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On Decentralized Detection with Partial Information
Sharing among Sensors

O. Patrick Kreidl, John N. Tsitsiklis, and Spyros I. Zoumpoulis

Abstract—We study a decentralized detection architecture in
which each of a set of sensors transmits a highly compressed
summary of its observations (a binary message) to a fusion center,
which then decides on one of two alternative hypotheses. In
contrast to the star (or “parallel”) architecture considered in most
of the literature, we allow a subset of the sensors to both transmit
their messages to the fusion center and to also broadcast them
to the remaining sensors. We focus on the following architectural
question: is there a significant performance improvement when
we allow such a message broadcast? We consider the error
exponent (asymptotically, in the limit of a large number of
sensors) for the Neyman-Pearson formulation of the detection
problem. We prove that the sharing of messages does not improve
the optimal error exponent.

I. INTRODUCTION

We consider a decentralized detection problem and study
the value added (performance improvement) when feeding the
messages (“preliminary decisions”) of some of the sensors
to the remaining ones, so that the latter can take them into
consideration, along with their own observations, to form
their own messages. We carry out this comparison under a
Neyman-Pearson formulation of the detection problem, and
(for reasons of tractability) in the asymptotic regime, as the
number of sensors increases. This work is part of a broader
effort to understand the performance gains or losses associated
with different sensor network architectures. Primarily because
of analytical obstacles, this effort had been limited to the
star (also called “parallel” architecture) [1], [2], [3], [4] and,
somewhat more generally, to tree networks [5], [6]. In contrast,
the literature on architectures that allow partial information
sharing among sensors is much more limited, as will be
discussed shortly. The present work complements the results
of [7] on a particular feedback architecture, although under
somewhat restrictive assumptions.

A. Background and Related Literature

We consider a binary hypothesis testing problem, and a
number of sensors each of which obtains an observation
whose distribution is determined by the true hypothesis. In a
centralized system, every sensor communicates its observation
to a fusion center that makes a final decision. In contrast, in
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a star decentralized detection architecture (introduced in the
seminal work of Tenney and Sandell [1]), each sensor sends
only a summary of its observation to a fusion center, in the
form of a message that takes values in a finite alphabet. The
fusion center then decides on one of the alternative hypotheses.
The problem is to design rules through which each sensor can
form its message, and through which the fusion center can
interpret these messages to make a final decision, in a manner
that minimizes the probability of error.

Much research has followed [1]; for a review, see [2],
[4]. For conditionally dependent observations (given the true
hypothesis), the problem is NP-hard [8]. Under the assumption
of conditional independence, an optimal decision rule for each
sensor takes the form of a likelihood ratio test, with a suitably
chosen threshold. In turn, an optimization over the set of all
thresholds can yield the desired solution. Numerical algorithms
for optimizing sensor thresholds in the star network have been
adapted to the series, or tandem, network and later extended
to any singly-rooted tree network [5]. It is now known that
likelihood ratio tests remain optimal (under the conditional
independence assumption) in every directed acyclic network
but, with regard to tractable computation, correctness and effi-
ciency is retained only for sparsely-connected tree-structured
networks: more specifically, threshold optimization scales ex-
ponentially with the maximal degree of the nodes [9].

Similar algorithmic developments have occurred for de-
centralized detection architectures with feedback [10], [11],
[12], where the fusion center may communicate a preliminary
decision to the peripheral sensors for them to take into
consideration when forming a next message based on a next
observation. References [10] and [11] consider a Bayesian
formulation at a level of generality that captures a variety
of feedback architectures, allowing the sensors within each
stage to exchange preliminary decisions directly (i.e., “peer
communication”). Experiments show that in the presence of
feedback, the fusion center’s probability of error decreases
to zero as the number of feedback stages goes to infinity,
and is never larger than that of the star architecture without
feedback. Reference [12] considers a similarly general class of
architectures but rather focuses on the use of feedback (of all
sensor decisions to all sensors) in combination with successive
retesting and rebroadcasting of the updated decisions to reach
a consensus, an operation described as “parley.” Two modes of
“parley” are examined. In the first, all sensors make a decision
at each time so as to minimize the probability of error given the
information available at that time; convergence to a consensus
is demonstrated to occur in only a few communication stages
at the expense of correctness (the limiting decision does not



necessarily match the optimal centralized decision). In the sec-
ond, the consensus decision is constrained to be correct, which
requires many more stages of communication and thus comes
at the expense of haste. While the sensors in these feedback
architectures do remember all preceding messages from the
fusion center, each sensor is forced to forget all preceding
own observations; without this memory restriction, the design
problem beyond the first stage of feedback essentially faces
difficulties similar to those encountered in the intractable case
of conditionally dependent observations.

The complexity of threshold optimization for large decen-
tralized detection networks has motivated the study of a more
tractable asymptotic formulation, as the number of sensors
increases to infinity. Reference [13] studies the problem of
optimizing the asymptotic error exponent, for the case of a
star architecture with a large number of sensors that receive
conditionally independent, identically distributed observations.
The broader case of a network consisting of a large number
of nodes arranged as a tree of bounded height is considered in
[14], [6]; the error probability is shown to decay exponentially
fast with the number of nodes under both the Bayesian and
the Neyman-Pearson formulations. Necessary and sufficient
conditions are provided for the optimal error exponent to be
the same as that corresponding to a star configuration, under
the Neyman-Pearson criterion. In the same asymptotic spirit,
[15] studies decentralized binary detection in a wireless sensor
network where each sensor transmits its data over a multiple
access channel. Under constraints on the capacity of the
wireless channel, it is proven that for the problem of detecting
deterministic signals in additive Gaussian noise, having a set
of identical binary sensors is asymptotically optimal, as the
number of observations per sensor goes to infinity.

To our knowledge, the literature on asymptotic analysis
of decentralized detection networks with feedback is quite
limited. Reference [16] concludes that the Neyman-Pearson
performance improvement from a single stage of feedback
diminishes fast with an increasing signal-to-noise ratio or
an increasing number of sensors. (For the daisy-chain ar-
chitecture, our results strengthen those in [16], proving no
asymptotic performance gain from a single stage of feedback
regardless of the signal-to-noise ratio.)

Closest to the current paper are the results of [7], which
considers two architectures with feedback and studies the
corresponding optimal error exponent. In one of these archi-
tectures (called FF1 in [7]), each sensor sends two bits, with
the second bit formed after hearing a summary of the first
message bits sent by all sensors. The authors prove that such
feedback does not improve the optimal error exponent, but
only under a restriction that the summary message take values
in an alphabet whose size grows subexponentially with the
number of sensors, thus precluding the sharing of all of the
first message bits.

B. Overview

We study the Neyman-Pearson decentralized detection prob-
lem (in the asymptotic regime) for a new network architecture
that we refer to as a “daisy chain.” In this architecture, the

messages sent to the fusion center by the first half of the
sensors are broadcast to the second half of the sensors, before
the latter get to form their own messages. This is perhaps
the simplest nontrivial non-tree architecture and it features
some partial feedback. While the study of non-tree or feedback
architectures appears to be quite difficult in general, the
daisy chain turns out to be amenable to asymptotic analysis.
Indeed, we are able to prove that the additional information
feedback that is present in the daisy chain does not result
in a performance improvement: the optimal error exponent is
the same as for the case of a star architecture with the same
number of sensors.

Our study of the daisy chain parallels the work of [7] on the
FF1 feedback architecture and comes to the same conclusion,
namely, that the additional information sharing does not help.
On the technical side, our analysis is more general than that in
[7]. Besides some restrictions in [7] that can be easily removed
(see Section V in [7]), that work involves a key assumption that
the alphabet of the feedback messages is subexponential in the
number of sensors. Furthermore, this assumption is essential
to the proof in [7], which relies on the method of types. In
contrast, no such assumption is present in our work. Since all
of the messages of the first half of the sensors are shared, our
alphabet size grows exponentially with the number of sensors.
As remarked, in [7], this added generality is unnecessary if one
restricts all sensors to use the same decision rule, because in
that case the number of messages that equal one is a sufficient
statistic that can be encoded on a much smaller alphabet.
However, we do not want impose this latter restriction, because
it cannot be justified a priori.

It is worth noting that there are certain cases where it
is easily shown that feedback cannot improve asymptotic
performance, for somewhat trivial reasons. One such example
is binary hypothesis testing for the case of two Gaussian
distributions with different means and the same variance, in
the limit of a high signal-to-noise ratio. In this case, it turns
out that a star architecture (with binary messages) achieves
the same error exponent as a centralized architecture in which
the observations are transmitted uncompressed to a fusion
center [17]. By a sandwich argument, the performance of
any architecture that involves binary messages plus some
additional feedback falls in between, and the error exponent
remains the same.

The rest of the paper is organized as follows. We formulate
the decentralized detection problem for the various architec-
tures of interest in Section II. We present the main result and
its proof in Section III. Finally, we summarize and discuss
possible extensions and open problems in Section IV.

II. PROBLEM FORMULATION

In this section, we introduce the classical star architecture and
the daisy chain architecture. We define our notation, make the
necessary probabilistic assumptions, define the performance
measures of interest, and provide the necessary background.

A. Probabilistic Assumptions
We assume that the state of the environment satisfies one

of two alternative hypotheses H0 and H1. There is an even



number, n = 2m, of sensors, indexed 1, . . . , n. Each sensor
i observes the realization of a random variable Xi, which
takes values in an observation set X , endowed with a σ-
field FX of measurable sets. We assume that conditioned on
either hypothesis Hj , j = 0, 1, the random variables Xi are
independent and identically distributed (i.i.d.) according to a
measure Pj on (X ,FX ). In the sequel we use the notation
Ej [ · ] to indicate an expectation taken under hypothesis Hj ,
and Pj(A) to denote the probability of an event A under Hj .

As in [13], we make the following technical assumption,
which serves to facilitate the subsequent asymptotic analysis.

Assumption II.1. The measures P0 and P1 are absolutely
continuous with respect to each other, but not identical.
Furthermore, E0[log2 dP0

dP1
] < ∞, where dP0

dP1
is the Radon-

Nikodym derivative of the two measures.

B. The Star Architecture

Every sensor i forms a binary message Yi, taking values
in {0, 1}, by following a rule of the form Yi = γi(Xi), for
some measurable function γi : X 7→ {0, 1}. Let Γ be the set
of all possible such functions. Note that a particular choice
of a function γ ∈ Γ results in particular distributions for
the binary random variable γ(X1), under the two hypotheses.
We define the Kullback-Leibler divergence D(γ) of these two
distributions by

D(γ) = P0(γ(X1) = 0) · log
P0(γ(X1) = 0)
P1(γ(X1) = 0)

+P0(γ(X1) = 1) · log
P0(γ(X1) = 1)
P1(γ(X1) = 1)

. (1)

The messages Y1, . . . , Yn are communicated to a fusion
center which uses a fusion rule of the form γ0 : {0, 1}n 7→
{0, 1} and declares hypothesis Hj to be true if and only if
Y0 = γ0(Y1, . . . , Yn) = j. See Figure 1 for an illustration.
Let Γ0,n be the set of all possible such functions. We use the
shorthand γn to denote (γ1, . . . , γn), which is an element of
Γn.

Fig. 1. The star architecture.

For a given value of n, and a particular choice of γ0 and
of γn = (γ1, . . . , γn), we define the probability of false alarm

(Type I error) by

JIn(γ0, γ
n) = P0(Y0 = 1)

= P0(γ0(γ1(X1), . . . , γn(Xn)) = 1),

and the probability of missed detection (Type II error) by

JIIn (γ0, γ
n) = P1(Y0 = 0)

= P1(γ0(γ1(X1), . . . , γn(Xn)) = 0).

Under a Neyman-Pearson formulation, the objective is to
choose the rules γ0 and γn so as to minimize the probability
P1(Y0 = 0) of a missed detection subject to an upper bound
α on the probability P0(Y0 = 1) of a false alarm. For our
purposes, it is easier to work with the error exponent associated
with the missed detection probability. We define

rn(γ0, γ
n) =

1
n
· log JIIn (γ0, γ

n), (2)

and, for every α ∈ (0, 1),

Rn(α) = inf
γ0,γn

rn(γ0, γ
n), (3)

where the infimum is taken over all (γ0, γ
n) ∈ Γ0,n × Γn for

which JIn(γ0, γ
n) ≤ α. We finally define the optimal error

exponent, denoted by g∗p , by

g∗p = lim
n→∞

Rn(α).

According to Theorem 2 in [13], the limit in the definition
of g∗p is guaranteed to exist, is the same for all values of
α ∈ (0, 1), and is given by

g∗p = − sup
γ∈Γ

D(γ). (4)

Furthermore, given that the two measures P0 and P1 are not
identical, it is easily seen that there exists some γ for which
the distribution of γ(X1) is different under the two hypotheses,
so that D(γ) > 0. This implies that g∗p < 0.

C. The Daisy Chain Architecture

In the daisy chain architecture, the underlying probabilistic
model and the sensor observations are the same as for the star
architecture. What is different is that sensors m+1, . . . , 2m =
n get to observe the messages sent by the first m sensors
before forming their own messages. We use again Yi to denote
the message sent by sensor i, and let U = (Y1, . . . , Ym) be the
additional information made available to sensors m+1, . . . , n.
The equations that define this architecture are:

Yi = γi(Xi), i = 1, . . . ,m,
Yi = δi(Xi, U), i = m+ 1, . . . , n,
Y0 = γ0(Y1, . . . , Yn).

For i ≤ m, γi is as before the decision rule of sensor i,
a measurable function from X to {0, 1}. For i > m, the
decision rule δi of sensor i is a measurable function from
X × {0, 1}m. Finally, the decision rule γ0 of the fusion
center is a function from {0, 1}n to {0, 1}. Let Γ, ∆n, and
Γ0,n be the sets of possible decision rules γi, δi, and γ0,
respectively. We use the shorthand notation γn = (γ1, . . . , γm)



and δn = (δm+1, . . . , δn), where m = n/2. See Figure 2 for
an illustration.

Fig. 2. The daisy chain architecture.

Similar to the star architecture, we define the probabilities of
false alarm and missed detection associated with a collection
(γ0, γ

n, δn) of decision rules by

hIn(γ0, γ
n, δn) = P0(Y0 = 1),

hIIn (γ0, γ
n, δn) = P1(Y0 = 0).

We define

qn(γ0, γ
n, δn) =

1
n
· log hIIn (γ0, γ

n, δn), (5)

and, for every α ∈ (0, 1),

Qn(α) = inf
γ0,γn,δn

qn(γ0, γ
n, δn), (6)

where the infimum is taken over all (γ0, γ
n, δn) ∈ Γ0,n ×

Γn×∆n
n for which hIn(γ0, γ

n, δn) ≤ α. We finally define the
optimal error exponent, denoted by g∗d(α), by

g∗d(α) = lim inf
n→∞

Qn(α).

It should be clear that the daisy chain architecture is “more
powerful” than the star architecture: sensors m+ 1, . . . , n are
free to ignore the additional information U that they receive
and emulate any possible collection of decision rules for the
star architecture. For this reason, for every finite n, the optimal
exponent Qn(α) of the missed detection probability in the
daisy chain is no larger than the optimal exponent Rn(α) of
the missed detection probability in the star configuration. By
taking the limit, it follows that

g∗d(α) ≤ g∗p, ∀ α ∈ (0, 1).

For any finite n, it will generically be the case that Qn(α) <
Rn(α), because the additional information available in the
daisy chain can be exploited to some advantage. On the other
hand, our main result, proved in the next section, shows that
the advantage disappears in the asymptotic regime.

III. NO GAIN FROM FEEDBACK

Our main result asserts that the optimal error exponent
(as the number of sensors increases) for the daisy chain
architecture is no better than that of the star configuration.

Theorem III.1. For every α ∈ (0, 1), we have g∗d(α) = g∗p .

Proof: As discussed at the end of the previous section,
the inequality g∗d(α) ≤ g∗p is immediate. We only need to
prove the reverse inequality. Toward this purpose, we consider
an arbitrary choice of decision rules for the daisy chain
architecture, and develop a lower bound on the probability of
missed detection (for finite n), in terms of the missed detection
probability for the star architecture.

Throughout we fix α ∈ (0, 1), and also an auxiliary
parameter ε > 0. Let us also fix n and decision rules γ0,
γn, δn. Having done that, all of the random variables Yi
and U are well-defined. We assume that hIn(γ0, γ

n, δn) =
P0(Y0 = 1) ≤ α and we will derive a lower bound on
hII(γ0, γ

n, δn) = P1(Y0 = 0).
Let1

L = log
P0(U)
P1(U)

=
m∑
i=1

log
P0(Yi)
P1(Yi)

.

This is the log-likelihood ratio (a random variable) associated
with the vector U of messages transmitted by the first m
sensors. The first equality above is the definition of L, and
the second follows from the definition U = (Y1, . . . , Ym) and
the independence of the Yi. Let µ0 = 1

mE0[L]. By comparing
with the definition (1), and using also Eq. (4), we have that

µ0 =
1
m

m∑
i=1

D(γi) ≤ −g∗p. (7)

We say that a possible value u of the random vector U is
“normal” (symbolically, u ∈ N ), if

|L−mµ0| ≤ εm.

Because of Assumption II.1, and as pointed out in
[13], the (conditionally independent) random variables
log
(
P0(Yi)/P1(Yi)

)
have second moments that are bounded

above (under P0) by some absolute constant c. Thus, the vari-
ance of L (under P0) is bounded above by cm. Chebyshev’s
inequality then implies that

P0(U /∈ N) ≤ c

ε2m
.

We assume that m is large enough so that

P0(U /∈ N) ≤ 1− α
2(1 + α)

. (8)

Let us also say that a possible value u of the random vector
U is “good” (symbolically, u ∈ G) if

P0(Y0 = 1 | U = u) ≤ 1 + α

2
.

We let B (for “bad”) be the complement of G.

1With some abuse of notation, we use P0(U) to denote the random variable
that takes the numerical value P0(U = u) whenever U = u, and similarly
for P0(Yi), etc.



Since P0(Y0 = 1) ≤ α, we have

α ≥ P0(Y0 = 1)

=
∑
u

P0(U = u) P0(Y0 = 1 | U = u)

≥
∑
u∈B

P0(U = u) P0(Y0 = 1 | U = u)

≥ 1 + α

2
·
∑
u∈B

P0(U = u)

=
1 + α

2
·P0(U ∈ B).

Thus,
P0(U /∈ G) = P0(U ∈ B) ≤ 2α

1 + α
. (9)

Using Eqs. (8) and (9), we obtain

P0(U ∈ N ∩G) ≥ 1−P0(U /∈ N)−P0(U /∈ G)

≥ 1− 1− α
2(1 + α)

− 2α
1 + α

=
1− α

2(1 + α)
> 0. (10)

We will now argue that conditioned on U = u, and for
u ∈ G, the missed detection probability admits an Ω(emg

∗
p )

lower bound. Suppose that a certain value u of the random
vector U has been realized. Conditioned on this event, and for
this given value of u, the final decision is determined by a
rule of the form

Y0 = γ0(u, δm+1(Xm+1, u), . . . , δn(Xn, u)).

Since u has been fixed to a constant, this is of the form

Y0 = γ̄0(δ̄m+1(Xm+1), . . . , δ̄n(Xn)),

for suitable functions γ̄0 and δ̄i. (Of course these functions
depend on the specific choice of u.) We recognize this as the
expression for Y0 in a decentralized detection problem with a
star architecture and m sensors.

For the constant value of u under consideration, and since
u ∈ G, the false alarm probability is bounded above by α′ =
(1 + α)/2 < 1. We now invoke the definition of g∗p , suitably
translated to the case of a finite number of sensors. It implies
that for the given α′ ∈ (0, 1), there exists some n0 (depending
on ε and α′) such that if JIm(γ0, γ

m) ≤ α′, then

JIIm (γ0, γ
m) ≥ emg

∗
p−mε, ∀ m ≥ n0,

where m is the number of sensors in the star architecture. By
applying this observation to the last m sensors of the daisy
chain architecture, and conditioned on U = u, we obtain, for
m ≥ n0,

P1(Y0 = 0 | U = u) ≥ emg
∗
p−mε, ∀ u ∈ G. (11)

Let us now suppose that u ∈ N . From the definition of the
log-likelihood ratio L, we have

P1(U) = e−LP0(U).

When U ∈ N , we also have L ≤ mµ0 + mε, and using also

Eq. (7), we obtain

P1(U = u) ≥ e−mµ0−mεP0(U = u)
≥ emg

∗
p−mεP0(U = u), if u ∈ N. (12)

We now apply the usual change of measure argument. We
have, for m ≥ n0,

P1(Y = 0) =
∑
u

P1(U = u) P1(Y0 = 0 | U = u)

≥
∑

u∈N∩G
P1(U = u) P1(Y0 = 0 | U = u)

≥ emg
∗
p−mε

·
∑

u∈N∩G
P0(U = u) P1(Y0 = 0 | U = u)

≥ emg
∗
p−mε

∑
u∈N∩G

P0(U = u) emg
∗
p−mε

= eng
∗
p−nεP0(U ∈ N ∩G)

≥ eng
∗
p−nε 1− α

2(1 + α)
.

Here, the second inequality follows from (12), and the third
inequality from (11). The next equality is because n = 2m.
The last inequality follows from (10).

Taking logarithms, dividing by n, and taking the limit as
n→∞, we obtain that g∗d(α) ≥ g∗p− ε. Since ε was arbitrary,
the desired result follows.

IV. DISCUSSION, EXTENSIONS, AND OPEN PROBLEMS

We have proved that the daisy chain architecture introduced
and analyzed in this paper performs no better (in the sense of
the asymptotically optimal Neyman-Pearson error exponent)
than a star architecture with the same number of sensors and
observations. This is despite the fact that the daisy chain
architecture provides substantially richer information to the
last half of the sensors.

Our main result was given for the case where the number
of sensors in the first and the second stage of the daisy chain
architecture is the same (and grows with the total number of
sensors in the architecture). We note that the proof can easily
be modified to show the same result for the case where the
numbers of sensors in the first and second stages are different,
as long as they both grow to infinity.

This work opens up a number of research questions. One
involves the case of a Bayesian performance criterion: we are
given prior probabilities for the two hypotheses (which do not
change with the number of sensors) and wish to minimize
the overall probability of error. From earlier works [14],
[6], we know that Bayesian formulations can be qualitatively
different. In particular, while for certain classes of trees the
Neyman-Pearson error exponent is the same for tree and star
architectures, this is not necessarily the case for the Bayesian
error exponent. Determining whether feedback provides some
added value (in terms of the optimal Bayesian error exponent)
is an open problem for the daisy chain as well as for the other
architectures to be discussed below.

Let us now consider a few related architectures. The daisy
chain architecture that we studied was “information-rich,” in



the sense that all messages from the first m sensors were trans-
mitted to the remaining sensors. We can make this architecture
less rich, by reducing the amount of shared information. The
most information-deprived architecture with a daisy chain
structure that we can think of is described next; we refer to it
as the “minimal daisy chain” architecture. Here, the messages
Yi = γi(Xi) of the first m sensors are sent to a fusion center,
as before. This fusion center computes a binary preliminary
decision U = γ̄(Y1, . . . , Ym), which it then transmits to the
sensors m+ 1, . . . , n. The latter sensors send messages of the
form Yi = δi(Xi, U) to a fusion center. We further restrict
the fusion center to “forget” the messages it received from
the first m sensors, and require it to make a final decision of
the form Y0 = γ0(Ym+1, . . . , Yn). Because the sensors and
the fusion center have access to less information, the optimal
(Neyman-Pearson) error exponent of this new architecture
(denoted g∗md(α)) cannot be better, so that g∗p = g∗d ≤ g∗md(α).
On the other hand, this architecture is at least as powerful as
the tree architecture considered in Example 1 of [6], whose
error exponent is known to be equal to g∗p . (This is the tree
architecture in which U is only sent to sensor m+1, who then
forwards it to the final fusion center.) This establishes that
g∗md(α) = g∗d , for all α ∈ (0, 1). For some additional results,
[17] shows that for the minimal daisy chain architecture, there
is no loss of optimality if sensors 1, . . . ,m all use the same
decision rule, and all but one of the sensors m + 1, . . . , n
use the same decision rule. (The analogous result, that there
is no loss of optimality in the “information-rich” daisy chain
architecture if sensors 1, . . . ,m all use the same decision rule,
and if sensors m + 1, . . . , n all use the same decision rule,
follows trivially from the fact that sensors m + 1, . . . , n are
free to ignore the additional information U that they receive
and emulate any possible collection of decision rules for the
star architecture.)

An alternative architecture that incorporates more feedback
and which raises interesting research questions is the follow-
ing. Each of n sensors sends a binary message Yi = γi(Xi)
to a fusion center. A summary U = γ̄(Y1, . . . , Yn) of these
messages is formed. One can of course discuss many variants.
In one of them, U is restricted to be binary; in another, we
have U = (Y1, . . . , Yn). Then, each of the n sensors gets to
transmit a second binary message Zi, according to a rule Zi =
δi(Xi, U). Finally, a fusion center makes a decision Y0, ac-
cording to a rule of the form Y0 = γ0(Y1, . . . , Yn, Z1, . . . , Zn).
This architecture is shown in Figure 3. The optimal (Neyman-
Pearson) error exponent of any variant is to be compared
with the error exponent for a star architecture in which each
sensor gets to transmit two binary messages, based only on its
own information. (This star architecture is essentially the same
model as above, except that now Zi is given by a rule of the
form Zi = δi(Xi).) As discussed earlier, reference [7] proves
that there is no gain if U takes values in an alphabet whose
size grows at most subexponentially with n (as in the first
variant proposed above). However, for the case of exponential
alphabets (as in the second variant discussed above), it is
unknown at present whether the error exponent matches the
error exponent for a star architecture in which each sensor gets
to transmit two binary messages, or whether such feedback can

Fig. 3. An architecture with more feedback.

improve the error exponent.
More generally, the range of possible non-tree or feedback

architectures is vast. While such architectures tend to lead
into intractable problems (as far as the optimal exponent
is concerned), it may be possible to identify some that are
tractable or to carry out some qualitative comparisons.
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