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Abstract

Magnetoencephalography (MEG) non-invasively offers information about neural ac-
tivity in the brain by measuring its magnetic field. Estimating the cerebral sources
of neural activity from MEG is an ill-posed inverse problem that presents several
challenges. First, this inverse problem is high-dimensional, as the number of possible
sources exceeds the number of MEG recording sensors by at least an order of mag-
nitude. Second, even though the neural activity has a strong temporal dynamic and
the MEG recordings are made at high-temporal resolution, the temporal dynamic
is usually not exploited to enhance the spatial accuracy of the source localization.
Third, whereas a dynamic form of the MEG source localization problem can be easily
formulated as a state-space model (SSM) problem, the high dimension of the resulting
state-space makes this approach computationally impractical.

In this thesis we use a SSM to characterize from MEG recordings the spatiotempo-
ral dynamics of underlying neural activity. We use the Kalman fixed-interval smoother
(KS) to obtain maximum a posteriori (MAP) estimates of the hidden states, the
expectation-maximization (EM) algorithm to obtain maximum-likelihood (ML) es-
timates of the parameters defining the SSM, and standard model-selection criteria
to choose among competing SSMs. Because of the high dimensionality of the SSM,
the computational requirements of these algorithms are high, and preclude the use
of current frameworks for MEG analysis. We address these computational problems
by developing an accelerated, distributed-memory version of the KS+EM algorithm
appropriate for the analysis of high-dimensional data sets. Using the accelerated
KS+EM algorithm, we introduce two SSM-based algorithms for MEG data analysis:
KronEM (Kronecker Product modeling using KS+EM) and StimEM (Stimulus effect
estimation using KS+EM).

KronEM characterizes the spatiotemporal covariance of MEG recordings using an
parameterization that efficiently describes the rhythmicity present in resting state
neural activity. KronEM describes the data as a sum of components composed of a
time-invariant spatial signature and a temporal second-order autorregresive process.
In comparison with previous attempts at modeling resting-state activity, the KronEM
algorithm estimates the number of such components using the data, and is able to



identify an arbitrary number of them. We illustrate these properties on a simulation
study, and then analyze MEG recordings collected from a human subject in resting
state. The KronEM algorithm recovered components consistent with well-known
physiological rhythmic activity. We then compare the resulting topographic maps of
frequency with multi-taper based ones, and show that KronEM-based maps better
localize naturally occurring rhythms. These results make the KronEM algorithm a
useful single-trial frequency analysis technique.

StimEM estimates neural activity using MEG recordings made in evoked-potential
studies, in which the subject is repeatedly presented with a stimulus and only the
stimulus effect is of interest. In contrast with other dynamic source-localization tech-
niques, StimEM accepts arbitrary description of neural dynamics, parameterized as a
weighted sum of user-defined candidates, and finds the MAP estimate of the weights.
Using the estimated dynamics, StimEM generates a time-resolved ML estimate of
the evoked-potential activity in the cortex. We illustrate the ability of StimEM to
identify dynamics in a simulated data set of realistic dimensions, and show that the
estimates improve substantially when dynamics are taken into account. We next ana-
lyze experimental MEG data from an auditory evoked-potential study and show that
StimEM identifies dynamics consistent with neurophysiology and neuroanatomy and
improves the localization of the evoked cortical response.

In summary, we establish the feasibility of non-approximate SSM-based analysis
of high-dimensional state-space models using a distributed-memory implementation
of an accelerated KS+EM algorithm. We develop two novel algorithms to analyze
MEG data in resting-state and evoked potential studies, and show that SSM analysis
improves substantially on previous non-SSM based techniques.

Thesis Supervisor: Emery N. Brown, M.D., Ph.D.

Title: Professor of Health Sciences & Technology

and Computational Neuroscience
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Chapter 1

Introduction

Functional neuroimaging aims to non-invasively characterize the dynamics of the

distributed neural processes that mediate brain function in both healthy and diseased

subjects. An ideal functional neuroimaging method would provide estimates that

are accurately localized both in space and time; in reality, a researcher will have

to select from several imaging modalities providing estimates of brain function in

different spatial and temporal scales. Functional MRI (fMRI) and positron emission

tomography (PET) generate estimates with high spatial resolution (millimeters), but

because of their dependence on neurovascular coupling (cf. [ ]) they suffer from low

temporal resolution (seconds to minutes).

Electrical activity of neurons generates electric and magnetic fields detectable

on and outside the scalp ([ , ]). With proper instrumentation, these correlates of

brain activity can be recorded on or outside the head surface. Electroencephalography

(EEG) and magnetoencephalography (MEG) measure these electric and magnetic

fields, respectively. In contrast to other functional neuroimaging modalities, EEG

and MEG signals are instantaneously related to neural electric activity. Because

of this, both EEG and MEG offer estimates of brain activity with higher temporal

resolution: among the available functional imaging techniques, only MEG and EEG

imaging have temporal resolutions below 100 ms (see again [ ] and the thorough

review in [ ]).

MEG and EEG imaging have been widely used in research and clinical studies



since the mid-twentieth century. Because of its high temporal resolution, MEG imag-

ing is a powerful tool for studying neural processes in the normal working brain that

are of interest for neurophysiologists, psychologists, cognitive scientists, and others

interested in human brain function. The two main types of EEG and MEG studies

are: (1) resting-state studies, where the subject has no experimental input, and the

experimenter tries to identify the dynamics of the free-running brain under some ex-

perimental conditions; and (2) event-related studies, also known as evoked-potentials

and evoked-fields, where the subject is repeatedly given a set of stimuli, and the

experimenter's aim is to find the specific effects of said inputs in brain activity. Clin-

ical applications of EEG and MEG include improved understanding and treatment

of serious neurological and neuropsychological disorders. A prominent example is

intractable epilepsy, where patients benefit from improved localization of epileptic

foci, minimizing the extent of surgery, and non-invasive mapping of cortical areas of

functional relevance, improving surgery planning and outcome ([ I, , ]).

EEG and MEG imaging use mathematical inversion techniques along with phys-

ical models of electric and magnetic field propagation to estimate the distribution

of the underlying electrical brain activity. Unfortunately, due to the relatively large

distance between the sensors and the sources and a low signal-to-noise ratio, EEG

and MEG estimates of brain activity have a low spatial resolution (centimeters, see

). Dynamic inversion techniques modeling the underlying brain activity can in-

crease this spatial resolution by exploiting the high temporal resolution of EEG and

MEG (see [ ]). The dynamic characterization of brain activity makes it possible

to analyze the whole acquisition at once, producing better resolved estimates than

those produced by non-dynamic techniques. Unfortunately, introducing dynamics in

the inversion greatly increases the computational cost of the algorithm; and in order

to reduce the cost, existing algorithms introduce non-physiological constraints in the

spatiotemporal evolution of neural activity (e.g. [ , ]). In this thesis we will use

state-space models (SSMs) to approximate certain spatiotemporal characteristics of

the underlying brain activity. Unlike previous approaches, SSMs provide with a flex-

ible description of the dynamics that can model physiological evolution of activity.



More over, since SSMs have been used in statistical and engineering literature for a

long time, the inversion can be performed using existing algorithms for estimation

([]). However, the high-dimensional nature of the SSMs arising in EEG and MEG

applications have precluded its application in the field. This thesis will provide a

distributed, accelerated SSM framework that will allow us to do inference, parameter

estimation and model selection in such high-dimensional state-spaces. Building on

this accelerated framework, this thesis will produce SSM-based analysis tools for both

resting-state and evoked potential MEG studies. In this thesis, our main emphasis is

on MEG analysis but many of the methods apply directly to EEG as well.

The rest of this chapter chapter covers the physiological basis of the MEG sig-

nal, briefly reviews the instrumentation used for MEG acquisition and preprocessing,

describes the physical model of magnetic field propagation, and introduces the main

techniques used for source localization. Chapter 2 will introduce the SSM framework

and review the theoretical aspects of dynamical estimation using SSMs. In doing so,

Chapter 2 will lay out the mathematical framework that will be at the heart of the

two new algorithms introduced in this thesis. KronEM (Kronecker product modeling

using KS+EM), described in Chapter 3, will use the SSM framework to better identify

rhythmical activity in the MEG readouts on resting-state studies. StimEM (Stimulus

effect estimation using KS+EM), described in Chapter 4, will use the SSM frame-

work to provide source activity estimates in MEG evoked potential studies. Both

algorithms identify the spatiotemporal correlations existing in brain activity and use

them to produce estimates that are more accurate than those provided by algorithms

not modeling these dependencies. The characteristics and efficacy of our novel al-

gorithms will be demonstrated both with simulations and analysis of experimental

data.



1.1 Physiological basis of MEG

When a neuron receives input from other neurons, postsynaptic potentials (PSPs)

are generated at its apical dendritic tree. In an excitatory PSP, the apical dendritic

membrane depolarizes transiently, becoming extracellularly electronegative with re-

spect to the cell soma and basal dendrites. This potential difference creates a current

flow from the non-excited membrane of the soma and basal dendrites to the apical

dendritic tree sustaining the EPSPs ([ ]).

Some of the current, called primary current, takes the shortest route between

source and the soma by traveling within the dendritic trunk. Conservation of electric

charges imposes that the current loop be closed with extra-cellular currents flowing

across the entire volume conductor, forming a less compact current known as the

secondary (or volume) current.

The spatial arrangement of cells has a crucial role in the generation of detectable

magnetic fields outside the head: the postsynaptic current directions have to be con-

sistent across large cell populations. Thus, synchronously activated large pyramidal

cortical neurons, pointing perpendicularly to the cortical surface, are believed to be

the main MEG generators because of the coherent spatial distribution of their large

dendritic trunks oriented in parallel ([ ]). In addition, the postsynaptic currents

generated in the dendritic trunks last longer than the typical action potentials of

cortical neurons, making the temporal integration more effective. Furthermore, the

traveling action potential can be modeled with a pair of opposing currents sources

whose field is hardly detectable at a large distance.

The number of neurons needed to generate a measurable field outside the head

has been estimated in several publications. In [ ], the authors used an approximate

model of the postsynaptic currents and concluded that approximately a million PSPs

might be required to produce a typical current detected in MEG. Later, ] employed

a more accurate model of neuron physiology and were able to trim down the estimate

by almost an order of magnitude. Using estimates of macrocellular current density

given in [ ], a patch of 5 mm x 5 mm (40 mm2 in the worst-case scenario) would create



an extra-cranially detectable dipole of 10 nA-m (for MEG), consistent with empirical

observations and invasive studies. EEG would narrow down the needed surface area

as reported in [ ], but these estimates may be overly optimistic due to the limited

resolution of the source estimation methods and the different sensitivity profiles of

magnetic and electric sensors (see for example [1). The detection thresholds gives

the physiological resolution limit for both imaging modalities, although other factors

related to the estimation process lower the resolution as will be discussed in Sec-

tion 1.4. Reviews on the electrophysiological process associated with MEG signal

generation can be found in [ , ].

Finally, although MEG signals are believed to originate mainly in the cortex,

some authors have reported scalp recordings of deeper cortical structures including

the hippocampus, cerebellum and thalamus (see [] for a list of these findings).



1.2 MEG instrumentation

The magnetic fields generated by neural currents are several orders of magnitude

smaller than the background fields in a typical laboratory. Thus elaborate interfer-

ence blocking mechanisms and extremely sensitive sensors are needed. MEG imaging

was made possible by the advent of super-conducting quantum interference devices

(SQUID) and shielded rooms ([ , ]). The first SQUID-based MEG experiment

with a human subject was conducted at MIT by David Cohen ([, ]), after the

same technology was successfully applied to detect the magnetocardiogram in 1969.

The first MEG experiments employed a single-sensor system, and multiple acquisi-

tions were needed to map the external magnetic field. Current MEG systems include

multiple sensors (150-300) in a helmet-shaped array ([ , , ]). The SQUID tech-

nology requires cryogenic temperatures, making MEG setups more expensive and

bulkier as compared with EEG instruments. MEG imaging hardware is reviewed,

e.g., in [ , ].

External noise can be dampened by using magnetically shielded rooms, gradiomet-

ric coil designs, reference sensor arrays, and software noise cancellation techniques.

The MEG data sets used in this thesis were acquired in a magnetically shielded room,

using a partly gradiometric coil design (Vectorview, Elekta-Neuromag, Helsinki, Fin-

land). To further reject noise high frequency and low frequency components were

filtered out, and signal-space projection technique (SSP, [ ]) was applied to the fil-

tered signal. SSP eliminates from the data a noise subspace which the user defines

using the data. The subspace is constructed choosing parts of the signal where the

artifact is most conspicuous, computing its principal components (PCA, [ ]), and

selecting among them the ones that most reduce the noise by visual inspection. SSP

can be used to reject two of the most usual MEG artifacts: the cardiac artifact, related

to the electrical cardiac activity of the subject and correlated with the concurrently

acquired electrocardiogram (ECG); and the eye-movement and blink artifacts, related

to both the associated muscle activity and the movement of the electrically charged

retina relative to the MEG sensors and correlated with the concurrently acquired



electrooculogram (EOG).



1.3 The forward model

In order to recover cortical brain activity from MEG sensor readouts, we need to de-

termine the relationships between the electrical activity in the brain and the recorded

extra-cranial magnetic and electric fields, governed by the Maxwell's equations. In

MEG and EEG, the quasi-static approximation of the Maxwell's equations applies.

This is justified by the low-frequency of the signals, the head size, and the values of

the electromagnetic parameters in biological tissue ([]). The Maxwell's equations

and their quasi-static approximation are

V - E p/Eo V - E =p/o

V x E = -81/0t quasi-static VxE=O ( -> E=-V-V)

V-B=0 V-B=0

V x = po(± + Eo&E/8t) V x B = Poi

where E and B are the electric and magnetic fields, Eo and so are the electric permit-

tivity and magnetic permeability in the vacuum, p is the free electric charge density

in that location, J is the free current density at that location, and V is the electric

potential that explains the conservative E field in the quasi-static approximation.

As already discussed in Section 1.1, the current source jP (primary) generates a

volume current Yv so that charge is conserved within the volume conductor. The

total current J present in the conductor is then

J(r) = Pf(r) + Jv(r) = P(r) + o-(r) - E(r) = P(r) - a(r) - VV(r). (1.2)

Since, according to the fourth Maxwell's equation in Eqs. 1.1, the divergence

of the total current vanishes, we obtain a Poisson's equation governing the electric

potential

V - (o(r)VV(r)) = V - P(r), (1.3)

which can be used to compute the potential distribution for an arbitrary conductivity

distribution o(r) using numerical techniques. Once the total current is known we



can use the Ampere-Laplace law, solution of the quasi-static version of Maxwell's

equations, to calculate the magnetic field

B(r) = 4 J(r) x r - r' 3 (1.4)
4x J||r - r'||

This equation can be expressed as (c.f. [ ])

_# Po - r-r'
B (r) = J(J(r) + V(r)V'o-(r)) x 3r- 8r v', (1.5)

47r ||r- r'||

where the differential operator V' applies to the primed coordinates.

To solve using these equations, the conductivity distribution o(r) is needed. In

practice, the conductivity is often assumed to be piecewise constant. In this case,

the electric potential and the magnetic field can be calculated as a solution of in-

tegral equations involving potential values on the surfaces separating compartments

of different conductivities ([ , , 1). The usual practice is to construct a three-

compartment model of the head, dividing the cranial volume in scalp, skull and brain.

Sometimes a fourth compartment is used for the cerebrospinal fluid (CSF) as well.

The integral equations for B and V are discretized using triangular tessellations of the

interface surfaces leading to a boundary-element model (BEM) which can be solved

using numerical techniques (e.g. [ ]). For more details on the BEM method and on

forward model calculations, see [ ].



1.4 The MEG inverse problem

Whereas the forward problem of MEG generation (predicting the measurements for

a given source configuration) has a unique solution, the inverse problem (estimating

the source configuration for a given set of measurements) is ill-posed in the sense of

Hadamard ([ ]). This is both because of the non-uniqueness of the problem (first

reported in [ ]), and because of the small number of measurement points (~ 102)

compared to the number of source locations (- 104). Additionally, small errors in

the sensor readouts can produce big changes in the estimates. Because of the ill-

posed nature of the inverse problem, source localization algorithms ought to impose

additional constraints in the solution to make it unique.

The source localization algorithms proposed in the literature can be classified into

two main families: parametric inverse algorithms, where the current source config-

uration is described by a small number of parameters (current-dipole models), and

distributed-source inverse algorithms, where the current source configuration is dis-

cretized to a large number of source locations with constrained or unconstrained

orientations. In this thesis, we will study distributed-source algorithms that are cor-

tically constrained, i.e., the current sources are restricted to the cortex, which is

previously delineated by segmentation of the patient's anatomical MRI.

Distributed-source algorithms can be further classified as static or dynamic, de-

pending on whether temporal correlations in brain activity are included in the formu-

lation of the solver or not. Static distributed-source localization algorithms assume

the measurements and brain activity to be temporally white, so that source activity

estimates depend on the current measurement only. Thus the additional constraints

making the solution unique are only imposed on the spatial configuration of the re-

covered brain activity. Different spatial constraints have been proposed: minimum

energy ([ , , , ]), maximum smoothness ([ ]), minimum current ([ ]), and

focality ([]). The spatial resolution achieved by any given static method depends

on the algorithm itself as well as on the subject's anatomy, geometry of the sensor

array, and instrumental noise levels. Moreover, this spatial resolution is not uniform



across all source locations. Quantification of the spatial resolution for the general

case is thus difficult, but [ ] estimated a sub-centimeter spatial resolution for most

brain locations using both theoretical considerations and experimental data analysis

for the case of the static MNE and dSPM algorithms.

In contrast to static algorithms, dynamic algorithms impose constraints on the

time evolution of source activity, thus modeling spatiotemporal correlations across

sources. Several studies have shown that by analyzing the complete time series, dy-

namic algorithms can achieve higher spatial resolution on EEG and MEG imaging

(]). Simple spatiotemporal dynamics imposing correlations across near-

est neighbors improved the quality of the estimates ([ , ]) and made the inverse

problem more observable ([]). Moreover, both neurophysiology and computational

models of the functioning brain strongly suggest that such spatiotemporal correla-

tions must exist. Cortical networks display oscillations that require spatiotemporal

interactions (c.f. ([ ]); intracranial recordings report strong spatial correlations at

distances up to 10 mm ( , , ]); and pyramidal cells spreading laterally at dis-

tances up to 6 mm provide an anatomical substrate for such local interactions ([ ]).
Perhaps more importantly, other functional neuroimaging modalities such PET and

fMRI have provided evidence of long-range spatiotemporal correlations in brain activ-

ity during resting-state and experimentally administered task periods ([ , , ]).

Existing algorithms favor computationally agile solutions that impose additional

spatiotemporal constraints on the neural dynamics in order to efficiently analyze the

data. These constraints can be classified in three different strategies: imposing sep-

arable spatiotemporal dynamics ([ , X]), expressing the activity in terms of basis

functions ([ ]), or providing approximated solutions to the full spatiotemporal model

that decouple space and time ([ , ]). The resulting spatiotemporal dynamics

are not based on neurophysiology and can not accommodate for different dynamics

than the ones used in the formulation. It would be desirable to develop a frame-

work that would let us include arbitrary spatiotemporal dynamics and, since the real

spatiotemporal dynamics are being investigated, and might be subject-dependent, an

algorithm that would help us choose among different candidate dynamics based on



the observed data.



1.5 Contributions of this thesis

1.5.1 KS+EM implementation

In this thesis we use a SSM framework to model the dynamics of the MEG time series

and its underlying brain activity. This allows us to use the inference, parameter

estimation, and model selection tools previously described in the SSM literature.

These tools will be described and extended in Chapter 2 of this thesis. Even though

previous works, most notably [ , , ], used a SSM framework to model MEG time

series, they did so by means of approximations to produce a computationally tractable

model. These approximations ignore cross-terms in the spatiotemporal covariance

rendering it separable, and reduce the full analysis to a collection of one-dimensional

problems. However, the resulting algorithm will not yield maximum likelihood (ML)

estimates, and its stability is not guaranteed. The authors justify these drawbacks

on the high computational cost of the solution when the full dynamical inversion

problem is addressed.

In this thesis we will use a fixed-interval Kalman smoother (KS) to obtain MAP

estimates of the activity (see [ for smoother derivation, and [ ] for original work),

and the expectation-miaximization (EM) algorithm to obtain ML estimates of the

SSM parameters, as was first suggested by [ ]. EM is guaranteed to converge to a

(potentially local) maximum of the full-likelihood, and the smoothed estimates are

statistically optimal for the parameters EM estimates from the data. Conveniently,

the KS offers as an intermediate result the likelihood of the data given the parameters,

so that model selection criteria can be easily computed from the KS+EM algorithm

results, making model-selection straightforward. We will avoid approximations, and

will obtain statistically optimal estimates of both model parameters and activity

estimates.

Unfortunately, the KS computational cost, analyzed in Chapter 2, grows cubically

with the state-space dimension, which can be on the order of thousand of sources for

the typical MEG inverse problem in distributed solutions. This has been so far the

main reason for using approximations or alternative algorithms in MEG data analysis.



To overcome this difficulty, we develop a distributed-memory implementation of the

KS that let us spread the computational load and the storage requirements across

a set of computers, thus making the KS of high-dimensional state-spaces possible.

On top of this, we will explain in Chapter 2 how the steady-state properties of the

filter and smoother covariances can be used to reduce both the number of required

computations and the memory footprint of our algorithm. This allow us to apply

high-dimensional SSMs on data sets with a large number of observations. To further

reduce the computational load of the KS+EM approach, we will show how a technique

proposed by [ ] to speed up the EM algorithm convergency is especially well suited

for our case, where the E-step is computed via the KS.

Because the problem of estimating the dynamic model from the data introduces

several more unknowns, and this would have a negative effect on the certainty of our

estimates, it is of utmost importance to reduce the number of free parameters needed

to describe our model, also known as model order. In the two algorithms that will be

introduced in the thesis, we strive to achieve a compact representation of the observed

data, and use model-selection criteria to reduce the model order to a minimum.

1.5.2 KronEM

KronEM, the first algorithm introduced in this thesis for MEG data analysis, will

address the characterization of the process noise in MEG. MEG recordings have been

shown to be heteroskedastic (i.e. not well described by i.i.d. innovations) in previous

works such as [ ], making a strong case for a hidden-state (i.e. SSM) representa-

tion. MEG sensor activity registered with the subject present with no task, known

as background noise, has been shown to be temporally correlated to some extent, as

in [ , ], where the spatiotemporal covariance matrix of such MEG data was modeled

using separate spatial and temporal components. The covariance that was modeled

in these works does not translate directly to our SSM framework, where the observed

background noise would be a function of both the process and measurement noise, the

former related to the dynamics and the later to the acquisition device. In developing

KronEM, we will show how a simple SSM structure can generalize the spatiotempo-



ral structure used in previous works ([ , ]) that could explain up to - 80% of the

noise. KronEM efficiently parameterizes the SSM as a combination of spatial signa-

tures modulating second-order autorregresive processes, each presenting a different

resonant frequency. In comparison with previous attempts at modeling resting-state

activity, KronEM identifies the required number of resonant frequencies needed to

explain the data, and can estimate an arbitrary number of said components, making

it a useful addition to traditional single-trial frequency analysis techniques such as

multi-taper frequency analysis. In Chapter 3, we set the mathematical foundations

of the algorithm building on the KS+EM work of Chapter 2 and demonstrate how

KronEM can correctly identify the number of frequency components in a simulated

dataset using data alone. We then analyze experimental MEG data from a resting-

state study, where KroneEM identifies individual frequency components at frequen-

cies consistent with well-known physiological rhythmic activity. We then compare

KronEM estimates with multi-taper based topographic maps of frequency, finding

KronEM estimates more spatially localized than those provided by multi-taper spec-

tral estimates generated from the same data.

1.5.3 StimEM

StimEM offers a new approach to evoked response estimation that includes the system

dynamics in the inference process, thus better accounting for transient system states

that could impair the final estimates if plain event-locked averaging was to be used. To

accomplish this, the KS+EM algorithm is modified to better process evoked response

studies, where an external stimulus is presented to the subject under study and the

desired output of the algorithm is the effect of such stimulus. The usual way of

dealing with this kind of studies is event-locked averaging, which assumes that the

brain response to the stimulus does not vary across the study except for additive noise.

However, both the response and the background noise vary across trials; therefore, the

estimates can be expected to become more reliable and accurate when these effects are

accounted for. In [ ], a per-trial scaling factor is introduced to deal with habituation

and spike inversion effects. In [ ], a more complex factor analysis is introduced that



accounts for variations in background noise. Because no hidden process is employed

in these studies, the background activity of the brain is included in the definition

of the noise. Our SSM framework does not account naturally for non-linear scaling

factors, but the effects of the background activity of the brain can be modeled by using

the estimated brain dynamics and an extra stimulus-locked stimulus effect. StimEM

includes this stimulus effect term in its generative model, characterizing such effect

both temporally and spatially; it also provides with ways of doing ML estimation of

the stimulus effect at the same time than the intrinsic brain dynamics.



Chapter 2

The KS+EM algorithm

In this chapter we will introduce the state-space model (SSM) framework that will

be used in all following chapters. Because a high computational cost has precluded

previous attempts at SSM analysis of MEG data, we review the algorithms used for its

inference focusing on the causes for its elevated computational cost. We then propose

a set of modifications that reduce said computational complexity, and produce as a

result an accelerated SSM framework that will be the foundation of the two algorithms

proposed in the following chapters, KronEM and StimEM, making it possible for them

to apply the SSM inference algorithms to the high-dimensional state-spaces required

for MEG time-series analysis.

A SSM characterizes a set of observations by introducing a collection of hidden

states that follow a dynamic defined by the SSM parameters. In this thesis our

observations will be the EEG or MEG time series, and the hidden states will depend

on the estimation problem at hand and will vary in different chapters. Also, for a

given definition of the hidden states, say brain activity, we can have more than one

SSM (or model) to choose from. This chapter provides with the tools to tackle the

inverse problem of estimation in this scenario, which can be broken down in three

pieces: (1) estimating the hidden states, (2) estimating the model parameters, and

(3) choosing between different possible models.

We formally define a SSM in Section 2.1, discuss some of its characteristics and

briefly introduce different hidden-state choices that will be used in later chapters.



The EM algorithm is introduced in Section 2.2. The EM algorithm deals with parts

(1) and (2) of the complete estimation problem; it provides with both estimates for

the SSM parameters and the hidden states. EM is an iterative algorithm that brokes

the estimation problem in two steps: the E-step estimates the hidden states for the

given estimate of the SSM parameters, while the M-step estimates the parameters

of the SSM for the hidden state estimates computed in the E-step. This two steps

iterate sequentially in a set of initial estimates until a given convergency criterion is

met. The E-step and M-step are covered in Sections 2.3 and 2.4 respectively.

The E-step is the most computationally intensive part of the EM algorithm. Due

to the SSM structure, the E-step can be accomplished quite efficiently using the

Kalman smoother (KS). As this is the most computationally intensive part of the

algorithm, we will refer to the method as KS+EM. Due to the dimensionality of

the state-spaces we will be analyzing in the thesis, the application of the KS+EM

algorithm is challenging, because of its high computational cost and the amount of

memory it requires. To alleviate this, the algorithm was implemented in a distributed

memory system, the KS was modified to reduce the number of computations, and the

EM algorithm was modified in order to reduce the number of required iterations. All

these are described in Section 2.5.

To solve the remaining part (3) of the estimation problem, we will need to choose

among different competing SSMs to explain our data. This can be done using infor-

mation criteria that will be described in Section 2.6. This criteria rely on approxi-

mations will allow us to choose the least complex model that describe our data well,

a characteristic known as parsimony.



2.1 State-space model

State-space model formulations are a data-augmentation strategy to model the dy-

namics of a time series y(t) by means of a hidden, unobservable process x(t), which

is instantaneously related to the original time-series under consideration ([ ], 9.1).

In this thesis we consider discrete-time invariant SSMs, where the dynamics of the

hidden process are described by the state transition equation

x(t) = Ax(t - 1) + Bu(t) + v(t), t = 1, ... , n , (2.1)

where the state-transition matrix A defines the spatiotemporal dynamics, the matrix

B defines the effect on the hidden process of the inputs to the system u(t), and

all other variations of the hidden process are described by the temporally white and

normally distributed innovations v(t), also known as process noise. The instantaneous

relationship of x(t) and y(t) is described by the observation or measurement equation

y(t) = Cx(t) + w(t), t = 1, ... , n , (2.2)

where the observation matrix C defines the observation model, and the temporally

white and normally distributed w(t), known as measurement noise, captures all

sources of variation independent of x(t).We will assume that the observation noise

w(t) and the process noise v(t) are independent and zero-mean, but should this condi-

tion not hold all what follows could be modified to accommodate for such correlations.

The correlation structure that defines the SSM can be compactly described by

x(0) x(0) Ao 0 0
E v(m) v(m) 0 6(m - n)Q 0. (2.3)

w(n) w(n) 0 0 6(m - n)R

In this thesis we will apply the state-space formulation to two different scenarios,

and the corresponding models will be fully described in the following chapters. In



order to motivate the reader, we will briefly explain the two scenarios here:

" Spatiotemporal characterization of baseline activity: In this scenario,

the measurements y are obtained when no stimulus is present, so that u(t)

0. Since rhythmic activity is of physiological importance, and it is known to

describe the majority of temporal correlations in resting-state activity, and since

autorregresive process (AR) describe rhythmic activity efficiently, we will model

the data as a linear combination of several AR processes. The hidden process

of the SSM, x, will consist of the present and past values of such AR process,

the transition matrix A will define the coefficients of the AR processes, the

process noise covariance matrix Q will define the power of each AR process, the

observation matrix C will define the spatial signature of each process, and the

measurement noise covariance matrix R represents the amount of variance in

the measurements not captured by the model.

* Evoked potential studies: In this scenario, we obtain the measurements

y resulting from applying to the subject a stimulus u = {u(t), t = 1, ... , n}

that is known, and we want to estimate the input effect matrix B. In this

case, x(t) represents the brain activity at time point t, A describes the spatial

spreading of activity in the brain from one time-point to the next, Q gives

an idea of the increase in brain activity among two consecutive samples, and

B describes the effect of a given input in any of the source locations where

we are estimating brain activity. The observation model of Eq.2.2 is known

in advance, with C given by the BEM forward model, and R estimated from

empty-room measurements. We will have to estimate both A, B, and Q. We

will also introduce some physiologically-inspired constraints in A to reduce the

dimensionality of the model to make estimation possible given the size of the

data set.

State-space models are well-studied in the literature, and offer very efficient algo-

rithms for inference and estimation. We briefly review now some of the characteristics

that justify their popularity in modeling.



Because of the structure of the model, the hidden states x(t) are a Markov process,

p(x(t)|Jx(t - 1), x(t - 2), . .. , x(0)) = p(x(t) |x(t - 1)), (2.4)

and the observations yi only depend on the hidden state at that time point, so that

the full-data probability can be expressed as

p(x(0), x(1), . . , x(n), y(1), . . . , y (n)) = p(x(0)) (p(x(t)Ix(t - 1))p(y (t)Ix(t)))
t=1

(2.5)

This factor graph structure corresponds to the graphical model

() x(1) )- ()~ - -x- (2. (2.6)

y(l) y(2) y(3) y(n)

only components of the graphical model that are joined by a line have non-zero

elements of the precision matrix that are non-zero.

It is because of this sparse precision matrix that we can do estimation in the

SSM very efficiently. The algorithm first described by [ ] exploits this covariance

structure to estimate the values of the hidden parameters x ={x(t), t= 0,... , n}

from the observed measurements y = {y(t), t = 1,.. . , n}: it works its way from the

first hidden state value x(0) to the last value x(n) and then goes back to propagate

the information.



2.2 The Expectation-Maximization algorithm

The expectation-maximization algorithm (see [ ]) provides with estimates of the

SSM parameters 0 using the measured data y, without knowing the values of the

hidden parameters x. It does so by maximizing the likelihood of 0,

ll(0) = log (p(y|O) , (2.7)

in a recursive way. Starting from an initial guess 00 we proceed iteratively: In iteration

n + 1 we have the current estimate 0, and want a new estimate 0 such that

(2.8)

We can lower-bound the increase in likelihood obtained replacing 0, by 0 is

ll(0) - ll(0n) =

= log (p(yI0)) - log (P(yOn))

= log P(Y x, 6)P(x10)0x) - log (P(YIOn))

= log p((xIY, On) xP(Y1X O) 0)X - log (p(yIO))
f~p(xIy, On)f

(2.9)

> JP(x Y, n)log

P(xIY, 0n)log

A (010n) ,

p(y1x, O)p(x1O) OX - log (P(YOn))

p(xly, O) |6)

where in 2.9 we use the law of total probability, and in 2.10 we use the Jensen

inequality.

(2.10)

(2.11)

11l(0) > L (On) .



We can prove that the bound is tight in

A (6O O)=

p(xjy, O6)log

p(x y, O6)log

p(y X,On)P(X On) \x
xp(xIy, On)P(YOn)

( P(Y, X10n)N Ox

If we now choose On+1 so that A (0n+1 O) is maximized, Eqs. 2.11 and 2.12 imply

that we will either move to a new estimate producing higher likelihood or we will stay

in the current estimate if it locally maximizes the likelihood. This updating strategy

is very clearly explained in a graphical manner in [ ],and lies at the core of the EM

algorithm. Formally,

= arg max {A(6O|6)}
0

= argrmax p(xly,

= arg max P(xly,

= arg max p(xly,

= arg max {Exly,oj{log(p(y, x|O}} ,
0

where we define the expected log-likelihood as

G(O) Exly,0n {log(p(y, xO}.

Equation 2.13 shows the recursive nature of the EM algorithm. Starting in a

initial candidate 0, we iterate on the

* E step: Determine the form of the expected log-likelihood G(O) for the current

estimates.

" M step: Maximize G(O) with respect to 0 to obtain the new estimate.

=K
=K

(2.12)

On+1

9X)log ,O)P(x 0))
ax) }

O6)log (p(y x, 6)p(x|O)) ax

On)log (p(y, x|1)) Ox}

(2.13)

(2.14)



2.3 E step

In this section we will describe the E step for our SSM. In Section 2.3.1 we obtain

an expression for the expected log-likelihood of the SSM given our parameters, that

is G(6). The expression obtained depends on the smoothed estimates for the hidden

states. This estimates are efficiently computed using the Kalman smoother (KS),

which is described in Section 2.3.2. Because this is by far the most computationally

demanding part of the KS+EM algorithm, we provide some observations about the

structure of the KS in Section 2.3.5. Finally, in Section 2.3.6 we rewrite G(O) using

sufficient statistics computed from the KS results.

2.3.1 Expected log-likelihood for the SSM

For the SSM in Eq. 2.1-2.2, the full likelihood of the observed data y and hidden

states x given the parameters 0 {A, B, C, Q, R} (Eq. 2.7) can be written using the

innovations form as

11(0) = - log|Ao- (xo - po) AO (xO - po)
2 2

-- log|Q - (x x_ u)TQ--1(Xt x_1-B
2 S (xt - Axt_1 - But)(xt - Axt-1 - But)

t -1

n n

2 logIRI - 2 E (yt _ CXt)T R- (Yt - Cyt). (2.15)

Then, using ab T =tr(b Ta) ,

11(0) 1 loglAol - I tr(A-l(xo _ PO) (Xo _ P) T)2 2

n 1lgQ - t(5Q(xt - Axt- 1 - But) (xt - Axt-1 - But )T)
t=1

logIRI - -1tr(j5 R-1 (yt - CXt)(yt _ CXt)T); (2.16)
t=1



and by taking expectations we obtain the expected log-likelihood

G(O) =

llog|Aol - Itr(A-E{(xo - po)(Xo - po)T2 2

-2log|Q| - 2tr( Q-1E{(xt - Axt-1 - But)(xt - Axt_1 - But)Tly})

- log|RI - - Cxt)(yt - CxTIy) (2.17)

To compute the conditional expectations in eq. 2.17 we will need the smoothed

estimates for x,

xiln E(xly1,... ,yn),i =1 ... n (2.18)

Agin E((xi - xii1)(xi - xinT9)

which will be efficiently computed with the help of the Kalman smoother.

2.3.2 The Kalman smoother

In the E step, we want to obtain maximum likelihood estimates for the non-observed

values x given the observed values y. On the SSM described by Eq. 2.1-2.2 this can

be done quite efficiently using the Kalman smoother first proposed in [ ]. The KS

is a two pass algorithm: the forward pass computes the filtered estimates, i.e. an

estimate that uses all present and past data relative to the value to be estimated;

and the backward pass computes the smoothed estimates, i.e. an estimate that uses

all present, past and future data relative to the value to be estimated. For the

forward pass the reader can consult the original work by Kalman. For the smoother,

a particularly elegant derivation can be found in ["], although the results were first

obtained for the continuous case in [ ].



2.3.3 Forward pass: filtering

In the first pass we compute

xig A E(xilyi,...,yi),iZ'= 1,... , n

AigA E((xi -- xig)T)l..., yi) I = 1,..., n.

First we obtain Aip, using the initial conditions

A1 |o = Ao,

Ki = A1|OCT (CA1 |0CT + R)- 1,

A111 = A1|o - KCA|o;

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

and then compute Agil for the remaining steps using the recursion Aj_ 1 1- --* Aili

given by

Aili_1 = AAj- 1 |_ 1 AT + Q

Ki = Aig 1iCT (CAi 1 1CT + R)-'

= Agg_ 1 - KCAjg_ 1 .

(2.25)

(2.26)

(2.27)

Once we have obtained the values for the Kalman gains Ki, we can compute xigl

using the initial conditions

Xlo = Po,

xlii = xilo + K1(y1 - Cxilo);

(2.28)

(2.29)

and then compute xiis for the remaining steps using the recursion xi_1|i-1 xili given

by

xii-1 = Axi-1p-1,

= xili 1 + K(y - Cxili_1).

(2.30)

(2.31)xili



2.3.4 Backward pass: smoothing

In the second pass we compute the smoothed estimates

x' iin E(xilyi, ... , yi, ... , yn), i = 1, . .. , n (2.32)

Ailn E((xi - xiln)(xi - xiin) y , .. ) ,yi, . .. , yn), i ,... , (.3

where the notation stresses the fact that the smoothed estimate xin incorporates

future measurements {yj, i > n}.

As was the case in the forward case, we can first compute the smoothed error

covariances (Eq. 2.19) and then proceed to compute the filtered estimates (Eq. 2.18).

The initial conditions are trivial for the smoother, since for time step i = n the filtered

and smoothed estimate and error covariance are the same.

We obtain the smoothed error covariances using the recursion Ailn -* Ai 11n given

by

Si = AjIjAT A-' (2.34)

Ail = Aili - Sj(Aj+11g - Ai+1|n)SiT; (2.35)

and then compute the smoothed estimates for the previous steps using the values of

the backward Kalman gains {SJ} and the recursion Xjln - Xi_1 n given by

xxn xig + Si(xi+1|n - xi+11i) (2.36)

2.3.5 Remarks

For reasons that will be discussed later in Section 2.5.3, it is important to note that:

e The computation of the filtered and smoothed values (Eq. 2.20 and 2.18) can

be done independently from that of the error covariances (Eq. 2.21 and 2.19),

by first computing the error covariances and then using the resulting {K, Sj}

to compute the filtered and smoothed values.



* Both the filtered and smoothed error covariances depend solely on the param-

eters of the model {A, B, C, Q, R, yo, Ao}.

2.3.6 Sufficient statistics

Once we run the KS on the data and obtain the smoothed estimates for x and its

corresponding smoothed covariances, Eq. 2.17 can be rewritten by expanding the

associated conditional expectations

(2.37)E{(xo - p1o)(xo - po)TjY} = Aoin + (xoln ~ po)(Xoln - po)T

E{((xt - Axt_1 - But)(xt - AxtI - But)Tjy} =

(xtin - Axt-1n - But)(xtin - Axt-in - But)'

+Atin + AAt 1 jnAT - At,t_1|nAT - AAt_1,tinT

= Atin +XtinXtIn T A(At-1n + xt- 1 nxt-anT )AT - (At,tun + xtinxt-nT)AT

- A(At_1,tin + xt_1|nxtn T )T + Butut T BT - Butxtin T

- xtinutTBT - TBT

{(Yt - Cxt)(yt - Cyt)T y} = (yt - CXtln)(yt - CXtin)T

+ Butxt 11nT AT

(2.38)

(2.39)+ CAt~n CT

where

A , E{ xix yo,...,yn}. (2(2.40)



For clarity purposes, this expressions can be simplified using

Nt A Atin + XtInXtin T

N4 + N X-1t1

Nt At,tIlin + xtinxt-lin

xtInut. -

xt-linut T

XtInYtT , and

ytyt

to rewrite 2.17 as

G(O) =

-Ilog|Aol - Itr(A- (Aoin + (x01 - po)(xoin2 - PO )T)) - log|Q|

-- tr(Z: Q-1 (Nt + ANtA T

t=1

- NtAT - AN T + BututTBT - BN T - NtBT

+ANtBT + BN TA T))

R-'(N, - CNt - (CNt)T + CNtCT)) (2.48)

Finally, by defining the sufficient statistics

7, and (2.49)

(2.50)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

n

Ni 4 N fori=1,...,
t=1
n

U E ZututT,

t=1

n
n logIRI - I tr (E
2 2



we can rewrite 2.48 as

G(6) =

2log|Ao| - tr(Ao1(Aoin + (xoln - po)(xojs - po)T))2 2

- log|Q| - 1tr(Q-1 (Ni + AN 2AT - N3 AT - AN 3 T + BUBT
2 2

-BN 4T - N4BT + AN5 BT + BN 5 TA T))

- log|RI - -tr(R- (N7 - CN 6 - (CN 6 )T + CNiCT)). (2.51)2 2



2.4 M step

In this section we compute the M updates for all the parameters of the SSM, 0.

Using the expression for G(O) obtained in the last section, we will differentiate with

respect to the parameters and find the new values that produce zero derivative, thus

maximizing the expected log-likelihood as required by the EM algorithm.

In Section 2.4.1 we assume all the parameters 0 are fully parameterized. Although

this is a valid strategy, it is important to note that the number of parameters grows

quadratically with the dimensions of the system, most notably so with A and Q which

depend on the dimensions of the hidden states. A fully parameterized A update will

have too many degrees of freedom in the case the hidden states dimensions are high,

which will be the case the models we will discuss later on. For this reason, in Section

2.4.2 we propose an alternative M step in which the matrix A is constrained to be

in the subspace spanned by a set of candidate matrices, {AJ, greatly reducing the

number of parameters to estimate. This formulation will be exploited in both KronEM

and StimEM. We will also contemplate the case in which part of the A matrix is fixed,

which will be the case in the KronEM algorithm, where the hidden state describes

AR processes and need to incorporate previous values in the transition matrix. The

new update resulting from this is derived in Section 2.4.3.



2.4.1 Fully parameterized 0

As discussed in Section 2.2, in the M step we set to maximize G(6), and we do so

finding the values {A, B, C, Q, R} that give a root on the partial derivatives:

Ba G(O)=

21a tr(Q-1(N1 + AN 2 A T - N3AT - AN3T + BUBT

-BN 4T - N4BT + AN5 BT

108

2 = A tr(Q1 (N1 + BUBT - BN 4T

+ BN 5 TA T))

- N4BT + AN 2AT

+A(NB T - N3T) + (BN 5 T - N 3 )A T))

= - atr(Q-(AN2A T + A(N 5 BT - N3 ) + (BN 5T - N 3 )A T ))

= -(Q- TAN 2T + Q- 1 AN 2 + 2Q- 1 (BN 5 T - N3 ))2

= Q-(AN2 + BN5 T - N3) ,

0 Q 1(AN 2 + N 5T - N3 ),

A = (N3 - BN 5 T)N 2 -.

0a G(O)z
B

108
-21 tr(Q-1 (Ni + AN 2AT - N3AT - AN 3T + BUBT

-BN 4T - N4BT + AN 5 BT + BN 5TA T))

108
= 2 8Btr(Q -1(BUBT + B(N 5 T AT - N4 T) + (AN 5 - N4)BT)

= Q-(BU + AN 5 - N4 ) ,

0 = Q-l($U +N 5 - N4 ),

B = (N 4 - AN 5 )U- 1 .

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)



0
0 G (-)C

2aCtr(R-(CN1 CT - CN6 - (CN6 )T

- 2R1(CN1 T
2

+ CN1 - 2N 6T),

0 = - Nl(ON 1T + ON12

C N6 NTNl*

- 2N 6 T) ,

(2.58)

9G(6)

n 10.I8~

2 28Qtr(Q-1

-Ql + IQ-1(N1 + AN 2AT

2

(N1 + AN 2AT - N3AT - AN 3T + BUBT

-BN 4T - N4 BT + AN5 BT + BN 5 TAT))

- (N 3 - BN 5 T)AT - A(N 3 - BN5 T)T

(2.59)
+BUBT - BN 4 T - N4 BT)Q 

- (N 3 - $N 5T)AkT - A(N 3 - $N 5 T)T + $U$T+ Q-1(N 1 + AN 2AT

-$N 4T - N 4 $T)Q^-1,
1 TQ(N + ~(AN 2XT
n

- (N 3 - $N 5 T)T - A(N 3 - $N 5T)T

(2.60)
+f3U$T - $N 4T - N4 $T) .

&
aG(6)=

n 10 T

2 R- ~ 21 atr(R-(N 7 - CN 6 - (CN6 )T

=- R±- + 1R-(N 7 - CN 6 -(CN) T

0 = - ±n- + IR(N7 - ON6 - (ON 6 )T
2 2

+ CN1 CT))

+ CN 1CT)R-l,

+ ON 10T)N-l,

ON, - (ON 6 )T

(2.57)

1 N
R=-n -

(2.61)

+ ON10 (T) (2-62)



In solving for the above we used the matrix derivatives (from [

a
-tr(AXB)
ax

atr(AXBXT )
ax

= tr(BTXTAT)
OX

tr(X-1 B)
OX

Ox

ATXBT + AXB,

A ATBT

= -(X-BX-1)T,

= (X--)T

We can see that in addition to the sufficient statistics Ni, Q depends on A and B,

B depends on A, and A depends on B. So when solving simultaneously for A and B:

A (N3 - $N 5 T)N2-

= (N3 - (N 4 - AN)U-NjT)N2 1 ,

AN2 = N3 - N4 U-N 5 T + AN 5U-'N 5
T

A(N 2 - N5 U-lN5 T)

A = (N3 - N 4 U-N 5 T)(N 2 - N 5U-lN 5 T)-1

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

Piecing all together, the M step given the sufficient statistics computed from the

former E step is

= (N 3 - N4 U-N 5 T) (N 2 - N 5U-lN5 T)-1,

B = (N4 - AN5 )U 1,

a = NJ 1 ,

Q = (N1 + AN2 AT - (N3 - $N 5 T)AT - A(N 3 - $N 5 T)T
n

+$U$T - $N 4T - N 4 $T) , and

TiT + Nia T ).

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.63)

(2.64)

(2.65)

(2.66)

= N3 - N4U--IN5TI



2.4.2 Constrained A matrix

The number of free elements in A grows quadratically with the dimensionality of the

hidden-state x, and for a given number of observations, increasing the number of

free parameters will produce unreliable estimates. In order to reduce the degrees of

freedom introduced by A, we can add the constraint

Na

A = aAi , (2.77)
i=1

so that the constrained state transition matrix A can be described by the basis {Ai}

and a set of weights {di}. The elements of the basis {Ai} can be chosen so that they

are physiologically plausible. For example, when the hidden states x correspond to

brain activity on the cortex, each Ai can correspond to an exponentially decaying

function, as shown in figure 2-1.

In this scenario, the equation 2.52 turns into

aG (0) =a
1 a tr(Q-(AN2A T + A(N 5 BT - N3 ) + (BN 5T - N3 )AT))

1 & Na Na

tr(Q- 1(Z aiajAiN2A T )) -tr(Q (Ai(NB -N3
z=1 z=3

+(BN 5 T - N3 )AiT))

- NaNa a tr(Q--AiN2 AjT)) + 1 +

i=1 j11

-aitr(Q 1 AN2AjT) ajtr(Q-1(AN 2AjT + AjN 2AiT)) + c + -4' (B)
2 ~22

_ 1 Na 1+
= 2 a ,j + 2ci + I~ (B) , (2.78)

2 j = 1
j=1



T I cm T = 0.5 cm T = 0.25 cm

Figure 2-1: Illustration of a possible base {Aj} with decaying functions of distance.
We show topographic maps of a given row of Ai for different values of the spatial
decay T in the cortical surface.
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where we defined

ci A tr(Q1 (AiN 3
T + N3AjT))

(B) A -tr(Q 1 (AN 5 BT + BN TAiT))

+ AjN 2AjT)) .

To find the update for {a} we set

0 = G(A, $, Q, R),

Na

j2

aj Ti, + -ci + $(B).

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

Because this is true for all i = 1... Na, we can express these set of equations as

T& = c + V)($). (2.84)

Now, plugging 2.77 into 2.56, we get

$ = (N4 - diAiN5)U (2.85)

so that the M update for & and B have to be computed simultaneously for both.

In the case of Q = AI, is easy to show that

ci = A-tr(AiN3
T + N3AjT) = 2A-tr(AiN3 T)

= -A-tr(AiN 5 BT + BN 5T AT) = -2A- 1tr(AiN5 BT )

= A-1 tr(AjN2AjT + AjN 2A T) = 2A-tr(AiN 2AjT) ,

(2.86)

(2.87)

(2.88)

Tijy tr(Q-'(AiN2AjT



and because all A terms cancel in 2.84, we can redefine them as

ci= 2tr(AN 3
T )

Vus(B)

TUS&

= -2tr(AiN 5B T)

= 2tr(AiN 2AjT )

= Cus + 9"s($)

(2.89)

(2.90)

(2.91)

(2.92)

To solve for B and @"/, we are going to use the vec( operator, that converts a

matrix in a column vector that has stacked in order all the columns of the original

matrix. This way we can rewrite 2.90 as

Oju(B) = -2vec(AiN 5)T vec(), (2.93)

and defining

2vec(A1N 5)

2vec(ANa N5

Ti

) T
(2.94)

(2.95)K A [vec(ANsU-1,... , vec(ANaNSU-1)]

we can rewrite 2.92 and 2.85 as

vec(B) + K&

Mvec(B) + TUS&

- vec(N 4 U-1)

us
-C

This way, we can solve the M step for both B and & by solving the system

IN,2N2 K

M T""

vec(B)

d

vec(N 4U-1)
c"us

(2.98)

The system is very sparse, because the dimensions of the square matrix of the left

hand side of the equation are N Nu + Na, and out of those N Nu are occupied by the

(2.96)

(2.97)

M A



identity matrix. This sparsity can be exploited by using the block matrix inversion

formula: A Cy
LC D i -D-CS-1L D

-ABST1

SAS-1
(2.99)

where A and D are square non-singular matrices and

= D - CA-B

= A - BD--C

(2.100)

(2.101)

are the Schur complements of A and D, respectively. In our particular case, A = I,

so that Eq. 2.99-2.101 turns into

L II

LC

B]

D

-BSA 1
(2.102)S-1SD

-D-'CS-l

SA = D - CB,and

= I - BD- 1C

If we apply this to Eq. 2.98 as it is we would still have to invert SD,

(2.103)

(2.104)

which is

undesirable, as it is a square matrix N N columns wide. To avoid this, we make use

of the Woodbury matrix identity,

(A + UCV)- = A-' - A 1U(C 1 + VA-U)VA-1,

which applied to Eq. 2.104 gets

S-1 = I + B(D - CB)-C = I + BSI1 C

which only needs the inversion of a Na sided square matrix.

(2.105)

(2.106)



Piecing all together, we get

IN2N2

LM

K

TUS

vec(N 4U--1)
c"us

-KZ
Z

vec(N 4U-1)

Cus

Z = (T"s - MK)- 1 (2.109)

and finally, the M update for this case is

= -T""~1 M(IN2 Nu + KZM)vec(N 4U- 1 ) + ZcU,
Na

A = [dEAi ,

vec(B) = (IN, Nu + KZM)vec(N 4U- 1 ) - KZcu

(2.110)

(2.111)

(2.112)

2.4.3 Adding a constant term to the A matrix

If we want part of the matrix A fixed, i. e.

A = Ao + Avar, (2.113)

where AO is fixed a priori and Ava, is estimated from the data. Because the derivatives

of G with respect to A and Avar are the same, we can rewrite the update equations

2.54 and 2.56 as

Avar = (& 3 - $N5T)N2 , and

$3 = (N4 -AvarN 5 )U- 1

(2.114)

(2.115)

vec(B)]

a

IN2N, + KZM

-T"-M(INN. + KZM)

where

(2.107)

I(.108)



where we define

A - AoN-N 3 - 0 2, and (2.116)

(2.117)A - AoN-N 4-A0 5.

With this reformulation, the update equations 2.72, 2.73,2.74, 2.75, and 2.76 turn

into

= (N3 - N4 U-N 5 T)(N 2 - N 5UlN 5T)-1,

A = Ao+ var ,

B = (N4 - varN 5 )U- 1,

C = NJTN ,

- (N 3 - BN 5 T)AT - A(N 3 - BN5 T)'

- - NB) , and

+ Ni T) .

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)

(2.123)

If we want to include the fixed term for A in the constrained model, we rewrite 2.77

A = Ao + Z aA (2.124)
i=1

we can interpret this as in 2.77 where aNa+1 = 1, ANa+1 = Ao, and we don't update

aNa+1 in the M step. This way we wan rewrite all that has been shown in the last

section up to equation 2.78 where we substitute ci for ei,

4 tr(Q-1 (AiN + iT)) (2.125)

in equation 2.89 we substitute cy" for EY',

OS = 2tr(AiN'),

Avar

-(N 1 + AN 2AT
_ n

R = (N7 - aN6 -(aN6)T
n

(2.126)



and equation 2.96 turns into

vec(B) + K& = vec(N 4U-1), (2.127)

and the final update for this case is

& = -T"~ 1M(IN2 N,2+ KZM)vec(N4U- 1 ) + Ze"", (2.128)

Na

A Ao+ &dAi, (2.129)

vec($) (IN, N. + KZM)vec(N4 U- 1 ) - KZi"S. (2.130)



2.5 Accelerating the KS+EM algorithm

2.5.1 Distributed implementation

To reduce the time devoted to computations, we produced a distributed implementa-

tion of all the KS+EM routines. Even though this does not reduce the computational

cost of the algorithm, it reduces the running time by distributing computations among

different computing nodes, and it reduces the amount of memory needed per proces-

sor, making it possible to store all the required data structures in random access

memory and hence reducing the running time.

The KS+EM algorithm described in this chapter was first implemented using

Matlab (@ The MathWorks, Inc.). All routines were then ported to C++ using the

distributed memory linear algebra libraries ScaLAPACK (included in the Intel Math

Kernel Libraries) for computations and the MPICH implementation of the message

passing interface (MPI) for inter-node communication. ScaLAPACK uses the block-

cyclic distribution to store dense matrices. While this makes it very efficient balancing

the computational load of matrix multiplication, factorization and such across nodes,

it also calls for data redistribution routines. All this book-keeping was encapsulated

in a distributed matrix (pMatrix) class, that communicates with MPI to rearrange

the data as needed by the current number of processors and their configuration. Then

a class pKSmoother uses pMatrix objects to implement the KS+EM algorithm. To

reduce the memory footprint of the algorithm, a pMatCollection class was generated

to handle collections of distributed matrices that were backed up on disc and accessed

only when needed. This was used to store the predicted, filtered and smoothed

covariances the KS calls for. Two different versions of this class were generated, one

using the low-level.routine memmap to speed up disk access, and one using standard

fopen/fread/fseek system calls. Even though the memory mapped version of the

class did improve performance, the standard reading routines were favored at the end

because memory mapping would exhaust the virtual memory of the computing nodes

rather quickly. To deal with distributed reading/storing of matrices, we decided to

use the local hard drives of each node and parallel reads in each, effectively increasing



the perceived bandwidth of the system as more computing nodes were recruited for

the computations.

To find the optimal number of processors that should be used for a given SSM, one

has to look at the speed-limiting operation. In KS+EM, matrix multiplication and

matrix inversion are the most prevalent operations, and among them, the most costly

are inversions and multiplications of square matrices whose size is the dimension of the

hidden state. For different hidden state dimensions, the distributed routines will show

different efficiency behavior when the number of computing nodes is increased, de-

pending on whether the routine is communication-intensive or computation intensive.

For computation-intensive routines such as matrix inversion or matrix multiplication,

the speedup will be maximum when all computation nodes are working all the time;

this means that small hidden state dimensions can show sub-unit speedup due to

communication overhead, whereas large hidden state dimensions will make the speed

up peak once all nodes are fully working. In communication-intensive routines, such

as the vec() operator where all there is to do is data rearrangement, speedup will be

typically sub-unit when we increase the number of processors, and will keep reducing

when the number of nodes is increased because all the nodes will be doing is exchang-

ing data through the communication network. Because all these behaviors are very

dependent on the underlying processors in each node, their memory architecture, the

libraries used for computations, and the communication routines and hardware, is

difficult to predict what will be the optimal number of computing nodes for a given

matrix size. We did some simulation studies where a given routine throughput was

averaged across 1000 trials for matrix multiplication, matrix inversion and vectoriza-

tion. The results can be seen in figure 2-2. For a matrix of size 1000, no more than 16

nodes are optimal, whereas for matrices of 2500 and 5000, increasing the number of

nodes to 25 is recommended. We found the KS+EM algorithm to scale with efficiency

above 90% for up to 64 computing nodes.
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Figure 2-2: Speedup as a function of number of computing nodes for the distributed
C++ implementation of matrix multiplication (upper left), matrix vectorization (up-
per right), matrix inversion (lower left), and positive definite matrix inversion (lower
right). All but the vectorization are computation-intensive functions, and accord-
ingly they show increasing speedups with increasing number of computing nodes. For
matrix sized 1000 and under, the speedup stops growing after 16 nodes, but keeps
growing with bigger matrices as discussed in the text.
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2.5.2 Computational cost of the E step

In order to analyze the computational cost of the equations in Sections 2.3.3 and

2.3.4, we use the following costs per operation (in floating point operations, or flops)

as reported in the documentation for the corresponding functions of the ScaLAPACK

implementation in Intel Math Kernel Libraries:

* A matrix multiplication AB -+ C where A c Rmxn, B e Rnx, and C c

RmxP, has a cost of - mnp multiplications. This could be lowered to ~ 4n2.8

for m = n = p when using the Sch6nhage-Strassen algorithm ([ ]) which is

unfortunately not implemented in ScaLAPACK PDGEMM function.

* A matrix inversion A- -+ B where A C R " is a non-singular matrix has

a cost of ~ 2/3n3 flops for the factorization (MKL ScaLAPACK PDGETRF

function) and a cost of ~ 4/3n3 for the inversion of the factorized form (MKL

ScaLAPACK PDGETRI function), for a total of ~ 2n3 flops.

* A matrix inversion A - B where A E R x" is a symmetric, positive-definite

matrix has a cost of ~ 1/3n' flops for the triangulation (MKL ScaLAPACK

PDPOTRF function) and a cost of ~ 2/3n3 flops for the inversion of the trian-

gulated form (ScaLAPACK PDPOTRI function), for a total of ~ n' flops.

With this in mind, and assuming that all the covariances involved in the formulae

are non-singular (and hence, being covariance matrices, are positive definite), we can

approximate the cost of each equation involved in the E step as:

" The computation of the filtered error covariance matrix takes

(N2 + 2N3) + (2N2Nd + 2NjNS + N + 2Nd)+ (2NdNZ + N2) =
(2.131)

2N3 + (2+ 4Nd)N2 + 2N NS + NZ + N3

* The computation of the filtered state takes

(Ns) + (2NdNs + Nd+ Ns) = Ns- + (2Nd+ 1)Ns + Nd (2.132)



* The computation of the smoothed error covariance matrix takes

(4N,) + (2N3 + 2N 2) = 6N3 + 2N2 (2.133)

e The computation of the smoothed state takes

Ns + 2Ns (2.134)

We arranged the cost of each equation following the powers of Ns, the dimension-

ality of our hidden state, since that is the biggest number. From this we make two

observations:

" The smoother is roughly three times as costly as the filter is, 2O(Ns) versus

60(Ns).

e The computation of the covariances is O(N3), much more costly than the com-

putation of the estimates which is O(Ns).

2.5.3 Steady-state Kalman Smoother: accelerating the E step

Because the most computationally intensive part of the E step is the computation of

the covariance matrices, we would want to skip that step whenever possible. Under

certain conditions, it can be proven that a given state-space model will converge to a

steady-state configuration in which the error covariances Aili, Ail do not depend on

i anymore, as explained in [ ].

Determining whether a steady-state Kalman filter and smoother exists involves

checking the stochastic observability and controllability of the SSM. The SSM will be

observable if the hidden states can be completely recovered in absence of noise, and

it will be controllable if we can drive the hidden states to a desired state from any ar-

bitrary starting point using the stochastic control variables, which in our formulation

correspond to the process noise. As [ ], we will use the check for stochastic control-

lability and observability described in [ ), which makes use of the eigenmodes of the



transition matrix A, its transpose AT, the observation matrix C, and the stochastic

control matrix which in our system correspond to S = Qi/2. The system will be

observable if and only if there is no eigenvector of A that is a null space vector of

C, i.e., if Axmode = AXmode, A # 0 and CXmode = 0, then the system is observable

if only Xmode = 0. For stochastic controllability, if ATXmode - AXmode, A # 0 and

ST Xmode = 0, then the system is controllable if only Xmode = 0. For a time-invariant

system as the ones described in this thesis, the Kalman filter and smoother will reach

a steady-state covariance matrix if the system is detectable and controllable, as it is

explained in [ ].

After each run of the M-step in the KS+EM algorithm, we check for the con-

vergency of the Kalman filter and smoother gains, that is the steady-state filtered,

predicted and smoothed covariances, and stop updating them once they converge to

reduce the computational load. Because in C++ we need to know how many co-

variances we will need to store, we use the doubling algorithm of [(] that provides

the covariance at step 2t starting from that at step t, effectively cutting from linear

to logarithmic the number of iterations to compute a given step covariance. This

way we check for convergency first, allocate enough memory to store the results until

convergency, and then proceed to compute the required covariances step by step.

2.5.4 Ikeda acceleration: accelerating EM convergence

One of the main drawbacks of the EM algorithm is its slow convergency rate, as

discussed in [9 ]. Alternative methods to maximize the likelihood as Newton-Rhapson

methods guarantee quadratic convergency once the results are near the real values

of the parameters to be estimated. This methods need to compute the observed

information matrix to work and the Jacobian of the M step. In the KS+EM algorithm

this information matrix becomes computationally costly to compute, since its number

of variables grow with the square of the number of parameters of the model. The

supplemented EM algorithm ([9], Chapter 4.5) compute the Jacobian matrix of the

M step component-wise, using a sequence of "forced EMs".

Other acceleration strategies have been proposed in the literature. Louis' method



([ ]) works by updating the result of the EM iteration by using the Jacobian matrix,

that has to be computed for each iteration. Again, this computation is costly and

hence the method is also computationally expensive.

Ikeda proposes a method in [ ] that reuses the EM code to obtain an update

strategy that is an approximation of the scoring method of Fisher, hence guaranteeing

best than linear convergency. The method computes the EM updated parameters Ot+1

from the set of parameters Ot and the data {yj}. Then generates a new dataset {y }
with the new parameters Ot+1, and runs EM in this new dataset using Ot as the initial

parameters, obtaining an alternative estimate Ot+1. The accelerated update is then a

combination of the original update and the alternative update,

6t (2.135)

EMJyi} EMjyi}

- Generatefyi}I

Ot+1 Ot+1I

Onew 20t+1 ~ t+i

Onew)

Although Ikeda's claims of threefold acceleration in convergency could not be repro-

duced in tests with the SSM KS+EM model, we were able to obtain two-fold speedups

in almost every situation. This would not be particularly advantageous in the stan-

dard case, since the Ikeda scheme requires of two EM cycles per one new estimate.

But in the case of the KS all the computational burden goes to the computation of

the covariance matrices (see sec. 2.5.2), and these computations only depend in the

parameters of the model 0 and not in the data (see sec. 2.3.5). Now, since the two

EM iterations that Ikeda requires are started with the same parameter values, we can

reuse the covariances computed in the first EM iteration for the second one, effec-

tively saving almost all the computation time in the second EM iteration so that the



two-fold convergency rate of the accelerated scheme cuts the computations required

in almost half.



2.5.5 Numerical issues

Scaling

Because of rounding errors and the recursive nature of the KS+EM algorithm, ma-

trices can become singular or non-positive definite easily after several iterations. To

ameliorate the situation, it is often useful to work with a rescaled system. To do so,

we will exploit the fact that the state-space formulation in 2.1-2.2 is non-unique. If

we introduce the variable change

x = Mxj , (2.136)

y = Nyj , (2.137)

then an equivalent formulation of 2.1-2.2 is

x = A*xi_1 + B*ui +v ,

*Y = C*x* + w* ,(2.138)

where the new parameters relate to the old ones as

A* = MAM- 1 , (2.139)

B* = MB, (2.140)

C* = NCM-1, (2.141)

v Mvi , and (2.142)

w Nwi . (2.143)

(2.144)

By choosing the scaling factors M and N carefully, we can whiten the data so that

the covariance computations are always done on a scale as close as possible to the

unity, if the condition number of the matrices involved is not too high. The scaling



factors used are

M = Q-1/2, and (2.145)

N = R- . (2.146)

Covariance inverses and determinant computation

Because both Q and R are big matrices, and the condition number of both can be quite

big, the computation of the determinant of both can be quite challenging. We make

use of the fact that both matrices are defined positive (because both are covariances)

to compute the inverse and the determinant using the Cholesky decomposition,

X=LLT. (2.147)

The inverse of the upper-triangular factor is computed, and from there is easy to

compute the full inverse,

A-' = L-T L--. (2.148)

To compute the determinant, we use

log(|A l) = 2log(|L I) = 2 log (Lij) . (2.149)

Computing the logarithm directly increases the numerical stability for badly condi-

tioned matrices.



2.6 Model selection

As discussed in this chapter's introduction, in order to apply KS+EM we will have to

choose among different SSMs to describe our data. We need the chosen SSM to closely

approximate the underlying distribution for the estimates of E to be reliable. Each of

the candidate SSMs will be described by a set of hyper-parameters F, and the model

selection problem is to select F, i.e., choose the model that induces an underlying

distribution closest to that which generated our data. Unfortunately, we do not know

this underlying distribution. We can go around this by using an information crite-

rion (IC), which gives an approximate bound on the Kullback-Leibler distance (KL

distance, see [ ]) between the originating distribution and the estimated one. An IC

employs the fact that the maximized log-likelihood of the data given the model, 11(F),

is a biased estimate of the desired KL distance. Then it computes a bias-correcting

term that depends on the model structure and is asymptotically independent of the

hidden states x. Using the IC, we can select the hyper-parameters which explain the

data without over-fitting. We run the KS+EM algorithm for different values of F,

obtaining 11(F), then approximate the KL distance for each value using the IC, and

finally choose the value of F producing the lowest KL distance.

There are different ICs proposed in the literature, and none of them provides with

a closed form for the SSM structures used in this thesis. All the information criteria

tend to over-estimate the KL distance when the degrees of freedom of the model, k,

get close to the number of data points available, nt. In several cases in this thesis, we

will be working in situations where nt ~ 2k.Finding an optimal IC for this scenario

is still an open problem, although it has been proposed that the appropriate bias-

correction term can be found with expensive Monte-Carlo simulations ([]). Instead

of striving for the optimal solution we will will base our decision on the examination

of several closed-form ICs:

* The Akaike information criterion (AIC, see [ ]),

AIC(F) = 2k - 211(F). (2.150)



AIC deviates considerably from the real KL distance when k ~ nt.

" The corrected Akaike information criterion (AICc, see [I]),

(k±+1)(k±+2)
AICc(F) = AIC(F) + 2 n, + k + 2 (2.151)

nt - k - 2

which provides less biased KL distance estimates for k ~ nt than AIC.

" The Bayesian information criterion (BIC),

BIC(F) = log(nt)k - 211(F). (2.152)

which provides with a consistent estimate, (AIC and AICc are efficient, see

for a description of BIC and discussion).



2.7 Summary

In this chapter we introduced the state-space model (SSM) framework that will be

used in KronEM and StimEM to analyze MEG time-series. Sections 2.2, 2.3 and 2.4

reviewed the Kalman Smoother and the EM algorithm, which together solve the dy-

namic inverse problem in its SSM formulation. Because KS+EM have been previously

avoided in the literature due to its high computational cost, in section 2.5 we provided

a computational analysis of the algorithms, and building on this we developed an ac-

celerated framework that reduces both the number of required computations and the

time spent per computation by using Ikeda acceleration, steady-state covariance anal-

ysis, and a distributed-memory implementation. With this accelerated framework it

will possible to analyze the high-dimensional state-spaces required for MEG analysis,

as following chapters will show.

Finally, section 2.6 reviewed information criteria that let us decide among com-

peting SSMs using the observed data. Together with KS+EM, information criteria

provide us with all the tools needed to solve the estimation and model selection

problems arising in SSM analysis of MEG time-series.
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Chapter 3

KronEM: ML spatiotemporal

covariance matrix estimation on

resting-state MEG studies

Stochastic characterization of EEG/MEG spontaneous (or resting-state) brain activ-

ity is a challenging task that that can provide with insights in brain functioning. Here

we introduce the KronEM algorithm, which provides maximum-likelihood estimates

of the EEG/MEG spatiotemporal covariance matrix. KronEM parameterizes the spa-

tiotemporal covariance as a sum of Kronecker products (KP) and models the data

generation with a state-space model. KronEM automatically decides on the number

of KPs needed and estimates their corresponding spatial and temporal characteristics

using only the data. KronEM uses a Kalman smoother coupled with the expectation-

maximization (EM) algorithm to estimate the model parameters, and an information

criterion to select among candidate models. We apply KronEM to both synthetic

data, single-channel experimental MEG data, and multichannel experimental MEG

data. In synthetic data, KronEM correctly recovered the underlying spatiotempo-

ral covariance structure, including the number of KPs; on single-channel MEG data,

KronEM correctly identified physiological rhythms; on multichannel data, KronEM

produced topographic frequency maps better resolved than the corresponding multi-

taper frequency spectrum estimates.



3.1 Introduction

Background noise is present in all EEG and MEG measurements. This background

noise is due to instrumental noise in the sensors and environmental disturbances

(measurement noise), and spontaneous brain activity unrelated to the given exper-

iment (brain noise). It is of interest to properly characterize background noise for

two reasons: employing information about measurement and brain noise leads to

source localization algorithms with smaller variances of the estimated parameters

(c.f. [ , , ]), and characterization of brain noise provides insights to brain

physiology (c.f. [ , , ,

Background noise characterization is challenging due to the dimensionality of the

problem: for a data set with nt time samples and ne channels, the spatiotemporal

covariance to be estimated has (ntnc)(ntnc + 1)/2 free parameters, clearly too high

for the data available in a typical EEG/MEG experiment. Furthermore, one cannot

guarantee across-epoch stationarity when the experiment becomes long. As a result,

a reduced number of samples can be used for estimation, and the estimates may be

unreliable. On top of that, the computational and storage needs of the estimation

process soon would become prohibitive even in modern computers.

To overcome this dimensionality and computational problems, [ ] assumed a

Kronecker product (KP) structure for the background noise covariance matrix, which

expresses the covariance as the KP of a temporal and a spatial term. This reformu-

lation cuts down the number of free parameters to (nt(nt + 1) + nc(nc + 1)) /2, much

lower than that of the full problem, in addition to be less computationally demand-

ing due to the properties of the Kronecker product algebra (see [,] for a review).

Further work by [;] assumed the temporal component of the covariance to be sta-

tionary, cutting down the number of parameters to nt + nc (nc + 1)/2, and proposed a

maximum-likelihood (ML) approach to estimate the parameters. However, the single

KP structure could not capture the brain noise structure when spatially segregated

brain areas present with rhythms at different frequency bands, a plausible scenario

due to brain physiology. In this case, each rhythm should be accounted for by a



different KP structure. Such situation was accounted for in the work of [ ], where the

background noise covariance was modeled as a sum of KPs (KP-sum), each KP can

accounting for a different rhythm. The approach showed promising results for 2 KPs,

with the first KP resembling a-rhythm activity and the second one being temporally

white and spatially broad, characteristics expected of measurement noise. However,

the estimation method proposed was mathematically complicated; only results for

two KPs were presented. In order to overcome the difficulties of the KP-sum model,

[ ] proposed a multi-pair KP approximation using either orthogonal or indepen-

dent spatial bases, and provide a computationally feasible way to estimate the model

components for an arbitrary number of KPs. Furthermore, [ ] nor [ provided a

principled way for estimating the number of KP components.

In this chapter we introduce KronEM, an algorithm that provides a robust, self-

contained method for background noise modeling and estimation. KronEM models

background noise generation using a state-space model (SSM) that naturally imposes

a KP structure on its spatiotemporal covariance. This SSM approach reduces the

number of parameters to be estimated and allows us to apply the estimation tech-

niques already developed for the SSM framework. We use a Kalman smoother (KS,

1) coupled with the expectation-maximization (EM) algorithm (as in [ ]) to re-

cover the maximum a posteriori (MAP) estimates for the SSM parameters, which fully

characterize the covariance matrix. In contrast with previous methods ([ , , ]),

the KronEM approach warrants convergency, allows for arbitrary number of KP com-

ponents, and offers tools for model selection to decide how many KP components are

needed for a parsimonious explanation of the data. Because the computational cost

of the algorithm is higher than in single-KP or multi-pair-KP approximations, our

implementation reduces the computation time exploiting the KS steady-state regime

to reduce the required number computations per KS run, and using the acceleration

scheme described in [ ] to reduce the number of iterations EM takes to converge.

The rest of the chapter is organized as follows: the Methods section introduces

the SSM at the heart of the KronEM algorithm, shows its relationship with previous

KP-based approaches, reviews the KS+EM algorithm used to estimate the model



parameters along with the modifications decreasing its running time, explains how

KronEM chooses a given model, including the number of KPs needed to explain the

data, and concludes describing the experimental data used in the example analysis.

We then describe the results of applying KronEM to synthetic data, to single-channel

experimental MEG data, and to multi-channel MEG data. We conclude with a dis-

cussion and describe possible future research directions.



3.2 Methods

3.2.1 Spatiotemporal covariance structure

Ideally we would want to isolate brain noise and measurement noise to character-

ize them separately. Unfortunately, since brain noise is to be observed through the

sensors, it will always be accompanied by measurement noise. KronEM models back-

ground noise using an additive model,

y(t) = yb(t) + n m (t) , (3.1)

where y(t) C RnsXl contains the EEG and/or MEG measurements at time t, yb(t) is

the component of y(t) due to spontaneous brain activity (brain noise), and nm(t) is

the measurement noise. As in former KP work ([ , , , ]), we assume that the

covariance of yb(t) changes with time, i.e. the process yb(t) is heteroskedastic, and

model the spatiotemporal covariance among sensors i and j at times m and n as the

product of a temporal and a spatial contribution,

E{y (m)y (n)} = Tm,nXi, (3.2)

where X E R n Xfl is the spatial term of the covariance, and T C RflXflt is the temporal

term. The spatiotemporal covariance of the brain noise can then be expressed as a

Kronecker product,

y (yb()T , ... yb(nt)T)T (3.3)

T 1,1X, ... T1,ntX

E{yby} - .T X. (3.4)

TN1X, ... Tt,lt X

We will assume measurement noise nm(t) to be temporally white. MEG mea-

surement noise can be readily recorded in the magnetically shielded room void of

a subject ("empty-room" noise), and it can be shown to be temporally white with



proper artifact rejection. In EEG, the dependency of noise in the skin-electrode in-

terface precludes its direct observation, but KronEM will assume it temporally white

as well.

3.2.2 KronEM model for the single KP case

Here we introduce the KronEM algorithm, which models the background noise data as

a linear transformation of a ng-th order multivariate autorregresive (MVAR) model.

For conceptual clarity, we will focus in the single KP case first, and will extend it to

multiple KPs in the next section.

In the single-KP model, the brain noise yb(t) in Eq. 3.1 is generated as the product

of a constant spatial component L E R nXf"l and a temporal component h(t) C R~ 'X,

modeled as a no-th order MVAR,

yb(t) Lh(t) and (3.5)
no

h(t) = [#3h(t - k) + z(t) , (3.6)
k=1

where z(t) ~ N(0, In.) and white, where In., fE Rnsxs is the identity matrix. The

MVAR order, n,, and its dimension, no, are hyper-parameters defining our model

and should be selected to fit the data as discussed in Section 3.2.5..

If we now compute the spatiotemporal covariance of the full measurement data y,

we get the desired KP structure of Eq. 3.4, where

X = LLT (3.7)

with rank(X) < min(n, ne), and

Tm,n = = E{hi(m)hi(n)}. (3.8)



Because the hidden process h(t) is MVAR, the matrix T is Toeplitz and symmetric,

Tm,n = g(im - n), (3.9)

so that the spatiotemporal covariance structure is identical to that reported in [ ],

where it explained - 80% of the background noise in MEG measurements. The

function g(t) can be computed applying the Z-transform to Eq. 3.6 to obtain

(t) = Z-1 (3.10)
En z - k I

where Z-- is the inverse unilateral Z-transform. The frequency response of g(t) can

be computed using the Fourier transform, F{g(t)}.

In the case n = n, Eq. 3.10 does not impose any constraint in the shape of g(t)

besides g(0) = 1. This is not a problem, since g(0) is a covariance and has to be

positive, and any further scaling could be accounted for in L. When ny < nt, we

get a more compact description of T but we constrain the functions g(t) that can be

described this way. Finding an appropriate no is part of the model selection problem

discussed in Section 3.2.5.

The key observation for KronEM is that Eqs. 3.1, 3.5, and 3.6 are equivalent to

the state-space model

x(t + 1) = Ax(t) + w(t), (3.11)

y (t) = Lx(t) + n m(t); (3.12)

where

x(t)T = (h(t)T, h(t - 1 )T ... , h(t - no + 1)T (3.13)



describes the hidden state,

i3, 0321 Ono

A 1, 0, 0 (3.14)
0, 1, ... 0

incorporates past values of h(t) in h(t + 1) and propagates past values of h(t),

w(t)T = (z(t + 1 )T 0 nT OT , - ) (3.15)

incorporates the noise n(t + 1) in the current value of T(t + 1), On, E Rflsxl is a zero

vector, and nm(t) C R X, I is a white, Gaussian process with covariance R that models

the measurement noise contribution to y(t).

3.2.3 KronEM model for the KP-sum case

As discussed before, [ , ] extended the single-KP model to include different spa-

tiotemporal components that can account for spatially segregated rhythms present in

the brain noise. In this case, Eq. 3.4 turns into

nKP

E{ybybT} - T() X(). (3.16)
1=1

The extension of the KronEM algorithm to such cases is trivial using the SSM

formulation of Eq. 3.11 and Eq. 3.12 with several hidden processes,

x( (t+1) = A(')x(')(t) + w(')(t) ,i - 1, ... , nKP (3.17)
nKP

y (t) = L (' x() (t) + n m (t); (3.18)
i=1



these equations can be combined in a single SSM as

x(t + 1) = Azxr,(t) + wE(t),

y(t) = LEx(t) + n'(t);

(3.19)

(3.20)

where the parameters for the combined SSM can be obtained from those of the single-

KP KronEM models for the pairs {Xj, Ti} as

t)T (x(1)(t)T, X(2)(t)T, ... , X

On), 0 , . Ons

t (= w( 1 ) (t)T W(2)(t)T, - - - ,

LE = (L01), L (2), -. -I L (nKP) )

flKP)T

On.

On.

A(nKP)

w(nKP) tT

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

The generality and power of the SSM framework is now evident: the estimation

procedure for the parameters of the covariance to be presented below will be identical

for the single-KP or KP-sum case, because the structure of the SSM described by

Eq. 3.19 and Eq. 3.20 remains unchanged after incorporating more than one KP term

in the covariance.

3.2.4 Parameter estimation

As evidenced by Eqs. 3.4, 3.7 - 3.10, the estimation of the spatiotemporal covari-

ance in the KronEM algorithm is equivalent to recovering the temporal parame-

ters #) and the spatial parameters L() for i = 1,... , nKP. The measurement

noise covariance, R, is also estimated from the data. The parameters are then

E = {R, #(1), ... , #(nKP) L(1) ,... , L(nKP)}. This assumes that we know the num-

xE(

wI(



ber of KPs to be estimated, nKP, the dimensionality of the hidden processes, ns, and

the order of the AR model, no, which is not the case. The estimation of the vector

of hyper-parameters F = {ns, ng, nKP} is discussed in Section 3.2.5.

We use the expectation-maximization (EM) algorithm to recover the parameters.

Because of the structure of our SSM, the E step uses a Kalman smoother (KS). The

filter was originally described in [;] while [ ] presented a particularly elegant deriva-

tion of the smoother. The combined application of EM and KS was first introduced

and thoroughly described in the classic work of [ ].
In the implementation of KronEM we introduced a couple of modifications to both

the E and M steps to reduce computation time and guarantee stability. In each run

of the KS (the E step) we check for observability and stochastic controllability using

the methods described by [ ], to ensure that the KS will behave properly. We then

employ the doubling algorithm as explained in [ ] to obtain the steady-state filter

and smoother covariance. If the steady-state filter and smoother covariance exist, we

use the steady-state values for both once steady-state is reached, reducing the time

spent in computations. The M-step is similar to that described in ['], but the 03()

update is an original contribution of this thesis. Because the algorithm converges

slowly, we make use of an acceleration scheme proposed by [ ] that uses a second M

update and typically cuts the number of EM iterations required for convergence to

half..

3.2.5 Model selection

As discussed above, the hyper-parameters F {n , n, nKP} define our model, and

have to be selected outside the KS+EM algorithm. These parameters define our

model, and we want a model that closely approximates the underlying distribution,

so that the estimates for E we recover with KS+EM are close to its real values.

Unfortunately, we do not know this underlying distribution. We can go around this

by using an information criterion (IC), which gives an approximate bound on the

Kullback-Leibler distance (KL distance, see [ ]) between the originating distribution

and the estimated one. An IC employs the fact that the maximized log-likelihood



of the data given the model, 11(F), is a biased estimate of the desired KL distance.

Then it computes a bias-correcting term that depends on the model structure and is

asymptotically independent of the hidden states x. Using the IC, we can select the

hyper-parameters which explain the data without over-fitting. We run the KS+EM

algorithm for different values of F, obtaining 11(F), then approximate the KL distance

for each value using the IC, and finally choose the value of F producing the lowest

KL distance.

There are different ICs proposed in the literature, and none of them provides with

a closed form for SSM structures as the one KronEM uses. All the information criteria

tend to over-estimate the KL distance when the degress of freedom of the model, k,

get close to the number of data points available, nt. For KronEM,

1
k = nKP(n + ncns) + -nc(nc + (3.26)

2

and we will be working in situations where nt ~_ 2k.Finding an optimal IC for this

scenario is still an open problem, although it has been proposed that the appropriate

bias-correction term can be found with expensive Monte-Carlo simulations ([ 1]).
Instead of striving for the optimal solution we will will base our decision on the

examination of several closed-form ICs:

e The Akaike information criterion (AIC, see [ ]),

AIC(F) = 2k - 211(F). (3.27)

AIC deviates considerably from the real KL distance when k ~ nt.

* The corrected Akaike information criterion (AICc, see [ ]),

AICc(F) = AIC(F) + 2 (k + 1)(k + 2)(3.28)
n - k -- 2

which provides less biased KL distance estimates for k ~_ nt than AIC.



* The Bayesian information criterion (BIC),

BIC(F) = log(nt)k - 211(F). (3.29)

which provides with a consistent estimate, (AIC and AICc are efficient, see

for a description of BIC and discussion).

For the sake of simplicity, we will fix no = 2 for the application examples, so

that the corresponding AR processes will have a unimodal power spectral density.

This allows us to compare KronEM with multi-taper spectrum estimates. We also

fix n, = 1, so that each X is rank-one (see Eq. 3.7). Because of these choices, the

model selection part of KronEM reduces to searching for the value of nKP minimizing

the IC, niKP-

3.2.6 Data acquisition and preprocessing

The MEG data were acquired with a 306-channel MEG system (Vectorview, Elekta-

Neuromag, Helsinki, Finland). The coils of the MEG channels are arranged in a

hemispherical mosaic with 102 locations. At each location, a magnetometer measures

the normal component of the magnetic field, while two planar gradiometers measure

the two perpendicular off-diagonal gradients of the same component (see [ ]). Band-

width was set at 0.1 to 334 Hz, and data were digitized at 1798 samples/sec. The

relative position of the head and MEG array was determined at the beginning of each

acquisition by feeding currents to head-position indicator coils and by locating them

on the basis of the magnetic fields measured with the MEG sensors ([ ]). Subjects

were instructed to close their eyes and recordings were acquired for several minutes.

Continuous data segments where rhythmic activity was prominent were selected for

analysis.

Signal-space projectors (SSP, [ ]) were applied to the data to suppress the ECG

and eye-movement related artifacts. These SSP used the main PCA directions of

the data only at the times when a given artifact was maximal, and the source of

the artifact was identified using the concurrently acquired EKG and EOG of the



subject. SSP removes a nssp-dimensional noise subspace from the data, and therefore

is a rank-reducing operation which makes the covariance singular. This would cause

trouble in the KS+EM algorithm. To ensure a full-rank covariance we excluded

from subsequent analysis the nssp channels whose exclusion least reduced the power

in the remaining signal. Data were then band-pass filtered from 1 to 40 Hz, and

downsampled 11 times so that the Nyquist frequency (81.72 Hz) was twice that of

the maximum frequency component in the signal.



3.3 Results

3.3.1 Simulations

To validate KronEM, we generated 5 data sets using Eqs. 3.19 and 3.20 with nc = 10,

n. = 1, nt = 1000, n = 2, and nKP= 1, 2,. . . , 5. Under this conditions, the

equations 3.19 and 3.20 can be written as

W (t) = x-(z)(t - 1) + 02zxx(t - 2) + w(')(t), i = 1,..., nKP (3.30)
"KP

y(t) = I)X~z(t) + n m(t) (3.31)
i=1

where 1() Rr, XI is the spatial component that process x(')(t) modulates, w(t)

(0, 1) and white, and nm(t) - Ai(O, R) and white. The 1) were sampled from

a A(0, 1) distribution, the pairs (# ", i) generate a sinusoid of discrete frequency

f () C [0.17,0.47r], and R is a positive definite random matrix that is scaled for

SNR = 1, with

-trace(E t (y(t) - v(t))(y(t) - v(t)) T )
SNR = **trceR (3.32)

trace (R)

In each data set we run the estimation part of KronEM using different candidate

values for the number of hidden processes, nKP 1, 2,. , 6, obtaining a maximized

log-likelihood and values for each IC. Figure 3-1 show plots for AIC, AICc and BIC

for the data sets correponding to nKP = 2, 3, 4, 5 versus model order k (see Eq. 3.26)

for each candidate value hKP. The discontinuous grey line indicates the true value of

k. BIC is the most reliable estimator of model order: In all cases, using BIC leads to

successful model selection, NKP = nKP, and the minimum reached by BIC is much

sharper. Using AIC or AICc would lead to nKP > nKP for nKP = 5.

The results for the data set with nKP = 3 are then analyzed to illustrative the

estimation part of KronEM. Figure 3-2 shows the progression of the log-likelihood

with EM iterations, with and without Ikeda acceleration. Figure 3-2 also includes the



Figure 3-1: AIC, AICc and BIC values for data sets with nKP = 2,3,4,5, plotted
versus model order k corresponding to candidate iKP = 1,2, ... , 6. The correct

model order is marked by the discontinuous grey line In all cases, BIC reaches the
minimum in the correct model order, and produces a sharper minimum. Both AIC

and AICc overestimate model order for nKP = 5 (bottom left inset).
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progression of the mode of the frequency response, plotted along with its full-width

half-maximum as an area plot for both the accelerated and non-accelerated scheme. It

can be observed that Ikeda's method reduced the number of iterations needed to reach

a maximum for the log-likelihood, and that the accelerated version produced the same

frequency distribution. The frequencies became stable many iterations before the log-

likelihood did. Figure 3-3 shows the recovered (0) and its corresponding frequency

responses, the Fourier transforms of g(0)(t) (see Eq. 3.10). The model order was

correctly obtained minimizing the BIC. Both the spatial and temporal components

were well recovered. Because each AR process xi(t) is order 2, the corresponding

frequency responses are unimodal, and the real and KronEM-estimated peak locations

showed good agreement.

3.3.2 Experimental data

Single-channel data

In this experiment, one left occipital magnetometer showing a-rhythm activity was

selected from the data set and studied using KronEM to illustrate the frequency

decomposition in experimental data for no = 2. A total of 35.5 seconds of the trace

were analyzed for a total of 5787 samples. Both AIC, AICc and BIC suggested rKP =

14, and the KS+EM part of KronEM converged in 100 iterations. The resulting

hidden process contributions were analyzed using multitaper spectrum estimation to

illustrate the way KronEM decomposed the signal in different components (l(Ox(0)(t),

see Eq. 3.18). The top inset of Figure 3-4 shows the nearly identical spectra of both

the estimated and original signal. The a-rhythm could be seen as the narrow-band

activity around 10Hz. On the same plot we show the multitaper spectra corresponding

to each individual component: the first component explained all activity below a, and

the a-band activity was split in two components, showing good agreement with the

original signal spectra. When plotted in the time domain (bottom inset in Figure

3-4) the oscillatory nature of each component is seen clearly.
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Figure 3-2: Evolution of AR2 coefficients and likelihood for both accelerated and
non-accelerated EM, with nKP = 3. In top two panels frequency evolution is tracked
with center and FWHM of the frequency response induced by the AR coefficients at
each iteration. Note that both standard EM (top inset) and accelerated EM (center
inset) converge to the same frequencies. The log-likelihood (bottom inset) increases
faster for the accelerated version, and frequencies converge before log-likelihood does.
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Figure 3-4: KronEM estimates for a single MEG channel with a-rhythm activity. Top
inset shows the multitaper frequency plots for the estimated signal, Z ' Kl(i)x(i)(t)

(continuous red), the original signal (dashed black), and each of the hidden process
contributions, 1('x(0(t) (different colors). The prominent a-rhythm activity at ~
10.5Hz is captured by the second and third hidden processes (red and green), while
the first one explains all activity below the a band. The spectrum of the estimated
and original signal are nearly identical. The bottom inset shows 6s of each hidden
process contribution, with same color coding as top inset.
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Multi-channel data

In this experiment we analyzed all the MEG sensors for nt = 2500 time points, and

splitting the data in magnetometers (nc = 94) and gradiometers (nc = 195). Again

we set ns = 1, no = 2 to obtain sinusoidal contributions modulating corresponding

spatial maps. We tried nKP = 10, 25, 50, 100, 150, 200, and got a minimum of BIC

(but not of AIC or AICc) at niKP = 100 for magnetometers, and at nKP = 200

for gradiometers. We then compared the results with the multitaper analysis of the

temporal series analyzed. To this end we grouped the hidden processes by the mode

of its frequency response, using frequency bands 0.5Hz wide, and computed the per-

band estimate of the signal standard deviation for each sensor location. Figure 3-5

shows topographic plots of the multitaper and KronEM standard deviation estimates

corresponding to the frequency bands surrounding a activity (8.5 - 12.5Hz), where

KronEM provides a more compact localization in space and frequency of the two

components of the a-rhythm when compared to multi-taper.
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Figure 3-5: KronEM and multitaper estimates for the magnetometer activity (upper two rows) and the gradiometers (lower
two rows) for 8.5 - 12.5 Hz; upper row shows multitaper estimate, lower row KronEM estimate. KronEM and multitaper show
similar patterns, but KronEM ones are more localized both in space and in frequency. In the magnetometers the a activity gets
separated in two peaks as was seen in the single-channel data set, (see figure 3-4). Both magnetometers and gradiometers show
occipitally localized a activity.
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3.4 Discussion

In this chapter, we presented KronEM, an algorithm based in the accelerated SS

framework introduced in Chapter 2 that estimates the spatiotemporal covariance

matrix of MEG measurements acquired from a subject in steady-state. The KP

structure reduces the number of parameters of the covariance matrix to be estimated,

effectively decoupling the covariance elements in the product of a spatial and temporal

term, and has been shown to effectively explain the power in the spatiotemporal signal

in former works. In contrast with previously proposed methods for spatiotemporal

covariance estimation using KPs, KronEM does not impose a limit in the number of

KP structures that can be estimated, does not use approximations in its formulation,

and uses efficient statistical metrics to decide on the number of KP structures needed

to explain the data.

KronEM imposes a sum-KP structure on the resulting covariance by reformulating

the problem in a state-space framework. In its estimation step, KronEM uses a

Kalman smoother to recover MAP estimates of the hidden process, and uses the EM

algorithm to estimate the parameters defining the spatiotemporal covariance that

generalizes to any number of KP components. In its model selection step, KronEM

chooses the most correct number of KPs over a set of candidate values by minimizing

an information criterion (IC). We illustrate the use of the algorithm in synthetic and

experimental data.

We first applied KronEM results to synthetic data sets whose covariance structure

corresponded with different number of KP products. In the model selection step,

KronEM recovered the correct number of KPs for all data sets. This contrast with

alternative methods that do not provide with an informed way of estimating model

order ([ , !]). Out of the three ICs used for model selection (AIC, AICc, and BIC),

BIC proved the most reliable, showing sharper minima on the right model order,

while AIC and AICc failed to recover the model order for nKP = 5. The different

behaviors could be attributed to the heavier penalty BIC imposes on the addition of

more explaining variables. Even though all ICs have been reported to be unreliable on



small data sets where k ~ nt, all ICs behaved well in our tests (k ~- 100, nt = 1000).

KronEM estimates of the spatial and temporal components of each KP were close

to the real values for every data set. Of note, KronEM correctly recovered the spa-

tiotemporal covariance when more than two KPs were needed (Figure 3-3), a situation

previous methods found either mathematically challenging ([]) or solved through

approximations ([ ]). Because the KS+EM algorithm used in the estimation may

converge slowly, we implemented the acceleration method of [ 1] which reduced in

half the required number of EM iterations while producing identical results (Figure

3-2).

We then applied KronEM to experimental MEG data. In the model selection step,

BIC reached a minimum for all data sets, while AIC and AICc kept decreasing with

higher model orders. This is consistent with KronEM behavior on the synthetic data

sets. Consistent with previous results in [ ], the number of KPs needed to explain the

multichannel data BIC suggested was on the order of the number of sensors: KronEM

explained the activity with a full-rank covariance (nc ~ nKP, ns = 1) and a full-rank

white measurement noise, while [ ] suggests 2 full-rank KPs (one of them with no

temporal structure), and no extra measurement noise term.

Estimation using KronEM with the suggested number of KPs did also show re-

sults that were consistent with multitaper frequency estimates. In the single-channel

data set, KronEM partitioned the data in physiologically relevant frequency bands,

assigning the a-rhythm activity to 2 of the 14 hidden processes resulting from the

analysis. Multitaper analysis of the KP contributions suggested that there were in-

deed two components of the a-rhythm (see Figure 3-4). In the multichannel data,

KronEM estimates for both magnetometers and gradiometers showed good agreement

with multitaper ones (see Figure 3-5), while producing frequency content estimates

that are more compact both in space and frequency.



3.5 Summary

This chapter introduced KronEM, an algorithm providing a principled way to model

the spatiotemporal covariance of MEG and EEG sensors by a sum of Kronecker prod-

ucts. KronEM formulates the estimation problem as a SSM, and uses the accelerated

framework presented in Chapter 2 to retrieve the Kronecker product description.

Compared to other available methods of spatiotemporal covariance estimation, Kro-

nEM automatically estimates the number of KP structures needed to explain the data

efficiently, and then estimates the spatial and temporal components of such KPs with

no approximation. When applied to experimental data, KronEM can provide with

topographic, frequency resolved power estimates that show better spatial localization

and automatically choose the number frequency components needed to explain the

data parsimoniously.



Chapter 4

StimEM: ML input effect

estimation on evoked-potential

MEG studies

This chapter introduces StimEM, an algorithm for spatiotemporal estimation of brain

activity using MEG measurements that uses a state-space formulation of the MEG

generation. State-space formulations have already been proposed by various au-

thors ([ , , , , ]). Inversion of state-space models can be efficiently ac-

complished using the smoother introduced by [ ], providing with full spatiotemporal

inversion with arbitrary - albeit linear - dynamics. The state-space model StimEM

uses accounts for evoked activity and background dynamics separately. The versatile

state-space formulation allows for arbitrary spatiotemporal dynamics specification,

and it uses the data to estimate the relative contribution of each candidate using

the expectation-maximization algorithm (EM) as pioneered by [ ]. Furthermore,

StimEM uses model selection criteria ([, ]) to ascertain the existence of the dy-

namics in the data.

In spite of its versatility and power, state-space model inversion as performed by

StimEM has not been previously reported on full MEG data sets due to its high

computational cost. [ ] neglected spatiotemporal correlations, decoupling source

trajectories and making the inversion computationally tractable at the expense of



optimality and stability; [ ] applied the smoother to the event-triggered average,

greatly reducing the number of time points considered. StimEM uses an accelerated

version of the Kalman smoother for inference and the Expectation-Maximization al-

gorithm for parameter estimation. Because of the lack of approximations, and in

contrast with previous algorithms, StimEM provides with ML estimates of the pa-

rameters defining the state-space model, including the contribution of each candidate

matrix and the evoked activity associated with each input.

In summary, this chapter presents StimEM, an algorithm that (1) accommodate

for evoked potential studies by introducing an input effect term, (2) provide with a

flexible way of incorporating, adding and comparing different candidate spatiotem-

poral dynamics, (3) prove the feasibility of the KS+EM framework with no approx-

imations for the full-sized dynamic inverse problem. We show StimEM estimates on

both simulated and experimental data sets.



4.1 Introduction

In this chapter we will focus on evoked potential studies. In these studies experimentally-

administered stimuli are presented repeatedly to the subject in order to discern the

brain activity elicited by each stimuli. Application of the state-space framework as

used in [ , , to evoked potential studies is problematic, since brain activity

dynamics during stimulus presentation differ significantly from that of stimulus-free,

or baseline, activity. In this section we provide a simple example that shows how if

this duality is not explicitly modeled, the state-space estimated using the experimen-

tal data will reflect only one of the two dynamics, and the estimates will be severely

biased.

In our simple model, brain activity xt is a simple 1D process conforming a first

order AR process that is affected by the inputs ut as

xt+1 = axt + bTut-r+1 + Vt, (4.1)
T=1

where the innovations vt A(0, or) and white, xo ~ A(O, or) is independent of vt, a

is the AR coefficient, and b E RnrxI models the input effect. The input ut c {0, 1}

is an indicator function taking the value 1 when stimulus is presented.

We are asked to recover xt, and for that we are given the input signal ut and a

signal yt that is a scaled version of xt corrupted by white noise,

Yt = CXt + Wt, (4.2)

where wt ~V(O, o,).

We know the observation model parameters {c, o,}, as well as the measurements

yt and the input ut. In order to estimate xt we need to estimate the parameters

defining the dynamic model, {a, b, or}.
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Figure 4-1: imple ID problem showing the need for separate dynamics and input
effect estimation: data generated using Eq. 4.1 and 4.2. Plots show the true stimulus
average (solid black line), the estimated effect (dashed black), and corresponding
confidence intervals (solid color area).

In our simulation,

bT 1 (4.3)
0, r > 1

Because ut is not autorregresive and only takes the values 0 (no stimulus present)

or 1 (present), the dynamics of xt will be very different when the stimulus is presented

(evoked activity) and when it is not (resting-state): there will be a big spike whenever

the input ut jumps to 1. We will need to estimate both the input effect and the

dynamics to get a correct estimate of the evoked activity. To illustrate this, we run

the Kalman Smoother paired with the EM algorithm, and then plot the stimulus-

locked averages of the estimates of xt (Figure 4-1). The precision of the estimates for

the averaged evoked response is conveyed by their covariances, computed using [16].

We show this estimates in four different scenarios:

e Neither a nor b are estimated and are set to 0. In this case only o, is estimated



and the results are very biased towards 0 (as it was to be expected, see [2 ]).
To accommodate for the two dynamics, EM overestimates o , resulting in less

precise estimates.

" When a is estimated and b = 0, we get a better estimate that does not show

the bias towards 0. Now, because the stimulus effect is much faster than the

baseline dynamics, the estimated input effect is blurred in time to accommodate

for this difference. Also ov is overestimated to accommodate for the differences

in stimulus onset, making for less precise estimates.

* When a = 0 and b is estimated, we recover a scaled version of the input effect,

due to the bias induced by neglecting the estimation of a, as happened in the first

case. This scenario is formally equivalent of doing MNE estimation with EM

estimating the source space covariance, and will be used as means of comparison

later on in this chapter.

" If we estimate both the dynamics and the input effect, we get a estimate that

is less biased and more precise, as is to be expected when the estimated model

better reflects the underlying dynamics.



4.2 Methods

4.2.1 StimEM model

In StimEM, the observed data y(t) are modeled with the state-space model

x(t) = Ax(t - 1) + Bu(t) + v(t), t = 1,. , n ,

y(t) = Cx(t) + w(t), t = 1,... , n , (4.4)

where x(t) E Rn8 X1 is the brain activity at time t, A E RniXns is the state transition

matrix, B E Rn"an" is the input effect matrix, u(t) E Rnunl agX 1 is the input (see

below), C is the observation matrix, v(t) - Nf(O, Q) is the process noise, and w(t)

A((O, R) is the detector noise.

Each of the elements of u(t) corresponds to a combination of lag and input, This

formulation of B and u(t) assumes that the stimulus effect is a function of lag (time

from stimulus presentation) and the type of stimulus. Specifically, the input ef-

fect is supposed to be equal across trials, and additive to the background activity

(signal-plus-noise, or SPN, assumption). This formulation does not include habit-

uation effects, responses to oddball stimuli, and event-related synchronization and

de-synchronization, or any other source of trial-to-trial variability. Since these in-

put effect non-stationarities are known to be small and slow-acting ([, ]), so this

model provides with a good approximation as long as the number of trials included

in the analysis do not span long in time.

To reduce the number of parameters of the model, we will parameterize the state

transition matrix as a linear combination of candidate transition matrices A(,

nA

A = [ aA(0, (4.5)
i=O

so that estimating A is reduced to estimating the vector of associated coefficients

a = [ai, ... , anA ]. The particular form of each candidate matrix A( is not specified.

In practice, we would try matrices designed following physiological considerations. In
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this work we use candidate matrices whose elements are described by

exp(-( ( )2) - exp(-4) d(i,j) < 2r
Aij =_IT (4.6)

0 d(i, j) > 2

where d(i, j) is the distance along the cortical surface mediating from source lo-

cation i and j. To compute d(i, j) we use the triangulated surface of the pia mater

recovered by FreeSurfer. Cortical distances d(i, j) are then computed as the length

of the shortest path through the nodes of said triangulated surface. The formulation

warrants a finite support for correlations among consecutive time steps, and makes

such correlations decay with cortical distance as suggested by anatomy.

The source activity is correlated over time only through the state-transition ma-

trix A, and the innovations in the source activity are modeled similar in all source

locations, thus the covariance Q is a multiple of the identity matrix,

Q = oI. (4.7)

The measurement noise covariance R can be estimated from sensor readouts with

no subject in the MEG scanner (empty-room measurements), and will be fixed for

the experiments presented in this chapter. Including its estimation in the EM would

be straightforward, but would greatly increase the number of degrees of freedom of

the StimEM model.

4.2.2 Parameter estimation

In order to recover the input effect B, the estimates of x(t) have to be accurate. For

that to happen we need estimates of all the parameters of the model in 4.4. While

the observation matrix C and the measurement noise covariance R can be estimated

from anatomical MRI and empty room measurements, respectively, we still need to

estimate a, the input effect B, and the process noise covariance, parameterized by

o V. This set of parameters = {B, or, a} are estimated from the data using the

Expectation-Maximization (EM) algorithm.
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Because of the structure of our SSM, the E step uses a Kalman smoother (KS) to

recover MAP estimates of the source activity x(t). The KS is a two-pass algorithm

that first computes the filtered estimates and then proceeds backwards to incorporate

future measurements in the estimate. The filter was originally described in [ ] while

[2] presented a particularly elegant derivation of the smoother. The combined ap-

plication of EM and KS was first introduced and thoroughly described in the classic

work of []

We introduced a couple of modifications to both the E and M steps to reduce

computation time and guarantee stability. In each run of the KS (the E step) we check

for observability and stochastic controllability using the methods described by [ ],

to ensure that the KS will behave properly. We then employ the doubling algorithm

as explained in [ to obtain the steady-state filter and smoother covariance. If the

steady-state filter and smoother covariance exist, we use the steady-state values for

both once steady-state is reached, reducing the time spent in computations. The

M-step is similar to that described in [ ], but the update for a in the presence of the

input effect is an original contribution of this thesis that can be found in Section 2.4.2.

4.2.3 Initial values

Because the EM algorithm tends to show slow convergence, it is important to find

initial values for the parameters to estimate that are close to the real underlying

values. Experimental evidence showed that B converged quite fast, and thus was set

to zero on the initial parameters. On the other hand, the initial values for of and a

can prevent EM to converge fast if set too far from its final values, so there is a need

to estimate them, albeit approximately, before starting the EM iterations.

Our first approach was fitting a first order MVAR to the observed data y(t) so

that

y(t) = Dy(t) + n(t) (4.8)

using the Nutall-Strand (multivariate Burg) algorithm as implemented in the ARFIT

Matlab@ package (c.f [ ]). After the fitting we recover an estimate for D and for
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the covariance of n(t), A,.

Using the equations of the SSM, we can transform Eq. 4.8 into

CAx(t - 1) = DCx(t - 1) + (Cw(t) + v(t) - Dv(t - 1) + n(t)), (4.9)

since v(t) and w(t) are zero mean, we can approximate

CA ~ DC, (4.10)

and this way we can get our initial parameters for {ae} solving

nA

aiCA ~ DC. (4.11)
i=21

We can further identify

n(t) ~ Cw(t) + v(t) - Dv(t - 1), (4.12)

and then equating the variance of both sides of the equation we can fit of in

o2CCT ~ A, - R (I + DDT) (4.13)

This first approach did not work well, since the estimation of Eq. 4.11 involves

the inversion of a badly conditioned matrix for the choice of candidate dynamics that

was made in this study.

Our second approach made use of the observation that the sum of the estimated

weights, Ei d i did converge quickly to its real value no matter what the initial

conditions. Hence, a first run of the KS+EM determines the value of such quantity,

and the initial matrix A is set to an even contribution of each candidate matrix

totaling the estimate for the sum of the coefficients. Then we can compute the

steady-state value for the process noise covariance solving the discrete version of the
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Lyapunov equation

A = AAA T ±Q. (4.14)

In our model, Q = o I, and the solution of this equation is

00

A = o (A)i(A T)i = o A1, (4.15)
i=O

Using the value of A to compute A1 , we can estimate the value of ov by fitting the

experimental and theoretical data covariance E.,

o CA1CT A (4.16)

This second method for estimating the initial values did produce better results on

simulated data, and was the one used in the experimental results shown later on.

4.2.4 Data acquisition and preprocessing

The MEG data were acquired with a 306-channel MEG system (Vectorview, Elekta-

Neuromag, Helsinki, Finland). The coils of the MEG channels are arranged in a

hemispherical mosaic with 102 locations. At each location, a magnetometer mea-

sures the normal component of the magnetic field, while two planar gradiometers

measure the two perpendicular off-diagonal gradients of the same component (see

]). Bandwidth was set at 0.1 to 334 Hz, and data were digitized at 1798 Hz. The

relative position of the head and MEG array was determined at the beginning of

each acquisition by feeding currents to the coils and by locating them on the basis

of the magnetic fields measured with the MEG sensors ([ ]). The auditory stimuli

consisted of 60 dBSL monaural 1kHz sinusoidal tone bursts (400 ms duration). Tone

pips were presented independently, alternating in each ear, at inter-stimulus interval

of 0.9 - 1.1 s, with each tone occurring at least 100 times. Hearing thresholds were

determined individually for each frequency.

Signal-space projectors (SSP, [ ]) where applied to the data to suppress the ECG

and eye-movement related artifacts. These SSP used the main PCA directions of the
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data only at the times when a given artifact was maximal, and the source of the

artifact was identified using the concurrently acquired ECG and EOG of the subject.

Data were then band-pass filtered from 1 to 40 Hz, and downsampled 15 times so

that the Nyquist frequency (81.72 Hz) was twice that of the maximum frequency

component in the signal. SSP removes a nssp-dimensional noise subspace from the

data, and therefore is a rank-reducing operation which makes the covariance singular.

This would cause trouble in the KS+EM algorithm. To ensure a full-rank covariance

we excluded from subsequent analysis the nssp channels whose exclusion least reduced

the the power in the signal subspace.
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4.3 Results

4.3.1 Simulations

A simulated data set of 3000 time points was constructed using an observation equa-

tion identical to that of the subject under study: the matrix C was given by the

forward model coming from the BEM, and the measurement noise covariance R was

estimated from the same empty-room measurements used in the real data analysis.

The input effect B was decoupled in the product of a spatial and temporal com-

ponent. For the spatial component, a set of 7 contiguous sources were selected, with

the central source location contained within the auditory cortex, whose location was

previously delineated using a brain atlas. We generated six regions in this fashion,

and each was associated with a different input and a different temporal response of

400ms. The maximum amplitude of the temporal response for each location was cho-

sen so that the maximum activity generated by any input would peak at 10 standard

deviations from the noise in any element of yt, a level similar to that observed in the

experimental data. We used equation 4.5 to generate 3 candidate transition matrices

AW with r = 7.5 mm, 15 mm, 22.5 mm, respectively. In each dataset, a weighted

version of one of the candidate dynamics was used as the state-transition matrix,

A =0.0A(1 , A=0.99A 1 ), A = 0.99A(2), A = 0.99A (). The process noise activity o

was chosen so that the regularized SNR,

SNR = I trace(R-1 2CQ(R-1/ 2 C) ) 5. (4.17)

The simulated inputs were administered each 800ms, and assigned at random.

The input effect was then estimated with the full StimEM algorithm. A second

estimate was obtained fixing the transition matrix to zero, which is equivalent to a

minimum-norm estimate (MNE, [ ]) with a data-driven estimate for the signal to

noise ratio. This second estimate is static, but since uses the EM algorithm, generates

a MAP estimate of the process noise covariance. Both estimates should be equivalent

when there is no dynamic in the data. We ran the EM algorithm for 25 iterations, on
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the static and dynamic cases, and found the per-iteration increments of log-likelihood

decreased monotonically for all data sets. In order to do model selection, we computed

the Akaike information criterion (AIC, []) and the Bayesian information criterion

(BIC, [ ]). We should select the estimation method producing the smallest value for

AIC or BIC in order to avoid overfitting, hence only the difference in values among

the static and dynamic estimate is reported (AAIC, ABIC); when the difference is

positive, the model should be chosen. We also report the mean error 2-norm of the

error (MLE) on the estimates for both methods. The MLE is normalized by the norm

of the real data,

MLE = 0 |x(t) - (4.18)
K= 0 |x(t)|

where I denotes the f2 norm. All results are summarized in table 4.4.

o1  a 2  a 3  d 1  62  a3  All AAIC ABIC MLE
.00 .00 .00 .01 .02 .02 -4.77- 100  +15.54- 100 '+15.01- 100 1.18%

- - - +4.77- 100 -15.54 -100 -15.01 - 100 1.18%

.99 .00 .00 .37 .33 .30 +2.37- 104  -4.74. 10 4  -4.74- 10 4  4.21%
-_ - - -2.37. 104 +4.74- 10 4  +4.74- 10 4  8.26%

.00 .99 .00 .36 .10 .53 +1.38- 104  -2.76- 104  -2.76. 10 4  3.41%
- 1.38. 104 +2.76- 104 +2.76- 104 14.21%

.00 .00 .99 .35 -.02 .65 +7.18 -10 3  -1.43. 104 -1.43. 10 4  3.68%
- - - -14.36. 103 +1.43- 104  +1.43- 104 12.38%

Table 4.1: Results of StimEM on the simulated data sets. Successive rows show the
resulting likelihood, information criteria and error of the static and dynamic versions
of StimEM applied to different datasets. In each data set, the version producing lower
BIC is shown in bold.

The input-effect estimates is computed from the MAP estimates of the SSM pa-

rameters as follows

e M (T) - ke(t - 1) + b,T) (4.19)

where e (r) is the input effect for input i at lag T from stimulus onset, and b(',T) is

the column of B corresponding to input i, lag T. The input-effect estimates for the
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different stimuli can be seen in Fig. 4.4. Each row is normalized by the maximum

value of the estimate across all lags considered, and thresholded at half that value.
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Figure 4-2: Resulting topographic maps of input effect on the simulated data set with T = 15mm. Maps shown are for the

lag where the true effect reaches its maximum value. Upper row shows the true location of the effect, center row shows the

static estimates where a = [.0, .0, .0], lower row shows dynamic estimates with a = d (see 4.4). Each map is normalized to the

maximum value across all, and thresholded at half this value.



4.3.2 Experimental data

We analyzed 25000 contiguous data points from the experimental data set described

in the methods section using StimEM, containing 20 to 25 stimuli presentations.

We run the EM algorithm for 25 iterations, and used equation 4.5 to generate 3

candidate transition matrices A(') with T = 7.5 mm, 15 mm, 22.5 mm, respectively.

StimEM got an estimate for a = a = [.24, .75, .00] after 25 iterations, and both

BIC and AIC deemed necessary to include the dynamics, with All = +1.72- 105,

AAIC = +3.44 - 105, ABIC = +3.44 - 105. The input-effect estimates were spatially

similar for the four different stimuli, with the input-effect for stimulus 3 shown in

Figure 4.4, at different lags from stimulus presentation. In the figure, both time series

have been normalized to the maximum value of the estimates across time-points, and

thresholded to half that value in order to display the spread of the estimates.
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Figure 4-3: Input-effect estimated from experimental data. Upper row shows static estimates where a = [.0, .0, .0], lower row

shows dynamic estimates with & = [.24, .75, .00]. Each row is normalized to the maximum value across all sources and lags, and
thresholded at half this value. The dynamic solution produced higher likelihood and was chosen by both selection criteria.



4.4 Discussion

In this chapter, we presented StimEM, an algorithm based in the accelerated SS

framework introduced in Chatper 2 that estimates the effect of experimentally con-

trolled inputs on the cortical activity of a human subject using the MEG recordings

obtained during an evoked-potential study. The stimulus effect is naturally incor-

porated in the state-space formulation of the inverse problem, and can be recovered

using the EM algorithm as was described in Chapter 2. In contrast with previously

proposed methods for stimulus effect estimation ([, , , , ]), StimEM esti-

mates both the input effect and the neural dynamics, and does not impose separable,

algorithm-specified neural dynamics. To reduce the number of parameters describing

the neural dynamics, StimEM models the state-transition matrix of the SS model as

a linear combination of candidate dynamics specified by the researcher, and retrieves

ML estimates of the corresponding weights using the EM algorithm. Finally, StimEM

uses information criteria to decide if the inclusion of the dynamics is supported by

the data.

We first used simulations to better characterize the behavior of StimEM in the

state-space models that MEG creates, since previous works have avoided using the full

KS+EM algorithm due to its high computational cost. We were able to analyze MEG

using the accelerated, distributed implementation that was introduced in Chapter 2,

using no approximations. The results obtained on simulation data, show in table ,

proved that (1) StimEM is able to detect the candidate dynamics we used to generate

the data, (2) StimEM did not impose the dynamics when the underlying data was

temporally white, (3) when using the dynamics, StimEM estimates showed decreased

error and localization, and (4) the coefficients weighting each dynamic were not cor-

rectly retrieved from the data. Together, (1)-(3) suggest that StimEM is improving

the estimates by using the dynamics only when they are needed. The topographic

maps seen in figure showed better spatial localization of activity, and the errors in

table showed small error across all temporal samples, in accordance with the theo-

retical analysis by ]. The incorrect values for the coefficients might be due to the
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non-orthogonal candidate functions used in the simulation, which make non-unique

the combination of weights producing a given dynamic; in light of the decreased error

and better spatial localization, is safe to assume that the particular value for the esti-

mated weights does not impair the ability of StimEM to use the candidate dynamics

to improve the spatial localization of the cortical estimates.

When applied to experimental MEG data acquired during an evoked-potential

study, StimEM (1) found evidence supporting the candidate dynamics and (2) used

the dynamics to recover activity estimates that are more focal than its static coun-

terpart, as shown in the topographic maps of figure . The estimated neural activity

shown a phantom source in the inferior parietal and frontal lobe that was also seen

in the simulation results, and hence is a consequence of the ill-posedness of the for-

ward model, consequence of the subject's anatomy and positioning with respect to

the MEG sensors. However, the phantom sources seen in the dynamic solution as

compared with the static, the increase in log-likelihood, BIC and AIC when dynam-

ics are included, and the behavior of SimEM in simulated data strongly suggest that

the focality of the resulting dynamic estimates will correspond to estimates with less

error.

It is important to remark that the specification of the candidate dynamics is an

open problem that falls out of the scope of this thesis. To produce the results on this

chapter, we used simple spatiotemporal dynamics suggested by neurophysiology that

are unlikely to capture all the dynamics of the underlying neural activity. However,

unlike other dynamic methods, StimEM can accommodate any linear dynamic in its

formulation. Future work will investigate the use of dynamics suggested by diffu-

sion tensor imaging (DTI), causal analysis of intracranial EEG, or other estimates

obtained from neurophysiology or experimental analysis. Including these more ac-

curate approximations to neural dynamics can improve the estimates dramatically.

However, the simple dynamics used in this study already demonstrated that StimEM

provides with better source localization for MEG evoked-potential studies. Moreover,

the extension of StimEM to EEG or combined EEG+MEG studies would require lit-

tle modification of the underlying framework to accommodate for the estimation of
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the unknown EEG measurement error covariance.
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4.5 Summary

In this chapter we introduced StimEM, an algorithm that uses state-space modeling

of the MEG forward model to estimate both the stimulus effect and neural dynamics

using only MEG recordings acquired during evoked-potential studies. This is made

possible by the accelerated SSM framework introduced in Chapter 2, that lets us apply

KS+EM to the high-dimensional state-space required for MEG time-series analysis.

A simulation study proved that StimEM can successfully detect underlying neural

dynamics on state-space models of the dimensions MEG requires, and in doing so

it can improve the accuracy and localization of the estimated neural activity when

compared to static methods. When applied to experimental MEG data, StimEM

identified a dynamic component on the recordings and used the identified dynamics

to produce estimates that were more localized in space than those produced by static

estimation methods.
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Chapter 5

Conclusions and future work

5.1 Conclusions

This thesis provided methods for state-space modeling of MEG time-series. This

approach has been avoided in the past due to the high computational costs of SSM

estimation algorithms when applied to the high-dimensional state-spaces required to

model MEG. We provided an accelerated framework for analysis that reduces the

computational complexity of two classic algorithms, the Kalman smoother and the

expectation-maximization algorithm, applied to time-invariant SSMs. In Chapter

2, we offered a computational analysis of the two algorithms, and produced a new

framework that reduces the number of computations, and the time required per com-

putation. To accomplish this task, we exploited the steady-state covariances in the

Kalman smoother to reduce the number of covariance updates required, and used

an acceleration algorithm proposed by [ !] to halve the number of EM iterations.

We also developed a distributed implementation of the algorithm using a distributed

memory linear algebra library and custom distributed software. This approach scales

very well for matrix multiplications and inversions, which are the main operation in

the KS step in term of computations. Hence, this reduced the time spent on a given

KS step almost linearly with the number of computing nodes used.

In Chapter 3, we used the accelerated framework to model the spatiotemporal

covariance of MEG measurements obtained from human subjects in resting-state,
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producing a new algorithm we called KronEM (Kronecker Product modeling using

KS+EM). KronEM characterizes the spatiotemporal covariance of MEG recordings

using an parameterization that efficiently describes the rhythmicity present in resting-

state neural activity, modeling the MEG time-series as a sum of components composed

of a time-invariant spatial signature and a temporal second-order autorregresive pro-

cess. Unlike previous attempts at modeling resting-state activity, the KronEM algo-

rithm estimates the number of such components using the data, and is able to identify

an arbitrary number of them. We illustrated these properties in a simulation study,

and then analyzed MEG recordings collected from a human subject in resting state.

The KronEM algorithm recovered components consistent with well-known physiologi-

cal rhythmic activity. We then compared the resulting topographic maps of frequency

with multi-taper based ones, and showed that KronEM-based maps better localize

naturally occurring rhythms. These results showed how the KronEM algorithm is a

useful addition to traditional single-trial frequency analysis techniques.

In Chapter 4, we used our accelerated framework to estimate the effect of dif-

ferent stimuli in neural activity by analyzing MEG data recorded from human sub-

jects in evoked-potential studies. This lead to a new algorithm we called StimEM

(Stimulus effect estimation using KS+EM). StimEM estimates neural activity using

MEG recordings made in evoked-potential studies, in which the subject is repeatedly

presented with a stimulus and only the stimulus effect is of interest. In contrast

with other dynamic source-localization techniques, StimEM accepts an arbitrary de-

scription of neural dynamics, parameterized as a weighted sum of user-defined can-

didates, and finds the MAP estimate of the weights. Using the estimated dynamics,

StimEM generates a time-resolved ML estimate of the evoked-potential activity in

the cortex. We used StimEM to identify dynamics in a simulated data set of realistic

dimensions, and showed that the estimates improved substantially when dynamics

are taken into account. We next analyzed experimental MEG data from an audi-

tory evoked-potential study and showed that StimEM identified dynamics consistent

with neurophysiology and neuroanatomy and improved the localization of the evoked

cortical response.
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In summary, this thesis establishes the feasibility of full-scale analysis of high-

dimensional state-space models using a distributed-memory implementation of accel-

erated KS+EM algorithms. The thesis produced two novel algorithms to analyze

MEG data in resting-state and evoked potential studies, and showed that SSM anal-

ysis improves substantially on previous non-SSM based techniques.

5.2 Future work

Because prior work has already shown how combined inference from MEG and EEG

improves spatial resolution (e.g. I , ]), a very interesting direction would be to

address the problem of combined inference from EEG and MEG in the dynamic set-

ting. Unlike MEG, where empty-room noise provides with a very straightforward

characterization of measurement noise, the properties of the measurement noise in

EEG depend on the skin-electrode interface, making it impossible to acquire mea-

surement noise readings alone. One possible way to address this would be to extend

KronEM to estimate the EEG measurement noise covariance along with the dynam-

ics, assuming the EEG noise to be temporally white. Since both EEG and MEG

recordings originate from the same dynamic process, the algorithm would exploit the

characterization of the process noise obtained from MEG alone to estimate the EEG

sensor noise. Once an EEG measurement noise covariance has been extracted from

the data, both StimEM and KronEM can be applied to the combined EEG+MEG

data set with no modifications, and should produce estimates that are better resolved

in space than those based on MEG alone.

Another development that follows naturally from this thesis would be to join

KronEM and StimEM by modeling the input effect and the rhythmic processes con-

currently. This could improve the estimates in situations in which strong rhythmic

activity contaminates the stimulus-locked responses. Perhaps more importantly, a

combined KronEM+StimEM SSM could also provide information about the corti-

cal distribution of rhythmic activity; however, for this to work the neural dynamics

should be incorporated on top of the autoregressive processes that dictate the evo-
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lution of the state-space in KronEM. This is because the autorregresive processes

impose dynamics that are separable in space and time, and hence would not improve

the localization as discussed in [ ]. Adding both the neural dynamic modeling and

the autoregressive component would increase the dimensionality of the state-space,

and perhaps some modifications of the accelerated framework would be needed to ex-

ploit the sparsity of the matrices describing the resulting state-space. This combined

algorithm would localize cortical sources of rhythmic background activity, and could

better retrieve underlying evoked potentials.
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