vccA fimC vehT cstA
vdhU eitK uspF vffN fumA fucA eitX potD ecvP
nrfD hvbB hvbE vffO acnB spv accC rsxC eldA
vdiZ mdh IsrF vrbK vaiZ fadl maeA vfcL cvsN
vdhY iraP fucA vbfl viiH fucR vccF bcsC aphA
viil alsB dctA der vdaE vbhO rsxE btuC meiC
fumB hcaR viiH vdeH vffN degP cid sdhB narK
uxaC fimA mhpR vtfF dadX veaC cvoE sdaB vfeC
aspA ecvP vbdD iscA ginH hcaR lvsS vedF vehD
usoF maeB tnaB tff modC viiG rnhA rsxG vehT
hvoD alsC veiT veeX exoD iadA vfbO potA vceH
hvbF fimI vaiZ intZ vdbl vcel mrdB vciT rihC
dcuS roiB dadX voeC iraP aldB vecF vcdY cdaR
pspE DssA hvbO katG acs cstA asnS vmiA meiR
uxaB veiA degP veiO hcaR cvaR belA rrmA tnaB
eldA DsoE rbbA vacE dooA ago era rhtA ootD
viiM meiB vchN omoW trpR emrA vceA uhoO vbhO
rbbA vedE vafM exbB fadB veiB argS vgaM nanD
viiH tnaB eItL veiB fucR elcC truC narK 2siB
ags did vicO iscS veeW proR hemB elvS svmR
viiL vbdD xvIF vdaE vafA vdcW rdeC nhaB vebK
fucA veiT PutA iscU maeB katG manZ ubiG rumA
caiF fumA acnB ecnA ompX gabP rnt fel malE
nrfC sthA mdh vihF aldB vdbi rbsC nth veaT
tdcD outA htrG lop msrB astD nuoL thil nuoM
fimD nuoL aldA aroB modB vaeB lpxT rihC vdiA
fucO IsrA vaeB chbG vicH vffL menA lpxT vhbT
vaeC vedF vaeC veeW htoX astB vchF veaZ vkgF
vdhX dadX ompW maeB vgeV elnH potA vsaB nuoL
nrfA vbeE lsrD ssnA vbhO modC veiK vccF vehU
vhhi uspF vdcH vef0 rveA paaX cmoB proX vbiK
vofM melA selD amiA actP vafA nuol sucD did
tdcF rihA IsrC romC sucC vifN rbsA fliM cvsT
vfcZ VfiO cvaR ruaD deeS paaK nuol prmC vdiY
vdhW gicB ao romG vaeB fadi dxr acnB isrB
dtDB msrB sucC vffL fadH isrB veaZ rsxD viiM
vnfG gltL sit rfaE vffR vdeH DtsG cvoE vifN
tdcA veaC fumA leuW melB feaR panF veeD murO
vhbT rpiR vdiZ hvbE dadA vaeC vca0 vhcO naeE
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65 hvbA viiG vicH vaeB vffS fucO nhaB msbA 2icG66 hvbG vbgT isrG vafM fucA vaiZ msbA tppB garD67 hvDE sdhD msrB rsmE mtfA sseA vacG fliO mtfA68 tnaB fimC penN vdiL vebE fadD veeN vbjD cVsI69 cvaR fimD DsuG ago metK astA givS fliL glcB70 vaeB ecG hvbC xdhA sdhA vdcV rhtA rnt ebeC71 dmsA actP did baeR sseA cvcA dsbG asmA vcbG72 vchN dctA viiG DsrD mhoR astC DotB eatZ vaeC73 viiG sucC IsrR viiH emrA hcaT ubiG veeE vcbi74 vidK sdhB vecA htDX rfaE htDX eatZ vedA vkeE75 vfbM vibA sdhA aldB VffO omDX vaiG gatY elbB76 frdB IsrR hvbD vbbD aen dDA nuoH vecF mesA'77 rihC lsrF sucD 1iDB vfiU aldA ansA flii sucD78 vfiD vraP isrB xvlF vihX vicH valS gatA melA79 exuT vicH veeV romF hscB acs ampG flel sseA80 veiA rihC eltA viiK CSDD dadX cmoA notC nanF81 vnfF isrB rveA vffS suhB acnB RatA voiD ucpA82 dmsC sucD vedF hscB aidA vebE oncA add rihA83 hvbC fucO lsrK dnaX fadi u2DE Rsk fliP cvsH84 tdcC fimF ioiE modB sucD dadA atpC fliN fumA85 frdD viiL sucA rosL katG viiH lDxH fabA vchN86 ivsU eleC mtr vefK vbdD eltA rbsK fliG aldA87 frdC melC fucO vaeA iscS vffS nrmA vebZ nuoi88 dcuC mtfA viiL elnB cvaR fadB vciT fliH dcD89 dmsB cvdB vdcA rilT feaR rveA fadR flhB DsDE90 omnW iolE ehrA mtr intZ vbdD rrsG vidi vedF91 vehD sit trDR cstA sdhB fumA DheP deoR fucO92 viiT vaiZ veaC trml omDW mtfA vdcP hscC nmrD93 hvbD DeON mtfA riB veaC vihX aueC ootB fuci94 frdA sdhA el ttdT eicC vhaL voiD vibl vafM95 veiT isrG sdhB focB cstA vfiU vfiP vibT vehZ
96 elbB nuoM vfeC iscX sdhD vcfS fdhE flhA rveC97 tdcB sucA actP hvuA DaDE astE deoR monA vbhG
98 fimF sucB sucB modC iscA vniA voeG merB ao
99 vdcH aldA hcaR viiG nldA csoD solA loxH earP
100 dcuA ago hvbB romA fadl voeF merB vehU vaiZ

6.7.4. Pathway analysis using Gene Ontology (GO) enrichment

From the putative list of gene targets, the next step is to determine the pathways or classes that

are significantly regulated. Pathway analysis involves looking for consistent but potentially small changes

in gene expression by incorporating either pathway or functional annotations. It is therefore more subtle

than the gene lists that result from univariate statistical analysis. (26).

Gene Ontology (GO) enrichment analysis identifies the cellular pathway affected by the treatment

based on prior biological knowledge. It calculates, through a P-value, the probability that the pathway

being correlated to the gene expression dataset is correctly identified due to an actual effect of the

treatment as opposed to random occurrence. That is, lower the P-values indicate higher chances that the

pathway is in fact a target of the treatment as opposed to being random. In other word, the GO analysis

validates the plausibility that these pathways are affected by based on the MNI ranking order of the genes

involved in the pathway of interest. These P-values describe the likelihood of obtaining the observed

gene expression results. Therefore only the pathways, which are statistically likely to be affected, are
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identified by the GO enrichment analysis. (27). The GO annotation classifies the pathways as influencing

cellular component, molecular function and biological process (28) and annotated them to infer the

actual networks and mechanisms by which the AMP treatment affects gene expression and cell function.

Therefore, the list of gene targets identified by MNI analysis is submitted to Gene Ontology

enrichment analysis. The results and discussion of the enrichment analysis are presented in section 6.7.5

and section 6.7.6 as well as our hypothesis for the mode-of-action of the two AMPs, PonG1 and PonG1-

NH2.

6.7.5. Amidated ponericin G1 affects iron transport and its recognition by the cell

Many of the 1h MNI targets of the static amidated AMP, PonG1-NH2, are involved in iron

transport. Starting after 1h of treatment, there is a down regulation of proteins related to iron import

such as fecA, fecB, fecC, fecD, and fecE. FecA is an outer membrane protein that is a transporter for Fe3 +

citrate. When bound to Fe3+ citrate, FecA activates fecR, which is a protein in the cytoplasmic membrane

that interacts with Fec, which is sigma factor of the sigma 70 type. Fec then goes and activates

transcription of the fecA, fecB, fecC, fecD, fecE operon.

Given that fecABCDE are all down regulated and that the enzymes affected at 1h involve iron

sulfur cores, it appears that the bacteriostatic amidated Ponericin G1-NH 2 affects iron transport or its

recognition by the cell. However, since the transcription factor that regulates iron homeostasis, fur,

doesn't seem to be involved, the cell are in fact "blinded" to not take up more iron, which in turn slows

down metabolism and arrests cell growth. The main 2h targets of the amidated AMP seem to be in the

TCA cycle - some of those proteins have iron sulfur clusters but others don't, so that could be a

connection.

Table 6-6: Amidated PonG1-NH2 Gene Ontology enrichment following MNI analysis

Function/process/component Enrichment Gene ontology

.--k1 6W-.- A~
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calcium ion binding
metal chelating activity
lead ion binding
heme binding
iron chauerone activity
metal ion binding
ferrous iron binding
ferric iron binding
iron ion binding
alkali metal ion binding
ion binding
2 iron. 2 sulfur cluster binding
3 iron. 4 sulfur cluster binding
4 iron, 4 sulfur cluster binding
iron-sulfur cluster binding
magnesium ion binding
metal cluster binding
nucleic acidbinding

tricarboxylic acid cycle
reductive tricarboxylic acid cycle
aceti-CoAcatabolic procss

tricarboxylic acid cycle
reductive tricarboxvlic acid cycle
acetyl-CoA catabolic process

multicellular organismal lioid catabolic process
cellular lipid catabolic process
negative regulation of lipid catabolic process
tricarboxylic acid cycle
reductive tricarboxylic acid cycle
arginineoA catabolic process

arginine catabolic process to glutamate
arginine catabolic process
glutamate metabolic process
multicellular organismal lipid catabolic process
cellular lipid catabolic process
negative regulation of lipid catabolic process
D-arginine metabolic process
verv-long-chain fatty acid metabolic process
long-chain fatty acid metabolic process
icosanoid metabolic process
fatty acid catabolic process
wax metabolic process
suberin biosynthetic process
arachidonic acid metabolic process
fatty acid oxidation
oxylipin metabolic process
unsaturated fatty acid metabolic Orocess
butanoic acid metabolic process
linoleic acid metabolic process
short-chain fatty acid metabolic process
lauric acid metabolic process
medium-chain fatty acid metabolic process
acvl-CoA metabolic process
negative regulation of fatty acid metabolic process

6.7.6. Natural Ponericin G1 targets tRNA synthetases

On the other hand, the natural version of the AMP is bactericidal and kills rapidly before the cells

are able to develop resistance and regrow to their original count, typically within 6 hours. MNI analysis

on the resistant cells at 6 hours does not pick out indentify iron-related genes as mediators of

transcriptional changes but instead indicate a change that seems to point to tRNA synthetases. For this to

occur, the AMP must be penetrating the cells and interfere directly with tRNA synthetases or affect the

cell membrane in such a way as to lead to downstream transcriptional events.
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Table 6-7: Natural PonG1 Gene Ontology enrichment following MNI analysis

Function/process/component

arginvl-tRNA aminoacylation
elycyl-tRNA aminoacylation
alanine-tRNA ligase activity
arginine-tRNA ligase activity
aspartate-tRNA ligase activity
asparagine-tRNA ligase activity
cvsteine-tRNA liease activity
glutamate-tRNA ligase activity
glutamine-tRNA ligase activity
glvcine-tRNA ligase activity
histidine-tRNA ligase activity
isoleucine-tRNA ligase activity
leucine-tRNA ligase activity
lysine-tRNA ligase activity
methionine-tRNA ligase activity
oroline-tRNA ligase activity
serine-tRNA ligase activity
threonine-tRNA ligase activity
trvotophan-tRNA ligase activity
tvrosine-tRNA ligase activity
valine-tRNA ligase activity
tRNA aminoacylation for protein translation
ligase activity, forming aminoacyl-tRNA and related compounds
aminoacyl-tRNA synthetase auxiliary protein activity
ovrrolvsv-tRNA synthetase activity
ohosphoserine-tRNA(Cvsl lease activity
aspartate-tRNA(Asnl liease activity
glutamate-tRNA(Glnl ligase activity
lysine-tRNA(Pvll ligase activity
aminoacyl-tRNA ligase activity
ohenvlalanine-tRNA ligase activity
asparaginvl-tRNA aminoacylation
aspartvl-tRNA aminoacylation
glutaminvl-tRNA aminoacylation
histidvl-tRNA aminoacylation
isoleucyl-tRNA aminoacylation
leucyl-tRNA aminoacylation
lysvl-tRNA aminoacylation
methionyl-tRNA aminoacvlation
orolvl-tRNA aminoacylation
servl-tRNA aminoacylation
threonvl-tRNA aminoacvlation
trvotophanvl-tRNA aminoacylation
tvrosyl-tRNA aminoacylation
valvl-tRNA aminoacylation
tRNA aminoacylation
tRNA aminoacylation for mitochondrial protein translation
alanyl-tRNA aminoacylation
cvsteinvl-tRNA aminoacylation
glutamvl-tRNA aminoacylation
2hen lalan l-tRNA aminpa lation IN

microtubule-based flagellum
flagellin-based flagellum
ciliary or flagellar motility
ciliary cell motility
flagellar cell motility
cell motility
flagellum
cell proiection
microfilament motor activity
microtubule motor activity
flagellin-based flagellum part
flagellin-based flagellum basal body

Enrichment

1.68E-06
2.40E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
8.27E-06
1.09E-05
1.09E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
1.98E-05
2.69E-05
2.69E-05
2.69E-05

2.69E-05,

4.89E-13
7.36E-13
4.75E-10
4.75E-10
4.75E-10
7.53E-10
8.19E-08
9.49E-08
2.02E-07
2.02E-07
1.25E-06
3.41E-0 6

Gene ontology

GO:0006420
GO:0006426
GO:0004813
GO:0004814
GO:0004815
GO:0004816
GO:0004817
GO:0004818
GO:0004819
GO:0004820
GO:0004821
GO:0004822
GO:0004823
GO:0004824
GO:0004825
GO:0004827
GO:0004828
GO:0004829
GO:0004830
GO:0004831
GO:0004832
GO:0006418
GO:0016876
GO:0017100
GO:0043767
GO:0043816
GO:0050560
GO:0050561
GO:0050562
GO:0004812
GO:0004826
GO:0006421
GO:0006422
GO:0006425
GO:0006427
GO:0006428
GO:0006429
GO:0006430
GO:0006431
GO:0006433
GO:0006434
GO:0006435
GO:0006436
GO:0006437
GO:0006438
GO:0043039
GO:0070127
GO:0006419
GO:0006423
GO:0006424
GO:0006432

GO:0009434
GO:0009288
GO:0001539
GO:0060285
GO:0060286
GO:0048870
GO:0019861
GO:0042995
GO:0000146
GO:0003777
GO:0044461
GO:0009425

6.8. Natural Ponericin G1 potentiates ribosomal antibiotics

Although almost identical in structure, PonG1 and PonGl-NH 2 act through very different

mechanism-of-action with different targets. As a result the two peptides have different cidality profile.
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Ponericin G1 has strong cidal activity and blocks tRNA synthetase in the ribosome. We hypothesize that

PonG1 could be specifically potentiated with the addition ribosome targeting antibiotics, such as

kanamycin from the aminoglycoside antibiotics. Kanamycin diffuses through porin channels and inhibits

protein synthesis and increasing translation errors by interacting with three ribosomal proteins (29).

We determined the synergistic effect of the PonG1 and Kanamycin on antibiotic resistant . coli

population. A fresh culture of E.coli was first treated with 10x ofloxacin and the resistant population was

allowed to regrow for 8 hours. These resistant cells were subjected to different treatment groups:

ofloxacin-only, kanamycin-only, AmP-only treatments as controls and combination treatments of

AmP+ofloxacin and AmP+kanamycin (Figure 6-11). The experiment was carried in triplicates and with

both PonG1 and PonG1-NH2 as AmP. Treatment with ofloxacin, kanamycin, PonG1 and PonG1-NH2 alone

were not effective at killing the culture of resistant cells; the cell count remained around 10 8CFU/ml even

after 6 hours of treatment. On the other hand combination of the ribosome targeting PonG1 and the

ribosomal antibiotic kanamycin lead to the highest cell killing with only 104 CFU/ml viable cells after 6

hours of treatment. Combination of kanamycin with PonG1-NH2 did not result in as large a decrease

since the AmP and kanamycin do not act synergistically to target the ribosome. Combination of ofloxacin

and PonG1-NH2 did not reduce the count of resistant cells, and combination with PonG1 lead to a

reduction to 105-5 CFU/ml after 6 hours which is about 30-fold less effective then the optimal combination

of PonG1 and kanamycin.
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A]
A PonG1 + Kanamycin --- A-- Kanamycin

- PonG1 + Ofloxacin - ofloxacin
--O-- PonG1

A PonGl-NH2 + Kanamycin -,A--- Kanamycin
-+-- PonGl-NH2 + Ofloxacin --- Ofloxacin

-e-- PonG1

0 1 2 3
Time (h)

4 5 6 0 1 2 3
Time (h)

4 5 6

Figure 6-11: Synergistic effect for PonG1 and Kan. Ofloxacin resistant E.coli cells were treated with

combination of ofloxacin or kanamycin with (A) PonG1 or (B) PonG1-NH2. PonG1 and kanamycin act

synergistically by both targeting the ribosome and the combination treatment leads suppression of

resistant culture by over 300-fold compare to single treatment with either kanamycin or PonG1

alone. Combination of PonG1 and ofloxacin or PonG1-NH2 and kanamycin also suppresses the

bacterial culture although to a lesser extend.

6.9. Chapter conclusion

In summary, we measured the MIC and bactericidal of the ponericin family of AmPs. We

discovered the MIC level and growth inhibition properties is not a good indicative of cidal activity the

peptides. We re-classified the family of ponericins into ineffective AmPs, rebounding AmPs and

bactericidal AmPs. We studied the cidal behaviors of AmPs using a high-speed AFM and and a

microfluidic flow device. Both apparatus showed that the action of AmPs led to corrugation of the
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bacterial cell membrane and that some cells are able to resist the action of the peptide more than others.

We then focused our study on PonG1 to get a better understanding of its mechanism.

PonG1 demonstrated a rebounding behavior, that is a strong initial cidal effect followed by

regrow of the baterial culture (Figure 2-2B). Images obtained using a microfluidic flow chamber shows a

sub-population of the cell culture is affected by PonG1 and undergoes membrane disruption while other

cells are able to resist the action of PonG1 and continue to divide and grow the chamber. Treatment with

PonG1 leads to the misfolding of membrane proteins. The cells ability to sense and repair of these

membrane defects through the CpxAR sensing system is key to developing resistance to PonG1 (Figure

6-6). Finally, PonG1 also causes DNA damage, which the cells overcome by activating SOS response

(Figure 6-8). The cells ability to sense and activate the SOS response through the DpiAB system is

beneficial but not essential for cell resistance (Figure 6-7) indicating that other sensing mechanism can

lead to the activation of SOS response. Gene expression analysis shows that PonG1 affect tRNA synthetase

occurring the cell's ribosome activity (Table 6-6). When combined with other ribosome targeting

antimicrobials such as kanamycin, PonG1 is synergistically potentiated. The combination treatment is

able to able to suppress cultures of antibiotic resistant E.coli that are not affect by either PonG1 or

kanamycin treatment alone (Figure 6-11).
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Chapter 7. Therapeutic opportunities for engineered bacteriophages (PhDCEP

Capstone)

Throughout this thesis, I have worked in close collaboration with Timothy Lu and Michael Koeris

from the Collins' Lab at Boston University. The three of us engineered bacteriophages to express various

foreign proteins and confer new functionalities to the bacteriophages in order to turn them into potential

new human therapeutics. Timothy Lu first developed a T7 lytic bacteriophage capable of breaking down

resistant biofilms by inducing the expression of the DspB enzyme'. He also developed an M13 lysogenic

bacteriophage capable to suppressing the evolution of bacterial resistance by expressing a lexA3 protein

repressor of the bacterial SOS pathway 2. Finally, in Chapter 3, we report the creation of enhanced M13

and T7 bacteriophages, which prevent the evolution of bacterial resistance to phages and result in the

long-term suppression of bacterial cultures. The three of us realized the need to bring these technologies

outside of the labs and into the clinics to treat actual patients.

In this chapter, we establish a development plan for a start up company with the goal to develop

and commercialized our engineered bacteriophages into new human therapeutics. We quantifie the

market opportunity, establish a market entry point in the antibiotics space, analyse risks and provide

different mitigation strategies associated with such this venture. We named this company Novophage

Therapeutics, to emphasize the mission to develop new bacteriophage-based therapeutics.
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rNovophage

'Antibiotic resistance is a global threat that has the potential to

wipe out many of the major health benefits that have occurred over the last century"

Lindsay Baden, MD, Harvard Medical School, Infectious Disease Physician

"A product that decreases antibiotic-resistance rates and

improves patient outcomes would be very exciting and useful to clinicians and hospitals"

Joel Katz, MD, Brigham & Women's Hospital, Infectious Disease Specialist

"The ability to control hospital-based infections would

add tens of millions of dollars straight to a medical center's bottom line."

John Paul, recently retired CFO, University of Pittsburgh Medical Center
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7.1. Executive summary

7.1.1. The opportunity: infection and drug resistance to current therapies

In 2007, 1.7 million cases of hospital-acquired infections and 99,000 deaths occurred in the US

alone. The total medical cost for these infections is $21.3 billion each year. These infections are becoming

more difficult to treat because of the increasing prevalence of antibiotic-resistant bacteria such as

methicillin-resistant Staphylococcus aureus (MRSA). In 2005, 94,000 hospital-acquired MRSA cases were

reported (31.8 per 100,000), of which 18,650 were fatal. Existing antibiotics ($8 billion US in 2007) are

unable to effectively treat these superbugs and a significant clinical need still exists.

Novophage has developed a differentiated biological therapy to increase the efficacy of antibiotic

treatments, to significantly slow the onset of antibiotic resistance, and to effectively treat biofilms. We

achieve these advances through the co-treatment of infections with our genetically enhanced

bacteriophages and existing antibiotics. Bacteriophages are viruses ubiquitous to the natural

environment that selectively target and destroy bacteria and bacteria only. Our genetically engineered

bacteriophages are superior to natural bacteriophages because we have identified active proteins,

enzymes, and other antimicrobial agents that we selectively co-express in our bacteriophages.

Novophage provides win-win solutions for all parties involved with healthcare. From a public

health perspective, our technology provides unprecedented means for slowing the spread of antibiotic

resistance, a dramatically worsening problem in modern medicine. For clinicians, patients, hospitals, and

insurance companies, our technology significantly enhances the effectiveness of antimicrobial

treatments, reduces hospital stays and costs, and improves overall outcomes. For pharmaceutical

companies, our technology enables the extension of effective clinical lifetimes for existing and new

antibiotics through reformulation with our bacteriophage.
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7.1.2. The first product: therapeutic for hospital-acquired MRSA infections

Novophage will develop a therapy administered topically or intravenously for the treatment of

hospital-acquired surgical site infections. This therapy will combine our genetically enhanced

bacteriophage and an antibiotic to treat surgical site infections by MRSA.

Our engineered bacteriophages are modifications of natural bacteriophages; those natural

bacteriophages have separately already been approved for use in human food products by the FDA in

2006. Currently, Exponential Biotherapies successfully completed a Phase I US-based clinical trial

involving the use of natural bacteriophage in humans and Intralytix's bacteriophage is in pre-clinical

testing. In 2007, Biocontrol successfully completed a Phase II clinical trial in the UK for ear infections and

reported positive results.

We have demonstrated a 30,000-fold increase in the bactericidal activity of antibiotics when

combined with our engineered bacteriophage. Furthermore, unlike current standard-of-care antibiotics,

we have shown that our product can reduce the evolution of antibiotic resistance by at least 600-fold. In

an industry-standard mouse infection model with Escherichia coli, our product increased the survival of

infected mice from 20% to 80% when used in conjunction with traditional antibiotic therapy. This study

has been published in the Proceedings of the National Academy of Sciences March 3rd, 2009.

Novophage's core inventions for composition and methods are protected by a series of four

patent applications and one provisional patent held by MIT and BU. We have obtained a verbal

agreement to pursue an exclusive licensing agreement. We have several options to mitigate

commercialization risk and generate early revenue.

We have identified several suitable partners because our technology can extend the patent

lifetimes and effective clinical lifetimes of antibiotics. The products of six big pharmaceutical companies

account for $4 billion in sales of patent-protected antibiotics. Loss of patent protection is a significant
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threat that pharmaceutical companies in the antimicrobial industry are facing. Several blockbuster

antibiotics are facing loss of patent protection in 2009 (Avelox - $580 million sales in 2007) and 2010

(Levaquin - $1.4 billion sales in 2007).

In addition, Novophage can generate early revenue by out-licensing technology. The technology

has immediate applicability for the use in the food safety and agribiotech industries.

7.1.3. Next steps

We have working prototypes of our engineered bacteriophages that have been validated in in

vitro and in vivo experiments, which we are currently optimizing. We will translate this proof-of-concept

work and develop a clinical prototype for our lead indication: surgical site infections by S. aureus. We

seek $500,000 to build our team, to continue with the product development program, to complete in-

licensing of the technology, and to secure additional financing for further product development and

testing.
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7.2. Market opportunity

The CDC estimates that patients acquire nearly 2 million bacterial infections each year in US

hospitals, resulting in direct health care costs of $28-34 billion (2007 USD). Over $8 billion was spent in

the US on antibiotic therapy in 20024. Bacterial infections are becoming increasingly difficult to treat for

two reasons: 1) the increasing prevalence of antibiotic-resistant bacteria such as methicillin (oxacillin)-

resistant Staphylococcus aureus (MRSA); and 2) many years of under-investment in new therapeutic

strategies.

In the mid-1980s, 1-5% of S. aureus isolates were methicillin-resistant, and today 60% to 70% of

S. aureus strains found in hospitals are multidrug-resistant MRSA 5. In 2005 over 94,000 cases of invasive

MRSA infections alone occurred in the US with nearly 19,000 deaths6.

Since the early 1980's only two new classes of antibiotics have been approved by the FDA 7, and in

fact, many pharmaceutical companies abandoned or dramatically slowed discovery in the infectious

diseases in the late 1980's and early 1990's8. Reflecting this decrease in investment, the global antibiotic

market actually shrank from 2004 to 2006 due to a shift of sales from brand products to generic products

following recent patent expirations (down 1.8% in 2006 to $22.6 billion from $23.4 billion in 2004)9.

In short, "With increasing levels of antibiotic resistance, an insecure pipeline, and a dwindling

number of companies investing in anti-infective agents, we have reached an unsettling impasse in

3 CDC Report by R. Douglas Scott II. March 2009. The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of

Prevention.
4 Kalorama Information. April 2003 Market Report: World Market for Anti-Infectives. US represents only 35% of the global prescription

antibiotic market.
s Science. 2008; 321: 356-361. From Henry Chambers, infectious disease specialist at the University of California, San Francisco.
6 JAMA. 2007; 298 (15): 1763-1771.
7 Oxazolidinones (linezolid) & cyclic lipopeptides (daptomycin)
8 N Engl J Med. 2004; 351(6): 523-526.
9 Kalorama Information. April 2007 Market Report: Anti Infectives, Vol II: Antibacterials.
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medicine," according to Dr. Richard P. Wenzel, former President of the International Society for Infectious

Disease and Chairman of the Department of Internal Medicine at Virginia Commonwealth University10 .

Novophage Therapeutics will introduce a new biological therapy that slows the onset of antibiotic

resistance and increases the efficacy of current antibiotics based on knowledge and engineering from

MIT, Boston University, and Harvard Medical School. Novophage Therapeutics will penetrate the

antibiotic market by offering efficacious treatments for highly antibiotic-resistant bacterial infections.

Infectious disease doctors can therefore better manage the fight against multidrug-resistant strains

through co-administration of our engineered bacteriophages with current clinical standards-of-care.

Novophage will enter the market by focusing on MRSA complicated skin and skin structure

infections (cSSSI) acquired in hospital settings such as abscesses, infected ulcers, infected wounds, and

surgical site infections. Complicated SSSI accounts for almost 10% of all hospital admissions for

infections in the US". Additionally, out of 94,000 invasive MRSA cases in the US reported in 2005,

approximately 40,200 cases were cSSSI1 2. While Novophage Therapeutics is currently focused on the US

market (US is 35% of the global prescription antibiotics market), S. aureus is also the main pathogen for

SSSI in Latin American and Europe where MRSA resistance rates are 29% and 23%, respectively 13.

The entry strategy into the antibiotic market via cSSSI is similar to strategies used by the recently

approved antibiotic drugs: 1) daptomycin known as Cubicin by Cubist Pharmaceuticals; and 2)

tigecycline known as Tygacil developed by Wyeth. Daptomycin was the first lipopeptide antibiotic and

received its first approval for cSSSI in 2003. Two years post-approval, off-label use included vancomycin-

resistant enterococci (VRE), bacteremia, and endocarditis14.The 2008 net product sales of

10 N Engl J Med. 2004; 351(6): 523-526.
11 Centers for Disease Control. MMWR 2001; 50: 381-384.
12 MRSA infections acquired in the community are approximately 15% of all MRSA infections with SSSI representing 75% of these infections.

MRSA infections acquired related to health care delivery are approximately 85% of all MRSA infections with SSSI representing 37% of these

infections. JAMA. 2003;290(22):2976-2984.
13 Diagnostic Microbiology and Infectious Disease. 2007;57:7-13. Incidence determined from data reported from 1998-2004.
14 Drug Therapy Topics 2005; 34 (6): 29-31.
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Daptomycin/Cubicin were $414 million. Tigecyclin was also a first in class antibiotic for glycocyclines

with its first approval for cSSSI, as well as complicated intra-abdominal infections (clAl). Off-label use of

tigecycline was reported for ventilator associated pneumonia' 5 and septic patients16. Q4 sales for Tygacil

in 2008 were $60 million.

The cSSSI market is an appealing therapeutic entry point because the unmet need with MRSA is

significant; the situation for identifying patients is controlled; and the patient population is significant.

Furthermore, FDA approval for cSSSI will enable off-label use and future regulatory approval in other

clinical indications as is commonplace for antibiotics. Therefore, the market potential for Novophage

Therapeutics is much larger than just MRSA infections or cSSSI since the therapeutic approach is

applicable to many different areas of infectious diseases as indicated in Table 2-1.

Table 7-1: Market size for antibiotic segmented by therapeutic indication.

Skin and Skin Structure $2878 $1213 $220

Infections (SSSI)

Urinary Tract Infections $1226 $565 $32

The significant costs associated with hospital-acquired infections, combined with the rise in

antibiotic resistance and the dearth of novel options, create a unique opportunity for Novophage to enter

15 Pharmacotherapy 2007;27(7):980-987).
16 Journal of Antimicrobial Chemotherapy 2008 61(3):729-733.
17 Kalorama Information. April 2007 Market Report: Anti Infectives, Vol II: Antibacterials. Some markets may be larger as market report had
significant categories identified as "Other."
18 Kalorama Information. April 2007 Market Report: Anti Infectives, Vol II: Antibacterials. Revenue for antibiotic class for a given therapeutic
areas was weighted by US share of market for that antibiotic class.
19 Prevention and Control of Healthcare-Associated Infections In Massachusetts. JSI Research and Training Institute, Inc. in Collaboration with the
Massachusetts Department of Public Health. January 31, 2008.
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the market at price parity with the current proprietary treatment options. Treatment cost (wholesale)

based on 2006 Red Book for Cubicin is $0.365/mg or approximately $720 per treatment course 20.

7.3. Novophage's solution

7.3.1. The problem

As mentioned, antibiotic-resistant bacterial infections are a quickly rising and worldwide

problem. Significant under-investment in new ways to combat bacterial infections has resulted in a

depleted therapeutic pipeline, limiting the number of options infectious disease doctors have to defeat

infections. Patients with severe infections at best have longer stays in the hospital and at worst lose limbs

or die.

7.3.2. The solution

Novophage Therapeutics offers a differentiated antibiotic adjuvant therapy with three unique

characteristics:

e It significantly slows the onset of antibiotic resistance by disrupting the mechanisms bacteria use

to evolve resistance;

e It increases the killing efficacy of antibiotics against bacteria in biofilms by producing enzymes to

degrade biofilms; and

- It potentiates killing of bacteria directly by producing additional antimicrobial agents

Novophage's novel approach uses genetically-enhanced bacteriophages. Bacteriophages are

viruses ubiquitous in the natural environment that selectively infect and destroy bacteria only.

Novophage's scientific founders harnessed new knowledge and tools in molecular and genetic biology to

selectively insert and modify genes in the bacteriophage genome to enhance the natural killing functions

20 http://www.cubicin.com/cost-data/ at 4 mg/kg/day dose and 70 kg person for 7 days.
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of bacteriophages such as self-replication and the ability to burst through bacterial cell walls. When the

enhanced bacteriophages are used in combination with corresponding classes of antibiotics, the

combination therapy is more effective at bacterial killing and slows the onset of antibiotic resistance

relative to antibiotic therapy alone.

The figure below illustrates the action of antibiotics alongside the three different features of the

engineered bacteriophage and how the bacteriophage uses the infected bacteria's own cellular machinery

to produce agents that prevent resistance, that breakdown biofilms, and that directly enhance killing of

bacteria.

Figure 7-1: Mechanism of action of enhanced bacteriophages and antibiotics. The bacteriophages

(blue) in combination with antibiotics (red and blue capsule) attack the bacterial cell. The

bacteriophages infect the cell and force production offour entities: 1) more bacteriophages; 2)

repressors of bacterial DNA damage repair mechanisms (stop sign); 3) biofilm-degrading enzymes

(pac-man); and 4) broad-spectrum antimicrobial peptides (screw). The repressors slow the

evolution of resistance in bacterial cells, enabling antibiotics to work longer. The biofilm-degrading

enzymes and the antimicrobial peptides are released upon bacterial cell lysing (destruction) by the

natural action of the bacteriophages. The enzymes and antimicrobial peptides work extracellularly,

degrading the biofilm to expose more bacterial cells in the biofilm to antibiotics and puncturing the

membranes of other bacterial cells, respectively.

158

.......... ::::: ..........



To enter the market, Novophage Therapeutics will develop a product for MRSA cSSSI. The

product will be a two-part combination of an enhanced bacteriophage and a current standard of care

antibiotic. Clinical outcomes are expected to be higher cure rates than the antibiotic alone based on

suppression of antibiotic resistance and increased bacterial killing.

7.3.3. Scientific evidence

Three different, useful modifications of natural bacteriophages have been demonstrated in vitro,

and one of the three modifications has been tested in vivo. These proof-of-concept experiments used

engineered bacteriophages targeting E. coli to suppress the evolution of bacterial resistance to

antibiotics, to increase its activity on biofilms, and to widen the activity spectrum against a broader array

of pathogens.

The first modification involves inserting a gene encoding a repressor of a bacteria's repair

mechanism - the SOS response - into the bacteriophage2 1 . When this enhanced bacteriophage infects

harmful bacteria in the body, the harmful bacteria produce the repressor. The repressor then prevents

the bacteria from repairing the damage inflicted by an antibiotic (e.g., a quinolone) that has

simultaneously been administered with the enhanced-bacteriophage. The repressor gene encoded, lexA3,

disables the SOS response that is induced upon bacterial DNA damage caused by antibiotics such as the

quinolones, aminoglycosides, and penicillins, among others.

Data published in the Proceedings of the National Academy of Sciences by one of the scientific co-

founders illustrates that enhanced bacteriophage combined with ofloxacin 22 yields a >30,000-fold

improvement in the bacterial killing activity compared to ofloxacin alone in E. coli. The combination of

enhanced bacteriophage plus gentamicin yields a 10,000-fold improvement and enhanced bacteriophage

1 Lu and Collins. PNAS. 2009; Electronic publication March 2009.

22 Quinolone class of antibiotic.
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plus ampicillin yields a 100,000-fold improvement. Furthermore, the combination therapy reduces the

evolution of antibiotic resistance by more than 600-fold relative to ofloxacin alone.

4000

3500

L 3000-

S2500

2000

11500,L
-c1000

501 -I-

No treatment Ofloxacin Ofloxacin + Ofloxacin +
wild-type phage engineered phage

Figure 7-2: Novophage enhanced bacteriophage prevents emergence of antibiotic resistant bacteria.

Lane 1 represents the control of no treatment; lane 2 is ofloxacin treatment where the median

number of mutants is 1600; lane 3 is natural bacteriophage treatment plus ofloxacin; and lane 4 is

lexA3-enhanced bacteriophage plus ofloxacin treatment. The number of resistant cells increases

with antibiotic treatment, but in the presence of the enhanced bacteriophage, the number of

resistant cells remains low.

The most powerful demonstration of this proposed mechanism as a viable therapeutic strategy is

in the results of a mouse E. coli bacteremia model. Ten mice per treatment group were infected

intraperitoneally with pathogenic E. coli and after 1 hour were administered one of four treatments: 1)

no antibiotic, 2) ofloxacin antibiotic only, 3) natural T7 bacteriophages, 4) combination of enhanced

bacteriophage and ofloxacin antibiotic.

After 5 days of studies, only 10% of the mice that were not administered antibiotics survived,

while 20% of the mice treated with the standard of care ofloxacin antibiotic survived. Mice treated with
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natural bacteriophage had a survival rate of 30%. However, 80% of the mice treated with our Novophage

combination of genetically engineered bacteriophages and antibiotics survived the infection, thus

showing a 4-fold improvement in survival over the current standard of care antibiotic treatment. No

additional safety or toxicity issues were observed in the mice relative to enhanced bacteriophage

administration.

100%
4..

80%

.2 60%

40%

20% y
In 0%

No treatment Ofloxacin alone Natural Natural Engineered Engineered
bactenophage bacteriophage + bactenophage bacteriophage +

ofloxacin ofloxacin

Figure 7-3: Novophage enhanced bacteriophage in combination with antibiotic increases survival of

mice in a bacteremia model. Five day survival of mice in an intraperitoneal E. coli infection model.

10 mice per cohort were injected with E. coli and, after the onset of bacteremia, dosed with placebo,

ofloxacin, natural bacteriophage, or a combination of natural bacteriophage and antibiotics or our

combination therapy of enhanced bacteriophage and ofloxacin.

A second modification to the bacteriophage is the addition of genes encoding biofilm-degrading

enzymes23.As before, upon infection of harmful bacteria by enhanced bacteriophage, the bacteria

produce biofilm-degrading enzymes. The enzymes then begin to disrupt the polysaccharides that provide

structural integrity for the biofilm, degrading the biofilm matrix and permitting antibiotic access to the

bacteria living in the biofilm. Data published in the Proceedings of the National Academy ofSciences by one

23 Lu and Collins. PNAS. 2007;104 (27): 11197-11202.
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of the scientific co-founders shows bacteriophage designed to produce the biofilm-degrading enzyme

Dispersin B in infected bacteria led to a >10,000x destruction of the biofilm as measured by viable cell

counts.

Figure 7-4: Enhanced bacteriophage treatment of biofilm reduces the number of live bacteria on and

within the biofim. A. Untreated biofilm of E. coli where only the top layers of cells are visible; the

lower layers of cells are shielded. B. Biofilm treated with DispersinB -enhanced bacteriophage. No

clear and defined E. coli cells are visible and very few viable cells were recovered; the residue is

cellular debris.

Third, a gene encoding antimicrobial proteins has been inserted into the engineered

bacteriophage to confer broad-spectrum bactericidal activity. These antimicrobial agents are short

peptides of 15 - 25 amino acids in length that penetrate the membrane of bacteria thereby lysing them as

well as attacking intracellular targets to decrease viability24 .Preliminary, unpublished data demonstrates

the efficacy of further enhancing bacteriophage to express these peptides in combination with the

previously described engineered features.

Finally, based on the mechanism of action and initial in vitro results with S. aureus growth, this

approach may work as broad-spectrum therapy, that is, for both gram positive and gram-negative

bacterial infections.

24 Brogden Nat. Rev. Microbio. (2005), Vol. 3 (3) pp. 238-50
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7.3.4. Treatment & efficacy for MRSA cSSSI today

Treatments today that are approved for MRSA cSSSI include vancomycin, linezolid, daptomycin,

and tigecycline. Vancomycin is the gold standard for MRSA cSSSI, a generic drug delivered intravenously

(IV). However, vancomycin is highly toxic and poorly metabolized, leading to difficulties for the physician

who must deal with administration. Cubist Pharmaceuticals' Daptomycin (Cubicin) has been shown to be

equivalent to vancomycin in a once-per-day IV delivery. Pfizer's Linezolid (Zyvox) has been shown to be

more effective than vancomycin even in an oral formulation in large Phase 3 trials. Whereas Wyeth's

Tigecycline (Tygacil) is a broad-spectrum (gram positive and gram negative) antibiotic that can also be

used for vancomycin resistance enterococci (VRE) and is less toxic than vancomycin. It is delivered IV

and has been shown to be equivalent to vancomycin. Ofloxacin is a fluoroquinolone that belongs to an

older class of drugs that has seen resurgence in use, particularly with community-acquired MRSA

infections. While many of the above treatments are effective many patients with tolerable toxic side

effects, Novophage's solution of combining antibiotic and enhanced bacteriophages promises to be more

efficacious for similar side effects or less toxic by lowering the necessary dose of a toxic antibiotic. The

rationale for this novel therapeutic approach is to combine the broad-spectrum activity of antibiotics

with specific bacteriophages to address the high incidence of antibiotic-resistance in these infections,

particularly for S. aureus and the resistant sub-strain MRSA.

7.4. Competition

There are three main competitors in the antibiotic adjuvant space with programs in the clinical

stage: MPEX Pharmaceuticals, Biocontrol Limited and Exponential Biotherapies.

e MPEX Pharmaceuticals is a San Diego-based company in the antibiotic adjuvant space currently

pursuing drug efflux pump inhibitors in gram negative bacteria. While this approach potentiates

antibiotics against resistant bacteria including Pseudomonas aeruginosa, its efficacy is limited

because it does not directly address the primary mode of resistance especially in gram positive
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infections in which efflux pumps are less of a concern. These compounds are in the early stages

and have not entered human clinical trials.

Biocontrol Limited is a UK-based company developing natural bacteriophage cocktails as human

therapies targeting infections of the outer ear caused by Pseudomonas aeruginosa. Successful

Phase I safety trials and more recently Phase II efficacy trials were completed for topical

application of the bacteriophage cocktail with patients in London. Biocontrol Limited plans on

addressing other indications as well including cystic fibrosis and infections of burn wounds.

Independently, a bacteriophage cocktail to treat burn wound infections by Pseudomonas and

Staphylococcus is currently being evaluated in Belgium.

- Exponential Biotherapy is a Virginia-based company developing a natural bacteriophage cocktail

therapy to treat vancomycin-resistant Enterococci (VRE) infections in the urinary tract. These

infections are resistant to virtually all known antibiotics, yet Exponential Biotherapies obtained

100% healing rate in rodents after intravenous injection of the bacteriophage cocktail. After

completing Phase I trials in 30 healthy humans to prove the non-toxicity of bacteriophages, they

received FDA approval to proceed with Phase II trials.

While natural bacteriophage products such as those being pursued by Biocontrol and Exponential

Biotherapy show potential as antimicrobial therapies and food antimicrobial products, the engineering

approach Novophage has taken offers clear advantages over natural bacteriophages.

Our key advantages include:

- Combating Resistance: Bacteria are apt to develop resistance to natural bacteriophage

treatment. Our engineered bacteriophages are able to overcome that limitation.

e Bioflim Destruction: Unlike natural bacteriophages that do not target biofilms, Novophage

engineered the co-expression of biofilm busting enzymes to break down the extracellular "slime"
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matrix that protects harmful bacterial biofilms which colonize implantable devices and catheters.

These same biofilms also form on food products and are particularly difficult to treat.

Novelty: Natural bacteriophage companies patent the method by which natural bacteriophages

are isolated, methods which can easily be circumvented by one skilled in the art. Novophage

Therapeutics protects not only methodologies for developing our products but also the

composition of our engineered bacteriophages through patent filings.

Since 2006, natural bacteriophages have entered the commercial space as antimicrobials in the

food safety and agricultural industry through commercialization by three active companies. EBI Food

Safety is a Dutch company offering an FDA approved bacteriophage food antimicrobial product to treat

meat, poultry, vegetable and dairy products against Listeria. The company established an industrial-scale

bacteriophage production facility in the Netherlands from which its products are distributed to major

food companies in the EU and the US.

Intralytix and OmniLytics are two US companies offering FDA approved natural bacteriophages cocktails

targeting Listeria and E. coli. Both companies are now developing natural bacteriophage cocktails as

human therapeutics targeting wounds caused by multidrug-resistant S. aureus, but are still in pre-clinical

stages.

7.5. Intellectual property

Novophage's core inventions for sequence modifications to bacteriophages, methods of creating

modified bacteriophages, and related methods of treatment are protected by five patent applications

jointly held by the Massachusetts Institute of Technology and Boston University. The five applications

are either submitted as a provisional application (1), in the PCT stage (2), or national (2)

Unlike patents granted on natural bacteriophages, which can only cover the method of isolation

and not the organism, Novophage's core intellectual property covers the method of expression of biofilms
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busting enzymes, resistance suppressors, and additional broad-spectrum antimicrobial agents from

bacteriophages in general, i.e. not limited to any specific bacteriophage species. Furthermore we are

covering the specific composition of the classes of these agents and the specific genetic sequences that we

have engineered into the bacteriophages.

Novophage has a verbal agreement with both Technology Development Offices at both

institutions that exclusive license is available to the company and negotiations are ongoing; a pro forma

term sheet has been circulated. A Freedom-to-Operate analysis has been carried out and appears to be

clear at this point. The team is continuing to advance technology development, to file patent applications

on new discoveries, and to refine intellectual property strategies to protect likely business opportunities

with the help of team mentors.

7.6. Risks and mitigation

A primary means to address the risks outlined below is for the team to recruit relevant and

experienced people to the company as consultants, advisors, and employees. The team is actively seeking

and meeting with mentors, some of whom the team hopes to engage with in closer relationships over

time and as the needs of the company become more apparent.

7.6.1. Lead therapeutic development

We propose to mitigate the risks associated with the development of our novel combination

antimicrobial therapy through the following sets of experiments that will validate the viability of our

approach, culminating in a pre-clinical assay of the technology in the relevant animal models. First, we

are transferring our work from E. coli bacteriophage into S. aureus bacteriophage K. This includes the

transfer of our modular engineered inserts into bacteriophage K and screening the initial recombinants

for activity on in vitro S. aureus cultures.
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7.6.2. Screening of LexA3/AmP/DspB combinations

We will construct and screen a combinatorial library of our modules25 to find the most effective

combination of the LexA3 SOS repressor, the Dispersin B and the six different AmPs 26 we want to

combine. Our primary outcome will be bactericidal activity on a planktonic S. aureus culture, followed by

the same in a biofilm assay. After these early tests, we will test the lead phages against heterogeneous

biofilms to simulate the more clinically relevant scenario of a mixed-species biofilms. This work involves

molecular biology and should be completed in 4 - 8 weeks.

7.6.3. Animal models of surgical site infections

We will approach our first indication - MRSA complicated skin and skin structure (cSSSIs) - using

a validated animal model. We will treat the infection and the primary endpoint will be survival as

compared to best-in-class treatment, linezolid.

7.6.4. Expansion of product line to MDR Pseudomonas aeruginosa

At the same time as we are developing the S. aureus bacteriophage, we will develop a

bacteriophage to target multidrug-resistant (MDR) Pseudomonas aeruginosa in order to utilize our

enhanced biofilm-degrading ability against cystic fibrosis (CF) infections. The effort needed in the early

stages of the development of this therapeutic dovetails with the development of our lead candidate

therapeutic, i.e. the S. aureus bacteriophage. The advantage of targeting P. aeruginosa, and specifically CF,

is the highly motivated patient population and several high-profile players in the area such as the CF

Foundation, which is keen on testing novel approaches for the treatment of CF. Our delivery and

proposed combination with existing antibiotics makes that therapeutic an ideal candidate for co-

administration in clinical trials.

25 The module contains all three main components plus other components necessary for expression.
26 Based on our initial in vitro screens against E. coli and S. aureus we selected the six most active AmPs.
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7.6.5. Safety profile

We will thoroughly test the safety of our engineered bacteriophages, specifically looking for

issues related to pyrogenicity27, cytotoxicity28 and immunogenicity29. Based on clinical trial evidence to

date using natural bacteriophages, no toxicities have been reported in Phase I human toxicity studies. For

example, Exponential Biotherapies successfully completed a Phase I US-based clinical trial involving the

use of natural bacteriophages in humans. Furthermore, in 2007, Biocontrol successfully completed a

Phase II clinical trial in the UK for ear infections and reported positive results.

Additional preclinical testing will include further understanding of the bacteriophage clearance

mechanism and timing as assessed through absorption, distribution, metabolism, and excretion studies.

Evaluation of the likelihood of removal of benign bacteria in the body and possible related adverse events

will also be tested. In addition, the therapeutic window will be evaluated in preclinical studies by

determining minimum inhibition concentrations and maximum tolerated doses relative to adverse

effects.

7.6.6. Manufacturing

Quality control endpoints in the manufacturing process will include testing of the pH, sterility,

pyrogenicity, and cytotoxicity of pre-production batches of enhanced bacteriophage. Initially all batches

will be tested for viral morphology by transmission electron microscopy (TEM) as well as sequenced to

guarantee homogeneity.

27 For endotoxin testing, the Limulus Amoebocyte Lysate (LAL) assay is the first line regulatory test but the phages may interfere with this test. A
second test is the rabbit pyrogenicity test used when there is interference with the endotoxin test. Merabishvili et al, PLoS ONE (2009), Vol. 4 (3)
pp. e4944.
28 Cytotoxicity will be assessed in a cell survival assay using a human primary keratinocyte tissue culture assay. Based on literature and clinical
trials, we do not expect to see any negative effect on survival rates following bacteriophage treatment.
29 Immunogenic response will be assessed by the serum-response of guinea pigs. Hartman et al., Inf. Imm. (1991), Vol. 59 (11) pp. 4075-83.
Repeat dosing with high doses of bacteriophage will be assessed through measuring the level of antibody reponse. In addition, adverse
immunogenic reactions to proteins purposely released by the phage such as Dispersin B will be determined. Based on our experience and
current literature. We do not anticipate adverse immunological reactions in vertebrates. Ramasubbu et al., JMB (2005), Vol. 349, pp. 475-486.
Purified Dispersin B to treat diabetic foot ulcers is in preclinical development by Kane Biotech (summer of 2009).
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Figure 7-5: Manufacturing batch process for bacteriophages.

Figure 7-5 illustrates our current understanding of the manufacturing and purification steps

necessary to produce therapeutic quality bacteriophage preparations. This understanding was developed

with the kind help of Steve Sofen, VP at Genzyme. The critical step of the process are the removal of

cellular debris and toxins to prevent adverse immune response in patients. The technology required for

these steps is well established and understood.

7.6.7. Toxin-removal from bacteriophage batches

A major hurdle for bacteriophage therapy to overcome is assuring that final product batches are

free of contamination that would lead to adverse reactions in the patient. These contaminations are

mainly bacterial endotoxins for gram-negative bacteria and superantigens for gram-positive bacteria30

that are necessarily present in the manufacturing process through the use of bacteria in the process. We

plan to test several ways of cost-effectively removing toxins from batches using both commercially

30 Endotoxins are a class of cellular debris composed of fragments of the bacterial cell wall that elicit a strong immune reaction in humans.
Superantigens are a class of proteins in gram-positive bacteria
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available kits as well as custom purification systems. The main principles of purification are successive

steps of ultra-filtration 31 followed by adsorption of the remaining toxins to a column of high affinity

binding partner. The primary drivers of cost in this purification scheme are the membranes and resins for

ion exchange chromatography.

Another concern in manufacturing enhanced bacteriophages is genetic drift, i.e. changes in the

genome of the bacteriophage leading to challenges in the ability to manufacture reproducible batches.

We plan to minimize this risk by using bacteriophages that do not integrate into the bacterial genome,

called non-temperate phages. This non-integration reduces the transfer of bacterial genetic material

between successive rounds of viral replication and cuts down the transfer of pathogenicity islands 32.

Additionally, we will screen our bacteriophage genome for regions sensitive to mutation and modify

these regions as necessary. If necessary, a further step to lock the bacteriophage genome is to replace the

native viral DNA polymerases, with high-fidelity polymerases that reduce the mutation rate by more than

2 orders of magnitude.

7.6.8. Regulatory

Facing mounting pressure from the public and healthcare sectors due to the rapid spread of drug-

resistant bacteria and the lack of new antibiotics, the FDA has become more accepting of alternative

therapies, including the use of bacteriophages. We do not minimize the challenges of the FDA approval

process but believe it is a manageable risk, based on recent go-aheads by the FDA for both Phase I and

Phase II trials for cocktails of natural bacteriophages. The team plans to engage the FDA in the early

stages of preclinical testing to understand if the experiments and data to be generated fit FDA expectation

and guidelines. In terms of clinical trials, we expect shorter and well-defined trials, because endpoints for

antibiotics are well established and the treatment course is shorter relative to other diseases such as

cancer.

1 Ultra-filtration through polysulfone membranes with a pore size of <30nm.
32 Chen and Novick, Science (2009), Vol. 323 (5910), pp. 139-41
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Furthermore, we have talked with two FDA regulatory experts. We understand that natural

bacteriophages applied as food antimicrobials and as human therapeutics are establishing precedents in

the FDA regulatory path. Both FDA experts expressed that engineered bacteriophages appear a

manageable regulatory issue. One expert strongly indicated that our approach would not fall under the

jurisdiction of the Recombinant Advisory Committee. The second regulatory expert indicated that

engineered bacteriophages could be even more appealing than natural bacteriophages because of the

control over the genome, specifically the ability to make them non-replicative and non-mutating.

7.6.9. Adoption by infectious disease physicians

We plan to closely cooperate with infectious disease physicians and clinical laboratory leaders to

understand their concerns regarding our therapeutic approach as we are developing our lead

therapeutic. To this end we will convene a panel of the key opinion leaders in the field and local

specialists. Going forward we will closely collaborate with Brigham and Women's Hospital clinical leaders

to design clinical trials.

7.7. Business development opportunities

The antibiotic products of six large pharmaceutical companies account for $10 billion in global

sales. Loss of patent protection is a significant threat faced by these companies. Pfizer's Zithromax

patents expired in 2005, and several more blockbuster antibiotics are facing patent expiration including

Avelox ($580 million 2007 sales; expiration 2009) and Levaquin ($1.4 billion 2007 sales; expiration

2010). Novophage's product can effectively extend the patent lifetimes of antibiotics. Through

partnership agreements, Novophage can leverage its novel products to gain access to distribution and

manufacturing expertise.
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Currently Novophage is in preliminary discussions with a large Boston-based biotechnology firm

as well as a large pharmaceutical company about possible synergies and partnerships; these discussions

are focusing on co-development agreements.

In the food safety sector, Novophage has an opportunity to generate an early revenue stream by

licensing our technology to established players that already utilize natural bacteriophages in their

business. The US food antimicrobials market is valued at $200 million and is growing at 4% annually.

Four million foodborne pathogen cases each year are directly due to bacterial contamination during the

industrial preparation process. These contaminations create an enormous social and economic strain on

society, estimated at upwards of $35 billion annually in medical costs and lost productivity. The food

industry itself is losing more than $400 million annually due to recalls, overhauls and stock market value

reductions. Novophage provides familiar, yet more efficacious biological solutions for foodborne

infections by using engineered bacteriophages to treat pathogenic bacteria in food products. Potential

partners may include EBI Food Safety, OmniLytics and Intralytix.

7.8. Milestones and financials

7.8.1. Company information

Novophage Therapeutics was incorporated as a Delaware-based C corporation in March 2009.

The goal for the next 12 months is to demonstrate in a MRSA cSSSI animal model that a S. aureus-targeted

enhanced bacteriophage improves survival above the current standard of care with minimal safety and

toxicity issues. Additionally, the company will identify the best antibiotic-enhanced bacteriophage

combination for the first product to treat MRSA cSSSI. Finally, the team will determine the COGS

associated with manufacturing the product. The company expects these activities to require less than

$500,000.
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The goal for 12-24 months is to more fully characterize the first product opportunity from in vitro

and in vivo drug metabolism/pharmacokinetics and pathology/toxicology viewpoints. In addition, the

company will conduct a pre- investigational new drug (IND) meeting with FDA to review the data to be

generated and submitted for approval to enter phase I clinical trials. Further disease animal studies are

expected to prepare for an IND filing with FDA. The team expects these activities to require

approximately $6,500,000. Beyond this time frame, the company expects to complete the in vivo studies

referenced above and to then enter GLP/GMP studies in preparation of an IND filing to enter phase 1

human trials. The team expects to begin ramping up preclinical work on a second product development

program. These activities will require approximately $14,000,000.

Phase III trials are expected to run about $26,000 per patient with 1,000 patients per year, based

on Cubist Pharmaceutical's Phase III study of Cubicin, for a total of $26M each in years 6 and 733.

Antibiotics clinical trials are typically less costly than other clinical trials, which range between $50M and

$300M34.

7.8.2. Company financials

See below for a detailed look into the projected financials.
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Cash Flow Projections
2009 2010 2011 2012 2013 2014 2015 2016 201
Year 0 Year I Year 2 Year3 Year4 YearS Year6 Year7 7e6

Beginning Cash $70,000.00 $30,000.00 $3,641,500.00 $226,000.00 $9,112,472.80 ($90,385.12) $23,412,975.65 $13,046,361.85 ($42,378/
Cash from Operations ($5443000.00) ($2,888,500.00) ($3, 415,500 00) ($5,113,527 20) ($9,202,857 91) ($11,496,639.24) ($60,366,613.79) ($

6
1,42

5,
3O5

,49) $4,539,
Cash frorn Investing $500,000.00 $6,500,000.00 $0.00 $14,000,000.00 $0.00 $35,000,000.00 $50,000,000.00 $0.00
Capital Expense $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
Change in Cash ($46,000.00) $3,611,500.00 ($3,415,500.00) $8,886,472.80 ($9,202,857.91) $23,503,360.76 ($10,366,61379) ($61,425,305.49) $4,539
Endn Balance $30.000.00 $3.641.500.00 226.000.00 $9.112.47280 ($90.85,12) $23,412.975.65 $13,0460361.85 ($48,378.943.64) ($43.839.

Investment rounds
Grants
Series A
Series B
Series C
Series D

OFFSET

Amount
$500,000.00

$6,500,000.00
$14,000,000.00
$35,000,000.00
$50,000,000.00

Grants Series A Series B Series C Series D
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Research & Development Budget
Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

Lab Material 150.00% 150.00% 150.00% 140.00% 130.00% 120.00% 110.00/0 105.000/0 100.00%
Equipment $50,000.00 $125,000.00 $187,500.00 $281,250.00 $421,875.00 $590,625.00 $767,812.50 $921,375.00 $1,013,512.50 $1,064,188.13 $1,064,188.13
Consumables $125,000.00 $350,000.00 $525,000.00 $787,500.00 $1,181,250.00 $1,653,750.00 $2,149,875.00 $2,579,850.00 $2,837,835.00 $2,979,726.75 $2,979,726.75

$0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
$0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00

Total $175,000.00 $475,000.00 $712,500.00 $1,068,750.00 $1,603,125.00 $2,244,375.00 $2,917,687.50 $3,501,225.00 $3,851,347.50 $4,043,914.88 $4,043,914.88

Animal Studies
Rodents $75,000.00 $150,000.00 $75,000.00 $75,000.00 $75,000.00 $75,000.00 $75,000.00 $75,000.00 $75,000.00 $75,000.00 $75,000.00
Canines $0.00 $250,000.00 $0.00 $125,000.00 $0.00 $125,000.00 $0.00 $125,000.00 $0.00 $125,000.00 $0.00
Total $75,000.00 $400,000.00 $75,000.00 $200,000.00 $75,000.00 $200,000.00 $75,000.00 $200,000.00 $75,000.00 $200,000.00 $75,000.00

Clinical Trials Phase I Phase Iia PhaseIlb Phase III PhaseflI Approval Phase IV Phase IV
Patient # 0 0 0 25 50 100 1,000 1,000 0 10,000 10,000
Cost / Patient $0.00 $0.00 $0.00 $15,700.00 $19,300.00 $19,300.00 $26,000.00 $26,000.00 $1,000.00 $1,000.00
Total $0.00 $0.00 $0.00 $392,500.00 $965,000.00 $1,930,000.00 $26,000,000.00 $26,000,000.00 $0.00 $10,000,000.00 $10,000,000.00

Grand Total $250,000.00 $875,000.00 $787,500.00 $1,661,250.00 $2,643,125.00 $4,374,375.00 $28,992,687.50 $29,701,225.00 $3,926,347.50 $14,243,914.88 $14,118,914.88
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Production cost

Laboratory Scale-Up Pilot-Set-Up Clinical Trials Clinical Trials Clinical Trials Clinical Trials Clinical Trials Approval Market Market

Manufacturing 1 2 0.02 3 4 5 6 7 8 9 10

Capital Equipment $40,000.00 $100,000.00 $500,000.00 $125,000.00 $125,000.00 $125,000.00 $250,000.00 $250,000.00 $1,000,000.00 $750,000.00 $750,000.00

Consumables $5,000.00 $25,000.00 $100,000.00 $500,000.00 $500,0OO0 $500,000.00 $5,000,000.00 $5,000,000.00 $10,000,000.00 $10,000,000.00 $10,000,000.00

Total $45,000.00 $125,000.00 $600,000.00 $625,000.00 $625,000.00 $625,000.00 $5,250,000.00 $5,250,000.00 $11,000,000.00 $10,750,000.00 $10,750,000.00
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Chapter 8. Thesis conclusion

The rise in antibiotic resistant infections poses a great threat to human health and

resulted in increased morbidity and mortality in patients. The work in this thesis described

new strategies focusing on the family of antimicrobial peptides to counter these resistant

infections.

We first determined the antimicrobial activity of a panel of over 500 natural and

designed AmPs by measuring the peptide's minimum inhibitory concentration against four

pathogens - E. coli, P. aeruginosa, S. epidermidis and S. aureus. This represented the largest

ever-compiled database of AmP activity. The activity database is of tremendous value to the

scientific community as it allows, for the first time, direct comparison of AmP activity based

on a single standardized protocol. In addition, we supplemented the database with

hemolytic toxicity measurements for selected AmPs that demonstrated strong antimicrobial

activity. As a result, researchers now have the knowledge necessary to select and work with

AmPs that are non-toxic and most active against specific bacterial target.

While natural AmPs typically have a broad activity spectrum against different

pathogens, they are not optimized for a specific antimicrobial function or bacterial target.

We developed a design algorithm that utilizes conserved motif found in the amino acid

sequences of natural AmPs in order to produce new peptides with antimicrobial activity.

We used the database of AmP activity to rank the motifs' putative antimicrobial strength

and designed new peptides using active motifs. Finally, we incorporated design criteria to

mimic natural AmP and guide the choice of amino acid in order to derive new peptide

sequences. The incorporation of activity information and the design criteria increased the

success rate in designing active peptides from 45% to 73% and increased the antimicrobial
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strength of the designs. In the current algorithm, motif were ranked was solely based on

their MIC value for E. coli. We envision that future would involve ranking motifs based on

multiple criteria such as minimizing toxicity, maximizing resistance to protease

degradation, or maximizing bacterial specificity. Finally, new design criteria could be

applied to also favor sequence to achieved specific and desired functions for the peptides.

After gaining the ability to design new and active peptides sequence, we then focused

our attention onto understanding the AmP mechanism and developing new AmP

potentiation strategies. Our study of the family of Ponercin AmPs showed that MIC is an

incomplete determinant for antimicrobial activity and that cidal behavior must also be

accounted for. Using AFM and microfluidic flow device, we correlated the cidal activity of

Ponericin G1 with corrugation of the cell membrane. We then determined that the

membrane stress sensing and repair of misfolded membrane proteins via the CpxAR system

allows bacteria to resist the action of Ponericin G1 as well as DNA repair via induction of the

cell's SOS response by RecA. We finally determined that Ponericin G1 also target tRNA

synthetase in the ribosome and that Ponericin G1 can be synergistically potentiated by 300-

fold by combining it with kanamycin, an antibiotic also targeting the ribosome to treat

antibiotic resistant E. coli infections. We also identified that the amidated version of

Ponericing G1 disrupts the iron import mechanism and future work will verify this

hypothesis by supplementing iron chelators in the media to observe additional synergistic

potentiation effect.

After having developed new strategies to potentiate AmPs as therapeutics, we

developed new means to deliver AmPs or genes encoding AmPs directly at the site of

infection. Since a large portion of infections originate at the surface of implantable devices,

we developed films coatings that incorporate AmPs in order to prevent the initial
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attachment of bacteria and ensure the sterility of these surfaces. We demonstrated that the

kinetics of AmP release could be adjusted via the number of layers, the co-released of agents

or the nature of the film polymers. We also showed that the released AmPs still actively

prevented bacterial growth and remained non-toxic towards mammalian cells. Future work

would include the incorporation of such antimicrobial surface in an infection animal model

to demonstrate the feasibility of this approach in vivo.

After delivery AmPs, we developed new methods to deliver of genes inducing the toxic

expression of AmPs and other lytic agents directly into bacteria using reengineered

bacteriophages. Expression of these lytic agents from lysogenic bacteriophages resulted in

bactericidal activity, and demonstrated, for the first time, a long-term cidal effect for over 20

hours. We then enhanced the efficacy of this antimicrobial approach by expressing the same

agents in lytic bacteriophage, which resulted in complete suppression of the bacterial

culture and prevented bacterial regrowth and resistance to bacteriophages. Future

extension of this technology would seek to treat bacterial co-cultures to broaden the activity

spectrum of the bacteriophage.

Finally, we identified a market opportunity for an antimicrobial company

commercializing such genetically engineered bacteriophages and developed a clear market

entry and expansion strategies. The idea won at seven major business plan competition

throughout the US. A company was then incorporated to pursue the opportunity and bring

the technology developed in this thesis to patients. Future work will begin with the pre-

clinical trials of the technology in animal model. In conclusion, this thesis establishes new

advances in the delivery, the design and the potentiation of therapies to treat antibiotic

resistant infections.
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- Change is the end result of all true learning -

Leo Buscaglia
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