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Abstract

During most of the twentieth century, direct study of individual polymer molecules was impossible

due to their small size. Therefore, polymers were typically studied in bulk solutions, and their

behavior and interactions had to be understood throigh average bulk property imeasuremnents.

Because the scale of most industrial applications greatly exceeded the size of these molecules, this

level of analysis was satisfactory. In the last twenty years, however, the appearance of microfluidic

devices, whose smallest length scales are comparable to the size of a polymer molecule, has offered

ways to visually study the behavior of individual polymer molecules and made possible new and

exciting applications that exploit the precise control afforded by the small size of these devices.

One such application is gene mapping, which extracts, at a. coarse level, the information embed-

ded in the base pair sequence of genomic DNA. This technology relies on the ability to maiplulate

single DNA molecules in order to perform such tasks as separating DNA based oi length and
stretching DNA away from its entropically coiled equilibrium state. Recently, many novel methods

have been proposed to accomplish these tasks using microfabricated devices, and munch experimen-

tal work has been focused oi identifying and characterizing the underlying physics governing these

devices. Current understanding, however, is greatly hampered by the fact that experiments can

only provide limited information about the behavior of DNA molecules (e.g., they are unable to

resolve details on small time and length scales). Therefore, simmulations are an invaluable tool in

the study of DNA behavior in microfiuidic devices by complementing and guiding experimental

investigations.
In this thesis, we present Brownian Dynamics simulations of the single molecule behavior of DNA

in microfluidic devices related to gene mapping. In particular, we have considered the use of a post

array to "precondition" the configuration of molecules for siibsequent stretching in a contraction

and compared our results to previous experiments. We found good qualitative agreement between

experiments and simulations for DNA behavior in the post array, but our simulations consistently

overpredicted the final stretch of molecules at the end of the contraction, which we attributed to
nonlinear electrokinetic effects. We also investigate the electrophoretic collision of a DNA molecule

with a. large, ideally conducting post. Field-induced compression was shown to play a critical role in

the escape process of a molecule trapped on the post surface, and an extensive theoretical analysis

is performed, describing both the local field-induced comnpression and the larger collision problem.

Finally, we study the relaxation process of an initially stretched molecule in slitlike confinement.

We present the first simulation results that exhibit two distinct relaxation times in the linear force

regime, as previomsly reported in recent experiments. Our analysis is focuised oi the experimentally
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intccessible dynamics in the transverse directions, particularly at short times and on small length
scales. Comparisons to the )re(lictioIs of a recent mechanistic model of confined relaxation were
found to be satisfactory.

Thesis Supervisor: Patrick S. Doyle
Title: Doherty Associate Professor of Chemical Engineering
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CHAPTER 1

Introduction

1.1 Motivation

1.1.1 Gene Mapping

The human genome contains most of the details required both to construct a clfomplete individual

and to maintain his or her continuous functioning for a lifetime. Accordingly, the amount of

information stored within the sequence of the constituent base pairs is massive and complex. It

specifies such mundane traits as hair and eye color, while also defining more significant features,

including an individual's susceptibility to myriad maladies, such as cancer and disease. Indeed, it

also encodes the body's response to these same afflictions.

Consequently, a great deal of effort has been expended to determine the exact sequence of

the entire hunnan genome [1]. This considerably detailed information is then used by researchers

for varied purposes, from locating particular genes within the vast sequence, to studying how the

genetic material is regulated and interacts with its cellular environment. However, many diverse

applications do not require fine detail about the exact sequence of individual base pairs, inchuding

gene therapy and medical diagnostics, identification and crime investigation, and even national

defense programs. In these cases, performing DNA sequencing is excessive, aiid gene "mapping"

techniques, which are less expeisive and provide lower resolution than sequencing, are sufficient.

DNA or gene mapping involves determining the location of different short base pair sequences or

genes relative to one another. This coarser view of the genome is faster and cheaper to obtain and
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more accessible to analysis for the aforementioned applications. Most mapping techniques currently
rely on indirect methods of obtaining these relative locations, typically by restriction napping [2].
In this technique, restriction enzymes cut DNA at specific sequences to form short strands of many
different lengths which are then length-separated, often by gel electrophoresis. By using multiple
sets of restriction enzymes, the various band patterns that are obtained can be interpreted to
construct a map of the genome. This technique, however, has several iajor drawbacks. Firstly,
it often reqires numerous sets of restriction enzymes and many separations to obtain the correct
mapping, and secondly, separations, particularly gel electrophoresis, are time consuming and have
upper limits on the length of the strands that can be resolved [3]. Therefore, the development of a
method to rapidly map large, genomic length DNA molecules is highly desirable.

Two different paths have been followed to attack this problem. The first is to optinize methods
that rely upon indirect analysis by devising novel separation techniques that are faster and and
able to separation large DNA molecules. The second route is to engineer a direct analysis method
that completely bypasses the need to perforn separations.

Indirect Analysis: Separation1s

Indirect gene mapping techniques rely upon the ability to separate fragments of DNA based upon
their length. This has traditionally been accomplished through gel electrophoresis, where the gel
network acts as a "sieve." However, gel electrophoresis is not possible for luany of the large DNA
strands seen in modern gene mapping. This is because the pore size of the gel cannot be imade
large enough to efficiently separate large molecules without compromising the integrity of the gel.
Therefore, there has been considerable interest in developing new techniques that allow for the
rapid separation of large DNA strands.

Many studies have relied upon the same basic sieving mechanism found in gel electrophoresis but
have exploited miicrofluidics to design devices with "artificial pores" whose size and geometry can
be chosen arbitrarily and precisely controlled by microfabrication techniques. Volkumuth and Austin

[4] pioneered this technique by electrophoresing DNA through an array of mnicrofabricated posts. It
was observed that molecules tended to "hook" on the posts leading to a size-dependent unhooking
process [5, 6, 7, 8, 9, 10]. Arrays of variously shaped obstacles have also been used to create
diffusion arrays [11, 12, 13] where small molecules with high diffusivities tend to follow tortuous

paths through the array while large molecules typically move quickly through the channels between
the obstacles. Confinement effects have also been exploited for separation purposes. Nanochannels
with varying cross-sections have been constructed to create entropic traps [14, 15, 16] which have
an entropic energy barrier to move from regious of wide cross-section to those with a narrow cross-
section. Nanopores have also been used for separations by expkoiting the entropic recoil [17, 18, 19]
of a molecule that is partially inserted in a nanopore. Some studies have not relied upon device
geometries to achieve separation. For example, one technique attaches uncharged molecules to
the end of DNA to act as a sort of "parachute" during electrophoresis leading to size-dependent
mobility [20]. All of the separation techniques, however, tend to suffer from limited resolution,

particularly for large molecules and when operated at high speeds.

Direct Analysis: Stretching

Direct analysis techniques attempt to literally "read off" the location of genes and specific base
sequences directly from a single molecule of intact DNA, thereby circumventing the separation prob-
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len entirely. The most promising example of this tecihnique is called direct linear analysis (DLA)

[2]. In this method, a DNA molecule is labeled with fluorescent tags (often modified biomolecules)

that attach to specific sequences of interest. The DNA molecule is then stretched into a straight

line and driven past a detector which uses optical sensors to measure the physical distance between

the fluorescent tags along the DNA backbone (see Figure 1.1). This provides a simple, direct, and

easily analyzed physical map of the molecule. The advantages to this technique are that it is fast,
it works for large DNA strands, and can easily be automated in a microfluidic device.

Fig. 1.1: Visualization of a Direct Linear Analysis (DLA) device. The hyper-

bolic contraction creates an elongational flow to stretch the DNA (shown in red).

and the array of posts pre-conditions the chain configurations before it enters

the contraction to be analyzed by a sensor (shown in blue).

On the other hand, a major difficulty with DLA currently is overcoming the entropic tendency of

polymeric DNA to adopt a coiled configuration which is unsuitable for optical analysis. Therefore,
developing effective methods to consistently stretch DNA molecules close to their full contour

length in a continuous and uniform manner is paramount to the success of DLA devices. It has

been shown that electric field gradients can accomplish this task [21, 22], and stretching DNA in

electric fields is similar to stretching polymers in hydrodynamic flow fields [23]. Electric fields,
however, are better suited to stretch DNA in microfluidic devices: they are simple to apply and

are purely elongational. Even so, stretching DNA with field gradients suffers from a phenomenon

termed "molecular individualism" [24]. This refers to the nonuniform way a population molecules

stretches due to the random nature of their initial configurations. This is a significant obstacle that

must be overcome since DLA requires a uniformly stretched population of molecules to accurately

determine the distance between the tags.

1.1.2 Polymer Physics of Confinement

During much of the twentieth century, the scale of most industrial applications greatly exceeded the

size of individual polymer molecules. This meant that the molecules were never physically confined

and any fields or forces applied to the molecules looked homogeneous on the length scale of a polymer

chain [25]. Therefore, a great deal of research examining bulk properties and homogeneous flow

fields was completed. In the last twenty years, however, the appearance of microfluidic devices,

whose smallest length scales are typically near the size of the polymer, has created a need to study

... ...... ...... .
.. .................. .. ........ .. ......
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polymer behavior in confined environments and in ion-hologeneous flow fields that vary over the
length scale of the polymer [26, 27, 21]. Already, there has been theoretical work done on the
behavior of polymers in confinement [28, 29]; however, experiments have only recently begin to
catch up with the theory [30, 31, 32]. An understanding of the equilibrium properties and the
dynamics of confined polymers is fundamentally important to the rational design of futiire novel
devices. It will allow researchers to exploit the advantages of confinement, while avoiding and
overcoming the obstacles it presents.

1.2 Objectives

The goal of this research is to develop an understanding of the behavior of DNA in microfluidic de-
vices that have potential application in gene mIappimg. In particular, we are interested in studying
the effects of confined environments and small length scale device features (e.g., microfabricated
posts) on the properties and dynamics of DNA. We examine how post arrays can effect confor-
mational changes in a population of molecumles, and we consider two types of slitlike onfinement:
physical confinement imposed on a molecule by the channel geometry, and field-induced confinenient
when a molecule is pushed against a flat surface by a transverse field. We attack these problems
with a combination of heavy theory and Brownian Dynamics simulations. The following studies
will be presented:

* Conformational preconditioning by a mnicrofabricated array of posts;

* Electrophoretic collisions of DNA molecules with a large, ideally coionducting post;

* Relaxation of an initially stretched DNA molecule in slitlike confinement.

1.3 Overview of Results

In Chapter 2, we present a primer oi general polymer physics that will be usefnl to understanding
our studies. In addition, some of the important work in the field is reviewed along with an introduc-
tion to our simulation technique. Chapter 3 presents the results of a study on using collisions with
an array of posts to conformationally precondition DNA molecules for subsequent stretching in a
contraction. This creates a more uniform distribution for the stretch of the polymers in the array
during gene mapping analysis. Chapter 4 lays out the first study to consider the electrophoretic
collision of a. DNA molecule with a conducting post. These collisions are qualitatively different from
those with insulating posts, which have been studied extensively. The phenmiiiei)Iin of field-induced
confinement is also exhaustively studied. Chapter 5 investigates the relaxation of DNA in slitlike
confiemnemnt. The findings are compared to the predictions of a recently developed mechanistic
model, and good agreement is foumind. Finally, in Chapeter 6, the results of our research are briefly
sunnarized and their inpact assessed. We also discuss the future directions suggested by our work.



CHAPTER 2

Background

In this chapter, we present the much of the basic background to understand the work contained in

this thesis. To begin, we present a general review of the most importanlt physics that affects polymer

dyniamics in confinement. We then offer a survey of some of the literature surrounding specific

problems studied in this work. Finally, we consider the idea of coarse-graining and mesoscopic
simulation techniques that will be used throughout this thesis.

2.1 General Polymer Physics

A polymer is a large molecule consisting of many, often repeating, elementary uits, called monomers.

These chemical subunits are connected together via covalent bonds to form a long chain that can

adopt myriad conformations. This diversity of possible spatial arrangements coifers upon polymers

many of their unique properties. In fact, polymers have beeni studied with interest because their

global structure call be profomidly affected by the local behavior of its constituent building blocks,

inchmding the flexibility of the chain, interactions between monomers along the chain, and interac-

tions of the chain with its surroumidings. This provides the scieitist or engineer with many ways

to maipulate polymers and fime-tume their equilibrium and dynamic properties to the situation at

hand. However, in order to this iii a rational manner, a basic understanding of the properties of

polymers at their most fundamental level must be established.
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In this section, we pre(sent the... general polymer physics including equilibriun properties and
dynamic behavior. We present several physical models used to study and represent polyners. We
also begin to introduce the idea of coarse-graining which is important to being able to distill out
the essential physics while keeping the analysis tractable.

2.1.1 Equilibrium Properties

At its simplest, a polyner can be described as a collection of N rods of length e connected end-
to-end to form a linear chain. The rods are representative of the underlying structural subunits
of the chain such as the chemical monomers. There are several length scales and measures of the
chain's conformation that are significant. The simiplest is the contour length of the chain L. As its
name implies, this is defined as the total length of the chain as measured along the chain backbone
and is given by Le - NE. The contour length is the maximum length to which a polymer can be
stretched, and it represents the largest length scale of the chain.

Coil Size

To describe the conformation of the chain, each segment is assigned a "bond vector" ri of length
, that points in the direction that the ith rod is oriented. The most straightforward descriptor of
the chain's conformation is the end-to-end vector Re. This is defined as the vector connecting the
two ends of the chain and is found by summing all of the N bond vectors

N

RCC ri. (2.1)
i=1

Because at equilibrium a chain is isotropic, there is no preferred orientation of the bonds. Therefore,
the ensemble averaged end-to-end vector for a polymer in bulk at equilibrium is zero

N N

(Re,) = : r : = r) = 0. ri(2.2)

The second niornent of R, however, is non-zero. The average end-to-end vector squared can
be written as

( Ree) K ( ri - r = (r, rj) =2 (cos 6j) , (2.3)
i=1 (j=1 i=1 j=1 i=1 j=1

where Gij is the angle between bond vectors ri, and rj. The most basic polymer model is the freely
jointed chain (F.JC). In this case, the angle between different bond vectors is entirely uncorrelated
at equIilibriun so that (cosij) = 6ij, where oij is the Kronecker delta, and therefore,

N N

(Rec2) = f2 6 j fN2 . (2.4)
i=1 j=1

Taking the square root of this quantity gives the root mean square of the end-to-end vector
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Rc= which is often referred to as the end-to-end distance. Rec represents the most

rudimentary characteristic length of the chain's size at equilibrium. For the FJC, Re, = Ni/2p

which is significantly smaller than Lc. In fact, the fractional extension of the end-to-end distance

Xe = Re-/Le N-1/ 2 < 1 and d(ecreases as the number of rods N increases.

On the other hand, a more realistic model for a polymer should acknowledge that neighboring

bond vectors are correlated. For example, long alkane molecules contain a carbon backbone where

the carbon atoms are able to rotate around the bonds but the angle between two successive bonds

varies little. The sinplest model to incorporate such correlations is the freely rotating chain (FRC).

In this case, 0ig is assumed to have a constant value of 0 between neighboring bonds, and through

a recursion formula, (cosij) can be shown to decay as the distance between bonds increases:

(cos Big) = (cos 6)lj-' . (2.5)

This decay is very rapid and is readily apparent when the RHS of Equation 2.5 is recast as

(coS 0)1 = exp [lj - I ln (cos )) = exp (- SP , (2.6)

where s, =-1/ In (cos 0) and represents the number of rods over which the correlations between

bond angles decay. This allows us to describe another length scale, the persistence length t, =sp,

which is the contour length over which directional correlations die off between different segments

of the chain.

The end-to-end distance squared for the FRC can be written as

Re 2 = (Ree2 ) = 2 N Z (cos0)

= £2 {N ± _ (cos ±) + zf_-+ (cos o)J'

= £2 N+ E:l (zz cosk 0+ U- cost . (2.7)

Because the correlations decay exponentially, we can extend the sums over k to infinite series:

N i-1 N-i N 00 o0

j (+ c os 2 0) .Sk 0 = 2N cost = 2N 1 - cos0. (2.8)
i=1 k=1 k1 i=1 k=1 k=1

So for the FIC

Ree2 = Nt 2  . (2.9)
1 - (os

As in the case of the FJC, the equilibrium size of the FRC is much smaller than the contour length.

Additionally, the size of the FRC has the same scaling with N. In fact, this is a general property of

all chain models that take into account only local interactions and correlations along the chain and

neglect all interactions between distant segments. Models based upon this assumption are referred

to as ideal chain models.

The equilibrium size of an ideal chain is always of the form

Ree2 = Coo,, (2.10)
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where C is Flory's characteristic ratio and is a proportionality constant that represents the ratio
of the chain's Rec2 to that of the FJC (i.e., NC2). This universal behavior is a consequence of the
Central Limit Theorem. In the case of the FRC, the characteristic ratio is

1 + cos 0
C - 1 .O (2.11)1- cos 6

Ideal chains can always be recast to behave like the FJC in a model known as the equivalent
freely jointed chain. In order to do this, an effective bond length called the Kuhn length bK is
introduced. The equivalent chain must have the same contour length as the old chain, so the
number of Kuhn "monomers" is given by N = Nt/bK. The Kuhn length is chosen, so that the
equivalent chain has the same Ree2 as a FJC (i.e., NKbK 2 = C N, 2). From these equalities, the
equivalent freely jointed chain is defined by

N
bK = Col and NK = . (2.12)

co

The final ideal chain model that will be discussed is the worm-like chain (or Kratky-Porod
model). This model is used to describe very stiff polymers that tend to bend continuously over
long length scales rather than have sharp turns or kinks as in the standard FJC or FRC models. In
particular, it is used to model the fairly rigid DNA double helix and, therefore, is of considerable
importance to the present work.

The worm-like chain is actually a special case of the FRC model for very small values of 0. For
0 < 1, the Flory characteristic ratio is given by

1 + cos 0 2 - 02/2 4Co = ~ --- (2131 - cos6 62/2 (23

where we have used the the fact that cos 0 1 - 62/2 for 0 near zero. It can also be shown that
the persistence length is given by

f, = SPC = ~ --f2.4
ln(cos0) W2(

where the identity ln(1 - x) ~ -x for small x has been used. With these two expressions, we can
find the relation between the Kuhn length and the persistence length for the worm-like chain:

b = Co ~~ C ~ 2Cy. (2.15)

So for the worm-like chain, the Kuhn length is twice the persistence length (bK 2Cr). As can be
seen in Equation 2.15, the ratio e/02 defines both the Kuhn length and the persistence length. The
true worm-like chain is defined in the limits C --+ 0 and 0 -- 0 while both 1, and Le NC remain
constant. In this limit, the chain becomes a. continuous smooth curve with a bending potential and
the mean-square end-to-end distance is found by considering the decay of the directional correlations
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along the chain backbone:

N N N N

RNc = -t2 Z (Cos e)iI = f2 E E exp -- .(2.16)

i=1 j=i i=1 j=1

By converting the discrete sumnmations long the bond vectors to continuous integrals over the chain

contour length, it can be shown that

ReC = 2tPLe - 2fP2  
-_ exp ( . (2.17)

For our present work, we are interested in the long chain limit Le > f, so that Ree2 ~ 2fLe =

NKbK2 , which is precisely the result expected for any ideal chain model.

The last topic we will consider concerning the equilibrium size of an ideal chain is the radius of

gyration RIg. The end-to-end distance Re is typically not directly obtainable from experiments. For

example, in single molecule fluorescent microscopy, the ends of the molecule are indistinguishable

from other segments of the chain. Additionally, the end-to-end distance is only well defined for

linear chains. Therefore, a measure of the chain size based on an average over all of the chain

segments is needed. The square radius of gyration is defined as

R (RI - Rcm)2, (2.18)
i=1

where Ri is the position of the ith Kuhn monomer and Rem = Zi Ri is the center of mass of

the chain. The equilibriun averaged square radius of gyration is given by

2) 1N NK Nb Re2

(R9
2 ) NK 2 z (R - Rj)2= N' bg2 (Re 2 ). (2.19)

i=1 J=1

This result is obtained by converting the discrete simuations to continuous integrals and making

use of the fact that the mean-square distance Ri 2 between any two Kuhn monomers i and j is

given by the PC result (i.e., R =-j - ibK% . For an ideal chain, the radius of gyration is related

to the end-to-eld distance by a simple, constant numerical factor R = Ree/ 6. Again, it is clear

that the equilibrium size of the chain is much smaller than its maximum possible extension LC.

In fact, this is a general feature of polyners. At equilibrium, they exist as "coils" whose sizes

are much smaller than that of their contour lengths, and the two measures continue to diverge

further as the numbers of constituent segments are increased. This is entirely due to entropy, and

in fact, a force is required to deforim a chain away from its equilibrium coil size.

Elasticity

At equilibrium, a polymer is a fluctuating object that samples all of its possible configurations.

Many more configurations are available to the polymer when it adopts a coiled state than when it

is extended. A consequence of this fact, is that any attempt to deform the polymer chain away from

its equilibrium size to a more extended state, leads to a reduction in the number of configurations
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available to the chain. This reduction in the available configuration space induces an opposing force
that attempts to return the chain to its equilibrium size. Therefore, any device or method that
ains to stretch a polyner molecule such as DNA, must overcome this entropic "spring" force.

A scaling approach is instructive for understanding the origin of this force and for obtaining its
analytical form. The key to this scaling approach is to

This scaling method is accomplished by using a tension blob framework. A polymer molecule
can be represented as a string of N- "submolecules" each containing gr' Kuhn monomers such that
(NI'g)bK = Le = NzbK. The number of submolecules is, therefore, given by

NA
NT = (2.20)

gr

As long as gr' > 1, then the statistics of the FJC discussed in Section 2.1.1 can be used to describe
each submolecule. This means that the equilibriun coil size of a submolecule follows the scaling
~ bK g'. Now, we must recognize that a, force f applied to the ends of a polymer molecule
deforms the global structure of the chain, but locally along the chain, the organization of the Kuhn
monomers tends to remain unperturbed from the equilibrium configurations predicted by the FJC
model. This means there is a. length scale (rj above which the chain appears deformed, but below
this length scale, the chain segments appear near equilibrium. If we allow (Q to be the size of
our submolecules or "tension blobs", then we can say that equilibrium FJC chain statistics apply
within the blobs:

4r2 grbK2. (2.21)

But on lengths greater than the (r, the blobs tend to align in the direction of stretch, so that the
stretched length of the molecule R can be approximated by the total length of the string of blobs:

R N'Q. (2.22)

In order to determine the energy F(R) required to extend the molecule to a length of R, we
note that the aligmnent of each blob along the direction of stretch restricts a. degree of freedom
of the chain. Each degree of freedom removed from the system requires an energy on the order of

kBT, so

F(R) ~ NkT ~ knT 2 (2.23)
NybK

where Nr' is obtained from considering Equations 2.20-2.22. To obtain the entropic restoring force
f (R), we simply differentiate the negative of the energy with respect the stretched length:

aF R
f(R) = -- ~ -k T (2.24)

So the entropic spring force is linear with Hookean spring constant H ~ k T/N bK 2 This also
suggests that probability distribution function for the end-to-end vector P(Ree) is Gaussian, and
in fact, a more detailed calculation based upon the statisitics of random walks bears this out:

P(R) = ( xp -( j . (2.25)
21rNKbK~ 2bK2
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This expression is valid for long chains and end-to-end distances much smaller than the contour

length (i.e., NK > 1 and R < NKbK) and is, again, a consequence of the Central Limit Theorem.

That the distribution of Kuhn monomer positions is Gaussian is an important result of ideal chain

models and is often used to analytically study probllens in the polymer physics literature. Indeed,

we shall make use of this result in our present work as well. For now, we note that we can derive

the exact linear spring force for an ideal chain from Equation 2.25:

f (R) - 3 R. (2.26)
NKbK

Nonlinearities

There is a problem with the linear force law given by Equation 2.26. It clearly allows the chain

to be stretched beyond its contour length, which is clearly aphysical. As previously mentioned,
the linear force law is only applicable when the chain's extension is nuch less than its maximum

extension. Our tension blob nodel can explain why this is.

We assumied that the configurations of the Kuhn segments within each blob are unperturbed

by the stretching. However, at some point the chain is so stretched that the size of blob approaches

that of a Kuhi segnent. At this point, the chain configuration is perturbed from its equilibriurn

at all length scales, and the force law becomes nonlinear. As the chain extension approaches the

contour length, the force diverges, making it impossible to stretch a chain beyond its maximum

extension. A detailed statistical mechanics analysis shows that the exact force-extension behavior

of the FJC is given by

- = (fK = coth (2.27)
L kBT kBT kBT

where (L(x) is called the Langevin function. This force law recovers the expected linear behavior

at low extensions and diverges as the chain approaches its maximum extension.

The way the spring law diverges changes depending upon the nature of the local, small length

scale detail of the chain. For example, the worm-like chain bends continuously unlike the FJC,

which is composed of solid rods connected by free hinges. Therefore, the worm-like chain follows a

different force law as it approaches its maximurm extension. No closed form analytical solution exists

to describe this force law, but Marko and Siggia [33] have suggested an approximate expression

that captures the correct behavior at large and small extensions:

ft R1 1-p + . (2.28)
knT Le 4(1 - R/Le) 2  4(

Excluded Volumc

The ideal chain model is very useful for explaining many of the most basic phenomenon observed

in polymer physics. However, it lacks realism because it neglects interactions between distant

monomers along the chain backbone as well as monomer interactions with the solvent. These

additional interactions are known as excluded vohme effects (EV), and their inclusion in models

leads to qualitatively different results for the equilibrium coil size and other quantities of interest.

For example, if the interactions between the monomers and solvent molecules are more energetically
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favorable than those between monomers and monomers, the coil tends to pull it solvent molecules
which leads to swelling of the coil beyond the predicted size of the ideal chain models. This is
referred to as "good solvent" behavior. On the other hand, "poor solvent" behavior, where the
monomer-solvent interactions are weak, leads to expulsion of solvent molecules from the coil, and
the coil size is smaller than the ideal chain prediction. Indeed, if the monomer-monomer interactions
are strong enough compared to the monomer-solvent interactions, complete collapse of the coil can
occur. However, for the current systems of interest in this work (i.e., DNA in aqueous solutions),
only good solvent behavior is relevant, and we restrict our analysis to this regime.

To introduce the effects of EV, we look to the approach of Flory, which provides a simple and
elegant scaling theory that paints of a physical picture of the swelling 1)henomenon and very nearly
predicts the correct behavior for polymers in good solvents. Flory attempted to find the free energy
of the chain by estimating both the energetic contributions, which tend to swell the coil, and the
entropic contributions, which try to limit the size of the coil. Because these two effects act in
opposition, they can be balanced against one another to obtain a scaling for the coil size.

The effects of monomer-solvent versus monomer-interactions, as well as the effects of finite
monomer size, are all taken into account through a single parameter v, which is the effective
excluded volume of a. Kuhn monomer. Therefore, the total excluded volume for the chain is NKv.
If the equilibrium coil size of the chain is R, then the pervaded volume of the chain is ~ R 3 , and
the fraction of the pervaded volume represented by the excluded volume of the chain is - Nvv/R 3 .
In a mean field sense, this also represents the probability that a. single Kuhn monomer overlaps
the excluded volume of another Kuhn monomer. So for NK Kuhn monomers, there are on average

- A v/R 3 overlaps. Each overlap restricts a degree of freedom of the chain, leading to an energetic

penalty on the order of kaT. Therefore, the energetic contribution Fie to the free energy due to
excluded volummime is

Fin t(R) ~ k T H N32  (2.29)

For the entropic contribution Feet, we use that of an ideal chain (see Equation 2.23) stretched to
size R:

Fekt (R) ~ k T R 2. (2.30)
NybK

The total free energy is the sum of these two contributions F ~ Fint ± Fnt, and the equilibrium
size Ro is deterinned by finding the minimum of the free energy (OF/OR = 0). This gives the
equilibrium coil size for a. polymer in a good solvent:

RO - v1 5 bK2/ 5 N 3 / 5 . (2.31)

This result, which agrees well with experiments, benefits from the cancellation of a couple errors.
First, due to its mean field approximation, Flory theory overestimates the number of exclusions
and, therefore, the energetic contribution to the free energy Fit. However, it also overestimates the
the entropic contribution Fet because it makes uise of the ideal chain result. It turns out that both
of these overestimates nearly cancel each other out, and Flory theory gives a very good estimate
for the good solvent universal scaling exponent v for the coil size with N<. Flory theory predicts
V = 3/5 while umore accurate estimates give a value of v = 0.59. This is larger than the case of an
ideal chain where v - 1/2, which is indicative of the fact that excluded vohume effects lead to a
larger coil size.
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2.1.2 Dynamics

Polmvier niolecules iii solution are constantly fluctuating entities that perpetually change their

shape, orientation, and position to due to thermal motion. It is not enough just to study the

equilibrium properti(s of polymers; it is equally iniportant to understand the dynamical processes

that govern polymer behavior both at equilibrium aid away from it. In reality, a polymer molecule is

inuersed in a sea of solvent molecules with which it interacts through thermal collisions (assuming

we neglect any energetic interactions). This system could theoretically be modeled by solving the

equations of motion for each solvent molecule and each segment of the polymer chain; however,

this is both intractable and unnecessary.

On the length and time scales of interest to this work, the effect of the solvent molecules is to

provide seeiiingly random, thermal "kicks" to the different segments of the polyrner chain, referred

to as Brownian miotiomi. Therefore, the solvent molecules are usually replaced by a stochastic force

applied to the polymer chain, and the resulting stochastic differential equations (SDEs) of motion

for the chain segments is solved. In this case, the molecule is represented by a series of connected

beads, similar to the analysis of equilibrium chain in Section 2.1.1. The general Langevin equation

for the ith bead position R is given by

t Hg K1 +§bkT a -H0j (2.32)
1 -

where Nb is the total number of beads, Hij is the mobility imatrix, U is the total energy of the

chain, including any external potential field, and fj is the Brownian force oni the jth bead. For

most polymer dlynamics miodels, the beads are assumed to be conected by Hookean springs with

a spring constant equal to
3kBT

H 8 = b 2 , (2.33)
bK

so that each spring represents a Kuhn segment (see Equation 2.26). This leads to a total energy of

HN 6,
U = Z(Ri - Ri_1 )2 , (2.34)

i=2

and provides the starting point for our analysis of chndr dynamics (for internal beads):

N,

EHij - [H (Rj+1 - 2Rj + Rj-1) + fy] + kBT -Hi (2.35)
at j=1 2 i=1R

Rouse Model

The simplest model for polymer dynamies is the Rouse model. In this case, EV is ignored, and all

hydrodynaimics interactions (HI) between beads is neglected. Hydrodynamic interactions occurs

whei the movement of a polymer segment disturbs the surrounding solvent and sets up a decaying

velocity field that is felt by nearby segnents. When HI is neglected, the molecule is said to be

"free-draining," and the movement of one bead does iot affect the mobility of another. Therefore,
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the mobility tensor for the Rouse model is written as

Hij = (b Ioi, (2.36)

where (b is the drag coefficient of a single bead and I is the identity tensor. This leads to the
equations of motion for the Rouse model:

(b d'= HT, (Ri+1 - 2Rj +- Ri-1) + fj, (2.37)dt

which is a linear system of ordinary stochastic differential equations. The Brownian force, which is
Gaussian and must satisfy the fluctuation-dissipation theorem, is defined by the moments

(fi(t)) = 0, (2.38)

(fia(t)fyg(t')) = 2kBT(b6joa,,go6(t - t'). (2.39)

This system of ordinary differential equations can be transformed into a single partial differential
equation. In this case. the discrete index i becomes a continuous variable n that represents the
positions along the contour of the chain:

= + f,?. (2.40)at On
The stochastic force becomes

(f0(t) 0, (2.41)
fma, (t) fn(t')) = 2kBT(bo(n - m)oa3 6(t - t'), (2.42)

and for the case of zero tension at the ends of the chain, the boundary conditions are

= 0. (2.43)an O n ,N,,

A normal mode analysis can be performed for this system by solving the associated eigenvalue
problen. Many dynamical quantities of interest can then be determined based upon the time
correlations of the various contributing modes. In the case of the of the overall diffusivity of the
chain D, the Rouse model predicts

D = (2.44)
Nb(b

This is exactly the result expected for a free-draining chain, where the overall chain drag coefficient
(should simply be the sum of all the bead drag coefficients (i.e., ( Nbb). Making use of the
Stokes-Einstein relation, this means D = kBT/( = kBT/Nb(b, precisely as predicted by Equation
2.44. The longest conformational relaxation time Tc can also be determined. This is the time scale
over which global rearrangement of the chain segments occurs. For the Rouse model,

Nb2 (bbJ{ 2

re. = . (2.45)
37r- k T
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Table 2.1: Summary of the scaling results of Section 2.1.2 for the overall chain

diffusivity D and the longest conformnational relaxation time r,.. The predicted

scalings ith chain length Nb are shown depending upon the physics included.

Free-draining HI

.. -- 2 - 1/ N6 T.J 5
Ideal, v = 1/2 D ~ Nb' , 7c 2 D N A - 2, Ar

EV, v 3/5 D ~NJ', Te ~ N D N3 ~

The ninportant findings from the Rouse model are, that for a free-draining, ideal chain, D ~ Nb-1

and T( Nb.

Zinam Model

It turns out that the Rouse model does not correctly predict the experimental scalings with chain

length for the diffusivity and the relaxation time. This is due to the exclusion of hydrodynamic

interactions. Their effect may be included by modifying the mobility tensor to include the Oseen

tensor which gives the solvent disturbance due to a point force on the fluid:

1
H i = (b 1 ij + (ig ig + I) (1 - 6ij), (2.46)

- ,, , , andq.~8ithe|rlveil

where rid = R - R., ig is the unit vector pointing in the rij direction, and q. is the solvent

viscosity. However, the governing Langevin equation (see Equation 2.35) becomes nonlinear using

this mobility tensor. This can be overcome by approximating His using its equilibrium preaveraged

form:

(Hij) e = (6r .i . .)q, (2.4 7)

A normal mode analysis of the resulting linear partial differential equation finds that the scalings

for the chain diffusivity and the longest conformational relaxation time are given by

D -_kBT d s (/ NbK)3 (2.48)kBT and re. ~(.48
,q vNK bK B

2.2 Polymer Stretching

Polymer stretching can be achieved by either direct imanipulation or interaction with .a flow field.

The appeal of direct manipulation, such as optical tweezing, is that the effects of the applied

forces are usually obvious and predictable [34). But while this gives very precise control over the

deformation, it is not simple to perforim and certainly seems difficult to scale-up. Therefore, flow

fields, which are easily imposed and extremely scalable, provide an attractive alternative and have

traditionally been used. The difficulty, however, is that their effects on the polymer conformation
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are not necessarily obvious.

2.2.1 Direct Manipulation and Tethering

Direct manipulation uses optical tweezers [35] to directly apply forces to DNA. A small bead is
attached to an end of a DNA molecule, and then a focused laser beam is used to apply a trapping
force on the bead as shown in Fig. 2.1. Bustamante et al. [34] studied the force-extension behavior
of DNA using this technique. They attached beads at both ends of a DNA molecule and stretched
the polymer by holding one bead stationary in an optical trap and moving the other one with
a pipette. Stretching has also been accomplished by only trapping one end of the molecule and
placing the tethered DNA in a flow field. The loose end is then pulled or dragged by the field
causing the polymer to deform. Optical tweezing has been used to study the relaxation of DNA
(36] and the stretching of DNA in a uniform hydrodynamic flow [37]. Blanch et al. [38] verified the
theory of hydrodynamic equivalence in a similar way but without the optical trap. Instead, they
tethered one end of a DNA molecule to a stationary post in a microfluidic channel and examined
the stretching in both hydrodynamic and electric flow fields.

Fig. 2.1: Depiction of an optical trap. A laser (shown in red) traps a plastic
bead (shown in blue) that is attached to the end of a polymer chain (shown in

green). The free end of the polymer deforms due to the uniform hydrodynamic
flow surrounding it.

2.2.2 Flow Fields

The effects of homogeneous flow fields have been widely studied and are typically organized into a
few broad categories of flow types each with its own characteristic polymer dynamics [39]. Shear
flows, for example, are able to moderately stretch polymers, but the fields also have strong rota-
tional components that cause the molecules to "tumble" and retract back into coils [40]. The best
homogeneous fields for stretching are extensional flows which have no rotational components but
each have axes of extension and compression [39]. When new methods of stretching are considered,
they are often compared to the effectiveness of extensional flows. Of particular importance to poly-
mer stretching is the idea of a critical strain rate. This is the strain rate at which the fluid elements
are moving apart from each other just fast enough to overcome the entropic forces that keep the
molecule coiled. The strength of the flow is usually represented by the dimensionless group De

.... .... ..... ......... ............ .... .............. .......... .
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which compares the strain rate to the relaxation time of the chain; it has been found that the crit-

ical Deborah number De, for polymers in extensional flows is about 0.5 [41]. The dynamics of the

stretching is also dependent upon the initial configurations of the chains when the field is applied.

Some configurations rapidly uncoil while others take a very long time to unravel; therefore, the total

strain required to fully extend a polymer is not a single number but a broad distribution based

on molecular individualism [41, 24]. It has been shown that molecules can be "preconditioned" for

stretching by biasing their configurations away from equilibrium through using a different type of

flow field initially [42, 43].
While homogeneous flow fields have received much attention, there have only been a few studies

that have observed flows involving non-homnogeneous fields where polymer dynamics and deformna-

tion were examined [25, 42, 44, 45, 46]. Typically most work has been confined to situations where

the flow field can be found analytically, and often the effects of the field have not been fully ana-

lyzed. Leal et al. [47] have predicted that polymer stretching even in a locally homogeneous field

should be qualitatively different from that in a completely homogeneous case. Even less work has

been performed on fields that vary over the length of the polymer [48]. Randall et al. [21] have

shown, however, that the idea of accumulated strain at a critical strain rate is still be applicable in

non-homogeneous flow fields [21, 49].

2.2.3 Obstacle Arrays

Currently, the most conuon design for microfluidic DLA devices contains a contraction that sets

up a flow field with a strong extensional component to stretch the DNA molecules [2, 22] (see

Fig. 1.1). The difficulty with this approach is that molecular individualism prevents the chains

from stretching uniformly; indeed, some chains hardly stretch at all [22]. In order to overcome this

problem, Randall et al. [22] placed a gel directly before the contraction which forced the molecules

to stretch and reptate through the small pores of the matrix. Upon exiting the gel, inmost of the

DNA easily stretched in the contraction due to this "preconditioning" of the configurations. The

use of a gel, however, to perform the preconditioning is not desirable due to difficulties assembling

the gel in the device and gel degradation. Microlithog raphieally constructed obstacle arrays could

circmnvent these issues while still providing a preconditioning mechanism. Fabricated arrays also

have the advantage of extrenmely precise control over the obstacle features and placement so that

the geometries c-an be tailored for optimal results.

Obstacle arrays have been highly studied over the past decade, and a great deal has been learned

about the effects of DNA collisions. This work began with simulations of gel electrophoresis where

the gel fibers were niodeled as a regular array of posts [26, 50, 51]. It was found that the dynamics of

the DNA movement and deformation were governed by the collisions which often lead to stretching

followed by a rope-and-pulley motion and finally collapse of the fully extended chain. This process

was termed "geometration" and was experimentally corroborated [27, 4, 52].

In order to simplify the problem, many studies have focused on collisions between a DNA

molecule and a single post. Most of the research assumed that the dominant type of impacts,

besides glancing blows, were hooking events that subsequently led to the rope-and-pulley motion

reported by Deutsch et al. [26]. Therefore, many aspects of hooking were examind and a great

deal of theory was developed (some of which is summarized in Table 2.2). But Randall et al.

[9] found that several different classes of collisions were statistically important. They observed

the classic hooking collisions, which they called U and J collisions, but they also noticed similar
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Table 2.2: A list of some of the single obstacle studies that have been perifoned.
A few of the important findings of each are listed.

Investigators Findings
Sevick et al. [6] Unhooking is faster than tension equilibration in the polymer
Slater et al. [5] Large variations in imjpact dynamics even for direct collisions
Sevick et al. [7] Offset of DNA center of mass fron the center of the post greatly affects hooking probability
Ajdari et al. [53] HI can generally be neglected when considering unhooking
Sevick et al. [8] Obstacle size is very important in determining whether a hooking or a roll-off event occurs

Randall et al. [21] Non-hornogeneous electric fields around the obstacle are significant in polvier deformation

impacts that they called X collisions which sometimes occurred more often than the U and J cases.
In this case, two unraveling arms form just as in the U and J situation, but one of the arms finishes
unraveling long before the other arm. Therefore, the rope-and-pulley motion begins before the
molecule becomes fully stretched.

There has been much less work involving more than one obstacle. Sevick et al. [54] examined
the unhooking dynamics of a chain draped over two posts simultaneously. Other groups have
looked at a full array of obstacles [55, 56] which has been shown to be capable of electrophoretically
separating long strands of DNA [57]. However, the dynamics of the DNA moving through the
arrays have generally been ignored in favor of examining the overall dispersion within the system
[55, 56]. These large arrays are periodic, and as a polymer molecule makes its way through the
array, a dynamic steady-state behavior develops in a manner analogous to steady shear flows where

polylners repeatedly stretch, tumble, and contract [26]. Almost all the work on arrays of posts
has been done on very large arrays and has focused on the resulting steady-state behavior of the
polymers as they move through the array. The end effects, however, are important. Turner et
al. [17] have shown that as a DNA molecule enters a tight array where the post spacing is about
the same as the persistence length of the DNA, there is an entropic force that tries to drive the
chain out of the array due to the loss of configurational entropy [17, 18]. Randall et al. [22] have
also shown that exit effects are important by their observation that as an electrophoresing DNA
molecule exits a gel in a microfluidic device, it behaves as a tethered molecule.

2.3 Simulation Methods

Because polymers are large molecules, it is currently impossible to simulate them at the atomisitic
level over time scales that are relevant to their dynamics in flow fields. Therefore, polymers are
coarse-grained to develop a simple model that smears out the details that have little effect on
dynamics over the time scales of interest. The resulting polymer model is then incorporated into a
muesoscopic simulation method that somehow coarse-grains the individual solvent molecules as well.

2.3.1 Coarse-graining Models

The most common polymer coarse-graining is the bead-spring mnodel. Due to their extreme size and
large variation in chemical composition, polymners are difficult to both understand and simulate.
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Despite all of this variability, the behavior of most polymer chains is qualitatively similar because

at length scales much larger than the atomistic level, the fine details of chemical structure seem to

vanish. At the typical length scales of interest, the important features of polymer chains are their

random nature which results in an entropic spring force. This has led to coarse-graining models

which represent a polymer as a set of beads that are attached by springs [58] as shown in Fig. 2.2.

In these so-called bead-spring models, the springs each represent a certain amount of the contour

length of the polymer, and the beads act as discrete positions on the polymer backbone where all

the forces that the molecule experiences are applied. The stretch of the springs is governed by a

force law which contains the finer details of the polymer being modeled; however, great care must

be taken when developing these spring laws as the effects of coarse-graining are not straightforward

and are often quite subtle [59). The various forces that polymers experience and how they are

applied, including spring force laws, will be discussed in more detail later (see Sec. 2.3.3).

Fig. 2.2: A representation of the bead-spring model where the springs each rep-

resent a certain portion of the polymer contour length.

Another common coarse-graining is the bead-rod model where the springs in the bead-spring

chain are replaced by rigid rods that each represent a Kuhn length [58]. The idea is to model the

polymer as an equivalent freely jointed chain (see Sec. 2.3.3). The bead-rod model is often used

in situations where current spring force laws do not adequately describe the dynamics of the chain

because the bead-rod model is less coarse-grained and contains more fine detail. For example,
bead-rod chains are often used in highly confined environments [60, 61].

2.3.2 Brownian Dynamics

Brownian dynamics (BD) is a mesoscopic simulation technique that uses coarse-graining of the

solvent molecules in order to remove them from explicitly appearing in the simulation. This sim-

plification is both necessary and possible because polymer sizes are typically orders of magnitude

greater than the size of solvent molecules. Removiing the solvent molecules from the simulation

vastly reduces the computational time and space needed. Instead, their interactions with a poly-

mer chain are incorporated by applying various forces on the beads in the bead-spring model

resulting in an equation of motion for each of the N bead positions ri [62],

m i dt Fd ph 49)

... ....... 
. . . . .......



36 2.3. Sinulation Methods

One of the most important ways in which solvent molecules interact with a polymer is through
thermal randomizing forces caused by collisions which are recreated by applying random forces
F B to the beads. The solvent molecules also act as carriers of momentum which is imparted
to the polymer chain through the inclusion of a viscous drag force Fd providing the chain with
"knowledge" of its surroundings. This drag force is taken to be the Stokes drag oi a sphere

F i =(y u(ri) (2.50)I dt I

where ( is the drag coefficient and u(ri) is the velocity of the solvent surrounding the bead, including
any disturbances to the unperturbed flow field [21]. Forces due to any surrounding hydrodvminic
velocity field are represented by this drag force. The connectivity of the polymer is takem into
account through the spring forces between beads FjS(t) allowing beads to "communicate with each
other. All other forces, such as body forces, excluded volume effects, etc., are contained in F7"h.

Due to the small mass that each bead represents, the inertia of the beads is typically neglected
indicating that the sum of all the forces oi a bead is nearly zero. This leads to the simplified
equation of motion for each bead known as a Langevin equation, [62]

dri -. 1
= u(ri) + [F ({r}) + F[ Ffu + FB(t)] (2.51)

This is a stochastic differential equation where, in order to comply with the fluctuation-dissipation
theorem, the Brownian force F-B must satisfy the expectations

(FB(t)) - 0 (2.52)

K FB(t)FB(tf)= 2kT(O&jt - t')6 (2.53)

where k is Boltzmnan's constant and T is temperature [(62]. The set of differential equations for
all bead in a polymer can then be solved by integrating forward in time.

One difficulty with BD is that when hydrodynamics interactions are included (see See. 2.3.3)
the computational time required for a simulation scales badly with chain length (~ 3 /time step).
Other mesoscopic simulation techniques that avoid this probleM include dissipative particle dy-
namics (DPD) [63, 64] and the lattice Boltzmann method [65, 66], but these methods are not as
well-understood as BD.

2.3.3 Included Physics

Force Law

Each spring in the bead-spring model is a coarse-grained representation of a polyner chain segment.
The important characteristic captured by tIe springs is the entropic elasticity that results from the
enormous number of configurations that the segment can adopt [67]. The spring law used in the
bead-spring model describes the entropic tension force in the chain segment when its ends are
separated by a given distance. Because polymer properties like bending rigidity and bond angles
calm affect the overall polymer elasticity, different models have been developed to describe the
resulting spring force laws. An important example is the freely jointed chain where the molecule
is represented as a set of rigid rods of fixed length connected together at random angles. This
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model has the benefit that it is simple enough to solve for its spring force exactly using statistical

nechanics. Therefore, nany polyIners are modeled as equivalent freely jointed chains that have

the same contour length L and equilibrium mean-squared end-to-end distance (R2) 0 [68].

DNA is not well-described by the freely jointed chain because it is a very rigid molecule that

does not easily bend. Instead, the worm-like chain model is used. Recently, Underhill and Doyle

[69] have developed a modified Marko-Siggia force law that better predicts the behavior of the

chain for a large range of the coarse-graining parameter v = 4,/p. This result was based on their

study of the effect that coarse-graining has on the force-extension behavior of a bead-spring model

[59, 70].
Generally, spring laws assume that the polymer is in the bulk or in a bulk-like state where they

can sample their full, uninhibited configuration space. In highly confined environments, however,

this assumption is invalid, and the configurations available to the chains are restricted. There have

been few attempts to address this issue, and those that have tried to develop new models and spring

forces have had limited success [71].

Hy1drodynamic Interactions and Electrophoresis

Hydrodynarnic interactions (HI) play an important role in polymer dynamics. Inclusion of HI into

models can lead to different scalings for physical paraieters such as viscosity and relaxation time as

seen in the differences between the free-draining Rouse model and the Zimn model which includes

equilibrium-averaged HI [58]. In some situations, neglecting HI can lead to behavior that is even

qualitatively incorrect [72, 73, 74, 75].
HI occur when polymer movements disturb the solvent flow around them. In essence, any

movements of the polymner chain that are not in perfect unison with the surrounding velocity field

will perturb the field and set up a decaying velocity disturbance. When a polymer is coarse-

grained into a bead-spring chain, each bead disturbs the field and affects all the other beads. These

disturbances are often modeled as Stokeslets, or point forces, and are incorporated into BD through

the Oseen-Burgers tensor H 0 (r) which decays as 1/r [39]

[H(r)] = (ss + 2 (2.54)

where r is taken from the origin of the disturbance, u is the solvent viscosity, and Sjj is the Kronecker

delta. For neutral polymers, all forces exerted on a bead, such as Brownian forces, spring forces,
and excluded volume forces, lead to HI. When the velocity term u(ri) in Eq. 2.51 is expanded to

explicitly include HI, the Langevin equation becomes

u'(ri) + j [Fs ({ri}) + FEV ({rB) FB(t)

+ H 0 (ri - rj) - Ps ({rj}) + FEV ({rj}) + FB(t) . (2.55)

where u"(ri) is the unperturbed velocity of the solvent.

The physics of polyelectrolvtes undergoing electrophoresis is much more complicated than the

case of neutral polymers. When an electric field is applied there is no bulk movement of the

solvent due to its average electroneutrality, but the charged polymer does feel a net force and

moves through the fluid. This perturbs the quiescent bulk fluid just as in the case of the neutral
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E

Fig. 2.3: The effect of an electric field on a charged particle (shown in green)
and the counterion cloud that it attracts (shown in blue).

polymer. The differences appear because the charged backbone attracts a cloud of oppositely
charged counterions that surrounds it over the length scale of the Debye length as shown in Fig.
2.3. Therefore, the solvent near the polymer is not electroneutral and also reacts to the applied field
moving in the opposite direction as the polyelectrolyte. The movement of this counterion cloud
has two effects. One is that it increases the drag on the chain which leads to an electrophoretic
mobility pt, the electrical equivalent to the hydrodynamic drag coefficient. The second effect is that
it also perturbs the bulk fluid by setting up its own small velocity field opposing the disturbances
of the polymer. This latter effect leads to the conclusion that the HI tensor due to electrical forces
HE-L is not equivalent to the one created by non-electrical forces HD. When using BD to simulate
electrophoresis Eq. 2.55 becomes

u = voo(ri) + pE(ri) + eA E HEL (r - r E(rg)
i~j

+ [F ({ri}) + FEV ({r B) (t)] + 110 (ri - r) [FS ({rg}) + FEV ({rg}) + FP (t.56)

where e is the fundamental charge and A is the charge per bead [76].

The increased drag on the chain causes the electrophoretic mobility y to be dependent on the
size of the counterion cloud which is determined by the ionic strength of the solution. Surprisingly,
at high salt concentrations the electrophoretic mobility becomes independent of the length or the
conformation of the polymer [77]. Also, the counterion movements counteract those of the chain
almost exactly so that the velocity disturbances are screened over the length scale of the counterion
cloud which is the Debye length. Therefore, if the ionic strength of the solution is high so that
the Debye length is small, the electric field does not cause HI amongst the polymer segments, and

.. ..... ............... ... ......... .... . .... ...... ..... ......... ........ ........
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HEL 0 so eq. 2.56 becomes

dr,
uo (ri) + ptE(r) + ± [Fs ({ri}) + FEV ({r 1 ) ± F)B

+ E HO(ri - r) -FS ({rj}) + FFy ({rj}) + FP(t) . (2.57)

Eq. 2.57 shows that in high salt solutions, electric fields and hydrodynamic fields act in the same

manner on polymer chains. This principle is known as hydrodynamic equivalence [78, 79, 23, 76],
and although there have been some theoretical Challenges against it [80], experimental evidence

seems to corroborate the model's validity [30, :8].

Excluded Volume Effects

Excluded volume interactions describe the forces that prevent a polymer from overlapping onto

itself, and therefore, they tend to be repulsive forces between segments of the chain. They also help

account for polymmer-solvent interactions which cause expansion of the chains for good solvents.

Often such forces can be modeled as the result of a potential field such that the polymner pays

aim energtic penalty for adopting a configuration that is too dense. The use of a Lennard-Jones

potential might be appropriate, for example.

The difficulty for polyner simulations using a Lennard-Jones potential is that the steepness

of the potential necessitates the use of small time steps which vastly increases the computational

time. Polymer umodels, however, are typically coarse-grained to neglect the fine details that occur

at small length scales which means a steep potential is not necessary. Instead, a softer potential

that always remains bounded allows for much larger time steps and provides the correct physics at

large length scales [81]. An exponentially decaying potential accomplishes this goal, and for this

project, the potential developed by Jendrejack et al. [82] will be used

U -- 2v kBTN% exp ( 4 ) (2.58)

where UW" is the excluded volume between bead i and bead j, v is defined as the parameter

for excluded volume, NK,5 denotes the number of Kuhn lengths per spring, R, is the equilibrium

end-to-end distance of each spring, and r is the distance between bead i and bead j.
Polyelectrolytes also have an additional excluded volume effect due to electrostatic repulsions

between charged chain segments that cause additional conforniational swelling. These forces, how-

ever, are exponentially screened on length scales larger than the Debye length. Therefore, inl

solutions of high ionic strength where the Debye length is small, intrachain electrostatic repulsions

can be ignored [83].





Post Array for Conformational
Preconditioning in a Stretching Device

One of the great obstacles in implementing DLA is overcoming molecular individualism in order

to obtain a population of uniformly stretched molecules for analysis. This is particularly relevant

in strain-limited devices. One approach to tackling this Challenge is to use electrophoretic colli-

sions with an array of posts to "preconfigure" DNA molecules for later stretching. This technique

has been studied experimentally and was shown to modestly increase the final stretch of DNA

molecules that are subsequently exposed to an extensional field for a finite period. In this chapter,

we attempt to replicate the experimental results using our BD-FEM simulation technique. We

compare our results to the experiments and note where agreenent between the two is seen. We

also hypothesize that nonlinear electrokinetic effects are responsible for certain quantitative and

qualitative differences.

CHAPTER 3



3.1. Overview

3.1 Overview

Recently our group has reported experiments using an obstacle array to precondition the confor-
inations of DNA molecules to facilitate their stretch in a microcontraction. Based upon previous
successes simulating electrophoretic stretching in microcontractions without obstacles, we use our
simulation model to study the deformation of DNA chains in a microcontraction preceded by an
array of cylindrical obstacles. We compare our data to the experimental results and find good
qualitative, and even quantitative, agreement concerning the behavior of the chains in the array;
however, the simulations over predict the mean stretch of the chains as they leave the contraction.
We examiine the amount of stretch gained between leaving the array and reaching the end of the
contraction and speculate that the differences seen are caused by non-linear electrokinetic effects
that become important in the contraction due to a combination of field gradients and high field
strengths.

3.2 Introduction

Biological studies have long relied on the genetic information enco(led within DNA molecules.
Traditionally, this information is extracted using sequencing techniques, such as gel electrophoresis,
that provide single base-pair resolution. [3] While often extraordinarily plowerful for molecular
biological studies, genetic information at this level of detail is unimecessary for many applications. An
often used alternative is DNA mapping which provides lower-resolition genomic information. But
the state-of-the-art mapping scheme still requires multiple sets of restriction enzymes and numnnerous
separations by gel electrophoresis. [2] Such techniques are time-consuming and expensive, and these
drawbacks have spurred interest in mapping technologies that are not based on gel separations.

One such method is direct linear analysis (DLA) [2, 84] which involves measuring the physical
distance between specific sequences along the DNA backbone. This measurement gives a simple and
direct physical map of the molecule without the use of restriction enzymes or separation techniques.
[85, 2, 84] In DLA, the strands are tagged with sequence-specific fluorescent probes, stretched to
their full contour length, and pass(dI by an optical sensor that measures the distance between the
probes. The main obstacle in implementing DLA is that the DNA strands, which at equilibrium
are entropically coiled, [86] must be fully stretched in order for the measured distance between
probes to have a physically relevant meaning.

Many ways have been developed to stretch DNA. Some involve changing the equilibrium confor-
mation from a coil to a more elongated structure by confining DNA. [87, 88] Others have attached
beads to the ends of DNA and applied forces directly to the molecule using magnetic [89, 90 or
optical traps. [37, 91] Collisions with microfabricated obstacles have also been shown to linearize
DNA. [4, 92, 93] But a very practical method for simple, inexpensive, high-throughput devices is
using field gradients to deform the molecules. [41, 94]

In DLA devices, the molecules are typically stretched by field gradients ini microcontractions.
[2, 84, 95, 22, 96, 97] However, in these strain-limited devices, molecular individualism [24] leads to
a large population of molecules that do not reach full extension. Recent studies have shown that
the effects of mnolecular individualism can be mitigated by "preconfiguring" the initial conformation
of a molecule before it is stretched. [43, 22, 97] Several different methods to preconfigure molecules
have been shown to increase the uniformity of stretch, including pre-shearing [43] and passing
through a gel matrix. [22] A promising technique is placing a microfabricated obstacle array just
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before the contraction to induce molecular collisions with the obstacles [85, 97] (see Figure 3.1A).
The collision of DNA with a post often leads to hooking events that change the conformation of
the molecules thereby reducing the proportion of slowly-stretching conformations. The collision of
a DNA molecule with a single post is a well-studied problem both experimentally [52, 21, 9] and
numerically. [5, 8, 10] Several qualitatively different types of hooks have been identified, [9] and
their stretching and unhooking dynamics have been investigated. [9, 10] The effect of large arrays
of posts has been considered as well, with studies focussed on the start-up behavior of the molecules
as they enter the array [93] and their subsequent steady-state behavior. [55, 98, 99] Placing a post
array just before the contraction to preconfigure the molecules is also advantageous because the
resulting device is simple to fabricate, reusable, and easily scaled.
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Fig. 3.1: (A) A cartoon schematic of the general composition of the stretching
device (not drawn to scale). The red line represents a strand of DNA stretching
as it moves through the contraction. (B) The FEM solution for the magnitude
of the electric field normalized by the value of the electric field at the channel
inlet (E1).

Previously, Kim and Doyle [100] developed a simulation method to study DNA electrophoresis
in complex device geometries with non-homogeneous electric fields. They have shown that this
model can accurately predict experimental results, even at a quantitative level, for the cases of
DNA stretching in microcontractions without posts [96] and the collision of a DNA molecule with a
single post in a uniform field. [10] The previous success of the model leads us to consider whether or
not it will be useful in studying the effects of placing an obstacle array in front of a microcontraction.

The objectives of this study are to use the numerical model of Kim and Doyle [100) to predict
the stretching behavior of DNA molecules in a microdevice composed of a hyperbolic contraction
preceded by a post array. These predictions will then be compared to the experimental results of
Balducci and Doyle, [97] establishing when the model performs well and when it does not. Finally,
in cases where the numerical results are not accurate, reasons for the poor performance will be
hypothesized.

.............. .... . ....... .. ....... ........ .. ....
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3.3 Background

3.3.1 Polymer Deformation in Field Gradients

Electric fields are useful for stretching DNA in muicrofluidic devices because locally they are purely
extensional with no rotational component. [49] This is important because fields with a, rotational
comI)onent, such as shear flows, can lead to periodic behavior where the molecule stretches, col-
lapses, and stretches again. [101, 40] Practically, this reduces the effectiveness of the stretching
device, and theoretically, it complicates the analysis of the moleciular behavior.

Extensional fields cause stretching when the field gradients deforim the molecule faster than it
can rearrange itself. [86] The time scale for this nolecular rearrangement is the longest relaxation
tine r. When the relaxation time is balanced against the characteristic strain rate of the field,
the result is the Deborah number, De = &r, which is the governing dimensionless parameter for
molecular deforiation. It has been shown theoretically, [102 and co-nfirmed experientall, [41,
103] that strong stretching occurs aroind De = 0.5.

A crude, but effective, model to describe DNA stretching in a homogeneous extensional field
can be built using a sinple dumbbell. By balancing the drag forces against the worinlike chain
spring force [33] and neglecting Brownian motion and any other forces, the dynamic equation for
the stretch can be expressed as:

d (X)= X 1 1+ X'dE L L 3De [4 (1 - X/L)2+ 4 L

where X is the extension of the molecule, L is the contour length, and E is the applied strain. This
model is particularly useful for predicting the final stretch of a DNA molecule after it has reached
steady state, i.e., after an infinite anmount of strain has been applied.

One of the greatest difficulties in stretching molecules in an extensional field is overcoming
molecilar individualisn. [24] This phenomnenon was first observed in early fluorescent microscopy
work on DNA [41, 103] and refers to the fact that the initial conformation of a molecule greatly
affects its rate of stretching. This often leads to a broad distribution of molecular extensions
in stretching devices because each molecule has reached a different stage of deformation. Large
amounts of strain (~ 10 units) [104] are tyl)ically needed to uniformly stretch a population of
molecules initially in their equilibrium state. This annount of strain is difficult to apply in most
devices unless a field with a. stagnation point is employed; [41, 103, 105, 106] however, stagnation
points typically cannot be used for high-throu ghput devices.

3.3.2 Model Assumptions

We briefly consider the theory of DNA electro)horesis which unnderlies the assumptions of the
umnerical model. First, the electric field in the device can be (determnined by solving Laplace's

equation becauiise the buffer solition is assmnied to be everywhere electroneutral. This assinuption
is valid because the Debye length r~1 of the solution is typically O(nn) which is much smaller
than any other length scale in the problem. Additionally, we neglect any local disturbances of the
electric field due to the charged phosphate backbone of DNA because, again, K- 1 is smaller than
the molecule's persistence length, A, = 0.053 p"mn, [107] the smallest I)ertinent length scale of the

polymner. This allows us to assunne that DNA behaves as a neutral polymer without intraniolecular
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electrostatic interactions. [108] We also assumne the applied electric fields are weak and that we can

neglect any inon-linear electrokinetic phenomena (although we will later question this assumption).

We invoke the theory of electro-hydrodynanic equivalence [76, 38] which states that in the

case of small Debye lengths, DNA dynanics in an electric field E can be treated the same as if the

electric field were replaced with a hydrodyriamic flow field equal to pE where y is the electrophoretic

mobility. This is due to the fact that flow disturbances in the fluid caused by the electrophoretic

movement of DNA segments are screened over K- due to the opposite movenent of the surrounding

counterioii cloud. [3] Finally, we neglect all other forms of hydrodynamic interactions (HI) as the

bulk radius of gyration of T4-DNA which was studied here (R = 1.4 pin) is comparable to the

channel height h = 2 pm. [109]

3.3.3 Device Geometry

The device we sinmlated is identical to that used by Balducci and Doyle [97] and is shown in Figure

3.11B. It consists of two straight channels of different widths connected by a hyperbolic contraction.

The wide inlet channel has a width of wi = 200 pm, and the outlet channel has a width of W2 = 3.8

pm. The shape of the hyperbolic contraction was chosen to create a uniform strain rate within

the contraction [95, 96] and has a length of fe = 80 pm. In front of the contraction are three rows

of posts with each post having a 1 pin radius. The posts are spaced 4 pin center-to-center within

each row, and the distance between rows is also 4 pMin center-to-center. The center of the first

(most upstream) row of posts is located 20 pm in front of the contraction at x = -20 pin with the

subsequent rows located at x = -16 pm and x = -12 pm. Finally, the corners of the device were

rounded with a 1 pin radius.

The electrophoretic strain rate 5 is nearly constant in much of the contraction, [22, 96] and

the nominal strain accimulated by a molecule mnoving down the centerline of the device is 6 £

ln(wi/w2) = 4. The electric field gradient in the contraction can be approximated using the scaling

VE e (E2 - EI)/lc = [Ei(w1/w2 - 1)]/fc where Ei and E2 are the electric field strengths at the

inlet and the outlet of the chainel, respectively. This leads to the form of the Deborah number

within the contraction:
p~i (wi/w2 - 1)

De= r. (3.2)
fc

Additional Deborah munbers can also be defined just before the post array and within the array, [97]

but we do not consider them here. Finally, the kinematic history is not the same for each streamline.

[96] Molecules that enter the contraction from the center of the channel deform differently than

those that enter from the edges of the channel. In order to mitigate this effect, we adopted the

imethod used by Balducci and Doyle [97] and only considered molecules whose centers of mass were

within 45 pii of the centerline when they entered the post array.

3.4 Simulations

We used a simulation imethod for DNA electrophoresis in arbitrary geometries that was developed

by Kim and Doyle [100]. The method uses Brownian dynamics (BD) to model the behavior of

a DNA molecule electrophoresing in an electric field. In order to solve for the electric field in

complicated geometries, the finite element method (FEM) is ernployed. A difficulty that Kimi and

Doyle [100] addressed is how to find the electric field at an arbitrary point in the solution donain
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given that the finite element mesh is unstructured. They developed an efficient way to overcome
this problem with the so called 'target-induced searching algorithn'. A brief description of the
numerical model is presented here.

3.4.1 Brownian Dynamics

DNA molecules are modeled as chains of Nb beads connected by N = (Nb - 1) springs. The
equation of motion for the position ri of the ith bead is:

S bE (ri) + [FB (t) + F.S (t) + FEV()±+FEVWa1(t)
dt b 7 ,1

where pb is the electrophoretic mobility of a bead, (b is the bead drag coefficient, FB is the Brownian
force, FS is the total spring force felt by the bead, F EV is the intrachain excluded volume force due
to nearby beads, and F.EV,wall represents the interaction of the bead with the wall of the device.

We non-dimensionalize the variables as follows:

r I t E
E t ,Ek= (3.4)

i' (bJ2/kBT' E1 '

where r is position, is is the maximum extension of a single spring (l = L/N5 ), t is time, kB is
j3oltzmnann's constant, and T is the absolute temperature. We non-dimensionalize the forces F as
follows:

F
$ (f E .(3.5)

This leads to the non-dimensional form of eq. (3.3):

= PebE ( + B + FiS + EV + FEVwa11
dt (3)

where Peb is the bead Peclet number (Peb pbEil,/Db) given that the bead diffusivity Db
kBT/(b. The non-dimensional Brownian force is given by:

A(rn), (3.7)

where At is the dimensionless time step and (r,,)i are uniform random niumbers such that each
component (rn,) E [-1/2,1/2], where j denotes the coordinate x, y, or z. The net non-dimensional
spring force on the ith bead is:

fil, i= 1,
FS = f i1 + f 1, 1 < i < Nb, (3.8)

fl,NI -1 i= Nb,
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where the spring force f7j is given by a modified Marko-Siggia spring force law: [33, 59]

f V -= K - + 4 2] (3.9)f A 4 4 (1 - ry)2 ry,

where A is the ratio of the effective persistence length to the true persistence length (A - Aeff/Ap), V
is the number of true persistence lengths represented by each spring (v - 1s/Ap), and jj represents

the distance between j and i . The intrachain excluded volune force RE is modeled with the
soft potential used by Jendrejack et al.: [82]

F y 9 ev,p exp o/j 2, (3.10)
j=l1j4/)

where tDev,p = ev,p//3 is the dimensionless form of the excluded volume parameter v*"P.
D'V wallThe interactions between a bead and the walls represente'd by F w are resolved using a

modified Heyes-Melrose algorithun. [110, 100] Whenever a bead moves outside the dlomain during

a time step, it is moved to the nearest point on the domain boundary before commencing the next

time step:

Af =Ap;H (Api) ,

where A4If" is the displacement vector due to the Heyes-Melrose algorithm, Api is the vector
pointing from the bead outside the domain to the nearest boundary point, and the Heaviside step
function H (Api) restricts the application of the algorithm to only the beads that have penetrated
the domnain boundaries.

3.4.2 Determination of Electric Field

In order to determine the electric field in the device, we use Laplace's equation for the electric
potential 4 within the channel as previously discussed:

v24 = 0. (3.12)

We assume that the PDMS channel walls are insulating and that the electric fields at the device
inlet and outlet are uniform. This leads to the boundary conditions:

4|inlet =1, 0Ioutlet = 42, and n - V4wans = 0, (3.13)

where 41 and 42 are the imnposed electric potentials at the inlet and the outlet of the device,
respectively, and n is the unit normal to the walls.

Eqs. 3.12 and 3.13 are solved using Galerkin FEM where 4 is interpolated using a 6-node P2
shape function. The electric field E is found by applying FEM again to the relation E = -V4 and
using a 3-node PO shape function to interpolate E. After obtaining E, its nodal values are saved.
During the simulations, whenever the value of E is needed at a given point, the target-induced
searching algorithm is called to find the element in which the point is located. The nodal values
for E in that element are then retrieved, and the value of E at the specified point is interpolated.
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3.4.3 Parameters

In this stuIdy, T4-DNA was modeled in the same manner as Kim and Doyle [100] in their simulations
of DNA collisions with a single post. They assumed a stained contour length of L:= 71.4 Pml and
used Nb = 128 beads such that v = 10.61. The corresponding A was 1.89, and an excluded volume
parameter v*/'P of 0.0004 yn 3 was found to accurately reproduce the radius of gyration of A-DNA.
At this discretization, along with sufficiently small time steps, the aphysical situation where a chain
can move "through" a post is precluded. We found the simulated non-diiensional relaxation time
of the 128-bead chain to be A = 60.1 in a 2 pam tall channel.

Due to the low field strengths in the inlet of the channel, it takes a very long time to simulate
the movement of a chain from the inlet to the beginning of the contraction. In order to decrease
the simulation time, point particles possessing the same diffusivity as the 128-bead chains were
placed at r/tc = -2 and were distributed randomly across the width of the channel with a. uniform
distribution. The movement of the particles toward the contraction was then simulated until the
local dimensionless strain rate =It/D, along the centerline reached _ = 0.1/r (but no farther
than x = -30 pin for the low De cases). At this point, equilibrated chains were placed with their
center of masses located at the positions of the particles. The electrophoresis of the chains was
then simulated until the most downstream part of the chains reached x = 250 jap. The time step
scheme was as follows: A = 0.005 for x < -24 pm at which point it switched to:

{ 0.005, De < 3,
Ai = (3.14)0.005(n)l, De > 3.

For each De considered, 300 chains were simulated although only those within 45 pim of the cen-
terline when they entered the post array were used in this study as discussed earlier.

3.5 Results

The major global observable in the study was the average extension of the molecules as they reached
the end of the contraction. In our simulations, the extension of a chain Xex is defined as the distance
between the most upstream and downstream beads of the chain, and the extension at the end of
the contraction Xex was determined when the most downstream part of the chain first passed the
end of the contraction. Figure 3.2 compares results from experiments and simulations for Xx, It
is clear from Figure 3.2A that the simulation model does an excellent job of predicting the mean
stretch of the molecules in an open channel as was previously shown by Kim and Doyle. [100] But
when posts are introduced in front of the contraction, the simulations consistently over predict the
average extension by 10-15% as shown in Figure 3.2B. Nonetheless, the results are in qualitative
agreement with the experimental trend.

In order to explore why the performance of the simulation model changes so abruptly when posts
are added, we have attempted to isolate and analyze the behavior of the chains in each component
of the device, i.e., the post array and the contraction. Although this is not strictly possible because
the effects of each are certainly coupled, it still provides clues as to why the simulations and
experiments differ. In particular, we are interested in whether the differences between the two are
simply due to quantitative inaccuracies within the numerical model or due to the failure of the
model to predict qualitative features of the experiments.



3.5. Results

1.04 1.04 I
A B

0.8 - - 0.8 -

A 0.6 - - 0.6 - -

X 0.4 - 0.4 - -V a
0.2 - 0.2 -

0.0 t I I I I L- 0.0 t I I I I -

0 2 4 6 8 10 0 2 4 6 8 10

De De

Fig. 3.2: Ensemble-averaged relative stretch of the chains as they reach the end

of the contraction vs De (A) in an open channel and (B) in a channel with

posts. The black squares are the experimental data, and the red diamonds are

the simulation data. The line represents the theoretical infinite-strain stretch

as predicted by the simple dumbbell model given in eq. 3.1. The error bars.

which have been suppressed for clarity, are approximately the size of the markers

themselves.

3.5.1 Interactions with the Post Array

To assess the ability of the simulations to correctly describe the interactions between the molecules

and the posts, we calculated chain hooking probabilities. A hook was defined as when portions

of the chain exist in all four quadrants surrounding a post in a coordinate system whose origin

is located at the center of the post; in addition, the chain must cross the upstream face of the

post. Unlike in experiments, the coordinate system used to define the quadrants was not rotated

to coincide with the direction of the local impinging electric field; however, this was not found to

affect the determination of a hooking event. Figure 3.3 shows the results of this hooking analysis.

The overall hooking probabilities on any post (A) show near quantitative agreement between the

experiments and simulations except at De = 1 and 2 where the simulations give a moderate over

prediction. The probability of hooking on the first row is also shown (B), and again there is near

quantitative agreement except at De = 2.
It should be noted that the hooking probability on a post is known to depend on both the

local De and Pe. [49, 211 In the simulations, however, only a single time scale can be matched

to experiments which, in this case, is the relaxation time. This means that while De is the same

between experiments and simulations, other time scales are not necessarily equivalent. This includes

the diffusive time scale which is represented non-dimensionally by Pe. Indeed, we estimate Pe for

the simulations is 15-40% higher than in experiments. This difference in Pe might account for some

of the discrepancy between the hooking probabilities in experiments and simulations at De = 1

and 2. A better explanation, however, is that the number of experimental hooking events were

undercounted at low De due to the limited resolution of images and the fact that many molecules

barely deformed around the posts in the weak fields. This explanation is supported by movies of the

- ..' .. ..... .. .... ...... ........ .. ................. .. ....... - W-Ars-_10- _ -
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Fig. 3.3: (A) Overall hooking probabilities on all rows in the post army vs De.
(B) The hooking probabilities for only the first row of the array vs De. The black
squares are the experimental data, and the red diamonds are the simulation data.

simulated chains where many hooking events are seen to barely meet the above definition of a hook
with the chains just crossing into all four quadrants surrounding the post for a very shot period of
time. Simulations easily find and count this event as a hook while the reliability of experimental
movie analysis is questionable at low field strengths.

An even more sensitive measure of the performance of the simulation model in predicting the
DNA-post array interactions is given by the extension distribution of the chains as they leave
the array. The extension Xex,p of the chains was measured when the most upstream part of the
chain first left the post array. Figure 3.4 compares the extension distributions for experiments and
simulations, and very good qualitative agreement is evident with the exception of De = 5. It is
seen that with increasing electric field strength, the presence of the obstacle array leads to two
distinct populations of molecules: those that only mildly stretch in the array and those that stretch
significantly. Very few molecules stretch only moderately. Quantitatively, the simulations tend
to show a sharper peak for the highly stretched population which also exists at a slightly higher
extension, but this difference could be magnified by the simulations having a slightly higher Pe as
previously discussed. But due to poor statistics, it is difficult to discern the actual behavior of the
distributions at the experimental conditions of De = 3.5 and 5. Another consideration is that as
the molecules unhook, their arms often hang off into the contraction. This means that the stretch
leaving the post array is influenced by the behavior in the contraction. If the simulations have
difficulty correctly predicting the stretch due to the field gradients in the contraction, it can taint
the stretch coming off the post array as well.

Overall, we see that qualitatively, and often quantitatively, the experiments and simulations
agree with respect to the behavior of the molecules as they interact with the post array. This
is expected as Kim and Doyle [10] have shown the simulation model is fairly capable of repro-
ducing experimental data for the collision of a molecule with a single post. Additionally, other
Brownian dynamics simulation methods have had success reproducing the behavior of DNA being
hydrodynamically driven through post arrays [93].
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Fig. 3.4: Distribution of the relative extensions of the chains as they pass the end

of the post array for several values of De. The black squares are the experimental

data, and the red diamonds are the simulation data.

3.5.2 Stretching in the Contraction

We now consider the extension distributions of the chains as they reach the end of the contraction

as shown in Figure 3.5. The simulations show that with increasing De more chains reach high

extensions, in agreement with experimental results. However, simulations show a very sharp peak

in the distribution at high extensions which is not mirrored in the experimental results. This

discrepancy camot be explained by unmatched Pe, and while poor experimental statistics may

exacerbate the differences, statistics certainly cannot fully account for the discrepancies either,
especially given their systematic nature. This suggests that the molecules are somehow more

difficult to stretch in experiments than in simulations. However, it is also possible that the slightly

higher extensions coming off the post array in the simulations could increase the final stretch at

the end of the contraction.
In order to mitigate the influence of the post array on the analysis of the stretching within the

contraction, we display in Figure 3.6 scatter plots that show for each chain the final stretch at the

end of the contraction versus the intermediate stretch at the exit of the post array. This allows

us to compare the deformation of molecules in the contraction that had the same initial stretch

leaving the array. Again, the simulations are in qualitative agreement with experiments that DNA
deformation in the post array leads to very strong stretching in the contraction. In particular,
the simulations predict that a stretch of approximately 20% at the exit of the post array virtually

............ :: :: I .::'::.:
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Fig. 3.5: Distribution of the relative extensions of the chains as they reach
the end of the contraction for several values of De. The black squares are the
experimental data, and the red diamonds are the simulation data.

guarantees strong stretching at the end of the contraction and additional predeformation beyond
20% adds little to the final stretch, as previously discovered in experiments.

On the other hand, there are some clear differences between the two results. First, the simulated
chains seem to reach a larger maximum extension than molecules in experiments. This may suggest
that De is not properly matched, but it is highly unlikely. The maximum extension found in the
simulations is well-described by the infinite-strain limit predicted by a dumbbell model with the
same De (the flat plateau region of the blue curve in Figure 3.6), and experimentally, even if De is
off slightly due to uncertainty in the relaxation time of the molecules, correcting this small error
would not change De enough to match the simulations. So simply claiming that the differences in
maximum stretch are due to improperly matched time scales does not explain the differences.

The second discrepancy observed in Figure 3.6 is that the simulations predict that above a
predeformation of about 20% the chains should almost always reach their maximum extension.
This gives the stretch gain plots from simulations of De > 3.5 (Figures 3.6B-D) a sharp "elbow"
region where the trend turns flat. In contrast, experimental results show that the molecules often
fall slightly short of their infinite-strain extension. Also, the amount the actual extension falls
below the infinite-strain extension decreases with increasing predeformation. This leads to a wider
elbow region in the stretch gain plots where the trend becomes slowly increasing instead of constant
as in simulations. In order to demonstrate that our simulation results make sense based on the
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Fig. 3.6: Scatter plots of the relative extension of the chains when they reach

the end of the contraction vs the relative extension when the chains exit the post

array for various De. The black squares are the experimental data, and the red

diamonds are the simulation data. The solid blue line represents the predicted

final stretch after an additional 2.5 units of strain using the dumbbell model

given by eq. 3.1.

physics incorporated, we have included in Figure 3.6 a prediction for the maximum stretch gain

expected at the end of the contraction for a given amount of predeformation. This prediction was

derived using the non-Brownian dumbbell model with a WLC spring force given by eq. 3.1. Based

on the kinematic analysis of Randall et al., [22] we have assumed that after the post array there is

approximately 2.5 units of strain left in the device. The model accounts for non-affine deformation

of the chains, but does not include resistance to stretching due to internal configurations (i.e.,
molecular individualism) or the slightly different kinematic histories experienced by each chain.

Nonetheless, it should provide a reasonable estimate for the maximum stretch gain expected. It is

clearly seen from Figure 3.6 that the simulation results are well-described by the model while the

experimental results only follow its qualitative trends.

Balducci and Doyle [97] also reported that many of the molecules in the elbow region, 0.2 <

Xexp/L < 0.4, contained a small fold in their conformation near their downstream ends as they
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exited the contraction. The simulations do not predict this behavior since nearly all the molecules
in this extension range after the post array will reach the infinite-strain limit. Indeed, movies of
the simulated chains do not show the formation of these folded conformations.

Overall, our numerical model is capable of reproducing the broad qualitative blehavior of the
chains in the contraction after they have left the post array. For example, the simulations pre-
dict that mildly predeformed chains should stretch significantly in the contraction in agreement
with experiments. However, the simulations do not correctly predict some of the finer qualitative
behavior in the contraction.

3.5.3 Possible Reasons for the Observed Differences

The question, then, is why the simulation results do not always quantitatively match the results of
the experiments? One possible reason already mentioned could be limnited experimental statistics.
But the systematic nature of the differences between simulations and experiments suggest that
these differences are not artificial. A mismatch in time scales has also been discussed as one reason.
This mismatch could be an improperly scaled De due to uncertainties in the relaxation time of
the molecules, or it could be the slightly higher Pe in the simulations due to the inability of the
simulations to match both the relaxation time and the diffusive time scale of experiments. However,
neither of these possibilities has the potential to fully explain the diferences seen.

A more plausible explanation is that additional physics is becoming important in the contrac-
tion, and a possible candidate is non-linear electrokinetic effects. The electric fields in the con-
traction are fairly strong, reaching E 0 O(500 V/cm), which could polarize the DNA molecules.
Additionally, electric field gradients exist in the contraction that could potentially lead to dielec-
trophoretic effects which depend upon the term E - VE.

Dielectrophoresis occurs when particles (or macromolecules) polarize in strong electric fields.
The resulting dipole then interacts with field gradients to attract or repel the particles to or from
areas of strong field strengths. Most studies on the dielectrophoresis of DNA have used AC fields
and created the necessary electric field gradients by placing the electrodes in close )roximity to each
other. There have been a few studies, however, that have considered electrodeless dielectrophoresis
of DNA using microfabricated devices to shape the field lines, [111, 112, 113, 114] and some work
has even been performed on DC fields. [113, 114]

Chou et al. [111] and Regtmeier et al. [112] used arrays of obstacles to bend and concentrate the
field lines between the obstacles, and using an AC field, they trapped DNA between the obstacles.

Regtmeier et al. also added a background DC field that led to the size-dependent separation of
DNA molecules. This technique is similar to the previously proposed method of Ajdari and Prost
[115] where AC dielectrophoretic traps transverse to a uniform DC field slow down DNA mnolecules
in a size-dependent manner. Petersen et al. [113] also adapted the method suggested by Ajdari and
Prost by using thin strips of gold laid down perpendicular to a DC electric field. The periodic strips
attracted the electric field lines due to their high conductivity and created strong dielectrophoretic
forces in a highly localized area, near the edges of the gold strips. Parikesit et al. [114] used device
walls to bend and concentrate field lines similar to Chou et al. [111] but with DC fields; however,
their results were difficult to interpret and even seemed to contradict previous findings.

In our device, the magnitude of E - VE reaches as high as 1.4 x 10' V2 /cm 3 wich is only one

order of magnitude smaller than that produced by Petersen et al. [113] in their trapping work. But
in contrast to our device, the large values of E - VE that led to trapping were highly localized near
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the edges of the gold strips and only occurred over length scales of about 100 nn, comparable to the
persistence length of DNA. This means that only small portions of the molecules would have been
polarized and would have experienced a dielectrophoretic force. In our geometry, the strong fields
and gradients exist over the entire length of the contraction which is fe = 80 pin, which is much
larger than the radius of gyration of T4-DNA and comparable to its contour length. So T4-DNA
molecules in our device could polarize over their entire dimension which could possibly lead to even
stronger non-linear electrokinetic effects than seen by Petersen et al. [113] In addition, the fact
that DNA molecules are stretched in the contraction could render them more polarizable than when

they are in their coiled state, [116] further increasing their sensitivity to non-linear electrokinetic

effects.
It is currently difficult to study the possibility of such effects in the device because the molecules

move very fast through the contraction due to the strong electric fields. A possible way to overcome
this problem would be to tether the DNA molecule to a bead that can be optically trapped in the
contraction so that the dynamic and steady-state extension behavior of the molecule can be studied.

Finally, it should again be noted that the current simulation model is able to match experi-
mental results for a contraction without posts which raises the question, what is different about

the situation with posts? The answer may lay in the fact that in an open channel, few of the
chains actually come close to reaching the infinite-strain limit extension. Even in the case with
posts, the simulations seem to be in fairly good agreements with experiments for those chains that
do riot stretch significantly. Additionally, in the case of open channels, the simnulations have been
shown to over predict the average stretch at higher De of 14 and 23 when compared to experi-

ents [96]. At these De, the simulations began to over predict the populations of highly stretched
molecules; however, the size of this population still only represented a small fraction of the total
number of nolecules. So any discrepancy in the behavior of highly stretched molecules between
the simulations and experiments may not have been readily apparent. In the present situation,
preconditioning leads to a large population of highly stretched molecules so that these differences
should be more easily visible.

3.6 Conclusions

Simulations were performed for DNA molecules passing through a microcontraction preceded by
a post array. The results were compared to those from previously performed experiments. Good
qualitative and, at times, even quantitative agreeient was found for the behavior of the chains
during their interaction with the post array as measured by hooking probabilities and extension
distributions of the chains as thev exited the array. Qualitatively, the simulations strongly support

the experimental finding that conformational preconditioning using an obstacle array can increase
the stretching efficiency of a strain-limited microcontraction. Additionally, the simulations show
that a predeformation of approximately 20% in the post array is nearly sufficient to guarantee
strong stretching of a chain in the contraction in accordance with experiments.

Qualitative differences between the simulations and experiments were observed, particularly
with respect to the population of highly stretched molecules. The simulations predict a very sharp
peak in the extension distribution at high extensions for the molecules exiting the contraction
while experimental results exhibited a broader and iilder peak at high extensions. This difference
causes simulations to over predict the average stretch of the molecules leaving the contraction.

Finally, the molecules in experiments always seemed to fall slightly short of the infimite-strain
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linit extension while simlations predict that nearly all molecules that left the post array with an
extension above 20% would reach the infinite-strain limit by the end of the contraction. Possible
reasons for the discrepancy between sinulations and experiments are suggested with emphasis on
non-linear electrokinetic effects. Additionally, experiments which might elucidate the behavior of
mfolecules in the contraction are suggested.
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CHAPTER 4

Collisions with a Large, Ideally
Conducting Post

Collisions of DNA molecules with microfabricated posts have received a great deal of attention
over the last two decades. Fundamentally, post collisions are used to apply forces to polymers on
the molecular length scale. This provides a simple and direct means to deform and manipulate
individual molecules and has found possible application in the realm of DNA separations. Most
previous studies on electrophoretic collisions with posts have either looked at insulating posts or
completely neglected the field disturbances induced by the post. In this chapter, we consider
collisions with conducting posts. In this case, molecules are attracted to and trapped on the post
surface and only slowly escape due to a combination of diffusion and convection. We simplify this

problem in order to distill the essential physics and develop analytical models that show that the
important physics are well-understood. We simulate DNA collisions with large, conducting posts

and compare the results to our theoretical predictions. Our findings, which are the first reported for
conducting posts, should guide future studies and can be modified and applied to more complicated

situations like moderately-sized posts or strong applied field strengths.



4.1. Overview

4.1 Overview

We theoretically treat the problem of DNA collisions with large, ideally conducting posts during
electrophoresis. We exploit a separation of time and length scales that allows the problem to be
broken into two connected problems: (i) compression of a molecule against a flat wall by an applied
transverse field, and (ii) transport of a molecule across the post surface duc to both tangential
diffusion and convection. We address the former using a combination of statistical mechanics and
blob theory, and the latter utilizing a Fokker-Planck approach. The theoretical predictions are then
compared to the results of Brownian dynamics simulations.

4.2 Introduction

The development of microfluidics and "lab-on-a-chip" devices has opened a new era for the study
of DNA electrophoresis and polymer physics more generally. Such devices have provided platforms
to study fundamental problems in polymer physics [41, 30, 17, 105, 31, 32], and along the way,
they have found applications in DNA separations [57, 15, 117] and genomic mapping [2, 118]. In
particular, one problem that has received considerable attention is the collision of a DNA molecule
with a cylindrical post [6, 5, 8, 49, 10, 119, 120].

Post arrays and similar devices have been used to achieve separation of large DNA molecules
[121, 57, 92]. When a DNA molecule is electrophoretically or hydrodynamically driven into a
post, it frequently forms a hook by wrapping around the post and into a hairpin-like configuration
[52, 5, 8, 9, 93, 10]. The subsequent unhooking process, which is often described by a rope-over-
pulley model, results in a length-dependent unhooking time and establishes the basis for length-
based separations in large arrays of posts [52, 5, 6, 9, 98].

More fundamentally, collisions offer a simple way to manipulate individual molecules by applying
forces on the molecular length scale. For example, post collisions have been used to deform DNA
molecules so that their ensuing relaxation processes can be studied [30, 31]. In addition, our group
has exploited collisions to "precondition" DNA for subsequent stretching in an elongational field
[97] in order to overcomne molecular individualism [24]. Cylindrical posts have also been used to
create field gradients near the post surface that can stretch and deform molecules [49, 21].

Past post work has tended to focus on the small post limit where the posts are much smaller
than the equilibrium DNA coil size. These "point obstacles" virtually guarantee the formation
of a large number of molecular hooks as long as the field strength is strong enough [53] and the
posts are properly positioned [55, 99]. However, from a theoretical perspective, modeling of the
direct interactions between a point obstacle and a molecule is fairly simple with the post being
treated as little more than a simple pivot point during a collision [9]. That is not to say that
collisions with point obstacles are trivial. The dynamics of such events can be quite complex
[9], but the characteristics of the post itself are completely neglected. When the finite size of the
posts is taken into account, the problem becomes much richer. The relative size of the post becomes
important [8, 49], and new types of collision processes are possible (e.g., "roll-offs" [8]). In addition,
disturbances of the electrophoretic velocity field due to the presence of the post must be considered
[49, 21, 122].

When finite-sized posts were first examined, the field disturbances due to the post were ne-
glected, and a umiform field was assumed everywhere [8]. Later, when researchers began to account
for the field disturbances, the posts were assumed to be electrically insulating so that the field lines
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4.3. Problem Statement

avoid and are repelled by the post surface [49, 21, 10]. Indeed, on the post surface, the field lines are
everywhere tangential to the post. The defornation of the field lines leads to field gradients near
the post surface that are able to deform molecules both on the front and backside of the posts [21],
and this deformation aids in hook formation [49]. However, a large munber of niolecules are quickly
swept around the post by the nearly tangential field lines close to the surface. These molecules and
their trajectories are only weakly affected by the presence of the post.

4.3 Problem Statement

In this work, we consider the case of an id(eally conducting post. By this, we mean a post whose
dielectric constant EP is much greater than that of the surrounding fluid Ef (i.e., Ep > Ef). Unlike the
insulating case, the field lines for a conducting post, which are shown in Figure 4.1A, are attracted
to and focused by the post. This mneans the molecules also tend to be attracted to the post and
interact very strongly with it. We are interested in understanding the fundamental physics that
govern a molecule that is being electrophoretically driven into an ideally conducting post. Since
this is the first attenpt to study conducting posts, we only consider linear electrophoresis in our
analysis and neglect any nonlinear electrokinetic effects which may be present.

4.4 Initial Analysis of Problem

4.4.1 Qualitative Features of a Collision

The electrophoretic velocity field pE surrounding an ideally conducting post is given by

PE + _r -21 - r -2]

=__ - [1 + -Jjcos 6er + [1 - - siln 0e, (4.1)pEx R I R snOo

where p is the electrophoretic mobility of the molecule, E, is the strength of the electric field far
away from the post applied in the -ex direction, R is the radius of the post, and r and 0 give the
position in polar coordinates with the origin at the post (eiter.

On the post surface at r = R, it is clear from Equation 4.1 that pE, is strong over nmost of the
surface while pEO is identically equal to zero (see Figure 4.1A). Therefore, the field lines always
intersect the post surface perpendicularly. On the upstream side of the post (-7r/2 < 0 < 7/2) the
field lines are directed into the post while on the downstream side (7/2 < 0 < 3x/2) the field lines
are directed away from and out of the post. As a molecule approaches the post, it is driven into the
upstreamn side of the imipenetrable surface. For our study, we have restricted our analysis to large
posts, whereby we mean that R > Rg, where R0 is the radius of gyration of the colliding iolecule.
This guarantees that hooking of the molecule around the post is preciuded and that, for reasonable
applied field strengths, the field gradients are weak so that strong stretching of a mnolecule is also
inpossible. Therefore, the molecule is compressed and "trapped" against the post by the strong
radial field.

There are two mrechanisus by which a molecule can "escape" from the post: diffusion and
convection. Clearly, the miolecule experiences tangential diffusion, and given enough time, diffusion
will guarantee eventual escape. But the nolecule also experiences a weak tangential velocity vo.

Although pEo = 0 for r = R, for r > R it is nonzero. The strength of pEO increases with
inereasing r, and it is always directed toward the downstreami side of the post. Since a compressed
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iolecule still has some finite size, it is exposed to the weak tangential field that exists just off the
post surface. This means that the average tangential velocity of the molecule (vo) # 0, and it is
slowly convected around the post and finally "escapes". Since (vo) depends upon the distance of
the molecule fron the post surface, we must understand how piE, comnpresses the molecule against
the post and affects its size.

4.4.2 Analysis of Field Near the Post Surface

Because molecules are "trapped" against the post, we are particularly interested in the behavior of
pE near the post surface. We can exploit the fact that R > R and linearize the field around

r R+RY
- : - - : 1. (4.2)

R R

Additionally, we can replace the radial position r with an new coordinate d, (see Figure 4.1A)
which is the distance from the post surface

d1 < 1. (4.3)
WR

Combining these two approximations, we can sinplify the nonlinear radial term in Equation 4.1:

r-2 1- 2 1) ~: 1 - 2-. (4.4)
R R R'

If we use this result to approximate pE near the post surface, we obtain

puE d 45~ -2 cos Oe. + 21 )sin eo. (4.5)
pEoo R

4.4.3 Two Connected Problems

The disparity of the length scales due to the large post size, leads to a separation of time scales
between the dynanics occurring in each of the dinensions. In the e0 direction, the convective and
diffusive tune scales are based on the length R, so the nolecular escape tinie is quite large. On
the other hand, conpression in the e, direction is due to a competition between convection toward
the post surface and diffusion away from it. This results in a time scale for conipression based on
lengths similar to Rg so that it is very short. Therefore, the dynamics in the e direction occur
much more quickly than those in the e0 direction. This allows us to break the collision probleni
into the two connected problens shown in Figure 4.1.

We refer to the first of these as the "post problem" which occurs on the scale of the post
fR. From this vantage point, the inolecule looks as though it is being transported across the

post surface due to a conbination of tangential diffusion and convection. The average tangential
velocity is approxiiated based on Equation 4.5:

('vo) ~ 2pEoo sinG. (4.6)
R

The average distance froml the wall (dy) is based on the fast comnpression dynamnics that occur in the
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radial dinension, and since (d,) = f(pEr ~ -2pEoo cos 0), it varies as the molecule moves across
the post surface. But because the compression dynamics are fast, we can make a pseudosteady
approximation and assume that (d,) is always in equilibrium with the local radial field pEr.

The second problemu shown in Figure 4.1D is the "local problemn" which occurs on the length scale
of ~ R 9 . Effectively, we have "zoomed" in on the molecule. We can neglect the curvature inherent
in the post problem because the post surface now looks like a flat wall and pE looks uniform.
The only important phenomenon occurring at this scale is the compression of the nmolecule by the
transverse component of the uniform field which we call pE for the local problem. 'We can analyze
this situation to determine how the average distance from the wall, which we call (d,,,) for the local

problem, depends upon pEo.
These two problems are clearly connected as seen in Figure 4.1. The post problem provides

the local problemI with the strength of the transverse field (pEo = pfE,(G)), and in return, the
local problemi feeds the post problem the average distance fromi the post ((d,) = (d,)) for use in
determining the average tangential velocity (vo).

4.4.4 Approach

In our detailed analysis of the collision problem, we begin by examining the local problem of a
Gaussian chain driven into a flat wall by a uniform transverse field. We use a conbination of blob
theory and statistical mechanics to derive expressions and scalings for (d,) as a function of pEo.
We confirmi these scalings using Brownian dynamics sinmulations.

We then turn to the post problen where we use our results fromi the local case to predict (vo).
After confirming the validity of our predictions using simulations, we incorporate diffusion into our
theoretical model by turning to a Fokker-Planck equation and calculating the mean escape tiime
of a molecule based on the initial collision location. These results are compared to simulations as
well.

4.5 Brownian Dynamics Simulation

DNA molecules are modeled as chains of Nb beads connected by N, = Nb - 1 Hookean springs.
The equation of motion for the position ri of the ith bead is

dr == pE (ri) + (F§ + FB) (4.7)
dt 1 1

where p is the electrophoretic imobility of the chain, (b is the bead drag coefficient, FS is the total
spring force felt by the bead, and F-B is the Brownian force.

We nondinmensionalize Equation 4.7 based on the length and time scales of a spring: j =
/kBT/H and , E t2/Db, respectively, where H is the Hookean spring constant and Db is the

bead diffusivitv. The nondiniensional variables for the local problem are

r- t E F

Ts rb -Eo kBT/(.

(for the post problem we nondimensionalize E using Eo). This gives the dinmensionless form of
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the equation of motion:

= Peb,oE (Qi) + Ni + ;B (4.9)
dt

where PCb,o = pEos/Db is the bead P6elet number (or for the post problem, Peb,.o = puEjcs/Db).
The nondimensional Brownian force is given by

B 2 n4 (4.10)

where Ai is the dimensionless time step and [rn] are uniform random numbers such that each

component [rn]j E [-1/2, 1/2], where j denotes the coordinate x, y, or z. Equation 4.10 has been
normalized so that it provides the proper variance for the Brownian force in order to satisfy the
fluctuation dissipation theorem.

The net dimnensionless spring force on the ith bead is

s= N +f , 1 < i K Nb, (4.11)

f Na -, i =Nb,

where fPy is the force exerted on the ith bead by the jth bead. We have included two contributions

to the spring force ft ± +s.The first is the simple bulk Hookean spring force:

~b = -. (4.12)

The second contribution fs is a correction for the presence of the post/wall.
f'.

When a spring is located near an impenetrable surface, it disrupts the underlying random walk
upon which the entropic spring force is based. In bulk, the configuration space of a Gaussian chain
exhibits axial syrunetry around its spring (end-to-end) vector. This leads to a Hookean spring
force that is always directed along the direction of the spring vector as is manifest in Equation
4.12. However, in the presence of a surface, the chain's configuration space is restricted and this
axial svmnmetrv is broken. This leads to purely entropic forces that push the chain away from the
surface and that are not necessarily directed along the direction of the spring vector. Consideration
of this force renders the spring behavior more realistic and actually allows us to use fewer beads

(and, therefore, fewer computational resources) in order to reach the predicted scaling regimes.

Ve can account for this effect by including a correction term in the spring force [71]. If the
surface is a flat plane that passes through the origin, the correction is given by

2 (4.13)
S {exp [2(i -n,17) (rt . nm)] - 1

where n, is the unit normal pointing out of the surface. This term always pushes the beads away
from tie wall. It diverges as the beads approach the surface and is sufficient to prevent the beads
from passing through the wall, so it has the secondary benefit that we do not have to include an
additional force dedicated to imposing the wall excluded volume. This expression can be directly
applied for the local problen since the surface is flat. For the post problem, ve assuime that locally
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the J)ost looks flat and neglect aly correction due to the curvature of the post surface.
The time-stepping scheme we used for the local problem is as follows:

N ; / ( s N bI N J3/2 ,N- Pe /5000, Peb,O <N3/

= o/5000, N / < Pe, < 1, (4.14)

Pe. /5000, Peb,O > 1.

For the post problem, we used the same scheme with Peb,o = 2Peb,,.

4.6 Analysis of Local Problem/Field-Induced Compression

The local problem shown in Figure 4.1B is characterized by a polymer chain near a flat wall under-
going field-induced compression by a uniform electrophoretic velocity field pE applied transverse
to the wall in the -e. direction. Note that for the local problem we have neglected the curvature
inherent in the global post problem. Therefore, we use Cartesian coordinates when describing the
local problem. But we will resume using cylindrical coordinates in Section 4.7 when we return to
the global post problem. In our analysis of this problem, we first consider the behavior of a point
particle and of a Hookean dumbbell. Using statistical mechanics, we can derive exact analytical
results for these cases which provide basic insight into the problem and a. way to validate our nu-
merical model. We then look to blob theory to tackle the more complicated problem of a multibead
Gau ssian chain.

4.6.1 Point Particle and Dumbbell

The average distance from the wall for a point particle with a diffusivity of D is easily shown to
be (dWP) = D/pEo. This result owes its sirmplicity to the fact that there is no geometric length
scale in the problen because the wall is infinitely large and the particle is infinitely small (there
is no spring to consider in this case). Therefore, the only length scale is the dynamic oneC, (d),
which follows from balancing the opposing forces of convection and diffusion on the particle. If
we arbitrarily define a field-independent length scale C for the problemI, then the result for a point

particle becomes

(dit - Per-m  (4.15)

where Pe, = pEoC/D is a P6clet number based on the arbitrary length scale C. This result is useful
because we expect that even large mnultibead chains should recover point particle behavior when
the applied field strength is extremely weak.

The derivation for the average distance from the wall for a Hookean dumbbell dV) is more
involved. Due to the linearity of the Hookean spring, all three dimensions act independently, and
the problem is ID in the e. direction. The probability density of finding a. dumbbell with a. center
of mass located at d, and a spring length of q is proportional to the Boltzmann distribution

P~A [ q) x
2 p 2 11 ](4.16)P (djk, q) - exp (- eTh0,Y (xp 2 C$} 2 (C$16j
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Fig. 4.2: Plot of the average distance of the center of mass (ddb) from a flat

wall for a Hookearn dumbbell in a uniform field versus the field strength for the
BD simulations along with the analytical result given by Equation 4.17 (top).
Plot of the radius of gyration squared of a Hookean dumbbell in the direction

transverse to the wall KRd 2 versus the field strength for the simulations and

the exact solution given by Equation 4.18 (bottom).



4.6. Analysis of Local Probleni/Field-Induced Compression

where Peb,o = PEof5/Db. From this, we can determine the average distance from the wall

(db) 1 exp(- Pe2o) Pea + Peb,o) + derfc( LPeblo) (Pe-2 - 2 - PebO)
-- 7 ( ... 1(4.17)

2 d erfc( Peb,o) (Peb + bo) -exp(- IPe ) .

This result is shown in Figure 4.2.

There are two regimes connected by a transition region that describe the behavior of (d').
The first is a weak field regime where Peb,o < 1. Under these conditions, the dumbbell typically
is far away from the wall and only occasionally interacts with it. Therefore, the dubbell behaves
very munch like a point particle. Indeed, in the limit of Peb,o < 1 the expression given in Equation
4.17 reduces to (d) /s (2Peb,o) 1 which is the expected behavior of a point particle with a
diffusivity of D = Db/2 (see Figure 4.2).

The transition region occurs around Peb,o ~ 1. At this field strength, (dd) is comparable
to the equilibriun spring length f, and the dumbbell no longer acts like a single point particle.
This can clearly be seen by considering the ID radius of gyration of the dumbbell in the direction
transverse to the wall Rd1 which is given by

K d)1~erfc( LPebo)Peb (Fe + 6 + Pe j0) - jXp(-I e2O) 5+ Pe

- / 12 N -erfc( Peb,o) Peb + Peb.o) -- exp)(-0Peo)

and can also be seen ini Figure 4.2. For Peb,o < 1, KR V/(e2 remains unp~ertuirbed and maintains

a constant value of 1/4. But as Peb,o approaches 1, KR 'I)/f)2lbegins to dlrop) as thme internal
mode of the dIubbell is affected by the wall presence.

The seconid regime is a high field limit where Peb,o >> 1. Wheni the field strength is very large,
the dumbbell is strongly punshed against the wall, arid bo0th beads are always very near the wall
surface (ri,2/l, r2,/Cs K< 1). This also guarantees that the distance between the beads in the
transverse dlirection is always very small comnpared1 to the equilibrium sprmg~ size (|r, - rl,z I /ls <
1). The result of these two conditions is that the transverse comnponent of the bulk spring force
(fz given by Equation 4.12 is negligible, and the wall correction for the spring force on the ith

beadl (fjv)z given by Equation 4.13 approaches (ri~/t)-1. These two fimndimngs imndicate that the
beads become uncoupled in the ez direction when the dumbbell is p~ushed strongly against the wall.
So) for large field strengths, the two ends of the dumbbell should act independently of each other
and behave as point particles of diffusivity D =Db. Indeed, in the limit of Peb~O >> 1, Equation
4.17 reduces to (df) /ls 2Peb hch xcp for thme factor of 2,is th xetdresult for a

120 whc, ep 2, te2epce

point particle (see Figure 4.2). The factor of 2 conmes from the wall correctioni for the sp~ring force

(ff7)z ~ (ri~z/l)~1 which does not exist in the case of a true point p~article. But this additional
force does not change the predicted scaling with Peb,o; it just affects the numerical prefactor.

Also shown in Figure 4.2 are the results from our BD simlations of a molecule pused against
a flat wall. The data from the simlations match the exact analytical results thereby validating
our numerical model.
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4.6.2 Multibead Chain

The added complexity of multibead chains does not allow for exact analytical solutions; however,

based on the point particle and dumbbell results we can predict the behavior of multibead chains

at both very small and very large Peb,0. Additionally, the increased number of internal modes

leads to the emergence of a third, intermediate "blob" regime, where globally a chain is strongly

deformed by the applied field, but locally individual springs remain virtually unperturbed fron

their equilibrium configurations.

For very strong field strengths where Peb,o > 1, the beads become uncoupled in the transverse

direction just as they (10 in the case of a dumbbell. Therefore, the individual beads behave very

much like point particles so that (d1,) /ts 3Pet in the case of Nb >> 1. The prefactor is different

from the dumbbell result because, except for the ends, each bead is connected to two springs instead

of just one. Additionally, it can be shown that (R,2 /2 / 3Pe-2

For for very weak field strengths (we will define how weak momentarily), we expect to recover

the point particle behavior exhibited by a dumbbell. In the case of a chain with Nb beads, the

chain diffusivity is given by D = Db/Nb (we assume the chains are free-draining), and we predict

that (d,,) /t (NbPeb,O)~1. Additionally, we expect the 1D radius of gyration to take on its

equilibrium value of (R 2 q /f,2 ~t Nb/6 (which assumes Nb > 1). The weak field regime is

characterized by the condition that (d1 ) > (RQ,v 2 ) which guarantees that the configuration of

the chain is nearly unperturbed from its equilibrium configuration. This condition is first violated

when (NbPeb,o)~- V~ d b/6. So we can say that weak field regime is defined for Peb,o < NJs/2

This leaves a large region between the weak and high field regimes where N /3 1 2 < Pebo < 1-

This is the new "blob" regime that emerges as Nb increases, and it is characterized by strong global

deformation of the chain structure while leaving smaller subunits of the chain fairly unperturbed.

These subunits are referred to as "blobs" and are often used in scaling analyses associated with

chains confined in slits and tubes. We can make use of the blob theory framework to analyze

the problem of field-induced confinement by introducing an electrical energy associated with the

applied electrophoretic velocity field as shown in Figure 4.3.

We start by considering the well-known problem of a chain confined between two parallel plates

separated by a distance h. For an ideal chain consisting of Nx Kuhn steps of length bw, it can be

shown that the energy required to confine the chain is proportional to the number of blobs formed

[68] and scales as

Gconf ~ kBTNK ( .h (4.19)
bK

In the case of field-induced confiinement, we replace the constant plate separation h with a field-

dependent compression size d,,. (see Figure 4.3). We also introduce an electrical energy for the

chain

Gelec ~ NKqK,effEodw (4.20)

where qK,eff is the effective charge of a Kuhn segment. qK,ea can be derived by considering the free

solution electrophoresis of a Kuhn segment. By balancing the electric force qK,,ff E driving the

segment forward against the opposing drag force -(K = -(KEo, where (K is the drag coefficient

for a Kuhn step, we discover that qK,eff = (K-
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Fig. 4.3: Cartoon depicting the blob scaling approach used to find d,. The results
for slitlike confinement are used to find the entropic penalty for confinement.
This energy is then added to an electrical energy in the case of field-induced
confinement. The total energy is minimized to find d,.

By minimizing the total energy Got ~ Geonf + Geiec with respect to d, we find that

(~ dK 1 / 3  Pe1/3 (4.21)

where PeK is a Pclet number based on a Kuhn step. It is interesting to note that d, is independent
of chain length in the blob regime. This is because adding chain length increases the number of

blobs, but it does not change their size.

Also, we expect in the blob and high field regimes that Rg,, ~ d,1 . This is reasonable since
both describe the size of the compressed chain given that it is always pushed against the wall. This
is not the case in the weak field regime where Rg,, is basically unperturbed from its bulk value.

Finally, we can adapt these results to bead-spring chains by substituting springs for Kuhn steps.
In doing so, we replace bK with f, (K with (b, and PeK with Peb,o-

Combining all of our above predictions for multibead chains, we have for the average distance
from the wall:

(NbPeb,o) Pe b,o < NJ 3 /2

aPe'/ 3, Nb3/ 2 < Peb,o < 1, (4.22)

3Peg),I Pebo > 1;

and for the average 1D radius of gyration squared:

(R2 W) Nb/6, Peb,o < N /3124 1Pe -, Ns/2 < Peb,o C 1, (4.23)
3Pej, Peb,o > 1.
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In both of these expressions, we have included proportionality constants, a and 1, to describe the

bk)1 regime. This is to highlight the fact that, unlike the weak and strong field regines, we only

have scalings for the behavior of the chains in the blob) regime. We have no way of determining a

and Q a priori, so we must fit real data if we wish to determine them.

In order to test our predictions, we simulated several different chain lengths (Nb = 20, 40, and

100) at various values of Peb,0. The results of these simulations are shown in Figure 4.4. The

theoretical predictions for the three different regimes given in Equations 4.22 and 4.23 are also

included as well as slope lines for the predicted scalings.

There is excellent agreement between simulations and theory. Not only do the strong and weak

field regimes exhibit the predicted scalings, but they also asymptotically approach the predicted

quantitative values as well. The locations of the transitions between regimes are also correctly

pre'dicted.

The emergence of an apparent scaling regime with increasing Nb between the strong and weak

field regions confirms the existence of a blob regiie. Indeed, the simulation results match the

predicted blob theory scalings. But in order to more rigorously demonstrate the existence of the

blob regime, we plotted the ratio of (d,,) and (R 1 ). In regions where both of these quantities

are predicted to scale the samte way, we expect to see a broad plateau in the plot of their ratio.

(R-',) is a constant in the weak field regime, so the ratio should diverge as Peb,o decreases. In the

strong field regime, the ratio should plateau to a constant value of f3/. If the blob regime does,

indeed, exist, then a similar plateau should be seen for Ng < Peb,o <K 1 although it ought

to have a different nminerical value than /3. In addition, it should become broader and flatter

with increasing Nb. This is exactly what is seen in Figure 4.4, and it clearly and convincingly

demonstrates the presence of the predicted bloli regime.

It was found that a = 1.26 and f 0.30 by fitting the results of Nb = 100 to the predicted

scalings for (d 1) and }(Ry), respectively, in the blob regime.

4. Analysis of Global/Post Problem

With our results for the local problem in hand, we are now equipped to fully address the post

problem shown in Figure 4.1A. We begin by deterniining the average tangential velocity of the

molecule (vo). We then use this result to develop a 1D Fokker-Planck equation to balance the

effects of convection and diffusion along the post surface. From this, we calculate the mean escape

time (TC) of a molecule as a function of its initial collision location 60. We compare all of our

predictions against simulation results.

We also restrict our analysis to field strengths where the compressed chains are in the blob regime

for the local problem. Clearly, depending on the strength of the applied field, we could develop

different velocity predictions for each of the low field, high field and blob regimes. However, it

seems sufficient to analyze only one of these, knowing that the same type of analysis should be

applicable to the other two. We have chosen the blob) regime because it seems to be the richest of

the three.
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4.7.1 Determination of (vo)

We have previously shown in Equation 4.6 that (vo) ~ (d,). From the result in Equation 4.22 for

the blob regime, we expect that

(d,) ~ afPeb[pE,(0)]-1/3 (4.24)

where Peb[pE,(0)] is the P(elet nuimber based on the local value of pE,(0) which is given in

Equation 4.5. Combining these results we arrive at

(d a (2Peb,o cos 0)-1/3. (4.25)

If we insert this expression into Equation 4.(, we find that

~ aNb (2Peb,o) 2/3 os-1/3 OsinO. (4.26)
Db/NbR

where we have nondimensionalzed the velocity based upon the post length scale R and the chain

diffusion time scale NbfR2/Db. Based oi this equation for the velocity, we can define a governing

Psclet number for the post probleIn:

Pep = Nb (2Peb,oo)2/3 . (4.27)

In Figure 4.5, we compare the prediction for (dr) versus Peb(O) given in Equation 4.24 to the

results from simulating the collisions of several diffeient chain lengths at various values of Pep with

a post of radius R/l = 50. Excellent agreement is seen, except for Pep = 40. This discrepancy

at high Pep occurs because the smaller chain lengths (Nb = 10 and 20) have been pushed beyond

the blob regime into the high field regine (Peb > 1) where Equation 4.24 is not applicable. These

results confirr that our analysis of the local problem, particularly Equation 4.22, is correct even

for the more coiplicated post problem. We also compare our predictions for (vo) given in Equation

4.26 to the simulation data in Figure 4.6. We have nondimensionalized (vo) by the predicted scaling

aPepDb/NbR to achieve universal collapse of all the curves. Our theoretical treatment matches

the data except when blob theory breaks down for the smaller chains at large Pep.

The velocity (vo) at the most upstream point on the post (0 = 0) is zero, and initially, it

increases nearly linearly with increasing 0. But (vo) begins to rise rapidly as 6 approaches 7r/2.

This is due to a sharp decrease of pE,(0) near 0 = -r/2 which causes the chain to quickly expand.

This increase in (d) leads to greater exposure of the chain to the tangential electrophoretic velocity

field and a rapid increase in the average molecular velocity (vo). Our prediction for (vo) given in

Equation 4.26 actually diverges at 0 = ur/2 which is clearly aphysical. This is because our model

neglects several realities including that our linearization of yE is not valid for large (d) and that

the chain cannot expand instantaneously (i.e., separation of the radial and angular dynalmics breaks

down). However, our prediction is still very good over the entire domain except very near 0 =7r/2.

Another problem with our model is that it predicts that a chain located at 0 0 will never

escape from the post since (vo) = 0. In order to accurately predict the behavior of a chain near

0 = 0, we must incorporate diffusion into our model.
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4.7.2 Incorporating Diffusion

In order to include diffusion in our theory, we turn to a Fokker-Planck (FP) approach. We consider

the post problem to be a time dependent ID problem in the eo direction with r = R. We develop a

Fokker-Planck equation for a molecule with a diffusivity of D = Db/Nb. If we assume the molecule

is being transported in a velocity field (vo), then we can write

ap Db 2p a
9 - - R ((vo)p) (4.28)

where p is the probability density of finding a molecule at given time and location and RO is the

arclength. Due to the symmetry around the most upstream point of the post at 0 = 0, we restrict

our analysis to the domain 0 < 0 < 7r/2. We use our previously determined expression for (vo) given

in Equation 4.26. For tractability, we make the approximation cos-1/3 6 sin6 0 0 which is very

good over most of the domain. Finally, we nondimensionalize time based upon the diffusion time

scale of the chain over the length scale of the post: -r = NbR 2/Db. This leads to the nondimensional

form of the FP equation:
=p a2 a (p

a(p) (4.29)
C9 T 6 86epa

............ .................................... ...... ................
-- -- ------- - -- - --------- - ------------- -----
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We use a. reflecting boundary condition at = 0 due to synmetry and an absorbing boundary
condition at 0 = 7r/2 to signify the "escape" of the molecule:

(r 0 = 0) = p (T, 0 = r/2) = 0 (4.30)

For the initial condition, we choose a unit impulse at 00 to nodel the initial collision location of a
molecule at that location:

p( 0, ) = 6 (0 -. 0o) (4.31)

This is the problem of a, particle diffusing in an inverted harmonic potcntial, and interestingly,
it has been considered before in DNA collisions with point obstacles [52, 119. Although we cannot
obtain a. sohition for p(T, 0), we can calculate the mean first passage time to 0 = r/2 of a particle
that starts at 0 = 0o. This is exactly the average escape time of a molecule from the post surface
(T(ce). The theory of first passage times [123] tells us that for this particular problem

(Tesc) /2aPep X aPeP 2
dx exp - y2 dy exp) x2 (4.32)

NbR'2/Db -fo 2 o2 ,

We can recast this expression in terms of Dawson's integral[124] [D(x) = o e 2 f e dy]:

(Te) - 2 w/2 ( Pep
D 2 x) dx (4.33)NbR2/Db aer.s2

Finally, the integral of D(x) can be written in terms of generalized hypergeometric functions [124]
{pFq (a ... , ap; b, ... , bq; Z)]:

(Ts) 1 ~7r a~pg2) Pep o
-2/2F2 1, 1; 3/2, 2; - 6 2 F 2  1, ;3/2, 2; - 0 (4.34)Nb2D 2 4 2 4 2

In Figure 4.7, we have plotted this prediction for (Tesc), nondimensionalized by the convective
time scale NbR 2/aPepDb, for several values of Pep including for the purely convective case (i.e.,
Pep = oo).

We expect that in the region of the domain dominated by convection the curve will collapse onto
the result for pure convection, and indeed, this is what occurs for 0 near 7r/2 where the velocity is
the strongest. On the other hand, near 0 = 0 diffusion dominates, and the curve falls well below
that of pure convection since diffusion is helping to speed up the escape process. It is also clear
in Figure 4.7 that the location of this transition from the diffusive region to the convective region
occurs at smaller and smaller values of 0 as Pep increases. This is expected because a larger portion
of the domain is dominated by convection at large values of Pep. Indeed, this increasingly small
diffusive region near 0 = 0 forms a boundary layer for Pep > 1.

We can derive a. scaling for the size of the region dominated by diffusion OBL by estimating where
the convective and diffusive time scales are comparable. The convective time scale is NbR 2/aPepDb
while the diffusive time scale is Nb(RBL) 2 /Db. Balancing these two gives the scaling OBL ~ Pep ' 2

In order to confirmi this scaling for OBL, we used the location of the intersection of (T,,c) for a
finite Pep with the curve for the piurely convective case as a mieasure of 6BL. Figure 4.7 shows the
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results of this analysis. At high Pep, the predicted scaling is correct.
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Fig. 4.8: Plots of the average escape time (Tes) of multibead chains as a function
of where they are initially trapped by a conducting post 00. The theoretical
prediction given by Equation 4.34 is also shown.

The results for (Tesc) from our simulations are shown in Figure 4.8 where we have non-
dimensionalized the escape time by the convective time scale. Good agreement is seen between
the simulations and the predictions of Equation 4.34. The only notable exception is for Nb = 10
at Pep = 40 which is expected since the chain has been pushed well beyond the blob regime as
previously shown. Our model clearly does a very good job of predicting the behavior of these
chains.

4.8 Conclusion

We have examined the problem of electrophoretic collisions of DNA with large, ideally conducting
posts, and we have identified and characterized the essential physics that govern the problem.
We have purposefully simplified this problem in order to develop analytically solvable models and
scaling theories that prove that the important physics are well-understood. In particular, we have
studied the field-induced compression a molecule against the post surface and how it determines
the velocity of the chain as it moves around the post. Although we have used the simple model of
an ideal, Gaussian chain, we believe the basic physics and fundamental character of the problem
have been captured. However, our approach allows for a more realistic molecular description. For
example, excluded volume effects could easily be incorporated into our blob theory framework, and
new scalings could be derived.
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Also, by considering large posts, we have precluded all hooking phenomena. But in applica-

tions involving DNA separations, hooking and the subsequent unhooking process are typically the

major reasons that length-dependent separation arises. However, our results can still be applied to

examine the more realistic and complicated situation of moderately-sized, conducting posts where

hooking should occur. For example, our prediction for the tangential velocity of a molecule (Equa-

tion 4.26) is nearly linear in 0 which makes it look very similar to an elongational field. This suggests

that for strong enough field gradients, molecules will stretch around the post. Such behavior would

be important for understanding hook fornation in these more realistic cases.

We believe that conducting posts could offer advantages over insulating posts due to the way

they attract and directly interact with DNA molecules. Insulating and dielectrically-matched posts

tend to quickly move molecules around their surfaces, and detrimental channeling is often seen in

arrays of such posts [122]. The attractive nature of conducting posts might decrease the effects

of channeling and enhance separation efficiency. Additionally, it could also lead to new modes of

separation that have not yet been observed or predicted.
Currently, we know of no experimental studies that have looked at conducting posts, but we

can imagine at least two different ways to achieve such a system. The first would be to use metal

posts with biased AC fields. Because metal posts are impenetrable to ions, a DC field would simply
polarize the surrounding double layer, and eventually, the field lines would resemble those of an

insulating post. Using properly timed AC fields should prevent this polarization from occurring

[125]. The second way would be to use a charged hydrogel that is impermeable to DNA. Unlike a

metal post, a charged hydrogel would be permeable to small ions, and its higher conductivity than

the bulk fluid would result in the desired field lines.

To end, we would like to provide estimates of some of the parameters and measurables that

might be used or seen in a real experiment under reasonable conditions. For order of magnitude

purposes, we assume that, for DNA in buffers typically used by our group [9] and others, the length

and the diffusivitv of a Kuhn segment are around bR ; 100 nm and D< ; 20 pm 2 /s, respectively,

and that a typical value for the electrophoretic inobility is y - 1.5 pn/s. For T4-DNA, which has

a contour length of L ~ 70 pn, a bulk radius of gyration of R9 ~ 1.5 pim, and a bulk diffusivity

of D ; 1 pm 2 /s, we estimate that the blob regime occurs at applied field strengths in the range of

E, ~ 0.005 - 50 V/cm. We obtain this estimate from Equation 4.22 by replacing the bead P6clet

number Peb with the P6clet number based on a Kuhn step PeR. Using this range of field strengths,

we can estimate the characteristic escape time Tsc for a particular post size using the convective

time scale of the global post problen R 2/ (2PCg) 2/ 3 DK. However, we must also ensure that the

convective time scale is faster than the diffusive time scale R 2/D which provides the upper limit

for Tee. Based on this calculation, we find that the convection-dominaited blob regime occurs in

the range of E, 1 - 50 V/cm. For a post size of R = 5 pm, the characteristic escape time would

be Tee 1 s - 20 s. For a post size of R = 15 pm, this would increase to T, ~( 10 s - 3 min.
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CHAPTER 5

Relaxation in Slitlike Confinement

Relaxation of polyners in confined environments has received a great deal of attention recently due

to the emergence of micro- and nanofluidic devices which attempt to manipulate single molecules.

More fundanentally, many naturally occurring polyneric molecules exist in highly confined cellular

environments. While there has been much previous work on the bulk relaxation of polymers, there

has been relatively little work considering the confined case. In this chapter, we consider the

relaxation of an initially stretched DNA molecule in slitlike confinement. We report the first

observance using simulations of two distinct relaxation times in the linear force regime. We also

conclusively show that the energence of the second relaxation time is due to excluded volume effects.

Finally, we assess the validity of a previously proposed mechanistic model confined relaxation. Our

results are important for the design and optimization of devices that attempt to use confineient

to modulate the dynamic properties of DNA molecules.



5.1. Overview

5.1 Overview

Brownian dynamics simulations of bead-spring chains were used to study the relaxation of an
initially stretched DNA molecule in slitlike confinement. Taking into account excluded volume
effects but neglecting hydrodynamic interactions, the simulations are able to reproduce the two
relaxation times in the linear force regime that our group has experimentally studied and recently
reported. The relaxation dynamics of the transverse dimensions are extensively studied, and a
theoretical model is developed to describe them. The interplay between the longitudinal and
transverse dynamics is investigated and used to corroborate a physical model previously proposed
to d(escribe polymer relaxation in a slit.

5.2 Introduction

5.2.1 Motivation

The emergence of micro- and nanofluidic devices has led to many new and exciting developments
in the field of single-molecule manipulations. For example, DNA separations [57, 15] and genomnic
mapping [2, 118] have benefited greatly fron the precise control offered by so-called "lab-on-a-chip"
devices. More generally, these microscopic systems have provided an important new platform to
study fundamental problems in polymer physics [36, 30, 17, 105, 126, 31, 32].

One recent problem that has received a. considerable amount of attention, is the relaxation
dynamics of DNA in different types of confined environments [30, 127, 128, 31]. This is particularly
important for many single-molecule mapping devices that rely upon collisions [97] and field gradients
[2, 97] to deform DNA for subsequent analysis. This deformation process is highly dependent upon
the balance between the stretching rate of the device and the relaxation of the polymer. Therefore,
understanding how confinement affects the relaxation process of confined polymers is critical both
to optimizing current technologies and to developing novel device designs.

Additionally, many important biological molecules are polymeric in nature (e.g., DNA, actin,
and microtubules), and most cellular environments are highly confined. For example, 3 in of human
DNA is packed into a, nucleus of around 5 pm in diameter. Study of the dynamics of confined
DNA molecules is critical to understanding how the cell stores, accesses, and replicates it's genetic
information. In vivo relaxation of chromosomal DNA has even been used to probe the intracellular
environment [129].

5.2.2 Past Work

Over the last two decades, the relaxation of unconfined polymers has been studied comprehensively
both experimentally [36 and via simulations [130, 131, 132]. They have confirmed the theoretical
prediction that single molecule relaxation in bulk is well-described by a single longest relaxation
time rT over all extensions within the chain's linear force regime [133] (from equilibrium to ~ 30%
fractional extension [361]). However, relaxation in slitlike confinement has been studied much less
extensively, with several studies offering contradictory findings [134, 30, 135, 136, 71, 128]. It is
only recently that these results have begun to be reconciled by suggesting the existence of two
relaxation times in the linear force regime [31].

The dynamics of polymers in slitlike confinement were first treated theoretically by Brochard [28]
using blob theory. The first direct observation of such confined relaxation, by Bakajin and coworkers
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[30], was of molecules relaxing after having been highly stretched by collisions with inicrofabricated

posts. The results produced scalings for the relaxation time that were more in line with those in

bulk [31]. Nearly a decade later, new experiments from our group obtained the confined relaxation

time by neasuring the rotational autocorrelation function of chains at equilibrium [128]. This study

found good agreement with the blob theory predictions, contradicting the previous work of Bakajin

et al. [30] Interestingly, several simulation studies found evidence to support the findings of both

of the aforementioned experimental works. Simulating the relaxation of initially stretched chains

[136, 71] reproduced the bulklike results of Bakajin et al. [30], while Monte Carlo simulations of

chains at equilibrium [134, 135] corroborated the blob theory scalings seen by our group [128].

Although seemingly contradictory, taken together these studies hint at the cause of the dis-

crepancies. All the work where chains were perturbed from equilibrium agree with each other and

demonstrate bulklike behavior. On the other hand, agreenent was also seen amongst the studies of

chains at equilibrium which exhibited blob scalings. To explain this, our group suggested that two

distinct relaxation times existed in the linear force regime [31]. When the molecule is stretched, the

width of the chain in the transverse dimnension is smaller that the height of the channel, and the

confining walls do not significantly affect the conformation of the molecule. Therefore, the chain is

governed by a bulklike relaxation tie TJ. However, at or near equilibrium, the polymner feels the

full steric effects of the confining walls, and its dynamics slow as a consequence. A second relaxation

time 77] emerges which is longer than r and which follows the predictions of blob theory.

Our group has shown that both of these relaxation times can be seen andl measured by observing

the longitudinal relaxation of initially stretched molecules over time scales long enough for the chain

to reahl equilibriumn [31, 137]. A physical model based upon blob theory has also been proposed

that assumes this extension-dependence of the relaxation tinme is due entirely to excluded volume

effects (EV) and not hydrodynamic interactions (HI). Although there is some experimental evidence

that this nmodel is correct, experinents are greatly hampered by the fact that the dynamnics cannot

be accurately measured oi small time and length scales, especially in the dimension transverse to

the plane of the channel.

5.2.3 Problem Statement

In this chapter, we study the relaxation of a bead-spring chain in slitlike confinement fromi a

stretched comnfigirationm that is initially straight using a coibinatioii of sinmulatiois aid theory. Since

sinmlations allow us to set which physics will be included, we can conclusively determine if excluded

voluine effects are sufficient to reproduce the qualitative features observed in experiments (e.g., two

relaxation tinmes). In addition, simulations cam probe dynamics of the relaxation process on length

and time scales that are inaccessible to experiments, particularly in the confined dimnension. This

allows us to consider the interplay between the dynamics in the direction of initial stretch and the

confined dimnension, enabling us to assess the validity of the current physical model for confined

relaxation and its underlying assumptions.

5.3 Background

We now describe the theory of polymer relaxation both in bulk and slitlike confinement. We start

by considering the equilibriun size of a polmvimer chain and the basics of blob theory. We thei

use these results to develop scalings for the relaxation times of these chains. We also explain the
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current physical model of relaxation in slitlike confinement and some of its consequences.

In particular, we concern ourselves with the expected theoretical scalings based upon the physics

included in our simulations. Therefore, we take EV into account, but we neglect the effects of HL

The chains are assumed to be free-draining so that

( = Ng K. (5.1)

Additionally, HI with the channel walls is neglected, and changes in the chain diffusivity due to

confinement are ignored.

5.3.1 Equilibrium Chain Size

The polymer is modeled as a chain composed of NK Kuhn steps each of length bK. In bulk, the
equilibrium radius of gyration Rg,o of the chain can be determined from the statistics of random

walks
Rjg'0 ~ NK3, (5.2)
bK

where v3D is the scaling exponent for the equilibrium chain size in a 3D environment. If the chain

is ideal and intramolecular excluded volume effects are neglected, then v3D = 1/2. The inclusion

of EV causes the chain to swell and increases the scaling exponent to v3D ~ 3/5.
In slit-like confinement, the polymer is squashed like a pancake, and due to EV, it swells in size

even further. Blob theory is often used to describe confined polymers [29]. In this framework, the

polymer is represented by a string of NK/g blobs, where g is the number of Kuhn segments per

blob (see Figure 5.1). The size of a blob is set by the height of the channel, h.

TI

x > x, ' x < x- -.

x x,

t

Fig. 5.1: A cartoon depicting the physical model of confined relaxation based
upon tensions-blobs and how it relates to the longitudinal relaxation function

Gx(t). Above a certain crossover extension Xc, the chain is not sterically con-
fined and relaxes as if it were in bulk. Below Xc, the confining walls become

important, and the chain relaxes by rearranging its self-avoiding blobs.

On length scales smaller than h (i.e., within a blob), the polymer retains its bulk-like behavior.
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So using Equation 5.2, we can say that h gVsL bg, and upon rearrangement, the number of Kuhn

seginents g in a blob is given by

g ~ -(5.3)
bK

On scales larger than h, the blobs, which repel each other due to EV, obey the scalings of a 2D

self-avoiding walk (2D-SAW). So in slitlike confinement, the size of the chain is given by

R' (NK>Vm h h ~21) ( hI
b' ~ -- - ~ NK bI (5.4)

bK g bK bK

where V2D = 3/4.

5.3.2 Relaxation Times

Bulk

First, we consider the relaxation of a linear polyner in the bulk. The longest relaxation time of

the chain can be derived by considering a force balance between the elastic spring force FE of the

chain and the drag force FD that opposes it. The force required to stretch a chain away from its

equilibriuml size Rg,O by an amilouit 6R5 is given by

k 3T
FE Rq-o2 2Ro, (5.5)

where kB is the Boltzinann constant and T is the tenperature. The drag force felt by the chaill is

where R is the rate of change of the size of the chain. Balancing these forces gives the longest

relaxation time T for the chain
6R g (Rg,02

T~- .~ (5.7)
6R9 kBT

Introducing the results from Equations 5.1 and 5.2 and noting that (K = knT/DK, we arrive at

~ (5.8)
bK 2/DK K

where DK is the diffusivity of a Kuhnmm segment.

Slitlike Confincment

When a molecule in a slit is stretched strongly enough, it is not sterically confined by the walls of

the channel (see Figure 5.1). Therefore, the initial relaxation process is unaffected by the preselc(e

of the confining walls, and the mnolecule relaxes with the bulklike tine constant r1 given by Equation

5.8. However, as the molecile relaxes, its lateral dimensions grow in size, and the confining effects

of the wall become significant. This slows down the relaxation process, and a new, longer relixation

time ;TJ energes that governs the remnaining relaxation to equilibriumn.
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A simple physical iodel based upon a (Iasi-steady tension-blob framework was proposed by
Balducci and coworkers [31] to describe the transition between these two relaxation times. The
stretched molecule can be represented by a string of NK/g tension-blobs [68] of size (, where 9
is again the number of Kuhn segments per blob. Bulk scalings hol( within each blob so g ~
(i/bK) l/"3. The fractional extension of the chain X is then given by X = /gbK~
If the crossover from r to rj occurs when the tension-blob size reaches the height of the channel
(i.e., h), then the critical fractional extension X, at which this crossover occurs is given by

Xc h/111/3 (5.9)

Above Xc, the molecule relaxes by growing the size of the tension-blobs. But below Xc, tension-
blob growth is restricted by the confining walls, and the molecule relaxes by rearranging the blobs.
Al interesting consequence of this model is that Xc is independent of chain length.

In order to determine rFr, we employ Equation 5.7 which is valid near equilibriin. We simply
use the blob scalings for Rgo as given in Equation 5.4. At or near equilibrium, the relaxation time
of a confined molecule is given by

T~f K~+2 ~2D hi'~2(1-v2)/v3)
TII ~' NK122 h(5.10)

bK /DK bK

5.4 Simulation Method

We simulated the relaxation of DNA using a nodel developed by Kim and Doyle [100]. This
method is based upon Brownian Dynamics and is well-suited for studying the dynamics of DNA in
microfludic devices. A brief description of the numerical model is presented here.

5.4.1 Brownian Dynamics

DNA molecules are modeled as chains of N, beads connected by N = (N - 1) springs. The
equation of motion for the position r of the ith bead is:

dr I (t) + (t) + FFBS) E(wall

where Cb is the bead drag coefficient, FB is the Brownian force, F-s is the total spring force felt by
the bead, FEV is the intrachain excluded volune force due to nearby beads, and EV,wall represents
the interaction of the bead with the wall of the device.

We non-diniensionalize the variables as follows:

rb , - t (5.12)

where r is position, i is the mnaxnimum extension of a single spring (1, E L/N.), t is time, kB is
Boltzmnann's constant, and T is the absolute teniperature. We non-dinensionalize the forces F as
follows:

F
F (f) (5.13)
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This leads to the non-dimensional form of Equation (5.11):

di~j - + + , EV,wal

dt

The non-dimensional Brownian force is given by:

S At (5.15)

where At is the dimensionless tune step and (r,,)i are uniform random numbers such that each
component (r,)j E [-1/2, 1/2], where j denotes the coordinate x, y, or z. The net non-dimensional
spring force on the ith bead is:

fje, i - 1;
N f I + _1 1 < i < Nb; (5.16)

i = Nb;

where the spring force f is given by a spring law developed by Underhill and Doyle [69] to
correctly reproduce the Marko-Siggia spring force law for a wormlike chain [33] at varying degrees
of coarse-graining [59]:

I ___ f A 2)= - (+ C+ B (1 ) ?y - (5.17)

where v is the number of persistence lengths represented by each spring (v =. 1/Ap), fj,j represents
the distance between ii and fa, C = 3/32-3/4v-6/v2, and B = (13/32 + 0.8172/v - 14.79/v 2) / (i - 4.225/v +

The intrachain excluded volume force FEV is modeled with the soft potential used by Jendrejack
et al.: [82]

Devp 9/2 e of 4 (5.18)

j=1(jei)

where e*, P v*V/ljS3 is the dimensionless form of the excluded volume parameter ve'vP.

The interactions between a bead and the walls represented by FEw are resolved using a
modified Heyes-Melrose algorithm. [110, 100] Whenever a bead moves outside the domain during
a time step, it is moved to the ne farest point on the domain boundary before commencing the next

time step:

A -fH = ApiH (Api), (5.19)

where Af"4 is the displacement vector due to the Heyes-Melrose algorithm, Api is the vector
pointing from the bead outside the domain to the nearest boundary point, and the Heaviside step
function H (Api) restricts the application of the algorithm to only the beads that have penetrated
the domain boundaries.
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5.4.2 Parameters

Many different lengths of DNA were simulated in this study, ranging from A 10 to NA = 300.
The chosen discretization of DNA was v = 5.571, which, assuming a persistence length of A, = 53
nm, corresponds to DNA contour lengths of L ~~ 3 - 90 pml. The excluded volume paraieter was
set to ve P -- 3.71 x 1-4 pm 3 in order to accurately reproduce the bulk radius of gyration of a
T4-DNA molecule (N, = 254 and L = 75 Pin).

For the relaxation of initially extended molecules, the chains were uniformly stretched to the
desired fractional extension (typically X = 75%) along the x-direction and placed in the center of a
300 nm slit where the z-direction was transverse to the plane of the channel. The chains were then
allowed to relax, and their configurations were saved for later analysis. Two different time steps
were used. To obtain the short time behavior, a tine step of At = 2 x 10 5 was enployed, and the
chains were observed for a tinie of ~ Tyr. For the long time behavior, a tine step of At = 5 x 104
was used, and the chains run for j 10r. For all measurenients, at least 100 individual chains were
siunlated and averaged together for each chain length.

The equilibrium properties were obtained by initially placing the chains in the chaniel in a
Gaussian manner and allowing them to equilibrate for ~~ 50-Fl. Configurations were then saved at
specified time intervals for subsequent analysis. At least ~ 300Tj worth of data was obtained.

5.5 Results

Before we begin analyzing the relaxation dynamics of confined chains, we would like to ascertain
that we are using chains of adequate length for blob theory scalings to be valid. To do this, we
look at the 2D, in-plane radius of gyration R,2) of the chains at equilibriin. These results are
shown in Figure 5.2 along with the predicted scaling of Rm_ AT /4. It is clear that blob theory
scalings are valid for chains with N, > 75, and in our future analysis, we often only present results
for these chain lengths.

In our study of the relaxation dynamics of confined chains, we first consider experimentally
accessible ineasurables such as the relaxation of the longitudinal stretch at long times both at
equilibrium and when initially perturbed away fron equilibrium. This allows us to compare our
findings to experimental results and validate our simulation model. We then look at the relaxation
process in the transverse dinensions and attempt to build simple models based on Rouse-like
chains to describe the observed dynamics. Finally, we consider how adding in additional physics,
like intramolecular excluded volume and nonlinear springs, affects the relaxation dynanics.

5.5.1 Experimental Measurables

Typical measurables that are experimentally accessible are usually restricted to those involving the
in-plane stretch of the molecule's major axis. We start by looking at the scaled longitudinal relax-
ation function Gx(t) = (X(t)2) - (Xeq2 ), where X(t) is the fractional extension in the longitudinal
direction and Xeq is its average equilibriiun value. Figure 5.3A shows a characteristic curve for
GX(t) when the niunber of springs is A = 164. As seen in experiments, there are two distinct
regions that are well-approximated by a single decaying exponential, each with a different time
constant. The first region, with time constant -r, occurs at fractional extensions near X = 30%
and represents thme 11k-like relaxation process where the chain is not sterically constrained. The
second region occurs very near the chain's equilibrium size and, in agreement with experiments,
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Fig. 5.2: Plot of the f2D, in-plane radius of gyration Rg,2D of chains at equilib-

rium in a 300 um channel vs. the chain length N. The predicted blob theory

scaling Rg,2n ~ Nj/ 4 is also shown.

has a longer time constant rjJ than the bulk-like relaxation time (R1 > rI). This second linear re-

laxation process is governed by the rearrangement of the blobs that compose the sterically confined

chain. Finally, these two linear relaxation periods are connected by a nonlinear transition region.

In Figure 5.3C, we have plotted both rJ and rf as a function of chain length along with their

predicted blob theory scalings. The simulation results for 7r]j clearly follow the predicted scaling of

RI ~ N, 5 while the results for rj appear to fall slightly below the theoretical scaling of rl ~ NS2

The apparent discrepancy between the simulations and theory for rJ is riot unexpected and can

be explained by noting that when Equation 5.18 is used to account for EV, moderately extended

chains are only mildly affected by the EV force. Because the bulk-like relaxation time rJ is seen near

fractional extensions of X -: 30%, EV effects are not as significant as they are near the equilibrium

extension. Therefore, the observed scaling for rJ falls somewhere between the ideal chain scaling

of M N 2 and the real chain scaling of ~ N82.2

Experiments have shown that relaxation processes measured when a confined molecule is at equi-

libriurn should correspond to the second relaxation region where steric confinement is important.

In order to confirm that our simulations can reproduce this finding, we considered the conforma-

tional relaxation time of a chain at equilibrium -rc. The conformational autocorrelation functions

Cc(ot) for several different chain lengths are shown in Figure 5.3B along with their respective linear

fittings, and the measured conformational relaxation times re are plotted in Figure 5.3C. re is very

near the value of rJJ and follows the same predicted scaling rc ~ TI ~ X2.5, in agreement with

experiments.

We have clearly shown that our simulation model can reproduce the qualitative features seen

in experiments. These include two distinct linear relaxation times for G, (t) with rJi > r-j, the

proper scaling for rJJ with chain length, very near the predicted scaling for r, and finally that

near-equilibrium relaxation processes are associated with rF] as demonstrated by the fact that
7

c J-I.
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Fig. 5.3: (A) Characteristic plot of the scaled longitudinal relaxation function
G,(t) = (X(t)2) - {Xeq 2 ) for chain length N, = 164. The fittings for the
two linear regions are also shown along with their respective time constants (-rj
and Tj1) and the predicted crossover extension X.. (B) Plot of the equilibrium
conforrational autocorrelation function Ce(6t) vs. the lag time t for several
chain lengths (N = 75,164, 254, 300). The linear fittings for each curve are
also shown. (C) Plot of various 'measured relaxation times vs. chain length
N. Included are the bulk-like relaxation time r1, the near-equilibriurn relax-
ation time T1[, and the conforrational relaxation time T7. Also shown are the
predicted scalings -1 ~ N, 2 2 and TF ~ N- 5 .
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One final experimentally accessible measurement we obtained is the time tcross at which the
crossover extension occurs. This is defined as the time where the two linear fittings for G(t)
intersect (see Figure 5.3A). Although tcross can be found from experiments, to date this analysis has
not been perforlned. tcross is a measure of the when the transition between bulk-like relaxation and
near-equilibrium, sterically confined relaxation occurs. Based upon the current mechanisitic model
of confined relaxation, the approach to this transition should be driven by the bulk-like relaxation
process leading up to it. Therefore, it is expected that tcross should scale as tcross ~r ~ N .

Indeed, this is clearly seen in Figure 5.4.

103
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Fig. 5.4: Plot of the computed crossover time tCross vs. chain length N. Also
shown is the predicted scaling t cross Ns2 2

5.5.2 Transverse Dynamics

We now turn to the relaxation dynamics in the two transverse directions (y and z) which cannot
currently be determined by experiments. Studying the of the out-of-plane behavior of these chains
is particularly important because it can shed light on the physics of relaxation in confinement and
help assess the validity of the current physical model.

General Features and Characteristics

We measured the 1D radius of gyration squared R.12 in the direction of each of the three coordinates
(i can be either x, y, or z). Characteristic relaxation curves for all R, 2 , both in bulk and in a
300 nurn channel, are shown in Figure 5.5A for a single chain length N, = 75. In the longitudinal,
or x-direction, R),2 remains fairly constant and slowly relaxes to its equilibrium value in an
exponential manner only at long times. The behavior for the transverse directions is richer. In
the case of relaxation in the bulk, Rg, 2 and R,z 2 are equivalent, and two power law regimes are
seen as they approach their equilibrium values. The first regime is linear in time while the second
appears to follow a scaling close to ~ ti/2 . We will derive these scalings for a Rouse chain shortly.
In bulk, all three directions are equivalent at equilibrium so that 2 = Rg,E2 Rg,z2 = R9 2/3,
and this is clearly seen in Figure 5.5A.
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Fig. 5.5: (A) Plot of the ID radius of gyration squared in all three directions
for a single chain. length (N = 75) both in bulk and in a 300 nm channel. The
observed power law regions and their approximate scalings with time are also
shown. (B) Plot of the ID radius of gyration squared in all three directions for
several chain lengths in a 300 nrn channel. Also shown arc the predicted values
for each of the power law regimes as determined from the Hookean, Rouse-like
theory given in Equation 5.41.
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When the chain is placed in a slit, much of the relaxation process is similar to the bulk case.

For example, Rf,4 still decays exponentially at long times, albeit with an increased time constant

and to a slightly higher equilibrium value. Rqy 2 and R,22, initially, are quantitatively equivalent

to their bulk counterparts. However, at some point, the size of the chain in the confined dimension

R 9 , peels off from the bulk curve and quickly approaches a new and reduced equilibrium value.

In the unconfined, transverse direction, R 2 continues to follow the bulk curve even after R 2

has deviated from the bulk behavior. R, 2 follows this behavior until it reaches its new, slightly

increased equilibrium value so that at long times Rg, 2 = Rg.

Now that we have connented on the general features of the relaxation for a single chain, we

look at the effect of chain length on the relaxation dynamics. In Figure 5.5B, we show the three

ID radii of gyration squared for several different chain lengths. As expected, R,,, is highly length

dependent since its initial value is proportional to the chain length squared. Additionally, the

relaxation times for the exponential decay and the final equilibrium values of Rg,) are length

dependent and have already been studied in Section 5.5.1. On the other hand, the relaxation of

the two transverse dimensions appears to change little based upon the length of the chain. R, 2

nearly falls on a universal curve for all time and chain lengths, with only slight deviations which

will be discussed later. R.I, also falls on a universal curve until it nears its equilibrium value, at

which point it stops growing and plateaus at its length d(epelndent final size.

Now that we have identified the general features of the relaxation process in the transverse

dimensions, we turn to understanding the mechanisms behind the observed behavior. In particular,

we would like to identify the important physics governing each of the observed power law reginmes.

And with this in hand, we can study how the dynamics in the confined dimension affect, and are

aff'cted by, the longitudinal stretch.

Unconfined, Ideal Hookcan Chain

Before we consider the relaxation dynamics in the confined dimension, we will look at the much

simpler case of the transverse relaxation of an unconfined, Hookean chain. Because all three

directions act independently for a linear chain, we only need to consider a ID bead-spring chain

with N springs each with a Hookean spring constant of H.. Initially, the chain starts with all of

the beads at the same point or, alternatively, with all of the springs having an initial stretch of zero.

In this case, three different regimes arise during the relaxation process. We start by considering

each of these from a scaling perspective and then use a continuous ID Rouse model to prove some

of our scalings and develop more quantitative expressions for the chain's size as a function of time.

At very short times, the bead movement is dominated by thermal forces. The springs are not

yet extended enough to exert any significant force on the beads, so the beads act independently like

an ideal gas. Therefore, the chain size initially grows in a diffusive manner such that R 9
2 ~ Dbt.

This growth continues until the spring forces are large enough to compete with the thermal

forces. If this occurs when the spring lengths are of order f*, then the spring forces are approximately

Hf* and the thermal forces are kB T/l*. Balancing these forces gives * ~ ke T/H8 . At this point,

the scaling of the chain size with time changes to a new power law R 2 ~ Atr, where A and a

will be determined below. Due to the influence of the significant spring forces, which impede

the advancement of individual beads, the chain begins to grow subdiffusively so that a < I. We

will refer to this new regime as the tension-dominated regime. The transition from the diffusive

regime to the tension-dominated regime begins when R2 is approximately k 8T/H, which occurs
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at t ~ kT/H8 Db-

The third regime, wich we call the (xliilibrium regime, occurs when the chain reaches its final
size of R2

2 - NYkBT/H 8 . This should occur at times on the order of the longest Rouse relaxation
time of the chain or t ~ NK2 kBT/HDb. NWe caii determine the power law exponent a and the
scaling of the prefactor A for the tension-dominated regime by matching the end of the diffusive
regime and the beginning of the equilibrium regime to the beginning and the end of the tension-
dominated regime, respectively. Matching to the diffusive regime gives the expression R, 2

kBT/H ~ A(k 3 T/H.sDb), and matching to the equilibrium regime gives R. 2 ~ NkBT/H ~
A (IN2kBT/HDb),. This only holds valid for a - 1/2 and A ~ Vk 3 TDb/H8 . Combining all of
our results, we finally arrive at a scaling for the chain size in all three regines as a function of time

Dbt, t<c.nL;
R 2  (kvr D/2 " t . < t < , (5.20)

NekBT N 2kT

11> HDit

In order to more rigorously confirm our scalings, particularly in the tension-dominate regiie,
we now develop a continuous 1D Rouse model for the transverse relaxation of an initially straight
chain. We start with a discrete bead-spring chain with Nj, beads connected by N, = Nb - 1 Hookean
springs with spring constant H8 . The ID equation of motion for the nth bead position r,, is given
by

r H, (r2 - ri) + FB, n = 1,

<b d H (rn, +1 - 2r, + r,,_) + F, 1 < n < N, (5.21)
dt -Hs f N r,-1) + FN n =Nt,

where the raidomn Brownian force F9 is characterized by

F 0,(F r(t)FB(t')) = 2k 3 Tcbonm6yt - t') (5.22)

The initial condition for the system is
0 (5.23)

If we allow n to be a continuous variable, we can rewrite Equations 5.21-5.23 as a partial differential
equation

Ob r,, O 2r (.4at = H + O ± FR (5.24)

where the second moment of the Brownian force is now

( (t}} = 0, F2(t)F2(t') = 2kBT4b6(n - m)6(t - t) (5.25)

The initial condition and boundary conditions are given by

r?, O- 0 (5.26)
On n=0 On=N
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By solving the eigenvalue problem, we find that the normal coordinates are given by

1 ,Na /g
x = - dn Cos p rnr,, with p = 0, 1, 2, ..

0 Nb . o N

and Equations 5.24-5.26 becole

(at = Hs,pp +

where
( = Nb~b and ( 2Nb(b for p = 1, 2, ...

Hs,1,=2w 2 Hep2/N for p = 0, 1, 2,

(F(t))= 0,( F (t)F (t')) = 2kBT(p6(p - q)6(t - t')

and
xpIt=o= 0

We are interested in the chain's ensemble-averaged radius of gyration squared

(R 2(t)) = Nbdn [rn(t) - Rc.m.(t)2 )

where Re.m.(t) is the center of mass of the chain. The difference in the integrand can

in terms of the normal coordinates as

be rewritten

00

r(t) - Re.m. (t) = 4
p=1

Plugging this expression into Equation 5.33 gives

x1 (t) cos (7 )

Nt dn cos prm
(R 2 ( 4 00

N 1b (Xp(t)Xq
p1l qj1

From linear response theory, it can be shown that for Equations 5.28-5.32

(Xp(t)Xq(t)) = pq kBT I

Combining this with Equation 5.35, we finally find

NbkBT -

p=1

2 1

exp 2t

- exp 2r r2jP2t

At long times, the exponential dies off, and only the sum n p 2 r2/6 remains. This gives an

equilibrium value of (R, 2(t)) = NkT which is exactly the expected theoretical result.

6Iht

If we transforin the summation __iE Eutin5.7t an inega ./2 dp (the lower bound

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

cos ( () (5.35)

(5.36)

(5.37)
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has been chosen so that the equilibrium value remains the same) then our expression becones

2 NbkBT -7H 2H 72H,(R (Nx + terfc(538)
6He 2Nb2b 2N 24h 

Finally, since we are interested in short times (i.e., t < 72b), we can expand this expression
into a power series and keep only the leading order term

R 2 t)) 2kBT Db
( R22) =t (5.39)

As predicted by our previous scaling arguments, in the tension-dominated regime Rg2 _ ti/2.

For the diffusion-dominated regime, Rg2 is simply the mean-sqared displacement of a gas of
beads that all initially start at the same point. This gives the well-known result R9

2  2Dot.
If we take all of our results, we can determine the locations of the regime transitions from the

intersections of the expressions. Finally, combining all of our findings, we find

2 2Dbt, t < k5 ,

R2 2ks n3 1/2,t IU t < Bi (5.40)

N'AkT ksT
6Hs, H, HDb

Comparing this to Equation 5.20, we find that our predicted scalings are, indeed, correct.

Our theoretical predictions for the two power law regimes of the unconfined case are plotted in
Figure 5.5B to be compared to Rg,Y2 . It is clear that our expression catches the qualitative behavior
seen in the simulations. It quantitatively predicts the value in the diffusive regime at short times,
but it overestimates the time at which the transition to the tension-dominated regime occurs. This
leadls to an overprediction of Rg,, 2 in the tension-dominated regime. These discrepancies are due to
the non-linearities in the spring law when the chain is initially stretched beyond its linear regine.
Effectively, this increases the spring constant H8 felt by the beads which, according to Equation
5.40, should decrease the time of the transition to the tension-dominated regime as well as the
value of RNy 2 in this regime. So taking the spring law nonlinearities into account should bring the
theoretical prediction more in line with the simulation results. The effects of these nonlinearities
will be discussed in greater detail later.

Confined, Ideal Hookean Chain

When a Hookean chain relaxes in a channel of height h < AkBT/HS, the equilibrium size of
the chain in the confined dimension decreases to Rg2 ~ h2. Going further, if we assume that the
bead distribution across the channel height is uniform, then R -2 = h2/12. This is actually an
overprediction of R 2 since the bead distribution is not truly uniform and has a Gaussian quality
to it.

Assuming that h > /k 8 T/HI, the effect of confinement is both to limit the chain size and to
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truncate the width of the tension-domfinated regime so that

2Dbt,

R 2 ~ 2knnI t 1/2
9 ~ ,7u,

12>

t <

T-<t < Hi
,;1 T 288kiT D,,

28 8kBTDt

(5.41)

A similar expression can be written if h < 0kBT/H8 , but in that case, the diffusive regime is

truncated and the tension-dominated regime is eliminated entirely.

This prediction for the confined case is also plotted in Figure 5.5B to be compared to Rz,2

Again, fairly good qualitative agreement exists between theory and simulations except that the

tension-dominiated regime is not seen in the theoretical prediction, as h < VkBT/H, but it is

present in the simulation results. As in the unconfined case, this is due to the nonlinearities in the

spring law.

Excluded Volume

As mentioned in Section 5.5.1, the EV forces are not significant for moderately stretched chains.

This means that the effects of EV will not be seen until the chain has relaxed significantly in the

longitudinal direction, which only occurs on time scales on the order of -r7 or longer. This can

clearly be seen in Figure 5.6 where the curves for the chain with EV do not deviate from those

without EV until very near equilibrium. Therefore, the effects of EV on the transverse dynamics

are minimal except at very long times.
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Fig. 5.6: Plot of the ID radius of gyration squared in all three directions for a

single chain length of N, = 164 both with and without EV. The initial stretch

of the chain was 75% i-n a 300 Tan channel.

We can demonstrate this by considering a scaling analysis to estimate the fractional extension

Xev at which EV becomes important. Using a Flory-type approach, we begin by viewing the chain

as a series of tension blobs whose in-plane dimensions are (y and whose transverse dimensions are

10-4
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,h (i.e., they are small disks). Therefore, the pervaded volume of a tension blob scales as ~ h 92 if
there are gy Kuhn lengths in a blob, then the z-interaction parameter of a. blob is given by

Fz evP 9 ~ gevp (5.42)
kBT hy hbK2+Y

where F1 is the Flory interaction energy of a blob and ve"'P is the excluded volume parameter for
a Kuhn length. The last scaling comes from assuming ideal chain statistics within a blob, as Flory
did (i.e., Y ~ gY1/2 bK). The point at which EV becomes important is when z ~ 1. Therefore, the
critical number of Kuhn lengths in a, tension blob gy,ev where EV becomes important is

hbK2  (5.43)
9y~ev ~evp

which corresponds to a fractional extension of

(NK/gy,ev) y,ev -1/2 _'_'4

A ev~NKbK gy,ev ~ 2 - (5Neb hbv2 (.4

For our choice of parameters, in a 300 nm channel, this corresponds to a fractional extension of
Xev ~ 0.3. Of course, this is a scaling analysis, so order unity prefactors have been ignored. But
this suggests that a. chain must relax significantly in the longitudinal direction before EV effects
become important, and this only occurs at very long times. This means that examining chain
growth across multiple time scales by plotting the chain size against a logarithmic scale of time is
inappropriate for the study of the effects of EV. In order to see these effects, a linear time scale
must be used which is precisely the sort of analysis performed in Section 5.5.1.

EV does not directly affect the dynamics of the confined dimension, even at long time scales, as
will be shown in the following section. However, we will show that under certain conditions spring
nonlinearities can lead to coupling between the confined and longitudinal dimensions that affects
the relaxation of R,22 to its true equilibrium value at long times. Therefore, Rz 2 is sensitive to
EV insofar as the longitudinal dimension is affected by EV at long times. On the other hand, the
unconfined, transverse dimension certainly feels the effects of EV as it nears the equilibrium value
it shares with the longitudinal dimension, but at this point, these two unconfined dimensions are
governed by the saine linear relaxation processes which have already been studied in significant
detail in Section 5.5.1. So no further analysis is required.

Nordinearities

Finally, we consider the effects of the spring nonlinearities, which are most evident at the begin-
ning of the relaxation process when the springs are highly stretched. One consequence of these
nonlinearities is that the spring force is no longer independent for each dimnelsion. This means that
the strong stretching in the longitudinal direction leads to an increased effective spring constanit in
both of the transverse directions. As already pointed out in Sections 5.5.2 and 5.5.2, this can lead
to deviations from the Hookean theory and retards the growth of the transverse dimensions during
the tension-dominated regime.

In order to clearly demonstrate this effect, we simulated the relaxation of a chain from several
different initial fractional extensions. The results are shown in Figure 5.7. It has been observed
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Fig. 5.7: Plot of the ID radius of gyration squared in all three directions for a

single chain length of N = 75 in a 300 nm channel. The results for various

values of the initial fractional extension are shown. Also included is the Hookean

theory given by Equation 5.40 and 5.4 1.

that chains behave in a Hookean manner up to fractional extensions around 30%. In accordance

with this, excellent agreement is seen between the Hookean theory and the chain initially stretched

to 30%. As the initial extension is increased, the size in the transverse dimensions falls farther

below that of the theory. This is precisely the expected effect of the strong nonlinearities in the

springs at high extensions.
The nonlinearities alsd affect the equilibrium regime of the confined, transverse dimension.

Figure 5.8A shows a zoomed in view of Figure 5.5B in this region for several different chain lengths.

Rg,z 2 is the same for all three chain lengths through the diffusive and tension-dominated regimes,
but they behave somewhat differently once they reach the equilibrium regime. The Hookean theory

of Section 5.5.2 predicts that R9 ,z 2 should immediately plateau to its final equilibrium value after

the tension-dominated regime, but clearly the dynamics are richer for real chains. All three chain

lengths exit the tension-dominated regime by temporarily pausing their growth of Rg,z 2 at an

intermediate value slightly below their final equilibrium. The duration of this pause is dependent

upon the chain length. For N, = 10, the pause is only barely evident, while it is quite significant

for N, = 300. After this interruption in its growth, Rg,z 2 slowly approaches its final value.

In order to prove that this behavior is due to the spring nonlinearities, we ran a simulation

where an initially stretched chain was allowed to relax in the transverse directions, but its initial

longitudinal stretch was held fixed for all time. The result is shown in Figure 5.8B along with the

results for chains with and without EV that are allowed to relax in the longitudinal direction. The

two chains that are allowed to relax in all dimensions are nearly identical except that the chain with

EV has a slightly higher final equilibrium value at long times. Therefore, EV cannot account for

this behavior. On the other hand, the chain whose stretch is held fixed plateaus at its final value

precisely where the other chains temporarily pause. Clearly, this temporary arrest in the growth is

due to the nonlinearities of the springs, and the subsequent slow approach to equilibrium is due to

the relaxation of the longitudinal stretch which reduces the tension in the springs.

....................... . .
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Fig. 5.8: (A) Plot of 1D radius of gyration squared in the confined, transverse
dimension Rg,z2 for several different chain lengths in a 300 nm channel with an
initial fractional extension of 75%. Only the equilibrium regime is shown (see
Figure 5.5B for the entire relaxation process). Two curves are seen for N, = 75
and 300 because the data from both the short time and long time simulations are
plotted. (B) Plot of 1D radius of gyration squared in the confined, transverse
dimension Rg,z2 for a single chain length of S = 75 in a 300 nm channel with
an initial fractional extension of 75%. The results for three different cases are
shown: with EV, without EV, and the longitudinal stretch held fixed. Only the
equilibrium regime is shown. (C) Plot of 1D radius of gyration squared in the
confined, transverse dimension R9, 2 versus the 1D radius of gyration squared
in the longitudinal dimension R,, 2 for a single chain length of N, = 75 in a

5.5. Results
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To demonstrate that relaxation of the longitudinal stretch is responsible for the slow approach

to equilibrium after the pause, we have taken the data from Figure 5.7 and plotted Rq, 22 against

Rg,2. This is shown in Figure 5.8C for different initial chain extensions. Initially, R,z2 grows

during the diffusive and tension-dominated regimes without much change in Rg/ which relaxes

on much longer timescales. But once the equilibriun regime is reached, all the curves fall on

the same universal curve. This reveals that a quasi-steady equilibrium exists for R,z2 during the

equilibrium regime., and it is slaved to the relaxation of the longitudinal stretch. This is also verifies

the quasi-steady assumption made in the tension-blob physical model for the relaxation as discussed

in Section 5.3.2.

A consequence of this quasi-steady equilibrium is that during the equilibrium regime, Rz 2 is a

measure of the relaxation of the longitudinal stretch. This means analyzing Rg,z 2 provides another

way of studying the relaxation times of the chain. We can do this by defining a relaxation function

0 z (t) =[R ,o2 - R9,2,o2 ]/ 2 for the confined dimension. A characteristic curve for Gz(t) is shown

in Figure 5.9A. An obvious linear region is seen, indicative of a single exponential decay with the

time constant r9 2. Since this approach to equilibrium is due the nonlinearities in the spring law

when the longitudinal direction is extended beyond 30%, it is expected that r,,2 should provide

an estimate of the bulklike relaxation time TJ. Indeed, good agreement is found between the two

as seen in Figure 5.9B, and it is clear that they follow the same scaling rR,22 ~ rI ~ N 2 .

5.6 Conclusions

We have used Brownian Dynamics simulations to study the relaxation of initially stretched chains

in slitlike confinement. We have shown that our simulation technique is capable of reproducing the

qualitative findings of recent experimental studies. In particular, our simulations clearly show the

existence of two distinct relaxation times in the linear force regime: one that scales similar to a

bulklike relaxation time, and another that follows the scalings predicted by blob theory. We have

conclusively demonstrated that the emergence of the second relaxation time is due to excluded

volume effects and not hydrodynainic interactions.

We developed a Rouse-like theory to describe the confined relaxation of the transverse dimen-

sions of an initially straight bead-spring chain and find good agreement between our theory and the

simulations. The effects of excluded volume and spring nonlinearities on the dynarnics were also

explored. It was found that these nonlinearities lead to a quasi-steady equilibrium between the size

of the chain in the confined dimension and in the longitudinal dimension. This corroborates one

of the underlying assumptions of the physical model for confined relaxation proposed by Balducci

and coworkers [31].
Our results are importanlt to developing a clear mechanistic understanding of the relaxation

of polymers in slitlike confinement. Not only is this a problem of fundamental importance in

polymer physics, it is also has practical interest for the development of microfluidic devices that

exploit confinement to mlallipulate DNA molecules. This work only considered the scalings of the

relaxation times with chain length, and the height of the channel was not varied. Future studies

should examine the predicted scalings of the relaxation times with channel height. Additionally,

hydrodynamics interactions were not included in the simulation model, and their effects should be

explored at a later date.
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CHAPTER 6

Outlook

In this thesis, we have presented simulations of the single molecule behavior of DNA in mnicrofluidic

devices related to gene mapping. In particular, we have considered the use of a post array to

precondition molecules for subsequent stretching in a contraction, the electrophoretic collision of
a DNA molecule with a large, ideally conducting post, and the relaxation process of an initially
stretched molecule in slitlike confinement. In this final chapter, we would like to briefly sunmarize
our findings, their impact, and suggested future directions.

In our study of conformational preconditioning using an array of posts, we found good qual-
itative agreement between experiments and our simulations for the behavior of DNA in the post

array. But our simulations consistently overpredicted the final stretch of molecules at the end of

the contraction. Our study suggests that nonlinear electrokinetic effects play a. significant role in

the dynamics of the contraction. This should be investigated in the future, and indeed, preliminary

results from a nascent experimental study in our group seem to support this finding.

After this study using an array of insulating posts, we considered the electrophoretic collisions
with conducting posts. As this was the first study of such collisions, we simplified the problem in

order to help distill out the essential physics the govern the problem. In particular, we found that

field-induced compression plays a critical role in understanding the escape process of a molecule

trapped on the post surface. We performed an extensive theoretical analysis both for this problem,
which also had not been previously studied, and the larger collision problem. Of course, our

simlation results should be compared to future experiments. A question that still remains is

what the effect of including intramiolecular excluded volume would be. Additionally, we expect
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that collisions with moderately sized conducting posts and movement through arrays of such posts
should prove very different than their insulating counterparts. Indeed, they may offer distinct
advantages for separation and concentration purposes as they induce strong interactions between
the molecules and the posts.

Finally, we looked at the confined relaxation of DNA in a slit. We presented the first simulation
results that show two distinct relaxation times in the linear force reginme as previously reported in
recent experiments. We focused on the dynamics in the transverse directions, particularly at short
times and on sumall length scales, becanuse they are experimentally inaccessible. We developed a
theoretical model to describe the transverse dynamics at all time scales, finding several different
scaling regimes. We used our simulation results to compare to a recent mechanistic model developed
to describe confined relaxation and found qualitative agreement with its predictions. Future studies
should attenpt to probe even tighter confinement, moving into the Odijk regime, where the physics
of relaxation should qualitatively change. Our simulations were limited, however, by the accuracy of
our numerical model in tight confinement. Future work should be directed toward developing new
simulation models that are more accurate in confinenment without becoming too comnputationally
costly. In particular, this means developing new spring laws that take into account the restricted
phase space of the spring and new excluded volume potentials based upon blob theory models to
accurately predict the strength of EV effects, particularly as a function of gap height.

The overall impact of this thesis is to have either confirmed, explained, or suggested the behav-
ior and underlying physics of DNA ini microfluidic devices of particular import to gene mapping
technologies. 'We have hypothesized that nonlinear electrokinetic effects are important in miicro-
contractions. XVe have developed an extensive theory for collisions with conducting posts and
have introduced the notion of field-induced confinement. Finally, we corroborated the tension blob
model for confined relaxation as well as developing theory for the transverse dynamics. All of these
findings are significant and will play an important role in developing new device designs both for
gene mapping and other applications.
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Green's
Field-inducedCompression

A.1 Green's Function

A.1.1 Problem Statement

The Green's function G (z, z'; n) represents the statistical weight (or the partition function) of the
chain which starts from z' and ends at z in n steps. It obeys the partial differential equation

(A.1)

where H is the spring constant associated with a Kuhn segment, Ue,(z) is the external potential
acting upon each chain segment, and both 6(z - z') and 6(n) are the Dirac delta functions.

For the case of a unifornm transverse field compressing a chain against a flat wall, the potential
is given by

Ue(z) = FKEOz, (A.2)

where FK is the effective charge per Kuhn segment, Eo is the applied electric field, and z is the

Appendix A

Function Approach to

[ kBT a2  1
on -2H oz2±+ kBT Ue(z) G (z, z'; n) = (z - z') 6(n),



104 A.1. Green's Function

distance from the wail. We can nondinensionalize Equation A.1 based upon

n
9= , (A.3)

z
2= ,(A.4)

-NkBT/H'

O (2, S'; q) =V/NKkBT/HG (z, z'; r), (A.5)

NKFKEO NKkBT/H ,T 3/ 2 FKEO -2 3
Pe = = N /eK, (A-6)kBT /k TH

where N1K is the nunber of Kuhn steps in the chain, Pe is the chain P6clet number, and PeK is
the P6clet number based upon a Kuhn segment. This leads to the following dinensionless form of
Equation A.1

a0 1 62G
Pe2O + o6 (2 -2') 6(n). (A.7)

For our boundary conditions, we choose to place the chain between two parallel, inpenetrable
separated by a distance L. Because the chain cannot pass through the walls, the probability of
finding any segment of the chain at z = 0 or z L is zero:

O(2 = Z0,'; ) = (Z- L,2';r,) =0. (A.8)

Equations A.7 and A.8 define our problem which can be solved using a finite Fourier transform.

A.1.2 Associated Eigenvalue Problem

To begin, we Solve the associated eigenvalue problem:

I d2 o, -Pe2~ -- A 2i (A.9)
2 d22

d( =0) = 4( ,(A.10)

where #i and A. are the ith eigenfunction and eigenvalue, respectively. If we perform the following
change of varia)bles

ni = (2Pe)/ 3 (2 - , (A.11)

then Equation A.9 becomes
du2 

(A.12)
duj2

The two linearly independent solutions of this equation are the Airy functions of the first and
second kind Ai(x) and Bi(x), respectively:

#i (us) = cijAi (ui) + c2 ,jBi (uj) ,1 (A.13)
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where cia and c2,i are hosei to meet the orthonornality requirement of the eigenfunctiors. Re-

turning to the variable 2, the eigenfunctions are given by

2 (2) =ci Ai [(2Pe)1/3 (2 c2pBi (2Pe)1/3 , (A.14)

and the eigenvalues are chosen such that the boundary conditions are met and are defined by the

e(uation

- 1/ 3 A., 3 2 i 213

A,: Ai -2 B i (2Pe) /3 L - 1 - Ai (2Pe)/ L - ) Bi = 0.
Pe2/3 Pe Pe Pe2/3

(A.15)

cj ald C2. must be chosen so that 4j is orthonormal.

A.1.3 Solution

We assume a (z, 2'; b) an be writtei in the form

O (2, 2'; ) = M (2'; r)4i(2), (A.16)

where yj (2'; j) is the weighting of the ith eigenfuriction and is defined as the inner pro(uct of the

ith eigenfuction 45( 2) with G (2, 2'; r/):

yzs;g 4(),5(,s;g (A. 17)

where the subscript 2 denotes that the inner product is taken with respect to the variable 2.

If we transform Equation A. 7 by taking the inier product of each side with the ith eigenfuiction

4i(2), perform two rounds of integration by parts, an(d then iake use of Equations A.9 and A.17,

we arrive at the following ordinary differential equation for the weightings y,(2'; i)

+ A2= 4(2')3(q). (A.18)

By integrating both sides as follows

Sd 2 /

- [exp (Ai,') g] dr' = d (2') exp (A,2 1') S(r')dr', (A.19)
dr -

gives
exp (A 2 q) 4 - 0 =4(2') exp(0), (A.20)

so the weightings are given by

(A.21)
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Using this result along with Equation A.16, we have the general solution for the Green's function:

O 2 ' )=2exp (- Ai',) #32#('.(A.22)

A.1.4 Semi-infinite Domain, L -+ oo

We now take the limit of our general solution given by Equation A.22 as L -+ oo in order to obtain
the special case of the two walls being separated by an infinite distance. Because the chain is
electrophoretically pushed toward the wall at z = 0, the second wall at z = oo has no effect on the
chain, and the solution will be identical to a chain in a semi-infinite donain being pushed against
a single wall.

Ve begin by considering Equation A.15 for the eigenvalues in the limit L oo (note that the
following is only valid if Pe > 0). Because Ai(oo) = 0, the second term on the RHS of Equation
A.15 vanishes. On the other hand, Bi(oo) =xo so that the first term on the RHS blows up unless
the eigenvalues are chosen such that

Ai: Ai K i2/3] = 0. (A.23)

Therefore, the eigenvalues are given by

Ai Pe 1/3
A V ) v a, (A.24)

where aj is the ith root of the Airy function Ai(x) ordered such that a, +1 < a- < 0 for j 1, 2, 3,
The eigenfunctions given in Equation A.14 become

6i (2) cijAi [(2Pe)1/3 (2 - ciAi [(2Pe)1/3 2 + ai] . (A.25)

This suggests a. rescaling of the length and a new variable ( is defined as

(2Pe)1/ 3 2. (A.26)

Therefore, the eigenfunctions become

c,,Ai (( + a,), (A.27)

and the orthonoriality requirement demands that

ci'i = (2Pe)1/ 6  d [Ai(( + ai)]2 . (A.28)

The Green's function 4 ((, ('; m) based upon the new length variable ( is defined as

(A.29)
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Finally, we can state that the Green's function for the field-induced compression of a Gaussian

chain against a flat wall by a uniform transverse field is described by

= exp'i (Pe )2/3 17 Ai ( + a ) Ai ( ' + aj) (.0
T (, '; I) =0 expa](

1 ~~10 d< [Ai ( +ai)

A.1.5 Blob Regime, Pe -+ 0

We now simplify our result for the case of Pe --4 oo. This can be seen as either the long chain limit

NK -+ oo or the strong field limit PeK -+ o. In essence, this is the blob regime. As long as the

dimensionless nmniber of steps q > (Pe/2) -2/3, then only the first term of the infinite series in

Equation A.30 contributes to the sin, so

T' (e,$9'?/ Pe e 2/3rj] Ai( + ai)Ai('+ai) (A.31)
0 d [Ai(+ a1)]

It must be stressed, however, that the restrictions oin this equation are that Pe > 0 and rq >

(Pe /2) .2/

A.2 Calculation of Kc and R

A.2.1 Probability Distribution Function for to

The probability of finding an internal segment of the chain 0 < , < 1 at position ( is given by

(dcodk1 (/o, (,; rj) ' (n (1; 1 -- ). (A.32)
d< d< 1 { ( o,(; 1)

If we use our blob regime result given by Equation A.31, then wxe find that

[Ai ((, + a)] 2

Jo jd [Ait( + a1 )|2

We can also say that 1y "internal" we imean that both 1 and 1 - i are > (Pe/v2) -2/3

A.2.2 Moments of P(Q,,)

We can calculate the inmoments of this probability distribution by noting that

ai -2.33811. (A.34)

The first inonment of , is given by

To d6I;(o [Ai ((of + a1)]2

d6,6{P(Ai) )]2  1.558740, (A.35)
0o 0f d [Ai( + al1]
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ald the second moment is

( =2fdo" d~g( 2{Ai ((r + al)]2  2.9156. (A.36)
0 foo d [A, Ai( + al 12

A.2.3 (d1,) and (R,, 2 )

With these moments in hand, we are now prepared to calculate the average distance from the wall
(dj,) of a chain and its average radius of gyration squared (R.,q 2 ):

N) K 1N/2 (2Pe)-1/3 ()~ 1.5 58740NK 1/2(2NK 3/ 2 peK ) -1/3 = 1.23717 3 PCK 1/3
y/kBT/H

(A.37)
and

W/ -= NK(2Pe) -2/3 (K2 2) (2.9156 - 1.558740 2 )(2PCK) 2 / 3 = 0.3061PeK - 2 /3 .kBT/H
(A.38)

These scalings are exactly those predicted using the simply blob theory framework. Additionally,
the analytically prefactors derived here nearly mnatch those found by fitting simulation results.
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