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Abstract

During most of the twentieth century, direct study of individual polymer molecules was impossible
due to their small size. Therefore, polymers were typically studied in bulk solutions, and their
behavior and interactions had to be understood through average bulk property measurements.
Because the scale of most industrial applications greatly exceeded the size of these molecules, this
level of analysis was satisfactory. In the last twenty vears, however, the appearance of microfluidic
devices, whose smallest length scales are comparable to the size of a polymer molecule, has offered
ways to visually study the behavior of individual polymer molecules and made possible new and
exciting applications that exploit the precise control afforded by the small size of these devices.

One such application is gene mapping, which extracts, at a coarse level, the information embed-
ded in the base pair sequence of genomic DNA. This technology relies on the ability to manipulate
single DNA molecules in order to perform such tasks as separating DNA based on length and
stretching DNA away from its entropically coiled equilibrium state. Recently, many novel methods
have been proposed to accomplish these tasks using microfabricated devices, and much experimen-
tal work has been focused on identifving and characterizing the underlying physics governing these
devices. Current understanding, however, is greatly hampered by the fact that experiments can
only provide limited information about the behavior of DNA molecules (e.g., they are unable to
resolve details on small time and length scales). Therefore, simulations are an invaluable tool in
the study of DNA behavior in microfluidic devices by complementing and gniding experimental
investigations.

In this thesis, we present Brownian Dynamics simulations of the single molecule behavior of DNA
in microfluidic devices related to gene mapping. In particular, we have considered the use of a post
array to “precondition” the configuration of molecules for subsequent stretching in a contraction
and compared our results to previous experiments. We found good qualitative agreement between
experiments and simulations for DNA behavior in the post array, but our simulations consistently
overpredicted the final stretch of molecules at the end of the contraction, which we attributed to
nonlinear electrokinetic effects. We also investigate the electrophoretic collision of a DNA molecule
with a large, ideally conducting post. Field-induced compression was shown to play a critical role in-
the escape process of a molecule trapped on the post surface, and an extensive theoretical analysis
is performed, describing both the local field-induced compression and the larger collision problem.
Finally, we study the relaxation process of an initially stretched molecule in slitlike confinement.
We present the first simulation results that exhibit two distinct relaxation times in the lincar force
regime, as previously reported in recent experiments. Our analysis is focused on the experimentally
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inaccessible dynamics in the transverse directions, particularly at short times and on small length
scales. Comparisons to the predictions of a recent mechanistic model of confined relaxation were
found to be satisfactory.

Thesis Supervisor: Patrick S. Doyle
Title: Doherty Associate Professor of Chemical Engineering
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CHAPTER 1

Introduction

1.1 Motivation

1.1.1 Gene Mapping

The human genome contains most of the details required both to construct a complete individual
and to maintain his or her continuous functioning for a lifetime. Accordingly, the amount of
information stored within the sequence of the constituent base pairs is massive and complex. It
specifies such mundane traits as hair and eye color, while also defining more significant features,
including an individual’s susceptibility to myriad maladies, such as cancer and disease. Indeed, it
also encodes the body’s response to these same afflictions.

Conscquently, a great deal of effort has been expended to determine the exact sequence of
the entire human genome [1]. This considerably detailed information is then used by researchers
for varied purposes, from locating particular genes within the vast sequence, to studying how the
genetic material is regulated and interacts with its cellular environment. However, many diverse
applications do not require fine detail about the exact sequence of individual base pairs, including
gene therapy and medical diagnostics, identification and crime investigation, and even national
defense programs. In these cases, performing DNA sequencing is excessive, and gene “mapping”
techniques, which are less expensive and provide lower resolution than sequencing, are sufficient.

DNA or gene mapping involves determining the location of different short base pair sequences or
genes relative to one another. This coarser view of the genome is faster and cheaper to obtain and
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more accessible to analysis for the aforementioned applications. Most mapping techniques currently
rely on indirect methods of obtaining these relative locations, typically by restriction mapping [2].
In this technique, restriction enzymes cut DNA at specific sequences to form short strands of many
different lengths which are then length-separated, often by gel electrophoresis. By using multiple
sets of restriction enzymes, the various band patterns that are obtained can be interpreted to
construct a map of the genome. This technique, however, has several major drawbacks. Firstly,
it often requires numerous sets of restriction enzymes and many scparations to obtain the correct
mapping, and secondly, separations, particularly gel electrophoresis, are time consuming and have
upper limits on the length of the strands that can be resolved [3]. Therefore, the development of a
method to rapidly map large, genomic length DNA molecules is highly desirable.

Two different paths have been followed to attack this problem. The first is to optimize methods
that rely upon indirect analysis by devising novel separation techniques that are faster and and
able to separation large DNA molecules. The second route is to engineer a direct analysis method
that completely bypasses the need to perform separations.

Indirect Analysis: Separations

Indirect gene mapping techniques rely upon the ability to separate fragments of DNA based upon
their length. This has traditionally been accomplished through gel electrophoresis, where the gel
network acts as a “sieve.” However, gel electrophoresis is not possible for many of the large DNA
strands seen in modern gene mapping. This is because the pore size of the gel cannot be made
Jarge enough to efficiently separate large molecules without compromising the integrity of the gel.
Therefore, there has been considerable interest in developing new techniques that allow for the
rapid separation of large DNA strands.

Many studies have relied upon the same basic sieving mechanism found in gel electrophoresis but
have exploited microfluidics to design devices with “artificial pores” whose size and geometry can
be chosen arbitrarily and precisely controlled by microfabrication techniques. Volkmuth and Austin
[4] pioneered this technique by electrophoresing DNA through an array of microfabricated posts. It
was observed that molecules tended to “hook” on the posts leading to a size-dependent unhooking
process [5, 6, 7, 8, 9, 10]. Arrays of variously shaped obstacles have also been used to create
diffusion arrays [11, 12, 13] where small molecules with high diffusivities tend to follow tortuous
paths through the array while large molecules typically move quickly through the channels between
the obstacles. Confinement effects have also been exploited for separation purposes. Nanochannels
with varying cross-sections have been constructed to create entropic traps {14, 15, 16] which have
an entropic energy barrier to move from regions of wide cross-section to those with a narrow cross-
section. Nanopores have also been used for separations by exploiting the entropic recoil [17, 18, 19]
of a molecule that is partially inserted in a nanopore. Some studies have not relied upon device
geometries to achieve separation. For example, one technique attaches uncharged molecules to
the end of DNA to act as a sort of “parachute” during electrophoresis leading to size-dependent
mobility [20]. All of the separation techniques, however, tend to suffer from limited resolution,
particularly for large molecules and when operated at high speeds.

Direct Analysis: Stretching

Direct analysis techniques attempt to literally “read off” the location of genes and specific base
sequences directly from a single molecule of intact DNA,, thereby circumventing the separation prob-
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lem entirely. The most promising example of this technique is called direct linear analysis (DLA)
[2]. In this method, a DNA molecule is labeled with fluorescent tags (often modified biomolecules)
that attach to specific sequences of interest. The DNA molecule is then stretched into a straight
line and driven past a detector which uses optical sensors to measure the physical distance between
the fluorescent tags along the DNA backbone (see Figure 1.1). This provides a simple, direct, and
easily analyzed physical map of the molecule. The advantages to this technique are that it is fast,
it works for large DNA strands, and can easily be automated in a microfluidic device.

Fig. 1.1: Visualization of a Direct Linear Analysis (DLA) device. The hyper-
bolic contraction creates an elongational flow to stretch the DNA (shown in red),
and the array of posts pre-conditions the chain configurations before it enters
the contraction to be analyzed by a sensor (shown in blue).

On the other hand, a major difficulty with DLA currently is overcoming the entropic tendency of
polymeric DNA to adopt a coiled configuration which is unsuitable for optical analysis. Therefore,
developing effective methods to consistently stretch DNA molecules close to their full contour
length in a continuous and uniform manner is paramount to the success of DLA devices. It has
been shown that electric field gradients can accomplish this task [21, 22], and stretching DNA in
eloctric fields is similar to stretching polymers in hydrodynamic flow fields [23]. Electric fields,
however, are better suited to stretch DNA in microfluidic devices: they are simple to apply and
are purely elongational. Even so, stretching DNA with field gradients suffers from a phenomenon
termed “molecular individualism” [24]. This refers to the nonuniform way a population molecules
stretches due to the random nature of their initial configurations. This is a significant obstacle that
must be overcome since DLA requires a uniformly stretched population of molecules to accurately
determine the distance between the tags.

1.1.2 Polymer Physics of Confinement

During much of the twentieth century, the scale of most industrial applications greatly exceeded the
size of individual polymer molecules. This meant that the molecules were never physically confined
and any fields or forces applied to the molecules looked homogeneous on the length scale of a polymer
chain [25]. Therefore, a great deal of research examining bulk properties and homogeneous flow
fields was completed. In the last twenty years, however, the appearance of microfluidic devices,
whose smallest length scales are typically near the size of the polymer, has created a need to study
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polymer behavior in confined environments and in non-homogencous flow fields that vary over the
length scale of the polymer [26, 27, 21]. Already, there has been theorctical work done on the
behavior of polymers in confinement [28, 29]; however, experiments have only recently begun to
catch up with the theory [30, 31, 32]. An understanding of the equilibrium properties and the
dynamics of confined polymers is fundamentally important to the rational design of future novel
devices. It will allow researchers to exploit the advantages of confinement, while avoiding and
overcoming the obstacles it presents.

1.2  Objectives

The goal of this research is to develop an understanding of the behavior of DNA in microfluidic de-
vices that have potential application in gene mapping. In particular, we are interested in studying
the effects of confined environments and small length scale device features (c.g., microfabricated
posts) on the properties and dynamics of DNA. We examine how post arrays can effect confor-
mational changes in a population of molecules, and we consider two types of slitlike confinement:
physical confinement imposed on a molecule by the channel geometry, and field-induced confinement
when a molecule is pushed against a flat surface by a transverse field. We attack these problems
with a combination of heavy theory and Brownian Dynamics simulations. The following studies
will be presented:

e Conformational preconditioning by a microfabricated array of posts;
e Electrophoretic collisions of DNA molecules with a large, ideally conducting post;

¢ Relaxation of an initially stretched DNA molecule in slitlike confinement.

1.3 Overview of Results

In Chapter 2, we present a primer on general polymer physics that will be useful to understanding
our studies. In addition, some of the important work in the field is reviewed along with an introduc-
tion to our simulation techmquo Chapter 3 presents the results of a study on using collisions with
an array of posts to conformationally precondition DNA molecules for subsequent stretching in a
contraction. This creates a more uniform distribution for the stretch of the polymers in the array
during gene mapping analysis. Chapter 4 lays out the first study to consider the electrophoretic
collision of a DNA molecule with a conducting post. These collisions are qualitatively different from
those with insulating posts, which have been studied extensively. The phenomenon of field-induced
confinement is also exhaustively studied. Chapter 5 investigates the relaxation of DNA in slitlike
confinement. The findings are compared to the predictions of a recently developed mechanistic
model, and good agreement is found. Finally, in Chapeter 6, the results of our research are briefly
summarized and their impact assessed. We also discuss the future directions suggested by our work.



CHAPTER 2

Background

In this chapter, we present the much of the basic background to understand the work contained in
this thesis. To begin, we present a general review of thie most important physics that affects polymer
dynamics in confinement. We then offer a survey of some of the literature surrounding specific
problems studied in this work. Finally, we consider the idea of coarse-graining and mesoscopic
simulation techniques that will be used throughout this thesis.

2.1 General Polymer Physics

A polymer is a large molecule consisting of many, often repeating, elementary units, called monomers.
These chemical subunits are connected together via covalent bonds to form a long chain that can
adopt myriad conformations. This diversity of possible spatial arrangements confers upon polymers
many of their unique properties. In fact, polymers have been studied with interest because their
global structure can be profoundly affected by the local behavior of its constituent building blocks,
including the flexibility of the chain, interactions between monomers along the chain, and interac-
tions of the chain with its surroundings. This provides the scientist or engineer with many ways
to manipulate polymers and fine-tune their equilibrium and dynamic properties to the situation at
hand. However, in order to this in a rational manner, a basic understanding of the properties of
polymers at their most fundamental level must be established.
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In this section, we present the... general polymer physics including equilibriuin properties and
dynamic behavior. We present several physical models used to study and represent polymers. We
also begin to introdnce the idea of coarse-graining which is important to being able to distill out
the essential physics while keeping the analysis tractable.

2.1.1 Equilibrium Properties

At its simplest, a polymer can be described as a collection of N rods of length ¢ connected end-
to-end to form a linear chain. The rods are representative of the underlying structural subunits
of the chain such as the chemical monomers. There are several length scales and measures of the
chain’s conformation that are significant. The simplest is the contour length of the chain L.. As its
name implies, this is defined as the total length of the chain as measured along the chain backbone
and is given by L. = N{. The contour length is the maximum length to which a polymer can be
stretched, and it represents the largest length scale of the chain.

Coil Size

To describe the conformation of the chain, each segment is assigned a “bond vector” r; of length
¢ that points in the direction that the ith rod is oriented. The most straightforward descriptor of
the chain’s conformation is the end-to-end vector Re.. This is defined as the vector connecting the
two ends of the chain and is found by summing all of the N bond vectors

]\T
Ree =Y 1y (2.1)
i=1

Because at equilibrium a chain is isotropic, there is no preferred orientation of the bonds. Therefore,
the ensemble averaged end-to-end vector for a polymer in bulk at equilibrium is zero

N N

(Ree) = (D 1) = (r)=0. (2:2)

1==1 i=1

The second moment of Ree, however, is non-zero. The average end-to-end vector squared can
be written as

N N N

N N N
<R€(i2> = (Rer«t : Ree) = Z r; |- er = Z Z <I'1‘, : I'j) = (72 Z Z <(30h‘ 9”> y (23)
i=1 Jj=1

i=1 j=1 i=1 j=1

where 6;; is the angle between bond vectors r; and r;. The most basic polymer model is the freely
jointed chain (FJC). In this case, the angle between different bond vectors is entirely uncorrelated
at equilibrium so that (cos;;) = d;;, where d;; is the Kronecker delta, and therefore,

(R, 2>—e2§:§:5~—m2 (2.4)
ee [ — ij - . A

i=1 j=1

Taking the square root of this quantity gives the root mean square of the end-to-end vector
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Ree = ,/(RM?), which is often referred to as the end-to-end distance. R, represents the most

rudimentary characteristic length of the chain’s size at equilibrium. For the FIC, Ree = N 1/2¢
vhich is c;igniﬁ(eu'lﬂy smaller than L.. In fact, the fractional extension of the end-to-end distance
Xee=Ree/L. =N~ 1/2 & 1 and decreases as the munber of rods N increases.

On the other hand, a more realistic model for a polymer should acknowledge that neighboring
bond vectors are correlated. For example, long alkane molecules contain a carbon backbone where
the carbon atoms are able to rotate around the bonds but the angle between two successive bonds
varies little. The simplest model to incorporate such correlations is the freely rotating chain (FRC).
In this case, 8;; is assumed to have a constant value of 6 between neighboring bonds, and through
a recursion formula, (cos;;) can be shown to decay as the distance between bonds increases:

{cos 0;5) = (cos 9)”"7;] . (2.5)
This decay is very rapid and is readily apparent when the RHS of Equation 2.5 is recast as
(cos 0)" 7 = exp [|j — 7| In (cos §)] = exp (JJ—S——Z—l) , (2.6)
P

where s, = —1/In(cos 8) and represents the number of rods over which the correlations between
bond angles decay. This allows us to describe another length scale, the persistence length €, = sp¢,
which is the contour length over which directional correlations die off between different segments
of the chain.

The end-to-end distance squared for the FRC can be written as
2 2\ __ 2 N N e J—i
- <Ree > ={ Zi::l Ejsl ((«()S 6)"’ I
= {N +3N, { ; S (cos6) T + Z;V:,iﬂ (cos 9)-7_i} }
={? [N +3N, (22;11 cosh @ + Ziv_;f cosk 0)] . (2.7)
Because the correlations decay exponentially, we can extend the sums over k to infinite series:

N i1 N

cos 8
E E 05" 0 _5_ "0 ~2§ E O“QNE 9—~2N 2.8
- (os -+ (()s 22 Cos™ COS —cos 0’ ( )
So for the FRC 14 6
2 _ a2l 005 q
Rec” = Nt 1—cosf (29)

As in the case of the FJC, the equilibrium size of the FRC is much smaller than the contour length.
Additionally, the size of the FRC las the same scaling with N. In fact, this is a general property of
all chain models that take into account only local interactions and correlations along the chain and
neglect all interactions between distant segments. Models based upon this assumption are referred
to as ideal chain models.

The equilibrium size of an ideal chain is always of the form

e’ = Cog N, (2.10)
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where Co, is Flory’s characteristic ratio and is a proportionality constant that represents the ratio
of the chain’s Re.? to that of the FJC (i.e., N¢2). This nniversal behavior is a consequence of the
Central Limit Theorem. In the case of the FRC, the characteristic ratio is

~ 1+coséd
T 1—cos@

Coo (2.11)

Ideal chains can always be recast to behave like the FJC in a model known as the equivalent
freely jointed chain. In order to do this, an effective bond length called the Kuhn length by is
introduced. The equivalent chain must have the same contour length as the old chain, so the
number of Kuhn “monomers™ is given by Nx = N£/bk. The Kuhn length is chosen, so that the
equivalent chain has the same Re.? as a FJIC (i.e., Ngbg? = CooNf2). From these equalities, the
equivalent freely jointed chain is defined by

N
o0

The final ideal chain model that will be discussed is the worm-like chain (or Kratky-Porod
model). This model is used to describe very stiff polymers that tend to bend continuously over
long length scales rather than have sharp turns or kinks as in the standard FJC or FRC models. In
particular, it is used to model the fairly rigid DNA double helix and, therefore, is of considerable
importance to the present work.

The worm-like chain is actually a special case of the FRC model for very small values of . For
# < 1, the Flory characteristic ratio is given by

14cosf 2-62/2 4
~ 1+4cosf / o4 (2.13)

Coo = T—cos® ~ 62/2 62’

where we have used the the fact that cos@ ~ 1 — 62/2 for 6 near zero. It can also be shown that
the persistence length is given by

- 2¢

b=t = In (cos 6) S

(2.14)
where the identity In(1 — z) ~ —z for small z has been used. With these two expressions, we can
find the relation between the Kuhn length and the persistence length for the worm-like chain:
4¢

b = Cool = 7~ 20y, (2.15)
So for the worm-like chain, the Kuhn length is twice the persistence length (bx ~ 2£,). As can be
seen in Equation 2.15, the ratio £/62 defines both the Kuhn length and the persistence length. The
true worm-like chain is defined in the limits £ — 0 and § — 0 while both £, and L. = N{ remain
constant. In this limit, the chain becomes a continuous smooth curve with a bending potential and
the mean-square end-to-end distance is found by considering the decay of the directional correlations
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along the chain backbone:

N N
R.. —£’2ZZ (cos 8 |J"]—42226Kp( J—th) (2.16)

j=1 je=1 i=1 j=1

By converting the discrete smmmations long the bond vectors to continuous integrals over the chain
contour length, it can be shown that

R =20,L. — 26,7 {1 — exp ("f ‘ﬂ : (2.17)
P

For our present work, we are interested in the long chain limit L. > £, so that Re.> ~ 28pL, =
Tkbi2, which is precisely the result expected for any ideal chain model.

The last topic we will consider concerning the equilibrium size of an ideal chain is the radius of
gyration Ry. The end-to-end distance Ree is typically not directly obtainable from experiments. For
example, in single molecule fluorescent microscopy, the ends of the molecule are indistinguishable
from other segments of the chain. Additionally, the end-to-end distance is only well defined for
linear chains. Therefore, a measure of the chain size based on an average over all of the chain
segments is needed. The square radius of gyration is defined as

1 IVK
q2 ]\,T Z (R; — R(;T’L)Q N (2‘18)
i=1

. - . . N .
where R; is the position of the ith Kuhn monomer and Ry, = > o1 Ri is the center of mass of
the chain. The equilibrinm averaged square radius of gyration is given by

Nk Nk 2
(R,?) = ZZ<(R R;)) = Nichi® <R§6 ), (2.19)
iy 6 )

This result is obtained by converting the discrete surnmations to continuous integrals and making
use of the fact that the moan—squ(no distance RUQ between any two Kuhn monomers ¢ and j is
given by the FJC result (i.e. , R =i i|bgx?). For an ideal chain, the radius of gyration is related
to the end-to-end distance b} a simple, constant numerical factor Ry = = Ree/V6. Again, it is clear
that the equilibrium size of the chain is much smaller than its maximum possible extension L.

In fact, this is a general feature of polymers. At equilibrium, they exist as “coils” whose sizes
are much smaller than that of their contour lengths, and the two measures continue to diverge
further as the numbers of constituent seginents are increased. This is entirely due to entropy, and
in fact, a force is required to deform a chain away from its equilibrium coil size.

Elasticity

At equilibrium, a polymer is a fluctuating object that samples all of its possible configurations.
Many more configurations are available to the polymer when it adopts a coiled state than when it
is extended. A consequence of this fact, is that any attempt to deform the polymer chain away from
its equilibrium size to a more extended state, leads to a reduction in the number of configurations
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available to the chain. This reduction in the available configuration space induces an opposing force
that attempts to return the chain to its equilibrium size. Therefore, any device or method that
aims to stretch a polymer molecule such as DNA, must overcome this entropic “spring” force.

A scaling approach is instructive for understanding the origin of this force and for obtaining its
analytical form. The key to this scaling approach is to

This scaling method is accomplished by using a tension blob framework. A polymer molecule
can be represented as a string of Ny “submolecules” each containing gy Kuln monomers such that
(Nrgr)bk = L. = Nxbk. The number of submolecules is, thercfore, given by
N

gr

Ny (2.20)
Aslong as gr > 1, then the statistics of the FJC discussed in Section 2.1.1 can be used to describe
each submolecule. This means that the equilibrium coil size of a submolecule follows the scaling
~ bgy/gr. Now, we must recognize that a force f applied to the ends of a polymer molecule
deforms the global structure of the chain, but locally along the chain, the organization of the Kuhn
monomers tends to remain unperturbed from the equilibrium configurations predicted by the FJC
model. This means there is a length scale & above which the chain appears deformed, but below
this length scale, the chain segments appear near equilibrium. If we allow & to be the size of
our submolecules or “tension blobs”, then we can say that equilibrinm FJC chain statistics apply
within the blobs:

&2 ~ grbx’. (2.21)

But on lengths greater than the &7, the blobs tend to align in the direction of stretch, so that the
stretched length of the molecule R can be approximated by the total length of the string of blobs:

R~ Nyé&r. (2.22)

In order to determine the energy F(R) required to extend the molecule to a length of R, we
note that the alignment of each blob along the direction of stretch restricts a degree of freedom
of the chain. Each degree of freedom removed from the system requires an energy on the order of
kgT, so '

R2
F(R) ~ NykgT ~ k’BT——z-, (2.23)
Nkbx
where Ny is obtained from considering Equations 2.20-2.22. To obtain the entropic restoring force
f(R), we simply differentiate the negative of the energy with respect the stretched length:

F(R) = =7 ~ —kpT—— ;. (2.24)

So the entropic spring force is linear with Hookean spring constant H ~ kgT'/Nkbk?. This also
& B K

suggests that probability distribution function for the end-to-end vector P(R..) is Gaussian, and

in fact, a more detailed calculation based upon the statisitics of random walks bears this out:

3/2 . 2

: R

P(Re.) <-—"—-.) exp (_LT) . (2.25)
27 N by 2bk
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This expression is valid for long chains and end-to-end distances much smaller than the contour
length (i.e., Ng 3 1 and R < Ngbyk) and is, again, a consequence of the Central Limit Theorem.
That the distribution of Kuhn monomer positions is Gaussian is an important result of ideal chain
models and is often used to analytically study problems in the polymer physics literature. Indeed,
we shall make use of this result in our present work as well. For now, we note that we can derive
the exact linear spring force for an ideal chain from Equation 2.25:

3kgT

- (2.26
N}d)}(g { ))

f(R)=

Nonlinearitics

There is a problem with the linear force law given by Equation 2.26. It clearly allows the chain
to be stretched bevond its contour length, which is clearly aphysical. As previously mentioned,
the linear force law is only applicable when the chain’s extension is much less than its maximum
extension. Our tension blob model can explain why this is.

We assumned that the confieurations of the Kuhn segments within each blob are unperturbed
by the stretching. However, at some point the chain is so stretched that the size of blob approaches
that of a Kuhn segment. At this point, the chain configuration is perturbed from its equilibrium
at all length scales, and the force law becomes nonlinear. As the chain extension approaches the
contour length, the force diverges, making it impossible to stretch a chain beyond its maximum
extension. A detailed statistical mechanics analysis shows that the exact force-extension behavior

of the FJC is given by
R bk bk S\ 7
A (1KY —orn (2K - 2.27
I (kBT) CO“(@T) (kBT : (227)

where £(z) is called the Langevin function. This force law recovers the expected lincar behavior
at low extensions and diverges as the chain approaches its maximum extension.

The way the spring law diverges changes depending upon the nature of the local, small length
seale detail of the chain. For example, the worm-like chain bends continuously unlike the FJC,
which is composed of solid rods connected by free hinges. Therefore, the worm-like chain follows a
different force law as it approaches its maximum extension. No closed form analytical solution exists
to deseribe this force law, but Marko and Siggia [33] have suggested an approximate expression
that captures the correct behavior at large and small extensions:

f&, R 1 B
kpT L. 4(1 - R/L.)

(2.28)

Ho |

Ercluded Volume

The ideal chain model is very useful for explaining inany of the most basic phenomenon observed
in polymer physics. However, it lacks realism because it neglects interactions between distant
monomers along the chain backbone as well as monomer interactions with the solvent. These
additional interactions are known as excluded volumne effects (EV), and their inclusion in models
leads to qualitatively different results for the equilibrium coil size and other quantities of interest.
For example, if the interactions between the monomers and solvent molecules are more energetically
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favorable than those between monomers and monomers, the coil tends to pull it solvent molecules
which leads to swelling of the coil beyoud the predicted size of the ideal chain models. This is
referred to as “good solvent” behavior. On the other hand, “poor solvent” behavior, where the
monomer-solvent interactions are weak, leads to expulsion of solvent molecules from the coil, and
the coil size is smaller than the ideal chain prediction. Indeed, if the monomer-monomer interactions
are strong enough compared to the monomer-solvent interactions, complete collapse of the coil can
occur. However, for the current systems of interest in this work (i.e., DNA in aqueous solutions),
only good solvent behavior is relevant, and we restrict our analysis to this regime.

To introduce the effects of EV, we look to the approach of Flory, which provides a simple and
elegant scaling theory that paints of a physical picture of the swelling phenomenon and very nearly
predicts the correct behavior for polymers in good solvents. Flory attempted to find the free energy
of the chain by estimating both the energetic contributions, which tend to swell the coil, and the
entropic contributions, which try to limit the size of the coil. Because these two effects act in
opposition, they can be balanced against one another to obtain a scaling for the coil size.

The effects of monomer-solvent versus monomer-interactions, as well as the effects of finite
monomwer size, are all taken into account through a single parameter v, which is the effective
excluded volume of a Kuhn monomer. Therefore, the total excluded volume for the chain is Ngv.
If the equilibrium coil size of the chain is R, then the pervaded volume of the chain is ~ R3, and
the fraction of the pervaded volume represented by the excluded volume of the chain is ~ Ngv/R3.
In a mean ficld sense, this also represents the probability that a single Kuhn monomer overlaps
the excluded volume of another Kuhn monomer. So for N Kuhn monomers, there are on average
~ Nk?v/R? overlaps. Each overlap restricts a degree of freedom of the chain, leading to an energetic
penalty on the order of kgT. Therefore, the energetic coutribution Fin to the free energy due to
excluded vohue is 5

Fine(R) ~ kT 5 (2.29)
For the entropic contribution Fep, we use that of an ideal chain (see Equation 2.23) stretched to
size H:

RQ
Fent(R) ~ kpT ——. (2.30)
Ngbyk
The total free energy is the sum of these two contributions F ~ Fipe + Feng, and the equilibrium
size Rg is determined by finding the minitmum of the free energy (0F/9R = 0). This gives the
equilibrium coil size for a polymer in a good solvent:

Ro ~ v/ Ny 35, (2.31)

This result, which agrees well with experiments, benefits from the cancellation of a couple errors.
First, due to its mean field approximation, Flory theory overestimates the number of exclusions
and, therefore, the energetic contribution to the free energy Fin. However, it also overestimates the
the entropic contribution Fiy because it makes use of the ideal chain result. It turns out that both
of these overestimates nearly cancel each other out, and Flory theory gives a very good estimate
for the good solvent universal scaling exponent v for the coil size with Nk. Flory theory predicts
v = 3/5 while more accurate estimates give a value of v = (0.59. This is larger than the case of an
ideal chain where v = 1/2, which is indicative of the fact that excluded volume effects lead to a
larger coil size.
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2.1.2 Dynamics

Polymer molecules in solution are constantly fluctuating entities that perpetually change their
shape, orientation, and position to due to thermal motion. It is not enough just to study the
equilibrium properties of polymers; it is equally important to understand the dynamical processes
that govern polymer behavior both at equilibrium and away from it. Inreality, a polymer molecule is
immersed in a sea of solvent molecules with which it interacts through thermal collisions (assumning
we neglect any energetic interactions). This system could theoretically be modeled by solving the
equations of motion for each solvent molecule and each segment of the polymer chain; however,
this is both intractable and unnecessary.

On the length and time scales of interest to this work, the effect of the solvent molecules is to
provide seemingly random, thermal “kicks” to the different segments of the polymer chain, referred
to as Brownian motion. Therefore, the solvent molecules are usually replaced by a stochastic force
applied to the polymer chain, and the resulting stochastic differential equations (SDEs) of motion
for the chain segments is solved. In this case, the molecule is represented by a series of connected
beads, similar to the analysis of equilibrium chain in Section 2.1.1. The general Langevin equation
for the ith bead position R; is given by

A ;’V[, f\/b -
IR, U 1 8 ‘
el j:>;=1 H;; - <_—8Rj + fj) + ;é-kBT ?:1 7R, -Hy; (2.32)

where Np is the total munber of beads, Hy; is the mobility matrix, U is the total energy of the
chain, including any external potential field, and f; is the Brownian force on the jth bead. For
most polymer dynamics models, the beads are assumed to be connected by Hookean springs with
a spring constant equal to

3kT
br?’

so that each spring represents a Kuhn segment (see Equation 2.26). This leads to a total energy of

H, =

(2.33)

H, &
U= _éﬁ 22 (R; —R;_1)°, (2.34)
=

and provides the starting point for our analysis of chain dynamics (for internal beads):

Ny

. Ny,

IR; 1 7]

—-08-%’4 = E H;; - [Hs (Rj—!—l - 2R, + Rj..l) + fj] + -Q—kBT E
g=1 J=1

oR; Y (2.3

5)

Rouse Model

The simplest model for polymer dynamies is the Rouse model. In this case, EV is ignored, and all
hydrodynamics interactions (HI) between beads is neglected. Hydrodynamic interactions occurs
when the movement of a polymer segment disturbs the surrounding solvent and sets up a decaying
velocity field that is felt by nearby segments. When HI is neglected, the molecule is said to be
“free-draining,” and the movement of one bead does not affect the mobility of another. Therefore,
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the mobility tensor for the Rouse model is written as
Hj; = ¢ 1oy, (2.36)

where ¢ is the drag coefficient of a single bead and I is the identity tensor. This leads to the
equations of motion for the Rouse model:

. dR; )
b = Hs (Riy1 —2R; + Ry) + £, (2.37)

which is a linear system of ordinary stochastic differential equations. The Brownian force, which is
Gaussian and must satisfy the fluctuation-dissipation theorem, is defined by the moments

(£(t)) = o, (2.38)
(fia®) fip(t)) 2k TCh0i;0030(t — t). (2.39)

It

This system of ordinary differential equations can be transformed into a single partial differential
equation. In this case, the discrete index i becomes a continuous variable n that represents the
positions along the contour of the chain:

. R, &R, .
Gb :;;n = H, 87]::{;1 + £, (240)
The stochastic force becomes
£,1) = o, (2.41)
-~ <fmoz (t)fn-ﬁ(t,)> = 2]‘7BT(_:h($(n - m)fsaﬁé(t - t,): (2'42)

and for the case of zero tension at the ends of the chain, the boundary conditions are

oR,|  OR,

on nzo,_ on

= 0. (2.43)

n=Np

A normal mode analysis can be performed for this system by solving the associated eigenvalue
problem. Many dynamical quantities of interest can then be determined based upon the time
correlations of the various contributing modes. In the case of the of the overall diffusivity of the
chain D, the Rouse model predicts

kgT

D=

NpGp

This is exactly the result expected for a free-draining chain, where the overall chain drag coefficient

¢ should simply be the sum of all the bead drag coefficients (i.e., ¢ = Ny(,). Making use of the

Stokes-Einstein relation, this means D = kT /¢ = kT /Ny(p, precisely as predicted by Equation

2.44. The longest conformational relaxation time 7, can also be determined. This is the time scale
over which global rearrangement of the chain segments occurs. For the Rouse model,

N Gb?
© 3n2kgT

(2.44)

(2.45)
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Table 2.1: Summary of the scaling results of Section 2.1.2 for the overall chain
diffusivity D and the longest conformational relazation time Te. The predicted
scalings with chain length Ny, are shown depending upon the physics included.

Free-draining HI
DNy e e N2 L Do NG 7~ N
Ideal, v = 1/2 D~N, 1o~ N2 D~ N2 1~ NP
EV, v=3/5 DNy L7 N22 | DN 2 re e N8

The important findings from the Rouse model are, that for a free-draining, ideal chain, D ~ N}, ™!
and 7. ~ N2,

Ziman Model

It turns out that the Rouse model does not correctly predict the experimental scalings with chain
length for the diffusivity and the relaxation time. This is due to the exclusion of hydrodynamic
interactions. Their effect may be included by modifying the mobility tensor to include the Oseen
tensor which gives the solvent disturbance due to a point force on the fluid:
©—lys 1 P .
Ns |I'zjf

where rj; = R; — R, rj; is the unit vector pointing in the r;; direction, and 7, is the solvent
viscosity. However, the governing Langevin equation (see Equation 2.35) becomes nonlinear using
this mobility tensor. This can be overcome by approximating H;; using its equilibrium preaveraged

form:
I

R (S e
A normal mode analysis of the resulting linear partial differential equation finds that the scalings
for the chain diffusivity and the longest conformatiorial relaxation time are given by

(2.47)

3
T s (VNkb ,
Do FBL dr~ ”;L_E_KL, (2.48)
Nsv Nrbi kgT

2.2 Polymer Stretching

Polymer stretching can be achieved by either direct manipulation or interaction with a flow field.
The appeal of direct manipulation, such as optical tweezing, is that the effects of the applied
forces are usually obvious and predictable [34]. But while this gives very precise control over the
deformation, it is not simple to perform and certainly seems difficult to scale-up. Therefore, flow
fields, which are easily imposed and extremely scalable, provide an attractive alternative and have
traditionally been used. The difficulty, however, is that their effects on the polymer conformation
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are not necessarily obvious.

2.2.1 Direct Manipulation and Tethering

Direct manipulation uses optical tweezers [35] to directly apply forces to DNA. A small bead is
attached to an end of a DNA molecule, and then a focused laser beam is used to apply a trapping
force on the bead as shown in Fig. 2.1. Bustamante et al. [34] studied the force-extension behavior
of DNA using this technique. They attached beads at both ends of a DNA molecule and stretched
the polymer by holding one bead stationary in an optical trap and moving the other one with
a pipette. Stretching has also been accomplished by only trapping one end of the molecule and
placing the tethered DNA in a flow field. The loose end is then pulled or dragged by the field
causing the polymer to deform. Optical tweezing has been used to study the relaxation of DNA
(36] and the stretching of DNA in a uniform hydrodynamic flow [37]. Blanch et al. [38] verified the
theory of hydrodynamic equivalence in a similar way but without the optical trap. Instead, they
tethered one end of a DNA molecule to a stationary post in a microfluidic channel and examined
the stretching in both hydrodynamic and electric flow fields.

\

Y

Fig. 2.1: Depiction of an optical trap. A laser (shown in red) traps a plastic
bead (shoun in blue) that is attached to the end of a polymer chain (shown in
green). The free end of the polymer deforms due to the uniform hydrodynamic
flow surrounding if.

2.2.2 Flow Fields

The effects of homogeneous flow fields have been widely studied and are typically organized into a
few broad categories of flow types each with its own characteristic polymer dynamics [39]. Shear
flows, for example, are able to moderately stretch polymers, but the fields also have strong rota-
tional components that cause the molecules to “tumble” and retract back into coils [40]. The best
homogeneous fields for stretching are extensional flows which have no rotational components but
each have axes of extension and compression {39]. When new methods of stretching are considered,
they are often compared to the effectiveness of extensional flows. Of particular importance to poly-
mer stretching is the idea of a critical strain rate. This is the strain rate at which the fluid elements
are moving apart from each other just fast enough to overcome the entropic forces that keep the
molecule coiled. The strength of the flow is usually represented by the dimensionless group De
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which compares the strain rate to the relaxation time of the chain; it has been found that the crit-
ical Deborah number De, for polymers in extensional flows is about 0.5 [41]. The dynamics of the
stretching is also dependent upon the initial configurations of the chains when the field is applied.
Some configurations rapidly uncoil while others take a very long time to unravel; therefore, the total
strain required to fully extend a polymer is not a single number but a broad distribution based
on molecular individualism [41, 24]. It has been shown that molecules can be “preconditioned” for
stretching by biasing their configurations away from equilibrium through using a different type of
flow field initially [42, 43)].

While homogeneous flow fields have received much attention, there have only been a few studies
that have observed flows involving non-homogeneots fields where polymer dynamics and deforma-
tion were examined [25, 42, 44, 45, 46]. Typically most work has been confined to situations where
the flow field can be found analytically, and often the effects of the field have not been fully ana-
lyzed. Leal et al. [47] have predicted that polymer stretching even in a locally homogeneous field
should be qualitatively different from that in a completely homogeneous case. Even less work has
been performed on fields that vary over the length of the polymer [48]. Randall et al. [21] have
shown, however, that the idea of accumulated strain at a critical strain rate is still be applicable in
non-homogeneous flow fields 21, 49].

2.2.8 Obstacle Arrays

Currently, the most common design for microfluidic DLA devices contains a contraction that sets
up a flow field with a strong cxtensional component to stretch the DNA molecules [2, 22] (see
Fig. 1.1). The difficulty with this approach is that molecular individualism prevents the chains
from stretching uniformly; indeed, some chains hardly stretch at all [22]. In order to overcome this
problem, Randall et al. [22] placed a gel directly before the contraction which forced the molecules
to stretch and reptate through the small pores of the matrix. Upon exiting the gel, most of the
DNA easily stretched in the contraction due to this “preconditioning” of the configurations. The
use of a gel, however, to perform the preconditioning is not desirable due to difficulties assembling
the gel in the device and gel degradation. Microlithographically constructed obstacle arrays could
cirenmvent these issues while still providing a preconditioning mechanism. Fabricated arrays also
have the advantage of extremely precise control over the obstacle features and placement so that
the geometrics can be tailored for optimal results.

Obstacle arrays have been highly studied over the past decade, and a great deal has been learned
about the effects of DNA collisions. This work began with simulations of gel electrophoresis where
the gel fibers were modeled as a regular array of posts (26, 50, 51]. It was found that the dynamics of
the DNA movement and deformation were governed by the collisions which often lead to stretching
followed by a rope-and-pulley motion and finally coltapse of the fully extended chain. This process
was termed “geometration” and was experimentally corroborated 27, 4, 52].

In order to simplify the problem, many studies have focused on collisions between a DNA
molecule and a single post. Most of the research assumed that the dominant type of impacts,
besides glancing blows, were hooking events that subsequently led to the rope-and-pulley motion
reported by Deutsch et al. [26]. Therefore, many aspects of hooking were examined and a great
deal of theory was developed (some of which is summarized in Table 2.2). But Randall et al.
[9] found that several different classes of collisions were statistically important. They observed
the classic hooking collisions, which they called U and J collisions, but they also noticed similar
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Table 2.2: A list of some of the single obstacle studies that have been performed.
A few of the important findings of each are listed.

| Tovestigators Findings
Sevick et al. [6] Unhooking is faster than tension equilibration in the polymer
Slater et al. [5] Large variations in impact dynamics even for direct collisions
Sevick et al. [7] Offset of DNA center of mass from the center of the post greatly affects hooking probability
Ajdari et al. [53] HI can generally be neglected when considering unhooking
| Sevick et al. [§] Obstacle size is very important in determining whether a hooking or a roll-off event occurs
| Randall et al. [21] | Non-homogeneous electric fields around the obstacle are significant in polymer deformation

impacts that they called X collisions which sometimes occurred more often than the U and J cases.
In this case, two unraveling arms form just as in the U and J situation, but one of the arms finishes
unraveling long before the other arm. Thercfore, the rope-and-pulley motion begins before the
molecule becomes fully stretched.

There has been much less work involving more than one obstacle. Sevick et al. [54] examined
the unhooking dynamics of a chain draped over two posts simultaneously. Other groups have
looked at a full array of obstacles [55, 56] which has been shown to be capable of electrophoretically
separating long strands of DNA [57]. However, the dynamics of the DNA moving through the
arrays have generally been ignored in favor of examining the overall dispersion within the system
[65, 56]. These large arrays are periodic, and as a polymer molecule makes its way through the
array, a dynamic steady-state behavior develops in a manner analogous to steady shear flows where
polymers repeatedly stretch, tumble, and contract [26]. Almost all the work on arrays of posts
has been done on very large arrays and has focused on the resulting steady-state behavior of the
polymers as they move through the array. The end effects, however, are important. Turner ot
al. [17] have shown that as a DNA molecule enters a tight array where the post spacing is about
the same as the persistence length of the DNA, there is an entropic force that tries to drive the
chain out of the array due to the loss of configurational entropy [17, 18]. Randall et al. [22] have
also shown that exit effects are important by their observation that as an electrophoresing DNA
molecule exits a gel in a microfluidic device, it behaves as a tethered molecule.

2.3  Simulation Methods

Because polymers are large molecules, it is currently impossible to simulate them at the atomisitic
level over time scales that are relevant to their dynamics in flow fields. Thercfore, polymers are
coarse-grained to develop a simple model that smears out the details that have little effect on
dynamics over the time scales of interest. The resulting polymer model is then incorporated into a
mesoscopic simulation method that somehow coarse-grains the individual solvent molecules as well.

2.3.1 Coarse-graining Models

The most common polymer coarse-graining is the bead-spring model. Due to their extreme size and
large variation in chemical composition, polymers are difficult to both understand and simulate.
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Despite all of this variability, the behavior of most polymer chains is qualitatively similar because
at length scales much larger than the atomistic level, the fine details of chemical structure seem to
vanish. At the typical length scales of interest, the important features of polymer chains are their
random nature which results in an entropic spring force. This has led to coarse-graining models
which represent a polymer as a set of beads that are attached by springs [58] as shown in Fig. 2.2.
In these so-called bead-spring models, the springs each represent a certain amount of the contour
length of the polymer, and the beads act as discrete positions on the polymer backbone where all
the forces that the molecule experiences are applied. The stretch of the springs is governed by a
force law which contains the finer details of the polymer being modeled; however, great care must
be taken when developing these spring laws as the effects of coarse-graining are not straightforward
and are often quite subtle [59]. The various forces that polymers experience and how they are
applied, including spring force laws, will be discussed in more detail later (see Sec. 2.3:3).

Fig. 2.2: A representation of the bead-spring model where the springs each rep-
resent a certain portion of the polymer contour length.

Another common coarse-graining is the bead-rod model where the springs in the bead-spring
chain are replaced by rigid rods that each represent a Kuhn length [58]. The idea is to model the
polymer as an equivalent freely jointed chain (see Sec. 2.3.3). The bead-rod model is often used
in situations where current spring force laws do not adequately describe the dynamics of the chain
because the bead-rod model is less coarse-grained and contains more fine detail. For example,
bead-rod chains are often used in highly confined environments [60, 61].

2.8.2 Brownian Dynamics

Brownian dynamics (BD) is a mesoscopic simulation technique that uses coarse-graining of the
solvent molecules in order to remove them from explicitly appearing in the simulation. This sim-
plification is both necessary and possible because polymer sizes are typically orders of magnitude
greater than the size of solvent molecules. Removing the solvent molecules from the simulation
vastly reduces the computational time and space needed. Instead, their interactions with a poly-
mer chain are incorporated by applying various forces on the beads in the bead-spring model
resulting in an equation of motion for each of the N bead positions r; [62],
dg'r';g

mi—g = FA+ FP + FM 4+ FP. (2.49)
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One of the most important ways in which solvent molecules interact with a polymer is through
thermal randomizing forces caused by collisions which are recreated by applying random forces
F,B to the beads. The solvent molecules also act as carriers of momentum which is imparted
to the polymer chain through the inclusion of a viscous drag force F2 providing the chain with
“knowledge” of its surroundings. This drag force is taken to be the Stokes drag on a sphere

P = —¢ | S - uir)| (2.50)

where ¢ is the drag coefficient and u(r;) is the velocity of the solvent surrounding the bead, including
any disturbances to the unperturbed flow field [21]. Forces due to any surrounding hydrodynamic
velocity field are represented by this drag force. The connectivity of the polymer is taken into
account through the spring forces between beads F7(t) allowing beads to “communicate” with each
other. All other forces, such as body forces, excluded volume effects, etc., are contained in F,inh.

Due to the small mass that each bead represents, the inertia of the beads is typically neglected
indicating that the sum of all the forces on a bead is nearly zero. This leads to the simplified
equation of motion for each bead known as a Langevin equation, [62]

d’l".,;

- . [_
G =)+ [P )+ R () + FP ()] (251)

This is a stochastic differential equation where, in order to comply with the fluctuation-dissipation
theorem, the Brownian force FP must satisfy the expectations

(FP(t)) =0 (2.52)
<E—,B(t)f;’3(t’>> = 2kpTC0i;0(t — t')0 (2.53)

where kg is Boltzmann’s constant and T is temperature [62]. The set of differential equations for
all bead in a polymer can then be solved by integrating forward in time.

One difficulty with BD is that when hydrodynamics interactions are included (see See. 2.3.3)
the computational time required for a simulation scales badly with chain length (~ N3 /time step).
Other mesoscopic simulation techniques that avoid this problem include dissipative particle dy-
namics (DPD) [63, 64] and the lattice Boltzmnann method [65, 66], but these methods are not as
well-understood as BD.

2.3.3 Included Physics
Force Law

Each spring in the bead-spring model is a coarse-grained representation of a polymer chain segment.
The important characteristic captured by the springs is the entropic elasticity that results from the
enormous number of configurations that the segment can adopt [67]. The spring law used in the
bead-spring model describes the entropic tension force in the chain segment when its ends are
separated by a given distance. Because polymer properties like bending rigidity and bond angles
can affect the overall polymer elasticity, different models have been developed to describe the
resulting spring force laws. An important example is the frecly jointed chain where the molecule
is represented as a set of rigid rods of fixed length connected together at random angles. This
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model has the benefit that it is simple enough to solve for its spring force exactly using statistical
mechanics. Therefore, many polymers are modeled as equivalent freely jointed chains that have
the same contour length L and equilibrium mean-squared end-to-end distance <R2)0 [68].

DNA is not well-described by the freely jointed chain because it is a very rigid molecule that
does not easily bend. Instead, the worm-like chain model is used. Recently, Underhill and Doyle
[69] have developed a modified Marko-Siggia force law that better predicts the behavior of the
chain for a large range of the coarse-graining parameter v = £, /¢,. This result was based on their
study of the effect that coarse-graining has on the force-extension behavior of a bead-spring model
59, 70].

Generally, spring laws assume that the polymer is in the bulk or in a bulk-like state where they
can sample their full, uninhibited configuration space. In highly confined environments, however,
this assumption is invalid, and the configurations available to the chains are restricted. There have
been few attempts to address this issue, and those that have tried to develop new models and spring
forces have had limited success [71].

Hydrodynamic Interactions and Electrophoresis

Hydrodynamic interactions (HI) play an important role in polymer dynamics. Inclusion of HI into
models can lead to different scalings for physical parameters such as viscosity and relaxation time as
seen in the differences between the free-draining Rouse model and the Zimm model which includes
equilibrium-averaged HI [58]. In some situations, neglecting HI can lead to behavior that is even
qualitatively incorrect (72, 73, 74, 75].

HI occur when polymer movements disturb the solvent flow around them. In essence, any
movements of the polymer chain that are not in perfect unison with the surrounding velocity field
will perturb the field and set up a decaying velocity disturbance. When a polymer is coarse-
grained into a bead-spring chain, cach bead disturbs the field and affects all the other beads. These
disturbances are often modeled as Stokeslets, or point forces, and are incorporated into BD through
the Oseen-Burgers tensor H®(r) which decays as 1/r [39]

(5 + ) (2.54)

r2

H(r)]. = -
[ { )] 9 &rnr
where 7 is taken from the origin of the disturbance, 7 is the solvent viscosity, and d;; is the Kronecker
delta. For neutral polymers, all forces exerted on a bead, such as Brownian forces, spring forces,
and excluded volume forees, lead to HI. When the velocity term w(r;) in Eq. 2.51 is expanded to
explicitly include HI, the Langevin equation becomes

o = w(ry) + L [FE({n}) + FEV ({ri}) + FP(1)]
5 HO(ry — ) - [F2 () + FY () + FE(9)]. (2.55)

i#]

where u* (r;) is the unperturbed velocity of the solvent.

The physics of polyelectrolytes undergoing electrophoresis is much more complicated than the
case of neutral polymers. When an electric field is applied there is no bulk movement of the
solvent due to its average electroneutrality, but the charged polymer does feel a net force and
moves through the fluid. This perturbs the quiescent bulk fluid just as in the case of the neutral
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Fig. 2.3: The effect of an electric field on a charged particle (shoum in green)
and the counterion cloud that it attracts (shown in blue).

polymer. The differences appear because the charged backbone attracts a cloud of oppositely
charged counterions that surrounds it over the length scale of the Debye length as shown in Fig.
2.3. Therefore, the solvent near the polvmer is not electroneutral and also reacts to the applied field
moving in the opposite direction as the polyelectrolyte. The movement of this counterion cloud
has two effects. One is that it increases the drag on the chain which leads to an electrophoretic
mobility g, the electrical equivalent to the hydrodynamic drag coefficient. The second effect is that
it also perturbs the bulk fluid by setting up its own small velocity field opposing the disturbances
of the polymer. This latter effect leads to the conclusion that the HI tensor due to electrical forces
HEL is not equivalent to the one created by non-electrical forces H?. When using BD to simulate
electrophoresis Eq. 2.55 becomes

dr = u(ry) + wE(r:) + € > H(ri = ;) - E(r;)
i#]
+ [FE(ra) + F () + FPO)] + 2 HO(ri =) [F> ({r;}) + FB ({r;}) + FB(e(p.56)
i Z
where e is the fundamental charge and X is the charge per bead [76].

The increased drag on the chain causes the electrophoretic mobility o to be dependent on the
size of the counterion cloud which is determined by the ionic strength of the solution. Surprisingly,
at high salt concentrations the electrophoretic mobility becomes independent of the length or the
conformation of the polymer [77]. Also, the counterion movements counteract those of the chain
almost exactly so that the velocity disturbances are screened over the length scale of the counterion
cloud which is the Debve length. Therefore, if the ionic strength of the solution is high so that
the Debye length is small, the electric field does not cause HI amongst the polvmer segments, and



2.3. Simulation Methods 39

HEL ~ 0 50 eq. 2.56 becomes
& = w(ry) + pB(r) + 1 [F2 ({ri}) + Y ({r:}) + FP(t)]
5 HO(ri— 1) [F2 (s }) + FEY ({r )+ FR(2)] (2.57)

i#]

Eq. 2.57 shows that in high salt solutions, electric fields and hydrodynamic fields act in the same
manner on polymer chains. This principle is known as hydrodynamic equivalence (78, 79, 23, T6],
and although there have been some theoretical challenges against it [80], experimental evidence
seems to corroborate the model’s validity [30, 38].

Excluded Volume Effects

Excluded volume interactions describe the forces that prevent a polymer from overlapping onto
itself, and therefore, they tend to be repulsive forces between segments of the chain. They also help
account for polymer-solvent interactions which cause expansion of the chains for good solvents.
Often such forces can be modeled as the result of a potential field such that the polymer pays
an energetic penalty for adopting a configuration that is too dense. The use of a Lennard-Jones
potential might be appropriate, for example.

The difficulty for polymer simulations using a Lennard-Jones potential is that the steepness
of the potential necessitates the use of small time steps which vastly increases the computational
time. Polymer models, however, are typically coarse-grained to neglect the fine details that oceur
at small length scales which means a steep potential is not necessary. Instead, a softer potential
that always remains bounded allows for much larger time steps and provides the correct physics at
large length scales [81]. An exponentially decaying potential accomplishes this goal, and for this
project, the potential developed by Jendrejack et al. [82] will be used

o - Ly (3 e (2200 2.58)
i T3t FBEAKs\ g2 ) P 4R2 (25

where Ugv is the excluded volume between bead i and bead j, v is defined as the parameter
for excluded volume, Nk , denotes the number of Kuln lengths per spring, Ry is the equilibrium
end-to-end distance of cach spring, and ry; is the distance between bead ¢ and bead j.

Polyelectrolytes also have an additional excluded volume effect due to clectrostatic repulsions
between charged chain segments that cause additional conformational swelling. These forces, how-
ever, are exponentially screencd on length scales larger than the Debye length. Therefore, in
solutions of high ionic strength where the Debye length is small, intrachain electrostatic repulsions
can be ignored [83].






CHAPTER 3

Post Array for Conformational
Preconditioning in a Stretching Device

One of the great obstacles in implementing DLA is overcoming molecular individualism in order
to obtain a population of uniformly stretched molecules for analysis. This is particularly relevant
in strain-limited devices. One approach to tackling this challenge is to use electrophoretic colli-
sions with an array of posts to “preconfigure” DNA molecules for later stretching. This technigue
has been studied experimentally and was shown to modestly increase the final stretch of DNA
molecules that are subsequently exposed to an extensional field for a finite period. In this chapter,
we attempt to replicate the experimental results using our BD-FEM simulation technique. We
compare our results to the experiments and note where agreement between the two is seen. We
also hypothesize that nonlinear electrokinetic effects are responsible for certain quantitative and
qualitative differences.
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3.1 Overview

Recently our group has reported experiments using an obstacle array to precondition the confor-
mations of DNA molecules to facilitate their stretch in a microcontraction. Based upon previous
successes simulating electrophoretic stretching in microcontractions without obstacles, we use our
simulation model to study the deformation of DNA chains in a microcontraction preceded by an
array of cylindrical obstacles. We compare our data to the experimental results and find good
qualitative, and even quantitativé, agreement concerning the behavior of the chains in the array;
however, the simulations over predict the mean stretch of the chains as they leave the contraction.
We examine the amount of stretch gained between leaving the array and reaching the end of the
contraction and speculate that the differences seen are caused by non-linear electrokinetic effects
that become important in the contraction due to a combination of field gradients and high field
strengths.

3.2 Introduction

Biological studies have long relied on the genetic information encoded within DNA molecules.
Traditionally, this information is extracted using sequencing techniques, such as gel electrophoresis,
that provide single base-pair resolution. [3] While often extraordinarily powerful for molecular
biological studics, genetic information at this level of detail is unnecessary for many applications. An
often used alternative is DNA mapping which provides lower-resolution genomic information. But
the state-of-the-art mapping scheme still requires multiple sets of restriction enzymes and numerous
separations by gel electrophoresis. [2] Such techniques are time-consuming and expensive, and these
drawbacks have spurred interest in mapping technologies that are not based on gel separations.

One such method is direct linear analysis (DLA) [2, 84] which involves measuring the physical
distance between specific sequences along the DNA backbone. This measurement gives a simple and
direct physical map of the molecule without the use of restriction enzymes or separation techniques.
[85, 2, 84] In DLA, the strands are tagged with sequence-specific fluorescent probes, stretched to
their full contour length, and passed by an optical sensor that measures the distance between the
probes. The main obstacle in implementing DLA is that the DNA strands, which at equilibrivun
are entropically coiled, [86] must be fully stretched in order for the measured distance between
probes to have a physically relevant meaning.

Many ways have been developed to stretch DNA. Some involve changing the equilibrium confor-
mation from a coil to a more elongated structure by confining DNA. [87, 88] Others have attached
beads to the ends of DNA and applied forces directly to the molecule using magnetic [89, 90] or
optical traps. [37, 91] Collisions with microfabricated obstacles have also been shown to linearize
DNA. [4, 92, 93] But a very practical method for simple, inexpensive, high-throughput devices is
using field gradients to deform the molecules. {41, 94]

In DLA devices, the molecules are typically stretched by field gradients in microcontractions.
12, 84, 95, 22, 96, 97] However, in these strain-limited devices, molecular individualism [24] leads to
a large population of molecules that do not reach full extension. Recent studies have shown that
the effects of molecular individualism can be mitigated by “preconfiguring” the initial conformation
of a molecule before it is stretched. [43, 22, 97] Several different methods to preconfigure molecules
have been shown to increase the uniformity of stretch, including pre-shearing [43] and passing
through a gel matrix. [22] A promising technique is placing a microfabricated obstacle array just
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before the contraction to induce molecular collisions with the obstacles [85, 97] (see Figure 3.1A).
The collision of DNA with a post often leads to hooking events that change the conformation of
the molecules thereby reducing the proportion of slowly-stretching conformations. The collision of
a DNA molecule with a single post is a well-studied problem both experimentally [52, 21, 9] and
numerically. [5, 8, 10] Several qualitatively different types of hooks have been identified, [9] and
their stretching and unhooking dynamics have beeir investigated. [9, 10] The effect of large arrays
of posts has been considered as well, with studies focussed on the start-up behavior of the molecules
as they enter the array (93] and their subsequent steady-state behavior. [55, 98, 99] Placing a post
array just before the contraction to preconfigure the molecules is also advantageous because the
resulting device is simple to fabricate, reusable, and easily scaled.

A B
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Fig. 3.1: (A) A cartoon schematic of the general composition of the stretching
device (not drawn to scale). The red line represents a strand of DNA stretching
as it moves through the contraction. (B) The FEM solution for the magnitude
of the electric field normalized by the value of the electric field at the channel
inlet (Ey).

Previously, Kim and Doyle [100] developed a simulation method to study DNA electrophoresis
in complex device geometries with non-homogeneous electric fields. They have shown that this
model can accurately predict experimental results, even at a quantitative level, for the cases of
DNA stretching in microcontractions without posts [96] and the collision of a DNA molecule with a
single post in a uniform field. [10] The previous success of the model leads us to consider whether or
not it will be useful in studying the effects of placing an obstacle array in front of a microcontraction.

The objectives of this study are to use the numerical model of Kim and Doyle (100] to predict
the stretching behavior of DNA molecules in a microdevice composed of a hyperbolic contraction
preceded by a post array. These predictions will then be compared to the experimental results of
Balducci and Doyle, [97] establishing when the model performs well and when it does not. Finally,
in cases where the numerical results are not accurate, reasons for the poor performance will be
hypothesized.
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3.3 Background

3.3.1 Polymer Deformation in Field Gradients

Electric fields are useful for stretching DNA in microfluidic devices because locally they are purely
extensional with no rotational component. [49] This is important because fields with a rotational
component, such as shear flows, can lead to periodic behavior where the molecule stretches, col-
lapses, and stretches again. [101, 40] Practically, this reduces the effectiveness of the stretching
device, and theoretically, it complicates the analysis of the molecular behavior.

Extensional fields cause stretching when the field gradients deform the molecule faster than it
can rearrange itself. [86] The time scale for this molecular rearrangement is the longest relaxation
time 7. When the relaxation time is balanced against the characteristic strain rate £ of the field,
the result is the Deboral number, De = 7, which is the governing dimensionless parameter for
molecular deformation. It has been shown theoretically, [102] and confirmed experimentally, [41,
103] that strong stretching occurs around De = 0.5.

A crude, but effective, model to describe DNA stretching in a homogeneous extensional field
can be built using a simple dumbbell. By balancing the drag forces against the wormlike chain
spring force [33] and neglecting Brownian motion and any other forces, the dynamic equation for
the stretch can be expressed as:

Xy x_ 11X o)

where X is the extension of the molecule, L is the contour length, and ¢ is the applied strain. This
model is particularly useful for predicting the final stretch of a DNA molecule after it has reached
steady state, i.e., after an infinite amount of strain has been applied.

One of the greatest difficulties in stretching molecules in an extensional field is overcoming
molecular individualism. [24] This phenomenon was first observed in early fluorescent microscopy
work on DNA [41, 103] and refers to the fact that the initial conformation of a molecule greatly
affects its rate of stretching. This often leads to a broad distribution of molecular extensions
in stretching devices because each molecule has reached a different stage of deformation. Large
amounts of strain (= 10 units) [104] are typically needed to uniformly stretch a population of
molecules initially in their equilibrium state. This amount of strain is difficult to apply in most
devices unless a field with a stagnation point is employed; [41, 103, 105, 106] however, stagnation
points typically cannot be used for high-throughput devices.

3.3.2 Model Assumptions

We briefly consider the theory of DNA electrophoresis which underlies the assumptions of the
numerical model. First, the electric field in the device can be determined by solving Laplace’s
equation because the buffer solution is assumed to be everywhere electroneutral. This assumption
is valid because the Debye length «™* of the solution is typically O(nm) which is much smaller
than any other length scale in the problem. Additionally, we neglect any local disturbances of the
electric field due to the charged phosphate backbone of DNA because, again, ™1 is smaller than
the molecule’s persistence length, A4, = 0.053 pm, [107] the smallest pertinent length scale of the
polymer. This allows us to assume that DNA behaves as a neutral polymer without intramolecular
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electrostatic interactions. [108] We also assume the applied electric fields are weak and that we can
neglect any non-linear electrokinetic phenomena (although we will later question this assumption).

We invoke the theory of electro-hydrodynamic equivalence (76, 38] which states that in the
case of small Debye lengths, DNA dynamics in an electric field E can be treated the same as if the
electric field were replaced with a hydrodynamic flow field equal to pE where y is the electrophoretic
mobility. This is due to the fact that flow disturbances in the fluid caused by the electrophoretic
movement of DNA segments arc screened over £~ due to the opposite movement of the surrounding
counterion cloud. [3] Finally, we neglect all other formis of hydrodynamic interactions (HI) as the
bulk radius of gyration of T4-DNA which was studied here (Ry = 1.4 pm) is comparable to the
channel height A = 2 pm. [109]

8.3.8 Device Geometry

The device we simulated is identical to that used by Balducci and Doyle [97] and is shown in Figure
3.1B. It consists of two straight channels of different widths connected by a hyperbolic contraction.
The wide inlet channel has a width of w; = 200 pm, and the outlet channel has a width of ws = 3.8
wum. The shape of the hyperbolic contraction was chosen to create a uniform strain rate within
the contraction [95, 96] and has a length of £, = 80 gan. In front of the contraction are three rows
~of posts with each post having a 1 gm radius. The posts are spaced 4 pm center-to-center within
each row, and the distance between rows is also 4 pm center-to-center. The center of the first
(most upstream) row of posts is located 20 pm in front of the contraction at x = ~20 pm with the
subsequent rows located at z = —16 pm and z = —12 gan. Finally, the corners of the device were
rounded with a 1 pm radius.

The electrophoretic strain rate ¢ is nearly constant in much of the contraction, (22, 96] and
the nominal strain accumulated by a molecule moving down the centerline of the device is ¢ =
In(wy /ws) = 4. The electric field gradient in the contraction can be approximated using the scaling
VE = (Ey — Ey) /L. = [E1(w1/wa — 1)]/¢. where Ey and E; are the electric field strengths at the
inlet and the outlet of the channel, respectively. This leads to the form of the Deborah nunber

within the contraction:
_ pEy (wyfwg —~ l)T
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Additional Deborah mimbers can also be defined just before the post array and within the array, [97]
but we do not consider them here. Finally, the kinernatic history is not the same for cach streamline.
[96] Molecules that enter the contraction from the center of the channel deform differently than
those that enter from the edges of the channel. In order to mitigate this effect, we adopted the
method used by Balducei and Doyle [97] and only considered molecules whose centers of mass were
within 45 pm of the centerline when they entered the post array.

De (3.2)

3.4 Simulations

We used a simulation method for DNA electrophoresis in arbitrary geometries that was developed
by Kim and Doyle [100]. The method uses Brownian dynamics (BD) to model the behavior of
a DNA molecule electrophoresing in an electric field. In order to solve for the clectric field in
complicated geometries, the finite element method (FEM) is employed. A difficulty that Kim and
Doyle [100] addressed is how to find the electric field at an arbitrary point in the solution domain
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given that the finite element mesh is unstructured. They developed an efficient way to overcome
this problem with the so called ‘target-induced searching algorithm’. A brief description of the
numerical model is presented here.

3.4.1 Brownian Dynamics

DNA molecules are modeled as chains of N}, beads connected by Ny = (N}, — 1) springs. The
equation of motion for the position »; of the ith bead is:

d i

L
dt

Cb
where 4 is the electrophoretic mobility of a bead, ¢ is the bead drag coefficient, FB is the Brownian

force, F¥ is the total spring force felt by the bead, FEV is the intrachain excluded volume force due
v, ) . . .
to nearby beads, and EE wall represents the interaction of the bead with the wall of the device.

=WPB(r) + 5 [FP O+ FF 0+ FFY () + FPV )] (33)

We non-dimensionalize the variables as follows:

t

p f=—— K
" b= kT

m
I

T E
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ls El )
where 7 is position, s is the maximum extension of a single spring (I = L/Ny), t is time, kp is
Boltzmann’s constant, and T is the absolute temperature. We non-dimensionalize the forces F as
follows:

A F
F(#)=s —F0nr. 3.5
() Tl (3.5)
This Jeads to the non-dimensional form of eq. (3.3):
dr; - - - SEV |, pEV.aw .
— = P E (#;) + FP + FS + FFV 4 FEV-val (3.6)

where Pe® is the bead Peclet number (Peb = pPEjl,/DP) given that the bead diffusivity DP =
" kpT/¢P. The non-dimensional Brownian force is given by:

B 24
EP =2 (ma)is (3.7)

where At is the dimensionless time step and (r,,); are uniform random numbers such that each
component (r,)] € [~1/2,1/2], where j denotes the coordinate z, y, or z. The net non-dimensional

spring force on the ith bead is:

~

fjs,Z: 1= 1:
FS = Frim+ Ficy 1<i<M, (3.8)

fq’iNb_p 7 :Nb:
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where the spring force f7 ;18 given by a modified Marko-Siggia spring force law: [33, 59]

~ v 1 1 ’I/;] - ‘f’i i
5 | — — 3.9
fa=x -1ty (1—ru)| (9)

where A is the ratio of the effective persistence length to the true persistence length (A = Aeg/Ap), v
is the number of true persistence lengths represented by each spring (v = ls/Ap), and 7; represents
the distance between #; and #;. The intrachain excluded volume force FFV is modeled with the
soft potential used by Jendrejack et al.: [82]

AEV - 9 oo 3\ op [ 9 o], ‘
F* = — Z PLa 17z v exp | = Ut T (3.10)
F=1(i#%)

where 2#VP = VP /I3 is the dimensionless form of the excluded volume parameter v*¥-P.

The interactions between a bead and the walls represented by ﬂEV,wall are resolved using a
modified Heyes-Melrose algorithm. [110, 100] Whenever a bead moves outside the domain during
a time step, it is moved to the nearest point on the domain boundary before commencing the next
time step:

APTM = ApH (Ap;), (3.11)

where Af',LHM is the displacement vector due to the Heyes-Melrose algorithm, Ap; is the vector

pointing from the bead outside the domain to the nearest boundary point, and the Heaviside step
function H (Ap;) restricts the application of the algorithm to only the beads that have penetrated
the domain boundaries.

8.4.2 Determination of Electric Field

In order to determine the electric field in the device, we use Laplace’s equation for the electric
potential ¢ within the channel ag previously discussed:

V26 = 0. (3.12)

We assume that the PDMS channel walls are insulating and that the electric fields at the device
inlet and outlet are uniform. This leads to the boundary conditions:

¢|inlet = @1, ‘?bloutlet = ¢2, and n - V¢ walls = 0, (3'13)

where ¢7 and ¢y are the imposed electric potentials at the inlet and the outlet of the device,
respectively, and n is the unit normal to the walls.

Eqs. 3.12 and 3.13 are solved using Galerkin FEM where ¢ is interpolated using a 6-node P
shape function. The electric field E is found by applying FEM again to the relation E = -V ¢ and
using a 3-node P shape function to interpolate E. After obtaining E, its nodal values are saved.
During the simulations, whenever the value of E is needed at a given point, the target-induced
searching algorithm is called to find the element in which the point is located. The nodal values
for E in that element are then retrieved, and the value of E at the specified point is interpolated.



48 3.5. Results

3.4.3 Parameters

In this study, T4-DNA was modeled in the same manner as Kim and Doyle [100] in their simulations
of DNA collisions with a single post. They assumed a stained contour length of L = 71.4 pm and
used NV, = 128 beads such that v = 10.61. The corresponding A was 1.89, and an excluded volume
parameter P of 0.0004 pum?® was found to accurately reproduce the radius of gyration of A-DNA.
At this discretization, along with sufficiently small time steps, the aphysical situation where a chain
can move “through” a post is precluded. We found the simulated non-dimensional relaxation time
of the 128-bead chain to be 7 = 60.1 in a 2 pin tall channel.

Due to the low field strengths in the inlet of the channel, it takes a very long time to simulate
the movement of a chain from the inlet to the beginning of the contraction. In order to decrease
the simulation time, point particles possessing the same diffusivity as the 128-bead chains were
placed at x/{. = —2 and were distributed randomly across the width of the channel with a uniform
distribution. The movement of the particles toward the contraction was then simulated until the
local dimensionless strain rate & = 122/ Dy, along the centerline reached ¢ = 0.1/7 (but no farther
than z = —30 um for the low De cases). At this point, equilibrated chains were placed with their
center of masses located at the positions of the particles. The eloctrophoresis of the chains was
then simulated until the most downstream part of the chains reached x = 250 pm. The time step
scheme was as follows: Af = 0.005 for £ < —24 pm at which point it switched to:

. 0.005, De < 3,
Af = { 0005, o< (3.14)

0.005 (&), De>3.

For each De considered, 300 chains were simnlated although only those within 45 um of the cen-
terline when they entered the post array were used in this study as discussed earlier.

3.5 Results

The major global observable in the study was the average extension of the molecules as they reached
the end of the contraction. In our simulations, the extension of a chain X, is defined as the distance
between the most upstream and downstream beads of the chain, and the extension at the end of
the contraction Xey . was determined when the most downstream part of the chain first passed the
end of the contraction. Figure 3.2 compares results from experiments and simulations for KXo It
is clear from Figure 3.2A that the simulation model does an excellent job of predicting the mean
stretch of the molecules in an open channel as was previously shown by Kim and Doyle. [100] But
when posts are introduced in front of the contraction, the simulations consistently over predict the
average extension by 10-15% as shown in Figure 3.2B. Nonetheless, the results are in qualitative
agreement with the experimental trend.

In order to explore why the performance of the simulation model changes so abruptly when posts
are added, we have attempted to isolate and analyze the behavior of the chains in each component
of the device, i.e., the post array and the contraction. Although this is not strictly possible because
the effects of each are certainly coupled, it still provides clues as to why the simulations and
experiments differ. In particular, we are interested in whether the differences between the two are
simply due to quantitative inaccuracies within the numerical model or due to the failure of the
mode] to predict qualitative features of the experiments.
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<Xex,c>/ L

Fig. 3.2: Ensemble-averaged relative stretch of the chains as they reach the end
of the contraction vs De (A) in an open channel and (B) in a channel with
posts. The black squares are the experimental data, and the red diamonds are
the simulation data. The line represents the theoretical infinite-strain stretch
as predicted by the simple dumbbell model given in eq. 3.1. The error bars,
which have been suppressed for clarity, are approwimately the size of the markers
themselves.

8.5.1 Interactions with the Post Array

To assess the ability of the simulations to correctly describe the interactions between the molecules
and the posts, we calculated chain hooking probabilities. A hook was defined as when portions
of the chain exist in all four guadrants surrounding a post in a coordinate system whose origin
is located at the center of the post; in addition, the chain must cross the upstream face of the
post. Unlike in experiments, the coordinate system used to define the quadrants was not rotated
to coincide with the direction of the local impinging electric field; however, this was not found to
affect the determination of a hooking event. Figure 3.3 shows the results of this hooking analysis.
The overall hooking probabilities on any post (A) show near quantitative agreement between the
experiments and simulations except at De = 1 and 2 where the simulations give a moderate over
prediction. The probability of hooking on the first row is also shown (B), and again there is near
quantitative agreement except at De = 2.

It should be noted that the hooking probability on a post is known to depend on both the
local De and Pe. [49, 21] In the simulations, however, only a single time scale can be matched
to experiments which, in this case, is the relaxation time. This means that while De is the same
between experiments and simulations, other time scales are not necessarily equivalent. This includes
the diffusive time scale which is represented non-dimensionally by Pe. Indeed, we estimate Pe for
the simulations is 15-40% higher than in experiments. This difference in Pe might account for some
of the discrepancy between the hooking probabilities in experiments and simulations at De = 1
and 2. A better explanation, however, is that the number of experimental hooking events were
undercounted at low De due to the limited resolution of images and the fact that many molecules
barely deformed around the posts in the weak fields. This explanation is supported by movies of the
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Fig. 3.3: (4) Owerall hooking probabilitics on all rows in the post array vs De.
(B) The hooking probabilities for only the first row of the array vs De. The black
squares are the experimental data, and the red diamonds are the simulation data.

simulated chains where many hooking events are seen to barely meet the above definition of a hook
with the chains just crossing into all four quadrants surrounding the post for a very shot period of
time. Simulations easily find and count this event as a hook while the reliability of experimental
movie analysis is questionable at low field strengths.

An even more sensitive measure of the performance of the simulation model in predicting the
DNA-post array interactions is given by the extension distribution of the chains as they leave
the array. The extension Xeyp of the chains was measured when the most upstream part of the
chain first left the post array. Figure 3.4 compares the extension distributions for experiments and
simulations, and very good qualitative agreement is evident with the exception of De = 5. It is
seen that with increasing electric field strength, the presence of the obstacle array leads to two
distinct populations of molecules: those that only mildly stretch in the array and those that stretch
significantly. Very few molecules stretch only moderately. Quantitatively, the simulations tend
to show a sharper peak for the highly stretched population which also exists at a slightly higher
extension, but this difference could be magnified by the simulations having a slightly higher Pe as
previously discussed. But due to poor statistics, it is difficult to discern the actual behavior of the
distributions at the experimental conditions of De = 3.5 and 5. Another consideration is that as
the molecules unhook, their arms often hang off into the contraction. This means that the stretch
leaving the post array is influenced by the behavior in the contraction. If the simulations have
difficulty correctly predicting the stretch due to the field gradients in the contraction, it can taint
the stretch coming off the post array as well.

Overall, we see that qualitatively, and often quantitatively, the experiments and simulations
agree with respect to the behavior of the molecules as they interact with the post array. This
is expected as Kim and Doyle [10] have shown the simulation model is fairly capable of repro-
ducing experimental data for the collision of a molecule with a single post. Additionally, other
Brownian dynamics simulation methods have had success reproducing the behavior of DNA being
hydrodynamically driven through post arravs [93].
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Fig. 3.4: Distribution of the relative extensions of the chains as they pass the end
of the post array for several values of De. The black squares are the experimental
data, and the red diarmonds are the simulation data.

3.5.2 Stretching in the Contraction

We now consider the extension distributions of the c¢hains as they reach the end of the contraction
as shown in Figure 3.5. The simulations show that with increasing De more chains reach high
extensions, in agreement with experimental results. However, simulations show a very sharp peak
in the distribution at high extensions which is not mirrored in the experimental results. This
discrepancy cannot be explained by unmatched Pe, and while poor experimental statistics may
exacerbate the differences, statistics certainly cannot fully account for the discrepancies either,
especially given their systematic nature. This suggests that the molecules are somehow more
difficult to stretch in experiments than in simulations. However, it is also possible that the slightly
higher extensions coming off the post array in the simulations could increase the final stretch at
the end of the contraction.

In order to mitigate the influence of the post array on the analysis of the stretching within the
contraction, we display in Figure 3.6 scatter plots that show for each chain the final stretch at the
end of the contraction versus the intermediate stretch at the exit of the post array. This allows
us to compare the deformation of molecules in the contraction that had the same initial stretch
leaving the array. Again, the simulations are in qualitative agreement with experiments that DNA
deformation in the post array leads to very strong stretching in the contraction. In particular,
the simulations predict that a stretch of approximately 20% at the exit of the post array virtually
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Fig. 3.5: Distribution of the relative extensions of the chains as they reach
the end of the contraction for several values of De. The black squares are the
experimental data, and the red diamonds are the simulation data.

guarantees strong stretching at the end of the contraction and additional predeformation beyond
20% adds little to the final stretch, as previously discovered in experiments.

On the other hand, there are some clear differences between the two results. First, the simulated
chains seem to reach a larger maximum extension than molecules in experiments. This may suggest
that De is not properly matched, but it is highly unlikely. The maximum extension found in the
simulations is well-described by the infinite-strain limit predicted by a dumbbell model with the
same De (the flat plateau region of the blue curve in Figure 3.6), and experimentally, even if De is
off slightly due to uncertainty in the relaxation time of the molecules, correcting this small error
would not change De enough to match the simulations. So simply claiming that the differences in
maximum stretch are due to improperly matched time scales does not explain the differences.

The second discrepancy observed in Figure 3.6 is that the simulations predict that above a
predeformation of about 20% the chains should almost always reach their maximum extension.
This gives the stretch gain plots from simulations of De > 3.5 (Figures 3.6B-D) a sharp “elbow”
region where the trend turns flat. In contrast, experimental results show that the molecules often
fall slightly short of their infinite-strain extension. Also, the amount the actual extension falls
below the infinite-strain extension decreases with increasing predeformation. This leads to a wider
elbow region in the stretch gain plots where the trend becomes slowly increasing instead of constant
as in simulations. In order to demonstrate that our simulation results make sense based on the
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Fig. 3.6: Scatter plots of the relative extension of the chains when they reach
the end of the contraction vs the relative extension when the chains exit the post
array for various De. The black squares are the ezperimental data, and the red
diamonds are the simulation data. The solid blue line represents the predicted
final stretch after an additional 2.5 units of strain using the dumbbell model
given by eq. 3.1.

physics incorporated, we have included in Figure 3.6 a prediction for the maximum stretch gain
expected at the end of the contraction for a given amount of predeformation. This prediction was
derived using the non-Brownian dumbbell model with a WLC spring force given by eq. 3.1. Based
on the kinematic analysis of Randall et al., [22] we have assumed that after the post array there is
approximately 2.5 units of strain left in the device. The model accounts for non-affine deformation
of the chains, but does not include resistance to stretching due to internal configurations (i.e.,
molecular individualism) or the slightly different kinematic histories experienced by each chain.
Nonetheless, it should provide a reasonable estimate for the maximum stretch gain expected. It is
clearly seen from Figure 3.6 that the simulation results are well-described by the model while the
experimental results only follow its qualitative trends.

Balducei and Doyle [97] also reported that many of the molecules in the elbow region, 0.2 <
Xexp/L < 0.4, contained a small fold in their conformation near their downstream ends as they
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exited the contraction. The simulations do not predict this behavior since nearly all the molecules
in this extension range after the post array will reach the infinite-strain limit. Indeed, movies of
the simulated chains do not show the formation of these folded conformations.

Overall, our numerical model is capable of reproducing the broad qualitative behavior of the
chains in the contraction after they have left the post array. For example, the simulations pre-
dict that mildly predeformed chains should stretch significantly in the contraction in agreement
with experiments. However, the simulations do not correctly predict some of the finer qualitative
behavior in the contraction.

3.5.83 Possible Reasons for the Observed Differences

The question, then, is why the simulation results do not always quantitatively match the results of
the experiments? One possible reason already mentioned could be limited experimental statistics.
But the systematic nature of the differences between simulations and experiments suggest that
these differences are not artificial. A mismatch in time scales has also been discussed as one reason.
This mismatch could be an improperly scaled De due to uncertainties in the relaxation time of
the molecules, or it could be the slightly higher Pe in the simulations due to the inability of the
simulations to match both the relaxation time and the diffusive time scale of experiments. However,
neither of these possibilities has the potential to fully explain the differences seen.

A more plausible explanation is that additional physics is becoming important in the contrac-
tion, and a possible candidate is non-linear electrokinetic effects. The electric fields in the con-
traction are fairly strong, reaching E ~ O(500 V/em), which could polarize the DNA molecules.
Additionally, electric field gradients exist in the contraction that could potentially lead to dielec-
trophoretic effects which depend upon the term E - VE.

Dielectrophoresis occurs when particles (or macromolecules) polarize in strong electric fields.
The resulting dipole then interacts with field gradients to attract or repel the particles to or from
arcas of strong field strengths. Most studies on the dielectrophoresis of DNA have used AC fields
and created the necessary electric field gradients by placing the electrodes in close proximity to each
other. There have been a few studies, however, that have considered clectrodeless dielectrophoresis
of DNA using microfabricated devices to shape the field lines, {111, 112, 113, 114] and some work
has even been performed on DC fields. [113, 114]

Chou et al. [111] and Regtmeier et al. [112] nsed arrays of obstacles to bend and concentrate the
field lines between the obstacles, and using an AC field, they trapped DNA between the obstacles.
Regtmeijer et al. also added a background DC field that led to the size-dependent separation of
DNA molecules. This technique is similar to the previously proposed method of Ajdari and Prost
[115] where AC dielectrophoretic traps transverse to a uniform DC field slow down DNA molecules
in a size-dependent manner. Petersen et al. [113] also adapted the method suggested by Ajdari and
Prost by using thin strips of gold laid down perpendicular to a DC electric field. The periodic strips
attracted the electric field lines due to their high conductivity and created strong dielectrophoretic
forces in a highly localized area near the edges of the gold strips. Parikesit et al. [114] used device
walls to bend and concentrate field lines similar to Chou et al. [111] but with DC fields; however,
their results were difficult to interpret and even seemed to contradict previous findings.

In our device, the magnitude of E - VE reaches as high as 1.4 x 107 V?/em® which is only one
order of magnitude smaller than that produced by Petersen et al. [113] in their trapping work. But
in contrast to our device, the large values of E -V E that led to trapping were highly localized near
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the edges of the gold strips and only occurred over length scales of about 100 nin, comparable to the
persistence length of DNA. This means that only sinall portions of the molecules would have heen
polarized and would have experienced a dielectrophoretic force. In our geometry, the strong fields
and gradients exist over the entire length of the contraction which is £, = 80 pm, which is much
larger than the radius of gyration of T4-DNA and comparable to its contour length. So T4-DNA
molecules in our device could polarize over their entire dimension which could possibly lead to even
stronger non-linear electrokinetic effects than seen by Petersen et al. [113] In addition, the fact
that DNA molecules are stretched in the contraction could render them more polarizable than when
they are in their coiled state, [116] further increasing their sensitivity to non-linear electrokinetic
effects.

It is currently difficult to study the possibility of such effects in the device because the molecules
move very fast through the contraction due to the strong electric fields. A possible way to overcome
this problem would be to tether the DNA molecule to a bead that can be optically trapped in the
contraction so that the dynamic and steady-state extension behavior of the molecule can be studied.

Finally, it should again be noted that the current simulation model is able to match experi-
mental results for a contraction without posts which raises the question, what is different about
the situation with posts? The answer may lay in the fact that in an open channel, few of the
chaing actually come close to reaching the infinite-strain limit extension. Even in the case with
posts, the simulations seem to be in fairly good agreements with experiments for those chaing that
do not stretch significantly. Additionally, in the case of open channels, the simulations have been
shown to over predict the average stretch at higher De of 14 and 23 when compared to experi-
ments [96]. At these De, the siinulations began to over predict the populations of highly stretched
molecules; however, the size of this population still only represented a small fraction of the total
number of molecules. So any discrepancy in the behavior of highly stretched molecules between
the simulations and experiments may not have been readily apparent. In the present situation,
preconditioning leads to a large population of highly stretched molecules so that these differences
should be more easily visible.

3.6 Conclusions

Simulations were performed for DNA molecules passing through a microcontraction preceded by
a post array. The results were compared to those from previously performed experiments. Good
qualitative and, at times, even quantitative agreemient was found for the behavior of the chaing
during their interaction with the post array as measured by hooking probabilities and extension
distributions of the chains as they exited the array. Qualitatively, the simulations strongly support
the experimental finding that conformational preconditioning using an obstacle array can increase
the stretching efficiency of a strain-limited microcontraction. Additionally, the simulations show
that a predeformation of approximately 20% in the post array is nearly sufficient to guarantee
strong stretching of a chain in the contraction in accordance with experiments.

Qualitative differences between the simulations and experiments were observed, particularly
with respect to the population of highly stretched molecules. The simulations predict a very sharp
peak in the extension distribution at high extensions for the molecules exiting the contraction
while experimental results exhibited a broader and milder peak at high extensions. This difference
causes simulations to over predict the dverage streteh of the molecules leaving the contraction.
Finally, the molecules in experimnents always seemed to fall slightly short of the infinite-strain
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limit extension while simulations predict that nearly all molecules that left the post array with an
extension above 20% would reach the infinite-strain limit by the end of the contraction. Possible
reasons for the discrepancy between simulations and experiments are suggested with emphasis on
non-linear electrokinetic effects. Additionally, experiments which might elucidate the behavior of
molecules in the contraction are suggested.
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CHAPTER 4

Collisions with a Large, Ideally
Conducting Post

Collisions of DNA molecules with microfabricated posts have received a great deal of attention
over the last two decades. Fundamentally, post collisions are used to apply forces to polymers on
the molecular length scale. This provides a simple and direct means to deform and manipulate
individual molecules and has found possible application in the realm of DNA separations. Most
previous studies on electrophoretic collisions with posts have either looked at insulating posts or
completely neglected the field disturbances induced by the post. In this chapter, we consider
collisions with conducting posts. In this case, molecules are attracted to and trapped on the post
surface and only slowly escape due to a combination of diffusion and convection. We simplify this
problem in order to distill the cssential physics and develop analytical models that show that the
important physics are well-understood. We simulate DNA collisions with large, conducting posts
and compare the results to our theoretical predictions. Our findings, which are the first reported for
conducting posts, should guide future studies and can be modified and applied to more complicated
situations like moderately-sized posts or strong applied field strengths.
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4.1 Overview

We theoretically treat the problem of DNA collisions with large, ideally conducting posts during
electrophoresis. We exploit a separation of time and length scales that allows the problem to be
broken into two connected problems: (i) compression of a molecule against a flat wall by an applied
transverse field, and (ii) transport of a molecule across the post surface due to both tangential
diffusion and convection. We address the former using a combination of statistical mechanics and
blob theory, and the latter utilizing a Fokker-Planck approach. The theoretical predictions are then
compared to the results of Brownian dynamics simulations.

4.2 Introduction

The development of microfluidics and “lab-on-a-chip” devices has opened a new era for the study
of DNA electrophoresis and polymer physics more generally. Such devices have provided platforms
to study fundamental problems in polymer physics [41, 30, 17, 105, 31, 32], and along the way,
they have found applications in DNA separations [57, 15, 117] and genomic mapping [2, 118]. In
particular, one problem that has received considerable attention is the collision of a DNA molecule
with a cylindrical post [6, 5, 8, 49, 10, 119, 120].

Post arrays and similar devices have been used to achieve separation of large DNA molecules
[121, 57, 92]. When a DNA molecule is electrophoretically or hydrodynamically driven into a
post, it frequently forms a hook by wrapping around the post and into a hairpin-like configuration
[52, 5, 8, 9, 93, 10]. The subsequent unhooking process, which is often described by a rope-over-
pulley model, results in a length-dependent unhooking time and establishes the basis for length-
based separations in large arrays of posts [52, 5, 6, 9, 98].

More fundamentally, collisions offer a simple way to manipulate individual molecules by applying
forces on the molecular length scale. For example, post collisions have been used to deformm DNA
molecules so that their ensuing relaxation processes can be studied [30, 31]. In addition, our group
has exploited collisions to “precondition” DNA for subsequent stretching in an elongational field
[97] in order to overcome molecular individualism [24]. Cylindrical posts have also been used to
create field gradients near the post surface that can stretch and deform molecules [49, 21].

Past post work has tended to focus on the small post limit where the posts are much smaller
than the equilibrium DNA coil size. These “point obstacles” virtually gnarantee the formation
of a large number of molecular hooks as long as the field strength is strong enough [53] and the
posts are properly positioned [55, 99]. However, from a theoretical perspective, modeling of the
direct interactions between a point obstacle and a molecule is fairly simple with the post being
treated as little more than a simple pivot point during a collision [9]. That is not to say that
collisions with point obstacles are trivial. The dynamics of such events can be quite complex
[9], but the characteristics of the post itself are completely neglected. When the finite size of the
posts is taken into account, the problem becomes much richer. The relative size of the post becomes
important [8, 49], and new types of collision processes are possible (c.g., “roll-offs” [8]). In addition,
disturbances of the electrophoretic velocity field due to the presence of the post must be considered
[49, 21, 122].

When finite-sized posts were first examined, the field disturbances due to the post were ne-
glected, and a uniform field was assumed everywhere [8]. Later, when researchers began to account
for the field disturbances, the posts were assumed to be electrically insulating so that the field lines
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Fig. 4.1: (A) Cartoon of a DNA molecule being electrophoretically driven into an
ideally conducting post along with the field lines for the electrophoretic velocity
field. This is referred to as the “post problem”. (B) DNA molecule is driven into
a flat surface by a uniform transverse electrophoretic velocity field. This problem
is called the “local problem”. Also shown is the information flow between the
two problems.
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avoid and are repelled by the post surface [49, 21, 10]. Indeed, on the post surface, the field lines are
everywhere tangential to the post. The deformation of the field lines leads to field gradients near
the post surface that are able to deform molecules both on the front and backside of the posts [21],
and this deformation aids in hook formation [49]. However, a large number of molecules are quickly
swept around the post by the nearly tangential field lines close to the surface. These molecules and
their trajectories are only weakly affected by the presence of the post.

4.3 Problem Statement

In this work, we consider the case of an ideally conducting post. By this, we mean a post whose
dielectric constant €p is much greater than that of the surrounding fluid € (i.c., €, > ¢). Unlike the
insulating case, the field lines for a conducting post, which are shown in Figure 4.1A, are attracted
to and focused by the post. This means the molecules also tend to be attracted to the post and
imteract very strongly with it. We are interested in understanding the fundamental physics that
govern a molecule that is being electrophoretically driven into an ideally conducting post. Since
this is the first attempt to study conducting posts, we only consider linear electrophoresis in our
analysis and neglect any nonlinear electrokinetic effects which may be present.

4.4 Initial Analysis of Problem

4-4.1  Qualitative Features of a Collision

The electrophoretic velocity field pE surrounding an ideally conducting post is given by

#Eli = — {1 + (%)Fﬁz} cos fe, + {1 - (%)_2] sin fey, (4.1)

where 4 is the electrophoretic mobility of the molecule, E, is the strength of the electric field far
away from the post applied in the —e, direction, R is the radius of the post, and 7 and 6 give the
position in polar coordinates with the origin at the post center.

On the post surface at © = R, it is clear from Equation 4.1 that uFE, is strong over most of the
surface while uEy is identically equal to zero (see Figure 4.1A). Therefore, the field lines always
intersect the post surface perpendicularly. On the upstream side of the post (—7/2 < 6 < 7/2) the
field lines are directed into the post while on the downstream side (7/2 < ¢ < 37/2) the field lines
are directed away from and out of the post. As a molecule approaches the post, it is driven into the
upstream side of the impenetrable surface. For our study, we have restricted our analysis to large
posts, whereby we mean that R >> R, where R, is the radius of gyration of the colliding molecule.
This guarantees that hooking of the molecule around the post is precluded and that, for reasonable
applied field strengths, the field gradients are weak so that strong stretching of a molecule is also
impossible. Therefore, the molecule is compressed and “trapped” against the post by the strong
radial field.

There are two mechanisms by which a molecule can “escape” from the post: diffusion and
convection. Clearly, the molecule experiences tangential diffusion, and given enough time, diffusion
will guarantee eventual escape. But the molecule also experiences a weak tangential velocity vy.

Although uEy = 0 for r = R, for » > R it is nonzero. The strength of pEy increases with
increasing r, and it is always directed toward the downstream side of the post. Since a compressed
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molecule still has some finite size, it is exposed to the weak tangential field that exists just oft the
post surface. This means that the average tangential velocity of the molecule {vg) # 0, and it is
slowly convected around the post and finally “escapes”. Since {vp) depends upon the distance of
the molecule from the post surface, we must understand how pE, compresses the molecule against
the post and affects its size.

4.4.2 Analysis of Field Near the Post Surface

Because moleciles are “trapped” against the post, we are particularly interested in the behavior of
DL A post, w P Y
wE near the post surface. We can exploit the fact that R > Ry and linearize the field around
—7:%~—-»~R+Rgzl (4.2)
R R
Additionally, we can replace the radial position 7 with an new coordinate d, (see Figure 4.1A)
which is the distance from the post surface

dy r 3
L= _ 1«1 4.3)
R (43)
Combining these two approximations, we can simplify the nonlinear radial term in Equation 4.1:
2 T d
= z1—2(——1)z1—2—p. 4.4
(R) R R (44)

If we use this result to approximate pF near the post surface, we obtain

E d,
£~ 2cosbe, + Q—é sin fegp. (4.5)

pEo

4.4.83 Two Connected Problems

The disparity of the length scales due to the large post size, leads to a separation of time scales
between the dynamics occurring in each of the dimensions. In the ey direction, the convective and
diffusive time scales are based on the length R, so the molecular escape time is quite large. On
the other hand, compression in the e, direction is due to a competition between convection toward
the post surface and diffusion away from it. This results in a time scale for compression based on
lengths similar to Ry so that it is very short. Therefore, the dynamics in the e, direction occur
much more ¢uickly than those in the ey direction. This allows us to break the collision problem
into the two connected problems shown in Figure 4.1.

We refer to the first of these as the “post problem” which occurs on the scale of the post
~ R. From this vantage point, the molecule looks as though it is being transported across the
post surface due to a combination of tangential diffusion and convection. The average tangential
veloeity is approximated based on Equation 4.5:

(vg) ~ Qquo%f'—) sin@. (4.6)

The average distance from the wall (d,) is based on the fast compression dynamics that occur in the
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radial dimension, and since (d,) = f(uE, = —2uFE,, cosf), it varies as the molecule moves across
the post surface. But because the compression dynamics are fast, we can make a pseudosteady
approximation and assume that (d,) is always in equilibrium with the local radial field pE,.

The second problem shown in Figure 4.1B is the “local problem” which occurs on the length scale
of ~ Ry. Effectively, we have “zoomed” in on the molecule. We can neglect the curvature inherent
in the post problem because the post surface now looks like a flat wall and pE looks uniform.
The only important phenomenon occurring at this scale is the compression of the molecule by the
transverse component of the uniform field which we call pEq for the local problem. We can analyze
this situation to determine how the average distance from the wall, which we call (d,,) for the Jocal
problem, depends upon uFyp.

These two problems are clearly connected as seen in Figure 4.1. The post problem provides
the local problem with the strength of the transverse field (uEy = ukE,(6)), and in return, the
local problem feeds the post problem the average distance from the post ((d,) = {d,)) for use in
determining the average tangential velocity (vy).

4-4-4 Approach

In our detailed analysis of the collision problem, we begin by examining the local problem of a
Gaussian chain driven into a flat wall by a uniform transverse field. We use a combination of blob
theory and statistical mechanics to derive expressions and scalings for {d,,) as a function of uFy.
We confirm these scalings using Brownian dynamics simulations.

We then turn to the post problem where we use our results from the local case to predict {(vg).
After confirming the validity of our predictions using simulations, we incorporate diffusion into our
theoretical model by turning to a Fokker-Planck equation and calculating the mean escape time
of a molecule based on the initial collision location. These results are compared to simulations as
well.

4.5 Brownian Dynamics Simulation

DNA molecules are modeled as chains of N, beads connected by Ny = N, — 1 Hookean springs.
The equation of motion for the position #; of the ith bead is
dri 1

G ~HE(r)+ o (FF+ FP) (47)

where p is the electrophoretic mobility of the chain, ¢y, is the bead drag coefficient, F,S is the total
spring force felt by the bead, and FP is the Brownian force.

We nondimensionalize Equation 4.7 based on the length and time scales of a spring: 4 =
VEgT/H and m, = ¢?/Dy, respectively, where H is the Hookean spring constant and Dy, is the
bead diffusivity. The nondimensional variables for the local problem are

t oz E F

’,” ~
F=— —ZF=—
A A T

(4.8)

(for the post problem we nondimensionalize E using Ey). This gives the dimensionless form of
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the equation of motion:
dr; b 5S . pB
—d? = P(‘)b,oE (7’1) -+ Fi + E (49)
where Pey, g = uEols/ Dy, is the bead Péclet number (or for the post problem, Pey, o = pFEoofs/Dy).
The nondimensional Brownian force is given by
- 24 .
FB = /= [y, (4.10)
At

where At is the dimensionless time step and [ry); are uniform random numbers such that each
component [ry);” € [-1/2,1/2], where j denotes the coordinate z, y, or z. Equation 4.10 has been
normalized so that it provides the proper variance for the Brownian force in order to satisfy the
fluctuation dissipation theorem.

The net dimensionless spring force on the ith bead is

. fia i=1
Ff= Flip+ flic, 1<i< N, (4.11)
FinNy 10 i = M,

where ffj is the force exerted on the ith bead by the jth bead. We have included two contributions

to the spring force f7, = :jb + £ The first is the simple bulk Hookean spring force:

ps,b A '

fop =17 — P (4.12)
. . ASW . : ) ) §

The second contribution f; ; 1s a correction for the presence of the post/wall.

When a spring is located near an impenetrable surface, it disrupts the underlying random walk
upon which the entropic spring force is based. In bulk, the configuration space of a Gaussian chairi
exhibits axial symmetry around its spring (end-to-end) vector. This leads to a Hookean spring
force that is always directed along the direction of the spring vector as is manifest in Equation
4.12. However, in the presence of a surface, the chain’s configuration space is restricted and this
axial symmetry is broken. This leads to purely entiopic forces that push the chain away from the
surface and that are not necessarily directed along the direction of the spring vector. Consideration
of this force renders the spring behavior more realistic and actually allows us to use fewer beads
(and, therefore, fewer computational resources) in order to reach the predicted scaling regimes.

We can account for this effect by including a correction term in the spring force [71]. If the
surface is a flat plane that passes through the origin, the correction is given by

v _ 20,1 "
fi = {exp 2(7 - ny) (- ny)] — 1 } Tt (4.13)

where n,, is the unit normal pointing out of the surface. This term always pushes the beads away
from the wall. It diverges as the beads approach the surface and is sufficient to prevent the beads
from passing through the wall, so it has the secondary benefit that we do not have to include an
additional force dedicated to imposing the wall excluded volume. This expression can be directly
applied for the local problem since the surface is flat. For the post problem, we assume that locally
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the post looks flat and neglect any correction due to the curvature of the post surface.
The time-stepping scheme we used for the local problem is as follows:

Nt Peg3 /5000, Peno < Ny /7,
At =1 Pe /75000,  Np¥% < Peyg <1, (4.14)
Pey, 5/5000, Pepo > 1.

For the post problem, we used the same scheme with Pey, g = 2Pey, o.

4.6 Analysis of Local Problem/Field-Induced Compression

The local problem shown in Figure 4.1B is characterized by a polymer chain near a flat wall under-
going field-induced compression by a uniform electrophoretic velocity field uFEq applied transverse
to the wall in the —e; direction. Note that for the local problem we have neglected the curvature
inherent in the global post problem. Therefore, we use Cartesian coordinates when describing the
local problem. But we will resume using cylindrical coordinates in Section 4.7 when we return to
the global post problem. In our analysis of this problem, we first consider the behavior of a point
particle and of a Hookean dumbbell. Using statistical mechanics, we can derive exact analytical
results for these cases which provide basic insight into the problem and a way to validate our nu-
merical model. We then look to blob theory to tackle the more complicated problem of a multibead
Gaussian chain.

4.6.1 Pownt Particle and Dumbbell

The average distance from the wall for a point particle with a diffusivity of D is easily shown to
be (dif) = D/uE,. This result owes its simplicity to the fact that there is no geometric length
scale in the problem because the wall is infinitely large and the particle is infinitely small (there
is no spring to comsider in this case). Therefore, the only length scale is the dynamic one, (dbF),
which follows from balancing the opposing forces of convection and diffusion on the particle. If
we arbitrarily define a field-independent length scale £ for the problem, then the result for a point
particle becomes

(dBP)

14

where Pey = uEof/D is a Péclet number based on the arbitrary length scale £. This result is useful
because we expect that even large multibead chains should recover point particle behavior when
the applied field strength is extremely weak.

— Pyt (4.15)

The derivation for the average distance from the wall for a Hookean dumbbell (d4P) is more

involved. Due to the linearity of the Hookean spring, all three dimensions act independently, and
the problem is 1D in the e, direction. The probability density of finding a dumbbell with a center
of mass located at dy, and a spring length of ¢ is proportional to the Boltzmann distribution

2 2
P(dy,q) ~ exp (—ZPeb’o%> [exp (—%%2—) — exp <— %’—)} (4.16)
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Fig. 4.2: Plot of the average distance of the center of mass (d%®) from a flat
wall for a Hookean dumbbell in a uniform field versus the field strength for the
BD simulations along with the analytical result given by Equation 4.17 (top).
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where Pey, g = uFols/Dy. From this, we can determine the average distance from the wall

(d®) 1 exp(—3Pef ) (Peg)(l) + Pebp) + \/—gfel‘fc(%Pebto) (Pegg -2~ Pe%_a)

¢ 2 S| 1 (4.17)
‘s \/geric(V_EPeb,o) (Pel; ot Peb,o) —exp( —%Pe%}o)

This result is shown in Figure 4.2.

There are two regimes connected by a transition region that describe the behavior of <d§}b .
The first is a weak field regime where Pep o < 1. Under these conditions, the dumbbell typically
is far away from the wall and only occasionally interacts with it. Therefore, the dumbbell behaves
very much like a point particle. Indeed, in the limit of Pep g < 1 the expression given in Equation
4.17 reduces to <d3b> /s ~ (2Pen )™t which is the expected behavior of a point particle with a
diffusivity of D = Dy, /2 (see Figure 4.2).

The trapsition region occurs around Pey,g ~ 1. At this field strength, <dﬂ}’> is comparable
to the equilibrium spring length £, and the dumbbell no longer acts like a single point particle.
This can clearly be seen by considering the 1D radius of gyration of the dumbbell in the direction

transverse to the wall Rg}:; which is given by

<ng312> 1 \/"%Terf(:(r}—ipebg)}’eb‘o <3Pei;% +6+ Pe%90> - exp(—%Pe%’O) (5 + Pe%ﬂo

) (4.18)

7 T _
£y 12 \/gerfc(—%Pebao) (Peb}) + Peb,o) - QXI)(—%P&%}O)
- 2 . L
and can also be seen in Figure 4.2. For Pey, o < 1, <R‘;}3L, > / (5% remains unperturbed and maintains

Rdb 2

i > /€% begins to drop as the internal

a constant value of 1/4. But as Pey o approaches 1, <
mode of the dumbbell is affected by the wall presence.

The second regime is a high field limit where Pey, o > 1. When the field strength is very large,
the dumbbell is strongly pushed against the wall, and both beads are always very near the wall
surface (r1./€s,m2.2/€; < 1). This also guarantees that the distance between the beads in the
transverse direction is always very small compared to the equilibrium spring size (|re,, — 71| /s <
1). The result of these two conditions is that the transverse component of the bulk spring force
( ff ;’ )= given by Equation 4.12 is negligible, and the wall correction for the spring force on the 7th
bead ( ffj“) » given by Equation 4.13 approaches = (r; . /¢)7*. These two findings indicate that the
beads become uncoupled in the e, direction when the dumbbell is pushed strongly against the wall.
So for large field strengths, the two ends of the dumbbell should act independently of each other
and behave as point particles of diffusivity D = Dy,. Indeed, in the limit of Peyo >> 1, Equation
4.17 reduces to <dﬁ,b) /s ~ 2Pey, (1) which, except for the factor of 2, is the expected result for a
point particle (see Figure 4.2). The factor of 2 comes from the wall correction for the spring force
(fo), ~ (ri.2/€)~1 which does not exist in the case of a true point particle. But this additional

1,7,
force does not change the predicted scaling with Pey, g; it just affects the numerical prefactor.

Also shown in Figure 4.2 are the results from our BD simulations of a molecule pushed against
a flat wall. The data from the simulations match the exact analytical results thereby validating
our nutnerical model.
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4.6.2 Multibead Chain

The added complexity of multibead chains does not allow for exact analytical solutions; however,

based on the point particle and dumbbell results we can predict the behavior of multibead chains
at both very small and very large Peppo. Additionally, the increased number of internal modes
leads to the emergence of a third, intermediate “blob” regime, where globally a chain is strongly
deformed by the applied field, but loc all\f individual springs remain virtually unperturbed from
their equilibrium configurations.

For very strong field strengths where Pey g > 1, the beads become uncoupled in the transverse
direction just as they do in the case of a dumbbeﬂ Therefore, the individual beads behave very
nch like point particles so that {(d,) /¢ = ’3Peb o in the case of Np > 1. The prefactor is different
from the dumbbell result because, except for the end% each bead is connected to two springs instead
of just one. Additionally, it can be shown that <Rg,w /652 ~ 3Peb70.

For for very weak field strengths (we will define iow weak momentarily), we expect to recover
the point particle behavior exhibited by a dumbbell. In the case of a chain with Ny, beads, the
chain diffusivity is given by D = Dy/Ny, (we assume the chains are free-draining), and we predict
that (dy) /4 ~ (NpPepo)~!. Additionally, we expect the 1D radius of gyration to take on its
equilibrium value of <R_(,‘.“,2>eq /€2 = Np/6 (which assumes Ny, > 1). The weak field regime is

characterized by the condition that (d,) > , /<Rg wz\ which guarantees that the configuration of

the chain is nearly unperturbed from its equilibrium (()nhgumtlon This condition is first v10lat<‘d
when (N, Pep o) ™! ~ \/ N /6. So we can say that weak field regime is defined for Pey g < Nb

This leaves a large region between the weak and high field regimes where N~ 32 « Pep o < 1.
This is the new “blob” regime that emerges as N}, increases, and it is characterized by strong global
deformation of the chain structure while leaving smaller subunits of the chain fairly unperturbed.
These subunits are referred to as “blobs” and are often used in scaling analyses associated with
chains confined in slits and tubes. We can make use of the blob theory framework to analyze
the problem of field-induced confinement by introducing an electrical energy associated with the
applied electrophoretic velocity field as shown in Figure 4.3.

We start by considering the well-known problem of a chain confined between two parallel plates
separated by a distance h. For an ideal chain consisting of Ng Kuhn steps of length bk, it can be
shown that the energy required to confinie the chain is proportional to the number of blobs formed
[68] and scales as

h ~2
Gconf ~ ]»BTNK (bK> - (419)

In the case of field-induced confinement, we replace the constant plate separation h with a field-
dependent compression size d,, (sce Figure 4.3). We also introduce an electrical energy for the
chain

Glelec ~ Nk K et Eodw (4'20)

where gk ef is the effective charge of a Kuhn segment. gk e can be derived by considering the free
solution electrophoresis of a Kulm segment. By balancing the electric force gk offEo driving the
segment forward against the opposing drag force —(xv = —(gpuEoy, where (k is the drag coefficient
for a Kuhn step, we discover that gk e = Ckp-
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Fig. 4.3: Cartoon depicting the blob scaling approach used to find d,,. The results
for slithike confinement are used to find the entropic penalty for confinement.
This energy is then added to an electrical energy in the case of field-induced
confinement. The total energy is minimized to find d,,.

By minimizing the total energy Giot ~ Geonf + Gelee With respect to d,,, we find that

(d"w> bK)u'EO =153 —1/3
b \kpT/Cx ~ Pex / el

where Pek is a Péclet number based on a Kuhn step. It is interesting to note that d,,; is independent
of chain length in the blob regime. This is because adding chain length increases the number of
blobs, but it does not change their size.

Also, we expect in the blob and high field regimes that Ry, ~ dy. This is reasonable since
both deseribe the size of the compressed chain given that it is always pushed against the wall. This
is not the case in the weak field regime where Ry, is basically unperturbed from its bulk value.

Finally, we can adapt these results to bead-spring chains by substituting springs for Kuhn steps.
In doing so, we replace by with £, Cx with ¢, and Peg with Pey, .
Combining all of our above predictions for multibead chains, we have for the average distance

from the wall:
(NoPeng) ™", Peny < Ny 2,

g el N < Payy <1, (4.22)
? 3Per s, Pepg > 1;

and for the average 1D radius of gyration squared:

Nb/(i, Pepo < 1’\rl;3/2,
~Q BPed, Ny P < Pepg <1, (4.23)

3Pey %, Pepo > 1.

(R
2
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In both of these expressions, we have included proportionality constants, o and 3, to describe the
blob regime. This is to highlight the fact that, unlike the weak and strong field regimes, we only
have scalings for the behavior of the chains in the blob regime. We have no way of determining o
and 3 a priori, so we must fit real data if we wish to determine them.

In order to test our predictions, we simulated several different chain lengths (N, = 20, 40, and
100) at various values of Pepg. The results of these simulations are shown in Figure 4.4. The
theoretical predictions for the three different regimes given in Equations 4.22 and 4.23 are also
included as well as slope lines for the predicted scalings.

There is excellent agreement between simulations and theory. Not only do the strong and weak
field regimes exhibit the predicted scalings, but they also asymptotically approach the predicted
quantitative values as well. The locations of the transitions between regimes are also correctly
predicted.

The emergence of an apparent scaling regime with increasing Ny, between the strong and weak
field regions confirms the existence of a blob regime. Indeed, the simulation results match the
predicted blob theory scalings. But in order to more rigorously demonstrate the existence of the

blob regime, we plotted the ratio of (d,) and (/(R2,,). In regions where both of these quantities

g
are predicted to scale the same way, we expect to see a broad plateau in the plot of their ratio.
<Rg,w> is a constant in the weak field regime, so the ratio should diverge as Pey, g decreases. In the
strong field regime, the ratio should plateau to a constant value of V3. If the blob regime does,
indeed, exist, then a similar plateau should be seen for N]; g/ P« Pepo < 1 although it ought
to have a different numerical value than v/3. In addition, it should become broader and flatter
with increasing Ny. This is exactly what is seen in Figure 4.4, and it clearly and convincingly
demonstrates the presence of the predicted blob regiie.

It was found that o = 1.26 and 8 = 0.30 by fitting the results of Ny = 100 to the predicted

scalings for (d,;) and /(R2 ), respectively, in the blob regime.

4.7 Analysis of Global/Post Problem

With our results for the local problem in hand, we are now equipped to fully address the post
problem shown in Figure 4.1A. We begin by determining the average tangential velocity of the
molecule (vp). We then use this result to develop a 1D Fokker-Planck equation to balance the
effects of convection and diffusion along the post surface. From this, we calculate the mean escape
time (Tpe) of a molecule as a function of its initial collision location 6. We compare all of our
predictions against simulation results. .

We also restrict our analysis to field strengths where the compressed chains are in the blob regime
for the local problem. Clearly, depending on the strength of the applied field, we could develop
different velocity predictions for each of the low field, high field and blob regimes. However, it
seems sufficient to analyze only one of these, knowing that the same type of analysis should be
applicable to the other two. We have chosen the blob regime because it seems to be the richest of
the three.
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Fig. 4.4: Plot of the average distance of the center of mass from a flat wall
(dy) for multibead chains in a uniform field versus the field strength along with
the theoretical prediction given by Egquation 4.22 (top). Plot of the radius of
gyration squared of the chains in the direction transverse to the wall (Rg..*)
versus the field strength along with the theoretical prediction given by Equation
4-23 (middle). Plot of the ratio of (d,,) and \/{Rg.>) versus the field strength

(bottom,).
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4.7.1 Determination of (vy)
We have previously shown in Equation 4.6 that (ve) ~ (dp). From the result in Equation 4.22 for
the blob regime, we expect that

(dp) ~ albsPey[pE,(8)] (4.24)

where Pey[uE,(8)] is the Péclet number based on the local value of wE.(6) which is given in
Equation 4.5. Combining these results we arrive at

{dp)
ls

~ o (2Pep o €OS 0)~1/3. (4.25)
If we insert this expression into Equation 4.6, we find that

(vg) 273 —1/3 . :
el Ny (2Pey o0 )7 cos fsin 6. 4.26)
Db / Nb R ( ,00) ( )
where we have nondimensionalzed the velocity based upon the post length scale R and the chain
diffusion time scale N R2/Dy,. Based on this equation for the velocity, we can define a governing
Péclet number for the post problem:

Pep = Ny (2Pep 00)?* . (4.27)

In Figure 4.5, we compare the prediction for {d,) versus Pey(#) given in Equation 4.24 to the
results from simulating the collisions of several different chain lengths at various values of Pep with
a post of radius R/€s = 50. Excellent agreement is scen, except for Pep = 40. This discrepancy
at high Pep occurs because the smaller chain lengths (N, = 10 and 20) have been pushed beyond
the blob regime into the high field regime (Pey, 3> 1) where Equation 4.24 is not applicable. These
results confirm that our analysis of the local problein, particularly Equation 4.22, is correct even
for the more complicated post problem. We also compare our predictions for (vg) given in Equation
4.96 to the simulation data in Figure 4.6. We have nondimensionalized (vp) by the predicted scaling
aPep Dy, /N, R to achieve universal collapse of all the curves. Our theoretical treatment matches
the data except when blob theory breaks down for the smaller chains at large Pep.

The velocity (vp) at the most upstream point on the post (6 = 0) is zero, and initially, it
increases nearly linearly with increasing 6. But (vp) begins to rise rapidly as 6 approaches /2.
This is due to a sharp decrease of pE,(8) near = /2 which causes the chain to quickly expand.
This increasc in (d,) leads to greater exposure of the chain to the tangential electrophoretic velocity
ficld and a rapid increase in the average molecular velocity (vg). Our prediction for (vg) given in
Equation 4.26 actually diverges at @ = 7/2 which is clearly aphysical. This is because our model
neglects several realitics including that our linearization of wEy is not valid for large (dp) and that
the chain cannot expand instantancously (i.e., separation of the radial and angular dynamics breaks
down). However, our prediction is still very good over the entire domain except very near 0=mn/2.

Another problem with our model is that it predicts that a chain located at 6 = 0 will never
escape from the post since (vg) = 0. In order to accurately predict the behavior of a chain near
# = 0, we must incorporate diffusion into our model.
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Fig. 4.5: Plot of the average distance of the center of mass from the post surface
(dy) for multibead chains trapped against a conducting post versus the local
transverse field strength puE,.. The fitted scaling from the flat wall studies is
shown for comparison (Equation 4.24).
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Fig. 4.6: Plots of the average tangential velocity (vg) of multibead chains trapped
against a conducting post as a function of location on the post surface 8. The
theoretical prediction given by Equation 4.26 is also plotted.

4.7.2 Incorporating Diffusion

In order to include diffusion in our theory, we turn to a Fokker-Planck (FP) approach. We consider
the post problem to be a time dependent 1D problem in the ey direction with r = R. We develop a
Fokker-Planck equation for a molecule with a diffusivity of D = Dy /Ny,. If we assume the molecule
is being transported in a velocity field (vg), then we can write

3}) _ Dy, sz 17,
5 = No o(Rez ~ a(&g) 0P

(4.28)

where p is the probability density of finding a molecule at given time and location and R is the
arclength. Due to the symmetry around the most upstream point of the post at 8 = 0, we restrict
our analysis to the domain 0 < 8 < 7/2. We use our previously determined expression for {vg) given
in Equation 4.26. For tractability, we make the approximation cos™ 3 0sinf ~ 6 which is very
good over most of the domain. Finally, we nondimensionalize time based upon the diffusion time
scale of the chain over the length scale of the post: 7 = N, R? /Dy,. This leads to the nondimensional
form of the FP equation:

=7 (6p) (4.29)
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We use a reflecting boundary condition at § = 0 due to syminetry and an absorbing boundary
condition at § = 7/2 to signify the “escape” of the molecule:

B (ro=0)=p(r6=m/2) =0 (4.30)

For the initial condition, we choose a unit impulse at 8y to model the initial <0111S1(>n location of a
molecule at that location:
p(r=0,0)=4(0—0) (4.31)

This is the problem of a particle diffusing in an inverted harmonic potential, and interestingly,
it has been considered before in DNA collisions with point obstacles [52, 119]. Although we cannot
obtain a solution for p(,8), we can calculate the mean first passage time to 6 = 7/2 of a particle
that starts at @ = p. This is exactly the average escape time of a molecule from the post surface
(Tese). The theory of first passage times [123] tells us that for this particular problem

<Te<;(',> ‘/ﬂ./2 ( P f)> /\Jﬂ (C!PGP
e drexp | — - dy exp
NuvR2%2/Dy  Jg ! Y Jo e

0
- . . . . — g2
We can recast this expression in terms of Dawson’s integral[124] [D(:c) = e~ fo ¢ dy} :

&sr oFPep
=/ v/ : 4.3:
NbRQ/Db appp o ( 2 :’") d (4.33)

Finally, the integral of D(x) can be written in terms of generalized hypergeometric functions [124]

by (ans- - api b, by )]

(L) _1
NoR?/Dy, 2

x2> (4.32)

{ZI 2 Fy (17 1;3/2,2; - a};ep 721 ) %2> <1’ 13/

In Figure 4.7, we have plotted this prediction for (T.s.), nondimensionalized by the convective
time scale Ny, R%/aPep Dy, for several values of Pep including for the purcly convective case (i.e.,
Pep = o).

We expect that in the region of the domain dominated by convection the curve will collapse onto
the result for pure convection, and indeed, this is what occurs for 8 near n/2 where the velocity is
the strongest. On the other hand, near 8 = 0 diffusion dominates, and the curve falls well below
that of pure convection since diffusion is helping to speed up the escape process. It is also clear
in Figure 4.7 that the location of this transition from the diffusive region to the convective region
occurs at smaller and smaller values of @ as Pep increases. This is expected because a larger portion
of the domain is dominated by convection at large values of Pep. Indeed, this increasingly small
diffusive region near 6 = 0 forms a boundary layer for Pep > 1.

aPep

i)

We can derive a scaling for the size of the region dominated by diffusion fpr, by estimating where
the convective and diffusive time scales are comparable. The convective time scale is Ny R?/aPep D),
while the diffusive time scale is Ny (RgL)?/ Dy Balancing these two gives the scaling fg1, ~ Pep M2
In order to confirm this scaling for fgy,, we used the location of the intersection of (T4} for a

finite Pep with the curve for the purely convective case as a measure of fgy,. Figure 4.7 shows the
P ) BL 5
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Fig. 4.7: Plots of the average “escape” time {T,s.) predicted by Equation 4.34 for
various values of aPep, including the purely convective case (i.e., Pep = oc)
(top). Plot of the location of the intersection point Ogy of (Tese) for a given

value of Pep with the purely convective case (bottom). The predicted scaling for
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results of this analysis. At high Pep, the predicted scaling is correct.
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Fig. 4.8: Plots of the average escape time (Tese) of multibead chains as a function
of where they are initially trapped by a conducting post Oy. The theoretical
prediction given by Equation 4.34 is also shown.

The results for (Tes:) from our simulations are shown in Figure 4.8 where we have non-
dimensionalized the escape time by the convective time scale. Good agreement is seen between
the simulations and the predictions of Equation 4.34. The only notable exception is for Ny, = 10
at Pep = 40 which is expected since the chain has been pushed well beyond the blob regime as
previously shown. Our model clearly does a very good job of predicting the behavior of these
chains.

4.8 Conclusion

We have examined the problem of electrophoretic collisions of DNA with large, ideally conducting
posts, and we have identified and characterized the essential physics that govern the problem.
We have purposefully simplified this problem in order to develop analytically solvable models and
scaling theories that prove that the important physics are well-understood. In particular, we have
studied the field-induced compression a molecule against the post surface and how it determines
the velocity of the chain as it moves around the post. Although we have used the simple model of
an ideal, Gaussian chain, we believe the basic physics and fundamental character of the problem
have been captured. However, our approach allows for a more realistic molecular description. For
exatuple, excluded volume effects could easily be incorporated into our blob theory framework, and
new scalings could be derived.
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4.8. Couclusion

Also, by considering large posts, we have precluded all hooking phenomena. But in applica-
tions involving DNA separations, hooking and the subsequent unhooking process are typically the
major reasons that length-dependent separation arises. However, our results can still be applied to
examine the more realistic and complicated situation of moderately-sized, conducting posts where
hooking should occur. For example, our prediction for the tangential velocity of a molecule (Equa~
tion 4.26) is nearly lincar in @ which makes it look very similar to an elongational field. This suggests
that for strong enough field gradients, molecules will stretch around the post. Such behavior would
be important for understanding hook formation in these more realistic cases.

We believe that conducting posts could offer advantages over insulating posts due to the way
they attract and directly interact with DNA molecules. Insulating and dielectrically-matched posts
tend to quickly move molecules around their surfaces, and detrimental channeling is often seen in
arrays of such posts [122]. The attractive nature of conducting posts might decrease the effects
of channeling and enhance separation efficiency. Additionally, it could also lead to new modes of
separation that have not yet been observed or predicted.

Currently, we know of no experimental studies that have looked at conducting posts, but we
can imagine at least two different ways to achieve such a system. The first would be to use metal
posts with biased AC fields. Because metal posts are impenetrable to ions, a DC field would simply
polarize the surrounding double layer, and eventually, the field lines would resemble those of an
insulating post. Using properly timed AC fields should prevent this polarization from occurring
[125]. The second way would be to use a charged hydrogel that is impermeable to DNA. Unlike a
metal post, a charged hydrogel would be permeable to small ions, and its higher conductivity than
the bulk fluid would result in the desired field lines.

To end, we would like to provide estimates of some of the parameters and measurables that
might be used or seen in a real experiment under reasonable conditions. For order of magnitude
purposes, we assume that, for DNA in buffers typically used by our group [9] and others, the length
and the diffusivity of a Kuhn segment are around bk =~ 100 nm and Dk =~ 20 pm? /s, respectively,
and that a typical value for the electrophoretic mobility is g =~ 1.5 um/s. For T4-DNA, which has
a contour length of L = 70 g, a bulk radius of gyration of Ry = 1.5 pm, and a bulk diffusivity
of D =~ 1 pm? /s, we estimate that the blob regime occurs at applied field strengths in the range of
Eo =~ 0.005 = 50 V/cm. We obtain this estimate from Equation 4.22 by replacing the bead Péclet
number Pey, with the Péclet number based on a Kulin step Peg. Using this range of field strengths,
we can estimate the characteristic oscape time 7 s f01 a particular post size using the convective
time scale of the global post problem R?/{2Pex, OO) 3 Dk. However, we must also ensure that the
convective time scale is faster than the diffusive tiie scale R2/D which provides the upper limit
for Tpse. Based on this calculation, we find that the convection-dominated blob regime occurs in
the range of Ey & 1~ 50 V/cm. For a post size of R = 5 um, the characteristic escape time would
be Tose & 1 8 - 20 s. For a post size of R = 15 pm, this would increase to Tege 7~ 10 s - 3 min.
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CHAPTER 5

Relazation in Slitlike Confinement

Relaxation of polymers in confined environments has received a great deal of attention recently due
to the emergence of micro- and nanofluidic devices which attempt to manipulate single molecules.
More fundamentally, many naturally occurring polymeric molecules exist in highly confined cellular
environments. While there has been much previous work on the bulk relaxation of polymers, there
has been relatively little work considering the confined case. In this chapter, we consider the
relaxation of an initially stretched DNA molecule in slitlike confinement. We report the first
observance using simulations of two distinct relaxation times in the linear force regime. We also
conclusively show that the emergence of the second relaxation time is due to excluded volume effects.
Finally, we assess the validity of a previously proposed mechanistic model confined relaxation. Our
results are important for the design and optimization of devices that attempt to use confinement
to modulate the dynamic properties of DNA molecules.
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5.1 Overview

Brownian dynamics simulations of bead-spring chains were used to study the relaxation of an
initially stretched DNA molecule in slitlike confinement. Taking into account excluded volume
effects but neglecting bydrodynamic interactions, the simulations are able to reproduce the two
relaxation times in the linear force regime that our group has experimentally studied and recently
reported. The relaxation dynamics of the transverse dimensions are extensively studied, and a
theoretical model is developed to describe them. The interplay between the longitudinal and
transverse dynamics is investigated and used to corroborate a physical model previously proposed
to describe polymer relaxation in a slit.

5.2 Introduction

5.2.1 Motivation

The emergence of micro- and nanofluidic devices has led to many new and exciting developments
in the field of single-molecule manipulations. For example, DNA scparations [57, 15] and genomic
mapping [2, 118] have benefited greatly from the precise control offered by so-called “lab-on-a-chip”
devices. More generally, these microscopic systems have provided an important new platform to
study fundamental problems in polymer physics [36, 30, 17, 105, 126, 31, 32].

One recent problem that has received a considerable amount of attention, is the relaxation
dynamics of DNA in different types of confined environments [30, 127, 128, 31]. This is particularly
important for many single-molecule mapping devices that rely upon collisions [97] and field gradients
(2, 97] to deform DNA for subsequent analysis. This deformation process is highly dependent upon
the balance between the stretching rate of the device and the relaxation of the polymer. Thercfore,
understanding how confinement affects the relaxation process of confined polymers is critical both
to optimizing current technologies and to developing novel device designs.

Additionally, many important biological molecules are polymeric in nature (e.g., DNA, actin,
and microtubules), and most cellular environments are highly confined. For example, 3 m of human
DNA is packed into a nucleus of around 5 pm in diameter. Study of the dynamics of confined
DNA molecules is critical to understanding how the cell stores, accesses, and replicates it’s genetic
information. In vivo relaxation of chromosomal DNA has even been used to probe the intracellular
environment [129].

5.2.2 Past Work

Over the last two decades, the relaxation of unconfined polymers has been studied comprehensively
both experimentally [36] and via simulations [130, 131, 132]. They have confirmed the theoretical
prediction that single molecule relaxation in bulk is well-described by a single longest relaxation
time 7; over all extensions within the chain’s linear force regime [133] (from equilibrium to ~ 30%
fractional extension [36]). However, relaxation in slitlike confinement has been studied much less
extensively, with several studies offering contradictory findings [134, 30, 135, 136, 71, 128]. It is
only recently that these results have begun to be reconciled by suggesting the existence of two
relaxation times in the linear force regime [31].

The dynamics of polymers in slitlike confinement were first treated theoretically by Brochard [28]
using blob theory. The first direct observation of such confined relaxation, by Bakajin and coworkers
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[30], was of molecules relaxing after having been highly stretched by collisions with microfabricated
posts. The results produced scalings for the relaxation time that were more in line with those in
bulk [31]. Nearly a decade later, new experiments from our group obtained the confined relaxation
time by measuring the rotational autocorrelation function of chains at equilibrium [128]. This study
found good agreement with the blob theoty predictions, contradicting the previous work of Bakajin
et al. [30] Interestingly, several simulation studies found evidence to support the findings of both
of the aforementioned experimental works. Simulating the relaxation of initially stretched chains
(136, 71] reproduced the bulklike results of Bakajin et al. (30], while Monte Carlo simulations of
chains at equilibrium [134, 135] corroborated the blob theory scalings seen by our group [128].

Although seemingly contradictory, taken together these studies hint at the cause of the dis-
crepancies. All the work where chains were perturbed from equilibrium agree with each other and
demonstrate bulklike behavior. On the other hand, agreement was also seen amongst the studies of
chains at equilibrium which exhibited blob scalings. To explain this, our group suggested that two
distinet relaxation times existed in the linear force regime [31]. When the molecule is stretched, the
width of the chain in the transverse dimension is smaller that the height of the channel, and the
confining walls do not significantly affect the conformation of the molecule. Therefore, the chain is
governed by a bulklike relaxation time 7;. However, at or near equilibrium, the polymer feels the
full steric effects of the confining walls, and its dynamics slow as a consequence. A second relaxation
time 777 emerges which is longer than 7 and which follows the predictions of blob theory.

Our group has shown that both of these relaxation times can be seen and measured by observing
the longitudihal relaxation of initially stretched molecules over time scales long enough for the chain
to reach equilibrium [31, 137]. A physical model based upon blob theory has also been proposed
that assumes this extension-dependence of the relaxation time is due entirely to excluded volume
effects (EV) and not hydrodynamic interactions (HI). Although there is some experimental evidence
that this model is correct, experiments are greatly liampered by the fact that the dynamics cannot
be aceurately measured on small time and length scales, especially in the dimension transverse to
the plane of the channel.

5.2.8 Problem Statement

In this chapter, we study the relaxation of a bead-spring chain in slitlike confinement from a
stretched configuration that is initially straight using a combination of simulations and theory. Since
simulations allow us to set which physics will be included, we can conclusively determine if excluded
volumne effects are sufficient to reproduce the qualitative features observed in experiments (c.g., two
relaxation times). In addition, simulations can probe dynamics of the relaxation process on length
and time scales that are inaccessible to experiments, particularly in the confined dimension. This
allows us to consider the interplay between the dynamics in the direction of initial stretch and the
confined dimension, enabling us to assess the validity of the current physical model for confined
relaxation and its underlying assumptions.

5.3 Background

We now describe the theory of polymer relaxation both in bulk and slitlike confinement. We start
by considering the equilibrium size of a polymer chain and the basics of blob theory. We then
use these results to develop scalings for the relaxation times of these chains. We also explain the
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current physical model of relaxation in slitlike confinement and some of its consequences.

In particular, we concern ourselves with the expected theoretical scalings based upon the physics
included in our simulations. Therefore, we take EV into account, but we neglect the effects of HL
The chains are assumed to be free-draining so that

¢ = Ngdk- (5.1)

Additionally, HI with the channel walls is neglected, and changes in the chain diffusivity due to
confinement are ignored.

5.3.1 Equilibrium Chain Size

The polymer is modeled as a chain composed of Ng Kuhn steps each of length bk. In bulk, the
equilibrium radius of gyration R,q of the chain can be determined from the statistics of random
walks

Efl‘_q ~ »NKU'?D: (5_2)

bk

where 4 is the scaling exponent for the equilibrinm chain size in a 3D environment. If the chain
is ideal and intramolecular excluded volume effects are neglected, then vsp = 1/2. The inclusion
of EV causes the chain to swell and increases the scaling exponent to vgp = 3/5.

In slit-like confinement. the polymer is squashed like a pancake, and due to EV, it swells in size
even further. Blob theory is often used to describe confined polymers [29]. In this framework, the
polymer is represented by a string of Nk /g blobs, where g is the number of Kuhn segments per
blob (see Figure 5.1). The size of a blob is set. by the height of the channel, h.
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Fig. 5.1: A cartoon depicting the physical model of confined relaxvation based
upon tensions-blobs and how it relates to the longitudinal relaxzation function
G.(t). Above a certain crossover extension X., the chain is not sterically con-
fined and relazes as if it were in bulk. Below X.. the confining walls become
important, and the chain relazes by rearranging its self-avoiding blobs.

On length scales smaller than A (i.e., within a blob), the polymer retains its bulk-like behavior.
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So using Equation 5.2, we can say that h ~ ¢*3Pbg, and upon rearrangement, the number of Kuhn

segmments g in a blob is given by
1/vsp
h )
g~ (——— . (5.3)

bk
On scales larger than h, the blobs, which repel each other due to EV, obey the scalings of a 2D
self-avoiding walk (2D-SAW). So in slitlike confinement, the size of the chain is given by

R0 N _A_[_Ii WD__]}_NNKV‘zD i 1-von fvan (5.4)
bk g bk bk ,

where vop = 3/4.

5.8.2 Relaxation Times
Bulk

First, we consider the relaxation of a linear polymier in the bulk. The longest relaxation time of
the chain can be derived by considering a force balance between the elastic spring force Fg of the
chain and the drag force Fp that opposes it. The force required to stretch a chain away from its
equilibrium size R, o by an amount §R, is given by
FEz—Z];Bj;éRg, (5.
9.0

[}
[y
—

where kg is the Boltzmann constant and 7' is the temperature. The drag force felt by the chain is
Fp =~ —C6R,, (5.6)

where Rg is the rate of change of the size of the chain. Balancing these forces gives the longest
relaxation time 7; for the chain

é_}_zg{ " CRg,OQ
oR,  ksT

Introducing the results from Equations 5.1 and 5.2 and noting that (g = kg7 / Dk, we arrive at

(5.7)

T~ —

Tl

_TE L e (5.8)
bi?/ Dk

where Dk is the diffusivity of a Kuhn segment.

Slitlike Confinement

When a molecule in a slit is stretched strongly encugh, it is not sterically confined by the walls of
the channel (see Figure 5.1). Therefore, the initial relaxation process is unaffected by the presence
of the confining walls, and the molecule relaxes with the bulklike time constant 7; given by Equation
5.8. However, as the molecule relaxes, its lateral dimensions grow in size, and the confining effects
of the wall become significant. This slows down the relaxation process, and a new, longer relaxation
time 777 emerges that governs the remaining relaxation to equilibrium.
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A simple physical model based upon a quasi-steady tension-blob framework was proposed by
Balducci and coworkers [31] to describe the transition between these two relaxation times. The
stretched molecule can be represented by a string of Nk /g tension-blobs [68] of size €, where g
is again the number of Kuhn segments per blob. Bulk scalings hold within each blob so g ~
(£/bk)"/". The fractional extension of the chain X is then given by X = £/gbk ~ (&/by )1=1/vs0
If the crossover from 77 to 777 occurs when the tension-blob size reaches the height of the channel
(i.e., § = h), then the critical fractional extension X, at which this crossover occurs is given by

X ~ (h/bg)t" V0, (5.9)

Above X,, the molecule relaxes by growing the size of the tension-blobs. But below X, tension-
blob growth is restricted by the confining walls, and the molecule relaxes by rearranging the blobs.
An interesting consequence of this model is that X, is independent of chain length.

In order to determine 777, we employ Equation 5.7 which is valid near equilibrinm. We simply
use the blob scalings for Ry o as given in Equation 5.4. At or near equilibrium, the relaxation time
of a confined molecule is given by

TII ~ NK1+21/317 (i

2(1—vany/van)
bk?/Dx bk ) ’

(5.10)

5.4 Simulation Method

We simulated the relaxation of DNA using a model developed by Kim and Doyle [100]. This
method is based upon Brownian Dynaimics and is well-suited for studying the dynamics of DNA in
microfludic devices. A brief description of the mumerical model is presented here.

5.4.1 Brownian Dynamics

DNA molecules are modeled as chains of N, beads connected by Ny = (N, — 1) springs. The
equation of motion for the position 7; of the 7th bead is:

d’l"i ~l

il [FE (1) + FS (1) + FEV () + BV ®)], (5.11)
‘ b

where (p is the bead drag coefficient, F? is the Brownian force, FS is the total spring force felt by
the bead, FFV is the intrachain excluded volume force due to nearby beads, and F}Ev’wau represents
the interaction of the bead with the wall of the device.

We non-dimensionalize the variables as follows:

. t

R r
"= T Gl keT

i
il

(5.12)

where 7 is position, s is the maximum extension of a single spring (I; = L/Ny), t is time, kg is
Boltzmann’s constant, and T is the absolute temperature. We non-dimensionalize the forces F as

lows:
fO OWS F
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This leads to the non-dimensional form of Equation (5.11):

dr;

s FPB o FS ¢ FEV 4 pEVwell (5.14)

The non-dimensional Brownian force is given by:

- 24
FB = /== (r,),, (5.15)
At
where At is the dimensionless time step and (r,); are uniform random numbers such that each
component (r,)] € [-1/2,1/2], where j denotes the coordinate z, y, or z. The net non-dimensional
spring force on the ith bead is:

e ien
FP = Fip + Fion 1<i< Ny (5.16)
.iS’Nb_la 2 = Nb;

where the spring force f7; is given by a spring law developed by Underhill and Doyle [69] to
correctly reproduce the Marko-Siggia spring force law for a wormlike chain [33] at varying degrees
of coarse-graining [59]:

N 1 7
fii=v - : +C+B(1-72)| 7 - (5.17)

3 i
72 — F2
(-7) (=)

where v is the number of persistence lengths represented by each spring (v = [;/Ap), 75, represents

the distance between #; and #;, C' = 3/32—3/4v—6/v?, and B = (13/32 + 0.8172/v — 14.79/v?) / (1 — 4.225 /v +
The intrachain excluded volume force ﬁ:EV is modeled with the soft potential used by Jendrejack

et al.: [82]

'NI; < 3
PV =— %} Dpeve (3 ) 092 exp |- 20i2,| 7, (5.18)
' i 2 47 47
J=HgFE

where 789P = 1P /13 is the dimensionless form of the excluded volume parameter v&VP,

. . ~EV wall .
The interactions between a bead and the walls represented by F; wall ) re resolved using a

modified Heyes-Melrose algorithm. [110, 100] Whenever a bead moves outside the domain during
a time step, it is moved to the nearest point on the domain boundary before commencing the next
time step:

AM = ApH (Ap;) (5.19)

where Af',HM is the displacement vector due to the Heyes-Melrose algorithm, Ap; is the vector
pointing from the bead outside the domain to the nearest boundary point, and the Heaviside step
function H (Ap;) restricts the application of the algorithn to only the beads that have penetrated
the domain boundaries.
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5.4.2 Parameters

Many different lengths of DNA were simulated in this study, ranging from N, = 10 to N, = 300.
The chosen discretization of DNA was v = 5.571, which, assuming a persistence length of A, =53
nm, corresponds to DNA contour lengths of L ~ 3 — 90 um. The excluded volume parameter was
set to v®P = 3.71 x 10™* pm? in order to accurately reproduce the bulk radius of gyration of a
T4-DNA molecule (Ng = 254 and L = 75 pun).

For the relaxation of initially extended molecules, the chains were uniformly stretched to the
desired fractional extension (typically X = 75%) along the z-direction and placed in the center of a
300 nm slit where the z-direction was transverse to the plane of the channel. The chains were then
allowed to relax, and their configurations were saved for later analysis. Two different time steps
were used. To obtain the short time behavior, a time step of Af = 2 x 107% was employed, and the
chains were observed for a time of ~ 77;. For the long time behavior, a time step of Af = 5 x 104
was used, and the chains run for =~ 107;;. For all measurements, at least 100 individual chains were
simulated and averaged together for each chain length.

The equilibrium properties were obtained by initially placing the chains in the channel in a
Gaussian manner and allowing them to equilibrate for ~ 507;;. Configurations were then saved at
specified time intervals for subsequent analysis. At least ~ 3007;; worth of data was obtained.

5.5 Results

Before we begin analyzing the relaxation dynamics of confined chains, we would like to ascertain
that we are using chains of adequate length for blob theory scalings to be valid. To do this, we
look at the 2D, in-plane radius of gyration Ry 2p of the chains at equilibrium. These results are
shown in Figure 5.2 along with the predicted scaling of Ry op ~ N34 Tt is clear that blob theory
scalings are valid for chains with N, > 75, and in our future analysis, we often only present results
for these chain lengths.

In our study of the relaxation dynamics of confined chains, we first consider experimentally
accessible measurables such as the relaxation of the longitudinal stretch at long times both at
equilibrium and when initially perturbed away from equilibrium. This allows us to compare our
findings to experimental results and validate our simulation model. We then look at the relaxation
process in the transverse dimensions and attempt to build simple models based on Rouse-like
chains to describe the observed dynamics. Finally, we consider how adding in additional physics,
like intramolecular excluded volume and nonlinear springs, affects the relaxation dynamics.

5.5.1 FEzxperimental Measurables

Typical measurables that are experimentally accessible are usually restricted to those involving the
in-plane stretch of the molecule’s major axis. We start by looking at the scaled longitudinal relax-
ation function G (t) = (X(t)?) - (Xeq2>, where X (t) is the fractional extension in the longitudinal
direction and Xeq is its average equilibrium value. Figure 5.3A shows a characteristic curve for
G(t) when the number of springs is Ny = 164. As seen in experiments, there are two distinct
regions that are well-approximated by a single decaying exponential, each with a different time
constant. The first region, with time constant 77, occurs at fractional extensions near X = 30%
and represents the bulk-like relaxation process where the chain is not sterically constrained. The
second region occurs very near the chain’s equilibrium size and, in agreement with experiments,
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Fig. 5.2: Plot of the 2D, in-plane radius of gyration Rgap of chains at equilib-
rium in a 300 nn channel vs. the chain length Ng. The predicted blob theory
scaling Rgop ~ N34 s also shown.

has a longer time constant 77, than the bulk-like relaxation time (777 > 7). This second linear re-
laxation process is governed by the rearrangement of the blobs that compose the sterically confined
chain. Finally, these two linear relaxation periods are connected by a nonlinear transition region.

In Figure 5.3C, we have plotted both 77 and 777 as a function of chain length along with their
predicted blob theory scalings. The simulation results for 7y clearly follow the predicted scaling of
711 ~ N.2®° while the results for 7; appear to fall slightly below the theoretical scaling of 77 ~ N2,
The apparent discrepancy between the simulations and theory for 77 is not unexpected and can
be explained by noting that when Equation 5.18 is used to account for EV, moderately extended
chains are only mildly affected by the EV force. Because the bulk-like relaxation time 77 is seen near
fractional extensions of X & 30%, EV effects are not as significant as they are near the equilibrium
extension. Therefore, the observed scaling for 7/ falls somewhere between the ideal chain scaling
of ~ N2 and the real chain scaling of ~ N#2,

Experiments have shown that relaxation processes measured when a confined molecule is at equi-
librium should correspond to the second relaxation region where steric confinement is important.
In order to confirm that our simulations can reproduce this finding, we considered the conforma-
tional relaxation time of a chain at equilibrium 7.. The conformational autocorrelation functions
C.(dt) for several different chain lengths are shown in Figure 5.38B along with their respective lincar
fittings, and the measured eonformational relaxation times 7, are plotted in Figure 5.3C. 7. is very
near the value of 777 and follows the same predicted scaling 7. ~ 775 ~ N,25 in agreement with
experiments.

We have clearly shown that our simulation model can reproduce the qualitative features seen
in experiments. These include two distinet linear relaxation times for G, (t) with 77y > 7/, the
proper scaling for 777 with chain length, very near the predicted scaling for 77, and finally that
near-equilibrium relaxation processes are associated with 777 as demonstrated by the fact that
Te ™~ Tl
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Fig. 5.3: (4) Characteristic plot of the scaled longitudinal relazation function
Go(t) = (X(8)%) — (Xeq®) for chain length Ny = 164. The fittings for the
two linear regions are also shown along with their respective time constants (7;
and 1) and the predicted crossover extension X.. (B) Plot of the equilibrium
conformational autocorrelation function C.(0t) vs. the lag time 8t for several
chain lengths (N, = 75,164,254,300). The linear fittings for cach curve are
also shoun. (C) Plot of various measured relazation times vs. chain length
N;. Included are the bulk-like relazation time 77, the near-equilibrium relas-
ation time 717, and the conformational relaxation time 1.. Also shoun are the
predicted scalings 1 ~ N;%2 and 71 ~ 7, ~ Ng2°.
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One final experimentally accessible measurement we obtained is the time fgos at which the
crossover extension occurs. This is defined as the time where the two linear fittings for Gu(?)
intersect (see Figure 5.3A). Although ¢ross can be found from experiments, to date this analysis has
not been performed. tcm, is a measure of the when the transition between bulk-like relaxation and
near-equilibrium, sterically confined relaxation occurs. Based upon the current mechanisitic model
of confined relaxation, the approach to this transition should be driven by the bulk-like relaxation
process leading up to it. Therefore, it is expected that teross should scale as teoss ~ 71 ~ N =5

Indeed, this is clearly scen in Figure 5.4.
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Fig. 5.4: Plot of the computed crossover time teoss vs. chain length Ng. Also
shown is the predicted scaling teross ~ N 22,

5.5.2 Transverse Dynamics

We now turn to the relaxation dynamics in the two transverse directions (y and z) which cannot
currently be determined by experiments. Studying the of the out-of-plane behavior of these chains
is particularly important because it can shed light or the physics of relaxation in confinement and
help assess the validity of the current physical model.

General Features and Characteristics

We measured the 1D radins of gyration squared Ry ; 2 in the direction of e(ull of the three coordinates
(i can be cither z, y, or z). Characteristic relaxation curves for all R, JT , both in bulk and in a
300 nm channel, are shown in Figure 5.5A for a single chain length N, = 75. In the longitudinal,
or z-direction, Ry, .2 remains fairly constant and slowly relaxes to its equilibrium value in an
exponential manner only at long tnncs The bohm ior for the transverse directions is richer. In
the case of relaxation in the bulk, Ry, 2 and R,] .2 are equivalent, and two power law regimes are
seen as they approach their equilibrium values. The first regime is linear in time while the second
appears to follow a scaling close to ~ /2. We will derive these sc a.lm;.,s for a Rou‘-.o chain shortly.
In bulk, all three directions are equivalent at equilibrium so that RJ s = Ry, ,, = RQ,ZQ = FRyp /5
and this is clearly seen in Figure 5.5A.
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5.5. Results

Fig. 5.5: (A) Plot of the 1D radius of gyration squared in all three directions
for a single chain length (Ns = 75) both in bulk and in a 300 nm channel. The
observed power law regions and their approzimate scalings with time are also
shown. (B) Plot of the 1D radius of gyration squared in all three directions for
several chain lengths in a 300 nm channel. Also shoum are the predicted values
for each of the power low regimes as determined from the Hookean, Rouse-like
theory given in Equation 5.41.
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When the (hain is placed in a slit, much of the relaxation process is similar to the bulk case.
For example, Rq = still decays exponentially at lon;_; ‘rimcs albeit with an increased time constant
and to a slightly higher equilibrium value. Rq v and Rg .*, initially, are quantitatively equivalent
to thou bulk counterparts. However, at some point, the size of the chain in the confined dimension
Ry, 2 peels off from the bulk curve and quickly approaches a new and reduced equilibrium value
In tho unconfined, transverse direction, Rg yz contimmes to follow the bulk curve even after Rg -
has deviated from the bulk behavior. Ry, 2 follows thls bohamor until it reaches its new, slightly
increased equilibrium value so that at lonu times Ry, y = Rg P

Now that we have commented on the general features of the relaxation for a single chain, we
look at the effect of chain length on the relaxation dynamics. In Figure 5.5B, we show the three
1D radii of gyration squared for several different chain lengths. As expected, Ry, +2 is highly length
dependent since its initial value is proportional to the chain length squared. Ad(htlonallv the
relaxation times for the exponential decay and the final equilibrium values of Rg « are length
dependent and have already been studied in Section 5.5.1. On the other hand, the relaxation of
the two transverse dimensions appears to change little based upon the length of the chain. R, .
nearly falls on a universal curve for all time and chain lengths, with only slight deviations which
will be discussed later. R,,? also falls on a universal curve until it nears its equilibrium value, at
which point it stops growing and plateaus at its length dependent final size.

Now that we have identified the general features of the relaxation process in the transverse
dimensions, we turn to understanding the mechanisins behind the observed behavior. In particular,
we would like to identify the important physics governing each of the observed power law regimes.
And with this in hand, we can study how the dynaimnics in the confined dimension affect, and are
affected by, the longitudinal stretch.

Unconfined, Ideal Hookean Chain

Before we consider the relaxation dynamics in the confined dimension, we will look at the much
simpler case of the transverse relaxation of an unconfined, Hookean chain. Because all three
directions act independently for a linear chain, we only need to consider a 1D bead-spring chain
with N, springs each with a Hookean spring constant of Hy. Initially, the chain starts with all of
the beads at the same point or, alternatively, with all of the springs having an initial stretch of zero.
In this case, three different regimes arise during the relaxation process. We start by considering
each of these from a scaling perspective and then use a continuous 1D Rouse model to prove some
of our scalings and develop more quantitative expressions for the chain’s size as a function of tie.
At very short times, the bead movement is dominated by thermal forces. The springs are not
vet extended enongh to exert any significant force oii the beads, so the beads act mdepondentl\ like
an ideal gas. Therefore, the chain size initially grows in a diffusive manner such that Rq ~ Dyt.
This growth continues until the spring forces are large enough to compete with the ther mal
forces. If this oceurs when the spring lengths are of order £*, then the spring forces are approximately
Hy¢* and the thermal forces are kgT'/¢*. Balancing these forces gives £* ~ \/kgT/H. At this point,
the scaling of the chain size with time changes to a new power law Rg2 ~ At® where A and «
will be determined below. Due to the influence of the significant spring forces, which impede
the advancement of individual beads, the chain begins to grow subdiffusively so that a < 1. We
will refer to this new regime as the tension-dominated regime. The transition from the diffusive
regime to the tension-dominated regime begins when R92 is approximately kpT'/H, which occurs
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at t ~ kpT/HgDy.

The third regime, which we call the equilibrium regime, occurs when the chain reaches its final
size of Ii’g2 ~ NgkgT/H. This should occur at times on the order of the longest Rouse relaxation
time of the chain or ¢ ~ NSZkBT/HSDb. We can determine the power law exponent o and the
scaling of the prefactor A for the tension-dominated regime by matching the end of the diffusive
regime and the beginning of the equilibrium regime to the beginning and the end of the tension-
dominated regime, respectively. Matching to the diffusive regime gives the expression Rg2 ~
kpT/Hs ~ A(kpT/HsDp)", and matching to the equilibrium regime gives R,% ~ NykpT/H, ~
A (stkBT/ HDy) . This only holds valid for & = 1/2 and A ~ kT Dy/H,. Combining all of
our results, we finally arrive at a scaling for the chain size in all three regimes as a function of time

kpT .
Dyt, o t K —B——"sDb’
2 kT Dy \ ' kpT N2k T Iy
~ i s XS] ABL s KRRd
Ry ( . t) v By, S<EL T (5.20)
NokpT' N2kpT
. t> =

In order to more rigorously confirm our scalings, particularly in the tension-dominate regime,
we now develop a continuous 1D Rouse model for the transverse relaxation of an initially straight
chain. We start with a discrete bead-spring chain with Ny, beads connected by Ny = N, —1 Hookean
springs with spring constant H,. The 1D equation of motion for the nth bead position r, is given
by

dr H.S(T2*T1)+F1]3, n:]-’
Cb"'dtl = H (Tn.+1 — 2r, + 7'17,-1) + FE) 1<n< N, (521)
—H; (ry, = rn,-1) + FR n= N,

where the random Brownian force F2 is characterized by
(B2 (1) = 0.(FP()Fn(t)) = 2kBTGobm(t — 1) (5:22)

The initial condition for the system is
7’11’/,,:0 =0 (5.23)

If we allow n to be a continuous variable, we can rewrite Equations 5.21-5.23 as a partial differential
equation

67‘ 2 827"7, B
g,,—a—t’-' = Hsgn—; +FP (5.24)

where the second moment of the Brownian force is now
(FR()) = 0,(FR(t)FR(t')) = 2kpT(0(n — m)d(t —t') (5.25)
The initial condition and boundary conditions are given by

8 Tn

ary,
Tali=o = an | -

on

n=0 nsz
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By solving the eigenvalue problem, we find that the normal coordinates are given by

1 [N PN
Ty = — In cos Ty, with p=0,1,2, ... 5.27
Zp Nb./() dnCOs<Nb)r with p (5.27)
and Equations 5.24-5.26 become
(917« B
Cp_a_ig = “‘Hs,pl'p + Fp (528)
where
Co = NpGp and p = 2NpGp for p=1,2, ... (5.29)
Hyy=2m2Hp? /Ny for p=0,1,2,... (5.30)
(FB(t)) = 0,(FE(t)FE(#")) = 2ksT(,6(p — 9)b(t ~ ') (5.31)
and
Zpl,o =10 (5.32)

We are interested in the chain’s ensemble-averaged radius of gyration squared

N,
(RA(t)) = <Nib /0 dn [ro(t) — Rc.m,(t)12> (5.33)

where R (t) is the center of mass of the chain. The difference in the integrand can be rewritten
in terms of the normal coordinates as

o0
n
rp(t) — Rem.(t) = 42% cos (pﬂ ) (5.34)
- N
p=1
Plugging this expression into Equation 5.33 gives
(R 2(75)> ZZ zy(t)z " dn cos (pmz) cos (qmz)
g \ — p q Jo S Nb 208 ]V'b

Frow linear response theory, it can be shown that for Equations 5.28-5.32

. kTl —2t )
(zp(t)zy (1)) = ‘)pq“H“?; [1 — exXp (C])/Hsp):l (5.36)

Combining this with Equation 5.35, we finally find

_ NpkpT — o2 H,p?
(R2(O) = =5 Z - [1~<*Xp< ;QCP )] (5.37)

At long times, the exponential di@:s oft', and only the sumn Z;":l p2 =2 /6 remains. This gives an
equilibrium value of <R_q?(t)> = i\%ﬁ which is exactly the expected theoretical result.

. ‘ . . . . o) "
If we transform the summation Z;il in Equation 5.37 to an integral ‘fé)/”ﬂz dp (the lower bound
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bas been chosen so that the equilibrium value remains the same) then our expression becomes

NpkpT —72H,
2 = PEBL g e
<R9 (t)> - ()Hs 1 exp ('7T2Nb2(:bt) +

T2H,
TN,

——5—terfe (5.38)

. . . . . . 2NL2¢ . .
Finally, since we are interested in short times (ie., t < %’75’—), we can expand this expression
into a power series and keep only the leading order term

9 _ [2kT Dy
<Rg (t)> - aH t

rS

. - 2
As predicted by our previous scaling arguments, in the tension-dominated regime Ry~ ~ /2,
For the diffusion-dominated regime, Rg is simply the mean-squared displacement of a gas of
beads that all initially start at the same point. This gives the well-known result Rg2 = 2yt.
If we take all of our results, we can determine the locations of the regime transitions from the
intersections of the expressions. Finally, combining all of our findings, we find

2Dyt s t € 735~ H D s
2 BTl / :
R~ 8 (BefPu) ™, ol oy« Nykal, (5.40)
NskgT Ns2kpT
o t> G

Comparing this to Equation 5.20, we find that our predicted scalings are, indeed, correct.

Our theoretical predictions for the two power law regimes of the unconfined case are plotted in
Figure 5.5B to be compared to Rg,yQ. It is clear that our expression catches the qualitative behavior
seen in the simulations. It quantitatively predicts the value in the diffusive regime at short times,
but it overestimates the time at which the transition to the tension-dominated regime oceurs. This
leads to an overprediction of RM2 in the tension-dominated regime. These discrepancies are due to
the non-linearities in the spring law when the chain is initially stretched beyond its linear regime.
Effectively, this increases the spring constant H, felt by the beads which, according to Equation

5.40, should decrease the time of the transition to the tension-dominated regime as well as the
xa.luc of Rg,y in this regime. So taking the spring law nonlinearities into account should bring the
theoretical prediction more in line with the simulation results. The effects of these nonlinearities
will be discussed in greater detail later.

Confined, Ideal Hookean Chain

When a Hookean chain relaxes in a channel of height h < \/NykgT/H, the equilibrium size of
the chain in the confined dimension decreases to Ry 2~ K2 Goind further, if we assume that the
bead distribution across the channel height is unlform, then R = h?/12. This is actually an
overprediction of Rg since the bead distribution is not truly lllllf()IIIl and has a Gaussian quality
to it.

Assuming that h > /kpT/H,, the effect of confinement is both to limit the chain size and to
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truncate the width of the tension-dominated regime so that

kT
2Dyt t K -ﬂ‘iiﬁg
. 1/2 ,
2 2T Dy kpd H.h? (.
Ry = (‘ 2rt) s o, << meeaThn (5.41)
h2 £ _mHdb!
12> 2 SERhs T,

A similar expression can be written if h < \/kgT/Hj, but in that case, the diffusive regime is
truncated and the tension-dominated regime is eliminated entirely.

This prediction for the confined case is also plotted in Figure 5.5B to be compared to Rg‘zg‘
Again, fairly good qualitative agreement exists between theory and simulations except that the
tension-dominated regime is not seen in the theoretical prediction, as h <« /kpT/Hg, but it is
present in the simulation results. As in the unconfined case, this is due to the nonlinearities in the
spring law.

»

Excluded Volume

As mentioned in Section 5.5.1, the EV forces are not significant for moderately stretched chains.
This means that the effects of EV will not be seen until the chain has relaxed significantly in the
longitudinal direction, which only occurs on time scales on the order of 77 or longer. This can
clearly be seen in Figure 5.6 where the curves for the chain with EV do not deviate from those
without EV until very near equilibrium. Therefore, the effects of EV on the transverse dynamics
are minimal except at very long times.
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Fig. 5.6: Plot of the 1D radius of gyration squared in all three directions for a
single chain length of Ny = 164 both with and without EV. The initial stretch
of the chain was 75% in a 300 nm channel.

We can demonstrate this by considering a scaling analysis to estimate the fractional extension
X, at which EV becomes important. Using a Flory-type approach, we begin by viewing the chain
as a serics of tension blobs whose in-plane dimensions are £, and whose transverse dimensions are
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h (i.e., they are small disks). Therefore, the pervaded volume of a tension blob scales as ~ h§,,2. If
there are g, Kuhn lengths in a blob, then the z-interaction parameter of a blob is given by

LeV:P .

FI v.p 9 §
~ P2y h—bI;59_y (5.42)

o 5
kT hfy“

where [7 is the Flory interaction energy of a blob and v*? is the excluded volume parameter for
a Kuhn length. The last scaling comes from assuming ideal chain statistics within a blob, as Flory
did (i.e., § ~ gy Y2pk). The point at which EV becomes important is when z ~ 1. Therefore, the
critical number of Kuhn lengths in a tension blob gy ey where EV becomes important is

hbg* .
N —— 9 «
gy:ev vev.p ({).415)
which corresponds to a fractional extension of
X (JVK /gy,ev) gy,ev ~1/2 vev.p . .
oy o LSOV g ~y s (5.44)
Nkbk hbk

For our choice of parameters, in a 300 nm channel, this corresponds to a fractional extension of
Xev & 0.3. Of course, this is a scaling analysis, so order unity prefactors have been ignored. But
this suggests that a chain must relax significantly in the longitudinal direction before EV effects
become important, and this only occurs at very long times. This means that examining chain
growth across multiple time scales by plotting the chain size against a logarithmic scale of time is
inappropriate for the study of the effects of EV. In order to see these effects, a linear time scale
must be used which is precisely the sort of analysis performed in Section 5.5.1.

EV does not directly affect the dynamics of the confined dimension, even at long time scales, as
will be shown in the following section. However, we will show that under certain conditions spring

the relaxation of Rﬂ,}f to its true equilibriun value at long times. Therefore, Rg,gQ is sensitive to
EV insofar as the longitudinal dimension is affected by EV at long times. On the other hand, the
unconfined, transverse dimension certainly feels the effects of EV as it nears the equilibrium value
it shares with the longitudinal dimension, but at this point, these two unconfined dimensions are
governed by the same linear relaxation processes which have already been studied in significant
detail in Section 5.5.1. So no further analysis is required.

Nonlinearities

Finally, we consider the effects of the spring nonlinearities, which are most evident at the begin-
ning of the relaxation process when the springs are highly stretched. One consequence of these
nonlinearities is that the spring force is no longer independent for each dimension. This means that
the strong stretching in the longitudinal direction leads to an increased effective spring constant in
both of the transverse directions. As already pointed out in Sections 5.5.2 and 5.5.2, this can lead
to deviations from the Hookean theory and retards the growth of the transverse dimensions during
the tension-dominated regime.

In order to clearly demonstrate this effect, we simulated the relaxation of a chain from several
different initial fractional extensions. The results are shown in Figure 5.7. It has been observed
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10 —95%

Fig. 5.7: Plot of the 1D radius of gyration squared in all three directions for a
single chain length of Ny = 75 in a 300 nm channel. The results for various
values of the initial fractional extension are shown. Also included is the Hookean
theory given by Equation 5.40 and 5.41.

that chains behave in a Hookean manner up to fractional extensions around 30%. In accordance
with this, excellent agreecment is seen between the Hookean theory and the chain initially stretched
to 30%. As the initial extension is increased, the size in the transverse dimensions falls farther
below that of the theory. This is precisely the expected effect of the strong nonlinearities in the
springs at high extensions.

The nonlinearities also’ affect the equilibrium regime of the confined, transverse dimension.
Figure 5.8A shows a zoomed in view of Figure 5.5B in this region for several different chain lengths.
Rg,z2 is the same for all three chain lengths through the diffusive and tension-dominated regimes,
but they behave somewhat differently once they reachi the equilibrium regime. The Hookean theory
of Section 5.5.2 predicts that Ry, .2 should immediately plateau to its final equilibrium value after
the tension-dominated regime, but clearly the dynamics are richer for real chains. All three chain
lengths exit the tension-dominated regime by temporarily pausing their growth of R_W2 at an
intermediate value slightly below their final equilibrium. The duration of this pause is dependent
upon the chain length. For Ny = 10, the pause is only barely evident, while it is quite significant
for Ny = 300. After this interruption in its growth, R_q,z2 slowly approaches its final value.

In order to prove that this behavior is due to the spring nonlinearities, we ran a simulation
where an initially stretched chain was allowed to relax in the transverse directions, but its initial
longitudinal stretch was held fixed for all time. The result is shown in Figure 5.8B along with the
results for chains with and without EV that are allowed to relax in the longitudinal direction. The
two chains that are allowed to relax in all dimensions are nearly identical except that the chain with
EV has a slightly higher final equilibrium value at long times. Therefore, EV cannot account for
this behavior. On the other hand, the chain whose stretch is held fixed plateaus at its final value
precisely where the other chains temporarily pause. Clearly, this temporary arrest in the growth is
due to the nonlinearities of the springs, and the subsequent slow approach to equilibrium is due to
the relaxation of the longitudinal stretch which reduces the tension in the springs.
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Fig. 5.8: (A) Plot of 1D radius of gyration squared in the confined, transverse
dimension Ry .2 for several different chain lengths in a 300 nm. channel with an
initial fractional extension of 75%. Only the equilibrium regime is shown (sce
Figure 5.5B for the entire relaxation process). Two curves are seen for Ng = 75
and 300 because the data from both the short time and long time simulations are
plotted. (B) Plot of 1D radius of gyration squared in the confined, transverse
dimension Rg}z2 for a single chain length of Ny =75 in a 300 nm channel with
an initial fractional extension of 75%. The results for three different cases are
shown: with EV, without EV, and the longitudinal stretch held fized. Only the
equilibrium regime is shown. (C) Plot of 1D radius of gyration squared in the
confined, transverse dimension R,,,z2 versus the 1D radius of gyration squared
in the longitudinal dimension R,,* for a single chain length of Ny = T5 in a
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To demonstrate that relaxation of the longituditial stretch is responsible for the slow appmach
to equilibriuin after the pause, we have taken the data from Figure 5.7 and plotted Ry ;° ag,(uust
R, »2. This is shown in Figure 5.8C for different initial chain extensions. Inltldll\’ Ry, 2 grows
during the diffusive and tension-dominated regimes without much change in Ry whlch relaxes
on much longer timescales. But once the equilibrium regime is reached, all the curves fall on
the same universal curve. This reveals that a quasi-steady equilibrium exists for Ry , 2 during the
equilibrium regime, and it is slaved to the relaxation of the longitudinal stretch. Thls is also verifies
the quasi-steady assumption made in the tension-blob physical model for the relaxation as discussed
in Section 5.3.2.

A consequence of this quasi-steady equilibrium is that during the eqluhbnum regime, Ry~ 2isa
measure of the relaxation of the longitudinal stretch. This means analyzing Rg 2~ provides another

way of %tudvinrr the relaxation times of the chain. We can do this by defining a relaxation function
G (t) = [Rg20° — Ry,20%1/s 2 for the confined dimension. A characteristic curve for G, (t) is shown
in Figure 5.9A. An obvious linear region is seen, indicative of a single exponential decay with the
time constant TRy.s2 . Since this approach to equilibrium is due the nonlinearities in the spring law
when the longitudinal direction is extended beyond 30%, it is expected that TR.x? should provide
an estimate of the bulklike relaxation time 77. Indeed, good agreement is found between the two
as scen in Figure 5.9B, and it is clear that they follow the same scaling TRy2 P TI ™ ~ N2,

5.6 Conclusions

We have used Brownian Dynamics simulations to study the relaxation of initially stretched chains
in slitlike confinement. We have shown that our simulation technique is capable of reproducing the
qualitative findings of recent experimental studies. In particular, our simulations clearly show the
existence of two distinet relaxation times in the lincar force regime: one that scales similar to a
bulklike relaxation time, and another that follows the scalings predicted by blob theory. We have
conclusively demonstrated that the emergence of the second relaxation time is due to excluded
volume effects and not hydrodynamic interactions.

We developed a Rouse-like theory to describe the confined relaxation of the transverse dimen-
sions of an initially straight bead-spring chain and find good agreement between our theory and the
simulations. The effects of excluded volurne and spring nonlinearities on the dynamics were also
explored. It was found that these nonlinearities lead to a quasi-steady equilibrium between the size
of the chain in the confined dimension and in the Iongitudinal dimension. This corroborates one
of the underlying assumptions of the physical model for confined relaxation proposed by Balducei
and coworkers [31].

Our results are important to developing a clear mechanistic understanding of the relaxation
of polymers in slitlike confinement. Not only is this a problem of fundamental importance in
polymer physics, it is also has practical interest for the development of microfluidic devices that
exploit confinement to manipulate DNA molecules. This work only considered the scalings of the
relaxation times with chain length, and the height of the channel was not varied. Future studies
should examine the predicted scalings of the relaxation times with channel height. Additionally,
hydrodynamics interactions were not included in the simulation model, and their effects should be
explored at a later date.
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Fig. 5.9: (A) Characteristic plot of the confined transverse relaxation function
G.(t) = [Ry.z0° — Rg,20%)/ts® for chain length Ny = 164. The fitting for the
linear region is shoum. (B) Plot of the bulklike relaxation times 75 and TRy.22

vs. chain length Ng. Also shoum is the predicted scaling T 8 9 T w4 N A2



CHAPTER 6

Outlook

In this thesis, we have presented simulations of the single molecule behavior of DNA in microfluidic
devices related to genc mapping. In particular, we have considered the use of a post array to
precondition molecules for subsequent stretching in a contraction, the electrophoretic collision of
a DNA molecule with a large, ideally conducting post, and the relaxation process of an initially
stretched molecule in slitlike confinement. In this final chapter, we would like to briefly summarize
our findings, their impact, and suggested future directions.

In our study of conformational preconditioning wsing an array of posts, we found good gual-
itative agrecinent between experiments and our simulations for the behavior of DNA in the post
array. But our simulations consistently overpredicted the final stretch of molecules at the end of
the contraction. Our study suggests that nonlinear electrokinetic effects play a significant role in
the dynamies of the contraction. This should be investigated in the future, and indeed, preliminary
results from a nascent experimental study in our group seem to support this finding.

After this study using an array of insulating posts, we considered the electrophoretic collisions
with conducting posts. As this was the first study of such collisions, we simplified the problem in
order to help distill out the essential physics the govern the problem. In particular, we found that
field-induced compression plays a critical role in understanding the escape process of a molecule
trapped on the post surface. We performed an extensive theoretical analysis both for this problem,
which also had not been previously studied, and the larger collision problem. Of course, our
simulation results should be compared to future experiments. A question that still remaius is
what the effect of including intramolecular excluded volume would be. Additionally, we expect
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that collisions with moderately sized conducting posts and movement through arrays of such posts
should prove very different than their insulating counterparts. Indeed, they may offer distinct
advantages for separation and concentration purposes as they induce strong interactions between
the molecules and the posts.

Finally, we looked at the confined relaxation of DNA in a slit. We presented the first simulation
results that show two distinct relaxation times in the linear force regime as previously reported in
recent experiments. We focused on the dynamics in the transverse directions, particularly at short
times and on small length scales, because they are experimentally inaccessible. We developed a
theoretical model to describe the transverse dynamics at all time scales, finding several different
scaling regimes. We used our simulation results to compare to a recent mechanistic model developed
to describe confined relaxation and found qualitative agreement with its predictions. Future studies
should attempt to probe even tighter confinement, moving into the Odijk regime, where the physics
of relaxation should qualitatively change. Our simulations were limited, however, by the accuracy of
our numerical model in tight confinement. Future work should be directed toward developing new
simulation models that are more accurate in confinement without becoming too computationally
costly. In particular, this means developing new spring laws that take into account the restricted
phase space of the spring and new excluded volume potentials based upon blob theory models to
accurately predict the strength of EV effects, particularly as a function of gap height.

The overall impact of this thesis is to have cither confirmed, explained, or suggested the behav-
ior and underlying physics of DNA in microfluidic devices of particular import to gene mapping
technologies. We have hypothesized that nonlinear electrokinetic effects are important in micro-
contractions. We have developed an extensive theory for collisions with conducting posts and
have introduced the notion of field-induced confinement. Finally, we corroborated the tension blob
mode] for confined relaxation as well as developing theory for the transverse dynamics. All of these
findings are significant and will play an important role in developing new device designs both for
gene mapping and other applications.



Appendix A

Green’s Function Approach to
Field-induced Compression

A.1 Green’s Function

A.1.1 Problem Statement

The Green’s function G (z, z';n) represents the statistical weight (or the partition function) of the
chain which starts from 2’ and ends at z in n steps. It obeys the partial differential equation

o kT 0? 1

R uiierarrralray - e (> . — i — Y A . ‘
on  2H 652+kBTU€(z) G(z2'in) =6 (2~ 2') o(n), (A1)

where H is the spring constant associated with a Kuhn segment, U(z) is the external potential
acting upon each chain segment, and both §(z — 2) and é(n) are the Dirac delta functions.
For the case of a uniform transverse field compressing a chain against a flat wall, the potential
is given by
Ue(z) =Tk Epz, (A.2)

where 'k is the effective charge per Kuhn segment, Ey is the applied electric field, and 2 is the
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distance from the wall. We can nondimensionalize Equation A.1 based upon

n P
n= ]—V.I;, (A.3)
. S (A.4)

/NgkgT/H’
G (8,4n) = V/NikgT/HG (z,2'in) (A.5)
Pe — NIk Eo/ NxksT/H ]\rKa/z_fj&jE_O — N Pex (A.6)
kBT /————kBTH ] X
where Nk is the number of Kuhn steps in the chain, Pe is the chain Péclet number, and Pey is

the Péclet number based upon a Kuhn segment. This leads to the following dimensionless form of
Equation A.1

oG 1°G .. .. .

For our boundary conditions, we choose to place the chain between two parallel, impenetrable
separated by a distance L. Because the chain cannot pass through the walls, the probability of
finding any segment of the chain at z = 0 or z = L is zero:

G(=0,8n) =C (z — 2';77) — 0. (A.8)

Equations A.7 and A.8 define our problem which can be solved using a finite Fourier transform.

A.1.2 Associated Eigenvalue Problem

To begin, we solve the associated eigenvalue problem:

1 d?¢;

hd _ S == — N:2dh. C
2 di2 Pez¢; A @i (A”))
i (5 = 0) = o (z - i;) =0, (A.10)

where ¢; and A; are the ith eigenfunction and eigenvalue, respectively. If we perform the following
change of variables

A2
u; = (2Pe)"? (z - P;e) , (A.11)
then Equation A.9 becomes
d*¢;
e uid;. (A.12)

The two linearly independent solutions of this equation are the Airy functions of the first and
second kind Ai(z) and Bi(z), respectively:

¢i (ui) = e, A (ug) + c2,Bi () (A.13)
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where ¢1; and ¢g; are chosen to meet the orthonormality requirement of the eigenfunctions. Re-
turning to the variable £, the eigenfunctions are given by

= . DY . s, A
¢i (2) = c1,Al {(2Pe)1/3 (z - —ﬁ)} + ¢9;Bi {(2]38)1/3 (z - 75;)} , (A.14)
and the eigenvalues are chosen such that the boundary conditions are met and are defined by the
equation
. “21/3>\i2 . s - )\iz ) s [+ /\iQ _ ,21/,,3,\i2 )

(A.15)

¢y ; and cg; must be chosen so that ¢; is orthonormal.

A.1.83 Solution

~f

We assume G (2, ;1) can be written in the form

G (2,4 X}L,,m, (A.16)

where §;(2';n) is the weighting of the ith eigenfunction and is defined as the inner product of the
ith cigenfunction ¢;(2) with G (2, 2';n):

Gi(5m) = (6:(2), G (5,25m) ) (A17)

where the subscript 2 denotes that the inner product is taken with respect to the variable 2.

If we transform Equation A.7 by taking the inner product of each side with the ith eigenfunction
#i(2), perform two rounds of integration by parts, and then make use of Equations A.9 and A.17,
we arrive at the following ordinary differential equation for the weightings §;(2'; n)

dg2

+ NG = ()8 (n). A8
%\ = ou)60) (A18)
By integrating both sides as follows
1 d 2 I\ A 1 " Lol PIRANS YN, /
0 lexp (A7) gi] dnf = 6i(2) exp (N20) 8(n)dn, . (A.19)
J—oc GT] S0
gives
exp (A1) §i — 0 = ¢;(2') exp(0), (A.20)

so the weightings are given by

Gi(2'sm) = ¢i(#) exp (=Ai%n) - (A.21)
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Using this result along with Equation A.16, we have the general solution for the Green’s function:

G (2,25m) =) exp (—=\?n) ¢i(2)ei(2). (A.22)

A.1.4 Semi-infinite Domain, L — oo

We now take the limit of our general solution given by Equation A.22 as L — oc in order to obtain
the special case of the two walls being separated by an infinite distance. Because the chain is
electrophoretically pushed toward the wall at z = 0, the second wall at z = oo has no effect on the
chain, and the solution will be identical to a chain in a semi-infinite domain being pushed against
a single wall.

We begin by considering Equation A.15 for the eigenvalues in the limit L — oo (note that the
following is only valid if Pe > 0). Because Ai(oo) = 0, the second term on the RHS of Equation
A.15 vanishes. On the other hand, Bi(co) = oo so that the first term on the RHS blows up unless
the cigenvalues are chosen such that

_91/3y .2
Therefore, the eigenvalues are given by
e\ /3
A = (7;‘) v =a;, (A.24)

where g; is the ¢th root of the Airy function Ai(z) ordered such that a;11 < a; <0forj=1,2,3,..
The eigenfunctions given in Equation A.14 become

. , A2 ,
;i (2) = c1.A {(2}36)1/3 (é - Pﬁ)} = c1Ai [(2Pe)1/3 s+ a.,} . (A.25)
This suggests a rescaling of the length and a new variable € is defined as
€ = (2Pe)V/33. (A.26)
Therefore, the eigenfunctions become

0i(&) = c1iAI(E + ai), (A.27)

and the orthonormality requirement demands that

00 —-1/2
cl,i:(zpe)l/ﬁ{ /0 dg[Ai(nga,;)]?} ) (A.28)

The Green's function ¥ (€,£’; 1) based upon the new lengﬂl variable £ is defined as

U (&,&5m) = (2Pe) 3G (3,5sm) . (A.29)
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Finally, we can state that the Green’s function for the field-induced compression of a Gaussian
chain against a flat wall by a uniform transverse field is described by

2/3 . < et .

Pe\™ Ai(€+ a;) Ai (€ + a;)

a; % n .

I de [Ai(€ + a))]? (A.30)

W (E,€5n) =) oxp
i=1

A.1.5 Blob Regime, Pe — oo

We now simplify our result for the case of Pe — co. This can be seen as either the long chain limnit
Nk — oo or the strong field limit Pex — oo. In essence, this is the blob regime. As long as the
dimensionless number of steps n > (Pe / \/§)w2/ 3, then only the first term of the infinite series in
Equation A.30 contributes to the sum, so

W (&,E5m) = exp [m (7;> 7

It must be stressed, however, that the restrictions on this equation are that Pe > 0 and 7 >

(Pe/v3) 2,

Ai(§+a1) Ai (€' + 1)

[ dg [A(€ + ar))? (A.31)

A.2 Calculation of <c?u> and <R§u>

A.2.1 Probability Distribution Function for &,
The probability of finding an internal segment of the chain 0 < 7 <1 at position ¢ is given by

IoZ fo7 déodér¥ (€0, &m) W (&, €131 = 1) .

P) = R A.32)
&) I~ Jo” déod6r¥ (&0,6151) (A-32)
If we use our blob regime result given by Equation A.31, then we find that
Ai (&, + a))? .
P(ér/) = oo[ (glll, 1)] 5 (A.li’))
Jo_ d€[Ai(§ + a1)]
We can also say that by “internal” we mean that both n and 1 — n are > (Pe/ \/5) % 3,
A.2.2 Moments of P(&,)
We can calculate the moments of this probability distribution by noting that
a1 ~ —2.33811. (A.34)
The first moment of &, is given by
oo g, €, AL (€ + ar))? - ,
(&) = / dént, P(&y) = ) -l il : &, 12)] ~ 1.558740, (A.35)
0 _[0 dg§ [Al(f + al)]
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and the second moment is

o [% 2 _.fboodgnénz [Ai (5,,+a1)]2
(&) = || et = B

~ 2.9156. (A.36)

2
A.2.8 (dy) and (Ry.*)
With these moments in hand, we are now prepared to calculate the average distance from the wall
{dy) of a chain and its average radius of gyration squared < Rg,m2>:

{duw)

VEsT/H

= NgV2(2Pe)™V3 (¢,) = 1.5587T40NK V2 (2Nk3/2 Pey ) ™/3 = 1.237173Pey ~ /3,

(A.37)
and
(By”) = Ng(2Pe)™%/3 ((§,2> - (& )2) 2 (2.9156 — 1.558740%)(2Pek ) ~%/3 = 0.3061 Pey ~2/3.
k’BT/H l ] \ .

(A.38)
These scalings are exactly those predicted using the simply blob theory framework. Additionally,
the analytically prefactors derived here nearly match those found by fitting simulation results.
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