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Abstract

Users increasingly store data collections such as digital photographs on multiple personal
devices, each of which typically presents the user with a storage management interface
isolated from the contents of all other devices. The result is that collections easily become
disorganized and drift out of sync.

This thesis presents Eyo, a novel personal storage system that provides device trans-
parency: a user can think in terms of "file X", rather than "file X on device Y", and will
see the same set of files on all personal devices. Eyo allows a user to view and manage the
entire collection of objects from any of their devices, even from disconnected devices and
devices with too little storage to hold all the object content.

Eyo separates metadata (application-specific attributes of objects) from the content of
objects, allowing even storage-limited devices to store all metadata and thus provide device
transparency. Fully replicated metadata allows any set of Eyo devices to efficiently syn-
chronize updates. Applications can specify flexible placement rules to guide Eyo's partial
replication of object contents across devices. Eyo's application interface provides first-class
access to object version history. If multiple disconnected devices update an object concur-
rently, Eyo preserves each resulting divergent version of that object. Applications can then
examine the history and either coalesce the conflicting versions without user direction, or
incorporate these versions naturally into their existing user interfaces.

Experiments using Eyo for storage in several example applications-media players, a
photo editor, podcast manager, and an email interface-show that device transparency can
be had with minor application changes, and within the storage and bandwidth capabilities
of typical portable devices.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Robert T. Morris
Title: Professor of Computer Science and Engineering
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Prior Publication

This thesis includes material from an earlier workshop paper presented the case for a device
transparent storage system and argued for global metadata distribution as one enabling
mechanism toward that goal [55].
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Chapter 1

Introduction

Users often own many devices that combine storage, networking, and multiple applications
managing different types of data: e.g., photographs, music files, videos, calendar entries,
and email messages. When a single user owns more than one such device, that user needs
a mechanism to access their data objects from whichever device they are using, in addition
to the device where they first created or added the object to their collection. The storage
capacities and network availability of these devices can vary significantly. Some fixed ma-
chines may always have a working network connection, and sufficient storage to hold an
entire user's collection of media objects. Small mobile devices, in contrast, may contain
significantly less local storage, and consequently can only store a small subset of a user's
data locally. Mobile devices also frequently move to different locations with different net-
work availability and cost, and may often be powered off to save energy. These events result
in periods where devices have a slow connection to other devices if they are reachable at
all. Systems that include such devices must be designed to handle network partitions as
normal occurrences rather than an exceptional event. Providing highly available access to
data in these settings therefore requires policies and mechanisms for replicating data across
devices.

An individual person could now have a laptop, a tablet computer, a phone, a camera,
a television, a digital video recorder, a photo frame, a desktop computer, a video camera,
and a networked backup disk. All of these devices could display or manipulate the same
type of data, such as digital photographs, and each of these devices can contain one or
more network wireless or wired network interfaces. Thus, it would be useful to join such a
set of devices into a distributed storage system to manage the same photo collection. The
smallest of these devices may currently contain only a few gigabytes of storage, whereas
the largest could easily hold multiple terabytes of stored objects. While these values will
certainly increase over time, the relative disparity between the smallest and largest may not.

In settings with intermittent network connectivity, each device can manage only locally
stored data, in isolation from other devices. As a result, today users see a storage abstraction
that looks like "object a on device x", "object b on device y," etc.: it is up to the user to keep
track of where an object lives and whether a and b are different objects, copies of the same
object, or different versions of the same object. At a higher level, the user bears the burden



of organizing object collections larger than a single device's storage, and synchronizing
the collections on different devices. While a user could manually identify each object that
needs copying, this approach quickly becomes infeasible given large numbers of files and
only a few devices.

This thesis focuses on the problem of managing personal data objects in sets of de-
vices including those that cannot hold the entire collection. In this situation, the user must
partition the data collection among the devices, as well as duplicate objects that should be
available from multiple devices. The overall goal of this work is to limit the complexity
that end users and application developers encounter while managing data over a distributed
collection of personal devices. The main approach this thesis takes toward this goal is the
introduction of a new system property, device transparency, that allows users to think about
their data collection in its entirety, rather than as the union of objects on a set of devices,
as well as the design and implementation of a personal storage system, Eyo, that provides
device transparency through a new storage API.

The remainder of this chapter describes existing approaches used in these situations,
expands on the motivation for a device-transparent storage systems, and provides an outline
for the rest of the thesis.

1.1 Existing Approaches

Storage systems that share data between different computers have a long history. Those sys-
tems were usually meant for settings where several different people, each with a worksta-
tion, shared a common set of data. For example, distributed file systems such as NFS [49]
and AFS [24] have long allowed workstations to share files between multiple users while
connected to a centralized set of servers. Alternatives to these systems supported types of
disconnected operations, for example Coda [27] and Ficus [23]. These systems all aim to
provide network transparency, where applications and users did not need to know whether
a given object was stored local on the local machine, or on which remote server.

In contrast to these managed systems, the introduction of small mobile devices have
lead to individual people needing to share data between devices that spend significant time
disconnected from networks, or powered off, and that lack a traditional managed server.
The lack of a managed server combined with disconnected device use has led users toward
two main approaches for managing personal data over device collections, neither of which
involve a traditional distributed filesystem.

Both models free the user from the complexity of manually managing files as they
move between devices, and from having to remember which files should reside where. In
one model, the set of devices is split into one master hub device and some number of edge
devices that pass updates through the hub. The other model replaces the hub device with a
cloud Internet service which all other devices use to access the data collection.
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Figure 1-1: Hub-and-Spoke synchronization model

1.1.1 Hub-and-Spoke

In a hub-and-spoke usage model, as illustrated in figure 1-1 the user designates a single
master device to hold a complete copy of the data collection. To copy data to another spoke
device, the user brings that other device to the master and copies objects from it via a fast
local connection, such as a direct cable or a local network. Any updates that should pass
to other spoke devices first must be synchronized back to the master device first, and then
passed from there to the other hub devices.

This arrangement has several advantages that aid management. Because the single
master device holds all objects, viewing the complete collection simply requires viewing it
on that master device. Handling concurrency is also simpler, because the hub device holds
the authoritative copy of each object. If a user updates an object on an edge device, he must
synchronize it with the copy already on the hub device before it can replace the original
version as the authoritative version. The remaining edge devices will learn about the update
when they next fetch new updates from the hub device.

Apple's iTunes [2] is one popular example of a current system using this model, helping
the user to organize objects and synchronize with storage-limited music player devices.
iTunes allows users to view their complete collection of media such as music and videos
from one device. When users plug music players into a hub device via a USB cable, iTunes
automatically passes updates in both directions so that each contains the updated files.
Users can choose what subset of their collection should reside on each connected device
based on sophisticated but easy to set rules based on artists, playlists, recent use or ratings.
Edge devices generally cannot edit data other than metadata about recent uses, so the hub
device can handle those kinds of conflicts without user intervention, though iTunes does
fall back to user intervention when the specified collection doesn't fit on a mobile device.

iTunes does demonstrate several limitations to the hub-and-spoke model. (1) The hub
device must be available to exchange updates. (2) It is limited to star-shaped device topolo-
gies. Edge devices cannot exchange updates directly without the hub device, even if they

11 - .-- - .... ........ ... ... .... ........ .. .. __._ ........... ..... ...... ... .....
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Figure 1-2: Cloud Service synchronization model

are directly connected or on the same local network. (3) Edge devices cannot even show
users the complete list of files unless they have enough storage capacity to hold all the file
content. (4) Hub device must hold the entire collection, which means the total collection
size is limited by that one device. (5) There must be exactly one hub device per user, which
means that a collection cannot be composed only of edge devices, nor can it have two or
more hub-class devices. While these limitations may not affect all users, they are funda-
mental to the hub-and-spoke device organization and cannot easily be addressed without
moving to a different usage model.

1.1.2 Cloud Storage

The key limitations in the hub and spoke model (dependence on a single hub device) have
been recognized before, and are one of the many reasons for recent proliferation of online
photo sharing websites (e.g., Flickr [15], SmugMug [52], Picasa [41]), as well as more
general storage systems such as MobileMe [3] and infrastructure cloud storage services
such as Amazon's S3 [1]. These services exemplify an alternate cloud-based storage model.
In this organization, as shown in figure 1-2, a single website replaces the central hub device
of the hub-and-spoke model. Though the website may in fact itself be constructed as a
distributed system, from the point of view of the end user, there is once again a single
location to view their entire data collection. All of the user's devices can access the single
collection via web browsers, as long as they have a working network connection to the
cloud service. Edge devices need not be able to store the complete collection via local
storage, as edge devices generally only hold copies of objects when they are imported into
or exported from the system.

The cloud service approach gains several advantages over the hub and spoke model,
as the service can usually maintain much higher availability with less geographical depen-
dence than a single user's device. The cloud approach also adds several new limitations,
however: (1) The service provider may limit the types of supported data to those usable by



a single application. (2) Edge devices must have a working Internet connection. (3) Edge
devices still cannot directly exchange updates, even when they have a fast local network
available. (4) All data accesses need to go through the central service rather than be handled
locally, which can be slow and expensive due to latency and bandwidth limitations.

1.2 Device Transparency

Both the cloud storage and the hub-and-spoke models for managing data across devices
share a key feature: there is a designated location to view the complete collection, but both
place limitations on the devices and conditions that can provide such a global view.

An improvement to both such organization would provide the same global view on all
of a user's devices, regardless of storage capacity or network connectivity. Inspired by loca-
tion transparency [60] for network file systems, we name this the goal device transparency:
the principle that the user should be able to view and manage the entire data collection
from any device, even if the data is partitioned and replicated across many devices, and
even when not all data objects may be available all the time (e.g., when the user is off the
Internet carrying only one or two storage-limited devices). A device transparent storage
system presents each object as a first-class entity, rather than as an object-on-a-device, and
hence allows the user to manage data as a unified collection rather than in isolated device-

,sized fragments. Unlike location transparency, which states that the name of objects should
remain the same even if its location changes, device transparency states that the set of
objects visible should not change by viewing from a different device.

Given the possibility of disconnection, each device must store a replica of some or all
of the data associated with each object in order to provide device transparency. A conse-
quence of replication is that the user may make concurrent conflicting modifications. It is
well known that such conflicts can often only be resolved with application-specific logic.
Existing systems resolve conflicts at synchronization time using separate resolvers that un-
derstand application file formats (e.g., Coda [27] and Ficus [23]). This approach is often
insufficient. For example, a user may wish to defer resolving -conflicts, and instead ex-
plicitly see and use multiple versions of an object. This can only be handled by the storage
system preserving multiple versions after synchronization, and by applications being aware
during ordinary operation of the existence of multiple versions.

This thesis's core contribution is two design observations critical for any system that
is to provide device transparency. First, content must be separatedfrom metadata, so that

a complete set of metadata may be copied to storage-limited devices which can use it to
present the user with a device-transparent interface. Second, applications must see diver-
gent versions and conflicts asfirst-class entities, so that they can automatically resolve most

common divergent version histories without user intervention, and incorporate presentation
and resolution of other conflicts to the user as part of ordinary operation. For a storage sys-
tem to be used by multiple applications, these observations must be reflected as critical
features in the API. In contrast to application-specific resolvers [28], the storage API must
separate data from metadata, and must present objects in terms of version histories.



1.3 Eyo personal storage system

A central question is how much developers must do to gain the benefits of device trans-
parency, and whether these benefits are substantial enough. In order to answer this question,
we implemented a prototype storage system for personal data, named Eyo, which provides
device transparency. Eyo is a special-purpose storage system designed for a single user
with a small number of devices.

Eyo faces several design challenges driven by the need of supporting disconnected op-
eration: (1) Limited storage space on devices, (2) Concurrent updates while disconnected,
(3) Continuous synchronization without user direction, (4) Applications must automatically
resolve conflicts arising from concurrent object modifications, and (5) the system must be
able to locate data held on disconnected devices.

To address these challenges, Eyo provides a new storage API to applications. Eyo
expects applications to separate object metadata from object content. Eyo replicates the
metadata to all of a user's devices. Eyo's API allows applications to create and locate ob-
jects via metadata attributes, examine and manipulate recent object version histories, and to
register for notifications when other devices and applications add new changes. Eyo's API
allows applications to specify placement rules, as in Cimbiosys [44] and Perspective [48],
which instruct Eyo to store copies of objects on selected devices.

Applications delegate most of the work of inter-device synchronization to Eyo. In or-
der to minimize the cases where devices do not all see the most recent versions of a file,
which can lead to conflicts, Eyo uses a fast synchronization protocol to automatically pass
updates between devices without user intervention. When disconnected operations do lead
to update conflicts, Eyo's API provides notifications to applications which in many cases
permit those applications to automatically resolve conflicts without user intervention.

1.4 Evaluation

To evaluate the feasibility of interacting with a device-transparent storage system, both for
application developers and for end users, we used Eyo to examine the following questions:
(1) What can end users do by using Eyo that they could not do otherwise? (2) Is Eyo's
API a good match for real applications? (3) Do Eyo's design decisions, such as splitting
metadata from content, and global metadata replication, unduly burden devices' storage
capacity and network bandwidth?

We modified five applications to use Eyo as their storage system: a photo editor, two
media players, a podcast manager, and an email interface. The original versions each im-
plemented a specialized storage system atop a traditional file system. Our modifications
transformed these applications into distributed applications that no longer act in isolation
on a single device. Replacing these internal storage systems with Eyo's was simple, didn't
increase application complexity, and required no changes to the user interface to present
the application's global data collection. Separation of metadata and content, version histo-
ries, and placement rules allowed the applications to provide a device-transparent storage



systems to users. For example, in the photo editor, users can perform basic tasks such as
adding tags to photos, searching for photos matching tags, and viewing thumbnail versions
of photos, even from devices that cannot store the complete collection. In most cases,
the modified applications can automatically handle concurrent changes to the same objects
without user intervention.

To investigate the storage and communication costs of device transparency, and to eval-
uate Eyo's metadata-everywhere design, we ran experiments with our modified applications
using personal data sets. The costs of storage and bandwidth proved reasonable for typi-
cal portable devices. These experiments show that the metadata-everywhere approach to
implementing device transparency imposes only modest storage and bandwidth costs for
typical usage. Eyo's synchronization protocol aims to quickly identify changes to permit
devices to synchronize continuously without user intervention. To evaluate this design, we
compared Eyo to several other data synchronization systems, and found that Eyo propagates
updates faster than stand-alone file synchronization tools as well as cloud synchronization
services.

1.5 Contributions

This thesis makes the following contributions:

* The articulation of the goal of device transparency, whereby each device shows the
same data collection to applications and users.

" A new storage API for applications that separates object metadata from content, and
provides first-class version histories.

" The design and implementation of Eyo, which is the first device-transparent storage
system for disconnected collections of personal devices.

* Distinct metadata and content synchronization protocols that permit Eyo to continu-
ously pass updates between devices whenever connectivity permits, without user or
application direction.

" An evaluation of Eyo with real applications that shows that the new API is a good
fit for users and applications, provides new features to end users not available previ-
ously, permits applications to handle many types of concurrent updates automatically,
all within the storage and bandwidth capabilities of typical portable devices.

While Eyo uses many techniques pioneered by existing systems (e.g., disconnected op-
eration in Coda [27], application-aware conflict resolution in Bayou [58], placement rules
in Cimbiosys [44] and Perspective [48], version histories in Git [19] and Subversion [56],
update notifications in EnsemBlue [39]), it is the first system to provide device transparency
for disconnected storage-limited devices.



1.6 Limitations

There are several limitations inherent in the goal of a device-transparent storage system,
in addition to more specific limitations that apply only to Eyo. This section describes
several of these limitations; chapter 8 discusses ways to address these limitations through
extensions or modifications to Eyo's design.

Any device-transparent storage system that supports viewing an entire data collection
from disconnected devices must place all of that collection's metadata (or alternately, all
content as well) on each device. This requirement means that the smallest device in each
group must be able to hold a copy of all of the metadata. For systems that do not need
to support disconnected operation, the storage capacity is instead limited by the largest
device, rather than the smallest.

While the ideal of a device-transparent storage system could be generally applicable
to a variety of systems, Eyo is designed for a more limited set of uses. It is meant for
small groups of devices owned by a single user, so that devices within such a group do not
need to control access to individual files within the group, and the number of devices is
small enough that replicating small messages to each device is reasonable. Section 8.1.2
describes a possible extension to multiple users.

Eyo's storage system is targeted towards data types where the metadata changes fre-
quently, but the underlying data objects rarely change often, if they change at all. All of the
applications we have examined satisfy this assumption. If the applications did change data
frequently, the tools available to applications for resolving conflicts would need augment-
ing from the current set targeted towards metadata-only changes. An additional assumption
about the types of data that Eyo makes is that the data objects will be larger than the meta-
data that describes those objects, which once again is true for all of the media-file examples
we examined, but might not be true in other types of uses, such as if the data objects were
individual measurements collected by devices and stored in a centralized storage system.

The ability to allow a heterogeneous group of devices to participate in a single storage
system that requires changes both to the system software on those devices, and to indi-
vidual applications requires that some mechanism exist to deploy storage system software
to those devices in the first place. This thesis will not address this requirement, though
there are several different paths by which Eyo could be deployed onto devices. The most
straightforward would be if the device's manufacturer built in support for Eyo. An increas-
ing set of portable devices now permit end users to install applications onto their devices,
though the capabilities granted to applications differ by system. Ensemblue [39] describes
a method for supporting devices that expose only a simple storage interface but do not al-
low user-supplied software, and Eyo could in principle adopt some of these approaches for
similar devices. For more traditional desktop and laptop operating systems, application de-
velopers could of course choose to build Eyo directly into applications without needing any
further coordination. Though this approach would not result in a fully-general deployment,
it would still provide a direct benefit to end users while using those specific data types and
applications.



1.7 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes Eyo's design
goals, and provides an overview of the overall system design. Chapter 3 presents the stor-
age API that Eyo provides for applications. Chapter 4 describes Eyo's synchronization
mechanisms, and Chapter 5 summarizes Eyo's prototype implementation. Chapter 6 eval-
uates Eyo's design with existing applications and object collections. Chapter 7 puts Eyo's
contributions in the context of previous systems, Chapter 8 considers extensions and alter-
natives, and Chapter 9 concludes.
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Chapter 2

Overview

This chapter provides a an overview of the main challenges in building a device-transparent
storage system, outlines the main approach to solving those challenges along with appli-
cation assumptions, and provides a high-level description of the design of the Eyo storage
system.

The main challenge in providing a device-transparent storage system is supporting dis-
connected operations. To illustrate this challenge, consider how users tackle this problem
today. If a user has several devices which can display photos, limited storage space means
that the user must manually decide which subset of the collection to copy to each. Addi-
tionally, they must organize the devices into a star topology, where one master device holds
the authoritative copy of each object.

Using devices while they cannot communicate with the master replica means that changes
to individual photos will only be eventually consistent with the master replica. The user
cannot exchange updates between two non-hub devices, even if they are on the same local
network, since those two devices might not hold the same collection to begin with.

The process of synchronizing updates between devices is entirely dependent on user
direction, both for remembering which devices hold updates, which other devices need
those updates, and how to handle any conflicts between the edge devices and the hub. In
many cases, users need to manually examine each replica to decide what the final state of an
object should be. Merging conflicting changes made to separate replicas may be entirely up
to the user, making any method other than simply choosing one 'winner' version to replace
both infeasible.

The risk of this mode of operation is that replicas can diverge if the user forgets to
reconcile updates between replicas. Each new difference makes it more complicated to
manage the data collection, and hence more likely that the collection will diverge even
more over time.

A device-transparent storage system should automate as much of the data management
process as possible. By limiting opportunities for the data collection to diverge, the system
can provide a better approximation to a truly device-transparent collection, even in the face
of disconnected updates. Doing so requires enough automation that the user no longer
needs to keep track of which devices and data objects need updates.



We have built a storage system, Eyo, that combines three main approaches to construct-
ing a storage system with several simplifying assumptions about application behavior to
build a specialized device-transparent storage system for personal media collections.

2.1 Approach

Eyo's approach to device-transparency includes three main components:

" Separating Metadata from Content: In order to ensure that all devices, including
disconnected devices, know about all objects, the metadata for those objects must
be replicated to each device. Object content, however, cannot fit on all devices, so
each device will hold some subset of the total collection. Individual content objects
may be replicated to more than one device if they are important. This separation
affects all layers of the system design, as both the applications, and the end users,
need to interact with data items that may have only the metadata accessible and not
the content.

" Peer-to-Peer Continuous Synchronization: Any pair of devices that communicate
should be able to exchange updates. This approach both limits possibilities for object
replicas to diverge while out of touch with a hub device, and also aids in object avail-
ability. If a user doesn't have content available on one device, it might be available
from a nearby device instead. The process of synchronizing devices must proceed
continuously without direction from users so that devices present the same data col-
lection as soon as network connectivity permits. If two devices have a working net-
work connection, updates from one should appear immediately on the other device
without any additional user action.

" Automated Conflict Resolution: Even with continuous synchronization to pass up-
dates as quickly as possible, intervals of no communication between devices will
result in concurrent changes to the same object. These cases need to be resolved
automatically as often as possible without user intervention. Automating conflict
resolution requires application cooperation, as only applications understand both the
format of data, and the types of reasonable changes that may occur. The storage
system needs to provide an API that makes it easy for applications to identify con-
current updates, reason about their meaning, easily resolve the common types of
conflicts automatically without user intervention.

2.2 Application Assumptions

In addition to the three approaches described earlier to handle disconnected operations in a
device-transparent storage system, Eyo makes several assumptions about the types of appli-
cations, their organization, and the types of data stored in the system. These assumptions



transform a problem that is quite difficult in general into one that is feasible in practice,
by limiting the number of participating devices to one personal group, limiting the amount
of metadata in the system to one person's collection, and limiting the update patterns to
structured metadata instead of arbitrary data of unknown types. Eyo requires that these as-
sumptions hold in order to perform reasonably well. Even with these limitations, however,
Eyo proves to be well suited to personal data collections.

Eyo is meant to be used by applications that manage large collections of objects for the
user, such as e-mail messages, song tracks, images, videos, etc. These applications must
keep separate notions of object metadata (author, title, size, classification tags, play count,
etc.) and object content (image data, message body, etc.). This separation of metadata from
content must be carried through the application so that the user interface makes sense even
when the device can show only metadata but does not have the associated content available
locally. For example users could view lists of songs or message headers, search by name,
genre, or composer, sort by rating or play count. All of these uses would not require the
associated content, which would be the message body text or the song's audio data.

In addition to the difference between always-present metadata and sometimes-present
object content, Eyo assumes that each class of data undergoes different update patterns.
Modification of metadata is common, as are creation and deletion of objects, but modifica-
tions to object content is rare. For example, a user may modify the set of folders in which
an email message appears, but the message content itself does not change after its initial
addition to the system. Eyo does not require that content be immutable. If content does
change, Eyo assigns a new identity to each content version, unlike version control systems
that merge source code content changes line-by-line.

Although Eyo allows applications to place arbitrary data in metadata, metadata must
be small enough that a user's entire collection of metadata can fit on each of that user's
devices. This requirement enforces a relation between the smallest device in a personal
group and the amount of metadata that the collection can hold. Object content is instead
limited by the sum total of the devices' storage capacity in a group of devices.

Eyo assumes that application developers agree upon a basic set of semantics regarding
metadata for common data types in order to permit multiple applications to share the same
data objects. Applications can still attach arbitrary data to metadata in addition to the
commonly agreed upon portions. For example, applications could agree to use the standard
header fields for email messages, fields analogous to the exif data in jpeg image files, or
the ID3 tags from MP3 for audio files.

2.3 Eyo

We have designed and built a personal storage system, Eyo, that uses the approach de-
scribed in this chapter to provide device-transparent personal storage. Eyo provides a new
storage API to applications which separates object content from metadata. Eyo continu-
ally synchronizes updates between peer devices as soon as network connectivity permits.
The Eyo API provides applications with two explicit history information to automatically
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Figure 2-1: Eyo sits between applications and local storage. Eyo uses an overlay network
to manage all inter-device communication.

resolve conflicts, and placement rules to specify which devices should hold which content
objects.

2.3.1 Design Overview

Eyo sits between applications, local storage, and remote network devices, as shown in
Figure 2-1. Placing Eyo directly between applications and local storage means that Eyo
learns about all local updates directly as a result of application requests. Eyo then uses
an overlay network to identify a user's devices, and track them as they move to different
locations and networks. Eyo manages all communication with these devices directly, and
determines which updates it must send to each peer device whenever those devices are
reachable. As a consequence of this involvement, Eyo learns about all remote updates
directly and notifies applications as appropriate.

2.3.2 API Features

The Eyo storage API provides several features not found in traditional filesystem interfaces,
such as separate content and metadata, explicit version histories, and event notifications.
Applications using Eyo's storage API can attach arbitrary metadata tags to objects, and
then use those application-specified metadata attributes to search for files.



Unlike the extended attributes found in many Unix filesystems, Eyo ensures that meta-
data searches are efficient enough to serve as the primary naming mechanism applications
use to locate objects. Multiple applications can thereby share the same objects without
needing to agree on a single directory and path name, or on an identical directory hierarchy
for each device.

The storage API provides a notification mechanism for applications to learn about up-
dates immediately without polling. For example, applications can learn about writes per-
formed on other devices, as well as events such as changes to the set of content objects are
locally available.

Eyo tracks the recent modification history for objects, and provides that history to appli-
cations. If after modifying an object, if Eyo can ensure that no other application or device
modified the same object at the same time, Eyo will supply just that version to applications.

If an object has been concurrently modified on multiple devices so that there are mul-
tiple newest versions, Eyo will preserve and synchronize those versions and all versions
back to the most recent common ancestor version. Eyo will present all of these versions to
the application. The application can automatically reconcile the changes (e.g., if the only
changes are increments of play counts), ask the user which version should supersede the
others, or let the user see and use all versions much as if they were separate objects. Eyo
attempts to pass updates between devices as soon as possible to minimize opportunities for
conflicts to occur.

Eyo will automatically and continuously perform pairwise synchronizations between
devices so that all devices know about all metadata and (subject to space availability) con-
tent. Eyo propagates both new data and modifications to data. Thus, for example, if a user
changes a song title on an iPhone device, and adds a new song on a laptop, both devices
will see both changes as soon as they are able to communicate. If the user then takes the
iPhone to work, where it can communicate with a desktop machine, the desktop machine
can learn about both changes by synchronizing with the iPhone, even if there is no direct
communication path between the laptop and desktop.

Eyo automatically copes with devices with too little storage to fit all content. It allows
applications (and thus users) to guide its decisions about which devices should store which
content. Applications can modify these placement policies from any device in a user's
personal group. Devices can change policies without being able to contact the affected
device, though the new policies will not take effect until after the update later reaches the
affected device. If the device group has adequate storage space and network capacity to
satisfy the user's desired object placement policies, Eyo devices will eventually converge
to a state where each device holds the specified objects.

Eyo provides applications with a reasonably accurate guess of which device(s) hold
the content for each object. Thus an application can allow a user to search for objects by
metadata (e.g., search for all images taken in a certain location), and then tell the user which
device probably has the associated content. The location information does not require any
network communication, though it will lack all changes (additions as well as deletions)
since last receiving remote updates.



Many of the properties described here are similar to properties described in earlier sys-
tems, though Eyo provides different eventual consistency guarantees for metadata and con-
tent. For example, metadata synchronization fulfills a prefix-property [40] where devices
learn of all earlier updates that either knew of prior to communicating. Eyo does not en-
force any ordering relation between versions of different objects. Metadata updates to a
single object define a partial order of happened-before relationships [29], rather than an
eventually-serializable [13] set as in Bayou [58]. Eyo does not provide the prefix prop-
erty for object content: devices may learn about updates before they can see the related
content. When space permits, Eyo provides eventualfilter consistency [44] for object con-
tent, meaning that, subject to space and bandwidth, devices eventually hold objects best
matching placement policies.

2.3.3 Design Challenges

Eyo faces two main design challenges: a storage API with automatic conflict resolution,
and protocols for fast synchronization between devices.

The API must provide applications with enough information so that they can easily
handle conflicts automatically without requiring that users manually clean up objects af-
ter accessing them from multiple devices. The data model that Eyo provides must match
applications' needs well enough that common uses require only straightforward resolution
strategies instead of arbitrarily difficult procedures.

Eyo's synchronization protocols need to efficiently pass updates between each of the
devices in a user's collection, and do so quickly in order to minimize both the chance of out-
of-date collection state leading to conflicts, and to limit the amount of bandwidth consumed
passing file updates. In order to pass updates as soon as possible to other devices, Eyo
must learn about changes as soon as applications make them. Eyo cannot rely on scanning
the local storage system at synchronization time (for example, whenever another device
becomes reachable), as that approach would take too long to identify which changes need
be sent to run continuously if the devices remain in contact.

The next chapter describes the details of Eyo's storage API, and how applications use
it, followed by a chapter that describes how Eyo synchronizes updates between different
devices.



Chapter 3

A Device-Transparent Storage API

This chapter describes the features of a device-transparent storage API, explains how Eyo
provides those features, and illustrates the need for those features in the context of manag-
ing photograph collections.

3.1 Objects, metadata, and content

In order to provide device-transparent storage, Eyo provides a storage API that makes the
split between metadata and content explicit.

Eyo stores a set of objects on each device, as Figure 3-1 shows. Each object has a unique
non-human-readable identifier, and corresponds to one user-visible application object, e.g.,
one photo. An object consists of a directed acyclic graph of object versions. Edges in
the version graph denote parent-child relationships between those versions, which child
versions note through predecessor pointers to the parent versions. Each object version
consists of metadata. An object version's metadata consists of a set of Eyo- and application-
defined key/value pairs, or attributes; for example, a digital photo's metadata may include
the key/value pair (Iso, 40 0 ) . The metadata also contains a content identifier; the
associated content might or might not be present on the device. A content item consists of
application-defined data; for example, a JPEG-encoded image.

Eyo stores a flat set of objects, without structure such as directories or file names. Ap-
plications are expected to organize their own objects for presentation to the user, perhaps by
storing various tags in metadata attributes. Eyo lets applications retrieve objects via queries
on the metadata attributes. For example, a photo application may add date, sub ject,
and 1o c at ion tags to photos in order to help it organize and retrieve photos for the user.
Applications are expected to store enough information in the metadata to be able to display
meaningful information to the user about an object even on devices not storing the content.
Applications should use care in setting attribute names when multiple applications may ac-
cess the same object by using commonly agreed upon fields, and prefixing special-purpose
fields with an application-specific prefix, just as applications need to respect the meaning
of, e.g., id3 tags on music files or exif data in image files.



Eyo Objects

ObjectID: 12 Object ID: 34 Object ID: 56

Version ID: 87 Object ID: 56

Metadata Version ID: 56 Version ID: 78
Keys Values
Content-type image/jpeg Vri ID: 21
Content-length 5000
Aperture f/5.6

(Version ID: 87 Version ID: 65)Resolution 1024x768 0

Content Cache I

Content ID: 41 Value:

Figure 3-1: Eyo object store.

Eyo's API provides applications with operations to explore the data store, to read, cre-
ate, and update metadata and content, to learn about and repair conflicts, to specify content
placement rules, and to receive notices about changes to the object store. Figure 3-2 lists the
commonly used Eyo methods. The figure omits alternate iterator-based versions of these
methods for constructing or viewing large collections, and combined versions of these base
operations for common usages. For example, applications might read the metadata for an
object, add one new attribute to the metadata, and write a new versions with that tag. All
of these methods access only device-local data, so no method calls will block on commu-
nication with remote devices.

If an application tries to read the content of an object, but the content is not present
on the device, Eyo will signal an error. A user can perform useful operations on metadata
even from a device that doesn't store content, such as classifying and reorganizing MP3
files. If the user wants to use content that is not on the current device, the system can use
the metadata to help the user find a device that has the content, or ask Eyo to try to fetch
the content, using the placement methods in the API (Section 3.5). Finally, having the
metadata everywhere allows for efficient synchronization (see Chapter 4).

Eyo usually assigns random object identities when creating new objects. Applications
which import external objects may pass an optional hint to CREATE to ensure that importing
the same object from multiple devices does not result in duplicates. Section 6.3 describes
an example use of creation hints.

ISO equiv 400
Name dog.jpg
Date 10/23/09
Predecessor Version 21
Content ID Content 41 -



object creation and manipulation:
(objectID, versionID) +- CREATE(ID hint)

(objectID, versionID)[] - LOOKUP(query)
versionID[] +- GETVERSIONS(objectID)

(key,value)[] +- GETMETADATA(objectID, versionID)

contentID <- OPEN(objectID, versionID)

contents <- READ(contentID, offset, length)
versioniD - NEWVERSION(objectID, versionID[], metadata, contents)

versioniD <- DELETEOBJECT(objectID)

placement rules:
ruleID +- ADDRULE(name, query, devices, priority)

(ruleID, query, devices, priority) <- GETRULE(name)
(ruleID, query, devices, priority)[] <- GETALLRULESO

REMOVERULE(ruleID)
event notifications:

watchID <- ADDWATCH(query, watchFlags, callback)

REMOVEWATCH(watchID)

callback(watchID, event)

Figure 3-2: Eyo API summary. Event notifications are discussed in section 3.4, and place-

ment rules in section 3.5.

3.2 Object Version Histories

Much of the design of the Eyo API and storage model is motivated by the requirements
of device consistency for potentially disconnected devices. Such devices must carry repli-
cas of the Eyo object store and might make independent modifications to their replicas.

Therefore, devices must be prepared to cope with divergent replicas.

When an Eyo application on a device modifies an object, it calls NEWVERSIONO to

create a new version of that object's metadata (and perhaps content) in the device's data

store. The application specifies one or more parent versions, with the implication that the

new version replaces those parents. In the ordinary case there is just one parent version, and

the versions form a linear history, with a unique latest version. Eyo stores each version's

parents as part of the version.

Pairs of Eyo devices synchronize their object stores with each other (see Chapter 4 for
the protocol details). Synchronization replaces each device's set of object versions and
metadata attributes with the union of the two devices' sets.

For example, in Figure 3-1, suppose device A uses Eyo store a new photo, and to do so
it creates a new object 056, with one version, 056:34, and metadata and content for that
version. If A and B synchronize, B's object store will then also contain the new object,
its one version, that version's metadata, and perhaps the content. If an application on B
then modifies the metadata by replacing the default camera-defined file name with a user-
specified value for 056 and perhaps replacing the content after editing the content, the



application will call NEWVERSION(056, [056:34], newmetadata, newcontent), indicating
that the newly created version during the call, 056:78, should supplant the existing version.
When A and B next synchronize, A will learn about 056:78, and will know from its parent
that it supersedes 056:34. Again, the version history is linear, and Eyo applications will
use the unique most recent version.

A more interesting situation arises if A had produced a new version of 056 before the
second synchronization with B, such as adding additional category or location tags
to the photo. In that case, both new versions would have parent version 056:34. After
synchronization, A and B would both have two "latest" versions of 056 in their object
stores. These are called head versions.

It is this case, in which there is no unique head version, that motivates much of the Eyo
API. One strategy is for the application to continue on with divergent versions, presenting
both to the user in object lists, and letting the user modify either or both. Another strategy
is for the application to automatically merge the two head versions, producing a single new
version that supersedes both by indicating that it has two parents; version 21 in Figure 3-1
is the result of such a merge. Another possibility is for the application to allow the user
to specify how to merge the versions, perhaps by indicating that one should override the
other.

Eyo's version graphs with explicit multiple parent versions are inspired by version con-
trol systems [19, 56], though used for a different purpose. Where version control systems
keep history primarily for users to examine, Eyo uses version history to hide concurrency
from users as much as possible. When combined with synchronization, version graphs
automatically capture the fact that concurrent updates have occurred, and also indicate the
most recent common ancestor. Many procedures for resolving conflicting updates require
access to the most recent ancestor. Since Eyo preserves and synchronizes complete ver-
sion graphs back to those recent ancestors, applications and users can defer the merging
of conflicting updates as long as they want. For example, instead of either missing a fleet-
ing functioning network opportunity or interrupting the user at an inopportune time to ask
about an irrelevant data object, Eyo allows the user to wait until some more convenient time
to merge conflicts, or perhaps ignore the conflicts forever. In order to ensure that parent
pointers in object version histories always lead back to a common ancestor, Eyo transfers
older versions of metadata before newer ones during synchronization [40].

3.3 Conflicts

The primary goal of Eyo's API is to enable automated conflict management. In order
to carry out these functions, applications need access to history information, notifications
when conflicts arise, and a way to describe the resolution of conflicts.

Because applications hold responsibility for handling concurrent updates of the same
object on different devices, those applications should structure the representation of objects
in a way that makes concurrent updates either unlikely or easy to merge automatically
whenever possible. Applications must notice when concurrent updates arise, and when



they do, applications should either resolve them transparently to the user, or provide ways
for users to resolve them.

When it detects concurrent updates, Eyo presents to the application each of the head
versions along with their common ancestors. Alternative designs could have (1) chosen
a single arbitrary head version and discarded the rest; (2) presented the application with
all head versions but no older versions; or (3) given the application all the head versions
along with corresponding version vectors. Eyo does not use these approaches because
alternative 1 would silently drop changes, and alternatives 2 and 3 would place a heavy
burden on applications to figure out what changes happened on which devices and thus to
compose a reconciled version which reflects the user's intent.

Eyo's version history approach permits many concurrent updates to be resolved auto-
matically and straightforwardly by the application. For example, a user may move a mail
message between folders on one device, and set the 'replied' attribute flag from another,
or two devices may each update the playcount on a song while disconnected. Applications
can arrange for these pairs of operations to be composable. For mail messages, folder tags
and status bits can be set independently in the metadata. For songs, the merged playcount
should include the sum of the differences between the most recent common ancestor and
each of the concurrent versions. Eyo identifies these conflicting modifications, but the ap-
plications themselves merge the changes. The applications know the uses of these attribute
types, and so can clearly determine the correct final state for these classes of concurrent
changes.

Some concurrent updates, however, require user intervention in order to merge them
into a single version. For example, a user might change the same song's title in different
ways on different devices. In such cases it is sufficient for Eyo to detect and preserve the
changes for the user to either fix at some later time or ignore entirely. Because Eyo keeps
all of the relevant ancestor versions, it is simple for the application to show the user what
changes correspond to each head version.

Eyo can discard versions prior to the most recent common ancestor of an object's mul-
tiple versions to reclaim unneeded storage space. Figure 3-3(c) shows a graph with one
resolved conflict followed by an unresolved conflict. In this graph, once all devices know
about the version B:2, it is a unique ancestor for the object, and Eyo may prune the version
graph, deleting the older versions (A: 1, C: 1, and A:O). Applications may not intentionally
create conflicts: when calling NEWVERSIONO, applications may only list head versions as
predecessors. This requirement means that once a unique ancestor is known to all devices
in a personal group, no version that came before the unique ancestor can ever be in conflict
with any new written version or any newly learned version. These pre-unique-ancestor ver-
sions can thus be removed without affecting later conflict resolution schemes. If a single
device writes several successive versions of an object (i.e., a linear version graph), it may
coalesce those into a single version before synchronizing. Section 6.6 discusses storage
costs when devices do not agree on a unique ancestor.

Applications permanently remove objects from Eyo via DELETEOBJECTO, which is
just a special case of creating a new version of an object. When a device learns that a
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Figure 3-3: Example version graphs showing predecessor relations between versions of a
single object. (a) contains a sequence of four versions with no conflicts, even though there
were three different writers, devices A, B, and C. (b) shows a resolved conflict. (c) shows
an unresolved conflict. There are two head versions, A:2 and C:2, with the unique ancestor
B:2. The dashed versions may be pruned after all devices learn about the unique ancestor.

delete-version is a unique ancestor (or that all head versions are deletes, and seen by all
other devices), Eyo deletes that object from the metadata collection.

3.4 Queries

While Eyo does not provide human-readable object identifiers, it does allow queries with
which applications can implement their own naming and grouping schemes. Several of
Eyo's API methods (e.g., LOOKUPO, ADDRULE(), ADDWATCHO) use these queries to
search for objects and to define placement rules. Queries return object IDs for all objects
that have metadata attributes matching the query.

Eyo'S LOOKUPO call performs a one-time search, whereas ADDWATCHO creates a per-
sistent query. Watch queries allow applications to learn of new objects and object versions,
and to observe the progress of Eyo inter-device synchronization. Eyo watch callbacks fulfill
a purpose similar to single-filesystem notification schemes such as inotify [32].

Eyo's queries use a subset of SQL, allowing boolean combinations of comparisons of
metadata values with constants. Such queries are efficient to execute but limited in expres-
siveness. For example, the language does not directly support searching for the 10 most-
played songs or the newest mail message. An application can instead specify queries such
as all music with a rating above 4, or add tags directly to the objects that should be included
in an automatically-maintained collection. Eyo limits queries to these restricted forms to
simplify those uses (watch events and placement rules) that must evaluate queries in two
different contexts: evaluating new or changed queries to identify which objects match, and
determining which existing queries match new or modified objects. As in Perspective [48],
users never see Eyo queries; applications create queries on their behalf.



3.5 Placement Rules

Eyo allows applications to specify placement rules controlling which objects' content has
highest priority for storage on storage-limited devices, much as related systems do [44,48].
Applications are expected to generate placement rules based on user input.

Applications specify placement rules to Eyo using the query language. A placement
rule is the combination of a query and the set of devices that should hold objects matching
the query. For example, an application might give every object in a playlist the same tag,
and present a UI allowing the user to indicate which devices should hold the complete
playlist. An application can also let users specify particular objects and the devices on
which they should be placed.

Each rule has a priority, and a storage-limited device tries to store high-priority content
in preference to low-priority. Devices trade responsibility for content to avoid deleting the
last copy of any item (see section 4.6). When space permits, Eyo provides eventualfilter
consistency [44] for object content, meaning that each device eventually gathers the set of
objects that best matches its preferences. Eyo's synchronization mechanism, as described
in section 4.6, ensures that at least one copy of content persists even if no placement rule
matches.

Eyo ensures that all devices know all placement rules by storing each rule as an object
with no content, but with attributes containing the query, priority, and device set. Any
device can modify a placement rule, and if a conflict arises between rule versions, Eyo
conservatively applies the union of the requirements of all head versions. Similarly, if any
of an object's head version matches a placement query, then Eyo acts as if the query had
matched all versions back to the common ancestor. This ensures that devices have the
content associated with all the versions required to recognize and resolve conflicts.

Experience suggests that users are not very good at predicting what objects they will
need, or at describing those objects with rules [48]. Eyo's metadata-everywhere approach
makes it easy to find missing objects by searching the metadata, to discover which devices
currently have copies of the object, and to fix the placement rules for the future.

Because placement rules operate at the granularity of objects, applications that store
related content together should express these links as separate objects with links from the
metadata from one to the other so that different placement rules can apply to the variations.
For example, an application may wish to store both a full size and a thumbnail size image
of the same base photo, but assign a high priority placement rule to place the thumbnail
size objects on most devices, but only place the full size versions on a few high-capacity
devices.

Placement rules do not guarantee that a group of devices reaches the optimal placement
of objects to devices in the face of limited storage capacity. As one pathological example,
consider a group of two devices, A, and B, each of which stores a single object, a on device
A and b on device B, and has placement rules rule that specifies that A should instead hold
b and B should instead hold a. If each device's storage capacity can hold only one of these
objects at a time, and the group doesn't contain a third device, then neither device can fetch



its preferred object due to lack of swap space. Arbitrarily large versions of this scenario
can occur when devices have no free space. If devices can reserve enough free space for
duplicating objects while moving, then these kinds of suboptimal stable configurations will
not occur.



Chapter 4

Connectivity & Synchronization

Eyo faces two broad categories of challenges to fulfill its device-transparent storage API:
device-to-device connectivity, and continuous synchronization.

In order to provide device-to-device connectivity, Eyo needs to be able to (1) identify
the set of devices in user's personal group, (2) locate those devices as they move to different
network locations, and (3) set up secure communication channels between the devices. Eyo
uses an overlay network provided by an earlier project, UIA [16], to solve these challenges.

Several challenges remain towards the goal of providing continuous synchronization
between devices. First, to approximate device transparency, Eyo systems should synchro-
nize devices frequently. Frequent synchronization allows devices to check for updates
whenever a local application writes new data, or when network connectivity may have
been interrupted.

Second, to approximate device transparency when a collection of devices is discon-
nected from the network, Eyo should synchronize over any topology: any two devices that
can communicate should be able to exchange objects. When disconnected, this feature al-
lows local personal devices to access each others' objects transparently, and to show users
the same set of objects from either device. Most existing synchronization tools require
a central server to be able to provide consistency, and therefore don't support arbitrary
topologies.

This section describes how Eyo synchronizes updates between devices, extending well-
known techniques to take advantage of the separation between metadata and content to
allow for frequent, efficient synchronization. Eyo identifies new updates using a single
message (i.e., a constant amount of information is sufficient to to determine whether a
collection is up to date, independent of the number of objects stored), and without a time-
consuming local search that systems like Unison perform.

4.1 Device Identity and Communication

Eyo uses UIA [16] to manage groups of devices. UIA provides two basic functions to the
applications using it (which is Eyo in this case): naming and routing. UIA allows users to



construct a personal namespace, where the user can use any name to describe their devices,
and then use those names from any of their devices. UIA then constructs an overlay network
that allows applications on any of those devices to use those personal names to reach any
other device regardless of whether it is on the same local network or at another location
across the Internet. UIA allows users to also create links to friend's namespaces, in effect
allowing each user to view a hierarchy of groups rooted at their own set of devices, and use
user-relative names to reach the other devices. Eyo does not currently use UIA's multiple-
user naming capabilities, but a possible extension (see Section 8.1.2) would.

When users get new devices, they add them to their device group by introducing the
new device to an older one over some local network connection. After this introduction,
each device sees a group with all member devices. Eyo uses this group information to
authenticate metadata and content synchronization requests. UIA sends all inter-device
communication over an SSL tunnel authenticated by the device's public keys, which are
bound to the user-visible names during the introduction process.

UIA maintains active connections in the overlay network between each of the user's
devices whenever possible, and informs Eyo when the set of reachable devices changes, or
when devices join or leave the group. Eyo attempts to synchronize with each device in the
group whenever UIA finds a new working path to it, either as it turns on and off, or moves
between working networks.

UIA thus provides the communication properties Eyo requires: device identity, device
location, and secured communication between those devices.

4.2 Synchronization Overview

Eyo needs to synchronize two classes of data between devices, metadata and content, and
faces very different needs for these classes. Metadata is usually small, and updates must
be passed as quickly as possible in order to provide the appearance of device-transparency.
The goal of Eyo's metadata synchronization protocol is to produce identical metadata col-
lections after synchronizing two devices.

Content, on the other hand, can be comprised of many large objects which change
infrequently. Content can take a long time to send over slow network links. Synchronizing
content, unlike metadata, results in identical copies of individual objects, but not of the
entire collections. The primary goal of synchronizing content is to move objects to their
correct location to best match placement policies.

Given the different needs for these two classes of data, Eyo uses different protocols for
each type.

4.3 Metadata Synchronization

The primary goal of Eyo's metadata synchronization protocol is to produce identical copies
of the entire metadata collection. This process must be efficient enough to run continuously:



when devices are on the same network and not disconnected, updates should flow immedi-
ately. If connectivity changes frequently, devices must quickly identify which changes to
send to bring both devices up to date.

The main approach that Eyo takes to synchronize metadata is to poll for changes when-
ever connectivity changes, push notifications to reachable devices whenever a local appli-
cation writes a new version of an object, and use immutable structures to pass updates over
the network.

The primary challenge is, at each synchronization opportunity, to quickly identify the
set of changed objects from among a much larger set of unchanged objects. More con-
cretely, if two devices synchronize their metadata collections, and there were m new object
versions created since the last synchronization time in a larger collection of M objects, the
amount of work to identify those m new changes, as well as the network communication
must both be bounded by O(m) rather than O(M). The metadata protocol described here
takes O(n x m) processing time and communication, where n is the number of devices in
the user's group. For Eyo's intended use cases, though, n will be a small constant. Several
existing synchronization tools [4, 61] iterate over their data collections to identify changes
at synchronization time, and consequently take longer than O(m) time to do so. Eyo's
metadata synchronization protocol identifies and organizes changes as they occur, rather
than by iterating over the complete collection.

The split between content and metadata synchronization allows for a simple and ef-
ficient synchronization protocol. Figure 4-1 shows a diagram of the internal state of the
metadata store for one device, showing the information each device needs to keep about
which updates other devices know about. The following paragraphs introduce and define
several of the internal structures Eyo uses to track metadata:

" A generation is a grouping of metadata updates into a permanent collection. Gen-
erations are named uniquely by the device that created them, along with an id field
indicating how many generations that device has created. A generation includes
complete metadata updates, but only the identifiers and new status bits for content
updates. Generations are serialized for exchanging updates between devices, so all
synchronization occurs at the granularity of individual generations. All devices that
hold a copy of a given generation will have an identical copy.

" A generation vector is a vector denoting which generations a device has already
received. These vectors are equivalent to traditional version vectors [26], but named
differently to avoid confusion with the versions of individual objects. For a personal
group with n devices, each Eyo device keeps a single n-element vector of (device, id)
tuples updated indicating the newest generation authored by that device it holds.
This value is usually denoted as generation Vector in the following pseudocode.
Additionally, each generation contains an attribute, usually noted as gv in the figures
and pseudocode, that notes what the generationVector of the authoring device was
at the time it created that generation.

" The archive generation is a special generation used for garbage collecting fully-
communicated generations. The archive groups together updates made by different
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Figure 4-1: Metadata Synchronization: The state Eyo stores to track metadata synchro-
nization on device A. Device B has not written any objects. Section 4.4 describes the
archive generations. This figure omits data to track content locations (Section 4.6), object
attributes, and predecessor relations between object versions.

devices and from different original generations, and does not retain those origins. The
archive does have an associated generation vector, which tracks the newest genera-
tion from each device that has been subsumed into the archive. Section 4.4 discusses
the uses of the archive.

eThe pending generation is where devices store changes made by local applications
before they are fixed into a permanent generation. The pending structure does not yet
have a generation vector associated with it, as it is always converted to a permanent
generation before sending its contents to other devices.

Figure 4-2 contains client-side pseudocode for requesting changes from other devices,
and incorporating replies into the local metadata store. Each device regularly sends GET-
GENERATIONS requests to other reachable devices. When local applications modify or
create new objects (via NEWVERSION calls), Eyo adds these uncommunicated changes to
a pending structure, and attempts to contact reachable peers. With each of these requests,
the client includes either it's local generation vector, or the next generation vector it will
write if it has new changes pending. When a devices receives a reply, it incorporates the
newly learned changes into it's local data store, updates it's generation vector accordingly,



1: function SENDGETGENERATIONSREQUEST(peer)
2: gv <- generationVector
3: if pending / 0 V NEEDACKGENERATION () then > defined in Figure 4-3
4: gv[self] ++

5: SENDRPC(peer, (GETGENERATIONS, gv), HANDLESYNCREPLY)
6: return

7: function HANDLESYNCREPLY(peer, res)
8: if res.archive # 0 then
9: archive.c <- archive.c U res.archive.c

10: for all (dev, id) C res.archive.gv do
11: archive.gv[dev] <- max(id, archive.gv)
12: if dev $ generationVector V id > generationVector[dev] then
13: generationVector [dev] <- id

14: for all g C sort(res.generations) by generation vector do
15: if g.id = generationVector [g.author] + 1 then
16: if g.c # 0 then
17: toPoll <- alldevices
18: generations[g.author] [g.id] <- g
19: generationVector [g.author] <- g.id

20: //Notify applications of newly learned changes.
21: //Apply newly changed placement rules against all objects.
22: //Apply existing placement rules to newly learned objects.
23: //Lazily check for generations that may be archived, and versions to prune.

Figure 4-2: Pseudocode to send metadata synchronization requests and handle replies.



1: function HANDLEGETGENERATIONS(gv, peer)
2: if pending $ 0 V NEEDACKGENERATION then

3: newgen <- new Generation()
4: generationVector [self] ++
5: newgen.author <- self
6: new gen.id <- generationVector [self]
7: newgen.gv <- generationVector
8: newgen.c +- pending

9: pending <- 0
10: generations[self ] [newgen.id] <- newgen

11: if gv generationVector then
12: /send a GETGENERATIONS request to peer as soon as possible
13: toPoll <- toPoll U peer

14: needarchive <- False
15: for all g E archive.go do
16: if g ( gv V archive.gv[g] > gv[g] then
17: needarchive +- True
18: r - new SyncReply()
19: if needarchive then
20: (r.archive, r.generations) <- archive, generations
21: return r
22: (r.archive, r.generations) <- (0, 0)
23; for all (d, id) E gv do
24: for all g E generations[d][id + 1: -1] do
25: r.generations +- r.generations U g

26: return r

27: function NEEDACKGENERATION
28: for all g C generations[-self] do
29: if g.gv generations[self][-1].gv A g.c # 0 then
30: return True
31: return False

Figure 4-3: Pseudocode to handle incoming metadata synchronization requests.
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Figure 4-4: Metadata Synchronization: Messages sent between two devices for one new
object

notifies applications about newly learned changes, and updates and applies placement rules
to the newly learned changes.

When a device receives an incoming GETGENERATIONS requests, as described in Fig-
ure 4-3, it first fixes pending changes into a new generation if any such pending changes ex-
ist. It then identifies all the changes the other device lacks, and replies with those changes.
If the request includes a generation vector with some component larger than the device
handling the request knows about, it queues a GETGENERATIONs request in the reverse

direction, either immediately, or when next reachable if the request fails. In cases where
no new devices have joined the group, the reply will not include a complete archive, so
the message size, and time to identify changed objects, depends only on changes authored
since they last communicated.

Figure 4-4 presents an example use of these structures between two devices: a camera
C that temporarily stores photos when the user takes a picture, and a target device T that

... ...... ..... .......... ........ .................... .

GV: <C:0 T:0O>GV: <C:0 T0>



archives the user's photos. To match the user's workflow, the target device has a placement
rule matching photos the camera creates; the camera has no such rule and thus tries to push
its photos to other devices.

Initially, at to in Figure 4-4, both devices hold no objects and agree on an initial gener-
ation vector <C : 0 , T : 0>. When the user takes a picture P at time t1 , the camera adds the
contents of the picture to its local content store with content identifier Pcid, creates a new
Eyo object with object id Poid, and adds Poid to the metadata store. Eyo adds each of these
updates to the next generation under construction (noted pending in the figure).

At time t2, C holds uncommunicated updates, so it sends GETGENERATIONS() requests
to all reachable devices with the single argument <C: 1, T: 0>: C's generation vector
with the C element incremented. T compares the incoming generation vector to its own
and determines that it has no updates for C and replies with an empty generation list.
However, since C's generation vector was larger than its own, T now knows that C has
updates it has not seen, so T immediately makes its own GETGENERATIONSO call in the
opposite direction with argument <C : 0 , T : 0 > since T has no uncommunicated updates of
its own. Upon receiving the incoming request from T, C increments its generation vector
and permanently fixes all uncommunicated updates into generation C: 1. C then replies
with generation C: 1 and its newly-updated generation vector to T. The camera makes no
further call back to T, as T's generation vector was not larger than its own. Both devices
now contain identical metadata.

Although for the sake of clarity this example only included two devices and did not
include a large existing data collection, it does illustrate the protocol's scaling properties.
For a group containing n devices, the Eyo metadata synchronization protocol sends only
a single generation vector of length n to summarize the set of updates it knows about in
a GETGENERATIONS() request. Upon receiving an incoming vector, an Eyo device needs
only a simple lookup to identify what generations to send back, rather than an expensive
search. This lookup requires one indexed read into the generation log per element in the in-
coming generation vector. This low cost means that devices can afford to push notifications
instantaneously, and poll others whenever network connectivity changes.

4.4 History and Version Truncation

Eyo must have a way to prune version histories. It must identify which past changes are
no longer needed and reclaim space taken up by those updates. This process involves two
separate steps: determining when generation objects have been seen by all devices in a
group and combining the contents of those generation objects into a single archive, and
truncating the version history of individual objects.

Eyo learns that each other device has seen a given generation G by checking that every
other device has written some other generation G' that includes G in its generation vec-
tor, meaning that G' covers G. At this point, no other existing device can correctly send
a synchronization request that would include G in the reply, so it can remove G from its
generation log. Once a device learns that all other devices have received a given generation



1: function ARCHIVEGENERATIONS

2: for all (d, i) C generationVector do
3: //i is the newest generation written by device d that we've received.
4: minid +- i

5: for all g C generationVector, g # d do
6: minid +- min(minid, generations[g] [-1].gv [d])

7: for j <- [archive.gv[d] + 1, min(miniid, i - 1)] do
8: //All other devices have seen device d's jth generation
9: archive.c +- archive.c U generations[d] [j] .c

10: archive.gv[d] +- j
11: delete generations[d][j]

Figure 4-5: Pseudocode to archive generations

G, it may lazily move G's contents into its archive generation, as shown in pseudocode in
Figure 4-5. Eyo preserves at least one non-archived generation for each device, even if that
generation is fully known to all other devices. This ensures that Eyo knows the latest gener-
ation each other device has reported as received (used by, e.g., ARCHIVEGENERATIONS).

Object versions in the archive generation are known by all the user's devices, and are
thus candidates for pruning, which is the second phase of history truncation. Version prun-
ing proceeds as described in section 3.2. To enable garbage collection as soon as possible,
devices acknowledge receipt of metadata updates by creating an acknowledgment genera-
tion: a generation with no contents except for the newly learned generation vector, which
is not shown in the example in figure 4-4, but is detailed in figure 4-3. Devices do not
acknowledge receipt of these otherwise-empty generations. Devices do not need to pub-
lish acknowledgment generations to achieve device-transparency: their only purpose is to
reclaim space sooner.

Eyo nominates versions for truncation by searching for common ancestors back from
each head version. Figure 4-6 contains the details. These common ancestors are articu-
lation points (also known as cut vertices) in the version graph for a single object: a sin-
gle version that, if deleted, splits the version graph into two connected components, one
descended from the common ancestor, and one from which preceded the common ances-
tor. The search follows the traditional depth-first-search method of identifying articulation
points in a graph [57]. Eyo repeats this search considering the subgraph that each head
version derived from, and only includes versions that qualify as common ancestors in all
of the subgraphs. These articulation points represent the oldest version of a single object
that applications might need in order to resolve conflicts. Any versions older than these are
candidates for pruning, if the device can be sure that no other device will write some new
version based on an older version than the common ancestor.

Figure 4-7 details the solution to this requirement, which is that pruning versions may
only proceed if the common ancestor is in the archive. In this case, no later version can
conflict with that ancestor, since the other device knew about the common ancestor: any
newer version must derive from that one or a younger descendant, as Eyo does not permit



function COMMONANCESTORS(objectID)
articulationPoints <- []
g +- VERSIONGRAPH(objectID)

for all hv E g.headversions do
articulationPoints[hv] <- 0
Vn C g, n.visited <- False
t <- 1, arrive <- [], low <- [,pred <
hv.visited <- True
pred[hv] <- 0
arrive[hv] <- low[hv] <- 0
stack <- [hv]

while stack # 0 do
v <- stack.top)
adj <- {v.parent} U {v.childre
found <- False

for all n e adj do
if -,n.visited then

found +- True

n.visited <- True
arrive[n] <- low[n] - t
pred[n] <- v

stack.push(n)

-[]

n reachable via parent pointers from hv}

23: t++

24: if -'found then
25: stack.pop()
26: for all n e adj do
27: if n # pred[v] A arrive[n] < arrive[v] then
28: low[v] +- min(low[v], arrive[n])

29: else if v = pred[n] then
30: low [v] <-- min(low [v], low [n] )
31: if low[n] > arrive[v] A v 74 hv then
32: articulationPoints [hv].add(v)

33: r <- articulationPoints[g.headversions[0]]
34: for all hv E g.headversions[1 : -1] do
35: r <- r n articulationPoints [hv]

36: return r

Figure 4-6: Pseudocode to identify common ancestors of head versions, where some ver-
sion still exists which is older than the common ancestor.



1: function PRUNEOBJECT(objectID)
2: todel +- 0
3: for all ca C COMMONANCESTORS (objectlD) do
4: if ca E archive then
5: for all p E ca.parents do
6: todel.push(p)

7: while todel / 0 do
8: d <- todel.popQ
9: if d not already deleted then

10: for all p E d.parents do
11: todel.push(p)

12: delete p from archive

Figure 4-7: Pseudocode to prune object version graphs of all versions not needed for con-
flict resolution.

applications to intentionally create conflicts, meaning that all newly written versions must
derive from a currently-known head version. Eyo lazily searches for such candidate meta-
data versions to delete, but does not normally carry out deletions until pressed for storage
space.

Figure 4-1 shows an example of the state stored on one device, A, with two other
devices. In this example, generations A: 1 through A: 4 and C: 1 through C: 2 were uni-
versally known. Their contents were moved to the archive generation, and hence they no
longer appear in the generation log. Device B in this example has not written any objects,
but has written acknowledgments for other generations from A and C. At the time of this
example, four generations are eligible to be truncated, as they are universally known by all
three devices: A: 5, A: 6, C: 3, and C: 4. Eyo can then move the following three versions
to the generation archive: a : 7 4, f : 8 4, and t : 2 9. Eyo can then check whether any of
these versions were unique ancestors, and if so, could prune older versions of those objects.

Devices may delete object contents when no local application is currently using that
content object, and one of the following cases applies: (1) no content identifier in the meta-
data lists that content identifier, meaning that the associated object versions were pruned or
deleted elsewhere without contention, (2) a local application issues a directive to remove
all versions of an object permanently, or (3) the device successfully passed responsibil-
ity for the object, as in the camera example. As in the case of metadata, Eyo detects and
notes content objects eligible for deletion, but normally does not reclaim space until under
pressure to reuse it.

These truncations mechanisms ensure that when devices communicate updates freely,
devices only need to keep a very shallow and linear version history for each object, and
similarly only need to keep a few content versions for each object.



4.5 Adding and Removing Devices

When a user adds a new device to their personal group, and that new device first syn-
chronizes with an existing device, Eyo sees a GETGENERATIONSO request with missing
elements in the incoming generation vector. Existing devices reply with a complete copy
of all generations plus the archive generation. This copy cannot easily be broken down
into smaller units, as the archive generation differs between devices due to pruning. Users
expect new devices to require some setup, however, so this one-time step should not be an
undue burden. Single devices do not normally contain any archive, and so do not impose
any burden on the existing devices in the group.

This procedure is not limited to adding a single device to an existing group. Two exist-
ing device groups can merge, though in this case each device in the group needs to fetch
a complete archive when it first learns about the merge. Merging two existing groups of
devices should be rare in practice, and so cascading archive exchanges should as well. If
such use were common, it could be handled either by deferring archiving generations until
after the merge, or by a more extensive change whereby devices keep multiple separate
archives partitioned by the original group that created it.

Users remove devices from an Eyo group by deleting them from the underlying UIA
group. Unless the user explicitly resets an expelled device entirely, it does not then delete
any objects or content, and behaves thereafter as group with only one device. The surviv-
ing group also does not delete objects the expelled device created, but neither queries the
expelled device for new updates nor considers the expelled device to determine whether all
devices know about a given generation. Removing an inactive or uncommunicative device
from an Eyo group allows the surviving devices to make progress truncating history. An ex-
pelled device can rejoin the group later, as long as the device uses the same underlying UIA
permanent device identifier. This re-introduction maintains all old history by exchanging
complete archive generations, just as when adding a new device.

4.6 Content Synchronization

The challenges in moving content to its correct location on multiple devices are (1) deter-
mining which objects a particular device should hold, (2) locating a source for each missing
data object on some other device, and (3) ensuring that no objects are lost in the process of
moving them between devices.

Eyo uses placement rules to solve the first of these challenges, as described in sec-
tion 3.5. Each device keeps a sorted list of content objects to fetch, and updates this list
when it learns about new object versions, or when changes to placement rules affect the
placement of many objects.

Eyo uses the global distribution of metadata through a user's personal group to track
the locations of content objects. In addition to the version information, devices publish
notifications about which content object they hold (as shown in Figure 4-4). Since all
devices learn about all metadata updates, all devices thus learn which devices should hold
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content as part of the same process. When Eyo learns that another device is reachable, it
can look at the list of content to fetch, and determine which objects to request from the
reachable device.

To ensure that content objects are not deleted prematurely, Eyo employs a form of
custodial transfer [12] whereby devices promise to hold copies of given objects until they
can pass that responsibility on to some other device. When a device adds content to its local
data store as a result of a matching placement rule, it signals its intent to hold the object via
a flag in the metadata.

If placement rules later change, or the device learns of newer higher-priority data that it
would prefer to hold, it signals a request to delete the object as a metadata update. At this
point, however, the promise to hold still applies to the original data holder. Its responsibility
continues to apply until some other device authors a generation that falls strictly later than
the one which removed the promise, and includes a new or existing promise to hold that
same data item. If two different devices each holding the last copy of an object announce
their desire to remove that item concurrently, so that the generations that contain these
modifications cannot be totally ordered, then neither device will be able to delete the object,
as neither will be able to identify another device that has accepted responsibility for storing
the object.

This protocol ensures that, as long as no devices are lost or stolen, each non-deleted
item will have at least one live replica in the device collection. This property does not de-
pend on the existence or correctness of placement rules: applications may delete or modify
placement rules without needing to ensure that some other rule continues to apply to that
object.

Figure 4-8 shows an example content sync that continues where the metadata sync of
Figure 4-4 leaves off. When the target device receives the camera's metadata update at time
t2 , it evaluates its own placement rules, and adds Pcid to its list of content it desires. The
generation C: 1 that T received included Pcid, so T knows that C has a copy (the hold bit is
set) of Pcid that it wants to delete (the purge bit). At t3 , T sends a getContent(Pcid) request
to C, which replies with the new photo. Because T intends to keep P, it adds a hold bit to
Pcid in the next generation it publishes, T : 1.

At t4, the devices synchronize again and the camera and target again contain identical
state. But the camera now knows an important fact: the target (as of last contact) contained
a copy of P, knew that C did not promise to keep P via the purge bit, and hence the target
has accepted responsibility (hold but not purge) for storing P. Thus, at t5 , the camera can
safely delete P, placing the system in a stable state matching the user's preferences.

This content synchronization mechanism allows content to safely move between de-
vices, while requiring each device to implement only a simple fetch operation to move
objects.



Chapter 5

Implementation

Eyo's prototype implementation consists of a per-user daemon, eeyore, that runs on each
participating device and handles all external communication, and a client library that im-
plements the Eyo storage API.

5.1 eeyore

eeyore, the per-device server process that implements the Eyo API and protocols as de-
scribed in the previous chapters, is written in Python, and runs on Linux and Mac OSX.
eeyore keeps open connections (via UIA) to each peer device whenever possible, and oth-
erwise attempts to reestablish connections when UIA informs Eyo that new devices are
reachable. eeyore uses SQLite [54] to hold the device's metadata store, and to imple-
ment Eyo queries. The daemon uses separate files in the device's local filesystem to store
content, though it does not expose the location of those files to applications. eeyore uses
XML-RPC for serializing and calling remote procedures to fetch metadata updates. eeyore
uses separate HTTP channels to request content objects objects. This distinction ensures
that large content fetches do not block further metadata updates. Larger content objects can
be fetched as a sequence of smaller blocks, which should permit swarming transfers as in
DOT [59] or BitTorrent [7], although eeyore does not yet implement swarming transfers.

5.2 Application Client Libraries

Two client libraries accompany eeyore. A Python module, and a C library each provide
the Eyo API for applications, though the two versions differ on many of the details of the
API. For example, the Python module provides a high-level object API that uses the f ile
object interface for accessing content objects, whereas the C library provides applications
with standard file descriptors for reading content. The C library provides many more low-
level functions for manipulating metadata tags. The Python module implements metadata
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Figure 5-1: Internal eeyore components.

collections via dictionaries and so does not need any Eyo-specific operations to manipulate
such collections.

The two client libraries present Eyo queries to applications in different forms, but both
represent queries as lists of operators and values. For example, when using the C Eyo
library, an application could construct a simple query as follows, which matches objects
that both have a the metadata attribute "filename", and where the associated value is the
string "foo.jpg":

eyobuildquery (&q, EYOOPEQUAL, EYOKEY,

EYOVALSTRING, " foo.jpg",

"filename",

EYOOPNULL);

eeyore does not provide any integrity guarantees to protect local metadata and content
state from application bugs which could incorrectly modify or delete objects. Although
eeyore should be robust toward applications calling Eyo API functions incorrectly, it does
not protect against applications opening and modifying eeyore's data structures directly
without using the API methods, as the data stores are accessible on disk to the user's appli-
cations.

The Eyo client libraries are both optimized for read performance, on the assumption
that applications will frequently use LOOKUPO queries to identify data objects and view
groups of objects. Responses to these queries will populate user interfaces, and so must
return quickly. Write performance, on the other hand, is not as important. All local writes
eventually result in writing most of the same data over network links, so the network even-
tually limits write performace rather than local storage. Client modules read from eeyore's
metadata and content stores directly, rather than requiring inter-process communication
channels for most read accesses. SQLite does not provide a notification mechanism for
applications, so Eyo uses D-Bus [10] to send watch notifications to client applications.

eeyore Remote
Replicas

. . ....... ..........



eeyore cannot depend on client-side libraries to send watch notifications directly to
interested applications. The API requires that interested applications receive exactly one
watch notification for each matching update notifications, so authoring a new version and
sending the associated watch notification must be an atomic operation. eeyore cannot send a
notification as part of a database transaction to record a write, as the client application could
fail between the metadata write and the D-Bus method call. Instead, Eyo client libraries
append their updates to a write-only table in the metadata store and then send a notification
to eeyore. eeyore validates the write, and copies metadata to the correct destination, sends
related watch notifications, and then replies to the client application to indicate a successful
write. This process adds latency to application writes, but these extra delays are not present
in application reads and queries.

5.3 Limitations

SQLite does not implement any of the fine-grained locking schemes commonly found in
stand-along databases. Instead, client applications that write the metadata database must
lock the entire database for each transaction. The Eyo prototype inherits this limitation:
many applications can read data concurrently, but any write operation blocks all other ap-
plication reads, even for unrelated metadata objects.

None of the Eyo design, however, depends directly on SQLite. The client libraries do
not expose any of the internal table structure to applications. For example, while SQLite
might be appropriate for clients with very limited hardware resources, an alternate imple-
mentation could present the same application API but use a different internal database to
improve performance. Because the Eyo query interface is quite limited and only uses a
small portion of the SQL query language, one of the NoSQL systems (e.g., MongoDB [35]
or CouchDB [8]) could serve as a viable alternative to SQLite.
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Chapter 6

Evaluation

This thesis proposes a new storage API for applications, and APIs are notoriously difficult
to evaluate. We would like to establish that the Eyo API provides substantive benefits to
real applications and that the costs to developers and end users of moving to this new API
are worthwhile. In addition to the API's suitability, we also evaluate Eyo's design and
implementation, both in terms of the bandwidth and space overheads of device-transparent
storage, and the performance of Eyo's continuous synchronization protocols.

We explore these issues by examining the following questions:

" Is Eyo's storage model useful for applications and users?

" Is it necessary to involve applications in automatic conflict resolution?

" Do Eyo's design choices, such as splitting metadata from content, unduly burden
devices' storage capacity and network bandwidth?

" Are Eyo's continuous synchronization protocols efficient in terms of the bandwidth
consumed, and the delay needed to propagate updates?

The following sections describe methods for answering these questions followed by
results for each investigation.

6.1 Method

We employ three methods to evaluate Eyo: (1) adapting existing applications to use Eyo's
storage API instead of their native file-based storage to examine the modification difficulty
and describe the new features of the modified versions, (2) storing example personal data
collections to examine storage costs, and (3) measuring Eyo's synchronization protocol
bandwidth and delays to compare against existing synchronization tools.

The purpose for adapting existing applications to use Eyo as their primary storage in-
terface is to examine whether Eyo's API is a good match for those uses, describe how



those applications use the Eyo API, and how difficult those changes were. While it would
certainly be possible to design entirely new applications around the Eyo API, those appli-
cations might turn out to use different internal structures than existing applications.

We evaluated Eyo's storage and bandwidth costs using three data collections storage in
Eyo: email, music, and photos. These collections served as a basis for a synthetic workload
used to measure bandwidth costs and storage costs due to disconnected devices.

We compared Eyo's synchronization protocols to two existing synchronization tools.
While neither of our comparisons aim to provide device-transparent access to a data col-
lection, the comparison does verify that the performance of Eyo's metadata synchronization
protocol is independent of the number of objects in the collection.

The following sections describe the results of these efforts and relates them back to the
earlier questions: Is Eyo useful, is its model appropriate, and are its costs reasonable?

6.2 Applications Overview

This section briefly describes the existing applications that we modified. We chose appli-
cations with a wide range of types of interactions between users and their data. We focus
on two areas: (1) audio and photo applications, where users do not currently see a device-
transparent data collection, and (2) email, where users already expect a device-transparent
view, but typically only get one today when successfully networked to a central server. We
modified two media players, Rhythmbox and Quod Libet, the Rawstudio photo manager,
and the gPodder podcast manager, to use Eyo instead of the local filesystem. We built an
IMAP-to-Eyo gateway to enable arbitrary email clients to access messages stored in Eyo.

The descriptions in this section refer to the original, unmodified versions of each appli-
cation. All of these applications are open source; several have popular commercial alterna-
tives that inspired our choices, but we did not investigate those close-sourced applications.

Rawstudio Rawstudio is a photo editor, written mostly in C and C++, meant for orga-
nizing and process RAW format digital photographs. Users import these raw files, which
usually consists the exact bits recorded by a camera's sensor along with image settings (e.g.,
white balance, color space, contrast) that the camera normally uses internally to produce
a compressed jpeg-format file. In Rawstudio, users can losslessly change the development
settings and apply additional effects such as exposure compensation, to produce JPEG-
format versions of the unmodified originals. Rawstudio keeps a central database of image
metadata, allows users to add short textual tags to individual or groups of images, and then
locate those images either by tag or by location in the local filesystem.

Rhythmbox Rhythmbox is a music manager and player, written in C, built with several
GNOME libraries and frameworks. It permits users to add music (usually in MP3 or similar
form) to a logical library, where Rhythmbox keeps a central database of song metadata,
and keeps each song in a separate file on disk. Users can view and play collections though



Size (lines) Rawstudio Rhythmbox QuodLibet gPodder Email

original project size 59,767 102,000 16,089 8,168 3,476
affected module size 6,426 9,467 428 426 312

lines added 1,851 2,102 76 295 778
lines removed 1,596 14 2 2 N/A

Table 6.1: Source lines of code [51] comparisons of applications adapted to Eyo. In each
case, only a small, self-contained module needed to be modified. The project sizes do
not include libraries. For email, the "original project size" only includes Twisted's IMAP
module and server example code, and 'lines added' includes all of our newly written code.
The 'lines added' and 'lines removed' counts are from diffstat, and so do not match total
line definitions exactly.

several types of groups, such as playlists, album, or user-supplied searches that Rhythmbox
carries out against its central metadata database.

QuodLibet QuodLibet is also a music player and manager. It is written in Python, and
consequently has a significantly smaller codebase than Rhythmbox. QuodLibet keeps a
centralized database of song metadata, but it allows users to add arbitrary tags as metadata
rather than relying on a predefined schema.

gPodder gPodder is a simple podcast manager, written in Python. It allows users to
subscribe to RSS podcast feeds. It periodically checks those feeds for updates, and when it
finds that new episodes are available, downloads and caches those files locally on disk until
the user listens to and deletes those objects.

IMAP server Instead of modifying an existing email application, we built an IMAP
server so that existing IMAP client applications could access email messages stored in
Eyo. Our server differs from traditional folder-based IMAP servers in that our server per-
mits messages to appear in multiple folders at the same time, much as GMail permits
tagging messages with multiple tags.

6.3 Results: Eyo API Experiences

Adapting existing applications to use Eyo is straightforward. Table 6.1 summarizes
the changes made to each application. In each case, we only needed to modify a small
portion of each application, indicating that adopting the Eyo API does not require cascading
changes through the entire application. In all cases the required changes were limited to
modules composing less than 11% of the total project size. Rhythmbox required more
changes than the other applications primarily because we added support for storing and



accessing data from Eyo but did not remove the ability to use the existing filesystem data
stores. In the other applications we entirely replaced the existing storage uses with Eyo.
Our version of gPodder is slightly smaller, as we omitted functions to create and manage a
metadata database, and required no additional code to handle multiple versions of objects
beyond one-line merge calls.

To show that Eyo is a good fit for applications, we consider the following points in
addition to simply looking at the magnitude of code changes.

Eyo provides device-transparency. The simple changes transformed the existing media
applications from stand-alone applications with no concept of sharing between devices into
a distributed system that presents the same collection over multiple devices. The changes
do not require any user interface modifications to support device transparency; users simply
see a complete set of application objects rather than the local subset. However, some user
interface changes are necessary to expose placement rules and conflict resolution to the
user. It is no accident that these new features needed few changes, and indicates that Eyo
is a good match for application-level objects. While the new features for the email system
were less dramatic-clients automatically share new messages and status changes without
a server-these new features required no changes at all in the user-facing email clients,
only in the IMAP server.

Metadata is useful alone even without the related content. The modified media appli-
cations can show the user's entire music collection. Even when content isn't present, users
can search for items, modify playlists, see where objects do reside, and, if reachable, fetch
remote objects transparently. In Rawstudio, users can search for photos by tag through the
entire collection even when the content is missing, organize those photos into new groups,
and show which devices hold the associated content. Surprisingly few changes were neces-
sary to support objects with missing content. Although Eyo does provide a metadata field
indicating whether the associated content is available locally, the applications generally
functioned correctly even without additional logic to examine this field, e.g., by continuing
on to the next item in a playlist, for two reasons. (1) Applications need to fail gracefully
when given files they cannot interpret, such as unsupported image or music file types, and
(2) applications that keep a central metadata database may hold pointers to files in tra-
ditional network filesystems that become unreachable. Handling missing content in Eyo
triggers these same code paths.

Applications automatically compose concurrent updates. Concurrent updates occur
as a part of normal application operations, for example every time users play the same song
or read the same mail message from disconnected devices. These actions result in multiple
head versions of these objects when connectivity resumes. In most cases, the version his-
tory Eyo provides permits applications to resolve concurrent changes simply by applying
the union of all user changes; the Eyo client library makes this straightforward. A few cases
require application-specific involvement, e.g. the applications that track playcounts use a
custom merge procedure to sum up the count increments.



User-VisibleApplication Type Confli sible Why?
Conflicts Possible?

IMAP Email No Boolean metadata flag changes only
Gateway

gPodder Podcast No User cannot edit metadata directly
Manager

Rhythmbox Media Yes Edit Song title directly
Player

QuodLibet Media Yes Edit Song title directly
Player
Photo

Rawstudio Edito Yes Edit settings: contrast, exposure ...
Editor

Table 6.2: Description of whether applications can handle all version conflicts internally,
or must show the presence of multiple versions as a result of some concurrent events, along
with an explanation or example of why that result holds for each application.

The experience with these applications led us to conclude that applications must be
involved in automatic conflict resolution because the correct policy depends on the ap-
plication and the metadata item. For example, different playcount histories could equally
validly be resolved by taking the maximum count instead of summing the increments. Only
the application designer has sufficient information to choose the appropriate policy for each
metadata item.

As another example, in our IMAP application if one device updates the "unread" mes-
sage flag and another device updates the "replied" flag, then Eyo will flag a conflict to the
application. However, the IMAP gateway knows that these updates are composable and
resolves the conflict without user intervention.

An alternate type of concurrent update arises when importing external data objects into
Eyo. Our gPodder version, for example, downloads podcasts and stores episode metadata
and content in Eyo. It includes the RSS feed's <GU ID> element in the hints to c re at e ()
to ensure that multiple clients that independently download the same episode while discon-
nected automatically merge the objects once connectivity is restored. In addition to the
client-to-Eyo IMAP server, we also implemented an Eyo-to-server gateway which, acting
as an IMAP client, pulls new messages from a user's external IMAP inbox into the Eyo
store. Like gPodder, it uses create hints based on message ID's to avoid inserting duplicate
messages.

Users rarely encounter version histories. Applications use version histories internally
to merge divergent version histories back into a single head version, but in most cases users
are never aware when concurrent updates occur, as the applications perform these opera-
tions automatically. A few cases however, do result in end-user visible effects. Table 6.2
summarizes the results.



Because Rhythmbox and Quod Libet allow users to modify metadata directly in the UL,
it is possible for users to make conflicting changes requiring manual intervention on two
devices. These kinds of user-visible conflicts only arise due to direct, concurrent changes.
As outlined above, normal operations, such as playing a song, or editing a playlist, never
result in user-visible conflicts.

Rawstudio does permit user-visible conflicts, but this does not normally cause a prob-
lem. Rawstudio allows users to save a set of several versions of the 'development settings'
for each photo. If a user concurrently changes the settings on two devices, Rawstudio can
show both branches of this conflicted object as a different set of settings. The user-supplied
image tags cannot cause conflicts, and all of the other metadata fields are read-only to the
user.

The other applications, gPodder and email, prohibit user-visible conflicts entirely, as
users don't edit individual metadata tags directly. These two applications never show mul-
tiple versions to end users, even though the underlying system-maintained version histories
exhibit forks and merges. The ability to hide these events demonstrates the usefulness of
keeping system-maintained version histories so that applications face no ambiguity about
the correct actions to take.

Summary. In summary, we found that modifying applications to use the Eyo storage
model was not difficult. In most cases, applications use objects in the same patterns as they
did before, except that end users experience a coherent collection rather than a disjoint set
of objects on different devices. Eyo provides applications with the necessary information
to hide many concurrent changes from users.

6.4 Results: Metadata Storage Costs

To determine the expected size of metadata stores in Eyo, we inserted three modest personal
data sets into Eyo: the email, music, and photo collections a single user gathered over the
past decade. We included a collection of email messages as a worst-case test; this collection
includes a large number of very small objects, so the metadata overhead will be much larger
than for other data types. Table 6.3 shows the resulting metadata store sizes. To extract
metadata, we parsed email messages to extract useful headers, imported the user's media
attribute database, and used exi f t ags or dcr aw to extract attributes from photos. This
example considers only the static metadata store size-Eyo stores a single version of each
object -the next sections examine the costs of multiple versions.

The table shows that for each of the three data types, Eyo's metadata store size is ap-
proximately 3 times as large as the object attributes alone. The overhead comes from
database indexes and implementation-specific data structures.

The most important feature this data set illustrates is that the size of the metadata store
is roughly (within a small constant factor) dependent only on the number of individual
objects, but not the content type, and not the size of content objects. The number of objects,



Email

number of messages 724230
total content size 4.3 GB

median message size 4188 bytes
native metadata size 169.3 MB

Eyo metadata store size 529.6 MB
metadata/content overhead 12%

metadata store size per message 766 bytes

Music

number of tracks 5278
number of playlists 21

total content size 26.0 GB
mean track size 5.1 MB

native metadata size 2.6 MB
Eyo metadata store size 5.8 MB

metadata/content overhead 0.02%
metadata store size per object 1153 bytes

Photos

number of JPEG/RAW objects 61740/10640
total number of objects 72380

JPEG/RAW content size 32.7/90.1 GB
total content size 122.8 GB

native metadata size 22.6 MB
Eyo metadata store size 52.9 MB

metadata/content overhead 0.04%
metadata store size per object 767 bytes

Table 6.3: Metadata store sizes for example datasets. The native metadata size is the size
of the attribute key/value pairs before storing in Eyo. The metadata store size is the on-disk
size after adding all objects.
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Figure 6-1: Topology for the scenarios in sections 6.5 and 6.6

along with the amount of metadata per object, thus provides a lower bound on the storage
capacity of each device.

The total metadata size in this example (less than 600 MB) is reasonable for today's
current portable devices, but the total content size (153 GB) would not fit on a laptop only a
few years old nor on many current portable devices. Adding video would only increase the

disparity between metadata and content store sizes, and reduce relative amount of overhead
Eyo devotes to storing object metadata.

6.5 Bandwidth Costs

In addition to storage costs, the metadata-everywhere model places bandwidth costs on
other devices in the system, even when those devices do not store the newly created objects.

Figure 6-1 shows the simplest possible network topology to examine bandwidth and
storage costs for disinterested devices that lack any placement rule matching newly changed
objects (this section), and for absent devices (next section).

In this scenario, a pair of object-generating devices create new objects at exponentially
distributed times at a variable average rate, attaching four kilobytes of attributes to each
new object (larger than the median email message headers considered in section 6.4). The

disinterested device ("remote" in the topology) has only a slow link to the other replicas,

and we measure the synchronization bandwidth passed over this slow link, averaged over

a month of simulated time. The disinterested device does not fetch any of the associated
content objects, hence all of the bandwidth in this case is metadata and protocol overhead.

Figure 6-2 shows that the bandwidth consumed over the slow link, as expected, in-

creases linearly with the update rate. If the slow link had a usable capacity of 56 kbps, and

new updates arrive once per minute on average, the disinterested device must spend approx-

imately 1.5% of total time connected to the network in order to stay current with metadata

updates. This low overhead is expected intuitively: small portable devices routinely fetch

all new email messages over slow links, so the metadata bandwidth for comparable content

will be similar.
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6.6 Disconnected Devices

When an Eyo device, R, is disconnected from the rest of the group due to network par-
titions, or because the device in question is turned off, the other devices will keep extra
metadata object versions, which might prove necessary to construct causally ordered ver-
sion graphs once R returns.

Using the topology in Figure 6-1, we place an initial set of 1000 unconflicted objects
synchronized across the three devices. The remote device R then disconnects from the
network, and stays disconnected for a single period of time At ranging from four hours
to four months. Starting after R is out of communication, the other replicas generate new
versions to one of the existing objects at an average rate of once per minute, attaching
2 kilobytes of unique metadata, so the devices save no space by storing only changed
attributes.

After the interval At, we measure the size of the Eyo metadata store on the generating
devices, allow R to reconnect and synchronize, let each device prune its metadata, and then
measure the metadata store again. Figure 6-3 shows the before and after sizes as a function
of the disconnect interval At. The figure shows two regions, for At before and after 1000
minutes, the point at which most objects have been modified. For At > 1000 minutes,
the system reaches a steady state where the size of the metadata store is proportional to
the amount of time passed, but after returning and synchronizing shrinks to a constant size
independent of the amount of time spent disconnected. The amount of recoverable storage
is the difference between the two curves. The current eeyore implementation stores exactly
one version beyond those strictly necessary to go back to the newest unique ancestor for
each object, which is why this steady state size is larger than the initial storage size, and
why the post-synchronization size changes during the initial non-steady state region.

A collection with more objects (for example, the one shown in section 6.4) would
show a much smaller fraction of recoverable storage than this example, though the absolute
amount of recoverable space would be the identical under the same update pattern.

All of the object types shown in Table 6.3 contain immutable contents, so disconnected
devices using those data types cause overhead in Eyo's metadata store, but not the content
store. If updates change content as well, then the storage costs would be proportionally
larger.

Figure 6-3 shows that a long-term uncommunicating device can cause unbounded growth
of the metadata store on other devices. If this absence persists long enough that a device
runs out of space, Eyo can present the user with two options: turn on and synchronize
the missing device, or evict it from the system. Evicting the missing device, as discussed
in section 4.5, does not require a consensus vote of the remaining devices. Temporarily
evicting a device allows the remaining devices to truncate history, and preserves data until
re-adding the missing device later.

These results show that users are unlikely to encounter problems due to accumulating
metadata in practice, as large collections and infrequently used devices alone cannot cause
problems. It is instead the rate of individual edits that consumes excess space, and none of



System Description

Unison Delays of at least 1 second for small collections.
Large collections take significantly longer:

23 seconds for an existing collection of 500K objects,
87 seconds for IM objects

MobileMe Most updates arrive with delays of between 5 and 15 seconds.
Occasionally as long as 4 minutes.
Delay does not depend on collection size.

Eyo All delays fall between 5 and 15 milliseconds.
Delay does not depend on collection size.

Table 6.4: Synchronization Delay Comparison: Time to propagate one new update to an
existing data collection between two devices on the same local network.

the applications we have examined generate changes anywhere near the frequency that this
experiment assumes.

6.7 Synchronization Comparison

This section compares the performance of Eyo's synchronization protocol to two existing
alternatives: Unison [4], a stand-alone file-level synchronization tool, and MobileMe [3], a
cloud-based storage subscription service.

These experiments aim to measure the time it takes for a minimal metadata change to
propagate between two physically adjacent devices. In this setting, to provide a device-
transparent view of data and show the same data view to users, frequent updates must
pass between devices as quickly as possible. In each case, two devices initially hold a
synchronized data collection with some number of existing small or metadata-only objects.
One device then makes a single minimal change, and we measure the time it takes for that
update to appear on the second device. For MobileMe, the single change took the form of
editing an existing calendar entry to fall instead on the next or previous day. For Unison,
the change was a one-byte edit to an existing single block-sized file, and for Eyo the change
was a new metadata version of an existing metadata object.

Table 6.4 summarizes the results of measuring the update propagation delay for each of
these systems. Since Unison is a stand-alone synchronizer, the measurement time includes
the time to start up the program to send an update, which results in delays of around one
second even for very small data collections. Eyo (and MobileMe) run continuously, so do
not suffer such a startup cost. When started, Unison must first iterate over the local data
collection to determine which files have changed, and for large data collections, this time
dominates the end-to-end delay, resulting in delays of tens of seconds for collections of a
few hundred thousand individual objects. Eyo never needs to iterate over the local metadata



collection to identify which objects need updates, as Eyo continually tracks object changes
that need propagation to other devices.

MobileMe and Eyo both track updates as applications edit data, so the delays are inde-
pendent of the number of objects in the collection. Although both systems in this compari-
son send similar amounts of data (less than 10 kilobytes), MobileMe updates take between
several seconds to several minutes to propagate, whereas Eyo's delays fall between 5 and 15
milliseconds. MobileMe's star topology requires that all updates pass through the central
cloud system, even if the two devices are physically adjacent on the same local network, as
they are in this example. MobileMe's delays are not due to client polling, as clients appear
to learn of new updates via an asynchronous notification via a persistent TCP connection,
but are longer than can be attributed solely to network propagation delays. Eyo, in contrast,
discovers local network paths, and uses those to send updates directly to the local device.

We expect that systems that are designed with the same performance goal as Eyo,
namely to ensure that synchronization processing time and communication size is inde-
pendent of the total collection size, (e.g., Cimbiosys [44], WinFS [31]), would show results
very similar to Eyo's in this type of setting.

The results of these measurements demonstrate that passing updates quickly between
peer devices requires a synchronization protocol that efficiently identifies missing updates
to send without scanning the data collection, and taking advantage of local networks to
send updates directly whenever possible.





Chapter 7

Related Work

Many of the underlying mechanisms in Eyo derive from mechanisms in other systems.
Cimbiosys & Perspective are the two most closely related systems, which we discuss next,
followed by other optimistic replication schemes, and other systems such as version control
systems and attribute-based file systems.

7.1 Cimbiosys & Perspective

Cimbiosys [44] and Perspective [48], are the two systems most closely related to Eyo.
Though neither attempts to provide device transparency, Eyo shares ideas with each. For
example, Eyo adopts placement rules from existing mechanisms in both systems.

Cimbiosys is a replication platform for applications to use content-based filtering rules
with efficient synchronization protocols to minimize communication overhead. Cimbiosys
does not provide a device-transparent view: devices learn about objects that match their
local filter, and must store all of those objects, but do not learn about the rest of the objects
in the data collection. Cimbiosys supports large groups of devices, and unlike Eyo, does
not require that the devices know a priori of the identities of the other peers. In order
to achieve efficient communication (dependent on the number of changes, rather than the
number of total objects), Cimbiosys requires that the devices organize into a tree structure
based on their content filters, and that devices periodically exchange updates with their
parent and child devices in this tree. The device that sits at the root of this tree must hold
a universal filter, meaning that it collects and then holds a copy of all content in the data
collection. Eyo does not require that devices organize into a tree structure, or that any one
device in the collection hold a complete copy. Cimbiosys requires that applications manage
communication with peer devices, unlike Eyo, which manages all communication itself.

Perspective allows users to specify views over a data collection, which map content
queries to devices which should hold replicas of those objects. Perspective does not pro-
vide communication protocols as efficient as in Cimbiosys or Eyo: a single synchronization
event takes O(min(ni, n 2 )) time, where ni is the number of files stored on device i. Per-
spective does not provide disconnected device-transparent access to the data collection, as



disconnected devices only know about files in their matching view. Perspective exports it's
views via a traditional filesystem API, so does not require any application changes, unlike
Eyo and Cimbiosys.

Neither Cimbiosys nor Perspective retains object's version history, or provides an API
to applications that helps them manage and resolve conflicts simply, though both detect
concurrent changes to objects.

7.2 Optimistic Replication Schemes

In addition to Cimbiosys and Perspective, Eyo incorporated ideas found in several other
optimistic replication schemes. Coda [27], Ficus [23], Ivy [36], and Pangaea [47] provide
optimistic replication and consistency algorithms for file systems. Coda uses a centralized
set of servers with disconnected clients. Ficus and Ivy allow for updates between clients,
but do not provide for partial replicas, and Pangaea handled disconnected servers, but not
disconnected clients. An extension to Ficus [45] adds support for partial replicas, at the
cost of no longer supporting arbitrary network topologies.

Several of these systems make use of Application-specific resolvers [28, 46], which
require developers to construct stand-alone mechanisms to interpret and resolve conflicts
separately from the applications that normally access that data. While Eyo's approach does
require direct changes to applications, embedding resolution logic directly in the appli-
cations avoids the need to recreate application context in separate resolvers, and permits
multiple applications to edit, and subsequently resolve, changes to the same data objects.
Presenting version history directly to the applications, instead of just the final state of each
conflicting replica, permits applications using Eyo's API to precisely identify the changes
made in each branch.

BlueFS [37] and EnsemBlue [39] extend Coda to permit a limited degree of decentral-
ized updates along with more flexible placement rules. Eyo's lookup and watch notifica-
tions provide applications with similar flexibility as EnsemBlue's persistent query interface
without requiring that a central server know about and process queries.

Podbase [42] replicates files between personal devices automatically whenever network
conditions permit, but does not provide a way to specify placement rules or merge or track
concurrent updates.

Bayou [58] provides a device transparent view across multiple devices, but does not
support partial replicas, and requires all applications to provide merge procedures to re-
solve all conflicts. Bayou, like most optimistic replication schemes, requires that updates
be eventually-serializable [13]. Eyo instead tracks derivation history for each individual
object, forming a partial order of happened-before relationships [29].

PersonalRAID [53] tries to provide device transparency along with partial replicas. The
approach taken, however, requires users to move a single portable storage token physically
between devices. Only one device can thus use the data collection at a given time.



TierStore [11], WinFS [31], PRACTI [5], Pheme [25], and Mammoth [6] each support
partial replicas, but limit the subsets to subtrees of a traditional hierarchical filesystems
rather than the more flexible schemes in Cimbiosys [44], Perspective [48], and Eyo. Tier-
Store targets Delay-Tolerant-Networking scenarios. WinFS aims to support large numbers
of replicas and, like Eyo, limits updates messages to the number of actual changes rather
than the total number of objects. PRACTI also provides consistency guarantees between
different objects in the collection. Eyo does not provide any such consistency guarantees,
but Eyo does allow applications to coherently name groups of objects through the exposed
persistent object version and content identifiers. None of these systems provide device
transparency over a complete collection.

7.3 Star Topologies

A number of systems build synchronization operations directly into applications so that
multiple clients receive updates quickly, such as one.world [22], MobileMe [3], Google
Gears [20], and Live Mesh [34]. Each of these systems follows the cloud model described
in section 1.1.2, where a centralized set of servers hold complete copies of the data col-
lections, and applications, either running on the cloud servers themselves, or on individual
clients, retrieves some subset of the content. Disconnected clients cannot share updates
directly, nor view complete data collections while disconnected.

7.4 Point to point synchronization:

Point-to-point synchronization protocols such as rsync [61], tra [9], and Unison [4] provide
on-demand and efficient replication of directory hierarchies. Unison compares directory
hierarchies on two machines and updates both copies to include changes made on the other.
Tra keeps additional state on synchronization events to avoid detecting false conflicts when
synchronizing groups of more than two devices. Rsync (which unison uses internally)
efficiently compares large files to only send the changed portions at synchronization times.
None of these systems easily extend to a cluster of peer devices, handle partial replicas
without extensive hand-written rules, or proactively pass updates whenever connectivity
permit without user intervention. Since all of these systems user the standard file system
interface, none require application changes.

7.5 Version Control Systems

Software version control systems such as Git [19], Subversion [56], and Mercurial [33]
provide many algorithms and models for reasoning about version histories, allowing devel-
opers to time-shift working sets back to arbitrary points. Version control systems normally
store the complete history for each object, to permit developers to examine the entire life-
time of an individual object. Subversion keeps the complete data collection in a single



centralized repository, so users can only resolve conflicts (or exchange updates) when they
can communicate with the repository. Distributed version control systems such as git and
Mercurial store complete collections of the entire project history on each client, so that
operations such as committing or merging can occur between any two clients. Eyo keeps
only a limited history needed to describe events leading to a potential conflict. Some ver-
sion control systems (like CVS or Subversion) permit partial replicas, where some clients
check out subdirectories of an overall project. Others, like git, require that clients hold a
complete copy of a data collection. In this respect, git provides device transparent access
to a repository, though it is not suitable for storage-limited devices that cannot store the
collection's entire history.

7.6 Attribute Naming

Storage system organization based on queries or attributes rather than strict hierarchi-
cal names have been studied in several single-device (e.g., Semantic File Systems [18],
HAC [21], hFAD [50], LISFS [38]) and multi-device settings (e.g., HomeViews [17]), in
addition to the contemporary optimistic replication systems. Several of these systems ob-
serve that strict hierarchies found in traditional filesystems pose unnecessary restrictions on
data organization and concurrency, that users frequently ignore the folders and use searches
to locate their files instead, and requires that separate machines agree on a single organiza-
tional structure. Eyo uses attribute-based queries for applications to identify objects for the
same reasons as in each of these systems.



Chapter 8

Discussion and Future Work

This chapter covers two topics: (1) it describes several extensions that could incorporate
additional features into Eyo's current design, and (2) it considers alternative designs that
would follow from different assumptions about Eyo's use and goals.

8.1 Extensions

This section describes several possible additions to Eyo's base design to provide additional
features.

8.1.1 Security considerations

The Eyo design as presented so far assumes (1) that each device within a group of devices
faithfully carries out the synchronization protocol and stores the data it promises to store,
and (2) that Eyo only receives valid instructions from end users. Eyo already partially
addresses the first issue by using any storage space to replicate data beyond the copies re-
quired by placement rules, which provides some benefits in case of device failures. Eyo
could adopt the strategies of Polygraph [30] to address the second type of attack (e.g., an
attacker breaks into a device and issues commands to delete all items). In fact, Eyo al-
ready contains the necessary infrastructure to implement Polygraph's rollback mechanism,
lacking only an interface to specify when an attack occurred.

8.1.2 Extension to multiple users

The discussion of Eyo thus far considered only a single user's devices. However, it may
often be useful to share data collections between a few different people, for example if they
live in a single household. For this purpose Eyo builds on UIA's shared groups [16], which
provide a way to name the union of all devices controlled by several users. Eyo maintains
separate metadata stores on each device, one for personal data, and one for shared data. All



devices in a shared group can create, modify, or delete objects in the shared store, but only
devices in the personal group can see or modify objects in the personal store. Eyo's support
for shared collections does not currently scale to large numbers of users and devices, but it
should be adequate for family-sized groups, each member having a few devices.

8.1.3 Extension for storage-limited devices

If an Eyo group contains devices that are limited enough that they expect to be unable to
hold even the full metadata collection, they can instead act as limited edge devices. This
mode of operation would not present a device-transparent view, but may be useful for
devices such as photo-frames that have limited storage space and user interfaces. These
devices would gather all metadata updates, but only retain metadata objects matching their
own placement rules. They would therefore be unable to forward updates further.

8.1.4 User Study

Although we have used Eyo ourselves and found it useful for our own purposes, a broader
user study could provide additional support for our conclusions. In addition to our own
investigations, a group at Nokia research is using Eyo in a system to present and propagate
collections of social networking data and has found Eyo's API to be very useful for this
purpose.

8.2 Alternative Designs

This section describes alternative designs in cases where the desired properties differ from
Eyo's in several ways.

8.2.1 Implementing Eyo without UIA

It would be possible to implement almost all of Eyo's design without relying on UIA for
communicating between devices. If users manually constructed a list of their devices, and
limited communication to times when those devices could directly communicate through
secure channels, such as a local USB connection, or via a HTTPS server, the same metadata
and content exchange protocols could work over such a system, although it would be harder
for end users to describe the group initially.

The resulting system would still provide device-transparency, though it would miss
opportunities for passing updates between devices that could nominally communicate via
an internet relay. Furthermore, without a way to authenticate those links, devices could not
ensure that the updates they received were authentic. As such, end users would be more
likely to experience version conflicts when modifying the same objects on multiple devices.



8.2.2 Mutable Content

Eyo would not need extensive changes to handle frequently mutated content. The current
design handles mutable content by replacing it entirely, which is simple but inefficient. On
the storage side of the design, small changes to content objects could be stored in a Merkle
tree [43] to avoid storing complete copies. The protocol for fetching content from other
devices would need to be augmented to take this blocking into account to avoid transferring
the same sub-portion of an object more than once, as existing tools already do (e.g, rsync,
git, and many others). Applications reading objects would need to read content objects after
combining the multiple blocks, which could be done by providing custom functions to read
objects rather than returning file descriptors, or by implementing a FUSE [14] user-level
filesystem and maintaining the existing file descriptors.

Even with these changes, applications would need additional changes to evaluate and
merge content changes. These changes would likely be very specific to the individual data
types, and hard to generalize across different applications and data types.

8.2.3 No Disconnected Operations

If Eyo devices were only ever used in situations where they could communicate with a
single large centralized server, devices could provide device-transparent access to a data
collection without requiring that each device store a complete metadata copy. Much of
Eyo's design would still be useful, however, because there would still be long delays for
devices not physically near the central server. To limit user-visible delays while evaluat-
ing queries and displaying results, it would still make sense to cache frequently accessed
metadata on devices. Transmission delays for large content objects would still necessitate
playing content on individual devices, meaning that Eyo's placement rules would remain as
designed. If applications checked with the central server on each data write, and aborted or
rolled back any concurrent writes, Eyo could avoid keeping version histories, as the central
server could decree which was the newest version of any single object. Applications could
optimize the caching of object metadata by notifying Eyo (perhaps at install time) which
attributes they use in order to identify and display objects to users. Eyo could then cache
those values locally, while ignoring attributes or entire objects that lack an appropriate local
application to view those objects.

8.2.4 Without placing all metadata everywhere

If Eyo did not place metadata for every object on each device, but still required discon-
nected operation, it could not provide device-transparent access to the data collection. This
change would provide a different experience to end users, and would be more similar to
Cimbiosys [44] in operation. The metadata synchronization protocol would need to incor-
porate placement rules that operate on metadata in addition to rules that operate on object
content. The content synchronization protocol would need some different mechanism to
locate objects, and to ensure their persistence, without gossiping this information via the



metadata synchronization protocol. One way to ensure this would be to adopt, as Cim-
biosys did, the requirement that some device serve as the root of a filter tree, and promise
to hold a complete copy of all metadata and all content. This central point would thus serve
as the fallback device to fetch content from.



Chapter 9

Summary

Growing storage and network capabilities of mobile devices, combined with personal data
collections that do not fit on some of the devices, leads to confusion caused by the object-
on-a-device abstraction that traditional storage systems provide. This thesis describes an
alternative abstraction, device transparency, that unifies the collections of objects on mul-
tiple devices into a single logical collection. It proposes a novel storage API that provides
explicit version histories, application-defined metadata that is stored separately from object
content, and placement rules.

An implementation of this API in the Eyo storage system includes effecient synchro-
nization protocols for object metadata and content through direct peer-to-peer links. The
metadata protocol communicates updates continuously and automatically whenever net-
work connectivity permits.

An evaluation with several applications suggests that adopting Eyo's API to achieve
device transparency for these application is modest, most cases of concurrent updates can
be handled automatically by the applications wihtout user intervention, and that the storage
and bandwidth costs are within the capabilities of typical personal devices.

The main ideas explored in Eyo can hopefully be adopted into future mobile platforms.
Doing so would enhance their user experiences, and provide users with better control over
their personal data. Users would manage a single unified data collection, rather than com-
binations of independent device-sized partitions. The source code for the Eyo prototype
implementation will be available publicly from http: / /pdos . csail .mit .edu /eyo/.
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