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Abstract

An algorithm for detecting orientation in textures is developed and compared to results of
humans detecting orientation in the same textures. The algorithm is based on the steerable
filters of Freeman and Adelson (1991), orientation-selective filters derived from derivatives of
Gaussians. The filters are applied over multiple scales and their outputs nonlinearly contrast
normalized. The human data was collected from forty subjects who were asked to identify "the
minimum number of dominant orientations" they perceived, and the "strength" with which they
perceived each orientation. Test data consisted of 111 graylevel images of natural textures taken
from the Brodatz album, a standard collection used in computer vision and image processing.
Results on comparing the computer and humans' test data indicate they each chose at least
one of the same dominant orientations on 95 of the natural textures. Of these textures, 74 were
also in 100% agreement on the location of all the dominant orientations chosen by both human
and computer. Individual cases which disagree are analyzed, and possible causes are discussed.
Some apparent limitations in the current filter shapes and sizes are illustrated, as well as some
effects possibly due to semantic influences and gestalt grouping.
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Chapter 1

Introduction

Imagine the future when vast amounts of image data such as movies, photo albums, journals

and other visual collections will be available in databases and can be accessed online. Accessing

this information fast and efficiently is a big challenge and offers a rich, new research area. BT

(British Telecom) is funding a research project at the MIT Media Lab to develop tools which

can search for a picture just like one can search for a keyword or a text description in a database.

One major problem with image databases is that a short description attached to an image will

not be sufficient for all queries. A more likely scenario is where a user shows a computer a

pre-existing pattern and asks the computer to search for patterns similar to it. It is important

to find visual features which describe the visual content in an image and can be used to judge

the similarity between images.

One such visual feature is the dominant orientations of an image. For example, in Figure 1-

1, the number of dominant orientations in each image is sufficient to discriminate the four

textured images. There is psychophysical evidence that humans use orientation as a cue for

discriminating textures [1][2][3]. Further, results from physiological experiments suggest the



existence of orientation selective mechanisms in the human visual system [4][5].

Extraction of orientation over a large scale can be used for rotating images to align before

comparing them pixel by pixel - a process possibly performed by humans [6]. Shape and

perspective information can also be obtained from relative orientation [7, 8].

As orientation is one of the most important features for human attention and for texture

matching, it is important that algorithms which extract orientation be developed. One of the

key difficulties in extracting orientation information is that it has to be gathered over multiple

scales [9][10]. Also, orientation estimation is complicated by effects such as contrast, gestalt

organization, and the semantic meaning associated with a pattern.

The research in this thesis focuses on the interaction of orientation estimation with scale

and contrast. In particular, an algorithm is developed to find dominant orientations in tex-

tured images combining the orientation information over four different scales and using contrast

normalization. To evaluate the results of this algorithm in detecting dominant orientations, a

human visual test was conducted. The human data was collected from forty subjects who were

asked to identify "the minimum number of dominant orientations" they perceived, and the

"strength" with which they perceived each orientation. Test data consisted of 111 gray level

images of natural textures taken from the Brodatz album [11], a standard collection used in

computer vision and image processing. The positions and the numbers of dominant orienta-

tion found by the algorithm were compared with the human data. Some of the parameters in

the algorithm were then varied to obtain better agreement between the human data and the

algorithm.

Chapter 2 gives background information on orientation estimation techniques and compares

several popular methods for finding orientations. Chapter 3 outlines problems in estimating



Bamboo Shoots Brick Wall

Funny Slots Impatiens

Figure 1-1: Four textured images (Printed with permission from E. H. Adelson).

orientations at different scales and reviews several multi-scale techniques for finding local ori-

entations. Chapter 4 outlines the orientation finding algorithm used in this thesis for finding

dominant orientations in textured images. Chapters 5 and 6 describe the human visual test and

outline the comparison done between the human visual data and the computer data respectively.

Conclusions and further work is discussed in Chapter 7.

I



Chapter 2

Background

An oriented pattern's Fourier transform tends to cluster along lines in the Fourier domain

perpendicular to the orientations in the spatial domain. This clustering can be detected by

summing energy in the appropriate region of the power spectrum and examining how the sum

is affected by rotations. Most of the methods proposed for calculating main orientations are in

essence finding the orientation along which this clustering occurs. In this chapter, I first talk

about methods which operate directly in Fourier domain, then those based on filters in the

spatial domain, and finally some other methods of finding local orientation.

2.1 Estimating Orientation In the Fourier Domain

Orientation can be estimated directly in the Fourier domain. Bajcsy [12] showed in her paper

that directionality can be measured by calculating the histogram of the Fourier power along

lines through the origin (see Figure 2-1). If F(wi, w2) is the Fourier transform of image I, then

the Fourier power spectrum P(wi, w2) approximately equals IF(w1,W 2)12. Bajcsy transformed



Figure 2-1: The power spectrum is summed along each of these lines

P(wi, w2) from cartesian coordinates to P(r, #) in polar coordinates, where for each frequency

r, Pr() is a one-dimensional function. She determined the main orientations by looking at the

peaks of the histogram of directional power P(#) . P(#) is calculated for quantized values of

#, i.e., # 7 = 6' 3' 2,... by summing the radial power p,(#),

(2.1)P(#) = E pr(#)
r=1

where X is the window size. Bajcsy applied this method on several textures of size 32 x 32
2

where the quantized interval for # was ' and W, = 16. Bajcsy does not explain why this

particular quantized interval for # was used.

This method has several drawbacks. One problem involves the inherent difference between

continuous and finite discrete Fourier transforms. Transforming from cartesian coordinates to

Z



polar coordinates is tricky since it involves interpolation and the results are inaccurate near

the origin. Bajcsy first high-pass filtered the images since the definition of angle is very coarse

at low-frequency points due to the smaller number of samples available on the rectangular

grid. Also low-frequency components are affected more by illumination changes than surface

coloration [13]. However, false peaks were still found in the histogram of P(#) due to smooth

changes in shading which are perceptually discounted by humans [12]. Bajcsy argued that more

information about the scene (its illumination, continuity and context) is needed to remove this

kind of slow change. If the oriented energy falls between two bins, the energy contribution from

each bin will be small and will not be prominent in the histogram.

Chaudhuri, et. al. [14], extract orientation information by using sector filters on the Fourier

transform of the image instead of summing the oriented power in the polar coordinates as Bajcsy.

The filter rejects all the Fourier components outside the desired angle band. An ideal sector

filter causes ringing and smearing artifacts. To overcome such affects, they multiplied the sector

filter with a raised cosine window W1 (V):

W1(p) = cos"( "'7r) P E [1, V2]B

= 0 otherwise (2.2)

where V is defined as,

= arctan(!-) (2.3)
W

and V, and p02 are the angular limits of angle band, pm =11 +%02 is the center of the desired



angle band and B = V2 - V1 is the chosen angular bandwidth. The value a is chosen to make

sure that the window coefficients are not too low to miss the components near the two limits

of the angle band.

Before applying the sector filter, the computed Fourier transform of the image is bandpass

filtered which removes the very high and low frequency components to reduce the effects of

aliasing, noise, illumination effects and having fewer sampling points near the origin. The

cutoff frequency to remove the low frequency components depends on the nature of the input

image. Depending upon the scale of a local structure, the cutoff frequency might suppress

the contribution of the Fourier components of these structures. Chaudhuri, et. al. ran the

sector filters with different p1 and V2 on images with structures at different orientations and

inverse Fourier transformed the resulting filtered images. Ideally the inverse Fourier transformed

images should contain the structures in the original image with orientations corresponding to

the angular band of the filters. The distribution of orientations corresponding to the structures

was found by counting the pixels of the binarized inverse Fourier transformed output images

corresponding to the different angle bands. One problem they found was that for structures of

finite width in the original image, the components in the frequency domain do not lie completely

within the defined sector. As the thickness of the structures increases, there is an increased

spreading of the Fourier components, leading to a reduced angular sensitivity. This results in

poor contrast in the filtered components and certain artifacts.



2.2 Filtering: Trade-offs And Desirable Properties

Another way to detect the direction along which the clustering in the Fourier domain occurs

is by filtering in the spatial domain. Filters in the spatial domain can be used to find local

orientation information more easily than operating directly in the Fourier domain. Also there

is psychophysical and physiological evidence that some of the primate receptive fields can be

modeled by linear filters [15]. Filters can be chosen which select only the frequency components

in a particular direction. The local orientation in an image can be found by running a set of

directionally sensitive filters. If there is one main orientation then there will be a large response

in the filters whose direction coincides most closely with the main orientation and the responses

of all the other directional filters will be small. If a large fraction of filters give a comparable

response then the neighborhood has structures covering all orientations.

The selection of the set of directional filters involves certain trade-offs. As mentioned before

very low spatial frequency components should not be used for the orientation estimation since

they are affected more strongly by illumination effects than surface coloration. Further, the

definition of angle is very coarse at low-frequency points due to the smaller number of samples

available on the rectangular grid [14]. On the other hand, high spatial frequencies are sensitive

to noise and aliasing so they too are inappropriate for estimating orientation. To measure orien-

tation some kind of bandpass filtering is preferable. Another trade-off occurs between angular

and spatial resolution. If the filter is too orientation-specific then a large spatial neighborhood

is needed to make reliable measurement of energy [13]. Conversely, if the filter responds over

a wide range of orientations then it will be difficult to localize the orientation accurately. It

makes sense then to choose filters which exhibit good local properties both in spatial and fre-



quency domains. Since Gaussians are optimally localized in space and frequency, derivatives of

Gaussians are often used as directional filters.

2.2.1 Number of Filters Required for Orientation Estimation

It seems initially that many filters at different orientations are needed to estimate the local

orientation. It would be desirable to know how many filters are needed for an accurate mea-

surement of orientation.

If a directional filter can be rotated to any orientation by a finite number of basis filters

then the basis filters can be used to estimate the local orientation. If a two-dimensional filter

in the spatial domain f(x, y) with polar representation f(r, 4) has a finite polar Fourier series

expansion then:

N

f(r, 4)= 1 an(r) exp(in4). (2.4)
n=-N

where

r= z2+ (2.5)

= arctan(-) (2.6)

and i = S1i, then filter f rotated through an arbitrary orientation 6 can be expressed as:

N

fa(r,4)= an(r)exp(in0)exp(-in0). (2.7)
n=-N

In this expression the terms an(r) exp(inO) can be viewed as the basis filters and the terms



exp(-in6) as the coefficients needed to linearly combine them to synthesize filter g at any

orientation [16]. The number of basis filters needed is determined by the number of positive

and negative frequencies present in the polar frequency expression shown in (2.7). If all the

an(r) are non-zero for all -N < n < N then 2N + 1 basis filters have to be used.

The basis filters can also be rotated versions of the filter. Freeman and Adelson in [16]

derive the conditions needed to synthesize a filter f rotated to angle 9 as a linear combination

of rotated versions of f:

K

f(x, y) = Zk;(O)fa (x, y). (2.8)
1=1

Filter f is defined to be a steerable filter if it satisfies (2.8) for a finite K. To determine the

interpolation functions kI(6) and the number of basis filters needed, K, both sides of (2.8) are

substituted by their polar Fourier series expansion given in (2.7), and both sides of the resulting

equation are projected on the complex exponential exp(im6):

K

am(r) exp(imO) = [k(6)am(r) exp(imal), -N < m < N (2.9)
l=1

In (2.9) since -N < m < N, there will be 2N + 1 linear equations. The equations can be

stated in the following format:

1 1 ... 1 ki(6)

exp(iO) exp(ia 1 ) ... exp(iaK) k2 (0)

exp(iN9) exp(iNai) ... exp(iNaK) kK(9)



where only the expressions for positive m are shown. To calculate the coefficients ki, however,

expressions for positive and negative m have to be used. If am(r) = 0 for any m, then the

corresponding (mth) row of the left hand side and of the matrix of the right hand side of (2.10)

should be removed. Freeman and Adelson show that if T is the number of positive or negative

frequencies where am(r) is non-zero for -N < m < N, then the required number of basis filters

K has to at least equal T. The T basis function orientations al must be chosen so that the

columns in the matrix in (2.10) are linearly independent. One way to ensure this is to choose

these angles to be equally spaced between 0 and ir. An observation is that the interpolation

functions k1(9) are independent of the values of the non-zero coefficients am(r); therefore, these

coefficients are not necessarily unique for a particular filter. This is true since the interpolation

is only dependent on the angular tuning of the filters.

Freeman and Adelson also show in [16] that for filters of the form f(x, y) = W(r)PN(x, y),

where W(r) is an arbitrary windowing function and PN(x, y) is an Nth order polynomial in x

and y whose coefficients may depend on r, a linear combination of 2N + 1 basis functions are

sufficient to rotate filter f to any orientation. For an odd or even order PN(x, y), only N + 1

basis filters are shown to be needed to steer a filter. They also derive the interpolation functions

kj(9) for a set of separable basis functions W(r)RI(x)S(y) so that the rotated filter fo can be

expressed as a linear combination of separable basis filters:

K
fo(x, y) = W(r) E k(6)Ri(x)S;(y) (2.11)

1=0

If a filter does not have a finite polar Fourier series representation then it can not be exactly

steered by a finite number of basis filters. One solution is to approximate a kernel with an



adequate higher order polynomial multiplied by a radially symmetric function. To approximate

the filter response from a limited number of basis filters, certain methods can be used to

minimize the error in the synthesized filter as suggested by Perona in [17].

2.2.2 Quadrature Filters

Another requirement on the choice of the set of directional filters has to do with the phase

dependency of the orientation estimate. If the directional filter is even about the axis of its

main orientation then it will give a zero response along this axis when convolved with a signal

which is odd along that axis. For example, a second derivative of a Gaussian filter outputs

zeros along an edge oriented the same direction as the filter. Similarly, a directional filter which

is odd about the axis of its main orientation such as the first derivative of a Gaussian will give

a zero response along this axis when convolved with a signal which is even along that axis.

This means that even when the direction of the filter coincides with the local orientation of

the image, the output of the filter can be zero. Two filters are said to be in quadrature if they

have the same frequency response but differ in phase by 90*. In other words they are Hilbert

transforms of each other [18]. Where one filter response shows zero crossings, the other one

will show extremes. Let E(6) be the sum of the squared outputs of an oriented filter f0 and its

Hilbert transform ho. E(9) is an estimate of the spectral power of the image along the direction

6:

E(6) = (f9 * 1)2 + (ho * )2 (2.12)

where I represents the image. E(6) will be independent of the local phase of the input [19].



When the direction of filter f coincides with the local orientation of the input, this energy will

be maximal even if the input's phase and the phase of filter f differ by 90".

If we have a filter f then its Hilbert transform h along the main orientation of filter f can

be described in the following way:

H(wi, w 2) = i sign[cos(<p - 4k)]F(wi, w 2 ) (2.13)

where F(wi, w2) and H(wi, w2) are the Fourier transforms of f and h respectively, and #k is

the main direction of filter f [19].

The fact that a filter can be steered by a linear combination of basis filters does not mean that

its Hilbert transform is also steerable. For example, the Hilbert transform of a second derivative

of a Gaussian is not steerable by a finite number of basis filters. However, an approximation

to the Hilbert transform can be found which is steerable. Freeman and Adelson in [16] formed

an approximation to the Hilbert transform of a second derivative of a Gaussian by finding the

least squares fit to a polynomial times a Gaussian which is steerable.

2.2.3 Vectorial Representation of Filter Responses

The responses of the directional filters can be represented as orientation vectors: the magnitude

of the vector corresponds to the magnitude of the filter response, while the direction is given

by the filter orientation doubled [19]. The local orientation can be computed by the vector

addition of these orientation vectors. If there is a neighborhood containing structures in all

directions, then the vector sum of the filter responses should vanish since there is no one dom-

inant orientation. This does not happen if the direction of the orientation vectors corresponds



a) b)

Figure 2-2: Computation of local orientation by vector addition of the four filter responses.

Shown is an example where the neighborhood is isotropic with respect to orientation: all filter

responses are equal. a) The angles of the vectors are equal to the filter directions. b) The

orientations shown are double those in (a).

to the filter directions since the filters are usually equally spaced between 0 and 7r and there

is an equal contribution from each response. For example, in the case of the four directional

filters, the sum will only vanish for this neighborhood if the angles of the orientation vectors

are double the filter orientations as shown in Figure 2-2. This makes sense since by doubling

the angles of the filters, the orientation vectors will be uniformly distributed between 0 and 27r

and will then cancel out if they have equal magnitudes.

In [19] Knutsson and Granland suggest directional filters fk which are polar-separable in

the Fourier domain:

Fk(p, p) = V 1(p)V2 (<p) (2.14)



where < is defined in (2.3) and p is defined:

p 2 (2.15)

Fk(p, p) is the polar representation of the Fourier transform of fk, Fk(wi, w2). Vi(p) and V2(<p)

are functions of p and p respectively. V2(<p) for the fk are defined as:

V 2 (p) = cos2P(W - 4k) (2.16)

where ek is the main orientation of filter fk and the value p determines the angular resolution

of the filter. If there are K directional filters, the main orientations k are equally distributed

between 0 and yr where 4k = 1 where k = 0,...,K - 1. For a local neighborhood ideally

oriented in an arbitrary orientation 0 (the Fourier transform is concentrated on a line perpen-

dicular to 6,), the response of each filter can be expressed as an orientation vector. Since the

V(p) term is the same for all the filters fk, only the angular term of the response of the filters

are considered in the expression:

=k(60) exp(i27rk/K)V2(0) (2.17)

where fk is the vector representation of the output of fk. Note the factor 2 in the complex

exponential results from doubling the filter orientation since the direction of the vector is double

the filter orientation.

Knutsson and Granland show in [19] that the sum of these orientation vectors result in a



vector whose angle is double the local orientation:

K-1 K 2p
E k(6) = exp(i200 ) (2.18)

k=O p P+

This is true provided that p > 0 and K > p + 1.

Note that the condition for (2.18) to be true is very similar to the criterion for the number

of basis filters needed to synthesize a filter at any orientation. Recall that the number of basis

filters needed corresponds to the number of frequencies for which the an(r) coefficients of the

Fourier polar series representation are non-zero as shown in Section 2.2.1. The polar component

V2(<p) can be represented as a Fourier polar series representation and there will be p+2 non-zero

Fourier polar coefficients.

2.2.4 Examples of Directional Filtering Methods Used for Orientation Esti-

mation

A number of methods have been suggested to measure the local orientations in textures using

directional filters. The choice of the directional filter is difficult because it is hard to satisfy

all the requirements discussed in the previous section. Also there is a desire to choose filters

which yield frequency and orientation bandwidths which are in reasonable agreement with the

physiological and psychophysical estimates of the early human visual processes. The following

examples are representative of some of the methods currently used and do not cover all the

possible ways of measuring orientation. It should be mentioned beforehand that the local

orientation 00 estimated in the methods below is perpendicular to the perceived orientation.



Kass and Witkin's method [13]

Kass and Witkin find the main directionalities in a texture by examining the energy in the

output of an orientation-selective linear filter fk.. Their choice of the orientation-selective

filter is:

w0f(x, y) = (cos 0, sin 0) - Vq

= Cs O~_4 ep- (z2 + Y2) _4 ep- (z2 + y2)
= cos 6(z(oejexp( 2 (72 P(x 2

2oal 2a2-- ( 2 2+ Y2) -x ( 2 2 + (2.1)

+ sin (y(o-4 exp( (X2 + )-) 4 P(X2 ) (2.19)
2a, 2o,2

where a1 and 02 are the variances of isotropic Gaussian filters. This filter is bandpass and its

frequency tuning is identical to the first derivative of a Gaussian. The filter fk, is also steerable

with the partial derivatives of q as basis filters. The oriented energy, V(9) is calculated in the

following way:

V(6) = Mg*(fkw*I)2

V(O) = mg * (cos(6)Cx + sin(O)Cy)2  (2.20)

where mg(x, y) is Gaussian weighting function, I is the image, and Cx and Cy are the outputs

of the image convolved with the basis filters. This oriented energy is very similar to E(6) shown

in (2.12) except that the Hilbert transform of the oriented filter was not calculated by Witkin

and Kass. The weighting function mg is used to average the results in order to reduce the noise

in the calculation of the energy. Averaging the squared output of the directional filter response

also makes the energy V(6) independent of the input phase. However, using the quadrature



method discussed in Section 2.2.2 provides a better spatial resolution since averaging with mg

will blur the oriented energy V(6).

If (2.20) is expanded, V(O) will be in terms of cos 26 and sin 26; therefore, it will be periodic

with a period of 7r and will have two extrema 7r apart. Also, since V(6) is in terms of cos(26) and

sin(26), the orientation found from analyzing V(6) will be double the desired local orientation

6. The orientation 6, is found by calculating the peak of V(6) in the following way:

t f V(6) sin(G)dO

0 farcta V() cos(O)dO
2

arctan( "*Cj/G ) (2.21)
2

If complex variable Pkw is defined to be

Pkw = (CX +iCY) 2  (2.22)

then angle 6 and the measure of reliability of the orientation (also frequently called "coher-

ence") Xkw, can be expressed in terms of Pkw:

200 = arg(Pkw * mg) (2.23)

| Pkw *mflg
Xkw = - (2.24)

(IPkwI| mg)

As can be seen, Pk. is a combination of the basis filter outputs and can be regarded as an

orientation vector where 200 would be the direction of an average of these vectors in a local

neighborhood. The measure of reliability for the orientation calculated for pixel position (x, y)



is reflected in how well the Pk. vectors are lined up in a local region around position (x, y).

Bigiin and Granlund's method [20]

Even though this method initially does not appear to use directional filtering, its implementation

in the spatial domain results in using directional filters. Bigiin and Granlund define an image

to be "linear symmetric" if it is made up of a set of parallel lines. The Fourier transform of

a linear symmetric image is shown to be exactly concentrated to a line through the origin.

Of course, most real-life textures are not linear symmetric. However, if they have a strong

orientation their Fourier transforms should be spread about a line through the origin. Bigin

and Granlund find the main orientation in the least-squares sense by fitting a line through the

Fourier transform of the texture. The optimally fitted line in LSE sense represents the axis of

least inertia of the Fourier transform and can be found by finding the smallest eigenvalue of the

2 x 2 inertia matrix J,

fE2f w|F(w, w 2)|2dE2  -fE2f fw w 2IF(w1, W 2)|2dE2  (2.25)
-fJE2 f wiw2|F(w1, w2)j2dE2  fE2 f w2IF(wi, w2)I2dE2

where F(wi, w2) is the Fourier transform of image I and E2 is the Euclidean space with dE 2 =

dwidw2. The magnitude of the Fourier transform is used so that the orientation estimation is

independent of the input Fourier phase.

J can be calculated in the spatial domain for a local neighborhood and its approximate

discrete representation consists of:

u = ) 2* m
47r j2 gy 9



= 1 I)
J2-41r2(6 bX m

1 6I16I
J12 = J21 = - * mg (2.26)

41r2 bx by y

where g, 6 are the discrete Gaussian derivatives of the image I , my is a Gaussian filter and

Jmn is the (m,n)th component of J.

The optimal line 9 is the orthonormal eigenvector corresponding to the smallest eigenvalue

of J called A,. The other eigenvalue A1 corresponds to the line perpendicular to 9. The main

direction represented by angle 0,, is calculated to be

tan(260 ) = 2J 12  (2.27)
J1 1 - J2 2

where Jmn is the (m,n)th component of J. Two measures of the reliability of the estimation of

the orientation, Xbgl and Xbg2, are calculated

Xbgl = A1  0 )c (2.28)
A\1 + Ao

Xbg2 = A1 - Ao (2.29)

where A1 and AO are the two eigenvalues for J (2 x 2) and c is a constant used to control the

dynamic range of Xbgl so that it is less dependent on the contrast of the image. Bigiin and

Granland do not discuss how c should be chosen for different images. The values c = 1 and

c = 6 were used to illustrate how the value of c affects the coherence measure.

If the eigenvalues have a multiplicity greater than 1, i.e., AO = A1 then there is no one



optimal fitted line. This occurs if the energy in the Fourier domain is distributed in such way

that there are many lines which give the same least square error. (See Figure 2-2(b)). In this

case the values for Xbg1 and Xbg2 will be close to zero since the difference between the eigenvalues

is close to zero. The least eigenvalue A, will be zero and will have a multiplicity of one if and

only if image I is linear symmetric. In this case Xbgl will ideally be equal to 1 and Xbg2 will

be equal to the value of the biggest eigenvalue, A1. If the value for A1 is large then Xbg2 will

be large. A high Xbg2 indicates that the orientation found is reliable which makes sense since

A, must be very small compared to A,. If both eigenvalues are zero then the image is constant

(has no main orientations). Combining (2.27), (2.28), (2.26) and using the variable Pg defined

as:

P g i 2 (2.30)
x by

the values for 0,, and Xbgl and Xbg2 can be expressed in the following way:

20, = arg(Pbg * mg) (2.31)

Xbg1 = Pbg * mg (2.32)
(IPbgI* mg)

Xbg2 = 12 JPbg * mgI. (2.33)

For each point (x, y) in image I, the local orientation 0, and the measures of reliability Xbg1

and Xbg2 can be calculated.



Rao and Schunck's Method [21]

Rao and Schnunk used a directional filter, f,, which is a first derivative of a Gaussian. The

first derivative of a Gaussian is a steerable filter:

f = cos(6)gO* + sin(O)g '" (2.34)

where g and g 0" are the first derivative of Gaussians oriented at 00 and 900. Since f,, is a

first derivative of a Gaussian, convolving image I with g* and g, 0 is the same as taking the

gradient of the image in the x and y direction:

00*_g 0 1
I*g 1  -

6x
I*g '00 -- (2.35)

1 by

where b and b are discrete Gaussian derivatives of I.

The local orientation 0, is then calculated in the following way:

200 = arg(Pbg * mb) (2.36)

where Pbg is defined in (2.30) and mb is a box filter. The orientation measure is analogous

to Bigiin and Granland's method (2.31) except that a box filter is used instead of a Gaussian

filter. The same result as (2.36) can be obtained by minimizing the oriented energy E(9) with

respect to 0 in equation 2.12 with fe = f,. In this case, a Hilbert transform is not calculated

for ff, and E(6) is smoothed with a box filter analogous to Kass and Witkin's and Bigiin and



Granland's smoothing with the Gaussian filter mg.

The measure of the reliability or coherence measure of the orientation estimated for position

(xO, yO) Xra is:

E;(i,j)EL |R(x, y;) cos((8o(xo, yo) - 6,,(xi, yj))||
xr,9 -- ,: R~x YO) (i,j)E L G(zi, yi) (.7

where R(xz, yo) is the magnitude of the gradient at position (xo, yo) , L is the local region where

this measurement is calculated and 00(xi, y;) is the orientation found at position (xi, y;). The

coherence Xr, is a measure of how well the gradient vectors line up with respect to the gradient

vector at position (xo, yo). The R(xO, yo) component is used as a weight to make sure that X,,

is high at points where there is high visual contrast. It is not clear how the size of the local

region L is chosen.

Freeman and Adelson's method [16]

Freeman and Adelson use the second derivative of a Gaussian to estimate the local orientation.

The second derivative of a Gaussian, 92 is then defined as:

g2 (x, y) = 0.92132(2x 2 - 1) exp(-(x 2 + y2)) (2.38)

and is normalized so that the square of its integral equals to one over all space. The corre-

sponding representation is:

92(r, #) = 0.92132r2 exp(-r 2 ) cos(24) + (r2 - 1) exp(-r 2 ) (2.39)



where r and 4 are described by (2.4). The expression in (2.39) can then be represented as the

Fourier polar series of (2.7) with:

a, = 0.92132(r2 - 1) exp(-r 2 )

a 2 = a- 2 = 0.46066r 2 exp(-r 2 ) . (2.40)

Since there are three non-zero coefficients a.(r), three basis filters are needed to steer 92 as

discussed in Section 2.2.1. For computational efficiency it is desirable to use x-y separable basis

filters rather than rotated versions of 92. Freeman and Adelson in [16] show that there exist

three x-y separable filters whose linear combination can steer 92 to any orientation. The x-y

separable basis filters for 92 will be denoted 920, 921 and 922:

920 = 0.9213(2x 2 _ 1) exp(-(x 2 + Y2 ))

921 = 1.843xyexp(-(X2 + y2 ))

922 = 0.9213(2y 2 _ 1) exp(-(x 2 + y2 )) (2.41)

As mentioned in Section 2.2.2, the Hilbert transform of 92 is not steerable. Freeman and

Adelson approximate this Hilbert transform with a least squares fit to a polynomial times a

Gaussian which is steerable. They found an approximation, h 2, using a 3rd order, odd parity

polynomial:

h2 = (-2.205x + 0.9780x 3 ) exp(_(X2 + y2 )). (2.42)

The x-y separable basis filters for h2 will be denoted h20, h 21, h22 and h23.
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To find the main orientation in a local neighborhood, the oriented energy described in (2.12)

will be calculated for image I. Since go and he can be expressed as a linear combination of

their basis functions, E(6) can be expressed in the following way:

E(6) = (g*I)2 +(I * I)2

2 3

= ((E kgi(O)92i) * 1)2 + ((Z khn(6)h 2n) * J)2
1=0 n=0

2 3

= (E kgl(6)g21 * 1)2 + (Z khn(6)h2n * 1)2 (2.43)
1=0 n=0

where kgI 0 < I < 2 are the interpolation functions to steer 2 and khl 0 < n < 3 are the

interpolation functions to steer h 2. As can be seen in (2.43) to calculate E(6), image I just has

to be convolved with the basis filters for 92 and h2. The interpolation functions for a particular

9 can then be used to give the oriented energy. For 92 and h 2, the interpolation functions are

[16]:

kgl = (-1)l 2 cos2- 1(0) sinl(6), 0 < 1 < 2 (2.44)

3
khn = (-1)" cos 3-"(6) sin"(6), 0 < n < 3. (2.45)

n/

Freeman and Adelson in [16] show that the interpolation functions are products of cosines

and sines. Because of the squaring operation in (2.43), E(6) can then be simplified to a Fourier

series in angle, where only even frequencies are present:

E(O) = C1 + C2 cos(20) + C3 sin(26) + higher order terms (2.46)
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where C1 , C2 and C3 are a combination of the basis filter outputs.

The dominant orientation 0, can be approximated by using the lowest frequency terms and

by maximizing E(6) with respect to 0. Freeman and Adelson show that the solution for 0, will

be:

0 - arg(C3, C2) (2.47)

The strength of the orientation estimation S is defined as:

S= C2+C2. (2.48)

The approximation stated in (2.47) is exact if there is only one dominant orientation locally.

The dominant orientation measure and its strength S is measured at each pixel position (x, y).

If there is more than one dominant orientation locally, then the approximation is not correct

and other methods have to be used to find the orientations.

Discussion of the Four Methods

The calculation of the local orientation 0, in Rao and Schunck's method is identical to Bigiin

and Granlund's method except that Rao and Schunck use a box filter for local averaging and

Bigiin and Granland use a Gaussian filter. It is not clear which filter is more appropriate for

making the orientation estimation independent of input phase and reducing the noise. The

two-dimensional box filter is a poor low-pass filter and its transfer function is not isotropic,

i.e., it depends, for a given frequency, on the direction of the frequency. Also, since its Fourier

transform is a sinc function, the attenuation in frequency domain tends to oscillate instead



of increasing monotonically with the frequency [22]. The orientation estimation of Kass and

Witkin's is identical to Bigiin and Granlund's method except that the directional filters are

different. The angular tuning of the two methods, however, are identical.

The "coherence" measure of Bigiin and Granlund Xbgl when c = 1 is expressed the same

as Kass and Witkin's coherence measure Xk. Rao and Schunck's coherence measure Xbg1

is different from Kass and Witkin's and Bigiin and Granlund's. Rao and Schunck show for

one textured image that their coherence measure gives a better result than Kass and Witkin's

measure. One of the reasons for the difference in the results may be that Rao and Schunck use

the magnitude of the gradient, R(xz, yo), to emphasize high visual contrast. The inclusion of

the R(xz, yo) component may enhance the fine details in the image more than the other two

coherence measures. On the other hand, a high contrast structure with no dominant orientation

might have a false coherence measure due the R(xz, yo) component.

The strength measure in (2.48) used in Freeman and Adelson's method is the absolute

strength of an estimated orientation as determined by the energy output of the directional

filters. The coherence measures of the other three methods, on the other hand, give an indication

of how dominant an orientation is in a local region. If there are many different orientations

of equal absolute strengths in a local neighborhood, then the coherence measure for any of

these orientations will be very small even though their absolute strength could have been large.

Choosing the right size for the local region used in the coherence measure is not clearly explained

in any of the methods. Because the coherence measures are ratios of the outputs of the filters,

two orientations of differing contrasts can have the same coherence measures unless the absolute

strength of orientation is also incorporated as is done in Section 2.2.4 by Rao and Schunck.

Also in Freeman and Adelson's method quadrature filters are used to make orientation



estimation independent of input phase. The other three methods average the energy output

of the directional filters. This averaging is effective for making the orientation estimation

independent of input phase; however the spatial resolution in the orientation estimation is

lowered because of blurring from averaging.

All of the methods use steerable filters. The first derivative of a Gaussian is used in both

Bigiin and Granlund's method and Rao and Schunck's method. The orientation tuning of Kass

and Witkin's filter is identical to the first derivative of a Gaussian. Freeman and Adelson use

a second derivative of a Gaussian. The second derivative of a Gaussian has a finer orientation

tuning than the first derivative of Gaussian; however, it needs three basis filters instead of two

to steer. There is psychophysical and physiological evidence supporting the use for both of

these derivatives and higher order Gaussian derivatives to model cortical receptive fields [15].

2.3 Other Methods of Finding Orientations

Andersson in [23] uses a non-steerable set of filters with a much finer orientation tuning than

the filters in the methods discussed above. If there is only one dominant orientation then there

is not a big difference between Andersson's method and the methods discussed above although

Andersson does not prove that that the number of filters he used (between 18 to 24 filters)

is sufficient to estimate all orientations uniformly. If there are multiple orientations, such as

lines crossing at different orientations, then near the point of intersection the filters in the

methods discussed above may give false orientation estimates because of their broad angular

tuning. Andersson's filters on the other hand will give a more accurate result since they have a

narrower angular tuning. Higher order derivatives of Gaussians can also be used to detect finer



angular spacing because of their narrow angular tuning. These derivatives are also steerable;

however, the higher the order of the derivative, the greater the number of basis filters needed

to steer it.

The local orientation can also be estimated by finding the direction of the principle axis

of image I in a local region using moments [24]. Bigiin and du Buf in [25] show that the

second orders complex moments of the local Fourier power of image I can be used to find

local orientation. They also show that higher order of complex moments can be used to detect

N-folded symmetries. The latter may also have important applications for image comparison;

the focus in the thesis however will be on detection of perceptually dominant orientations,

symmetric or not.



Chapter 3

Scale Problem

In an image there can be textures at different scales like Figure 3-1 (Brodatz image D11).

Measuring texture features at the right scales is still a big problem in texture analysis. Sev-

eral multiresolution or multichannel methods for texture analysis have been developed such as

Gabor decomposition [26] [25] and Tree-structured wavelets [27]. Orientation detection is also

dependent on scale. Several methods can be used to measure orientation at different scales.

These methods will be reviewed and compared in this section.

3.1 Choosing the Right Scales

One strategy for resolving the scale problem is to measure the dominant orientations over

different scales. The two big questions with this strategy are:

1. How many scales should be evaluated and what should they be?

2. How should the data from- multiple scales be combined?



Figure 3-1: Image with orientations at different scales.

Due to the computational costs required to generate filters over a continuum of scales and

storage of the filtered images, usually, a discrete, small set of scales is employed.

3.1.1 Laplacian Pyramid

A computationally efficient way to obtain a discrete, small set of scales is by computing a

pyramid. The Gaussian pyramid consists of a series of images obtained by repeatedly smoothing

and subsampling an image [28]. The pyramid allows large scales to be brought into the range

of a local neighborhood. Overall, the computation of this pyramid requires only four thirds of

the operations necessary for the first level [28].

Running a Gaussian pyramid on textured images might not be appropriate since some

textures are quasi-periodic signals whose dominant frequency channels are located in the middle

frequency range [27]. For these textured images, a bandpass decomposition appears more



appropriate. The Laplacian pyramid is an effective scheme for this kind of decomposition. It

can be obtained by subtracting the smoothed image from the unsmoothed image on each level

of a Gaussian pyramid [28]. Applying the Laplacian pyramid on an image results in frequency

channels whose scale doubles from level to level of the pyramid, while the center frequency of

the passband is reduced by an octave. The Laplacian pyramid is a complete representation of

an image in a sense that one can perfectly reconstruct the original image given the coefficients

in the pyramid. Completeness is an important property since it guarantees that no information

is lost, i.e., if two images are different then their representations will be different [29].

Bigiin in [30] uses the Laplacian pyramid for multiscale analysis of orientations. His orienta-

tion finding algorithm involves calculating Pbg described in (2.30) at each level of the pyramid.

However, applying the first derivatives of Gaussians as required for the calculation of Pbg causes

the coefficients of the Laplacian pyramid to change. The coefficients can no longer be used to

perfectly reconstruct the original image. This will cause some Fourier components to be em-

phasized more than others and the orientation estimation will no longer be independent of the

frequency content of the estimated orientation.

Also, if the texture appears in a scale which coincides exactly with one of the bandpass

frequency channels, i.e., located near the maximum response of the channel then its orientation

information will be obtained in the corresponding level of the pyramid. However, if the scale

does not coincide near the maximum response of the channel then the frequency components

associated with this scale will be attenuated and the texture will appear in low contrast in the

resultant pyramid image. As can be seen, the problem of contrast and scale are not independent.



3.1.2 Steerable Pyramid

In [31], a multiscale structure called the steerable pyramid is constructed allowing orientation

estimation at different scales. The steerable pyramid corresponds to a series of images obtained

by repeatedly bandpass filtering, low-pass filtering and subsampling the image. Figure 3-2

shows a block diagram of two stages of the steerable pyramid. L0(wi, w2) and L1(w1,W 2) are

low-pass kernels and B(wi,W2) is a bandpass kernel. The input image is convolved with the

bandpass kernel B(wi,W2) and a low-pass kernel L1(wi,w 2). Running the steerable pyramid on

an image results in a spectral decomposition shown in Figure 3-3. The overall response of the

pyramid is flat in the frequency domain. The original image can be reconstructed by adding

the overall response of the pyramid with a high-pass residue image.

The band-pass filter B(wi,W 2) in the steerable pyramid is constrained by the flat low-pass

response of the pyramid. A symmetric 15-tap bandpass filter was used by Simoncelli et. al.

[31] to approximate this bandpass filter. To use this bandpass filter for estimating orientations,

an angular frequency response A(9) = i cos 3 (0) is multiplied by the radial response. The result

is a directional filter. A(9) can be expressed as :

A(6) = i - cos(30) + - cos(O) . (3.1)
(4 4

In Fourier polar representation (3.1) corresponds to four non-zero polar coefficients an(r);

therefore, four basis filters are needed to steer the bandpass filter to any direction. Figure 3.1.2

shows mesh plots of the desired angular symmetric frequency response and the imaginary com-

ponent of the frequency responses of the basis filter set. The angular tuning of this directional

filter is finer than the directional filters discussed in Chapter 2 and is identical to a third



Figure 3-2: Block diagram of two stages of the steerable pyramid (adopted from [31]).

(02

Figure 3-3: Illustration of the spectral decomposition performed by the steerable pyramid

(adopted from [31]).



derivative of a Gaussian. At each level, these four basis filters are applied to the image. When

the basis filters are applied again at each level, the filtered version (original image minus the

high-pass residue) can be recovered.

As discussed in Chapter 2, to make the orientation estimation independent of the input

phase, the Hilbert transform of the directional filter is found. An approximate Hilbert transform

is found which is steerable with 5 basis filters. For multiscale orientation estimation, the

oriented energy as described by (2.12) is maximized at each level of the pyramid. The image

size over which the orientation is estimated decreases with the number of levels because of the

subsampling. The estimated orientation and its strength, (2.47) and (2.48) can be found for

each pixel (x, y) for each level. For the steerable pyramid, C2 and C3 in (2.48) are combinations

of the outputs of the basis filters for the directional filter and its Hilbert transform. The number

of levels for the pyramid is dependent on the size of the image and the size of the directional

filter kernel.

Because the bandpass filters have to satisfy the flat low-pass response of the pyramid, the

orientation estimation will be independent of the frequency content of the estimated orientation.

However, as in the case of the Laplacian pyramid, if a texture appears in a scale which does

not correspond to the maximal response of the filters associated with the pyramid then the

frequency components corresponding with that scale will be attenuated and the output of the

directional filter will be small. It may be difficult to detect the orientation existing in that

scale.



(a)

(b) (c)

(d) (e)

Figure 3-4: Frequency domain response plots: a) Desired angular symmetric two-dimensional

frequency response. (b)-(e) Imaginary component of the frequency responses of the resulting

steerable basis set. The functions shown here are the same as in [31].



3.1.3 Adaptability in Scale

Another way to estimate the orientation at the right scales is to have filters which are adaptable

in orientation and scale: a minimum number of filters can be used to interpolate the local scale

and orientation. The dominant orientation can then be found by first maximizing the filters

over scale and then over orientation. The requirements for a filter to be adaptable over scale

can be easily illustrated for a filter f which is polar separable in the Fourier domain:

F(p, p) = Vi(p)V2(o) (3.2)

where F(p, W) is the polar coordinate representation of the Fourier transform of f and V(p)

and V2(V) are functions of p and V respectively. It is desirable to synthesize V(p) at any scale

as a linear combination of basis filters:

K
V(p) = E Sj(p)kj(p) (3.3)

i=1

where S are the basis filters. Observe that (3.3) looks very similar to (2.7) where filter f was

oriented to orientation 6 as a linear combination of basis filters. However, V1(p) is not periodic

and exists for all (positive) frequencies; hence, it can not have a Fourier series representation.

It is then not possible to generate a continuum of scales spanning the whole positive line [17].

This may not be necessary since the range of scales of interest is never the entire real line. An

interval of scales:

0 < PI P Ph < o (3.4)



is reasonable: if one takes the human visual system as an example, the range of frequencies to

which it is most sensitive goes from approximately 2 to 16 cycles per degree of visual angle, i.e.,

a range of 3 octaves [17]. In this case, Vi(p) will have a compact support and a Fourier series

expansion of this region can be applied as shown in [31].

Vi(p) can be fitted with one period of an n-term Fourier series expansion. The value of n

depends on how much error can be tolerated between the actual signal and its approximate

Fourier series. If the basis filters are shifted versions of Vl(p):

S; = V1(p - p;) (3.5)

then (2.10) can be used to determine how many basis filters are needed [31].

One major problem with adaptation in scale is that the condition for it is in direct conflict

with the Nyquist theorem. In order to avoid aliasing due to subsampling of a signal, filter

f should have a limited bandwidth in the frequency domain. On the other hand, adaptation

in scale requires a compact region of support in the spatial domain since a finite number of

Fourier series components is desired. It is impossible to satisfy both of these conditions [31].

One solution would be to maintain full resolution in one of these parameters. Another solution is

design an approximate adaptive scale representation as described by Perona [17] and Simoncelli

et al. [31] where a certain amount of joint aliasing is introduced.

Another difficulty has to do with the fact that there is physiological evidence that the

bandwidth of the frequency response of simple cells in the visual cortex of vertebrates is more

or less proportional to the center frequency of the actual cell [31]. The frequency responses

are then shifted copies of each other on the logarithmic axis. This suggests that the basis



filters described in (3.5) should be shifted copies of VI(p) in log frequency. This warping of

the frequency (using the log frequency) does not affect the conditions for scale adaptation.

However, when p = 0, log(p) is not defined andthe log function must be modified near the

origin to take care of this problem [31]. This means that the basis filters will not just be the

result of translation and compression of the original filter. Also, at low frequencies a large

region of support is required in the spatial domain. The computational cost can then be high

due to both the number of basis filters and the size of the filter kernel. Also adaptation in scale

combined with adaptation in orientation can very cumbersome.

3.1.4 Other Multi-scale Analysis

It would be nice if a small set of scales could be found which are sufficient for the orientation

analysis. Wright and Jernigan [32] show that if filters are polar separable in frequency domain,

i.e., are of the form expressed in (3.2) then along the radial frequency direction, six overlapping

Gaussian-shaped filters are effective for coding texture information. Along the <p direction, they

indicated their results were not conclusive. It appeared to them that at least seven Gaussian-

shaped filters with orientations uniformly spaced along the closed range (-90* < <p < 900) are

required to code white noise along this dimension irrespective of the radial spatial frequency

content of image. The textures that they tested were all given by polar separable Gaussian

random Fields only differing significantly in their local power spectra. However, their study is

a significant first attempt to find the relevant scales needed to characterize textures.

Malik and Perona in [10] for their model of preattentive texture perception used 6 direction-

ally tuned DOOG (difference of offset of Gaussians) and 2 isotropic DOOGs with their center

frequency corresponding to all integer values of the frequency between 3 and 14 cycles/deg.



This resulted in 96 filters which they claimed to adequately sample the spatial-frequency range

around the peak of luminance-contrast-sensitivity function. They proposed a method of com-

bining the outputs of these filters for texture discrimination based on a model of nonlinear

inhibition. Their model is computationally expensive and is ad hoc in certain steps. Also it

appears to have only been demonstrated on small number of synthetic textures. Nonetheless,

it is significant since it is based on psychophysical and biological motivations.



Chapter 4

Orientation Finding Algorithm

To find dominant orientations at different scales we used the steerable pyramid described in

Section 3.1.2. It provides an efficient way of filtering in the spatial domain and has the nice

property of having a flat response in the Fourier domain. Also, since the angular tuning of

the steerable pyramid filters is identical to the third derivative of a Gaussian, the orientation

tuning is finer than that of the first and second derivative of Gaussians used in the methods in

Section 2.2.4.

The local orientation 6, and its strength S described in (2.47) and (2.48) are calculated

for each pixel position (x, y) in the image at the different levels of the pyramid. The variables

C2 and C3 in (2.48) are now combinations of the outputs of the basis filters for the steerable

pyramid directional filter and its quadrature pair. Since the image sizes are 256 x 256, four

levels of the pyramid level = 0, 1, 2, 3 were used, with the subsampled image at level 3 being

32 x 32. Because of the kernel size of the filters 17 x 17, any level higher than 3 will not give

additional useful information. To find the dominant orientations in the image an orientation

histogram is calculated for each level of the steerable pyramid.



4.1 Orientation Histogram

A histogram H was calculated by quantizing the 0, (expressed in degrees) estimated for every

position (x, y) in the image and summing up their corresponding strengths S:

H(k) = N ,(k) k = 0,1,...,b- 1 (4.1)
JT -l No (i)

where No(k) is the sum of the strengths associated with angles of all points in the local region

of image I that are within the interval: -90* + k1800 ; 6, < -90* + (k+1)18 0 * and b is the

number of bins in 1800. For the thesis, b = 158 with the discretization interval in the histogram

being 1.140. Since the angular bandwidth of the filter is much larger than 1.140, the choice of

b is not unreasonable.

The normalization in the denominator of (4.1) enables the histograms of the different images

over different levels of the steerable pyramid to be comparable. Also in the case where there are

many orientations of equal strength but there is no overall dominant orientation, normalizing

the strengths will give small values to these orientations. The form of H(k) and the value of b

which best agree with the human performance are of interest to us and pursued in chapter 6.

The definition of H is very similar to the orientation histogram defined by Tamura et al. [2]

and Rao and Schunck [1]. Tamura et al. imposed a minimum threshold on the strengths before

accumulating them and set b = 16. They followed this with a strict algorithm that permits at

most two peaks. Rao and Schunk set b = 180 and summed strengths similar to the method

here, but they did not normalize the histograms to sum to 1 for comparison. They did not

discuss any algorithm for finding peaks, but appear to have done this visually. A new general

method for finding any number of peaks is given in Section 4.2.



4.1.1 Test Images

For the analysis done here, the test images are the digitized textured images in the Brodatz

Album, cropped to size 256 x 256. The histograms H were calculated for each image at each

level of the steerable pyramid. There are in total 111 test images named D1, D2,..., D1121.

Four orientation histograms H were calculated for each image corresponding to the steerable

pyramid levels 0, 1, 2, 3.

For the human visual test, the test images shown to subjects were multiplied by a disc of

radius 128 pixels to ensure that the subjects were not influenced by the vertical and horizontal

image boundaries. Since the filters were run on square images, they "see" some information

in the corners that was hidden from the subjects. This can lead to conflicting results between

humans and the computer as discussed for one problem image in Section 6.3.3.

Unfortunately it is non-trivial to run a steerable pyramid on a round image. Nonetheless

it would be interesting to compare the human results to the results of the algorithm using the

"circular" data as well as the results using the "square" data. How the results are affected by

small changes in the data is part of our continuing research.

4.2 Analyzing the Orientation Histograms

It is easy to look at the orientation histograms and visually pick the peaks which look prominent.

However, it is more difficult to teach the computer to pick out these prominent peaks in the

histograms.

A peak finding algorithm is proposed to pick out peaks corresponding to perceptually dom-

1 D45 was not analyzed since it was missing from the tape of digitized images we received.



inant orientations. The first step in finding the prominent peaks associated with the dominant

orientations involves smoothing the histogram data since they are very noisy.

4.2.1 Histogram Smoothing

A one-dimensional Gaussian filter was used to smooth the data. Solving analytically for the

"optimal" amount of smoothing can be done if we have a huge training set of known "correct"

smoothed distributions. Since this is not the case here, then different sizes and standard

deviations were tried on a large amount of data, 111 test images, to find the minimum number

of parameters for the filter which would effectively smooth the data yet keep the prominent

peaks. Success was judged visually over the whole database. It was found that an eleven point

Gaussian filter applied twice to the histogram smoothed most of the noise but still retained

the shape of the histogram. Figure 4-1 shows an example of the smoothing with the original

orientation histogram for test image D3 2 (look at test3 in Figure 6-7) at level 0 of the steerable

pyramid and the two smoothed versions. Note that the orientations associated with the peaks

are perpendicular to the perceived orientation.

The one-dimensional Gaussian filter, g, has the following form:

9X = exp(- 2) (4.2)
,v#2 7ra 2 20,

where a 2 = 16 and x = 0, ± 1, ± 2, ± 3, ± 4, ± 5 resulting in an eleven point Gaussian filter.

The 1.2019 factor was used to make sure that the coefficients of the filter would add up to one.

The twice smoothed histogram H will be called Ha.

2Throughout thesis, all images D1 - D112 = testl - test112 multiplied by a circular disc
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Figure 4-1: Smoothed orientation histograms for D3.



4.2.2 Finding the Prominent Peaks

There are many ways to "find peaks" in a histogram. One way is to fit some functional form,

e.g., Gaussians, to the histogram, and associate a Gaussian with each peak. This method

requires assumptions on how many Gaussians to fit, and what range their widths should be.

Also, Gaussians are of infinite duration so they would need to be truncated. A heuristic study

of the 111 histograms indicated that not all peaks of interest are symmetric like Gaussians. A

Gaussian fitting method will tend to fit two or more Gaussians to such peaks, which will not

typically correspond to the number of different dominant orientations perceived. The method

used below is therefore based on derivatives of the histogram, which do not require any kind

of symmetry assumptions. Even after the smoothing there can be still a lot of perturbations

in the data not necessarily corresponding to dominant peaks. Fitting this kind of data with

Gaussians can cause the detection of a lot of false peaks. The histogram shown in Figure 4-2

corresponds to the orientation histogram of the level 0 of the steerable pyramid for D30. D30

is clearly non-directional (see test30 in Figure 6-13); however, very sharp and narrow Gaussians

can be fitted to the data. It is necessary to follow the fitting, or to follow the derivative-based

method below with higher level decision making to find peaks.

To find the prominent peaks, the maximum and the minimum points of the smoothed

orientation histogram were found. The maximum and minimum points can be found by finding

the first order difference of H,. Letting dH represent the first order difference of H,

dH(k) = H,(k +1) - H,(k) 0 < k < b - 2 (4.3)

dH(b - 1) = H,(O) - H,(b - 1) (4.4)
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Figure 4-2: Orientation Histogram for D30 at level 0 of the pyramid.

where (4.4) is true since H, is periodic, i.e., H,(b + 1) = H,(O). The zero crossings of dH

indicate the maxima and minima of H,.

For a strong oriented pattern made up of line segments along one direction whose width

and spacing corresponds to the size of the directional filter and its frequency tuning, there will

be one peak in the orientation histogram. The peak will have a high value and will be narrow.

This would be considered a prominent peak. If the pattern is not strongly oriented, or the

spacing and size of the structures do not correspond with the parameters of the directional

filter or there are structures at many orientations then the peak will be much wider and its

magnitude much smaller.

Since the form of the distribution of the histograms is not known, a method assuming a

general form for the distribution was implemented. This method gives a higher "salience" mea-

sure as the peaks become narrower, sharper and bigger in magnitude and a smaller "salience"



measure as the peaks become broader and smaller in magnitude. An approximate measure of

the sharpness of a peak can be determined by approximating its height and width, and taking

the ratio of these two values. To estimate these values, first the inflection points on either side

of the peaks in H, are found. Figure 4-3 shows the orientation histogram calculated for D3 and

the corresponding graph of dH. As can be seen, the zero crossings correspond to the maximum

and minimum points, and the inflection points correspond to the largest slopes (positive or

negative) on either side of the maximum or minimum points. A positive inflection point before

a negative inflection point indicates that the zero crossing corresponds to a maximum point in

H,.

The difference of values between the corresponding inflection points is affected by the mag-

nitude of the peak in H, and the largest slopes on the two sides of the peak. The distance

between the inflection points gives an indication of the narrowness of the peak. This infor-

mation about the inflection points can then be used to give a measure of the magnitude and

sharpness of the peak. Figure 4-4 gives an example of a prominent peak P1 in an orientation

histogram (corresponding to the level 0 of the steerable pyramid for D1) and its corresponding

inflection points. The inflection points (maxi,min1) corresponding to peak P1 are very close.

D1 can be seen in Figure 6-5. Figure 4-5 gives an example of a much less prominent peak P1

in an orientation histogram (corresponding to the level 0 of the steerable pyramid for D9) and

its corresponding inflection points (max2,min 2). D9 can be seen in Figure 6-1. Notice that for

the prominent peak P1 in Figure 4-4, the inflection points are much closer and the difference of

their values much higher than the ones of the less prominent peak P1 in Figure 4-5.
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Figure 4-3: Orientation histogram and the correponding dH graph for D3.
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We propose a salience measure y for finding prominent peaks,

7 = Wm H, (,) Vdt -o, (4.5)
Hdit

where O, is the orientation associated with a peak. The vertical difference Vdi,t between the

inflection points gives a measure of the magnitude of the peak in H, and of the steepness of its

sides. The horizontal distance Hdit between the inflection points indicates the narrowness of

the peak. These distances are marked on Figure 4-6.

The motivation for wm will be discussed below and the motivation for Wb, will be discussed

in Section 6.3.1. The weighting function Wb, was not incorporated for the first set of comparisons

described in Section 6.3. Even though y is dependent on the magnitude of the peak, to make

sure that the 7 for small valued peaks is much smaller than large valued peaks, the peak

magnitude H.(9,) is included in the calculation of y as shown in (4.5).

There are two cases which have to be accounted for when calculating y. Case 1 is discussed

below. Case 2 is discussed in Appendix B.

Case 1: Peaks in the orientation histogram where the value of the maximum point

in the histogram is very close in value to one or both of its neighboring minimums.

Figure 4-2 shows an example of this case with the peak marked by *. In these cases, the ratio

vAL'* might falsely indicate a strong peak (especially if the peak drops off sharply) but the
Hai.t

peak should not be considered because it is caused by a perturbation in the histogram. For

a non-oriented image, ideally H, should be flat for all orientations; however, because of noise

and differing contrasts, some orientations will be weighted more than others. In Figure 4-2,
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the maximum in the histogram denoted with * will have a large ratio ' value because it is

sharp on one side but it is dearly not a prominent peak (as can be seen in D30). The proposed

function w. can take care of these cases. The goal is to incorporate the ratio of the largest

minimum value (there are two minimums on either side of the peak) and the maximum value.

If the value of the maximum point is denoted as MAX,,. and the largest minimum value is

denoted as MINl then the weighting factor, w, can be expressed as:

MINval
Wm = 1 -_ (4.6)

MAXvaI

If the minimum value is large relative to the maximum value then wm is close to 0 which will

make y very small. If the minimum value is much smaller than the maximum value, then wm

will be close to 1 and y will stay almost the same.

This peak finding method is plainly heuristic and therefore has very little worth unless it

is proven to work on a large variety of data. Our results indicate that for the 111 different

Brodatz images with 4 levels of resolution for each, the peaks found by the algorithm in the 444

histograms corresponded very well with the perceptual strength of the peaks. These results are

compared to the perception of humans in Chapter 6.

4.3 Dealing with Contrast

In both the Fourier methods and filtering methods discussed in Chapter 2, the strength of

the estimated orientation is dependent on the contrast of the textured image and increases

linearly with contrast. The coherence measures described in Chapter 2 are less dependent on

contrast since they are ratios of the outputs of the filters. Because of contrast dependency of



the methods, a low contrast oriented structure will have a small strength associated with its

orientation. As a result, the contribution of this orientation will be small since its strength

is smaller. Humans, on the other hand, can detect orientations at low contrast as shown in

the results of the human visual test described in chapter 6. How can we make the orientation

estimation less dependent on contrast?

4.3.1 Contrast

First what is meant by contrast? When studying the visibility of objects such as disks, or bars,

or rectangles on a background, as in [33], contrast C is defined as:

= (Lo - LB)
LB

A L
(4.7)

LB

where Lo is the luminance of the object and LB the luminance of the background. For periodic

spatial patterns like sine gratings, C can also be defined as:

C = (Lmax - Lmin) (4.8)
(Lmax + Lmin)

where Lmax and Lmin are the maximum and minimum illuminances for the signal [33].

One big problem with orientation analysis using directional filter outputs is that the re-

sponses of filters increase monotonically with the input image contrast. A non-oriented pattern

with high contrast can give a response very similar to as an oriented pattern with small con-

trast. It would be desirable to have a measure for orientation analysis which is less dependent

on input contrast. But at the same time it is important to keep the actual stimulus contrast
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information since a high contrast oriented structure is more strongly perceivable than a low

contrast oriented structure. There are several methods which are used to enhance the low

contrast oriented structures.

4.3.2 Non-linear Transformation of the Magnitude of Orientation

Since the estimation of local orientation 0, is a ratio of the responses in the filters as shown

in (2.47) it will not be influenced by the contrast of the image. As long as there is a change

in the grey level in a certain direction in a neighborhood the orientation measure will capture

this direction. However, the strength measure (2.48) will be dependent on the contrast of

the image. Since the orientation histogram H, is calculated using the normalized sums of the

strengths, the magnitude of its peaks will also be dependent on the local image contrast. An

example of this problem is shown in Figure 4-7(a) where the peak in the orientation histogram

H, for D6 (see test6 in Figure 6-3) corresponding to the horizontal orientation (peak at 90* in

the histogram) is hardly noticeable even though visually perceivable. In the visual test, this

horizontal orientation was given a large strength by the human subjects. When analyzing the

orientation histograms it will be very difficult to determine whether this is a prominent peak

or due to noise.

To enhance these peaks, the logarithm of the strength S can be taken for each pixel position

(x, y). The logarithm transformation enhances the small values and compresses the larger

values. Since the logarithm of the strength values less than one will be negative, a constant

value of one must be added to the strength values before taking the logarithm. The addition

of this constant will also eliminate the occurrence of Log of 0. Figure 4-7(c) shows the H,

histogram for D6 after the logarithm transformation of its orientation strength. The peak for
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the horizontal orientation is more noticeable but it is still much smaller than the other peak.

One big problem with performing the logarithm transformation is that also enhances the noise

in the strength values which may lead to false peaks in the orientation histogram.

Another non-linear transformation that is also used to enhance the small values is taking

the nth power of the strength values where 0 < n < 1. Figure 4-7(d) shows the H, histogram

for D6 after the square root of the orientation strength was calculated. As can be seen the peak

is more noticeable but still very small. Like the logarithm, taking the square root also enhances

the noise in the strength values.

4.3.3 Contrast Enhancement of Images

Another way of making the orientation estimation less dependent on the contrast of the image is

to enhance the contrast in the image before analyzing the orientation information. The contrast

enhancement of the image enables the low contrast oriented structures to be more noticeable;

however, it also boosts the contrast of the non-oriented structures which can result in false

peaks in the orientation histogram.

One popular method of enhancing the contrast of an image is by performing histogram

equalization. The grey levels of the image are transformed to obtain an approximate uniform

density for the image. A uniform density implies an increase in the dynamic range of the pixels

which can have a considerable effect on the appearance of an image [34]. Chaudhuri et. al. [14]

used histogram equalization to improve the global contrast of the images before applying their

directional finding method. The problem with global histogram equalization is that it usually

fails to enhance details over small areas. For local enhancement, the histogram equalization

technique can be done over neighborhoods in the image. The size of the neighborhoods of



course depends on the scales present in the image! Also histogram equalization can introduce

contouring artifacts which may possibly lead to false alarms for orientation.

Another method to enhance the contrast is to perform a logarithm transformation over the

image. It has been shown that for high mean luminance and for test stimuli of large area and

long duration, psychophysical sensitivity follows Weber's Law:

ALT - k (4.9)
LB

where k is a constant and known as the threshold contrast and also as the Weber ratio [33].

According to (4.9) when Weber's law is obeyed, the visual system's criterion for contrast detec-

tion is that the stimulus contrast must exceed the fixed value, k, the threshold contrast. The

differential of the logarithm of intensity of image I is:

6I(x, y)
6(log I(x, y)) = .Iy) (4.10)

I(x, y)

With respect to Weber's law, (4.10) implies that changes in the logarithm of the intensity of

the image which equal the Weber's ratio will be perceived to be of the same contrast over the

region of intensities for the which the Weber fraction is constant. For this reason, it may be

preferable to perform operations on the logarithm of the intensity of the image point, rather

than the intensity itself [35].

Also, if each pixel value of image I can be regarded to be product of the illumination

component, il and the reflectance component r.:

I(x, y) = ii(x, y)re(x, y) (4.11)
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then taking the logarithm transform of I separates these components:

log I(x, y) = log ii(x, y)+ log re(x, y). (4.12)

The difference in response across a uniformly illuminated step edge in the log-transformed image

will then be given by

(log ii + log re2) - (log il + log rei) = log( 2 (4.13)
rel

where re2 and rei are the reflectances on the two sides of the edge. As can be seen, the difference

is independent of the illuminance and as a result, the response to a given reflectance change

will always be the same irrespective of the illumination [35].

Figure 4-7(e) shows the orientation histogram for D6 when the image was log-transformed.

The peak for the horizontal orientation is even smaller than before. One problem is that since

the horizontal lines and the background have high intensity values, apply a logarithm transform

will make their difference even smaller since the transform compresses large values.

4.3.4 Contrast Normalization

Another way to make the orientation estimation more robust to contrast is to make the the

filter outputs less dependent on the input image contrast by performing an energy contrast

normalization. One way to do this is through local contrast normalization. The contrast

normalization used in low-level perception of images can be modeled by dividing the energy of

the filter outputs by the sum of energies corresponding to filters at all orientations [36] [33].

For example, Bergen in [9] did contrast normalization by taking a local average of the energies



of the four directional filters he ran on textures and divided the energy output (in his case he

defined energy to be the squared filter output) of each filter by the sum of local energies of all

four filters.

A contrast normalization scheme is implemented in the spirit of the contrast energy nor-

malization methods used in [36] [9] and an algorithm used by Freeman for the "Gain Control"

method in his PhD thesis [37]. For the contrast normalization, the outputs of each of the basis

filters of the steerable pyramid can be normalized and used to find the normalized oriented

energy En(O). However, this contrast normalization is tricky since it can affect the steerability

of the oriented filter. In the case of the steerable pyramid directional filters , since the basis

filters have an orientation tuning proportional to cos3 (6), squaring the outputs of these filters

(for energy) means that the resultant images have a finer orientation tuning proportional to

cos 6(6). Therefore to interpolate the oriented energy E(6) to any orientation 6 requires 7 basis

filters.

Seven equally spaced samples of E(6,) are taken at 6, = 00, 25.70, 51.43*,77.14', 102.86*,

128.570, 154.26*. This is the same as taking the squared outputs of the steerable pyramid

directional filter and its approximate Hilbert transform rotated at 7 equally spaced orienta-

tions. Therefore, our new basis filter outputs are the squared outputs of the steerable pyramid

directional filters and their quadrature pair rotated at the above mentioned directions.

Each of the sampled oriented energies E(6,) are normalized in the following way at each

pixel position (x, y) :

En(6,)(x, y) = E(c)(x, Y) C> 0 (4.14)
c + E,



where En(9,) is the normalized energy, E, is the sum of E(6,) in a local neighborhood and c

is a constant. Constant c is used to make sure that when E(0,) is zero, the result will not be

undefined. It is important to chosen a value for c which is not bigger than most of the values

of E(8,); otherwise, En(O.)(x, y) will be smaller than it should be. The choice of the local

neighborhood size for calculating E, is not straightforward. One way to find a good size is to

calculate (4.14) for different sized neighborhoods and see which size is reasonable for a number

of different images.

The normalized energy En(6) can be expressed in terms of these seven normalized energy

outputs using the coefficients kj (2.9) needed to steer a filter with the angular tuning cos 6(9).

The estimated orientation 0. and its strength S described in (2.47) and (2.48) can be found

for each position (x, y). The coefficients C2 and C3 in (2.48) will be combinations of the seven

normalized energy outputs.

The energy normalization outlined above was implemented for the first level of the steerable

pyramid and future work is to extend it to other levels. The range of values for the energies of

the directional steerable pyramid filters at level 0 were found and the constant c was chosen to

be an order of magnitude smaller than the minimum value in this range. Freeman in his PhD

thesis [37] tested his contrast normalization scheme on different neighborhood sizes and found

that the neighborhood size corresponding to the blur of the third level of a Gaussian pyramid

gave very good results. We used this neighborhood size for our implementation. For future

work the effect of neighborhood size on the results of the orientation finding scheme will be

studied.

A contrast normalized orientation histogram was calculated for level 0 of the steerable

pyramid using the values of 0, and S calculated from the normalized energy. Figure 4-7(f)



shows the contrast normalized orientation histogram for D6. Compared to histograms Figure 4-

7(c)-(e) the peak boosted at 900 is much higher than the other methods.

As mentioned in Section 3.1.1 the problems of contrast and scale are not independent.

Figure 4-7(b) shows the orientation histogram for D6 obtained by summing over the number

of pixels at each orientation rather than summing over the strengths of the orientations. This

orientation histogram is not affected by the contrast in the original image since orientation is

calculated using the ratio of the filter responses. As can be seen, the peak at 900 in Figure 4-7(b)

is higher in value than the corresponding peak in Figure 4-7(a). However, it is much smaller

and broader than the peak at 00. It appears that the spacing of the lines in D6 can also be

causing the filter responses to be small. Looking at the result of the contrast normalization, it

may be used to boost filter responses affected both by the contrast of the image and the size of

the filters. Interestingly, subjects gave a higher strength to the horizontal orientation than the

vertical one.

In Chapter 6, the results of the contrast normalized orientation histograms and the non-

normalized orientation histograms will be compared to the human visual data.



Chapter 5

Human Visual Experiment

The goal is to determine how well the orientation finding algorithm described in Chapter 3

estimates dominant orientations in textured images. For one thing it is important to determine

whether the levels used in the steerable pyramid and the contrast normalization technique

described in Chapter 4 are sufficient to estimate orientations at different scales and contrasts.

Humans are very good at detecting directionalities at different scales and contrasts. One way of

assessing the effectiveness of the orientation detecting algorithm is through a comparison with

a human visual experiment.

If an orientation is strongly perceived by humans then the orientation finding algorithm

should be expected to also detect such an orientation. If it does not then it should be modified

until the results are in closer agreement with the humans. This of course can be an exhaustive

search problem since there are many combination of parameters that can be changed such as

filter size, contrast normalization, etc. For now, it is sufficient to choose a set of parameters

initially and vary some of them, watching how they affect the agreement between the human

and the filters so that the majority of the the results are similar to those obtained from the



human visual test.

5.1 Human Visual Experiment

5.1.1 Subjects

Forty subjects participated in the visual experiment. The majority of the subjects were MIT

students and had no previous encounter with this research topic. Of the forty subjects, sixteen

were female. They came from different areas of specialization and from various ethnic origins.

The subject data are identified with subject numbers Sub1... Sub40 where the data Subl

corresponds to the data of the first subject who went through the visual experiment.

5.1.2 Experimental Setup

The subjects were seated about forty centimeters from the computer monitor. This distance

was sufficient to make sure that the subjects did not see any particular pixel in the image but

still could detect fine details. The lighting in the room was turned off except for a background

light. This insured that there would not be any false illumination on the images. The images

of size 256 x 256 were positioned in the middle of monitor screen. To indicate the orientation

perceived, the subject used a mouse to rotate a red bar centered in the middle of the image

to a particular orientation as illustrated in Figure 5-1. To insure that the subjects were not

influenced by the horizontal and vertical image boundaries, each image was multiplied with a

disc of size 256 x 256 with a radius of 128 pixels.

Using a red bar in the center of the image to indicate the orientation can bias the subject to

the orientations close to the center. Other methods to indicate the orientations were considered



Pick the MINIMUM number of dominant orientations.

j. If You Can't Spot Rnu Orientation In
The Inage, Click the Middle Button And
Click The 'No Orientation' Button.

2. Click On The Left house Button To Hove
The Red Bar.

3. Click On The Middle Button To Indicate
How StrongLg You See The Orientation.
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(a)

(b)
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Figure 5-1: Human test setup: (a) The subject clicks mouse to indicate whether or not they
see a dominant orientation. (b) If they see one, a red bar pops up for them to rotate. (c) One
of the orientations selected. (d) Human subject specifies strength of orientation. (e) A panel
pops up asking if subject sees another dominant orientation.



such as moving a bar freely around the image; however, this could encourage the subject to do

more of a template matching than orientation detection.

To indicate how strongly the orientation was perceived, a menu bar popped up under the

test image as shown in Figure 5-1. The subject used a slide bar to give a strength value between

0 and 10. The strength values could only be integer values. A finer scale could have been used;

however, it is difficult for the subject to give very quantitative measure of their perception,

i.e., whether an orientation should have a strength 6.7 instead of 6.9. After a strength was

indicated, the subject was prompted whether they wanted to pick another orientation or move

to the next pattern. In this way, the subjects should not have been biased toward picking any

particular number of orientations.

5.1.3 Training Session

The training for this experiment is difficult because it is important not to bias the subject to a

certain orientation, strength, or structure. To give a subject a notion of what is orientation and

what is meant by a strength of orientation, two images were first shown: an ideal directional

pattern and a random noise image. The first image was a sinusoidal grating oriented 900

as shown in Figure 5-2(a). The subject was told that this particular image has a vertical

orientation and was shown how to indicate this orientation using a mouse to rotate the red

bar. Since the orientation of the grating is clearly perceivable, a maximum strength of 10

was assigned to it. The subject was shown how to indicate this strength using the slide bar.

Next, a random noise image, Figure 5-2(b) , was shown. The subject was told that this image

had no dominant orientations and was assigned a minimum strength of 0. For images with

no dominant orientations, the subject was asked to choose the No Orientation option in the



strength menu. To make sure that the subject is not biased towards continuous lines, the

training image, Figure 5-2(c), was shown with a broken line oriented near the corner. The

broken line was drawn near the corner to also indicate that the orientations are not necessarily

near the center. When the experiment was first conducted, a strength value of 10 was given

to the training images. However, compared to the first training image, Figure 5-2(a), it is not

obvious that they should be given the same strength. To avoid biasing the subject from picking

10 all the time, for the rest of the training images the subject was asked to choose their own

strength considering the first two cases. The subject was also asked to practice using the mouse

to indicate the orientation.

To show that there can be multiple orientations in an image, Figures 5-2(d) and 5-2(e) were

shown. In Figure 5-2(d), there are two lines of different thicknesses at different orientations

(not symmetrical). The subject was asked to indicate the orientations (in whichever order) and

their associated strengths. Interestingly, the majority of subjects gave a slightly higher strength

to the thicker line than the thinner. The next training image, Figure 5-2(e), has 3 dominant

orientations. The subjects were asked again to indicate the three orientations. The majority

gave the vertical line a much higher strength than the two diagonal lines. This image was a

good example to illustrate that not all the orientations are equally visible.

Finally to illustrate that there can be cases where there are a lot of orientations in an

image but the overall effect is that there is no dominant directionality, Figure 5-2(f) was shown.

For this image, the subject was asked to only choose the orientation of the white bar (again

displaced from the center) as the dominant orientation. This avoids the case where the subject

chooses all the orientations of the line segments even though the overall effect is of no dominant



(a) (b)

Vi

(c)

(e) (f)

Figure 5-2: Traing images (a)-(f)



orientation.

The words Dominant and Minimum were repeated several times to make sure that the

subject only picks the "minimum number of dominant orientations" that he/she thinks are

dominant in an image. The instructions were shown in the upper left corner of the monitor

screen. Near the top of the screen, the reminder REMEMBER TO PICK THE MINI-

MUM NUMBER OF DOMINANT ORIENTATIONS was also shown.

5.1.4 Test Images

Each subject was shown 37 test images. 30 of the images were from the Brodatz album cropped

from the middle of the 512 x 512 digitized images. Since it would have taken too long for a

subject to analyze 111 of the textured images, the images were divided into four sets so that

each subject only have to analyze 30 of the images. We made sure that very similar images were

not placed in the same set. Each of the test images except for nine test images (test1, test17,

test23, test24, test36, test73, test77, test98 and test100) were analyzed by ten subjects. Each

of the nine test images were analyzed by twenty subjects. The reason that these test images

were analyzed by more subjects is that the 111 images could not be evenly divided into four

groups.

Results are described in the comparison section in Chapter 6. The last seven test images

shown in the Appendix A were visual teasers. Results on teasers are not going to be included

in the thesis since the main emphasis is on analyzing real-life textures.

The Brodatz texture images are not all homogeneous or directional. Some of them have

very complex patterns for which it is difficult to indicate a minimum number of dominant

orientations. Also there are not many images with low contrast since the images were taken



in a very controlled environment with little noise and uniform illumination. Use of the 111

Brodatz textures makes this study considerably larger in texture variety than any other study

to date. There is definitely a majority of horizontal and vertical oriented structures (as there

is also in the environments where most people spend daylight hours.) Nonetheless, each test

image was treated as one region, making the task more difficult but the results more realistic for

extension to real scenes. Also Brodatz textures are used by many computer vision researchers

for their analysis and they contain real-life textures for which the human visual system is

well-adapted. The test images will be called test1,test2,...,test112 corresponding to Brodatz

textures D1, D2,. . .,D112.

5.1.5 Recording of the Human Visual Data

The orientations and strengths picked by the subject for each test image are recorded in a

file corresponding to that subject. The orientation and strength data for each test image are

collected across these files. Information about number of orientations, their relative strengths,

expected number of orientations for each test image and distribution of strength values chosen

by each subject could be found from these files.

Several statistical properties of the experimental data were considered, and the following

conclusions were made:

1. The subjects used the full range of strengths, 0 - 10, with an approximately uniform

distribution.

2. No single subject's use of the strength scale deviated sufficiently to be discarded.

One of the concerns for the experiment was that the subjects might not use the full range
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Figure 5-3: The distribution of strengths chosen by Sub24 over all test images

of orientation strength values between 0 - 10. A histogram for each subject was calculated

showing over the total number of test images shown to each subject how many times each

strength from 0 to 10 was chosen. Figure 5-3 shows a sample histogram for Sub24. The vertical

axis corresponds to the fraction of the total number of orientations chosen by Sub24 over all

test images assigned a particular strength. As can be seen from the histogram Sub24 chose

strengths from the full range. To get some measure of the range of strengths chosen by all

subjects, a mean of all 40 histograms was calculated.

This mean histogram is shown in Figure 5-4 and is pretty flat across the strength values.

To find the deviations of subjects' histogram from this mean histogram, a variance measure o2~sto~'ra ~'s hc~r8



was calculated for each subject:

10
.(i) = 1 (Fraction;(j) - AvgFraction(j)) 2  (5.1)

3=0

where 4j(i) corresponds to the variance for Subi, Fraction;(j) is the histogram value for Subi

for strength j, and AvgFraction(j) is the mean histogram value for strength j. Figure 5-4 shows

the variance values for all the subject. The horizontal axis is the subject numbers 1 - 40. The

variances are reasonably low and close to each other except for 5 subjects: Subl, Sub3, Sub5,

Sub7, and Sub9.



AvgFraction

0.25 F

0.2 1-

0.0
0 2 4 6 810

Strength Value Chosen By Subjects

a2

5 10 15 20

Subject No

25 30 35

Figure 5-4: Statistics for the distribution of the strengths chosen by all subjects over all test

images

0.15 V

0.1

0.05 I ~ I II
0.18-

0.16-

0.14-

0.12-

0.1

0.08-

0.06-

0.04-

0.02-

0
IL i



Chapter 6

Comparison of Human and

Computer Data

The main objective of the human visual experiment was to provide a goal for the orientation

finding algorithm to achieve.

It is necessary then to put the human visual data in some compatible format so that it can

be compared with the computer data. If there was only one subject, this comparison would be

simple: the orientations chosen by the subject had to only be compared with the orientations

corresponding to the peaks found by the peak finder described in Chapter 4. However, since

there are several subjects there is a spread in the dominant orientations chosen. Also, moving

the red bar to indicate orientations introduces errors since not all subjects are equally careful

to exactly line up the bar with the orientation they see.



6.1 Organization of Human Visual Data

For the first attempt of comparing the data, the orientations chosen by subjects for each test

image will be quantized to 100 bins. Of course, this kind of quantization will result in a 100

uncertainty for the dominant orientation. Considering that on test images such as Figure 5-2

(a) the humans' responses spread about 60, the 100 quantization should not be a significant

loss. When comparing the human picked orientation with the orientation estimated by the

filters this uncertainty should be accounted for. The quantized orientation will be in the range

-854 to 850 with 100 intervals.

The strengths associated with all the chosen orientations which fall in a particular bin will

be summed together. Three variables will be calculated for each test image : 9 hi , ih, and NJ.

The vector 6, for test image I is defined in the following way:

Oh, = [Ohl ,. ., 1, (6.1)

where the Oh, is the jth quantized orientation chosen for test image i and nJ is the total number

of quantized orientations chosen for test image i.

The vector -h, for test image I is defined as:

where 7h, corresponds to the strength associated with quantized orientation Oh, divided by the

maximum strength that could have been given to Oh,. The maximum strength is 10 x the

total number of subjects analyzing test image I. If all the subjects selected the quantized angle



Oh, with strength 10 then -Y', = 1 ; otherwise yh1 < 1. The elements of -h, can be viewed as

the relative strength of each quantized orientation with respect to the maximum strength that

could have been given to that orientation.

Finally, variable NJ is defined to be the number of subjects who specified that the image had

zero dominant orientations divided by the total number of subjects responding to that image.

6.2 Organization of Computer Data

It would be desirable for each test image to organize the histogram data similar to the human

visual data as described in the previous section. Since we have the histogram data over the

original scale and the four steerable pyramid levels, it is important to find a way to combine all

this data. It would be desirable to find a threshold where if the salience measure -y described

in Section 4.2.2 for peaks in the orientation histograms is below the threshold, then the value

represents a non-dominant orientation for the majority of the test images. Since the histogram

values over all levels of the steerable pyramid are normalized, they can be compared to each

other. For the first step of the comparison, the salience measure y of each peak was ranked

from lowest to highest magnitudes across the levels of the pyramid. The first M highest salience

measures and their associated orientations were compared with the human visual data.

The average size of vector 6 h, over all test images is 5. The average number of orientations

picked by subjects over all the images was 1.3. The maximum number of orientations picked

by a subject was 7. Only one subject chose 7 orientations. Therefore M was chosen to be equal

to 5. Since some orientations exist over more than one pyramid level, they were not picked

more than once when choosing the highest M salience measures. It was found by looking at



images where orientations existed in more than one level of the pyramid that an allowance of

a 100 spread insured that orientations were not picked more than once in the ranking. A 100

spread means that in the ranking, an orientation is not included if it is is closer than 10* to the

orientations picked in the other steerable pyramid levels.

Two variables 6c and ic, are defined for each test image I:

I = [c, ... , 0CM]

ic, = [7ci , ... ,7CM) (6.3)

where 6c corresponds the jth orientation whose salience measure denoted by 7c, was included

in the top M measures. A summary of the variables used to represent human and computer

data is shown in Table 6.1. The objective is then to compare the human data with the data

from the computer algorithm, i.e., comparing oh, to 0c, and if, to jc over each test image I.

6.3 Comparison Between Orientations Picked by Humans and

Estimated by Filters

For the initial comparison the cases summarized in Table 6.2 were considered. The new

vector consists of the elements of 01, (orientations humans picked) for which matches were

found in Oc0. For the present, this will be all orientations which are within 10* of those found

by the filters. The vector IM consists of all other elements of 0,. Clearly it is desirable that

6I= 0
1, i.e., that the computer found all the orientations important to the humans. The



Human response data:

hl the vector of orientations chosen by the humans

YhJ the corresponding vector of strengths

NI a measure of how non-directional the image is perceived to be.

Computer algorithm output data:

Table 6.1: Notation for recording human and computer outputs.

Human picked orientations Computer picked orientations

Matched to Oc. Rejected Matched to Oh Rejected

(Yh) (tr c )C

Table 6.2: Notation for comparisons of human and computer outputs.



values in5.7, the salience measures of orientations which were found by the computer algorithm

but did not correspond to ones humans found, should not be considered "good enough". The

mean of yR over all the images was then used for the initial salience threshold, -ye = 0.085 to

decide if a peak is a dominant orientation. A few cases where is important (the humans

found orientations that the computer could not match) are indicated in the "difficult cases" in

Section 6.3.3. The other values above which are in parentheses are not necessary in the results

reported here.

To evaluate the threshold ye, a measure of the "wrong" rejections caused by ye was consid-

ered:

rc = Number of Elements of c<c, (6.4)

It is of course desirable that rc = 0. A rejection measure can also be formed for the human

data to see which human picked orientations with strengths bigger than threshold 'yh were not

picked:

rh = Number of Elements of R> h, (6.5)

where Yh is a (typically very low) value used to ignore some stray low-strength orientations

from the human data.

There is a need for threshold 7h on the strength of the orientations perceived by the hu-

mans. Ideally we would want to match all the dominant orientations perceived by the humans.

However, in some cases, the images were not very directional and the subjects gave very low



values to the orientation they perceived. It is not as important, therefore, to match these orien-

tations as it is to match the strong dominant orientations. Choosing a reasonable threshold is a

problem. Since Yb1 values are relative measures of the strength of the orientation with respect

to the maximum strength it can be given, then Yb can represent a percentage below which the

relative strength is too small. Yh = 0.15 was chosen. In essence choosing this value for the

threshold means that the strength of Yh1 should be at least 15% of the maximum strength that

can be assigned to it.

Measures rc and rh were found for all the test images. Figures 6-1-6-9 show the test im-

ages organized in groups with the same number of dominant orientations corresponding to the

elements in /c greater than the threshold yc. The letter A underneath some of the images

indicates that both rc = 0 and rh = 0 with Y = 0.15 (the number and position of the orien-

tations were matched exactly). The results of this are shown in the first line of Table 6.3. A

total of 59/111 of the images agree 100%.

For the agreements shown in Figures 6-1 and 6-2, except for three cases, more than 50%

(NJ > 0.5) of the subjects indicated the textures to be non-directional. This means that

the particular threshold Yh was effective in separating the clearly dominant orientations from

the weak orientations. For test74, 40% (N7 4 = 0.4) of the subjects indicated no dominant

directions; for test2, 30% (N 2 = 0.3) of the subjects indicated no dominant orientations and for

test40, 40% (N40 = 0.4) indicated no dominant orientations. It is interesting that -the computer

found no dominant orientations for test75 and test66 while the majority of subjects indicated

dominant orientations for these textures, N75 = 0.8 and N66 = 0.75. It appears that there may

be some gestalt grouping occurring among the objects in these images. Looking at the results

in Figures 6-1-6-9 several interesting cases were found.



Number of dominant 0 1 2 3 4

Orientations:

With fixed threshold, 7c: 2-3= 72% = 37% - = 61% = 25% j 67%

With different yo - yc3: 3= 78% -= 41% 1= 79% = 25% i 100%

Gain of A's (agreement) (+): +9 +2 0 0 0

Loss of A's (-): -1 -1 -2 0 0

Table 6.3: Comparison of results using one threshold and using level-dependent thresholds.

Values in ratios are (number of patterns which agree)/(number of patterns computer found with

that orientation). Agreement is measured between human study data and computer algorithm.

Case 1: Effect of yc on choosing peaks at different levels of pyramid For coarse con-

trasty images like test60 and test99 , there were prominent peaks in the orientation histograms

in the third level of the steerable pyramid. Figure 6-10 shows the orientation histograms for

test60 and test99 at the third level of the pyramid. The peaks at 700 for test60 and the peaks

at 10* for test99 did correspond to the orientations picked by humans. However the strength

values given to these orientations by humans were very small yet the salience measures for these

peaks are much larger than yc.

Images like test52 and test17 illustrate the opposite difficulties in having one value for 7c.

The peaks corresponding to orientations 450 and -45" in test52 and test17 are given relatively

large strength values by humans. However their salience measures are much smaller than yc.

Figure 6-11 shows the orientation histogram for test17 at level 1 of the steerable pyramid and



test5 A test9 A

test23 A test27 A

test32 A test33 A

test57 A test58 A

test28 A test29 A

test40 A test4l

test6l A test62 A

Figure 6-1: No dominant orientations were found by the computer in these. An "A" under an
image indicates agreement with the human study data
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Figure 6-2: Figure 6-1 continued.
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test8 test10

test13 A test15

test35 test36

test22 test24 A

test37 A test38 A

test42 test43 A test44 test49

Figure 6-3: One dominant orientation was found by the computer in these.
image indicates agreement with the human study data
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test68 A test69 A

test70 A test7l

test78 A test79

test87 A test9

test 106 A test 1

test72 A test76 test77

test8l test83 A test86

3 A test97 A test99 test105 A
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Figure 6-4: Figure 6-3 continued.
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test16 test18 A

test20 A test2l A test26 A

test47 A test48

test64 A test8O A

test9l test94 A

test34 test46 A

test55 test56 A

test82 A test84 A

test95 A test96 A

Figure 6-5: Two dominant orientations were found by the computer in these. An "A" under
an image indicates agreement with the human study data
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test103 A test104 A

Figure 6-6: Figure 6-5 continued

test65 test85

Figure 6-7: Three dominant orientations were found by the computer in
an image indicates agreement with the human study data

test17 testl02 A

Figure 6-8: Four dominant orientations were found by the
an image indicates agreement with the human study data

these. An "A" under

test101 A

computer in these. An "A" under

test52

Figure 6-9: Five dominant orientations were found by the computer for this image.

test107
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for test52 at level 0 of the steerable pyramid. In the case of test17, the parallel lines along

-450 have a lower contrast than the lines along 450 ; therefore the peak at 450 is less prominent

than the one at -450*. In the case of test52, the spacing between the lines oriented at -450

and 450 and the horizontal line is very small so there is a greater probability that there will

be interference between these lines when estimating the orientations; therefore, the salience

measures for these orientations are much smaller than re.

Several cases like the four described above imply that a fixed threshold value across all levels

of the pyramid will not enable the human results to be closely matched. To avoid choosing

the peaks at the highest level shown in cases like test60 and test99, a higher threshold than Ye

should be chosen for the peaks in the third and second level where the contrasty coarse elements

will be prominent. In the first two levels, there is a problem with spacing of the structures as

in the case of test52 and contrast as in the case of test17. Therefore, a lower threshold than -yc

should be chosen.

To find the new threshold for level 3, we looked at range of the salience measures for some

of the coarse contrasty textures, then picked a value for which the majority of peaks in level

3 either not matching the orientations chosen by humans or being given small strengths by

humans smaller than -yf will not be chosen by the computer. A threshold for level 2 was picked

in the same way. For level 0 and 1 thresholds were picked enabling the majority of peaks

with contrast or spacing problems to be chosen. This threshold picking was repeated several

iterations until the "best balance" was reached between results agreeing with human data and

those that did not agree.
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Figure 6-10: Orientation histograms of test60 and test99.



Orientation Hitogram for D17 level-I
0.02

0.618 1

0.016

6.014

0.012

0.01--

0.006
.614

0.004

0.002-

-100 -0 -60 -40 .20 0 20 40 60 s 10

Orientation (degree)

x104 Orientation Histograrn for D52 level.4
14

12 -

10 -

6 --

-100 -80 -60 -40 .26 0 20 40 60 s0 100

Orientation (degrees)

Figure 6-11: Orientation histograms of test17 and test52.



Case 2: Broad peaks with sharp slopes There were cases where the peak in the orien-

tation histogram was broad but the slopes of the curve were sharp. Figure B-1 in Appendix B

gives an example of this for the orientation histogram of test109 in the level 0 of the pyramid.

The peak at 00 has the same salience measure as the -450 peak for test52 shown in Figure 6-11.

Even though 70% of the subjects indicated that they did not see any dominant orientations in

test109 and they gave the -45* orientation for test52 a large strength. The salience measures

for the two are the same since even though the peak for test109 is much broader than the

-45* peak for test52, it has a bigger value and jy steeper slope. Very broad peaks are usually

caused when there are structures at many orientations. These peaks in our experience did not

coincide with the orientations perceived strongly by humans. To make sure that these peaks

are not considered to be prominent, a weight we, is incorporated in the calculation for y (4.5)

for peaks which are broader than A6j,. Different values for Wb, and AOb, were tried taking in

the consideration the human data . The values 0.10 and 720 were finally chosen for wb, and

A6b, respectively. This weight was incorporated in the salience measure before choosing the

thresholds for the levels of the steerable pyramid.

6.3.1 Results with the Different Thresholds Assigned to the Levels of the

Steerable Pyramid

Figures 6-13 - 6-20 show the Brodatz textures grouped by the computer by their number of

dominant orientations using different thresholds at different levels. The values for the thresholds

-o -yc3 for the pyramid level = 0,1,2, 3 are given in Table 6.4. The number of agreements

in this case vs. the case of a fixed threshold are summarized in Table 6.3. Each column of the



ifo 0.418

iff 0.075

if 2 0.034

iff 0.0098

Table 6.4: Pyramid level-dependent threshold values.

third row indicates how many patterns agreed in row 2 that did not agree in row 1 (+), and

how many patterns disagreed in row 2 that had agreed in row 1 (-). If the thresholds are overly

conservative, one might find all the entries for (+) will be large and all for (-) would be zero.

Intuitively, as the two start to balance, one would expect the thresholds are nearer their critical

points. The following observations were made made when looking at the disagreements:

Observation1: There were many textures which were classified to have one dominant ori-

entation even though people chose two orientations. These textures include: test18, test25,

test5O, test5l, test53, test79, test80, test96. In the case of test79, the horizontal orientation

detected by humans with relative strength 0.23 does not exist in the orientation histogram.

For the other test images, the orientation chosen by humans has a corresponding peak in the

orientation histogram but this peak is less than 20% of the other dominant peak. In the case of

test5O and test51, humans picked the horizontal orientation with a relative strength of 0.22 and

0.27 respectively but the peak associated with this orientation is less than 1% of the value of

the vertical orientation. It seems that people can detect the low contrast horizontal line much



better than the computer. Next section shows that incorporating the contrast normalized ori-

entation histograms described in Section 4.3.4 in the peak detection can allow many of these

small peaks to be picked up by the computer.

Observation2: The vertical orientation in test49 was chosen by humans with a relative

strength of 0.32 and the orientation of one piece of grass in test15 was chosen with a relative

strength of 0.58. In the orientation histogram for test15, the vertical orientation is less than

0.1% of the peak corresponding to the horizontal lines. In the orientation histogram of test15

the peak corresponding to the orientation of the piece of grass was less than 6% of the values

of the peak corresponding to the direction of surrounding grass. Since both the piece of grass

in test15 and the vertical lines in test49 cover only a small area, they can not be picked up

by a filtering method over the entire area. However, they will be prominent if the orientation

finding algorithm is performed in a smaller region.

Observation3: For the lizard skin patterns test22 and test35, there were three human

picked orientations with relative strengths much bigger than -y. In the orientation histogram

of test22 at level 0, there are three peaks but two of them are very broad and did not even look

visually prominent as seen in Figure 6-12. For test36, there were two human picked orientations

with relative strengths bigger than 'yb; however looking at the orientation histogram of test36

in Figure 6-12, the peak near -45* is very broad and does not look as prominent as the peak

at 0*. If the threshold is set so that the peak -45* is chosen, then there will be a number of

broad peaks in other patterns which will be picked corresponding to no dominant orientation.

One of the reasons that some of the peaks are not very prominent for textures (and perhaps

the key reason) is due to their non-homogeneity. The humans may focus attention on a smaller

100



region which is homogeneous. Another problem can be that in a local isotropic region, these

textures do not look very directional; however a much narrower and longer filter might be able

to pick up the orientations.

Observation4: Very contrasty textures like test98, test107 and test108 cause the filter out-

puts to be big, leading to prominent peaks in the histograms even though 50% of the subjects

chose test108 to be non-directional, 70% chose test98 to be non-directional and 80% chose

test107 to be non-directional. Most of the high contrast coarse textures with no perceptually

dominant orientation were in agreement with computer algorithm because of the higher thresh-

olds at the last two levels of the pyramid. However, in the case of test98, test107 and test108

they had prominent peaks in the level 0 of the steerable pyramid where the threshold is chosen

to be the smallest; hence the algorithm assigned them one dominant orientation.

Subjects found test42 which is made up of a complicated pattern having many different

orientations somewhat directional (60 % chose at least one orientation for it) but gave very

small relative strengths. However because of high contrast nature of the image, there is a

prominent peak which does not correspond to any of the orientations chosen by the subjects.

For textures like this because of the complicated pattern and the high contrast, the filter outputs

may be large leading to peaks which are not perceptually prominent. Images like test42 are

considered perhaps too directional for this low-level method.

For some of the disagreements like test35 different shaped filters might have to be used.

However, it would be interesting to see whether incorporating the contrast normalized orienta-

tion histogram effects the results in any way.
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Orientation Histogram level=0 for D22
0.025

0.02-

0.015-
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0.005
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-100 -80 -60 -40 -20 0 20 40 60 80 100

Orientation (degrees)

Orientation Histogram level=0 for D36

-100 -80 -60 -40 -20 0 20 40 60 so 100

Orientation (degrees)

Figure 6-12: Orientation histograms for test22 and test36.
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test2 A test4 A

test23 A test27 A

test3l test32 A

test28 A test29 A

test33 A test 39 A

test4l A test54 A test57 A test58 A test60 A

Figure 6-13: No dominant orientations were found by the computer in these. An "A" under an
image indicates agreement with the human study data
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test63 A test66

test7l test73 A

test88 test89 A

test99 A test100 A

test74 A test75 test86 A

test90 test9l A

testl09 A

test92

test1lO A test1ll A

test112 A

Figure 6-14: Figure 6-13 continued.
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test8 testlO

test13 A test15

test25 test35

test42

test 18 test22 test24 A

test36 test37 A

test43 A test44

test38 A

test48 A test49

test5O test5l test53 test59 A test68 A

Figure 6-15: One dominant orientation was found by the computer in these. An "A" under an
image indicates agreement with the human study data

105

test6 test7 test12 At



Number of dominant 0 1 2 3 4

orientations:

With different Yeo - Te3 = 78% j- = 41% '5 = 79% 4 = 25% 2 = 100%

No contrast normalization

With different YO - -43 2- = 78% 18 = 50% 21 = 78% 1 = 25% 2 = 100%
41 3274 2

Contrast Normalized

Gain of A's (agreement) (+): 0 0 +6 0 0

Loss of A's (-): 0 0 0 0 0

Table 6.5: Comparison of results using different thresholds YeO and ci without contrast nor-

malization and without contrast normalization. Values in ratios are (number of patterns which

agree)/(number of patterns computer found with that orientation). Agreement is measured

between human study data and computer algorithm.

6.3.2 Results from Incorporating the Contrast Normalized Histogram

A summary of the improved results obtained using the multiple thresholds above, and also

compensating for contrast, are given in Table 6.6.

For initial analysis, only the contrast normalized histograms of level 0 were incorporated.

Using the contrast normalized histogram is tricky since it greatly boosts low contrast structures

which may or may not be very directional; therefore it should be used selectively. The rule we

used was: At least two peaks must correspond between the original histogram at level 0 and the

contrast normalized histogram and one of the peaks must have a salience measure above the

threshold and the other peak a salience measure below the threshold. If the condition is true

and the ratio of the peaks values is less than 20% in the original histogram and more than 80%

in the contrast normalized histogram then the weak peak is chosen as a dominant orientation.
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test 69 A test70 A

test78 A test79

test87 A

test80 test8l

test93 A test96

testlO5 A test106 A

test97A test98

test107 testlO8

Figure 6-16: Figure 6-15 continued.
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test1 A test1l A

test2l A test26 A

test55 test56 A

test94 A test95 A

test34 test46 A test47 A

test64 A test82 A

test103 A test104 A

Figure 6-17: Two dominant orientations were found by the computer in these. An "A" under
an image indicates agreement with the human study data
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test65 test85

Figure 6-18: Three dominant orientations were found by the computer in these. An "A" under
an image indicates agreement with the human study data

testlO2 A testlOl A

Figure 6-19: Four dominant orientations were found by the computer in these. An "A" under
an image indicates agreement with the human study data

test52

Figure 6-20: Five dominant orientations were found by the computer for this image.
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test12 A test13 A

test22 test24 A

test38 A test42

test49 test59 A

test35 test36

test43 A test44

test68 A test69 A

Figure 6-21: One dominant orientation was found by the computer in these. An "A" under an
image indicates agreement with the human study data
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test72 A test76

test 80 test8l

test97 A test98

test83 A test87 A

test105A tes106 A

testl08

Figure 6-22: Figure 6-21 continued.
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testlO test1l A

test16 test18 A

test34

test20 A test2l A

test46 A test47 A

test5l A test53 A test55 test56 A test64 A

Figure 6-23: Two dominant orientations were found by the computer in these. An "A" under
an image indicates agreement with the human study data
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test94 A test95 A

test103 A test104 A

Figure 6-24: Figure 6-23 continued.

Table 6.6: Table summarizing current results
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Agree in at Agree in Agree in total Agree in all
least biggest number of dominant
one dominant dominant dominant orientations
orientation orientation orientations and
and and their positions
its position its position

No Contrast 95 86 70 68
Normalization
Level 0 Contrast 95 86 76 74
Normalized

I

test82 A test84 A test96 A



This condition was formulated by examining all the Brodatz textures.

Incorporating the contrast normalization on all images only changed the computer groupings

of the test images with one and two dominant orientations shown in Figures 6-21, 6-22, 6-23 and

6-24. The number of agreements in this case vs. the case of a fixed threshold are summarized

in Table 6.5. The following textures were changed to "A"'s by changing the contrast: test18,

test25, test5O, test52, test53, and test96. In terms of the categories for the different numbers of

orientations, the following conclusions were made: the net number of agreements for the "two

orientation" case increased, number of disagreements for the "one orientation" case decreased

and the rest of the cases remained the same. Overall, the use of contrast and the above condition

only increased agreement between the computer and human results.

The contrast normalization helped boost textures like test5l and test52 where there were

two orientations, one corresponding to a prominent peak in the histogram and the other cor-

responding to a very small peak. It is interesting that the contrast normalization boosted the

small peaks which are perceptually noticeable to the subjects.

There are several weaknesses with using the present way of incorporating the contrast

normalized histogram:

1. If there is only one low-contrast orientation in the texture then it will not be picked up

using this method.

2. So far only the relative values of the contrast normalized histogram have been considered

and not the shapes of its peaks. It could happen that there are two peaks dose in value

but one of the peaks does not look very prominent (too broad). In this case the peak is

chosen to be prominent even though perceptually it might not be.
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3. Using the contrast normalized histogram for higher levels of the steerable pyramid may

cause problems since these levels are more effected by high contrast coarse textures. For

these cases, the contrast normalization may need to be adapted to the level just as the

salience thresholds were found to work better if they were level-dependent.

6.3.3 Cases Where There was no Match between the Human and Computer

Data

This section investigates the 111-95 = 16 textures that did not agree in any dominant orienta-

tions. These are shown in Figures 6-25 and 6-26. Beside each image in the figures the following

information is given:

1. How many orientations were chosen by human?

2. How many orientations were chosen by computer?

3. What were the orientations chosen by humans (the relative strength indicated in brack-

ets)?

4. Did any orientations found by filters match with the human picked orientations? If there

is a match then the salience measure -y of the peak corresponding to the orientation is

shown in brackets.

5. Speculation about the problem.

Although a set of size 16 is small considering the large variety of data in the original 111, and

the fact that the results here are only for the initial round of optimization, there are still some

significant problems raised by this set of images. One of these problems is the filter shape and
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size. In images such as test19 and test77, the orientation information is quite fine, and should

be detected at level 0 of the pyramid, the finest level. However, in neither case do the filters

detect a significant peak at this level. The probable cause here is that the orientation tuning

on the filters is not fine enough, i.e., the filter shape should be more narrow, perhaps achievable

by using higher Gaussian derivatives.

Several of these patterns also contain some evidence for higher-level processes than merely

orientation detection. In particular there is evidence for some amount of grouping of objects

(test66, test75), segmentation of objects (test4l, test88, test90) and perhaps also of object

identification with shadow removal (test31). The latter phenomenon may also be caused by

some semantic interpretation, although this is a difficult cause to verify.

The salience measure for test7 in level 3 of the pyramid is quite high (1.5094) because test7

is very coarse and contrasty. Raising the threshold yc to this salience measure means that some

orientations may no longer be picked up such as the 310 orientation in test13 which was given

a high strength by humans. The problems with images test42, test98, test107 and test108 were

discussed above in Observation4.

The curves in image test7l are visually prominent: humans picked the orientations of the

two edges of the curves. However, their contribution to the orientation histogram is small since

they do not cover a large area and they are not very high contrast. The problem with image

test92 can be due to low contrast. Incorporating the contrast normalization for the higher levels

of the pyramid may allow the perceived orientations in test7l and test92 to be picked up.

As discussed in Section 4.1.1, multiplying the image with a disc may hide certain structures

in the corners of the original image. This problem occurs for test44. There are high contrast

lines in the lower right hand corner of the square image which were not visible to the subjects.
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Many of the problems discussed appear to be fixable by improvements to the contrast

handling of the algorithm. These improvements, as well as subsequent optimization of the

agreement between the computer and human results are part of our continuing research.
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Humans: 2
Computer: 0
HO = -50 (0.19), 850
(0.52)
Ce: levelO (0.0051), levelO
(0.0003)
Speculation: filters

Humans: 1
Computer: 0
HO = -550 (0.24)

Ce: levell (0.0018)
Speculation: grouping

Humans: 2
Computer: 0
HO = -750 (0.42), 350

(0.21)
CO: level2 (0.034), (0.0143)
Speculation: contrast

test3l

test66

Humans: 1
Computer: 0
HO = -65* (0.43)

CO: levell (0.00231)
Speculation: semantic

Humans: 2
Computer: 0
HO = -55* (0.21), 750 (0.27)
CO: levell (0.0123), level3 (0.0017)
Speculation: grouping

Humans: 1
Computer: 0
HO = -450 (0.22)

Ce: level2 (0.0031)
Speculation: grouping

test75

Humans: 2
Computer: 1
HO = -650 (0.51), - 50

(0.445)
CO: level2 (0.0001), level3
(0.0452)
Speculation: filters

Humans: 1
Computer: 0
HO = 350 (0.29)

CO: level2 (0.0011)
Speculation: grouping

test88

Humans: 1
Computer: 0
HO = 25* (0.28)
Ce: level2 (0.0460)
Speculation: filters

test90

Humans: 1
Computer: 0
HO = 85* (0.27)
Ce: level2 (0.0129)
Speculation: contrast

test92

Figure 6-25: "Difficult" images where the computer and human did not agree on any of the
dominant orientations. Here the humans picked more orientations than the computer.
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Humans: 0
Computer: 1
CO = 77*, level=3 (1.5094)
He: (0.10)
Speculation: contrast

Humans: 0
Computer: 1
CO = -45*, level=0 (9.6)

HO: no match
Speculation: Missing informa-
tion in corner

Humans: 0
Computer: 1
CO = -83*, level=2 (0.2003)
HO: (0.09)
Speculation: contrast

test42

test98

Humans: 0
Computer: 1
CO = 830, level=0 (0.0108)
HO: no match
Speculation: contrast

Humans: 0
Computer: 1
CO = -53*, level=0 (0.0107)
HO: (0.02)
Speculation: contrast

Humans: 0
Computer: 1
CO = 11*, level=0 (0.0156)
HO: (0.09)
Speculation: contrast

test108

Figure 6-26: More "difficult" images where the computer and human did not agree on any of
the dominant orientations. Here the computer picked more orientations than the humans.
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Chapter 7

Conclusion And Future Goals

The results in Chapter 6 are very encouraging. Using different thresholds for the four levels

of the steerable pyramid is sufficient to detect all the perceptually dominant orientations of 68

out of 111 textured images without even using contrast normalization. These orientations were

the same chosen by 40 human subjects. Using contrast normalization brings this number up

to 74. The algorithm is able to detect at least one perceptually dominant orientation chosen

by the 40 human subjects in 95 out of the 111 textured images. These numbers are impressive

considering that

1. There were 111 different natural textures (vs. a typical small 10-20 size set, and vs.

common use of synthetic images).

2. Some of the textures were not homogeneous.

3. The semantic meaning of the textures was not removed.

Nevertheless, there is still a lot of room for improvement. More research is warranted in the

following areas.
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7.1 Picking Better Thresholds

There are some cases where a small adjustment in the thresholds will enable the computer to

pick out a relevant peak. As the difficult cases are studied more and their salience measures

are known, the thresholds might be able to be changed slightly enabling these cases to be

accepted without causing further disagreements. Also there were some disagreements for which

the human data threshold th was relatively small meaning that the subjects did not find those

orientations to be very strong. Perhaps a lower th will reduce the number of disagreements

without causing very strongly perceivable orientations to be ignored by the computer.

7.2 Filters of Different Shapes

There were cases like test22 and test36 where a narrower filter could have picked out the orien-

tations chosen by humans. Malik and Perona in [10] use bar-like filters to pick out orientations.

It would be interesting to see whether filters like this can be more effective in picking out

finer orientations without losing the ones the steerable filters have found. Higher orders of the

derivatives of Gaussians with their finer angular tuning may also be explored for picking out

orientations of closely spaced structures like in test52 for which the current algorithm picked 5

orientations and humans picked four. Unfortunately, the more filters are used for orientation

picking, the harder it is to incorporate all their outputs for decision making.

7.3 Contrast Normalization

The results of using the contrast normalization in chapter 6 are very interesting. It appears

that using the contrast normalization enables the computer to pick out orientations due to low
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contrast structures like test5l whose contribution in the orientation histogram is very small.

These orientations are perceived by humans although they are given smaller strengths than

more contrasty or bigger structures. Presently it is not known when the contrast normalization

can cause false decisions to be made since the requirements for using the contrast normalization

technique were very strict in chapter 6. More research needs to be directed in this area to find

the limitations of this technique and also determine how it may effect the steerability of the

filters.

7.4 Testing the Algorithm on Different Test Images

It is important to know whether the choice of the thresholds is restricted to the test images

used in this thesis or will it be "universal" in its effectiveness for other images. This algorithm

should then be used on a different database and the effectiveness of the thresholds be confirmed.
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Appendix A

Teaser Images

Figure A-1(a) shows horizontal lines with a vertical break between them. It would be interesting

to see whether most subjects perceived the break's vertical orientation and also to see whether

the filters would detect this orientation. Figure A-1(b) is the same as Figure A-1(a) except

that the distance between the breaks is closer. The goal here is to see whether the width of the

break changes the strength of the perception of the vertically oriented line, and whether the

current sized filters would pick this break at such a small width. Figures A-1(c) and A-1(d)

are similar to Figures A-1(a) and A-1(b) except that the lines are no longer horizontal and the

break is no longer vertical. In Figure A-1(e) there can be a perception of horizontal orientation

even though there is no horizontal lines. Again it is interesting to see whether people and filters

pick up this horizontal perception. Figure A-1(f) illustrates orientations at two different scales.

Figure A-2 is the famous Z6lliner illusion. The filters detect those lines to be parallel. The

illusion might not work since the red bar aligns on top one of the lines which reduces the effect.

Also since the perceived orientations are slightly different, with the inaccuracies which has to
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Figure A-2: Teaser test image known as the Z6lliner illusion shown to subjects.

be allowed to the aligning of red bar, they might not be detected. In future work, the results

of the orientation algorithm on these teaser images will be compared with the human results.
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Appendix B

Histogram Peak Finding: Case 2

As described in Chapter 4, the maximum and minimum points in dH corresponding to the

inflection points of H, are used for the calculation of Vdig and Hd, in (4.5). It would be very

simple if for each pair of maximum and minimum points there was a zero crossing signifying

the presence of a peak. However, this is not the case all the time. When the slope in the H,

changes concave to convex or vice versa, there will be a maximum and a minimum point in dH.

However, these points may not have a zero crossing between them. How should these points be

incorporated?

Initially, these points were ignored and only maximum and minimum pairs in dH where

the maximum was bigger than zero and the minimum below zero were used. For very sharp

and narrow peaks, like Pi in Figure 4-4, using the maximum and minimum on either side of a

zero-crossing gave a high salience measure. A high salience measure is desirable for sharp and

narrow peaks.

However, for broad peaks like P in Figure B-1 corresponding to D109 (look at test109 in

Figure 6-14) , the distance between the maximum and minimum on either side of the zero-
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crossing does not indicate the broadness of the peak (70% of human subjects tested on D109

considered it to be non-directional). In Figure B-1, using the distance W2 for Edggt gives a

smaller salience measure for P1 than Wd1. Wdi is the Hd,t if the maximum and minimum pair

(max2, min2) were chosen and Wd2 is the Hdt if the maximum and minimum pair (max1,

min3) were chosen.

Which maximum and minimum pair in dH should then be used to calculate the Vd,t and

Hdg for the salience measure? The criteria for choosing the maximum and minimum pair at

locations (maXD, minD) in dH were found by looking at the different types of peaks in the

orientation histograms. The pair best characterizing the shape of the peaks were chosen. The

results of the human visual test were used to verify the criteria developed for picking maximum

and minimum at locations mazD and minj.

The following steps were followed in the algorithm to find the desired maximum and mini-

mum points for the calculation of the salience measure of the peaks in H,. Note that the steps

are described in pseudo-code.

1. Find all the maximum and minimum points in dH.

2. Find the most negative minimum and denote its location minz. Location minz is in

degrees.

3. Find the first positive maximum to the right of location minz. The location of this

maximum will be denoted maxD.

4. Check the minimum to the right of location maxD and denote its location minD. If

dH(minD) < 0 then a zero-crossing is found. Label this zero-crossing as a peak. Go to

step 6. Else, go to step 5.
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5. Check the next maximum and minimum pair in dH. Denote their locations (maXN, minN)-

Consider the following case.

Case A If dH(maXD) < 0.4 dH(maXN) then choose maximum at maXN instead of cur-

rent maxD : maxD = maxN.

If dH(minN) < 0 then minD = minN. Go to step 6. Else repeat step 5.

6. Check the next maximum and minimum pair. Denote their locations (maxN, minN). If

dH(maxN) > 0 then go to step 7. Else consider the following case:

Case B If IdH(minN) - dH(minD) i 0.10 dH(minD) then minD = minN.

If Case B is not true then consider Case C:

Case C If IdH(minN)t > 2.5 |dH(minD)I then minD = minN. If Case B and Case C

not true then consider Case D:

Case D If dH(minN) > 0.4 dH(minD) and dH(minN) < 0.2 dH(minZ). The term

0.2 dH(minz) insures that the minimum is not too close to zero.

If a minimum satisfies the above cases then it will be considered instead of the minimum

at the current minD.

Repeat step 6.

7. H it = maxD - minD

Vdist = dH(maxD) - dH(minD)

maxD = maXN

Goto step 4.
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For an illustration, one iteration of steps 1-7 was done for the orientation histogram in Figure B-

1. The positions minz, maxD, min), maXN and minN corresponding to the maximums and

minimums in dH checked in the first iteration are shown in Figure B-1.

Example for Case A: In Figure B-2, the maximum and minimum points in dH are checked

following the steps mentioned above. The maximum maxi is reached and its position assigned

to mazD. Step 5 is followed with the position of max2 corresponding to maxN. Since max2

satisfies Case A, it will be chosen over max1 resulting in a smaller Hd;,t and a bigger Vdit for

P3. Therefore, the salience measure for P will be larger using maxl instead of max2. A higher

salience measure is verified by the fact the subjects gave a high strength to the orientation

corresponding to P1 (look at test13 in Figure 6-15).

Example for Case B: In Figure B-3, the maximum and minimum points in dH are checked

following the steps mentioned above. The minimum mini is reached and it position assigned to

minD. Following step 6, since the maximum to the right of mini is negative, min2 is considered

for the three cases. The value of min2 satisfies Case B and min2 is chosen over mini. Choosing

min2 over mini results in a bigger Hd, and a smaller Vdig5 for P1. Therefore, the salience

measure will be smaller for P1. A smaller salience measure for Pi is verified by the fact that

80% of the subjects considered D73 to be non-directional (look at test73 in Figure 6-14).

Example for Case C: In Figure B-4, the maximum and minimum points in dH are checked

following the steps mentioned above. The minimum mini is reached and its position assigned

to minD. Following step 6, since the maximum to the right of mini is still negative, min2 will

be considered for the three cases. The value of min2 satisfies Case C and min2 is chosen over
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mini. Choosing min2 over mini gives a better characterization of the sharpness and the width

of the P2.

Example for Case D: In Figure B-5, the maximum and minimum points in dH were checked

following the steps mentioned above. The minimum mini is reached and its position assigned

to minD. Following step 6, since the maximum before min2 is still negative, min2 is considered

for the three cases. The value of min2 satisfies Case D and min2 is chosen over mini. Choosing

min2 over mini results in a bigger Hdit and a smaller Vdit. Therefore, the salience measure

for P1 will be smaller. A smaller salience measure is verified by the fact that 55% of subjects

consider D100 to be non-directional (look at testi00 in Figure 6-14).

For broad peaks, it would have been better if the value of minN for Case D did not have to

be smaller than 0.2 dH(minz). For example in Figure B-1, if the value of min4 did not have

to be smaller than 0.2 times the value of min3 (position of min3 equals minz) then it would

be chosen over min3. Choosing min4 would result in a bigger Hd;,t and P would then have

a smaller salience measure . However, for peaks whose salience value should be big (subjects

chose the orientations of these peaks with high strength), choosing a minimum dose to zero,

results in a high Hdgt value. The salience measure will then be smaller for these peaks. It

was found that an effective way to ignore broad peaks without reducing the salience measure

of "desired" peaks was to incorporate a weighting factor we discussed in Section 6.3.
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Figure B-1: Orientation histogram and the corresponding graph of dH for D109
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Orientation Histogram for D13 level=3
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Figure B-2: Orientation histogram and the corresponding graph of dH for D13
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Orientation Histogram D73 level=0
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Figure B-3: Orientation histogram and the corresponding graph of dH for D73
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Figure B-4: Orientation histogram and the corresponding graph of dH for D46
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Figure B-5: Orientation histogram and the corresponding graph of dH for D100
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