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Abstract

The ease with which we recognize visual objects belies the computational difficulty of this feat.
Despite the concerted efforts of both biological and computer vision research communities
over the last forty years, human-level visual recognition remains an unsolved problem. The
impact of a robust yet inexpensive solution would dramatically change computer science and
neuroscience, unleashing a host of innovative applications in our modern society.

In this thesis, we identify two operational barriers that have obstructed progress towards
finding a solution – namely the lack of clear indicators and operational definitions of success,
and the currently limited exploration of the staggeringly large hypothesis space of biologically-
inspired solutions. To break down these barriers, we first establish new neuroscience-motivated
baselines and new suites of fully-controlled benchmarks for object and face recognition. We
also compare and contrast a variety of high-level visual systems, both artificial (state-of-the-
art computer vision) and biological (humans). Then, we propose a simple high-throughput
approach to undertake a systematic exploration of the biologically-inspired model class. By
leveraging recent advances in massively parallel computing, we show that it is possible to
generate a multitude of candidate models, screen them for desirable properties and discover
robust solutions. Finally, we validate the scalability of our approach by showing its potential
on large-scale “real-world” applications.

Taken together, this thesis represents a humble attempt towards an integrated approach
to the problem of brain-inspired object recognition – spanning the engineering, specification,
evaluation, and application of an interesting set of biologically-inspired ideas, driven and
enabled by massively parallel technology. Even relatively early instantiations of this approach
yield algorithms that achieve state-of-the-art performance in object recognition tasks and can
generalize to other image domains. In addition, it offers insight into which computational
ideas may be important for achieving this performance. Such insights can then be “fed
back” into the design of new candidate models, constraining the search space and suggesting
improvements, further guiding “evolutionary” progress.

We hope that our results will point a new way forward, both in the creation of pow-
erful yet simple computer vision systems and in providing insights into the computational
underpinnings of biological vision.

Thesis Supervisor: James J. DiCarlo
Title: Associate Professor of Neuroscience
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Chapter 1

Problem Statement

“Of all (our) senses, vision is the first, the most

extensive; accordingly, if they (our eyes) were

given to us for discovering truth, it (vision)

would have a greater role by itself than all the

others combined.”

[Malebranche, 1997]

V
ision is incontestably our richest sense and it goes far beyond the mecha-

nisms of seeing 1. Human vision is striking in its effortlessness as we perceive

our visual environment almost instantaneously [Potter and Levy, 1969; Thorpe et al.,

1996], and it is surely not a coincidence that meticulous evolutionary refinement has

dedicated a large fraction of the primate brain to the processing of visual informa-

tion (e.g. approximately 50% of the macaque neocortex). Understanding the cortical

principles underlying this remarkable feat has been a primary focus of neuroscience,

but despite decades of collaborative multi-disciplinary research, the “vision problem”

remains unsolved [Masland and Martin, 2007].

1Don’t we say “an image is worth a thousand words”, “I see what you mean” when we understand
a new concept, or “Albert Einstein was a visionary scientist”?
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Chapter 1: Problem Statement

1.1 Goals and Motivations

“But why do you want to study vision? Vision

is trivial!”

A friend

In this thesis, we will focus on the computational aspects of one of the major stum-

bling blocks in vision research: object recognition (i.e. detecting and identifying single

objects in visual scenes as well as categorizing or grouping sets of similar objects to-

gether). To completely solve this problem from a computational perspective means

instantiating and understanding models that replicate or outperform natural systems

while retaining the essential computational principles that biology exploits.

Until the early seventies, artificial intelligence researchers seriously underestimated

what a difficult task tackling this problem would be [Papert, 1966], essentially because

humans are so good at it that it prevents them from performing critical introspection.

Today, even the most sophisticated computer vision system cannot rival a child’s object

recognition capabilities, but we now have a more accurate understanding of what makes

the problem so challenging. First, it is important to note that even though we perceive

our visual world as three-dimensional (3-D) our retinas are only two-dimensional (2-

D). In addition, any 3-D structure (object) can produce a virtually infinite number of

2-D retinal projections (images) depending on its pose or distance, the lighting and

illumination of the environment, the surrounding objects, etc. It is very unlikely that

the viewer’s retina, which contains millions of sensors, will see the exact same image

twice in its lifetime, and even if similar objects can cast very different images, his

visual system must group them together in a meaningful way and in a fraction of a

second. Ultimately, a successful system must solve this high-dimensional ill-posed and

ill-conditioned inverse problem [Bertero et al., 1988; Ullman, 1996; Edelman, 1999]

by maintaining a high tolerance (“invariance”) to a wide range of identity-preserving

transformations [DiCarlo and Cox, 2007], being highly selective to complex objects (e.g.

discriminating two faces, even though they share very similar shapes), recognizing with

high accuracy tens of thousands of images following a single exposure [Shepard, 1967;

Standing et al., 1970; Standing, 1973; Brady et al., 2008], and storing/retrieving tens of

10



Chapter 1: Problem Statement

thousands of object categories [Biederman, 1987] – including objects that it has never

seen before.

Considering that we evolved to the point where vision is absolutely critical to the

survival of our species, it is legitimate to speculate that brain-inspired object recog-

nition, if solved, would have a substantial impact on our society. The solution would

certainly elicit new insights into how the brain works, affect the way we think about

cortical information processing and learning, and profoundly influence cognitive, sys-

tems and molecular neuroscience, computer science and artificial intelligence. Enabling

computers to become visually aware of their environment would also enhance or unlock

innovative applications and technologies ranging from data mining to medical image

analysis through fully autonomous vehicles.
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Chapter 2

Background

“Science is built up with facts, as a house is

with stones. But a collection of facts is no more

a science than a heap of stones is a house”

Henri Poincaré

B
iological brains (e.g. in primates) are the only systems to convey robust

solutions to the vision problems such as object recognition. Since our goal is

to mimic their abilities, it would seem productive to draw inspiration from their design,

architecture and function. Unfortunately, we do not have access to their blueprints,

making “forward-engineering” impossible. Instead, neuroscientists have attempted to

“reverse-engineer” natural systems [Hapgood, 2006; Cox, 2007; Adee, 2008] and better

characterize what constitutes a solution for the brain, how it solves it, why it behaves

the way it does, and how it evolved up to this point.

Even though the subject has been extensively studied and documented in a large

body of literature for decades, it is still poorly understood. In the following sections,

we provide a brief overview of what is known and highlight important “broad-stroke”

properties of biological visual object recognition.
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2.1 From the Retina to the Neocortex

When photons from a visual scene hit the retina, the light is transduced into electro-

chemical signals by its photoreceptors and ultimately encoded by retinal ganglion cells

[Koch et al., 1982; Meister et al., 1995; Meister, 1996] into action potentials1. The

information then goes through the lateral geniculate nucleus (LGN) in the thalamus

[Reinagel et al., 1999; Sherman, 2001; Alonso et al., 1996; Lesica and Stanley, 2004],

and culminates in the first cortical area: the primary visual cortex (V1).

From V1, two somewhat parallel processing pathways emerge: the dorsal stream

and the ventral stream [Felleman and Van Essen, 1991; Haxby et al., 1991; Ungerleider

et al., 1982; Mishkin et al., 1983; DeYoe and Van Essen, 1988; Ungerleider and Haxby,

1994; Goodale and Milner, 1992] (see Figure 2.1). The dorsal stream, usually described

as the “where” pathway, is thought to build an action-oriented object representation

and to process motion information and object locations. The ventral stream, also

known as the “what” pathway, is assumed to form an invariant object representation

that supports highly selective and robust recognition [Logothetis and Sheinberg, 1996;

Tanaka, 1996a; Rolls, 2000; Gross, 2002].

This dissociation between “what” and “where” seems natural, especially considering

that David Marr, one of the most prominent computational vision neuroscientists, de-

fines the “purpose of vision” as “knowing what is where by looking” [Marr, 1982]. How-

ever, it is probably an over-simplification to think that there is a complete dichotomy

between the functions of these two processing streams. The cortical areas in the dor-

sal and ventral pathways are in fact heavily interconnected [Farivar, 2009], making the

functional dissociation hypothesis “difficult if not impossible to test” [Cardoso-Leite

and Gorea, 2010].
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Figure 2.2: Neuronal populations along the ventral visual processing stream. Although
we ultimately seek to understand how object recognition is accomplished by the human brain, the
rhesus monkey is our current best model system. Like humans, this species has high visual acuity,
relies heavily on vision (approx. 50% of macaque neocortex is devoted to vision) and easily performs
visual recognition tasks. Moreover, the monkey visual areas have been mapped and are hierarchically
organized [Felleman and Van Essen, 1991], and the ventral visual stream is known to be critical for
complex object discrimination (colored areas, see text). We show a lateral schematic of a rhesus
monkey brain (adapted from [Felleman and Van Essen, 1991]). We conceptualize each stage of the
ventral stream as a new population representation. The lower panels schematically illustrate these
populations in early visual areas and at successively higher stages along the ventral visual stream –
their relative size loosely reflects their relative output dimensionality (approximate number of feed-
forward projection neurons). A given pattern of photons from the world (here, a face) is transduced
into neuronal activity at the retina and is progressively and rapidly transformed and re-represented
in each population, perhaps by a common canonical transformation (T). Solid arrows indicate the
direction of visual information flow based on neuronal latency (approx. 100 ms latency in IT), but
this does not preclude fast feedback both within and between areas. Figure and caption modified from
[DiCarlo and Cox, 2007], feed-forward timing data from [Thorpe and Imbert, 1989].
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2.2 Object Recognition in the Ventral Visual Stream

2.2.1 Architecture

A large body of experimental work done in primates has established the ventral visual

stream as the fundamental support for object recognition in the neocortex [Logothetis

and Sheinberg, 1996; Tanaka, 1996a; Rolls, 2000; Gross, 2002]. This pathway is orga-

nized as a hierarchical structure (see Figure 2.2, modified from [Felleman and Van Essen,

1991; Serre et al., 2007a]) composed of a series of complex neuronal transformations

from V1 to extrastriate visual areas V2, V4, and to the inferior temporal cortex (IT,

which can be further divided into two parts: posterior and anterior or PIT and AIT)

[Gross et al., 1972; Tanaka, 1996a; Quiroga et al., 2005; DiCarlo and Cox, 2007].

IT is considered the last purely visual area in this hierarchy [Gross, 1994]. Lesions

in IT cause severe deficits in visual recognition behavior [Dean, 1976, 1982; Holmes

and Gross, 1984; Weiskrantz and Saunders, 1984] and electrical microstimulation of IT

neurons can bias object discrimination performance [Afraz et al., 2006; Kawasaki and

Sheinberg, 2008]. IT is also thought to play a role in short-term memory, visual memory

and their consolidation by projecting to areas in the medial temporal lobe (MTL) and

the pre-frontal cortex (PFC) [Miyashita, 1988; Sakai and Miyashita, 1991; Zola-Morgan

and Squire, 1993; Miyashita, 1993; Miller and Desimone, 1994]. PFC receives a major

input from IT and is thought to be responsible for linking/controlling perception and

action [Miller, 2000; Miller and Cohen, 2003]. In the context of visual recognition, PFC

is where the final object identification/categorization is thought to happen [Freedman

et al., 2001, 2002].

2.2.2 Processing Speed, Feed-forward vs. Feed-back

When confronted with rapid categorization tasks, the primate visual system is able

to recognize objects with high accuracy in less than 200 ms [Potter and Levy, 1969;

Biederman, 1972; Biederman et al., 1974; Potter, 1975, 1976; Potter et al., 2002; Oram

1Action potentials are short-lasting events in which the electrical membrane potential of a cell
rapidly rises and falls, following a stereotyped trajectory [Wikipedia].

16



Chapter 2: Background

and Perrett, 1992; Thorpe et al., 1996; Hung et al., 2005], which imposes a stringent

constraint on how many steps can be performed and how long they can take. At this

speed, the information processing required for immediate recognition along the ventral

stream hierarchy has to be mostly feed-forward [Serre et al., 2007a]. Although local feed-

back connections within cortical areas are highly likely to happen within this period

(e.g. to implement signal normalization), there may simply be no time for significant

interactions between cortical areas (i.e. long-range feed-back, e.g. PFC to V1).

It is obvious that visual object recognition does not only happen in a glimpse, and

complex categorization tasks (e.g. when heavy clutter is present) may require feed-

back processing (e.g. to disambiguate uncertainties in the scene). In fact, feed-back

processing is omnipresent in the brain. For example, feed-back from V1 to LGN is ten

times as numerous as feed-forward connections from LGN to V1 [Sherman and Koch,

1990]. Interestingly, V1 receives more top-down projections from a larger number of

extrastriate cortical areas than it sends bottom-up projections (e.g. see [Boussaoud

et al., 1990; Barone et al., 2000]), and, although V1 does not project directly to IT, it

receives signals from IT (e.g. see [Rockland and Van Hoesen, 1994]).

Feed-forward and feed-back projections have very different properties. Bottom-up

connections are more restricted and focused whereas top-down connections are more

pervasive and diffuse [Callaway, 1998; Zeki and Shipp, 1989; Shipp and Zeki, 1989;

Salin and Bullier, 1995]. This contrast suggests an important division of their function

with respect to visual object recognition: feed-forward processing probably builds up a

structured object representation from simple to complex (see below) with activity from

lower areas driving activity in higher regions, while feed-back processing enhances the

representation from lower areas by controlling and biasing their activity depending on

global and contextual information from higher regions.

In this thesis, we will focus on feed-forward processing.

2.2.3 Selectivity and Tolerance

As we discussed in Chapter 1, object recognition requires both selectivity, so that objects

or categories of objects that appear similar can still be distinguished, and tolerance
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(“invariance”), so an object that undergoes rigid or non-rigid transformations, or if it

is subject to complex interactions with its environment (e.g. lighting or reflection), can

still be perceived as the same entity.

Although we do not know exactly how these two conflicting properties are gradually

built up and kept balanced in the visual cortex, many essential elements have been

discovered over the last decades. There is ample evidence for a general increase of the

complexity of the neurons’ preferred stimuli (leading to more selectivity) as well as

an expansion of the size of their receptive fields2 (associated with more tolerance to

variation in position, scale, viewpoint, etc.) along the ventral stream hierarchy [Hubel

and Wiesel, 1968; Desimone, 1991; Perrett and Oram, 1993; Kobatake and Tanaka,

1994; Logothetis et al., 1995; Logothetis and Sheinberg, 1996; Tanaka, 1996b; Anzai

et al., 2007; Rust and DiCarlo, 2010].

The seminal experiments of Hubel and Wiesel over fifty years ago revealed that some

neurons in V1 – called “simple cells” – were highly selective to bars/edges of specific

orientations, spatial frequencies and phases, while other neurons – called “complex

cells” – were invariant to the specific phase or position of the optimal oriented bar (note

that other cells, sometimes dubbed “hypercomplex cells”, were also shown to have end-

inhibition and side-inhibition properties, as well as tuning to bars of particular lengths).

V1 neurons were also shown to form retinotopic maps of the visual environment [Hubel

and Wiesel, 1959, 1962, 1968, 1977, 1998].

Neurons in V2, in addition to their orientation tuning [Hubel and Wiesel, 1965], are

also thought to be sensitive to specific angles or contours (including illusory borders)

by encoding combinations of local oriented bars [Von der Heydt et al., 1982; Boynton

and Hegdé, 2004; Ito and Komatsu, 2004; Anzai et al., 2007]. The spatial organization

of V2 is also believed to be retinotopic.

Neurons in V4 have been implicated in the processing of shapes of intermediate

complexity [Kobatake and Tanaka, 1994] like texture patterns or boundary fragments

[Pasupathy and Connor, 1999, 2001, 2002]. V4 neurons are generally thought to be

selective to Cartesian gratings (e.g. bars or sinusoidal waves) [Desimone and Schein,

2The receptive field of a sensory neuron is a region of space in which the presence of a stimulus will
alter the firing of that neuron [Wikipedia].
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1987] and non-Cartesian gratings (e.g polar or hyperbolic) [Gallant et al., 1993, 1996]

(with a bias for non-Cartesian ones). They also exhibit three-dimensional orientation

tuning [Hinkle and Connor, 2002]. The retinotopy in V4 (and beyond) has not been

fully validated yet (the subject is still controversial – see [Wandell et al., 2005] for

example).

Although both V4 and IT neurons seem to encode natural images equally well, the

IT population exhibits increased (negative) sensitivity to statistical scrambling of those

images (i.e. “less natural”) [Rust and DiCarlo, 2010], hence devoting more resources

to the construction of an invariant representation for “behaviorally relevant” stimuli.

Interestingly, this scrambling sensitivity is proportional to the receptive field size in

both V4 and IT.

Building upon the V4 neuronal representation, neurons in IT become selective for

more complex feature conjunctions and more robust to many identity-preserving stim-

ulus transformations. Since more than forty years ago [Gross et al., 1967, 1969, 1972],

single-unit electrophysiological recordings have established that neurons in IT are in-

deed tuned to complex shapes including faces and other body parts [Rolls et al., 1982;

Perrett et al., 1984, 1987; Logothetis and Sheinberg, 1996; Tanaka, 1996a; de Beeck

et al., 2001; Brincat and Connor, 2004] . This high selectivity is preserved within the

neurons’ receptive fields [Rust and DiCarlo, 2010] and is robust to eye movements [Di-

Carlo and Maunsell, 2000] or to the task being performed [Chelazzi et al., 1998]. It is

also tolerant to changes in position and scale [Desimone et al., 1984; Rolls, 1984, 1991;

Ito et al., 1995; Hung et al., 2005], rotation and pose/view [Perrett et al., 1985; Per-

rett and Oram, 1993; Tovee et al., 1994; Logothetis et al., 1995; Booth and Rolls, 1998;

Op De Beeck and Vogels, 2000; Quiroga et al., 2005], illumination, texture and low-level

shape cues [Sary et al., 1993; Vogels and Orban, 1996], clutter [Zoccolan et al., 2005],

etc. Interestingly, adult IT does not necessarily require extensive previous experience

with novel objects or views to maintain this tolerance [Logothetis et al., 1995; Hung

et al., 2005]. Moreover, not all IT neurons are highly selective or highly tolerant and

a trade-off was recently found between these two properties: individual neurons with

high selectivity have low tolerance and vice versa [Zoccolan et al., 2007]. Finally, even

though many studies have tried to gain insight into the critical features and shape di-
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mensions preferred by IT neurons (e.g. by studying the neurons’ responses to complex

objects and gradual decomposition of objects’ “parts” – effectively trying to come up

with a theory similar to the one found by Hubel and Wiesel in V1 with orientation and

spatial frequency tunings) [Gross et al., 1972; Kobatake and Tanaka, 1994; Tsunoda

et al., 2001; Pollen et al., 2002; Kayaert et al., 2003; Yamane et al., 2008], we still lack

a clear fundamental understanding.

2.2.4 Development, Learning and Plasticity

Genetically controlled processes and experience-dependent processes are deeply inter-

twined throughout the development of the visual cortex (which involves laminar/colum-

nar organization, neuron wiring and synaptic weight “specification”). When newborns

open their eyes for the first time, their brains begin to understand the surrounding vi-

sual environment at an incredible speed. Within only a few days after birth, human

infants begin to exhibit sophisticated visual skills – primary amongst these is the abil-

ity to preferentially orient towards complex stimuli like faces [Johnson et al., 1991]. To

what extent primates’ visual skills are innate or learned is still under debate in the

community, and precisely identifying the endogenous and exogenous factors remains an

important open research area [Morton and Johnson, 1991; Johnson and Aslin, 1996;

Fiser and Aslin, 2002; Johnson, 2005; Sugita, 2008]. Interestingly, studies with human

patients who acquire sight late in life have suggested that the development of these vi-

sual abilities is unlikely to be merely the result of maturation in the brain [von Senden,

1960; Gregory and Wallace, 1963; Valvo, 1968; Valvo et al., 1971; Kellman et al., 1986;

Fine et al., 2003; Maurer et al., 2005; Ostrovsky et al., 2006, 2009]. Instead, visual

development seems to be relying more on learning about the environment (i.e. ex-

ogenous factors – not only visual but also multi-modal) than previously appreciated.

Experiments in the developing brain involving “rewiring” of visual inputs to the au-

ditory cortex reached the same conclusion by showing significant activity-dependent

remodeling of the auditory cortex to process visual information (e.g. neurons devel-

oped receptive fields similar to the ones normally found in the visual cortex) [Horng

and Sur, 2006].
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Learning and plasticity have been reported in all levels of the ventral stream in hu-

mans and monkeys [Ghose, 2004; Kourtzi and DiCarlo, 2006; Hoffman and Logothetis,

2009; Kourtzi, 2010]:

• in V1 and V2 [Wiesel and Hubel, 1963; Singer et al., 1982; Karni and Sagi, 1991;

Reber et al., 1998; Aizenstein et al., 2000; Schuett et al., 2001; Crist et al., 2001;

Yao and Dan, 2001; Lee et al., 2002; Reber et al., 2003], even though the con-

tribution of V1/V2 after training remains controversial [DeAngelis et al., 1995;

Schoups et al., 2001; Ghose et al., 2002];

• in V4 [Rainer et al., 2004; Yang and Maunsell, 2004];

• in IT [Logothetis et al., 1995; Rolls, 1995; Dolan et al., 1997; Kobatake et al.,

1998; Booth and Rolls, 1998; Erickson et al., 2000; Jagadeesh et al., 2001; Baker

et al., 2002; Sigala and Logothetis, 2002; Freedman et al., 2003, 2006; Op de

Beeck et al., 2006; Gauthier et al., 1999; DeGutis and D’Esposito, 2007; Jiang

et al., 2007; Li and DiCarlo, 2008, 2010];

• and in higher areas like PFC [Rainer and Miller, 2000; Freedman et al., 2001,

2002, 2003; Pasupathy and Miller, 2005].

The specifics of how learning is taking place along the hierarchy and how it is shaping

the visual representations are still largely unclear, but significant progress has been

made. Learning during object discrimination tasks seems to begin at higher levels of

the hierarchy (e.g. IT) for easy tasks and proceeds to lower levels (e.g. V1, V2 or V4) for

finer and more complex tasks [Sigman et al., 2005; Hochstein and Ahissar, 2002; Ahissar

and Hochstein, 2004; Ghose, 2004] (and these changes are presumably happening at

faster time scales in higher areas). For instance, studies have reported that V4 neurons

change their tuning for (fine) orientation discrimination tasks [Yang and Maunsell, 2004]

while IT neurons do not [Vogels and Orban, 1994]. IT neurons are tuned for specific

views or parts of complex objects, and this tuning and organization depend partly

on supervised visual experience (i.e. IT cells have higher selectivity for object views

that have been presented during training, and they tend to form clusters with similar

preferences) [Logothetis et al., 1995; Tanaka, 1996b; Kobatake et al., 1998; DiCarlo
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and Maunsell, 2000; Erickson et al., 2000; Sheinberg and Logothetis, 2001; Jagadeesh

et al., 2001; Baker et al., 2002; Sigala and Logothetis, 2002; Freedman et al., 2003].

Interestingly, view-tuning of IT neurons has also been observed during unsupervised

(i.e. passive) exposure to novel complex objects [Booth and Rolls, 1998; Freedman

et al., 2006]. In this context, time (and motion) could provide an implicit supervised

signal and thus clues to learning which transformations are object identity-preserving

or not (i.e. two retinal projections following each other are very likely to describe

the same visual scene and hence contain the same objects). Recently, the hypothesis

that the ventral stream might learn to be “invariant” using the coherent evolution of

spatio-temporal statistics [Földiak, 1991; Wallis et al., 1993; Wallis, 1996; Wallis and

Rolls, 1997; Wiskott and Sejnowski, 2002] (see Section 2.3.3 for more details) has been

confirmed psychophysically [Wallis and Bülthoff, 2001; Brady and Kersten, 2003; Cox

et al., 2005] and physiologically [Li and DiCarlo, 2008, 2010]. More specifically, Cox,

Li and DiCarlo showed that careful alteration of the temporal contiguity under natural

vision conditions caused specific changes in human behavior as well as IT position and

size tolerance. This learning occurred very rapidly (1-2 hours) and is compatible with

Hebbian learning [Hebb, 1949].

2.3 Biologically-Inspired Models of Visual Object

Recognition

“Remember that all models are wrong; the

practical question is how wrong do they have

to be to not be useful.”

George E. P. Box

Efforts towards modeling visual object recognition with various degrees of inspira-

tion from biology and the brain started around the seventies. Since then, there has

been considerable debate in the neuroscience and computer vision communities regard-

ing the most appropriate way to tackle the problem. Two main computational theories

have emerged to try to describe how humans recognize objects and categories of objects.
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On the one hand, there is the part-based approach (also called correspondence-

based or component-based) which uses three-dimensional (CAD-like) canonical “mental”

models representing different objects’ structure and relationships between their visual

parts. Recognition is then performed by means of correspondences between the various

parts.

On the other hand, there is the feature-based approach (also called view-based or

holistic) where different objects’ “views” are learned and encoded into an invariant

visual representation. Recognition is then performed by matching the views stored in

memory.

Today, the distinction between the two directions may appear blurry in the computer

vision literature as objects can share “parts”, “components” or “fragments” that can

sometimes be encoded by image “features” or “descriptors” that essentially act as (local)

“template-matching” operators.

2.3.1 Part-Based Models

The part-based approach seeks structural correspondences between image regions and

parts of object canonical models. As a consequence, this approach relies on (1) de-

tecting and identifying volumetric primitives (i.e. the parts), and (2) building intrinsic

geometrical relations between them (i.e. above or below, left or right, larger or smaller,

etc.) [Fischler and Elschlager, 1973; Marr and Nishihara, 1978; Marr et al., 1980; Marr,

1982]. Many volumetric primitives have been proposed including generalized cylinders

[Binford, 1971], deformable superquadrics [Pentland, 1986, 1987; Dickinson et al., 1992]

with their extensions [Zhou and Kambhamettu, 1999], and “geons” (geometric primi-

tives) [Biederman, 1987; Biederman and Cooper, 1991; Hummel and Biederman, 1992;

Zhou and Kambhamettu, 2002]. Part-based models are intuitively organized as hierar-

chies where smaller and simpler parts are at the lower layers and more complex parts

are gradually build up.

In the brain, converting objects from a retinal representation to canonical models

by finding correspondences between components is not straightforward to model. It

could be implemented by dynamically linking and synchronizing patterns of neuronal
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activities representing the components [von der Malsburg, 1981; Feldman, 1982] and se-

lectively routing the information that will activate the next layer. This mechanism ex-

plicitly builds up an object representation that is tolerant to image variations with min-

imal loss of information [Pitts and McCulloch, 1947]. Routing architectures have been

proposed with a wide range of neuro-plausibility [Postma et al., 1997; Arathorn, 2002].

Examples include the “shifter-circuit” [Anderson and Van Essen, 1987; Olshausen et al.,

1993, 1995] or the “gain-field” model [Salinas and Abbott, 1997] where dedicated con-

trol neurons act as routing circuits to regulate/modulate the flow of information in the

hierarchy.

Many computer vision systems that do not necessarily seek neuro-plausible imple-

mentations have exploited the part-based approach [Lanitis et al., 1995; Burl and Per-

ona, 1996; Felzenszwalb and Huttenlocher, 2000; Fergus et al., 2003; Fei-Fei et al., 2003,

2004b; Holub and Perona, 2005; Crandall et al., 2005; Crandall and Huttenlocher, 2006;

Felzenszwalb and Huttenlocher, 2005; Felzenszwalb et al., 2010b,a], and some have even

provided invaluable insights into computational principles that biological object recog-

nition might use [Ullman, 1989; Yuille, 1991; Amit and Geman, 1999; Heisele et al.,

2001; Mohan et al., 2001; Ullman et al., 2002; Harel et al., 2007; Ullman, 2007; Lerner

et al., 2008].

Advantages

Part-based models are attractive because they can encode the size and position of

objects and their parts explicitly, so there is no need for an additional system to decode

this information.

In addition, they require minimal information loss to achieve their tolerance to image

variations, so they can generalize very well to new stimuli and new visual conditions.

Disadvantages

Nevertheless, they suffer from the fact that detecting volumetric primitives in natural

images is (still) a very hard (object segmentation or recognition) problem on its own

[Bulthoff et al., 1995; Edelman and Duvdevani-Bar, 1997].
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They also need time consuming layer-to-layer communications (with complex top-

down mechanisms) to build/use the canonical “mental” models, and, as a result they

do not fit well into the physiological constraints required to perform highly accurate

rapid categorization tasks.

2.3.2 Feature-Based Models

The feature-based approach aims to gradually build up an “invariant” visual representation

that encodes views of different objects. Most feature-based models are organized as deep

hierarchies (that are usually more rigid and specific than the ventral stream’s). They

are composed of multiple layers that (1) selectively detect (AND-like operation) fea-

tures in the image, and (2) combine (OR-like operation) the convergent outputs from

simpler feature detectors into more and more complex ones. This approach thus ex-

plicitly separates selectivity to complex object shapes and tolerance to object identity-

preserving image transformations (see Section 2.2.3) into two operations that are alter-

nated throughout the hierarchy.

The computational principles behind most feature-based models can be traced back

to the pioneering (and Nobel Prize winning) work of Hubel and Wiesel [Hubel and

Wiesel, 1959, 1962, 1968, 1977, 1998]. They proposed a model based on the responses

of the neurons they found in V1:

1. The simple cells ’ orientation and position tuning for bars within their (small)

receptive fields could be achieved by combining aligned “center-surround” cells

from LGN (that are known to be highly responsive to circular spots of light); see

Figure 2.3.

2. The complex cells ’ tolerance to the exact position of the bars within their (larger)

receptive fields could be achieved by pooling over adjacent simple cells that share

the same preferred orientation but have shifted receptive fields; see Figure 2.4.

Although claims have been made that (1) “beyond this early insight, systems neu-

roscience has not provided a breakthrough” for the modeling of object recognition

[DiCarlo and Cox, 2007], (2) we do not yet completely understand the behavior of all
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LGN cells}

V1 simple cell}

Figure 2.3: Possible scheme proposed by Hubel and Wiesel for explaining the organization
of simple cells in V1. A large number of cells from the lateral geniculate nucleus (LGN), of which
four are illustrated in the upper right in the figure, have receptive fields with “on” centers arranged
along a straight line on the retina. All of these project upon a single cortical cell, and the synapses
are supposed to be excitatory. The receptive field of the simple cell will then have an elongated “on”
center (selective for oriented bars) indicated by the interrupted lines in the receptive-field diagram to
the left of the figure. Figure and caption modified from [Hubel and Wiesel, 1962].

V1 neurons [Olshausen and Field, 2005; Carandini et al., 2005], and (3) this description

of V1 is certainly an over simplification of what is currently known [Jones and Palmer,

1987; Carandini et al., 1997; Simoncelli and Olshausen, 2001], this intuitive idea of de-

scribing V1’s simple cells’ responses as specific combinations of afferent LGN neurons,

and complex cells as specific combinations of simple cells could presumably be extended

and applied again to model the responses of neurons in V2 (from V1), V4 (from V2),

and IT (from V4). Some recent work has been done in this direction for V2 [Plebe,

2007], and V4 [Cadieu et al., 2007].

In parallel with Hubel and Wiesel’s studies in the fifties and sixties, Selfridge pro-

posed a multi-layer feature detector pattern recognition system called “Pandemonium”

[Selfridge, 1966], and Rosenblatt described his featured-based multi-layer Perceptron

[Rosenblatt, 1958, 1961; Minsky and Papert, 1987]. Inspired by these early insights,

many feature-based multi-layer hierarchical models have been presented in the seven-

ties [Fukushima, 1969; Marko and Giebel, 1970; Fukushima, 1970; Giebel, 1971; Marko,
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V1 simple cells}

V1 complex cell}

Figure 2.4: Possible scheme proposed by Hubel and Wiesel for explaining the organization
of complex cells in V1. A number of simple cells, of which three are shown schematically, are
imagined to project to a single complex cell. Each projecting neuron has a receptive field arranged as
shown to the left: an excitatory region to the left and an inhibitory region to the right of a vertical
straight-line boundary. The boundaries of the fields are staggered within an area outlined by the
interrupted lines. Any vertical-edge stimulus falling across this rectangle, regardless of its position,
will excite some simple cells, leading to excitation of the complex cell. Figure and caption modified
from [Hubel and Wiesel, 1962].

1974], and in the eighties, when Fukushima proposed the Neocognitron [Fukushima,

1980; Fukushima and Miyake, 1982; Fukushima, 1988, 1989] as an extension of his ear-

lier work on the Cognitron [Fukushima, 1975]. The Neocognitron (see Figure 2.5) is a

feed-forward model that has a retinotopically organized input layer representing pix-

els and multiple layers of processing with alternating “S-cells” (AND-like operations)

and “C-cells” (OR-like operations) with progressively larger receptive fields. These cells

correspond to Hubel and Wiesel’s simple and complex cells. Layers of S-cells extract

spatially localized features from previous layers (i.e. they have topographically orga-

nized receptive fields) and these features become more complex and specific (i.e. the

selectivity of S-cells increases along the hierarchy). Layers of C-cells pool over affer-

ent S-cells with similar selectivity but adjacent positions hence building tolerance to

position transformations.

In the last two decades, many feature-based models inspired by the Neocognitron

have emerged, including a model by Perret and Oram showing that the principle be-
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(a)

(b)

}(c)

Figure 2.5: Schematic diagrams of the Neocognitron. (a) Correspondence between the simple/-
complex model by Hubel and Wiesel [Hubel and Wiesel, 1962] and the neural network of the Neocog-
nitron. (b) Schematic diagram illustrating the interconnections between layers in the Neocognitron.
(c) An example of the interconnections between cells and the response of the cells after completion of
self-organization. Figure and caption modified from [Fukushima, 1980].
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hind C-cells’ pooling could also be extended to scale invariance [Perrett and Oram, 1993;

Oram and Perrett, 1994], the VisNet model (see Figure 2.6) which was based on some

of the same ideas [Rolls et al., 1992; Wallis et al., 1993; Wallis and Rolls, 1997; Rolls

and Milward, 2000; Stringer and Rolls, 2002; Elliffe et al., 2002; Deco and Rolls, 2004],

or SEEMORE [Mel, 1997]. In the meantime, the advancement of a more formal math-

ematical approach to learning in multi-layer architectures, called the back-propagation

algorithm [LeCun, 1985; Parker, 1986; Rumelhart et al., 1986; LeCun, 1988], led to the

Convolutional Neural Networks (CNN) models developed by LeCun and colleagues [Le-

Cun et al., 1989, 1998; LeCun and Bengio, 1998; LeCun et al., 2004; Osadchy et al.,

2004; Chopra et al., 2005; Kavukcuoglu et al., 2009; Jarrett et al., 2009; Hadsell et al.,

2009; Boureau et al., 2010a; LeCun et al., 2010]. As indicated by their name, CNN

models use convolutional layers with a bank of filters to achieve their selectivity and

spatial subsampling layers to achieve their invariance to position (see Figure 2.7). Even

though these layers are similar to the Neocognitron’s S-cells and C-cells, these layers

are usually denoted “C” (for convolution) and “S” (for subsampling), which can be

confusing.

Another comprehensive and advanced line of research, also based on Hubel and

Wiesel’s (S)imple and (C)omplex cells and on the S/C cascade of Fukushima’s Neocog-

nitron, has been carried out by Poggio and colleagues with their HMAX models. Orig-

inally proposed in 1999 [Riesenhuber and Poggio, 1999b, 2000] and refined until today

[Riesenhuber and Poggio, 2002b; Serre et al., 2005b, 2007c,b; Mutch and Lowe, 2008],

this class of models seeks close agreement with what is known about the anatomy and

physiology of the ventral stream [Logothetis et al., 1995; Cadieu et al., 2007] as well as

human behavioral performance during rapid visual categorization [Serre et al., 2007a].

The goal of their approach is to start with simple ideas and intuitive computational

principles and gradually build more elaborate models to finally establish a “Standard

Model” [Riesenhuber and Poggio, 2002a], like in Physics. Figure 2.8 shows the most

recent HMAX instantiation. Layers of S units perform a Gaussian-like tuning opera-

tion (sometimes implemented with a convolution) with a set of filters while layers of

C units perform a max-like pooling operation across scale and space. In the HMAX

models, the primary visual cortex (V1) is hard-coded at the bottom of the hierarchy
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Figure 2.6: Schematic diagram of VisNet. (left) Stylized image of the VisNet four-layer network.
Convergence through the network is designed to provide fourth-layer neurons with information from
across the entire input retina. (right) Convergence in the visual system (adapted from [Rolls et al.,
1992]). V1: primary visual cortex area V1; PIT: posterior inferior temporal cortex; AIT: anterior
inferior temporal cortex. Figure and caption modified from [Stringer and Rolls, 2002].

with a bank of two-dimensional Gabor bandpass filters [Gabor, 1946] with different

orientations and spatial frequencies. As described previously, the receptive fields of

both types of units become progressively larger throughout the hierarchy, and S units

become selective for more and more complex shapes while C units exhibit higher de-

grees of tolerance to position and scale variations. Interestingly, it has been suggested

that both Gaussian-like and max-like operations could be implemented with similar

biophysically-plausible canonical neural circuits involving divisive normalization and

polynomial nonlinearities with different parameters [Kouh and Poggio, 2008]. More-

over, a recent extension to HMAX has attempted to include “where” information by

modeling the attentional processes happening in the brain [Chikkerur et al., 2010]. A

rigorous mathematical framework has also been developed to understand the tolerance

and discrimination properties of HMAX models [Smale et al., 2009; Bouvrie et al., 2009;

Wibisono et al., 2010].

This review of feature-based models does not pretend to be complete, but it is

worth mentioning that various researchers have developed similar hierarchical models,
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Figure 2.8: Schematic diagram one of the most recent variant of HMAX. This model is
mostly feedforward, apart from local recurrent circuits. It attempts to describe the initial stage of
visual processing and immediate recognition, corresponding to the output of the top of the hierarchy
and to the first ∼150 ms in visual recognition. Colors encode the tentative correspondences between
model layers and brain areas (see Figure 2.1). The model assumes that one of the main functions of the
ventral stream is to achieve an optimal trade-off between selectivity and invariance. It is important to
point out that the hierarchy is probably not as strict as depicted here. In addition there may be cells
with relatively complex receptive fields already in V1. Stages of simple “S” units with Gaussian-like
tuning (plain circles and arrows), which provide generalization [Poggio and Edelman, 1990; Poggio and
Smale, 2003; Poggio and Bizzi, 2004], are interleaved with layers of complex “C” units (dashed circles
and arrows), which perform MAX-like operation on their inputs and provide invariance to position
and scale (pooling over scales is not shown here). Both operations may be performed by the same local
recurrent circuits of lateral inhibition [Kouh and Poggio, 2008]. The major extension in this model
relative to [Riesenhuber and Poggio, 1999b] is that unsupervised learning, on a set of natural images
unrelated to the task, determines the tuning (e.g., the synaptic weights) of the simple units in the S2
and S3 layers (corresponding to V4 and PIT, respectively). Learning of the synaptic weights from S4
to the top classification units is the only task-dependent supervised learning stage in this architecture.
The total number of units in the model is in the order of 107. The table on the right provides a
summary of the main properties of the units at the different levels of the model. Figure and caption
modified from [Serre et al., 2007a,b].
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(a)

(b)

Figure 2.7: Schematic diagram of Convolutional Neural Nets (CNNs). (a) A typical CNN
architecture with two feature stages. (b) Example of a recent extension of the feature extraction stage.
An input image (or a feature map) is passed through a filter-bank, followed by a non-linear activation
function, local subtractive and divisive contrast normalization (inspired by the Methods of Chapter
4), and spatial pooling/sub-sampling. Figure and caption modified from [LeCun et al., 2010].

emphasizing different aspects and without necessarily seeking neuro-plausibility. For

example: Thorpe et al.’s SpikeNet (focusing on neurons’ spikes with temporal order

coding instead of firing rate coding) [Thorpe and Gautrais, 1997; Van Rullen et al.,

1998; Gautrais and Thorpe, 1998; Thorpe et al., 2001; Thorpe and Fabre-Thorpe, 2001;

Thorpe, 2002; Masquelier and Thorpe, 2007]; Wersing, Körner et al.’s models [Wersing

and Körner, 2003; Schneider et al., 2005; Kirstein et al., 2008, 2009]; Wyss, König and

Verschure’s models [Wyss et al., 2003, 2006]; Bengio, Hinton, LeCun and Ng’s Deep

Neural Networks (such as Belief Nets, Auto-Encoders, Restricted Boltzmann Machines

(RBMs), etc.) [Hinton, 2005; Hinton and Salakhutdinov, 2006; Hinton, 2007a; Bengio

and LeCun, 2007; Bengio, 2009; Lee et al., 2009; Raina et al., 2009; Nair and Hinton,

2009]; or Dileep and Hawkins’ Hierarchical Temporal Memory (HTM) [George, 2008;

George and Hawkins, 2009].
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Advantages

The S/C cascade implemented in many hierarchical feature-based models provides a

gradual and parallel increase of selectivity and tolerance, which may be critical to

avoid a combinatorial explosion in the number of neurons to represent many object

views without being affected by the “binding problem” (i.e. the failure to discriminate

among objects sharing the same features) [Malsburg, 1995; Treisman, 1996; Ullman and

Soloviev, 1999; Riesenhuber and Poggio, 1999a; Mel and Fiser, 2000].

In addition, due to their “invariant” properties, these models can recognize objects

without necessarily knowing their positions and sizes. As a consequence, they can be

much faster than part-based models and more compatible with primates’ behavioral

performance on rapid categorization tasks.

Disadvantages

The strict separation and alternation between the selectivity-building (AND-like) op-

eration (S) and the tolerance-building (OR-like) operation (C) is somewhat of an over-

simplification of the trade-off. Increasing selectivity and then tolerance is not a joint

optimization. Instead, the fact that these two operations could be implemented with

the similar biophysically-plausible circuit with different parameters might suggest that

there exists a unique canonical operation that can jointly balance selectivity and tol-

erance (and this could be achieved by learning the statistical regularities of the visual

environment, see Section 2.2.4).

Another problem with most feature-based models is that information is lost as

tolerance is gained. For example, max-like pooling throws away the exact position

and size of the detected features. This shortcoming could however be overcome by

modeling the dorsal “where” stream or by the inclusion of visual attentional processes

(as in [Walther and Koch, 2007; Chikkerur et al., 2010]).

2.3.3 Learning

“Arguably, the problem of learning represents a gateway to understanding intelligence

in brains and machines, to discovering how the human brain works, and to making
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intelligent machines that learn from experience and improve their competences as chil-

dren do” [Poggio and Smale, 2003]. Simply put, learning in biologically-inspired models

is “the process by which [a certain class of] free parameters [of the model] are adapted

through a process of stimulation by the environment in which the [model] is embedded”

[Haykin, 1994].

The most common class of adjustable parameters that are learned in these models

are the synaptic weights of each simulated neuron (or population of neurons), and they

are consequently in very large number. Depending on the values of these variables,

the visual representation encoded at each layer will be different. There are many ways

to learn, but we will focus on the learning of the statistical regularities present in the

visual environment itself, an idea originally proposed by Barlow who formulated it as the

“detection of associations, or covariation, or suspicious coincidences, among the inputs”

(i.e. learn to anticipate these coincidences so that they are no longer non-accidental)

[Barlow, 1961, 1985a, 1994]. This type of learning is generally performed unsupervised

where the learning signal is implicit in the input data (also called “learning without

a teacher”, as opposed to “learning with a teacher” or supervised where the learning

signal is explicitly given by the teacher, e.g. the labels associated with a given image).

Since Barlow’s early insights, many ideas have been proposed to learn the high-

order statistical regularities in the visual input and to constrain the format of the

representation produced by each layer. We provide a brief and non-exhaustive overview

below.

Redundancy Reduction and Sparse Coding

Densely distributed or highly redundant representations make it difficult to determine

when a coincidence is “suspicious” because combination of features will be represented

by complex activity patterns over many detectors and detecting coincidences among

these detectors requires keeping track of complex higher-order statistical dependencies.

To increase the efficiency of pattern recognition for upstream layers and to facilitate

the detection of non-accidental coincidences, it seems necessary to reduce redundancies

in the representation.

A solution has been originally proposed by Barlow [Barlow, 1989, 1994] and it con-
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sists in imposing a sparse constraint on the representation encoded by each layer (which

means that only a few of the many elements in the representation will be active at any

given time to encode a given stimulus). In addition to producing outputs with higher de-

gree of statistical independence, a sparse representation has many other computational

benefits compared to its dense counterpart including good signal-to-noise ratio, efficient

separation between combinations of features, and higher storage capacity [Field, 1987,

1994].

There is physiological evidence suggesting that the visual cortex is using sparse

codes [Barlow, 1972, 1985b] (even though the goal of the ventral stream does not seem

to be one of obtaining sparser and sparser representations, as suggested by a recent

study showing that V4 and IT populations have constant sparseness [Rust and DiCarlo,

2008]). Overcomplete sparse coding on natural images has been shown to produce the

spatially localized, oriented bandpass receptive fields of simple cells [Olshausen et al.,

1996; Olshausen and Field, 1997; Simoncelli and Olshausen, 2001]. In addition, sparse

coding also saves energy and “given the actual energy constraints of the mammalian

cortex, sparse coding would seem to be a necessity” [Olshausen and Field, 2004].

Many methods (with a wide range of neuro-plausibility) have been proposed to learn

sparse representations from natural images: local anti-Hebbian learning [Földiák, 1990];

Infomax, Independent Component Analysis (ICA) and extensions [Comon, 1994; Bell

and Sejnowski, 1997; Te-Won, 1998; van Hateren and van der Schaaf, 1998; Hyvärinen

and Oja, 2000; Hyvärinen and Hoyer, 2001; Hyvärinen et al., 2001; Hoyer and Hyväri-

nen, 2002; Stone, 2004; Hyvärinen, 2010]; Non-negative Matrix Factorization [Lee and

Seung, 1999; Eggert and Korner, 2004; Mairal et al., 2010]; Intrinsic Plasticity / home-

ostasis [Triesch, 2007; Weber and Triesch, 2008; Savin et al., 2010]; among others. As a

consequence, many recent object recognition models use sparse coding and approxima-

tions at their core [Wersing and Körner, 2002; Hasler et al., 2005; Marc-Aurelio Ranzato

et al., 2006; Marc Aurelio Ranzato et al., 2007; Mairal et al., 2008; Yang et al., 2009;

Boureau et al., 2010b; Gregor and Lecun, 2010; Boureau et al., 2010a]. Note that sparse

coding is also related to Compressed Sensing [Donoho, 2006], a rapidly developing signal

processing research area.
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Smoothness Assumption and Temporal Coherence

Another approach comes from considering object recognition as an inverse problem and

constraining the hierarchical representations to gradually extract the hidden causes that

produce the visual environment. Knowing critical properties of our physical world and

how we observe it can help us to formulate intuitive assumptions. For instance, one

can presume that important hidden causes for visual recognition are smoothly varying

in time (i.e. two retinal projections following each other have a very high probability

of describing similar visual scenes with the same objects but slightly different position,

pose, etc.), even though the raw measurements acquired by the photoreceptors and

encoded by the retinal ganglion cells vary rapidly in time (e.g. a small change in the

position or pose of an object will produce a very different pattern of activation in

the retina). It seems intuitive to exploit this temporal smoothness assumption as a

surrogate for recovering the hidden causes by gradually extracting smoothly varying

representations from the rapidly varying visual inputs.

Learning criterions relying on temporal smoothness have been originally introduced

in the eighties, including by Sutton and Barto [1981]; Sutton [1988] (for associative

learning / classical conditioning), by Perrett et al. [1984, 1985] (for invariance to pose),

or by Hinton [1989]. Early biologically-inspired vision models applying this principle

and showing its usefulness were subsequently implemented by Mitchison [1991] and

Földiak [1991]. To learn tolerance to position variations, Földiak proposed an algorithm

based on local competition, short-term memory, and most importantly, a trace learning

rule. This rule is essentially Hebbian learning on low-pass filtered pre- or post-synaptic

signals, effectively minimizing the variance of the signals’ time derivatives. In addition

to translation and pose [Földiak, 1991; Einhauser et al., 2002; Einhäuser et al., 2005;

Spratling, 2005], similar algorithms can be used to learn other “invariances”, such as

deformation [De Sa and Ballard, 1998], or viewpoint and depth [Becker and Hinton,

1992; Becker, 1993; Stone, 1996]. Many variants of the trace learning rule exist and

some were also implemented in full hierarchical models like VisNet [Wallis et al., 1993;

Wallis and Rolls, 1997; Rolls and Milward, 2000; Stringer and Rolls, 2002; Elliffe et al.,

2002; Deco and Rolls, 2004].
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Another important instantiation of this idea is the Slow Feature Analysis (SFA),

independently developed by Wiskott and Sejnowski [Wiskott, 1998; Wiskott and Se-

jnowski, 2002; Wiskott, 2003]. What differentiates SFA from earlier approaches is its

closed-form derivation that relies on batch processing instead of online gradient-descent-

based approximations. Consequently, the original SFA algorithm can not be applied

incrementally, but it will find globally optimal solutions instead of being trapped in local

optima. Interestingly, SFA has also been formally connected to other algorithms, includ-

ing Földiak’s trace learning (i.e. under some mathematical assumptions, SFA can actu-

ally be approximated by an online trace learning rule, see [Sprekeler et al., 2007]), sparse

coding with ICA [Blaschke et al., 2006], or predictive coding [Shaw, 2005; Creutzig and

Sprekeler, 2008]. Probabilistic interpretations within a Bayesian framework have also

been established and extended to deal with noise and missing data. For example, Turner

and Sahani [2007] showed that SFA can be seen as “maximum-likelihood learning in a

linear Gaussian state-space model, with an independent Markovian prior”.

Temporal coherence and predictive coding have also been used in HTM models

within a Bayesian belief propagation framework [George, 2008], and they have been

connected to mathematical models for cortical circuits (e.g. an “HTM node is ab-

stracted using a coincidence detector and a mixture of Markov chains”, see [George

and Hawkins, 2009] for details).

There is ample support in the neuroscience literature for learning from temporal co-

herence in the visual cortex (see e.g. [Cox et al., 2005; Li and DiCarlo, 2008, 2010]), and

many computational studies have revealed that learning from natural image sequences

under temporal smoothness assumptions leads to the emergence of simple, complex

and hypercomplex cell receptive fields (e.g. [Kayser et al., 2001; Einhauser et al., 2002;

Hurri and Hyvärinen, 2003a,b; Kording et al., 2004; Einhäuser et al., 2005; Berkes and

Wiskott, 2005; Masquelier et al., 2007]), effectively giving this principle more compu-

tational neuroscience support than sparse coding.

Finally, it is also possible to imagine that sparse representations in lower layers of

the hierarchy could arise as a by-product of temporal coherence optimization This is

strongly suggested by the fact that in going from V4 to IT, generalization to natural

stimuli increases [Rust and DiCarlo, 2010] but sparseness does not [Rust and DiCarlo,
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2008].

Notes on Information Preservation

To avoid trivial solutions to sparseness or smoothness optimizations (e.g. producing

random binary patterns or constant signals that have nothing to do with the inputs),

it is important to impose some sort of restriction (explicitly or not) on the information

that will get lost in the process. This type of constraint, in combination with others,

will also implicitly discover and represent complex statistical regularities in the visual

inputs.

Virtually all of the methods described above use some sort of information preser-

vation. Other related approaches use auto-encoders / auto-associators, or generative

models (see e.g. [Yuille and Kersten, 2006; Petrovic et al., 2006; Hinton and Salakhut-

dinov, 2006; Hinton et al., 2006; Hinton, 2007b; Bengio et al., 2007; Bengio and LeCun,

2007; Vincent et al., 2008; Bengio, 2009; Hinton, 2010]).

Notes on Learning with Weight Sharing

Recent hierarchical models that use convolution-like operation to build up their selec-

tivity (e.g. Poggio et al.’s HMAX or LeCun et al.’s CNN) effectively use filters (i.e.

local receptive fields) and a concept known as “weight-sharing” where each neuron and

its synaptic connectivity gets duplicated at different locations or scales3 within a given

layer, and thus perform the same operation but on different parts of the input. As a re-

sult, weight-sharing allows tolerance to position, scale and orientation by construction

and not by learning statistical regularities.

This structuring of domain knowledge about “invariant” object recognition has the

benefit of greatly reducing the number of adjustable parameters (synaptic weights, i.e.

filter kernels) and thus the number of examples required to learn them (this concept is

related to the VC-dimension of the learning algorithm, see [Vapnik and Chervonenkis,

1971]).

3Note that weight-sharing can also be applied to in-plane rotation, symmetry, etc.
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Notes on Learning with Gaussian-like Tuning

In addition to relying on neuro-plausible mechanisms [Logothetis et al., 1995; Kouh

and Poggio, 2008], models that use Gaussian-like tuning operations have been shown to

learn efficiently and generalize well to new stimuli (e.g. Radial Basis Function Networks

[Poggio and Edelman, 1990; Poggio and Girosi, 1990; Bishop, 1995; Poggio and Smale,

2003; Poggio and Bizzi, 2004]).

During learning, these models effectively combine training examples to form proto-

types (equivalent of neurons’ receptive fields or convolution filters), and to generalize to

new examples, they simply interpolate among the learned prototypes. Note that tun-

ing does not have to be exactly Gaussian and conceptually simpler tuning operations

have been shown to work as effectively (e.g. normalized-dot products with sigmoidal

outputs, see Appendix A.4 in [Serre et al., 2005a] for details).

2.3.4 Performance on Standard Computer Vision Tasks

To date, only relatively modest progress has been made towards building artificial

systems that approach the abilities of biological visual systems under real-world con-

ditions. Efforts to build algorithms capable of object and face recognition from both

the computer vision and the neuroscience communities have produced performance im-

provements on some restricted types of visual tasks, but performance is still arguably

far below that of the human brain and other biological systems.

While very few visual recognition models from neuroscience have generated “game-

changing” predictions, they have nevertheless shown that they can “fit” some piece of

known anatomy and/or physiology. One particularly common example is to demon-

strate that a model can produce responses similar to simple cells and/or complex cells.

Many experiments also continue to rely on small-scale, constrained recognition tasks.

Only a small group of models inspired by the brain have shown competitive results

on the type of benchmarks used by the computer vision community (which is arguably

more interested in overall recognition performance than any particular relationship with

biology). In particular, some biologically-inspired models have been shown to perform

well on digits classification [LeCun et al., 1989, 1998], face detection [Wiskott et al.,
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1997; Serre et al., 2002; Osadchy et al., 2004], face identification [Chopra et al., 2005],

object classification [LeCun et al., 2004; Serre et al., 2007c; Mutch and Lowe, 2008;

Kavukcuoglu et al., 2009; Jarrett et al., 2009; Boureau et al., 2010a], behavior clas-

sification [Jhuang et al., 2007], or autonomous driving [Hadsell et al., 2009] among

others. However, specialized methods from computer vision have historically outper-

formed more biologically-inspired models – for example in face verification [Wolf et al.,

2008, 2009; Taigman et al., 2009; Kumar et al., 2009; Cao et al., 2010], object detection

[Felzenszwalb et al., 2010b,a], object classification [Zhang et al., 2006; Varma and Ray,

2007; Lazebnik et al., 2009; Gehler and Nowozin, 2009; Van De Sande et al., 2010], etc.

2.3.5 Comparisons with Standard Computer Vision

Standard Computer Vision: Differences from Biology

Undoubtedly, standard computer vision models exploit very different mechanisms than

those observed in the brain to achieve the reported high levels of performance. One

particularly insightful observation is that they tend to rely heavily on high resolution

data to perform well, in contrast to humans that can correctly recognize faces [Sinha

et al., 2007] or objects [Torralba et al., 2008] at very low resolutions, even when the

objects in isolation can not be recognized.

Standard Computer Vision: Similarities with Biologically-Inspired Models

Most of the standard object recognition models from computer vision use SIFT-like fea-

tures [Lowe, 2004] at their lowest level. Even though SIFT was originally proposed as a

well-engineered “computational model for object recognition in IT cortex” [Lowe, 1999,

2000], it included many hardcoded components, based on mathematical and algorithmic

tricks not easily accessible to biological circuits, such as scale-invariant interest point

detection or complete rotation invariance. These specializations were subsequently dis-

carded to provide better scalability while improving generalization and suitability for

later stages of processing (e.g. bag-of-words approaches or their spatial pyramid ex-

tensions, see below). Specifically, SIFT-like descriptors are now applied densely and

their rotation is not normalized anymore, thus avoiding the loss of potentially useful
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information and the trap of gaining too much tolerance too quickly at the expense of

selectivity to increasingly larger number of objects and categories. Furthermore, many

variants or simplifications to SIFT features, such as Histograms of Gradients (HOG)

[Dalal and Triggs, 2005], have been proposed and are now used extensively in recent

successful efforts (e.g. [Gehler and Nowozin, 2009; Felzenszwalb et al., 2010b]). They

are generally both faster to compute and more compact.

Operationally, SIFT-like features (1) capture local orientations by extracting image

gradient directions, and (2) pool over spatial regions to build a compact histogram.

Here we see an intuitive relationship with the Hubel and Wiesel’s “S/C cascade” of

feature-based biologically-inspired models described in Section : (1) build up selectivity

and tuning to orientated edges (like simple cells or the first “S” layer of Neocognitron-

like models), and (2) build up tolerance to position variation by pooling over spatially

arranged afferents (like complex cells or the first “C” layer of Neocognitron-like models).

Interestingly, this local orientation tuning and spatial pooling can be obtained through

unsupervised learning of spatio-temporal statistics, possibly with the same canonical

circuit, as we have discussed in Section 2.3.3.

The next layers of processing in most of the standard computer vision models men-

tioned above, such as bag-of-word approaches and extensions [Vogel and Schiele, 2004;

Sivic et al., 2005; Fei-Fei and Perona, 2005; Bosch et al., 2007; Grauman and Darrell,

2006; Lazebnik et al., 2009; Van De Sande et al., 2010], include some sort of density

estimation / vector quantization step like K-means clustering and another histogram-

ming step. This is striking because it looks exactly like another layer of selectivi-

ty/tolerance or “S/C cascade” with some stimulus-driven unsupervised learning stage

(K-means-like) that could be be implemented with simple Hebbian-like online learning

[McQueen, 1967; Bottou and Bengio, 1995] (e.g. Winner-Take-All) to build up selectiv-

ity to specific redundant inputs, and spatial pyramid pooling to build up invariance to

position and scale. For example, Serre et al. [2007c]’s HMAX model include an input

“imprinting” stage for learning S2 features, and this can be seen as the first iteration

of a specific online K-means with a high-learning rate (i.e. equal to 1). CNNs, RBMs

and Auto-encoders also have related mechanisms to learn selective/generative feature

spaces layer-wise [Hinton and Salakhutdinov, 2006; Bengio and LeCun, 2007; Vincent
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et al., 2008; Kavukcuoglu et al., 2009; Lee et al., 2009].

Other interesting relationships, similarities and convergence of ideas can be made

and mapped into a conceptually simpler computational framework with a biologically-

inspired canonical circuit and learning rule at its core. However, the details lie outside

the scope of this thesis and will be subject to a more comprehensive review paper in

the future.
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Moving Forward

“Tryin’ to paint a perfect picture and excel. In

case you didn’t know. Never movin’

backwards. Complicated. Know what I mean?”

Rakim / DJ Premier (1999)

I
n this chapter, we identify operational barriers that have obstructed progress

towards finding a solution to the object recognition problem, and we provide an

overview of the thesis research program designed to break down these barriers.

3.1 Major Challenges

3.1.1 The Lack of Clear and Measurable Indicators of Progress

To support efforts in developing biologically-inspired visual models and guide future

progress in the right direction, one fundamental problem that must be addressed is the

development of clear and measurable indicators of performance on object recognition

benchmarks. In practical terms, this boils down to defining the task that must be

solved, for example: the set of (labeled) visual data (e.g. images, videos) that must be

correctly categorized.
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Historically, a wide range of benchmarks have been used to evaluate the progress

of visual recognition algorithms, which has made it difficult to compare results across

approaches from different research groups. A comparative approach in which success is

objectively judged on a level playing field is required to accurately evaluate how much

improvement has been made and to disentangle the best conceptual ideas and insights

from various groups.

A recent popular, yet controversial approach [Felsen and Dan, 2005; Rust and

Movshon, 2005] is the use of large databases of “natural” images both in the study

of biological vision (both theoretical e.g. [Masquelier and Thorpe, 2007] and experi-

mental e.g. [Gallant et al., 1998; Reinagel, 2001; Einhäuser et al., 2007]) and artificial

vision (e.g. [Fei-Fei et al., 2004a; Griffin et al., 2007; Huang et al., 2007; Mutch and

Lowe, 2008; Deng et al., 2009; Jarrett et al., 2009; Felzenszwalb et al., 2010a; Ever-

ingham et al., 2010] among many others), in part because they ostensibly capture the

essence of problems encountered in the “real” world. The logic behind these “natu-

ral” sets is that the sheer number of categories and the apparent diversity of those

images place a high bar for object recognition systems and require them to solve the

computational crux of object recognition.

However, many of these standardized tests may have not been given much thought

since the images are usually loosely collected from the web without any guarantee of

capturing the core computational problem of object recognition: tolerance to identity-

preserving image transformations. Performance on these benchmarks are indeed not

predictive of the performance across a large variety of tasks. There are clear signs of

over-fitting in the literature: no wide generalization is shown, and models are usually

“tuned” to benchmarks that are usually “cherry picked” to show high performance with

different metrics of success. In addition, these tests are not computationally efficient

to run due to the large number of images they contain.

In sum, we lack good and efficient operational definitions of the problem we aim to

solve.
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3.1.2 The Hypothesis Space is Largely Unexplored

As we have described in Section 2.2, neuroscience research has gradually provided a

better qualitative understanding of the neural architecture and computational principles

that biological vision systems rely upon to process visual information and accomplish

recognition. When these basic insights from neuroscience were recently instantiated

in computational models, surprising levels of performance were obtained that rivaled

performance of state-of-the-art artificial systems (see Section 2.3.4) and even matched

human performance under extremely limited conditions [Serre et al., 2007a]. These

models are still far below general human recognition capabilities, but they are only

individual instances drawn from a very large class of biologically-inspired models and

thus represent a lower bound on how far the existing neuroscience principles can take

us.

In particular, the hypothesis space of possible computational vision models is stag-

geringly large and even the restricted class of biologically-inspired models has dozens

to hundreds of explicit and implicit free parameters, including filter kernel sizes, nor-

malization neighborhoods and exponents, learning rule parameters, etc. Unfortunately,

systems neuroscience data currently provide very few constraints on the values those

parameters can take.

The size of the hypothesis space is further compounded by the extreme computa-

tional expense of instantiating models that approach realistic scales. Primate visual

systems are composed of billions of neurons and trillions of synapses, thus attempt-

ing to simulate a system even a fraction of that size is computationally daunting. To

effectively evaluate the performance of a machine vision system, one must evaluate

thousands of images, and potentially larger amounts of training images (e.g. video),

which further increases the computational cost. As a result, the region of hypothesis

space that has been explored is biased towards smaller, more tractable models, and

biologically-inspired computational ideas tend to only get tested at a very small scale.

As a consequence, the space of possible models has gone largely unexplored. When

current instantiations fail to approach the performance of biological visual systems
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in unfettered conditions1, we are left uncertain whether this failure is because the

underlying computational principles are wrong, or some fundamental element is missing

from the model class2, or because the correct parts have not been tuned correctly,

assembled at sufficient scale or provided with sufficient experience.

3.2 Scope and Thesis Outline

In the remaining of this thesis we will attempt to address these challenges as follows:

• In Part II, we provide new neuroscience-motivated baselines and new fully-controlled

benchmarks for object recognition (Chapter 4) and face recognition (Chapters 5

and 6). We also compare and contrast a variety of state-of-the-art recognition

systems (Chapter 7) as well as human observers (Chapter 8) on the same bench-

marks.

• In Part III, we propose a high-throughput screening approach inspired by molec-

ular biology and genetics to (1) explore the large hypothesis space of possible

feature-based visual recognition models inspired by the brain, (2) discover promis-

ing instantiations, and (3) systematically study them on various tasks (Chapter

9). We also provide details regarding some of the engineering and programming

techniques we use to leverage massively parallel computing resources required to

apply this approach at low time and cost while allowing the experimenter/de-

veloper to keep high degrees of flexibility and adaptability necessary in research

environments (Chapter 10).

• In Part IV, we validate the scalability and applicability of our simple approach to

large-scale “real-world” applications (e.g. face recognition in social networks or

“in the wild”) without loss of generality (Chapters 11 and 12), and by effectively

solving the problem of interest defined in Part II (Chapter 13).

1For example, [Serre et al., 2007a] could only approach human performance under unnaturally short
image presentation times with uncontrolled natural image sets.

2For example, sophisticated feedback [Walther and Koch, 2007; Chikkerur et al., 2010], spiking
neurons [Thorpe and Gautrais, 1997; Van Rullen et al., 1998; Gautrais and Thorpe, 1998; Thorpe
et al., 2001; Thorpe and Fabre-Thorpe, 2001; Thorpe, 2002; Masquelier and Thorpe, 2007], etc.
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Chapter 4

Why is Real-World Visual Object

Recognition Hard?∗

“We will know what is the problem we are

trying to solve once we solve it.”

Jitendra Malik, MIT BCS Colloquium (2010)

P
rogress in understanding the brain mechanisms underlying vision requires

the construction of computational models that not only emulate the brain’s

anatomy and physiology, but ultimately match its performance on visual tasks. In re-

cent years, “natural” images have become popular in the study of vision and have been

used to show apparently impressive progress in building such models. Here, we chal-

lenge the use of uncontrolled “natural” images in guiding that progress. In particular,

we show that a simple V1-like model – a neuroscientist’s “null” model, which should

perform poorly at real-world visual object recognition tasks – outperforms state-of-

the-art object recognition systems (biologically inspired and otherwise) on a standard,

ostensibly natural image recognition test. As a counterpoint, we designed a “simpler”

recognition test to better span the real-world variation in object pose, position, and

∗This chapter is modified from a study published in the open-access journal PLoS Computational
Biology in collaboration with David D. Cox and James J. DiCarlo [Pinto et al., 2008b],
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scale, and we show that this test correctly exposes the inadequacy of the V1-like model.

Taken together, these results demonstrate that tests based on uncontrolled natural im-

ages can be seriously misleading, potentially guiding progress in the wrong direction.

Instead, we reexamine what it means for images to be natural and argue for a renewed

focus on the core problem of object recognition – real-world image variation.

4.1 Introduction

Visual object recognition is an extremely difficult computational problem. The core

problem is that each object in the world can cast an infinite number of different 2-D

images onto the retina as the object’s position, pose, lighting, and background vary

relative to the viewer (e.g., [DiCarlo and Cox, 2007]). Yet the brain solves this prob-

lem effortlessly. Progress in understanding the brain’s solution to object recognition

requires the construction of artificial recognition systems that ultimately aim to emu-

late our own visual abilities, often with biological inspiration (e.g., [Weber et al., 2000;

Arathorn, 2002; Lowe, 2004; Serre et al., 2007c; Zhang et al., 2006]). Such compu-

tational approaches are critically important because they can provide experimentally

testable hypotheses, and because instantiation of a working recognition system repre-

sents a particularly effective measure of success in understanding object recognition.

However, a major challenge is assessing the recognition performance of such models.

Ideally, artificial systems should be able to do what our own visual systems can, but

it is unclear how to evaluate progress toward this goal. In practice, this amounts to

choosing an image set against which to test performance.

Although controversial ([Felsen and Dan, 2005; Rust and Movshon, 2005]), a popular

recent approach in the study of vision is the use of “natural” images [Bell and Sejnowski,

1997; Gallant et al., 1998; Reinagel, 2001; Simoncelli and Olshausen, 2001; Felsen and

Dan, 2005], in part because they ostensibly capture the essence of problems encountered

in the real world. For example, in computational vision, the Caltech101 image set

has emerged as a gold standard for testing “natural” object recognition performance

[Fei-Fei et al., 2004a]. The set consists of a large number of images divided into 101

object categories (e.g., images containing planes, cars, faces, flamingos, etc.; see Figure
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4.1A) plus an additional “background” category (for 102 categories total). While a

number of specific concerns have been raised with this set (see [Ponce et al., 2006]

for more details), its images are still currently widely used by neuroscientists, both in

theoretical (e.g., [Serre et al., 2007c; Masquelier and Thorpe, 2007]) and experimental

(e.g., [Einhäuser et al., 2007]) contexts. The logic of Caltech101 (and sets like it; e.g.,

Caltech256 [Griffin et al., 2007]) is that the sheer number of categories and the diversity

of those images place a high bar for object recognition systems and require them to solve

the computational crux of object recognition. Because there are 102 object categories,

chance performance is less than 1% correct. In recent years, several object recognition

models (including biologically inspired approaches) have shown what appears to be

impressively high performance on this test – better than 60% correct [Zhang et al., 2006;

Wang et al., 2006; Mutch and Lowe, 2006; Lazebnik et al., 2006; Grauman and Darrell,

2006], suggesting that these approaches, while still well below human performance, are

at least heading in the right direction.

However, we argue here for caution, as it is not clear to what extent such “natural”

image tests actually engage the core problem of object recognition. Specifically, while

the Caltech101 set certainly contains a large number of images (9,144 images), variations

in object view, position, size, etc., between and within object category are poorly defined

and are not varied systematically. Furthermore, image backgrounds strongly covary

with object category (see Figure 4.1B). The majority of images are also “composed”

photographs, in that a human decided how the shot should be framed, and thus the

placement of objects within the image is not random and the set may not properly

reflect the variation found in the real world. Furthermore, if the Caltech101 object

recognition task is hard, it is not easy to know what makes it hard – different kinds

of variation (view, lighting, exemplar, etc.) are all inextricably mixed together. Such

problems are not unique to the Caltech101 set, but also apply to other uncontrolled

“natural” image sets (e.g., Pascal VOC [Everingham et al., 2010]).
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Figure 4.1: Performance of a Simple V1-like Model Relative to Current Performance of
State-of-the-Art Artificial Object Recognition Systems (Some Biologically Inspired) on
an Ostensibly “Natural” Standard Image Database (Caltech101). (A) Example images from
the database and their category labels. (B) Two example images from the “car” category. (C) Re-
ported performance of five state-of-the-art computational object recognition systems on this “natural”
database are shown in gray (1=[Wang et al., 2006]; 2=[Grauman and Darrell, 2006]; 3=[Mutch and
Lowe, 2006]; 4=[Lazebnik et al., 2006]; 5=[Zhang et al., 2006]). In this panel, 15 training examples
were used to train each system. Since chance performance on this 102-category task is less than 1%,
performance values greater than 40% have been taken as substantial progress. The performance of
the simple V1-like model is shown in black (+ is with “ad hoc” features; see Methods Section 4.4). Al-
though the V1-like model is extremely simple and lacks any explicit invariance-building mechanisms,
it performs as well as, or better than, state-of-the-art object recognition systems on the “natural”
databases. (D) Same as (C) with 30 training examples. The dashed lines indicates performance
achieved using an untransformed grayscale pixel space representation and a linear SVM classifier (15
training examples: 16.1%, SD 0.4; 30 training examples: 17.3%, SD 0.8). Error bars (barely visible)
represent the standard deviation of the mean performance of the V1-like model over ten random train-
ing and testing splits of the images. The authors of the state-of-the-art approaches do not consistently
report this variation, but when they do they are in the same range (less than 1%). The V1-model also
performed favorably with fewer training examples (see Figure 4.5).
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Figure 4.2: The Same Simple V1-like Model That Performed Well in Figure 4.1 Is Not
a Good Model of Object Recognition – It Fails Badly on a “Simple” Problem That
Explicitly Requires Tolerance to Image Variation. (A) We used 3-D models of cars and planes
to generate image sets for performing a cars-versus-planes two-category test. By using 3-D models, we
were able to parametrically control the amount of identity-preserving variation that the system was
required to tolerate to perform the task (i.e., variation in each object’s position, scale, pose). The 3-D
models were rendered using ray-tracing software (see Methods Section 4.4), and were placed on either
a white noise background (shown here), a scene background, or a phase scrambled background (these
backgrounds are themselves another form of variation that a recognition system must tolerate; see
Figure 4.3). (B) As the amount of variation was increased (x-axis), performance drops off, eventually
reaching chance level (50%). Here, we used 100 training and 30 testing images for each object category.
However, using substantially more exemplar images (1,530 training, 1,530 testing) yielded only mild
performance gains (e.g., 2.7% for the fourth variation level using white noise background), indicating
that the failure of this model is not due to under-training. Error bars represent the standard error
of the mean computed over ten random splits of training and testing images (see Methods Section
4.4). This result highlights a fundamental problem in the current use of “natural” images to test
object recognition models. By the logic of the “natural” Caltech101 test set, this task should be
easy, because it has just two object categories, while the Caltech101 test should be hard (102 object
categories). However, this V1-like model fails badly with this “easy” set, in spite of high performance
on the Caltech101 test set (Figure 4.1).
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Figure 4.3: Backgrounds Used. Model performance for our “simple” two class image set was
assessed with the 3-D models rendered onto three types of backgrounds – white noise, phase-scrambled
scene images (∼ 1

𝑓 noise), and intact scene images. Performance with each of these types of background
is shown in Figure 4.2.

4.2 Results

To explore this issue, we used the simplest, most obvious starting point for a biologically

inspired object recognition system – a “V1-like” model based roughly on the known

properties of simple cells of the first primate cortical visual processing stage (area V1).

In particular, the model was a population of locally normalized, thresholded Gabor

functions spanning a range of orientations and spatial frequencies (see Methods Section

4.4 for details). This is a neuroscience “null” model because it is only a first-order

description of the early visual system, and one would not expect it to be good for

real-world object recognition tasks. Specifically, it contains no explicit mechanisms to

enable recognition to tolerate variation in object position, size, or pose, nor does it
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Figure 4.4: Performance Fall-Off for Increasing Numbers of Object Categories. Figure
4.2 shows that relatively modest amounts of image transformation push the performance of our simple
V1-like model down to chance. Here we show that this fall-off becomes slightly steeper as more
categories-to-be-discriminated are added. (A) Four categories of objects (cars, planes, boats, and
animals) were used to measure performance when 2, 3, or 4 categories are considered. (B) Average
identification performance (“is object category X present or not”) is plotted as a function of view
variation and number of object categories to be discriminated. Chance performance is 50% for all three
lines, because average one-versus-all performance is shown here, not n-way recognition performance
(i.e., “which object is present”).

contain a particularly sophisticated representation of shape. Nevertheless, null models

are useful for establishing baselines, and we proceeded to test this null model on a

gold-standard “natural’ object recognition task (i.e., Caltech101 [Fei-Fei et al., 2004a]),

using standard, published procedures [Grauman and Darrell, 2006]).

We found that this simple V1-like model performed remarkably well on the Cal-

tech101 object recognition task – indeed, it outperformed reported state-of-the-art com-

putational efforts (biologically inspired or not). Figure 4.1 shows the cross-validated

performance of two versions of this simple model: one where only the model’s outputs

are fed into a standard linear classifier, and one where some additional ad-hoc features

are also used (e.g., local feature intensity histograms; see Methods Section 4.4 for de-

tails). In both cases, performance is surprisingly good (61% and 67% correct with 15
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Figure 4.5: Performance on the Caltech101 as a Function of the Number of Training
Examples, Including Small Numbers of Training Examples. Points marked with asterisks are
not exact, but were estimated from published plots.

and 30 training examples), and comparable to, or better than, the current reported

performance in the literature ([Zhang et al., 2006; Wang et al., 2006; Mutch and Lowe,

2006; Lazebnik et al., 2006; Grauman and Darrell, 2006]).

Given the V1-like model’s surprisingly good performance on this “natural” image

set (Figure 4.1), there are two possibilities. Either this model is a previously overlooked

good model of visual object recognition, or current “natural” tests do not appropriately

engage the object recognition problem. Given that our V1-like model contains no special
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machinery for tolerating image variation (and it would generally be considered a “straw

man” model by neuroscientists), we were suspicious that this result had more to do

with the test set, than the model itself. Nevertheless, to distinguish between these two

possibilities, we designed a second more carefully controlled object recognition test that

directly engages the core problem of object recognition.

Specifically, we constructed a series of two-category image sets, consisting of ren-

dered images of plane and car objects. By the logic of the Caltech101 “natural” image

test, this task should be substantially easier – there are only two object categories

(rather than 102), and only a handful of specific objects per category (Figure 4.2A).

In these sets, however, we explicitly and parametrically introduced real-world varia-

tion in the image that each object produced (see Methods Section 4.4). In spite of the

much smaller number of categories that the system was required to identify, the prob-

lem proved substantially harder for the V1-like model, exactly as one would expect for

an incomplete model of object recognition. Figure 4.2 shows how performance rapidly

degrades toward chance-level as even modest amounts of real-world object image vari-

ation are systematically introduced in this simple two-category problem (see Figure

4.4 for a comparable demonstration with more than two object categories). Given this

result, we conclude that the “V1-like” model performed well on the “natural” object

recognition test (Figure 4.1), not because it is a good model of object recognition, but

because the “natural” image test is inadequate.

These results (re-)emphasize that object recognition is hard, not because images are

natural or complex, but because each object can produce a very wide range of retinal

images. Although the Caltech101 and other such “natural” sets were useful in that

they encouraged the use of common performance tests on which all recognition models

should compete, the results presented here show that a different direction is needed

to create the content of those tests. This question is not simply an academic concern

– great effort is now being expended to test object recognition models against a new,

larger image set: the Caltech256 [Griffin et al., 2007]. However, as with its predecessor,

it fails to reflect real-world variation, and our “null” V1 model also performs well above

chance (24% accuracy with 15 training examples to discriminate 257 categories), and

competitively with early published performance estimates on this new set (Figure 4.6).
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Figure 4.6: Performance on the Caltech256. 1=[Griffin et al., 2007]

4.3 Discussion

How should we gauge progress in solving object recognition ? First, the

results presented here underscore that simple chance performance level is far from a

good baseline and that our intuitions about “hard” and “easy” recognition problems

are often far from correct. Indeed, it is disconcerting how little variation we needed

to introduce to break a model that performs quite well according to current “natural”

object recognition tests. Thus, simple “null” models (that are able to exploit regularities

in the image database) are needed to objectively judge the difficulty of recognition

tasks and to establish a baseline for each such task. The V1-like model presented here

provides one possible “null” model, and portable code for building and evaluating it is

freely available upon request.

Second, the development of appropriate recognition tests is critical to guiding the

development of object recognition models and testing performance of neuronal popula-

tions that might support recognition [Hung et al., 2005]. The construction of such tests
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is not trivial because the issues cut deeper than simple performance evaluation – this

is a question of how we think about the problem of object recognition and why it is

hard [DiCarlo and Cox, 2007]. Because the number of images in any practical recogni-

tion database will be small relative to the dimensionality of the problem domain, test

images must be chosen in a manner that properly samples this domain so as to capture

the essence of the recognition problem and thus avoid “solutions” that rely on trivial

regularities or heuristics.

One approach would be to generate a very large database of “natural” images, like

the Caltech sets, but captured in an unbiased way (i.e., with great care taken to avoid

the implicit biases that occur in framing a snapshot). Done correctly, this approach

has the advantage of directly sampling the true problem domain. However, annotating

such an image set is extremely labor-intensive (but see the LabelMe project [Russell

et al., 2008], Peekaboom [Von Ahn et al., 2006], and the StreetScenes dataset [Bileschi,

2006; Serre et al., 2007c]). More importantly, a set that truly reflects all real-world

variation may be too stringent of an assay to guide improvement in recognition models.

That is, if the problem is too hard, it is not easy to construct a reduced version that

still engages the core problem of object recognition.

Another approach, an extension of the one taken here, would be to use synthetic

images, where ground truth is known by design. Paradoxically, such synthetic image

sets may in many ways be more natural than an arbitrary collection of ostensibly

“natural” photographs, because, for a fixed number of images, they better span the

range of possible image transformations observed in the real world (see also the NORB

dataset [LeCun et al., 2004]). The synthetic image approach obviates labor-intensive

and error-prone labeling procedures, and can be easily used to isolate performance on

different components of the task. Such an approach also has the advantage that it can

be parametrically made more difficult as needed (e.g., when a given model has achieved

the ability to tolerate a certain amount of variation, a new instantiation of the test

set with greater variation can be generated). Given the difficulty of real-world object

recognition, this ability to gradually “ratchet” task difficulty, while still engaging the

core computational problem, may provide invaluable guidance of computational efforts.

While standardized benchmarks are important for assessing progress, designing
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benchmarks that properly define what constitutes progress is extremely difficult. On

one hand, a benchmark that captures too little of the complexity of the real world (no

matter how complex it may seem at first glance) invites over-optimization to trivial

regularities in the test set (e.g., Caltech101). On the other hand, a benchmark that

embraces too much of the “real” problem can be too difficult for any model to gain

traction, giving little insight on which approaches are most promising. This problem is

compounded by the fact that there are many more kinds of image variation in the real

world beyond those used in our simple synthetic test set (e.g., lighting, occlusion, de-

formation, etc.). At the center of this challenge is the need to clearly define what the

problem is, why it is difficult, and what results would constitute success. The path for-

ward will not be easy, but it is time for the field to give this problem much more central

attention.

4.4 Methods

4.4.1 A V1-like Recognition System

Area V1 is the first stage of cortical processing of visual information in the primate and

is the gateway of subsequent processing stages. We built a very basic representation

inspired by known properties of V1 “simple” cells (a subpopulation of V1 cells). The

responses of these cells to visual stimuli are well-described by a spatial linear filter, re-

sembling a Gabor wavelet [Hubel and Wiesel, 1959, 1962, 1965, 1968], with a nonlinear

output function (threshold and saturation) and some local normalization (roughly anal-

ogous to “contrast gain control”). Operationally, our V1-like model consisted of the

following processing steps.

Image Preparation

First we converted the input image to grayscale and resized by bicubic interpolation the

largest edge to a fixed size (150 pixels for Caltech datasets) while preserving its aspect

ratio. The mean was subtracted from the resulting two-dimensional image and we

divided it by its standard deviation. The resulting image had zero mean, unit variance,
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and a size of HxW. Because images have different aspect ratios, H and W vary from

image to image.

Local Input Divisive Normalization

For each pixel in the input image, we subtracted the mean of the pixel values in a fixed

window (3x3 pixels, centered on the pixel), and we divided this value by the euclidean

norm of the resulting 9-dimensional vector (3x3 window) if the norm was greater than

1 (i.e., roughly speaking, the normalization was constrained such that it could reduce

responses, but not enhance them).

Linear Filtering With A Set Of Gabor Filters

We convolved the normalized images with a set of two-dimensional Gabor filters of fixed

size (43x43 pixels), spanning 16 orientations (equally spaced around the clock) and six

spatial frequencies (1
2
, 1

3
, 1

4
, 1

6
, 1

11
, 1

18
cycles/pixel) with a fixed Gaussian envelope

(standard deviation of 9 cycles/pixel in both directions) and fixed phase (0) for a

total of 𝑁 = 96 filters. Each filter had zero-mean and euclidean norm of one. This

dimensionality expansion approximates the roughly 100-fold increase in the number of

primate V1 neurons relative to the number of retinal ganglion cell axons. To speed this

step, the Gabor filters were decomposed via singular value decomposition into a form

suitable for use in a separable convolution (this is possible because the Gabor filters are

of low rank), and the decomposed filters retained at least 90% of their original variation.

Thresholding And Saturation

The output of each Gabor filter was passed through a standard output non-linearity –

a threshold and response saturation. Specifically, all negative output values were set to

0 and all values greater than 1 were set to 1.

Local Output Divisive Normalization

The result of the Gabor filtering was a three-dimensional matrix of size HxWxN where

each two-dimensional slice (HxW) is the output of each Gabor filter type. For each
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filter output, we subtracted the mean of filter outputs in a fixed spatial window (3x3

pixels, centered) across all orientations and spatial scales (total of 864 elements). We

then divided by the euclidean norm of the values in this window (864 elements), except

when the norm was less than 1.

4.4.2 Comparison To Other Biologically Inspired Recognition

Models

Some of the other models whose performance is shown in Figure 4.1 were biologically

inspired, and thus also have V1-like stages contained within them, as well as additional

machinery intended to allow invariant object recognition (e.g., [LeCun et al., 2004;

Mutch and Lowe, 2006; Serre et al., 2007c]). Thus, it might be surprising that the

simple V1-like model presented here outperforms those models. Although detailed

comparisons are beyond the scope of this study and tangential to our main point, we

note that the V1-like model presented here contains a number of differences from the

V1-like portions of these other models (higher dimensionality, larger receptive fields,

inclusion of threshold nonlinearities, local normalization, etc.) that probably produce

better performance than these models.

4.4.3 Classification

To test the utility of our V1-like representation for performing object recognition

tasks, we performed a standard cross-validated classification procedure on the high-

dimensional output of the model.

Dimensionality Reduction

To speed computation and improve classification performance, we reduced the dimen-

sionality of the model output prior to classification. The output of V1-like model

(above) was a stack of 96 output images, one per Gabor filter type. Because the di-

mensionality of this stack can be very high (up to 2,160,000 output values per input

image depending on its size), standard dimensionality reduction techniques were used
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to prepare the data for classification. Specifically, each of the 96 output images was

low-pass filtered (17x17 boxcar) and down-sampled to a smaller size (30x30). Thus, re-

gardless of the original input image size, the total dimensionality for classification was

always 86,400 (30x30x96). The data were then sphered (i.e., each filter output was

standardized by subtraction of its mean and division by its standard deviation across

the training image set; see below), and the dimensionality of the representation was

further reduced by principal components analysis (PCA), keeping as many dimensions

as there were data points in the training set. For the Caltech101 experiments (Figure

4.1), the dimensionality of the final feature vector was 1530 or 3060 (depending on the

number of training examples: 15 or 30, respectively).

Additional “Ad Hoc” Features

To further explore the utility of this V1-like model, we generated some additional

easy-to-obtain features and concatenated these to the final feature vector, prior to

PCA dimensionality reduction. These features included: raw grayscale input images

(downsampled to 100x100 by bicubic interpolation; 10,000 features), and model out-

put histograms for some intermediate stages of the model: pre-normalization (one local

histogram per quadrant of the image), post-normalization (full image), and post down-

sampling (full image) – roughly 30,000 features total. No color information was used

in these additional features. Throughout the text, results from the system contain-

ing these extra “ad hoc” features are reported separately from those obtained with the

system that did not have these extra features. These extra features were added to

demonstrate what was possible using additional obvious, “cheap” (but still fair) tricks

that improve performance without incurring additional conceptual complexity.

Training

Training and test images were carefully separated to ensure proper cross-validation.

15 training example images, and 30 testing example images were drawn from the full

image set. Sphering parameters and PCA eigenvectors were computed from the training

images (see Dimensionality Reduction, above), and the dimensionality-reduced training
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data were used to train a linear support vector machine (SVM) using libsvm-2.82 [Chang

and Lin, 2001]. A standard one-versus-all approach was used to generate the multi-class

SVM classifier from the training images.

Testing Protocol

Following training, absolutely no changes to the representation or classifier were made.

Each test image was sphered using parameters determined from the training images,

projected through the V1-like model onto the eigenvectors computed from the training

images, and the trained SVM was used to report the predicted category of the test

image

Number Of Training And Testing Images

Classifiers were trained using a fixed number of examples (15 and 30 example images;

see Figure 4.1C and 4.1D). The performance scores reported here are the average of

performances obtained from ten random splits of training and testing sets. For testing,

30 images were classified per category, except in categories where there were not enough

images available, in which case the maximum number of available images was used (e.g.,

“inline skate”, the smallest category, has only 31 examples; when 30 examples were used

for training, then only one example was available for testing). Since the Caltech101

sets contains a different number of images for each category, care must be taken to

ensure that per-category performance is normalized by the number of test examples

considered in each category – otherwise, average performance can be biased toward the

performance obtained from categories with larger numbers of images available. This is a

particular problem for the Caltech101 set, because some of the largest categories are also

empirically the easiest (e.g., cars, airplanes, faces, motorbikes). For the performance

values reported in this paper, average performance was computed per category, and

then these performances were averaged together to obtain an overall performance value

(reported in the text and figures).
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Further Controls

To ensure the validity of our results, we undertook a number of checks to verify that the

classification procedure used here was correct. Two different SVM front-ends were used

(PyML and libsvm command line tools) and produced identical results. To confirm

proper cross-validation, we manually inspected training and test set splits to certify

that there were no images in common between the two sets (this control was partially

motivated by the fact that an earlier version of the Caltech101 dataset contained du-

plicates). The classification procedure was also repeated with noise images, and for

image sets with category labels scrambled; both tests yielded chance performance, as

expected.

4.4.4 Synthetic Dataset Generation

Synthetic images of cars and planes were generated using POV-Ray, a free, high-quality

ray tracing software package 1. 3-D models of cars and planes (purchased from Dosch

Design2 and TurboSquid3) were converted to the POV-Ray format. This general ap-

proach could be used to generate image sets with arbitrary numbers of different objects,

undergoing controlled ranges of variation. For example, in Figure 4.2 each “pooled vari-

ation” level on the x-axis shows the maximum deviation of each of five object viewing

parameters (zero variation is shown in Figure 4.2A assuming centering in the image).

Given a “pooled variation” level, a set of images was generated by randomly sampling

each viewing parameter uniformly within its specified maximum deviation (e.g., ±30∘

in plane rotation). Each image in the set was the result of using one such parameter

sample to render the view of the object on a given background (see Figure 4.3). 100%

position variation is a full non-overlapping shift of the object’s bounding box; 100%

scale variation is one octave of change.

While this image set is useful for demonstrating the inadequacy of our V1-like model

(in spite of its apparent success at the Caltech101 test), we do not believe it represents

any sort of new “standard” against which models of object recognition should be tested.

1http://www.povray.org
2http://www.doschdesign.com
3http://www.turbosquid.com
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Instead, we believe that the approach is more important – identifying the problem,

generating sets that span limited regions of the problem space, building models, and

then “ratcheting” the problem to a higher difficulty level once the limited version of

the problem has been solved.

Acknowledgments

We would like to thank J. Maunsell, J. Mutch, T. Poggio, E. Simoncelli, and A. Torralba

for helpful comments and discussion. This work was supported by The National Eye

Institute (NIH-R01-EY014970), The Pew Charitable Trusts (PEW UCSF 2893sc), and

The McKnight Foundation.

65



Chapter 5

Establishing Good Benchmarks and

Baselines for Face Recognition∗

“What I cannot create, I do not understand”

Richard Feynman

P
rogress in face recognition relies critically on the creation of test sets against

which the performance of various approaches can be evaluated. A good set

must capture the essential elements of what makes the problem hard, while conform-

ing to practical scale limitations. However, these goals are often deceptively difficult to

achieve. In the related area of object recognition, we demonstrated in Chapter 4 the

potential dangers of using a large, uncontrolled natural image set, showing that an ex-

tremely rudimentary vision system (inspired by the early stages of visual processing in

the brain) was able to perform on par with many state-of-the-art vision systems on the

popular Caltech101 object set [Fei-Fei et al., 2004a]. At the same time, this same rudi-

mentary system was easily defeated by an ostensibly “simpler” synthetic recognition

test designed to better span the range of real world variation in object pose, position,

scale, etc. These results suggested that image sets that look “natural” to human ob-

∗This chapter is modified from a study published in the proceedings of the “Faces in Real-Life
Images” Workshop at the European Conference on Computer Vision (ECCV) in collaboration with
James J. DiCarlo and David D. Cox [Pinto et al., 2008a].
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servers may nonetheless fail to properly embody the problem of interest, and that care

must be taken to establish baselines against which performance can be judged.

Here, we repeat this approach for the “Labeled Faces in the Wild” (LFW) dataset

[Huang et al., 2007], and for a collection of standard face recognition tests. The goal

of the present work is not to compete in the LFW challenge, per se, but to provide a

baseline against which the performance of other systems can be judged. In particular,

we found that our rudimentary “baseline” vision system was able to achieve ∼68%

correct performance on the LFW challenge, substantially higher than a pure “chance”

baseline. We argue that this value might serve as a more useful baseline against which to

evaluate absolute performance and argue that the LFW set, while perhaps not perfect,

represents an improvement over other standard face sets.

5.1 Introduction

Highly accurate, “in-the-wild” face recognition is one of the holy grail applications in

the field of artificial vision. While substantial progress has been made in the last several

decades, the problem of face recognition in real-world images remains a largely unsolved

challenge. At the heart of this challenge is the considerable amount of image variation

(e.g. position, size, orientation, lighting, clutter, occlusion, etc.) that a successful

recognition system must tolerate, while maintaining its specificity for individual faces.

As with any engineering effort, it is essential to lay out a specification of what the

problem is and what would constitute its solution. In the context of face recognition in

real-world environments, this operationally amounts to constructing image test sets and

“challenges” that capture the problem of interest. In practice, this is a daunting task,

both because of the substantial effort associated with building the set (e.g. collecting

and labeling images), and because it is difficult to construct a test set that is fully

representative of the staggering image variation that is present in the real world.

At a deeper level, a fundamental problem is that no test set can practically be large

enough to span the full range of variation observed in the “wild” (cf. the work of

Torralba and colleagues [Ponce et al., 2006]). Compounding this problem, it is difficult

to escape bias in the selection of images — most photographs are implicitly or explicitly
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centered and framed; frontal views of faces are typically over-represented, either by

accident or by design (see the work . Sometimes, individual identity is correlated with

background features (indeed, Shamir recently showed that relatively high performance

was possible on a variety of standard face recognition sets using image patches taken

from the background of images [Shamir, 2008]). Taken together, these factors make it

difficult to know whether or not “cheats” (i.e. trivial regularities, which exist in the

test set, but not in the real world) exist for a given test set. Likewise, it is difficult to

know what fraction of the performance achieved by a particular approach arises from

exploitation of these low-level regularities, as opposed to from real progress towards a

robust, general solution. This problem is compounded by the increasing complexity of

artificial vision systems and the power of machine learning approaches [Hand, 2006],

both of which make it difficult to determine which aspects of an image set a given

system is actually utilizing to achieve its performance.

In recent years, it has become increasingly popular to evaluate artificial vision sys-

tems using large collections of “natural” images, such as can be harvested from the

internet. Such image collections are appealing because they are relatively easy to as-

semble, and they typically include a wide range of sources, settings, etc. However,

there is no guarantee that sets that “look” like they span the range of situations that

would be encountered in the real world actually do so in reality. Due the nature of

these tests, it is practically impossible to control for low-level statistical regularities

that may significantly bias the results and potentially lead to wrong interpretations

and conclusions.

In the related domain of object recognition, we previously demonstrated in Chapter

4 some of the potential dangers associated with large uncontrolled image sets, showing

that an extremely rudimentary vision system (inspired by the early stages of visual

processing in the brain) was able to perform on par with many state-of-the-art vision

systems on the popular Caltech101 object recognition set [Fei-Fei et al., 2004a]. At the

same time, this same rudimentary system was easily defeated by an ostensibly “simpler”

synthetic recognition test designed to better span the range of real world variation in

object pose, position, scale, etc. These results suggest that a substantial fraction of

the Caltech101 problem can be solved using low-level features, without solving the core
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problem of image variation. It is important to note that this does not necessarily mean

that the Caltech101 set is not useful or that systems that perform well on the Caltech101

do not contain good ideas; rather, it suggests that performance reports might better be

judged relative to a baseline that takes these low-level regularities into account.

In the present work, we undertake a similar approach to investigate what might

constitute a reasonable baseline benchmark for various face recognition image sets. In

particular, we focus on a collection of old “standard” publicly-available face image

sets in wide use: ORL [Olivetti Research Laboratory, 1994], Yale [Yale Center for

Computational Vision and Control, 1997], AR [Martinez and Benavente, 1998], CVL

[Computer Vision Lab at the University of Ljubljana, 1999] and on the relatively new

“Labeled Faces in the Wild” challenge set [Huang et al., 2007].

5.2 Simple baseline models: Pixel and V1-like rep-

resentations

In the following experiments, we considered three basic representations to serve as po-

tential baselines: 1) a raw grayscale pixels representation, 2) a “V1-like” representation,

inspired by the known properties of cortical area V1, and 3) a “V1-like+” representation,

which includes all of the V1 features, plus a grab-bag of easily-computed additional fea-

tures (e.g. histograms).

The “V1-like” and “V1-like+” representations were constructed as described in

Chapter 4, without any optimization or modification for the task at hand. Briefly, the

model was composed of a population of locally-normalized, thresholded Gabor func-

tions spanning a range of orientations and spatial frequencies. From a neuroscientist’s

perspective, these models are “null” models, because they include only a first-order

description of the earliest stage of visual processing in the brain. Importantly, these

models do not contain any particularly sophisticated representation of shape, nor do

they possess any explicit mechanism designed to tolerate image variation (e.g. changes

in view, lighting, position, etc.).

For the purposes of the analyzes that follow, the processing of images was divided
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into two phases: a representation phase, and a classification stage. For the pixel

representation, the representation phase consisted of resizing each image to 150x150

pixels (by bicubic resampling) and unwrapping the pixels into a 22,500 dimensional

vector. For the V1-like models, each element in the representation corresponded to the

“activity” of a simulated V1-simple-cell-like unit. Each response was computed by first

locally normalizing the image (dividing each pixel’s intensity value by the norm of the

pixels in the 3x3 neighboring region), then applying a set of 96 spatially local (43x43

pixel) Gabor wavelet filters to the image (with a 1 pixel stride), and normalizing the

output values (dividing by the norm of the output values of all 3x3 spatial region across

all Gabor filter types). Output values were finally thresholded (values below 0 were

clipped to zero) and clipped (values above 1 were clipped). The 96 Gabor filters were

chosen such that they spanned an exhaustive cross of 16 orientations (evenly spaced

“around the clock”) and 6 spatial frequencies (1
2
, 1

3
, 1

4
, 1

6
, 1

11
, 1

18
cycles/pixel). See

Chapter 4 (Section 4.4) for a detailed description of these methods.

After each image was converted to an n-dimensional vector, for each of the “stan-

dard” face datasets, these vectors were then used as inputs to a linear SVM after

dimensionality reduction by PCA. Where required, multi-class classification was im-

plemented using a one-against-rest approach. For the LFW challenge set, a slightly

different procedure was used (see below).

5.3 Commonly-used face datasets

In this section we briefly present the performance of these baseline models with previous

face image sets (ORL, YALE, AR and CVL). To facilitate comparison with previous

results, we followed established testing protocols in the literature for each image set

(described below).

5.3.1 Olivetti Research Lab (ORL) dataset

The ORL face dataset [Olivetti Research Laboratory, 1994] consists of images of 40

subjects, with 10 grayscale images (92x112) per subject, with random variations in
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Figure 5.1: Performance of Baseline Models on the ORL Set

facial expression, pose, and lighting. The standard task for this set is to identify which

individual is present in a given image, based on some number of training examples.

Because there are 40 individuals, theoretical chance (i.e. from guessing) is 1
40

, or 2.5%.

Following previously published protocols, classifiers were trained using 4 or 8 train-

ing examples per individual (reserving the remaining 6 or 2, respectively, for testing),

with a 10-trial random subsampling cross-validation scheme. Figure 5.1 shows the

performance using our three baseline representations, along with several performance

reports from the literature. In general, in spite of their simplicity the “baseline” mod-

els perform very well on the ORL set, with the pixel representation yielding better than

98% correct (with 8 training examples), and the V1-like model achieving perfect per-

formance. Given the triviality of these baseline models, these results call into question

whether the ORL database provides any real leverage in evaluating face recognition

models.
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Figure 5.2: Performance of Baseline Models on the Yale Set

5.3.2 Yale dataset

The Yale face set [Yale Center for Computational Vision and Control, 1997] consists

of images of 15 subjects, with 11 gray scale images (320x243) per subject with fixed

variations in lighting (e.g. center, right, or left lighting) and expression (e.g. neutral,

sad, sleepy, happy). As with the ORL set, the standard task is to identify the individual

on the basis of some number of training examples. Theoretical chance is 1
15

, or 6.67%.

Performance was assessed in a manner comparable to that described above. Clas-

sifiers were trained with 4 or 8 training examples per individual (reserving the re-

maining 7 or 3 images, respectively, for testing), with 10-trial random subsampling

cross-validation. Results are shown in Figure 5.2. Again, the “baseline” models per-

form extremely well — the V1-like model achieves near perfect performance (> 99%)

with 8 training examples.
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Figure 5.3: Performance of Baseline Models on the AR Set

5.3.3 Aleix and Robert (AR) dataset

The AR face set [Martinez and Benavente, 1998] consists of over 4,000 color face images

(768x576) of 126 subjects. The majority of subjects (65 men and 55 women) partic-

ipated in two session, separated by two weeks, where 26 images per subject (13 per

session) were taken with fixed variations in facial expressions (e.g. neutral, smile or

anger), illumination conditions (e.g. left or right light), and occlusions (e.g sun glasses

and scarf). Theoretical chance performance on this set is 1
120

, or 0.83%.

Again, a 10-trial random subsampling cross-validation procedure was used. To

facilitate comparison with existing literature, we trained with 5 and 8 training examples

per individual (reserving the remaining images in each cross-validation split for testing).

Results are shown in Figure 5.3. Once again, performance of the baseline models is
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comparable to or better than previous performance report from the literature, with the

V1-like model achieving greater than 98% performance with 8 training examples.

5.3.4 Computer Vision Laboratory (CVL) dataset

The CVL image set [Computer Vision Lab at the University of Ljubljana, 1999] con-

tains 114 subjects, 7 color images (640x480) per subject with fixed variations in facial

expression (i.e. smile or laugh) and pose (i.e. right, midright, frontal, midleft and left).

Theoretical chance performance on this set is 1
114

, or 0.88%.
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Following the existing literature using the CVL data set, we report performance

using two distinct protocols. First, we trained and tested using only frontal views (2

training examples, 1 test example). In the second protocol, we used three examples

drawn randomly from the 7 available images, and tested performance using the re-

maining 4. In both train/test protocols, 10-trial random subsampling was used for

cross-validation. Results are shown in Figure 5.4. Performance of the baseline mod-

els was again quite high, with the V1-like model outperforming reported performances

from the literature in both training/testing protocols. In the case of protocol based on

frontal views only, the V1-like model achieved better than 90% correct, indicating that

the task under this protocol can be be largely solved using trivial regularities in the

test set images. In the case of the protocol using all views, performance of the V1-like

model was substantially lower (∼50% correct), though still substantially higher than

the “chance” baseline (0.88%)

5.4 Labeled Faces in the Wild (LFW) dataset

The recent Labeled Faces in the Wild (LFW) face set [Huang et al., 2007] contains

13,233 images of 5,749 individuals. This database is described by the creators as “un-

constrained”, meaning that face images are subject to a large range of “natural” vari-

ation (pose, lighting, focus, facial expression, background, age, etc).

The operational goal of this new image set is different from those presented above;

it is aimed at studying the problem of face pair matching (i.e. given two face images,

decide if they are from the same person or not). To accommodate this alternate goal,

we took the vectors produced as the output of each representation (150x150 grayscale

pixels, V1-like, V1-like+), and for each pair, we computed the element-wise squared

difference. For each training pair, these squared-difference vectors were labeled as

“same” and “different,” and the task of labeling new (test) examples was thus treated

as a two-class classification problem (theoretical chance is 50%).

Prior to training a two-class linear SVM, training data were sphered (zero-mean and

unit-variance feature wise), and dimensionality was reduced using principal components

analysis (PCA), keeping as many dimensions as there were data points in the training
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Table 5.1: Performance of Baseline Models on the LFW Challenge Set

Pixels V1-like V1-like+

mean (%) 59.95 64.21 68.08

std. error 0.64 0.69 0.45

set. Test data were transformed in an identical manner, using parameters (mean,

standard deviation and principal components) computed exclusively from the training

set.

Table 5.1 summarizes the mean classification accuracy on the “View 2” portion of the

LFW set, using three baseline models: Pixels, V1-like and V1-like+. It is important

to note that the V1-like models we used were taken verbatim from what has been

described in Chapter 4 — no attempt was made to optimize model parameters for the

LFW challenge (i.e. using “View 1” images). Portable code (written in Python) and

a minimal virtual machine environment (available in VMware or Amazon EC2 AMI

format) are available upon request to facilitate reproducing these results.

While not quite as good, these baseline results are nonetheless reasonably close to

early reported results on the LFW set (e.g. ∼72-73% [Nowak and Jurie, 2007]).

5.5 Counterpoint: A “simple” synthetic face dataset

To rule out the logical possibility that our baseline models (particularly the V1-like

models) are actually effective face recognition systems, we constructed a synthetic image

set that spans a range of view variation by design. In particular, the set consisted of

two textured 3D face meshes (one male, one female; created with FaceGen, Singular

Inversions 1) that were ray-traced using POV-Ray 2 and randomly overlaid on a variety

of backgrounds (as described in Chapter 4). Critically, because the faces were rendered,

known amount of variation in view, lighting, etc. could be introduced into the set, and

this variation can be parametrically controlled. By the logic of most face recognition

1http://www.facegen.com
2http://povray.org
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Figure 5.5: Performance of Baseline Models on a Synthetic Face Set

challenges, the set should be easy as only two faces must be discriminated, and ample

training examples are available for each face.

Figure 5.5 shows the performance of the various baseline models with this synthetic

set, as a function of the amount of view variation parametrically applied. As even

modest amounts of view variation are included, performance rapidly declines. This

rapid decline verifies that the baseline representations are not able to tolerate the sorts

of image variation observed in the real world.

5.6 Discussion

Our results show that a simple V1-like vision system can perform extremely well on a

variety of standard face recognition tests, and that it can perform moderately well on

the LFW challenge test set. At the same time, we have shown that this same simple
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model performs at or near chance in a “simpler” face recognition task comprised of just

two synthetic faces undergoing a wider range of view transformations. Taken together,

these results suggest that while the V1-like model is demonstrably not a good general

face recognition system, sufficient low-level regularities exist in each test set such that it

can nonetheless perform surprisingly well. In the case of the “standard” face recognition

sets that we tested (ORL, Yale, AR and CVL), the V1-like model can perform at or

near 100%.

Interestingly, the V1-like model performs at ∼68% correct on the new Labeled

Faces in the Wild challenge, indicating that some, but not all, of the problem can

be solved using a simple system relying on low-level cues. Clearly, there remains a

substantial gap between this performance level and 100%, indicating that the LFW

set has potential for guiding face recognition progress. We would argue, however, that

performance reports on this set should be considered with this number in mind. Given

that a trivial algorithm can perform at close to 70% correct, models should ideally

target substantially higher performance.
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Chapter 6

V1-like Features Gone Wild!∗

“S.e.k.y.a.f.o.s.r?”

Simon Laflamme (2010)

I
n recent years, large databases of natural images have become increasingly pop-

ular in the evaluation of face and object recognition algorithms. However, we

previously illustrated an inherent danger in using such sets, showing that an extremely

basic recognition system, built on a trivial feature set, was able to take advantage of

low-level regularities in popular object (Chapter 4) and face (Chapter 5) recognition

sets, performing on par with many state-of-the-art systems. Recently, several groups

have raised the performance “bar” for these sets, using more advanced classification

tools. However, it is difficult to know whether these improvements are due to progress

towards solving the core computational problem, or are due to further improvements

in the exploitation of low-level regularities.

Here, we show that even modest optimization of the simple model introduced in

Chapters 4 and 5 using modern multiple kernel learning (MKL) techniques once again

yields “state-of-the-art” performance levels on a standard face recognition set (“Labeled

Faces in the Wild” [Huang et al., 2007]). However, at the same time, even with the

∗This chapter is modified from a study published in the proceedings of the IEEE Computer Vision
and Pattern Recognition Conference (CVPR) in collaboration with James J. DiCarlo and David D.
Cox [Pinto et al., 2009b].
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inclusion of MKL techniques, systems based on these simple features still fail on a

synthetic face recognition test that includes more “realistic” view variation by design.

These results underscore the importance of building test sets focused on capturing the

central computational challenges of real-world face recognition.

6.1 Introduction

The development of a robust face recognition algorithm capable of functioning in un-

constrained, real-world environments will have far-reaching applications in our modern

digital world. While considerable progress has been made towards building an artifi-

cial system that can match human performance, no clear solution has emerged. At the

core of this challenge is the extreme diversity in viewpoint, lighting, clutter, occlusion,

etc. present in real-world images of faces, which allows any given face to produce a vir-

tually infinite number of different images. A successful recognition system will have to

accurately recognize many individuals while tolerating these variations.

To guide any serious effort towards solving face recognition, one needs to define

detailed specifications of what the problem is and what would constitute a solution,

so that incremental progress can be precisely quantified and different approaches can

be compared through a standard procedure. For the purposes of a recognition system,

defining a specification amounts to choosing a test set against which an algorithm’s

performance is evaluated. Recently, it has become increasingly popular to evaluate

models on large test sets of “natural” images [Fei-Fei et al., 2004a; Griffin et al., 2007;

Huang et al., 2007]. Such an approach is appealing, as it is relatively easy to collect

many images from the Internet, and it is relatively efficient to label them (e.g. [Russell

et al., 2008; Von Ahn et al., 2006; Collins et al., 2008]). However, there are significant

downsides to this approach as well. Importantly, there is no guarantee that such a

set accurately captures the range of variation (e.g. view, lighting, etc.) found in the

real-world. A variety of factors conspire to limit the range of variation found in such

image sets — e.g. posing and “framing” of photographs from the web, implicit or

explicit selection criteria in choosing images for the set, etc. Images collected in this

manner may also have subtle low-level confounds that “give away” the task, such as
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image artifacts or backgrounds that covary with face identity.

As a consequence, it is difficult to know if a given model achieves its recognition

performance by robustly solving the problem (i.e., genuinely tolerating image variation),

or by exploiting accidental low-level regularities present in the test set. This danger

was demonstrated in Chapters 4 and 5 and by the study of Shamir [Shamir, 2008] on

popular face and object recognition test sets.

Specifically, Shamir showed that relatively high performance was possible on various

face recognition sets using image patches taken from the background, indicating that

there was significant, diagnostic covariation of background content with face identity.

At the same time, we demonstrated that an extremely rudimentary algorithm was able

to match or exceed the performance of many state-of-the-art vision systems (on the

Caltech101 [Fei-Fei et al., 2004a], Caltech256 [Griffin et al., 2007], AR [Martinez and

Benavente, 1998], ORL [Olivetti Research Laboratory, 1994], CVL [Computer Vision

Lab at the University of Ljubljana, 1999], YALE [Yale Center for Computational Vision

and Control, 1997], and LFW [Huang et al., 2007] sets). Interestingly, the same “null”

model was easily defeated by ostensibly “simpler” synthetic recognition tests specifically

designed to better span the range of real world variation. These results indicate that

performance reports might better be judged relative to simple baseline models (e.g.

based on pixels or wavelets) that are able take these low-level regularities into account.

Recently, with the advent of large scale machine learning techniques [Sonnenburg

et al., 2006], it has become possible to significantly outperform the “trivial” baselines

set forth in Chapters 4 and 5 on several object and face recognition test sets. These

approaches work by optimally combining many image features (e.g. [Varma and Ray,

2007; Huang et al., 2008; Wolf et al., 2008; Bosch et al., 2007]). However, it unclear

whether these approaches tap into some deeper solution to the underlying problem, or

derive their increased performance from enhanced exploitation of low-level regularities.

To offer insight into this problem, we here apply a similar large-scale approach

(“out-of-the-box” multiple kernel learning, [Sonnenburg et al., 2006]) to the trivial rep-

resentations described in Chapters 4 and 5. Thus while the underlying representation

(“front-end”) remains unsophisticated in its processing of shape, lacking any mecha-

nism to help tolerate image variation, we have added highly sophisticated “back-end”
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processing. We combine variants of the trivial features we proposed earlier to investi-

gate whether more low-level regularities can be captured using a large-scale (but not

necessarily smarter) classifier backend. We evaluate this method on “Labeled Faces in

the Wild”, a large natural face recognition set publicly-available [Huang et al., 2007]

and contrast the results with a small synthetic face recognition set, specifically designed

to include controlled image variations.

6.2 Combining Trivial Features

In the following experiments, the processing of images was divided into two phases:

a representation phase, in which images were transformed into feature vectors, and

a classification phase. Since multiple kernel learning techniques (see below) rely on

blending of multiple representations, we generated a series of variants based on two

basic classes of representation:

1. Pixels : a representation based on raw pixel values (with optional spatial resam-

pling, and Gaussian blurring)

2. V1-like: a simple representation inspired by the known properties of cortical area

V1 (see Chapter 4).

6.2.1 Trivial Representations

Pixel-based Representations

Here, the Pixels representation is simply based on unrolling a preprocessed image into

a n-dimensional feature vector. Simple preprocessing steps were added as follows:

1. use color information if present or convert the image to grayscale (2 variants:

grayscale or color),

2. normalize the original image to have zero-mean and unit-variance,

3. blur the image with a Gaussian filter (3 variants: no blur, 𝜎 = 1, 𝜎 = 2).
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By exhaustively crossing all possible variants of these three steps, one can produce

up to six pixel-based feature representations (2 color spaces by 3 blurs).

V1-like Features

V1-like models are composed of a population of locally-normalized, thresholded Gabor

wavelets spanning a range of orientations and spatial frequencies. For our purposes,

these models are intended as “null” models, as they only represent first-order descrip-

tions of the primary visual cortex, and do not contain any particularly sophisticated

representation of shape, nor do they possess any explicit mechanism designed to tolerate

image variation (e.g. from variation in view, lighting, etc.).

We previously described two V1-like representations: V1-like and V1-like+; code for

both representations is available upon request. In the “default” V1-like representation,

each input image is first resized by bicubic interpolation (the largest edge is resized to

150 pixels while preserving the aspect ratio), before conversion to grayscale and nor-

malization to zero-mean and unit-variance. Each element in the output representation

correspond to the “activity” of a simulated V1-simple-cell-like unit. Each response is

computed by:

1. first locally normalizing the image (dividing each pixel’s intensity value by the

norm of the pixels in the 3x3 neighboring region),

2. applying a set of 96 spatially local (43x43 pixels) Gabor wavelets to the image

(with a one pixel stride),

3. and normalizing the output values (dividing by the norm of the output values of

all 3x3 spatial region across all Gabor filter types);

4. output values are finally thresholded (values below zero were clipped to zero) and

clipped (values above one were clipped).

The V1-like+ representation includes all of the V1-like features, plus a grab-bag of

easily-computed additional features (e.g. color and output histograms, see Chapter 4

and 5 for details).
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In this study, we refer to the original versions of these representations as “V1-

like(A)” and “V1-like(A)+” and describe six new instances, as follows.

• Both “V1-like(B)” and “V1-like(B)+” resize the largest edge of their input images

by 75 pixels instead of 150. “V1-like(B)+” concatenates 37x37 raw grayscale

pixels to the feature vector instead of 75x75. Other parameters are unchanged

from (A);

• “V1-like(C)” and “V1-like(C)+” use slightly bigger Gabor filters (63x63 instead

of 43x43) and cover an enlarged panel of 8 spatial frequencies (1
2
, 1

3
, 1

4
, 1

6
, 1

11
,

1
18

, 1
23

, 1
35

cycles/pixel), for a total of 128 Gabor filters). Their output stack is

downsampled to 10x10x128 with a 21x21 box-car filter instead of the original

30x30x96 with a 17x17 filter. The other parameters are unchanged from (A);

• “V1-like(D)” and “V1-like(D)+” use much larger Gabor filters (125x125 instead

of 43x43), and cover an enlarged panel of 24 spatial frequencies (1
2
, 1

5
, 1

8
, 1

11
, 1

14
,

1
18

, 1
22

, 1
27

, 1
31

, 1
36

, 1
41

, 1
46

, 1
52

, 1
58

, 1
64

, 1
70

, 1
76

, 1
82

, 1
89

, 1
96

, 1
103

, 1
110

, 1
117

, 1
125

) and

36 orientations (equally spaced “around the clock”), for a total of 864 Gabor

filters. Their output stack is downsampled to 10x10x864 with a 21x21 box-car

filter instead of the original 30x30x96 with a 17x17 filter. The other parameters

are unchanged from (A).

These variants represent modest departures from the original V1-like representations

described in Chapters 4 and 5. Since MKL-based blends benefit from the inclusion of

as much diversity as possible, the use of these variants represents just a first step in

optimization of the use of the V1-like representation class.

6.2.2 Classification by Optimally Combining Kernels

The classification of face images was performed using Multiple Kernel Learning (MKL)

associated with a Support Vector Machine (SVM). MKL allows the practitioner to

optimize jointly over a convex linear combination of 𝑝 kernels 𝐾* =
∑︀𝑝

𝑘=1 𝛽𝑘𝐾𝑘 and the

SVM parameters 𝛼 ∈ R𝑛 and 𝑏 ∈ R, where 𝑛 is the number of training examples. The
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value of the coefficients 𝛽, 𝛼 and 𝑏 are obtained by solving the following optimization

problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
𝛽,𝛼,𝑏

1

2

(︃
𝑝∑︁

𝑘=1

𝛽𝑘𝛼
𝑇𝐾𝑘𝛼

)︃
+ 𝐶

𝑛∑︁
𝑖=1

𝜉𝑖

s.t.

𝑝∑︁
𝑘=1

𝛽𝑘 = 1 and 𝛽𝑘 ≥ 0 ∀𝑘

with 𝜉𝑖 = max(0, 1 − 𝑦𝑖(
∑︀𝑝

𝑘=1 𝛽𝑘𝐾𝑘(𝑥𝑖)
𝑇𝛼 + 𝑏))

Where 𝑦𝑖 is the binary label ∈ {−1,+1} associated with the 𝑖-th training example 𝑥𝑖.

We solve this problem using the Semi-Infinite Linear Problem (SILP) formulation

described in [Sonnenburg et al., 2006]. The implementation was taken “out-of-the-box”

from the shogun-toolbox 1. The combined kernels were all linear and were obtained

after sphering the data – e.g. features were made to be zero-mean and unit-variance,

with sphering parameters being estimated from the training examples. To avoid the

MKL optimization unduly favoring any one kernel during training, their traces were

normalized to one (i.e. by dividing each element of the training and testing matrix

by the sum of the training matrix diagonal). The SVM’s regularization parameter 𝐶

was fixed to 104 for all experiments. All the other parameters were set to their default

values.

A full discussion of MKL methods is outside of the scope of the present paper, and

is well covered elsewhere [Bach et al., 2004; Sonnenburg et al., 2006; Rakotomamonjy

et al., 2007]. For the purpose of this work, MKL methods simply represent an expedient

and powerful means to more fully exploit a large collection of features.

6.2.3 Hardware and Implementation

Due to the large number of images included in recent “natural” sets (e.g. LFW has over

ten thousand images) and the high-dimensionality of the baseline models, the computa-

tions involved add up significantly. As a consequence, care must be taken to avoid being

limited by throughput. To solve this “speed issue”, we harnessed the power of com-

modity graphics hardware (i.e. NVIDIA GPUs and PlayStation 3’s) and leveraged the

1http://www.shogun-toolbox.org
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large scale resources offered by cloud computing services (i.e. Amazon EC2). We cou-

pled these heterogeneous, but powerful, architectures with the flexibility of the Python

programming language to collect the data presented below in approximately one week

at a reasonable cost.

More specifically, the output of the V1-like models were computed using graphics

hardware while the kernel generation and MKL procedures used a combination of cloud

computing and “home” computing. Portable code (written in Python) and a minimal

virtual machine environment (VMware or Amazon EC2 AMI format) to reproduce our

results can be made available upon request.

6.3 Experiments

6.3.1 Labeled Faces in the Wild Set

We first conducted experiments on the recent “Labeled Faces in the Wild” (LFW) face

set (using the “View 2” subset from the LFW “funneled” version, see [Huang et al.,

2007] for details). This set contains 13,233 images (250x250 pixels) of 5,749 individuals

(see Figure 6.1 for examples) and was created to study the problem of face pair matching

in unconstrained environments (i.e., given two face images, decide if they are from the

same person or not). At a surface level, face images from the LFW set appear to be

quite varied in appearance, and this is hailed as one of set’s primary advantages.

Pair Matching

In this pair-matching setting, each representation variant described in Section 6.2 (i.e.

each of the six variants for the Pixels representation and eight variants for the V1-like

representation) was used to produce six linear kernels as follows.

• The first kernel was the same as in Chapter 5 where the feature mapping is the

element-wise squared difference of the representation outputs computed on a given

pair of 250x250 images.

• The second and third kernels were also computed from 250x250 images but using
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(a) Examples of one individual from LFW.

“same”

“di�erent”

(b) Examples of “same” and “different”
pair of faces in LFW.

Figure 6.1: Examples taken from the “Labeled Faces in the Wild” (LFW) test set.

an absolute-value difference or a square-root absolute-value difference respectively.

• The last kernels were computed using these three different element-wise differences

(i.e. squared, absolute-value and square-root absolute-value) on 150x150 pair of

images (cropped from the center).

Finally, for each training pair, the resulting feature vector was labeled as “same” or

“different,” and the task of labeling new (test) examples was treated as a two-category

classification problem (theoretical chance being 50%). We followed the standard proce-

dure described in [Huang et al., 2007] and we report the mean classification accuracy ±
s.e.m. computed from the ten random folds of 5,400 training and 600 testing examples

from the “View 2” portion of the full LFW set.

Results

Table 6.1 summarizes the performance using MKL to combine variants of the Pixels

baseline model. The best performance achieved is 68.33%±0.50 correct, using non-

blurred color images. This is substantially more than theoretical chance (50%). More

importantly, already this simple pixel-based approach outperforms some previously
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Grayscale Color

no blur 66.02%±0.53 68.33%±0.50

Gaussian blur(𝜎 = 1) 66.12%±0.54 67.47%±0.53

Gaussian blur(𝜎 = 2) 66.12%±0.55 66.45%±0.64

All variants 68.22%±0.41

Table 6.1: Performance on the “Labeled Faces in the Wild” (LFW) set using multiple-
kernel learning (MKL) with kernels computed from the Pixels representations. The score
of each cell is the result of the optimal combination of six kernels (see methods). All the variants
add up to 36 kernels. Note that using all kernels doesn’t improve performance significantly over the
optimal blend of non-blurred color images.

V1-like V1-like+

Variant (A) 76.55%±0.49 78.52%±0.49

Variant (B) 73.23%±0.57 76.16%±0.56

Variant (C) 74.65%±0.38 77.30%±0.62

Variant (D) 73.43%±0.36 75.78%±0.49

All variants 79.35%±0.55

Table 6.2: Performance on LFW set using MKL with kernels computed from the V1-like
representations. The score of each cell is the result of the optimal combination of 6 kernels (see
methods). All the variants add up to 48 kernels. Note that using all kernels, our approach can get
close to 80% accuracy.

reported methods (e.g. see [Wolf et al., 2008] for details).

The recognition accuracy of the V1-like model variants is presented in Table 6.2,

and a corresponding ROC curve is shown in Figure 6.2. Interestingly, an MKL blend

of only six V1-like(A)+ kernels (i.e., the representation taken, without modification,

from Chapters 4 and 5) scored 78.52%±0.49, which is not significantly different from

the current state-of-the-art [Wolf et al., 2008].

When all 48 V1-like kernels were blended, performance reached 79.35%±0.55, es-

tablishing a new record (as of the time of writing of this manuscript) on this test set.

Combining all 36 Pixels and 48 V1-like kernels did not improve performance further.
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Reference Methods Performance

Huang08 [Huang et al., 2008]

Nowak [Nowak and Jurie, 2007] 73.93%±0.49

MERL 70.52%±0.60

Nowak+MERL 76.18%±0.58

Wolf08 [Wolf et al., 2008]

descriptor-based 70.62%±0.57

one-shot-learning* 76.53%±0.54

hybrid* 78.47%±0.51

This paper
Pixels/MKL 68.22%±0.41

V1-like/MKL 79.35%±0.55

Table 6.3: Average performance comparison with the current state-of-the-art on LFW.
*note that the “one-shot-learning” and “hybrid” methods from [Wolf et al., 2008] cannot directly be
compared to ours as they exploit the fact that individuals in the training and testing sets are mutually
exclusive (i.e. using this property, you can build a powerful one-shot-learning classifier knowing that
each test example is different from all the training examples, see [Wolf et al., 2008] for more details.
Our decision not to use such techniques effectively handicaps our results relative to reports that use
them).

6.3.2 Synthetic Face Set

At this point, we have shown that a combination of MKL techniques with previously

described “trivial” feature representations is able to yield record levels of performance

on a standard face recognition test set. However, this high level of performance could

be due one of to two possible causes: 1) the powerful MKL back-end could be extracting

a sophisticated, robust solution to face recognition from the relatively unsophisticated

“parts” provided by the V1-like representation, or 2) the LFW set itself could contain

more low-level regularities than previously appreciated, which the MKL-based back-end

is more adept at exploiting.

To investigate whether the large-scale combination of kernels based on Pixels or

V1-like representations represents a robust solution to the face recognition problem,

we conducted experiments using an ostensibly simpler parametric face set described in

Chapter 5, using the a similar protocol as described in that work. Briefly, the image set

consisted of two individual 3D faces meshes (one male, one female generated using the

FaceGen software package, rendered using the POV-Ray ray-tracing package (see Figure
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Figure 6.2: ROC curve comparison with the current state-of-the art on LFW. These curves were
generated using the standard procedure described in [Huang et al., 2007].

6.3 for examples). Because this image set only contains two individuals, it is arguably

simpler than most other face recognition sets, which typically contain many individuals

(e.g. almost 6,000, in the case of the LFW set). Critically, however, these synthetic

faces were rendered with parametrically increasing amounts of variation in rotation, 2D

position, and size, so that the performance of a system can be assessed as a function

of the amount of variation present in the set. Here, as above, we used MKL-based

classifiers, with a combination of kernels from the six Pixels representation variants

and the eight V1-like variants (see Materials and Methods). Test sets corresponding

to seven levels of increasing variation (see Figure 6.3, x-axis labels) were created. For
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Figure 6.3: Performance of the Pixels and V1-like Representations with a MKL back-end
on a synthetic face recognition task. Left top: examples of the faces to be discriminated in their
default views, without any background (shown for illustration purposes); Left Bottom: examples of
face images used here. The faces could appear in variety of sizes, positions, and orientations, and
were randomly composited onto natural image backgrounds. For a human observer, this task is trivial,
however even modest amounts of controlled view variation severely degrade performance of the MKL-
backed Pixels and V1-like representations, confirming that these representations are not well suited
for real-world face recognition, even with the addition of a more sophisticated back-end.

each level of variation, classifiers were trained with 150 randomly generated faces per

individual and were tested using 150 examples.

Figure 6.3 shows the performance of the MKL combinations of the “Pixels” and “V1-

like” baseline models with this synthetic set, as a function of the amount of parametric

image variation. (i.e. position, viewpoint, scale, etc.). Echoing the results of Chapter

5, performance degrades rapidly as a function of image variation, with even modest

amounts of variation resulting in chance performance. Interestingly, performance falls

to a level statistically indistinguishable from chance at the same variation level as in

Chapter 5 (the fourth data point in 6.3) and the use of a powerful large-scale classifier

back-end does not rescue performance at this level. While the addition of an MKL

back-end did produce some gains at smaller levels of image variation relative to that

reported in Chapter 5 (e.g. the second and third points in Figure 6.3), it is clear that an

MKL-based classifier built atop these simple features does not represent a particularly

robust solution to the problem of unconstrained face recognition.
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6.4 Discussion

In this study, we combined variants of the Pixels and V1-like baseline models using a

large-scale statistical learning tool (“out-of-the-box” MKL, [Sonnenburg et al., 2006])

to investigate how far you can get using only simple features. We presented evidence

that this simple approach is capable of performing at a state-of-the-art level on the

large “Labeled Faces in the Wild” (LFW) face recognition set, while failing on (an

ostensibly simpler) synthetic set that includes more realistic view variation by design.

Taken together, these results again urge for caution, as more sophisticated large scale

kernel learning-based classifiers have the power to leverage good performance even from

collections of relatively unsophisticated features. While it is still possible that this

powerful machinery is building something “deeper” out of the simple parts provided

to it, the extent of this sophistication is limited, at the very least. The MKL-backed

system’s inability to tolerate even modest amounts of variation (trivial for a human

observer), raises the possibility that the MKL-backed system’s gains on the LFW set

may have more to do with extraction of low-level regularities than with progress towards

the “core” problem.

6.4.1 The Importance of Good Benchmark Test Sets

These results underscore the importance of building test sets focused on capturing the

central computational challenges of real-world face and object recognition. The use of

very large sets of “natural” images, while important, may not necessarily be optimal if

used alone, as there is no clear way to ensure a realistic range of variation is present and

there is no obvious way to control for undesired low-level regularities. A central concern

with databases of “found” images from the internet is that photographers typically pose

and frame their photos such that a limited range of views are highly over-represented.

This effect may be further amplified by the manner in which the sets are assembled.

For example, every face image included in the LFW set was the product of a successful

detection by the Viola Jones algorithm applied to a set of pictures gathered from news

articles on the Internet [Huang et al., 2007]. Even if the image diversity in LFW seems

large, applying this face detector “filter” leads to an under-representation of lighting
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conditions and face views where the Viola-Jones detector does not excel (e.g. views

from above, below or side; which can arguably be more challenging than frontal views).

Obviously, such concerns are subject to practical trade-offs — though this automated

procedure has biases, it enabled the authors to collect more than ten thousand images

at a reasonable cost in terms of labor.

Large-scale methods are undoubtedly very powerful. However, this power repre-

sents a double-edged sword. On one hand, the use of large scale methods are now

routinely responsible for the highest levels of performance in a variety of object and

face recognition tests (e.g. [Varma and Ray, 2007; Bosch et al., 2007]). On the other

hand, while such methods are adept at “wringing” substantial performance out of a

test set and representation, there is no guarantee that such an exercise brings us closer

to a real solution. Indeed, while large scale methods allowed us to achieve a high level

of performance gains on the LFW set, we are unconvinced that these gains represent

real progress. The cost of potentially false progress is magnified by the computational

expense of large scale methods, which favor massive computational and memory foot-

prints.

It is important to note that we are not claiming that any previously reported result

necessarily represents “false” progress. Previously reported methods may very well

represent significant progress towards a solution. However, we argue that this progress

will be difficult to see until, as a field, we are able to develop test sets that include

realistic ranges of image variation. This will not be an easy task.

One approach that we advocate here is the complementary use of parametric, ren-

dered image sets along with natural photographic sets. While synthetic sets have in

some circles fallen out of favor, considered to be “toy” sets, our results here (along

with the ones presented in Chapters 4 and 5) suggest that synthetic sets may in some

ways be paradoxically more “natural” than a database of “found” photographic images,

because they can span a realistic range of view, lighting, etc. variation, by design.

In addition, because ground-truth is known, one can assess performance as a function

of that variation. Finally, as computer graphics continue to become ever more realistic

and accessible, the lines between natural and synthetic images are increasingly blurred,

allowing a more natural interplay between both kinds of sets.
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Of course, using synthetic images is not the only way to achieve controlled image

variation. An alternative approach would be to use (or create) controlled photographic

sets such as the PIE Face Set [Sim et al., 2003] (or the NORB Object Set [LeCun

et al., 2004]), which systematically vary parameters such as camera and lighting an-

gle. However, while such sets have the appeal of being “real,” it is extremely difficult

and time-consuming to create a set that spans a sufficient number of axes of varia-

tion (i.e. six degrees of freedom in view, multiple light sources, different backgrounds,

etc.), and failure to span enough axes results in an incomplete surrogate for the full

range of variation in the real world. As a point of reference, for the PIE set, a sim-

ple unblended V1-like(A)+ already achieves 87.9%±0.3 performance 2, indicating that

low-level regularities are likely nonetheless present. While a controlled photographic

set with adequate variation is certainly theoretically possible, we are not aware of a set

that meets this goal. Meanwhile, synthetic sets offer extreme practicality and flexibility.

6.4.2 New Baselines for Face Recognition

As we previously argued in Chapters 4 and 5, one function for low-level “baseline”

models, such as the V1-like model, is to set a baseline mark against which performance

of other systems can be compared. Test sets where a “trivial” model performs well can

still be highly useful, provided the level of performance of that “trivial” model is taken

into account when evaluating performance, and provided that there is still “headroom”

left with respect to the test set (i.e. the trivial model doesn’t perform at 100%). That

is, to be reassured that a purpose-built system is going beyond low-level regularities, the

performance of the purpose-built vision system should ideally be substantially higher

than the performance of a “trivial” model.

The nature of multiple kernel methods also opens up an additional avenue for inte-

grating trivial baselines directly into the discovery process. In particular, if the simple

V1-like representation presented here were added to the collection of representations

under evaluation (i.e. including the purpose-built representation under study), then

the V1-like representation can “soak up” some of the performance gains due to low-

268-way one-against-all, chance is at 1.5%
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level regularities, making clearer what contributions are made by the purpose-built

representation. In such a scenario, one would want the inclusion of the purpose-built

representation to result in substantial improvement over the V1-like representation

alone. To some extent, interpretation of the weights produced by the MKL approach

[Sonnenburg et al., 2006, 2005] could offer valuable insights into what contributions the

purpose-built representation is making.

We are clearly not the first to identity the importance of evaluation in driving

progress in face and object recognition [Ponce et al., 2006]; our results add to a long-

standing process of evaluation and re-evaluation of how algorithms and systems are

evaluated. Going forward, large-scale techniques such as MKL will have an important

role to play in face and object recognition, however, their use will also require redoubled

efforts in collecting and creating test sets that properly channel and direct that power.

6.4.3 Future Work

Future work will determine whether it’s possible to get even further using many dif-

ferent trivial features on various face and object recognition sets [Fei-Fei et al., 2004a;

Griffin et al., 2007; Everingham et al., 2010]. Many possibilities could be explored at

close-to-zero human cost thanks to the use of commodity graphics hardware and cloud

computing strategies (see Methods Section 6.2.3). A potential approach may be an evo-

lutionary guided generation of baseline model instantiations that uses the interpretable

MKL weights to “understand” performance and increase the exploitation of low-level

regularities.

We are clearly not the first to identity the importance of evaluation in driving

progress in face and object recognition [Ponce et al., 2006]; our results add to a long-

standing process of evaluation and re-evaluation of how algorithms and systems are

evaluated. Going forward, large-scale techniques such as MKL will have an important

role to play in face and object recognition, however, their use will also require redoubled

efforts in collecting and creating test sets that properly channel and direct that power.
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Chapter 7

Comparing State-of-the-Art Visual

Features on Invariant Object

Recognition Tasks∗

“A great deal more is known than has been

proved.”

Richard Feynman

T
olerance (“invariance”) to identity-preserving image variation (e.g. variation

in position, scale, pose, illumination) is a fundamental problem that any visual

object recognition system, biological or engineered, must solve to be successful. While

standard natural image database benchmarks can be useful for guiding progress in

computer vision, they can fail to probe the ability of a recognition system to solve the

invariance problem as we have seen in Chapters 4, 5 and 6. Thus, we do not fully

understand which computational approaches are succeeding at solving the invariance

problem.

∗This chapter is modified from a study that will be published in the proceedings of the IEEE Workshop
on Applications of Computer Vision (WACV) in collaboration with Youssef Barhomi, David D. Cox
and James J. DiCarlo [Pinto and Cox, 2010].
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To get traction on this issue, we compared and contrasted a variety of state-of-the-art

visual representations using synthetic recognition tasks designed to systematically probe

invariance. We successfully re-implemented many state-of-the-art visual representations

and confirmed their published performance on a natural image benchmark. We here

report that most of these representations perform very poorly on invariant recognition,

but that only one representation [Mutch and Lowe, 2008] shows significant performance

gains over two baseline representations.

With a relatively small image set and minimal effort, we also show how this ap-

proach can more deeply illuminate the strengths and weaknesses of different visual

representations and thus guide progress on invariant object recognition.

7.1 Introduction

Visual object recognition is an extremely difficult problem and a great deal of effort con-

tinues to be expended to reach the goal of discovering visual representations that solve

that problem (identification and categorization). Indeed, some of those representations

are yielding performance that appears to be quite impressive [Kavukcuoglu et al., 2009;

Gehler and Nowozin, 2009; Jarrett et al., 2009; Van De Sande et al., 2010], perhaps even

approaching human object recognition performance under very limited conditions [Serre

et al., 2007a]. However, understanding what ideas are key to that progress, requires a

clear focus on the computational crux problem and a critical, systematic evaluation of

how much progress is being made on that problem by each state-of-the-art approach.

The goal of the present study is to tackle this issue. For example, are current state-of-

the-art representations all performing equally well, or are some consistently better than

others? Do they each have weaknesses that might be overcome from learning from the

strengths of each? Should we be satisfied with the single performance figure provided

by a given natural images database, or can we more precisely determine what compo-

nents of the object recognition problem are easily handled by each representation and

what components are limiting performance?

The computational crux of object recognition is known as the “invariance” prob-

lem: any given object in the world can cast an essentially infinite number of different
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two-dimensional images onto the retina as the object’s position, pose, lighting and back-

ground vary relative to the viewer. Thus, to critically evaluate a visual representation

for object recognition, we must have ways of measuring its ability to solve the in-

variance problem. Even though performance evaluation is central in computer vision

[Christensen and Phillips, 2002; Ponce et al., 2006], we do not believe that any previ-

ously study has directly and systematically tested state-of-the-art algorithms on solving

the invariance problem.

In particular, some groups [Murase and Nayar, 1995; Kim and Kweon, 2006] have

employed tests that try to directly engage the invariance problem, but these test some-

times miss important components (e.g. failure to use appropriate backgrounds), and

they have not been applied to compare and contrast state-of-the-art representations.

Other groups [Mikolajczyk and Schmid, 2005; Moreels and Perona, 2007] have com-

pared various visual descriptors (including SIFT, steerable filters, spin images or shape

context), but the focus of these studies was not directly on the invariant object recog-

nition problem, but on correspondence matching using local features similar in nature

(i.e. “distribution-based” representations). A number of other recent evaluation stud-

ies (e.g. [Van De Sande et al., 2010]), including a comprehensive study by [Zhang et al.,

2007] have evaluated the performance of state-of-the-art visual representations (and

combinations of those representations) using so-called “natural” image databases (esp.

Caltech101 [Fei-Fei et al., 2004a] or PASCAL VOC [Everingham et al., 2010]). How-

ever, because image variation is not explicitly controlled, these tests may lack real-world

image variation (e.g. due to posing of photographs), making difficult or impossible to

know how well the visual representations have solved the invariance problem. Moreover,

performance on such tests may reflect successful exploitation of low-level regularities

(e.g. due to covariation of object identity with background texture or color) and ar-

tifacts hidden in the test sets (e.g. cropping cues, etc.). While these problems have

been pointed out in recent studies on natural image sets in object and face recognition

[Ponce et al., 2006; Shamir, 2008] (in addition to Chapters 4, 5 and 6), systematic tests

that expose or circumvent them have not yet emerged.

To illuminate the progress of state-of-the-art visual representations in solving in-

variant object recognition, we re-implemented five state-of-the-art visual representa-
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Figure 7.1: Reproducing the state-of-the-art on Caltech101. a) Average accuracy with 15
training and 15 testing examples for five state-of-the-art algorithms and two baselines (see Methods
Section 7.2). b) Reported vs reproduced performance showing the successful re-implementation of
published methods. The reported numbers come from [Mutch and Lowe, 2008] (SLF ), [Varma and
Ray, 2007] (PHOG, PHOW and Geometric Blur) and Chapter 4 (V1-like).

tions (some bio-inspired, some not), and we probed the ability of each representation

to solve invariant object recognition tasks in which ground truth is known. Specifically,

we used a synthetic image approach outlined in Figure 7.2 because it allows: paramet-

ric control of the invariance problem, control of shape similarity, control of the number

of object exemplars in each category, control of background and color covariance. We

compared the obtained performance with both a Pixels baseline representation and a

well-established baseline representation that approximates the first level of primate vi-

sual processing (V1-like representation). We also used this approach to ask how well

each visual representation handle each of these underlying types of invariance, which is

difficult or impossible using prevailing “natural” object recognition tests.
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7.2 Methods

7.2.1 Visual Representations

In the following, we give an overview of the visual features used in our experiments

along with their key parameters. We refer to the corresponding publications for more

details. Note that the terms “descriptors”, “features” and “representations” are used

interchangeably throughout the chapter.

“Baseline” Features

We used two simple image representations – Pixels and V1-like – designed to serve as

baselines against which the performance of state-of-the-art features can be measured.

For both baseline representations, training and testing data were normalized to have

zero-mean and unit-variance feature-wise (using the training data only), and a simple

linear kernel was used for classification (see Section 7.2.1).

Pixels: In the Pixels representation, each image was simply rescaled to 150 by 150

pixels, converted to grayscale and then unrolled as a feature vector. The resulting

feature vector represents an almost entirely unprocessed representation of the original

image.

V1-like: In the V1-like representation, features were taken without any additional op-

timization from Chapter 4’s V1S+. This visual representation consists of a collection

of locally-normalized, thresholded Gabor wavelet functions spanning a range of orienta-

tions and spatial frequencies and is based on a first-order description of primary visual

cortex V1. V1-like features have been proposed by neuroscientists as a “null” model for

object recognition since they do not contain a particularly sophisticated representation

of shape or appearance, nor do they possess any explicit mechanism designed to tol-

erate image variation (e.g. changes in view, lighting, position, etc. [DiCarlo and Cox,

2007]). In spite of their simplicity, these features have been shown to be among the

best-performing non-blended features set on standard natural face and object recog-

nition benchmarks (i.e. Caltech101, Caltech256, ORL, Yale, CVL, AR, PIE, LFW –
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see Chapters 4, 5 and 6), and are a key component of the best blended solutions for

some of these same benchmarks [Gehler and Nowozin, 2009]. We used publicly avail-

able code for these features with two minor modifications to the published procedure.

Specifically, no PCA dimensionality reduction was performed prior to classification (the

full vector was used) and a different regularization parameter was used (𝐶 = 10, 000

instead of 𝐶 = 10).

State-of-the-art Features

We considered a diverse set of five state-of-the-art features. Most were chosen on

the basis of their high-performance on Caltech101 (arguably still the most widely used

multi-class object recognition benchmark today [Kavukcuoglu et al., 2009; Jarrett et al.,

2009; Gehler and Nowozin, 2009]). Effort was made to span a wide range of different

approaches to object recognition: models that were bio-inspired, and those that are not;

distribution-based and non-distribution-based models, and models with a custom kernel

(e.g. Spatial Pyramid) and models with a simple linear one. To promote experimental

reproducibility and ease distribution, we re-implemented all but one of these models

(SLF, see below) from the ground up using only free, open-source software (e.g. Python,

NumPy, SciPy, Shogun, OpenCV, etc.).

SIFT: SIFT descriptors [Lowe, 2004] were computed on a uniform dense grid from

a 150 by 150 pixels grayscale image with a spacing of 10 pixels and a single patch size

of 32 by 32 pixels. The result was then unwrapped as a feature vector. Training and

testing data were normalized to have zero-mean and unit-variance feature-wise (using

the training data only), and SVM classification was done using a linear kernel.

PHOW: PHOW (Pyramid Histogram Of visual Words) is a spatial pyramid re-

presentation of appearance [Bosch et al., 2007; Varma and Ray, 2007; Lazebnik et al.,

2009]. To compute these features, a dictionary of visual words was first generated by

quantizing the SIFT descriptors with k-means clustering. We fixed the dictionary size

to 300 elements, and the SVM kernel to a three-level spatial pyramid kernel with 𝜒2

distance [Lazebnik et al., 2009].

102



Chapter 7: Comparing State-of-the-Art Features on Invariant Tasks

PHOG: PHOG (Pyramid Histogram Of Gradients) is a spatial pyramid representation

of shape [Bosch et al., 2007; Varma and Ray, 2007] based on orientations gradients

(HOG [Dalal and Triggs, 2005]) of edges extracted with a Canny detector. We fixed

the angular range to 360 degrees, the number of quantization bins to 40, and the SVM

kernel to a four-level spatial pyramid kernel with 𝜒2 distance.

Geometric Blur: The Geometric Blur shape descriptors [Berg and Malik, 2001;

Zhang et al., 2006] are generated by applying spatially varying blur on the surrounding

patch of edge points in the image (extracted by the boundary detector of [Martin et al.,

2004]). We fixed the blur parameters to 𝛼 = 0.5 and 𝛽 = 1, the number of descriptors

to 300 and the maximum radius to 50 pixels. For the SVM classification, we used

the kernelized distance 𝐷𝐴 from [Zhang et al., 2006] (Eq. 1) with no texture term as

described in [Varma and Ray, 2007].

SLF: The bio-inspired Sparse Localized Features (SLF) [Mutch and Lowe, 2008] are

an extensions of the C2 features from the Serre et al. HMAX model [Riesenhuber

and Poggio, 1999b; Serre et al., 2007c]. For this representation, we took advantage of

the MATLAB code provided by the authors (FHLib1). Here, the SVM classification

was based on a linear kernel with normalized training and testing data (zero-mean and

unit-variance feature-wise). Interestingly, we found that it was unnecessary to use the

feature selection procedure described in [Mutch and Lowe, 2008] to match the level of

Caltech101 performance achieved in that work. We suspect that our slightly higher ob-

served performance level was due to differences in SVM formulation and regularization

parameters.

Classification

For classification we used L2-regularized Support Vector Machines (libsvm solver from

the Shogun Toolbox2) with a regularization constant 𝐶 = 10, 000. Each representation

was used to produce either a simple linear, or custom (for PHOW, PHOG and Geometric

1http://www.mit.edu/~jmutch/fhlib
2http://www.shogun-toolbox.org
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Blur) kernel. Multi-class problems were addressed with a one-versus-rest formulation.

Classifiers were trained using a fixed number of examples. Except when stated

otherwise, we use 150 training and 150 testing examples for each class. The performance

scores reported are the average of performances obtained from five random splits of

training and testing sets, the error bars represent the standard error of the mean. The

same image splits were used for all the representations.

7.2.2 Synthetic Image Set Generation

A key feature of the evaluation procedure described in this study is the use of object test

sets where the ground-truth range of variation in object view is known. In particular,

we chose to use rendered three-dimensional objects, which allow for large numbers of

test images to be generated with minimal effort, while preserving tight controls on the

distribution of view variation within the set.

For each category of objects (cars, planes, boats, animals), five 3D meshes (pur-

chased from Dosch Design and Turbosquid.com) were rendered using the POV-Ray

ray-tracing package onto a transparent background, and this image was overlaid onto a

randomly selected background image from a set of more than 2,000 images of natural

scenes (Figure 7.2a). Background images were selected randomly, and no background

was ever reused within a given training / test set. While backgrounds often contain in-

formation that is helpful for recognizing objects, we made no effort to associate objects

with context-appropriate background, in order to better focus the test set on object

recognition per se. All images were made to be grayscale to avoid any color confound.

In Figures 7.3a and 7.4a, object views were varied simultaneously (“composite vari-

ation”) along four axes: position (horizontal and vertical), scale, in-plane rotation and

in-depth rotation. In order to roughly equate the effects of each of these kinds of view

variation, we defined a view change “quantum” for each axis of variation, such that

each kind of variation, on average, produced an equivalent pixel change in the image,

as defined by a pixel-wise Euclidean distance. The average pixel change associated

with a full, non-overlapping translations of the objects’ bounding boxes was taken as

the “standard” unit of pixel variation, and all other view change units were equalized
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Figure 7.2: Object rendering procedure. a) 3D object meshes were rendered using view parame-
ters drawn from a uniform random distribution, and then composited onto randomly selected natural
background images. b) Examples of view variation ranges used in this study, spanning from no view
variation (top) to relatively large amounts of “composite variation” (i.e. all four types of variation
included: position, scale, in-plane rotation and in-depth rotation).

105



Chapter 7: Comparing State-of-the-Art Features on Invariant Tasks

to this unit.

Separate test and training sets were generated for each of a series of view-variation

ranges, spanning from no view variation (Figure 7.2b, top) to a relatively large amount

of variation (Figure 7.2b, bottom). For each range, view parameters were drawn in-

dependently along each of the four axes, with a uniform random distribution, and all

object exemplars were included as part of the random image draw. Importantly, for a

given range, a successful recognition system must not only correctly recognize objects

with view parameters at the extremes of the range, but must also correctly recognize

objects across the entire range.

7.3 Results

The main goal of this study was to test state-of-the-art artificial visual representations

on truly difficult, systematic tests of invariant object recognition where ground truth

is known. To do this, we first verified that we had successfully re-implemented each

visual representations (see Methods Section 7.2). We used the Caltech101 image cat-

egorization task [Fei-Fei et al., 2004a] as a point of reference. Despite many serious

concerns raised about the Caltech101 set [Ponce et al., 2006] (Chapter 4), that test is

still widely used in the object recognition community and thus most state-of-art algo-

rithms have reported accuracy on Caltech101 in the literature [Berg and Malik, 2001;

Zhang et al., 2006; Varma and Ray, 2007; Mutch and Lowe, 2008; Lazebnik et al.,

2009]. Specifically, for each representation, we compared the Caltech101 performance

of our re-implementation with the performance reported in the literature. As Figure

7.1b shows, in all cases, we succeeded in matching (or slightly exceeding) the reported

performance of all representations on the Caltech101 set. These results provide an in-

dependent replication of the original authors’ results, and that we have succeeded in

re-implementing these state-of-the-art algorithms.
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Figure 7.3: Performance on object recognition tasks with controlled composite variation.
a) Average accuracy of each representation on a series of “cars vs planes” tasks in which the composite
variation is gradually increased. The inset shows the performance of the five state-of-the-art features
from the literature relative to the Pixels representation. b) Performance relative to Pixels on the
composite variation 3 (cf. inset in a)) with a new draw of “cars” and “planes” images, more training
examples, other objects (“animals vs boats”), and more object classes (“animals vs boats vs cars vs
planes”).
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7.3.1 Basic-level Object Recognition

With successful re-implementations of a collection of state-of-the-art algorithms in

hand, we proceeded to test each representation on basic-level invariant object recogni-

tion tasks and to benchmark these results against a simple Pixels baseline representation

and the V1-like baseline representation (see Methods Section 7.2).

In Figure 7.3, we show the performance of all seven visual representations (including

the Pixels and V1-like baseline representations) as we gradually increase the difficulty

of the “cars vs. planes” task by increasing four types of object variation (position,

scale, in-plane rotation and in-depth rotation) at the same time in a fixed mixture

(“composite invariance”, see Methods Section 7.2.2). Even though all of the state-of-

the-art representations consistently outperformed Pixels and performed approximately

equally well on the standard Caltech101 “natural” task (Figure 7.1), the results in

Figure 7.3 reveal clear differences among the models. Several state-of-the-art models

are clearly below the V1-like baseline and, in some case, below the Pixels baseline. Most

interestingly, the results show that one representation (SLF ) has made clear gains on

the composite invariance problem (see Discussion Section 7.4).

Given that there is no single test of basic-level recognition, we next considered the

possibility that the results in Figure 7.3a are simply due to particular parameter choices

one necessarily has to make when testing a visual representation (e.g. number of training

examples, number of objects, particular choice of objects, etc). Specifically, we picked

an intermediate level of composite variation that best revealed the differences among the

representations (see highlighted section in Figure 7.3a and, using this level of composite

variation, we created four new object recognition tests using: a new set of “cars” and

“planes” images, three times as many example images for training (450 instead of 150),

two completely new objects (“animals” and “boats”), and a test with four basic object

categories (“animals”, “boats”, “cars”, “planes”) instead of two (Figure 7.3b). In all

cases, we found that the relative performance of each representation (i.e. performance

relative to the other representations) was largely unaffected by these testing parameter

choices. We quantified this robustness by computing Spearman’s rank correlation of

performance in all pairs of these basic level recognition tasks, and found very high
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values (mean = 0.95, min = 0.86). In sum, these results show that, at least for the

currently considered set of state-of-the-art models, our tests of basic-level recognition

are largely robust to: the exact set of images (at a given level of composite variation)

the number of training examples, the exact categories of basic object used and the

number of categories.

7.3.2 Subordinate-level Object Recognition (Faces)

The absolute level of recognition performance must depend on the degree of 3D struc-

tural similarity of the objects in the test set. Specifically, while objects involved in tests

of basic-level recognition (e.g. cars vs. planes vs. boats, etc.) are moderately to highly

dissimilar in terms of 3D structure, objects in so-called, subordinate-level [Mervis and

Rosch, 1981] tasks of recognition (e.g. one face vs. another face) share common 3D

structure that makes tasks intrinsically more challenging. Thus, we used the same ap-

proach as in Figure 7.3 (but with lower absolute levels of view variance) to test the

performance of the state-of-the-art representations on a face recognition task. The re-

sults are shown in Figure 7.4. As with the basic-level recognition task, we found that

most, but not-all, state-of-the-art representations performed below the V1-like baseline

representation and that the relative performance of the representations on the face task

was largely robust to the number of training examples, the particular choice of faces,

and the number of faces (mean Spearman’s rank correlation = 0.92, min = 0.85).

To ask if a representation’s performance on basic-level recognition is predictive of

its performance on subordinate-level recognition, we directly compared the results in

the “cars vs. planes” task (Figure 7.3) and the “face vs. face” task (Figure 7.4).

Figure 7.5 shows the performance of all representations on both tasks using a range

of different testing conditions (as outlined in Figures 7.3 and 7.4). We found that the

absolute performance level on each task is highly correlated (Figure 7.5a). However,

when performance is plotted relative to the Pixels (Figure 7.5b) and V1-like baselines

(Figure 7.5c), the data reveal that one of the state-of-the-art representations (PHOW,

see purple points) is reasonably good at basic-level invariant object recognition but

quite poor at subordinate-level (face) recognition, and that one representation (SLF,
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Figure 7.4: Performance on subordinate-level object recognition tasks (face discrimina-
tion) with gradually increasing amounts of composite variation. Plotting conventions as in
Figure 7.3, but note that, because this is a more difficult that, view variation parameters are lower
than those used in Figure 7.3.
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tails). b) Same data re-plotted relative to Pixels representation. c) Same data re-plotted relative to
V1-like representation.

see red points) is a clear stand-out with respect to the V1-like baseline on both basic-

and subordinate-level recognition tasks (see Discussion Section 7.4).

7.3.3 Individual Types of View Variation

We next considered the possibility that our tests (e.g. Figure 7.3) were over-weighting

some types of variation relative to others (see Methods Section 7.2.2, and Chapter 4 for a

description of how the relative mix of types of object variation in Figure 7.3 was chosen).

Without an operational goal (e.g. matching human performance), it is impossible to

exactly determine if one type of variation is under- or over-weighted in recognition

tasks, even when ground truth is known. However, for the present study, we sought

to determine if our conclusions about the relative performance of the state-of-the-art

representations would be strongly altered by our current weighting of each of these four

type of view variation. Specifically, we created four new basic-level recognition tests

in which we fully removed one type of variation from each test (and made sure that
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Figure 7.6: Performance rank order of the representations after removal of each type of
view variation (position, scale, in-plane rotation and in-depth rotation).

the remaining composite variation was at a level that put all the representations in a

performance regime that was not on the ceiling or the floor, analogous to the highlighted

region in Figure 7.3). We found that the relative performance of all the state-of-the-

art representations on these four basic-level object recognition tasks (Figure 7.6) was

very similar to that found with the full composite invariance tests (Figure 7.3; mean

Spearman’s rank correlation between results in these two figures was 0.90, min = 0.64).

This suggests that, at least for the currently considered set of state-of-the-art models,

our tests of basic-level recognition are not strongly dependent on composite variation

“mixture” in the test.

To ask what type of tolerance is least difficult and most difficult for each re-

presentation without regard to absolute performance, we created four new tests of

basic level recognition (“cars vs. planes”) that each contained only one type of object

variation (position-only, scale-only, in-plane-rotation-only, and in-depth-rotation-only

tests). To fairly compare each representation’s degree-of-difficulty in handling each

type of variation, we equated these four tests in that the amount of variation produced

an equal degree of difficulty for the pixel representation (10% absolute performance

drop, see Figure 7.7). The results show that most of the state-of-the-art representa-

tions have the least difficulty with position variation, and tend to have more difficulty

with (e.g.) in-depth variation. For example, these tests reveal that the representation

of [Mutch and Lowe, 2008] which was designed with position and scale variation in mind
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Figure 7.7: Degree of difficulty of each type of view variation for each representation. The
amount of each type of variation was chosen to produce a 10% approximate decrease in performance for
the Pixels baseline. We here show the change in average performance due to each type of variation (i.e.
change relative to each representation’s performance in the “no variation” task (composite variation
0) in Figure 7.3). The axes are normalized by the maximum decrease (or increase, for Geometric
Blur) of performance for each representation. Thus, each plot shows the relative degree of difficulty
for each type of variation (from the representation’s point of view; -1 is most difficult). Even though
this figure suggests that Geometric Blur benefits from more position and scale variations, that is only
a by-product of the overall poor performance of this representation and floor effects (see Figure 7.3).

[Riesenhuber and Poggio, 1999b; Serre et al., 2007c] is much less sensitive to position

variation than it is to in-depth rotation (i.e. pose) variation.

7.3.4 The influence of background

Because background structure and its covariance with object identity are fully known,

the testing methods used here can also expose visual representations that rely strongly

on these cues. For example, Figures 7.3 and 7.4 show that one of the state-of-the-

art visual representations, Geometric Blur, performs very poorly on most of our tests,

but Figure 7.8 shows that, when we perform the tests on no background, the same

representation now performs at a very high level. Taken together, this suggests that this

visual representation is seriously impaired by clutter or leans heavily on background

features to perform categorization. When natural images are used and background

covariance is brought to zero (as in all our testing), this limitation of the representation

is revealed. We emphasize that these effects are difficult or impossible to uncover in

standard “natural” tests (e.g. Caltech101 or PASCAL VOC), but are very easy to

uncover using a synthetic test set approach (see Discussion Section 7.4).
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7.4 Discussion

Our testing of invariant object recognition revealed that most of the state-of-the-art rep-

resentations consistently performed at or below the performance of the V1-like baseline

representation (which also achieves the highest performance on the Caltech101 set).

To the extent that this model represents a “null” baseline that lacks mechanisms to

perform invariant recognition, this suggests that other state-of-the-art representations

perhaps also rely heavily on view-specific information, or covariation with backgrounds,

to achieve their performance. Interestingly, the bio-inspired model SLF (an extension
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of Serre et al.’s C2 features [Serre et al., 2007c]) stood out in all of our tests, performing

consistently better than both baselines, suggesting that it contains computational ideas

that are useful for solving invariant object recognition. It remains to be seen how this

visual representation and other emerging representations compare to unfettered human

performance and the performance of high-level neuronal representations on these tasks.

Our results also revealed that the performance of some representations was highly

dependent on the details of the task under test. For example, the performance of

Geometric Blur descriptors degraded rapidly with the inclusion of background content

uncorrelated to object identity, and PHOW, while reasonably good at basic-level object

categorization tasks, was no better than the pixel representation at the subordinate-

level task (face identification).

The synthetic testing approach used here is partly motivated by previous work on

photographic approaches like NORB [LeCun et al., 2004]. However, while NORB-

like databases are challenging and costly to obtain, the synthetic approach offers the

potential to draw on large numbers of objects and generate an essentially infinite number

of images with precise control of all key variables at low cost. The approach easily

allows exploration of the individual underlying difficulty variables (e.g. position, scale,

background, etc.) to better learn from the best ideas of each representation. Because

the synthetic approach offers the ability to gradually “ratchet up” the task difficulty

(e.g. increasing levels of composite variation in the test) and because only hundreds of

images are needed instead of thousands, it can be used to efficiently search for better

visual representations (see Chapter 9).

Although it is widely understood that performance evaluation is critical to driving

progress (e.g. [Dollár et al., 2009]), such performance evaluation is much easier said

than done. Over the last decade, tests based on known ground truth have fallen out of

fashion in computer vision [Dickinson, 2009] while the field has rallied around a number

of “natural” image test sets (e.g. Caltech101, PASCAL VOC) continue to be used

almost exclusively as evidence of progress in solving object recognition [Kavukcuoglu

et al., 2009; Jarrett et al., 2009; Gehler and Nowozin, 2009; Van De Sande et al.,

2010]. While these test sets are laudable because they encourage systematic comparison

of various algorithms, they can also be dangerous when hidden confounds exist in
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the sets, or when it is not clear why the sets are difficult. Indeed, despite the fact

that these representations are highly competitive on large, complex “natural” image

sets and the expectation from leaders in the field [LeCun et al., 2008] that many of

these representations should be capable of dealing “fairly well” with simpler synthetic

invariance tests, our results show that many of these representations are surprisingly

weak on these tests, even though these synthetic sets remain trivially easy for human

observers (see Chapter 8).

While there is no perfect evaluation tool, we believe that a synthetic testing ap-

proach is an important complement to ever-improving photographic-based image sets

(e.g. LabelMe [Russell et al., 2008]). More deeply, we share the desire and ultimate

goal of evaluating algorithms on “real-world” tasks, and we share the concern that ill-

considered “sloppy” synthetic testing approaches may have their own artifacts and, if

not carefully considered, may not be predictive of real world performance. But in the

world of modern computer graphics, a synthetic testing approach offers a powerful path

forward as it can ultimately produce images that are indistinguishable from real-world

photographs, yet still have all ground truth variables known and under parametric con-

trol.

Future work will be aimed at fully closing any gap between synthetic testing ap-

proaches and the idealized notion of “real world” tasks.
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Chapter 8

Human vs. Machine: Comparing

Visual Object Recognition Systems

on a Level Playing Field∗

“There are two possible outcomes: if the result

confirms the hypothesis, then you’ve made a

measurement. If the result is contrary to the

hypothesis, then you’ve made a discovery.”

Enrico Fermi

I
t is received wisdom that biological visual systems easily outmatch current artifi-

cial systems at complex visual tasks like object recognition. But have the appro-

priate comparisons been made? Since artificial systems are improving every day, they

may surpass human performance some day, thus it is crucial to understand the progress

toward reaching that day because success is only one of several necessary requirements

for “understanding” visual object recognition.

∗This chapter presents preliminary work presented at the Learning Workshop 2010 and the Compu-
tational Systems Neuroscience Conference (COSYNE) [Pinto et al., 2010] in collaboration with Najib
J. Majaj, Ethan A. Solomon, David D. Cox and James J. DiCarlo.
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How large (or small) is the difference in performance between current

state-of-the-art object recognition systems and the primate visual system?

As we discussed before, the performance comparison of any two object recognition

systems requires a focus on the computational crux of the problem and sets of images

that engage it. Although it is widely believed that tolerance (“invariance”) to identity-

preserving image variation (e.g. variation in object position, scale, pose, illumination)

is critical, systematic comparisons of state-of-the-art artificial visual representations

almost always rely on “natural” image databases that might fail to probe the ability of

a recognition system to solve the invariance problem (see Chapters 4, 5 and 6). Thus,

to understand how well current state-of-the-art artificial visual representations perform

relative to each other and relative to low-level baseline representations (e.g. retinal-like

and V1-like), we tested all of them on a common set of controlled visual recognition

tasks that directly engage the “invariance problem” (Chapter 7).

In this chapter, we present an early attempt to test human visual recognition abilities

on the same set of invariance controlled tasks. The preliminary data briefly summarized

below demonstrate that previous attempts using arbitrary“natural” images may not

properly capture the performance of high-level representations (e.g. human observers),

and that image variation is also critical in quantifying how far we are from a human-

level solution to visual recognition – thus providing tools and guidance for cognitive

and systems neuroscience.

8.1 Motivation

Serre et al. [2007a] started the important effort of comparing human to machine using an

animal vs. non-animal categorization task. The authors arranged “natural” grayscale

images of animals into four distinct categories (head, close-body, medium-body and far-

body) and measured rapid categorization performance of humans as well as supervised

classification performance of a specific biologically-inspired feed-forward hierarchical

model implementation (HMAX extension including many layers of processing, bypass

routes, etc.).

In particular, stimuli were presented to humans for 20 ms followed by a mask,

118



Chapter 8: Human vs. Machine
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Head       Close-body  Medium-body   Far-body
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Natural
distractors
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a

Figure 8.1: Animal- vs. non-animal-categorization task used in Serre et al. [2007a]. (a)
The four classes of stimuli. Animal images were manually arranged into four groups (150 images
each) based on the distance of the animal from the camera: head (close-up), close-body (animal body
occupying the whole image), medium-body (animal in scene context), and far-body (small animal or
groups of animals). Each of the four classes corresponds to different animal sizes and the task difficulty
is probably modulated by the different amount of clutter relative to the object size. A set of matching
distractors (300 each from natural and artificial scenes) was selected to try to prevent human observers
and computational models from relying on low-level cues (artifactual regularities). (b) Schematic of
the task. A gray-level image stimulus is flashed for 20 ms, followed by a blank screen for 30 ms for
a stimulus onset asynchrony (SOA) of 50 ms, and followed by a mask for 80 ms. Subjects ended the
trial with an answer of “yes” or “no” by pressing one of two keys. Figure and caption modified from
[Serre et al., 2007a].

subjects then responded “yes” or “no” if they saw an animal (see Figure 8.1). The

authors observed that the performance of their machine model was on par with human

performance and concluded that the model could predict the level and the pattern of

performance achieved by humans on this rapid categorization task. More specifically,

they showed that difficult stimulus groups, such as “Far-body”, were equally difficult

for humans and machine, and easy stimulus groups were similarly easy for both (see

Figure 8.2).

Of course, the authors do not claim that the object recognition problem is solved in

sight of these results. Instead, they merely argue that their HMAX extension, which fits

some known physiology and anatomy of the visual cortex, correlates well with humans

and exhibits comparable accuracy on this presumably difficult rapid categorization task.

Nevertheless, given the results presented earlier in Chapters 4, 5 and 6, one might ask

(1) if a simpler “baseline” model would also predict the level and pattern of human

performance, and (2) if this ostensibly difficult “natural” benchmark is really capturing
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Figure 8.2: Comparison between machines and human observers. . Models vs. human-level
performance in percent correct (left), and d-prime sensitivity measure (right). Both the complex (Serre
et al.) and baseline (V1-like) models exhibit pattern of performance very similar to human observers.

the problem of interest.

To answer these questions, we first test the “V1-like” neuroscientist baseline model

on the same animal vs. non-animal categorization task. Then, we measure human

performance on carefully controlled visual recognition tasks that include a lot of image

variation by design and that have been shown to be particularly difficult for current

machine vision systems (see Chapter 7).

8.2 Natural Animal vs. Non-Animal Task

Figure 8.2 shows that similar to the multi-layer model of Serre et al. [2007a], the single-

layer “V1-like” model also matches human accuracy and pattern of performance on the

animal vs non-animal task (see Serre et al. [2007a] for details regarding the methods).

One possible reason behind this observation is the presence of low-level artifacts

in the animal vs. non-animal benchmark as recently illustrated by Landecker et al.
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Color map:

- Red (hot):
Featres extracted
from this region
contributed to
positive
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(i.e. animal)

- Green:
Features from this
region did not
contribute to
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toward negative
classification
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hot
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False Negative (classified as not animal) True Negative (classified as not animal)

True Positive (classified as animal) False Positive (classifed as animal)

Figure 8.3: Visualizing the classification weights of the Serre et al. [2007a] model on the
animal vs. non-animal task. The first rows of the top-left and bottom-left quadrants show examples
where positive feature weights, contributing to an “animal is present” classification, were placed on the
background instead of the object of interest (see Figure 8.3), suggesting possible artifactual confounds
in the animal vs non-animal image set. Figure modified from [Landecker et al., 2010].

[2010] when they looked at the classification weights of the model used by Serre et al.

[2007a] on this task. In particular, they showed examples where positive feature weights,

contributing to an “animal is present” classification, were placed on the background

instead of the object of interest (see Figure 8.3). It is thus possible that the presence

of low-level regularities may have biased the pattern of results plotted in Figure 8.2

for both models. Interestingly, this confound, which involves backgrounds and possible

artifactual covariation with category label, is similar to the one we discussed in Chapter

7 (see Figure 7.8).
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Figure 8.4: Schematic of the synthetic controlled variation task. A grayscale image stimulus
is flashed for 50 ms, immediately followed by a response screen. Subjects ended the trial by selecting
the stimulus category they think they saw.

8.3 Controlled Synthetic Recognition Tasks

As in previous chapters, we use a synthetic testing approach that allows direct engage-

ment of the invariance problem, as well as knowledge and control of some of the key

parameters that make object recognition challenging. For human observers, we present

600 stimuli, divided into 8 categories and 6 variation levels, for a total of approximately

12 stimuli per condition. Each stimulus is flashed for 50ms with no mask. A response

screen depicting an exemplar of each category in a canonical view is then shown and

the subjects are asked to decide which category they thought they saw (see Figure 8.4).

For V1-like, we use the same training/testing protocol as in Chapter 7. Performance is

reported as percent correct (chance is at 12.5%) and d-prime sensitivity measure.
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Figure 8.5: Exemplars from the 8 object categories used in the basic-level recognition
tasks. Stimuli shown in their canonical view on random natural backgrounds.

8.3.1 Basic-Level Recognition

In the basic-level recognition experiments, we use 8 categories with 8 exemplars per

category (see Figure 8.5). Figure 8.6 shows the results of our basic-level recognition

experiments. We observed that the V1-like machine model is only slightly worse than

humans at very low variation. However, as the amount of variation increases, machine

performance drops precipitously while human performance drops gradually.

8.3.2 Subordinate-Level Recognition

We designed two different identification tasks with two arbitrary level of difficulty: one

with car meshes1, presumably easier since their shapes appear more “different”, and the

other one with face meshes2, likely more difficult as they are more “similar” in shape.

Figure 8.7 shows stimuli examples of the 8 car models (alfa, astra, beetle, bmw,

bora, celica, clio, z3) in their canonical view on random natural backgrounds. Figure

1From Dosch Design (http://www.doschdesign.com).
2Generated with FaceGen (http://www.facegen.com).
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Figure 8.6: Human vs machine: 8-way object categorization task. (top-left) accuracy in
percent correct, chance is at 12.5%. (top-right) d-prime sensitivity measure. (bottom) Examples of
stimuli at variation 6.

8.8 shows the results of the 8-way car identification controlled variation experiments.

At low variation, the V1-like machine baseline performs better than the inexperienced

human subjects, but, as but as the amount of variation increases, machine performance

degrades abruptly while human performance does not, and is consequently much better

at high variation. Interestingly, the most experienced human observer, who has an

amount of training similar to the machine on this task, performs significantly better

than V1-like at low variations but reaches the same level as inexperienced subjects at

the highest variation.

Figure 8.9 shows stimuli examples of the 8 face meshes in their canonical view on

random natural backgrounds. Figure 8.10 shows the results of the 8-way face identi-

fication controlled variation experiments. Again, at low variation, the machine model

performs better than the inexperienced human subjects, but, as the amount of varia-
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astra beetle

bora clio z3celica

bmw325alfa155

Figure 8.7: Examples of the 8 specific cars used in one of the subordinate-level recognition
tasks. Stimuli shown in their canonical view on random natural backgrounds.

tion increases, machine performance deteriorates drastically while human performance

does not. We can see that this task is generally much harder than the previous ones

(e.g. some subjects are even at chance level), especially at high variation. This observa-

tion seems consistent with our prediction and may reflect the inherent tradeoff between

high selectivity to very similar stimuli with different identity (e.g. non-familiar faces)

and high tolerance to image variation. The human observer with most training clearly

outperforms every contestants on this task, even at high variation.

8.4 Summary

To summarize our results, we (loosely) define a “Turing ratio” as the ratio of machine

d-prime to human d-prime (to evaluate machine performance on different recognition

tasks presented in this study). In Figure 8.11, we draw this “Turing ratio” as a function

of variation and we plot its distribution. Regardless of the task, the turing ratio drops

consistently with variation. Interestingly, the baseline machine tend to perform better

at very low variations, which is presumably the regime at which uncontrolled “natural”
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Figure 8.8: Human vs machine: 8-way car identification task. (top-left) accuracy in percent
correct, chance is at 12.5%. (top-right) d-prime sensitivity measure. (bottom) Examples of stimuli at
variation 6. Note that the most experienced human observer is clearly an outlier.

benchmarks “operate”. Taken together, our results suggest that variation is also a

critical component in exposing the inadequacy of machines relative to humans, and in

quantifying progress toward human-level solutions.

While in aggregate, we found that the performance of machines pales in comparison

to human performance, humans and computers seem to fail in different and potentially

enlightening ways when faced with the problem of invariance. In combination with

Chapter 7, we show how our synthetic testing approach can further illuminate the

strengths and weaknesses of different visual representations and thus guide progress on

invariant object recognition.
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face1 face2 face3 face4

face5 face6 face7 face8

Figure 8.9: Examples of the 8 specific faces used in one of the subordinate-level recogni-
tion tasks. Stimuli shown in their canonical view on random natural backgrounds.
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Figure 8.11: Invariant object recognition “Turing ratio”. Ratio of machine d-prime to hu-
man d-prime on all the tasks of this study. (left) “Turing ratio” as a function of variation. (right)
Distribution of “Turing ratio” values across all the tasks.
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Chapter 9

A High-Throughput Screening

Approach to Discovering Good

Forms of Biologically-Inspired

Visual Representation∗

“If you want to have good ideas you must have

many ideas. Most of them will be wrong, and

what you have to learn is which ones to throw

away.”

Linus Pauling

“The more comfortable we become with being

stupid, the deeper we will wade into the

unknown and the more likely we are to make

big discoveries.”

[Schwartz, 2008]

∗This chapter is modified from a study published in the open-access journal PLoS Computational
Biology in collaboration with David Doukhan, James J. DiCarlo and David D. Cox [Pinto et al., 2009a].
This work also appeared in Science Editor’s Choice [Chin, 2010].
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W
hile many models of biological object recognition share a common set

of “broad-stroke” properties, the performance of any one model depends

strongly on the choice of parameters in a particular instantiation of that model – e.g.

the number of units per layer, the size of pooling kernels, exponents in normalization

operations, etc. Since the number of such parameters (explicit or implicit) is typically

large, and the computational cost of evaluating one particular parameter set is high,

the space of possible model instantiations goes largely unexplored. Thus, when a model

fails to approach the abilities of biological visual systems, we are left uncertain whether

this failure is because we are missing a fundamental idea, or because the correct “parts”

have not been tuned correctly, assembled at sufficient scale, or provided with enough

training. Here, we present a high-throughput approach to the exploration of such

parameter sets, leveraging recent advances in stream processing hardware (high-end

NVIDIA graphic cards and the PlayStation 3’s IBM Cell Processor). In analogy to

high-throughput screening approaches in molecular biology and genetics, we explored

thousands of potential network architectures and parameter instantiations, screening

those that show promising object recognition performance for further analysis. We

show that this approach can yield significant, reproducible gains in performance across

an array of basic object recognition tasks, consistently outperforming a variety of state-

of-the-art purpose-built vision systems from the literature. As the scale of available

computational power continues to expand, we argue that this approach has the potential

to greatly accelerate progress in both artificial vision and our understanding of the

computational underpinning of biological vision.

9.1 Introduction

The study of biological vision and the creation of artificial vision systems are naturally

intertwined – exploration of the neuronal substrates of visual processing provides clues

and inspiration for artificial systems, and artificial systems, in turn, serve as important

generators of new ideas and working hypotheses. The results of this synergy have

been powerful: in addition to providing important theoretical frameworks for empirical

investigations (e.g. [Fukushima, 1980; Hinton, 1989; Haykin, 1994; Riesenhuber and
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Poggio, 1999b; Rolls and Milward, 2000; Rolls and Deco, 2002]), biologically-inspired

models are routinely among the highest-performing artificial vision systems in practical

tests of object and face recognition [LeCun et al., 2004; Serre et al., 2007c; Mutch and

Lowe, 2008] (see also Chapters 4, 5 and 6).

However, while neuroscience has provided inspiration for some of the “broad-stroke”

properties of the visual system, much is still unknown. Even for those qualitative

properties that most biologically-inspired models share, experimental data currently

provide little constraint on their key parameters. As a result, even the most faithfully

biomimetic vision models necessarily represent just one of many possible realizations of

a collection of computational ideas.

Truly evaluating the set of biologically-inspired computational ideas is difficult, since

the performance of a model depends strongly on its particular instantiation – the size

of the pooling kernels, the number of units per layer, exponents in normalization op-

erations, etc. Because the number of such parameters (explicit or implicit) is typically

large, and the computational cost of evaluating one particular model is high, it is dif-

ficult to adequately explore the space of possible model instantiations. At the same

time, there is no guarantee that even the “correct” set of principles will work when in-

stantiated on a small scale (in terms of dimensionality, amount of training, etc.). Thus,

when a model fails to approach the abilities of biological visual systems, we cannot tell

if this is because the ideas are wrong, or they are simply not put together correctly or

on a large enough scale.

As a result of these factors, the availability of computational resources plays a crit-

ical role in shaping what kinds of computational investigations are possible. Tradition-

ally, this bound has grown according to Moore’s Law [Moore Gordon, 1965], however,

recently, advances in highly-parallel graphics processing hardware (such as high-end

NVIDIA graphics cards, and the PlayStation 3’s IBM Cell processor) have disrupted

this status quo for some classes of computational problems. In particular, this new

class of modern graphics processing hardware has enabled over hundred-fold speed-ups

in some of the key computations that most biologically-inspired visual models share in

common. As is already occurring in other scientific fields [Yang, 2004; Kurzak et al.,

2008], the large quantitative performance improvements offered by this new class of
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hardware hold the potential to effect qualitative changes in how science is done.

In the present work, we take advantage of these recent advances in graphics pro-

cessing hardware [Owens et al., 2007, 2008] to more expansively explore the range of

biologically-inspired models – including models of larger, more realistic scale. In anal-

ogy to high-throughput screening approaches in molecular biology and genetics, we

generated and trained thousands of potential network architectures and parameter in-

stantiations, and we “screened” the visual representations produced by these models

using tasks that engage the core problem of object recognition – tolerance to image vari-

ation [DiCarlo and Cox, 2007] (see Chapters 4, 5, 6, 7 and 8). From these candidate

models, the most promising were selected for further analysis.

We show that this large-scale screening approach can yield significant, reproducible

gains in performance in a variety of basic object recognitions tasks and that it holds

the promise of offering insight into which computational ideas are most important for

achieving this performance. Critically, such insights can then be fed back into the de-

sign of candidate models (constraining the search space and suggesting additional model

features), further guiding evolutionary progress. As the scale of available computational

power continues to expand, high-throughput exploration of ideas in computational vi-

sion holds great potential both for accelerating progress in artificial vision, and for

generating new, experimentally-testable hypotheses for the study of biological vision.

9.2 Methods

9.2.1 A Family of Candidate Models

In order to generate a large number of candidate model instantiations, it is necessary

to parametrize the family of all possible models that will be considered. A schematic

of the overall architecture of this model family, and some of its parameters, is shown

in Figure 9.2. The parametrization of this family of models was designed to be as

inclusive as possible – that is, the set of model operations and parameters was chosen

so that the family of possible models would encompass (as special cases) many of the

biologically-inspired models already described in the extant literature (e.g. [Fukushima,
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1980; Hinton, 1989; Haykin, 1994; Riesenhuber and Poggio, 1999b; Rolls and Milward,

2000; Rolls and Deco, 2002; LeCun et al., 2004; Serre et al., 2007c]). For instance,

the full model includes an optional “trace” term, which allows learning behavior akin

to that described in previous work (e.g. [Földiak, 1991; Wallis et al., 1993; Wallis

and Rolls, 1997; Rolls and Milward, 2000; Stringer and Rolls, 2002; Elliffe et al., 2002;

Einhauser et al., 2002; Einhäuser et al., 2005; Spratling, 2005; Sprekeler et al., 2007;

Franzius et al., 2008]). While some of the variation within this family of possible

models might best be described as variation in parameter tuning within a fixed model

architecture, many parameters produce significant architectural changes in the model

(e.g. number of filters in each layer). The primary purpose of this report is to present an

overarching approach to high-throughput screening. While precise choices of parameters

and parameter ranges are clearly important, one could change which parameters were

explored, and over what ranges, without disrupting the integrity of the overarching

approach. An exhaustive description of specific model parameters used here is included

in the Supplemental Text S1, and is briefly described next.

Model parameters were organized into four basic groups. The first group of param-

eters controlled structural properties of the system, such as the number of filters in

each layer and their sizes. The second group of parameters controlled the properties of

nonlinearities within each layer, such as divisive normalization coefficients and activa-

tion functions. The third group of parameters controlled how the models learned filter

weights in response to video inputs during an Unsupervised Learning Phase (this class

includes parameters such as learning rate, trace factors, etc.; see Phase 2: Unsuper-

vised Learning below). A final set of parameters controlled details of how the resulting

representation vectors are classified during screening and validation (e.g. parameters

of dimensionality reduction, classification parameters, etc.). For the purposes of the

work presented here, this class of classification-related parameters was held constant

for all analyzes below. Briefly, the output values of the final model layer correspond-

ing to each test example image were “unrolled” into a vector, their dimensionality was

reduced using Principal Component Analysis (PCA) keeping as many dimensions as

there were data points in the training set, and labeled examples were used to train a

linear Support Vector Machine (SVM).
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Each model consisted of three layers, with each layer consisting of a “stack” of

between 16 and 256 linear filters that were applied at each position to a region of the

layer below. At each stage, the output of each unit was normalized by the activity of

its neighbors within a parametrically-defined radius. Unit outputs were also subject to

parametrized threshold and saturation functions, and the output of a given layer could

be spatially resampled before being given to the next layer as input. Filter kernels within

each stack within each layer were initialized to random starting values, and learned

their weights during the Unsupervised Learning Phase (see below, see Supplemental

Text S1). Briefly, during this phase, under parametric control, a “winning” filter or

filters were selected for each input patch, and the kernel of these filters was adapted

to more closely resemble that patch, achieving a form of online non-parametric density

estimation. Building upon recent findings from visual neuroscience [Yao and Dan, 2001;

Cox et al., 2005; Li and DiCarlo, 2008, 2010], unsupervised learning could also be biased

by temporal factors, such that filters that “won” in previous frames were biased to win

again (see Supplemental Text S1 for details).

It should be noted that while the parameter set describing the model family is large,

it is not without constraints. While our model family includes a wide variety of feed-

forward architectures with local intrinsic processing (normalization), we have not yet

included long-range feedback mechanisms (e.g. layer to layer). While such mechanisms

may very well turn out to be critically important for achieving the performance of

natural visual systems, the intent of the current work is to present a framework to

approach the problem. Other parameters and mechanisms could be added to this

framework, without loss of generality. Indeed, the addition of new mechanisms and

refinement of existing ones is a major area for future research (see Discussion Section

9.4).
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9.2.2 Parallel Computing Using Commodity Graphics Hard-

ware

“Science is driven more by new tools than new

ideas.”

Freeman Dyson

While details of the implementation of our model class are not essential to the the-

oretical implications of our approach, attention must nonetheless be paid to speed in

order to ensure the practical tractability, since the models used here are large (i.e. they

have many units), and because the space of possible models is enormous. Fortunately,

the computations underlying our particular family of candidate models are intrinsically

parallel at a number of levels. In addition to coarse-grain parallelism at the level of in-

dividual model instantiations (e.g. multiple models can be evaluated at the same time)

and video frames (e.g. feed-forward processing can be done in parallel on multiple

frames at once), there is a high degree of fine-grained parallelism in the processing of

each individual frame. For instance, when a filter kernel is applied to an image, the same

filter is applied to many regions of the image, and many filters are applied to each region

of the image, and these operations are largely independent. The large number of arith-

metic operations per region of image also results in high arithmetic intensity (numbers

of arithmetic operations per memory fetch), which is desirable for high-performance

computing, since memory accesses are typically several orders of magnitude less effi-

cient than arithmetic operations (when arithmetic intensity is high, caching of fetched

results leads to better utilization of a processor’s compute resources). These considera-

tions are especially important for making use of modern graphics hardware (such as the

Cell processor and GPUs) where many processors are available. Highly-optimized im-

plementations of core operations (e.g. linear filtering, local normalization) were created

for both the IBM Cell Processor (PlayStation 3), and for NVIDIA graphics processing

units (GPUs) using the Tesla Architecture and the CUDA programming model [Lind-

holm et al., 2008]. These implementations achieve highly significant speed-ups relative

to conventional CPU-based implementations (see Table 9.1 and Supplemental Figure

S1). High-level “outer loop” coordination of these highly optimized operations was ac-
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complished using the Python programming language (e.g. using PyCUDA 1 [Klöckner

et al., 2009]), allowing for a favorable balance between ease of programming and raw

speed (see Supplemental Text S2). In principle, all of the analyzes presented here could

have been performed using traditional computational hardware; however, the cost (in

terms of time and/or money) of doing so with current CPU hardware is prohibitive.

Performance / Cost

Hardware

Relative Speedup 1x 80x4x 544x 222x 1544x 2712x

Relative Perf. / $ 1x 120x2x 272x 833x 772x 1356x

Full System Cost
(approx.) 

$1,500** $1,000$2,700** $3,000* $400 $3,000* $3,000*

Manufacturer Intel IntelIntel NVIDIA Sony, IBM, Toshiba NVIDIA NVIDIA

Model Q9450 Q9450Q9450 7900 GTX PlayStation 3 8800 GTX GTX 280

Year 2008 20082008 2006 2007 2007 2008

Implementation MATLAB SSE2MATLAB Cg Cell SDK CUDA CUDA

# cores used 1 44 4x96 2+6 4x128 4x240

CPUs GPUs

Table 9.1: Performance and Cost of various CPU and GPU implementations of a Critical
Component of Our Model Family. Our implemented performance speed-ups for a key filtering op-
eration in our biologically-inspired model implementation. Performance and price are shown across a
collection of different GPUs, relative to a commonly used MATLAB CPU-based implementation (using
a single CPU core with the filter2 function, which is coded in C++). We contrast this standard imple-
mentation with a multi-core MATLAB version, a highly-optimized C/SSE2 multi-core implementation
on the same CPU, and highly-optimized GPU implementations. We have implemented speedups of
over thousands of times with GPUs, resulting in qualitative changes in what kinds of model investiga-
tions are possible. More technical details and a throughout discussion of the computational framework
enabling these speedups can be found in Supplemental Figure S1 and Supplemental Text S2.
* These costs are based on multi-GPU systems containing four GPUs in addition to the quad-core
CPU (Q9450).
** These costs include both the hardware and MATLAB yearly licenses (based on an academic discount
pricing, for one year).

Table 9.1 shows the relative speedup and performance / cost of each implementation

(IBM Cell on Sony’s PlayStation 3 and several NVIDIA GPUs) relative to traditional

MATLAB and multi-threaded C code for the linear filtering operation (more details

such as the raw floating point performance can be found in the Supplemental Figure

1http://mathema.tician.de/software/pycuda
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S1). This operation is not only a key component of the candidate model family (see

below) but it’s also the most computationally demanding, reaching up to 94% of the

total processing time (for the PlayStation 3 implementation), depending on model

parameters (average fraction is 28%). The use of commodity graphics hardware affords

orders-of-magnitude increases in performance. In particular, it should be noted that

the data presented in this work took approximately one week to generate using our

PlayStation 3-based implementation (222x speedup with one system) on a cluster of

23 machines. We estimate that producing the same results at the same cost using a

conventional MATLAB implementation would have taken more than two years (see

Supplemental Figure 9.9).

9.2.3 Screening for Good Forms of Representation

Our approach is to sample a large number of model instantiations, using a well-chosen

“screening” task to find promising architectures and parameter ranges within the model

family. Our approach to this search was divided into four phases (see Figure 9.1): Can-

didate Model Generation, Unsupervised Learning, Screening, and Validation/Analysis

of high-performing models.

Phase 1: Candidate Model Generation

Candidate model parameter sets were randomly sampled with a uniform distribution

from the full space of possible models in the family considered here (see Figure 9.2

and Figure S2 for a schematic diagram of the models, and Supplemental Materials for

an exhaustive description of model parameters and value ranges that were explored;

Supplemental Text S1).

Phase 2: Unsupervised Learning

All models were subjected to a period of unsupervised learning, during which filter

kernels were adapted to spatiotemporal statistics of a stream of input images. Since

the family of models considered here includes features designed to take advantage of the

temporal statistics of natural inputs (see Supplementary Methods), models were learned
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Figure 9.2: A schematic diagram of the system architecture of the family of models con-
sidered. The system consists of three feed-forward filtering layers, with the filters in each layer being
applied across the previous layer. Red colored labels indicate a selection of configurable parameters
(only a subset of parameters are shown).

139



Chapter 9: High-Throughput Search for Visual Representations

Unsupervised Learning
of all models

(within a given “petri dish”)

Test all models with 
a “screening” 

object recognition task

Validate on other tasks

Choose the best models

Generate Thousands of
Random Models

Figure 9.1: Experimental flow The experiments described here consist of five phases. (a) First,
a large collection of model instantiations are generated with randomly selected parameter values. (b)
Each of these models then undergoes an unsupervised learning period, during which its filter kernels are
adapted to spatio-temporal statistics of the video inputs, using a learning algorithm that is influenced
by the particular parameter instantiation of that model. After the Unsupervised Learning Phase is
complete, filter kernels are fixed, and (c) each model is subjected to a screening object recognition test,
where labeled images are represented using each model instantiation, and these re-represented images
are used to train an SVM to perform a simple two-class discrimination task. Performance of each
candidate model is assessed using a standard cross-validation procedure. (d) From all of the model
instantiations, the best are selected for further analysis. (e) Finally, these models are tested on other
object recognition tasks.
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using video data. In the current version of our family of models, learning influenced the

form of the linear kernels of units at each layer of the hierarchy, but did not influence

any other parameters of the model.

We used three video sets for unsupervised learning: “Cars and Planes”, “Boats”,

and “Law and Order”. The “Law and Order” video set consisted of clips from the

television program of the same name (© NBC Universal), taken from DVDs, with

clips selected to avoid the inclusion of text subtitles. These clips included a variety of

objects moving through the frame, including characters’ bodies and faces. Examples

from these clips are shown in Figure 9.3(a).

The “Cars and Planes” and “Boats” video sets consisted of 3D ray-traced cars,

planes and boats undergoing 6-degree-of-freedom view transformations (roughly speak-

ing, “tumbling” through space). These same 3D models were also used in Chapters 4, 7

and 8. Video clips were generated where an object would appear for approximately 300

frames, performing a random walk in position (3 degrees of freedom) and rotation (3

degrees of freedom) for a total of 15,000 frames. Examples are shown in Figures 9.3(b)

and 9.3(c).

For the sake of convenience, we refer to each unsupervised learning video set as a

“petri dish,” carrying forward the analogy to high-throughput screening from biology.

In the results presented here, 2,500 model instantiations were independently generated

in each “petri dish” by randomly drawing parameter values from a uniform distribution

(a total of 7,500 models were trained). Examples of filter kernels resulting from this

unsupervised learning procedure are shown in Supplemental Figures S3, S4, S5 and S6.

After the end of the Unsupervised Learning Phase, the linear filter kernels were not

modified further, and the resulting model was treated as a fixed transformation (e.g. a

static image is entered as input, and a vector of responses from the units of the final

layer is outputted).

Phase 3: Screening

Following the Unsupervised Learning Phase, each “petri dish” was subjected to a Screen-

ing Phase to determine which model instantiations produced image representations that

are well-suited for performing invariant object recognition tasks.
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(a)

(b)

(c)

Figure 9.3: Example video frames used as input during the Unsupervised Learning Phase.
(a) Short video clips taken from the television series “Law and Order”. (b) Sequences of a rendered
car undergoing a random walk through the possible range of rigid body movements. (c) A similar
random walk with a rendered boat.
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During the Screening Phase, individual static images were supplied as input to

each model, and the vector of responses from the units of its final layer were taken as

that model’s “representation” of the image. The labeled, “re-represented” images were

then reduced in dimensionality by PCA and taken as inputs (training examples) for a

classifier (in our case, a linear SVM).

We used a simple “Cars vs. Planes” synthetic object recognition test as a screening

task (see Chapters 4 and 7 for details). In this task, 3D models from two categories

(cars and planes), were rendered across a wide range of variation in position, scale, view,

and background. The rendered grayscale images (200 by 200 pixels) were provided as

input to each model, and a classifier was trained to distinguish car images from plane

images (150 training images per category). Performance of each model was then tested

on a new set of unlabeled re-represented car and plane images (150 testing images per

category). This recognition test has the benefit of being relatively quick to evaluate

(because it only contains two classes), while at the same time having previous empirical

grounding as a challenging object recognition test due to the large amount of position,

scale, view, and background variation (see Figure 9.4a).

Phase 4: Validation

The best models selected during the Screening Phase were submitted to validation tests

using other image sets, to determine if the representations generated by the models were

useful beyond the immediate screening task. For the present work, four validation sets

were used:

1. a new set of rendered cars and planes (generated by the same random process

that generated the screening set, but with different specific exemplars),

2. a set of rendered boats and animals,

3. a set of rendered images of two synthetic faces (one male, one female, see Chapters

5 and 6),

4. a modified subset of the standard MultiPIE face recognition test set ([Gross et al.,

2007]; here dubbed the “MultiPIE Hybrid” set).
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a. Cars vs. Planes (validation)

b. Boats vs. Animals

c. Synthetic Faces

d. MultiPIE Hybrid

Figure 9.4: Examples of images from the validation test sets. (a) A new set of rendered
cars and planes composited onto random natural backgrounds. (b) Rendered boats and animals. (c)
Rendered female and male faces. (d) A subset of the MultiPIE face test set [Gross et al., 2007] with
the faces manually removed from the background, and composited onto random image backgrounds,
with additional variation in position, scale, and planar rotation added.
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In the case of the rendered sets (sets 1-3), as with the screening set, the objects were

rendered across a wide range of views, positions, and scales.

For the “MultiPIE hybrid” set, 50 images each of two individuals from the standard

MultiPIE set were randomly selected from the full range of camera angles, lighting,

expressions, and sessions included in the MultiPIE set. These faces were manually

removed from their backgrounds and were further transformed in scale, position, planar

rotation and were composited onto random natural backgrounds. Examples of the

resulting images are shown in Figure 9.4.

For all sets (as with the screening set) classifiers were trained with labeled examples

to perform a two-choice task (i.e. Cars vs. Planes, Boats vs. Animals, Face 1 vs. Face

2), and were subsequently tested with images not included in the training set.

While a number of standardized “natural” object and face recognition test sets

exist [Olivetti Research Laboratory, 1994; Yale Center for Computational Vision and

Control, 1997; Computer Vision Lab at the University of Ljubljana, 1999; Martinez and

Benavente, 1998; Fei-Fei et al., 2004a; Griffin et al., 2007; Huang et al., 2007], we made

a deliberate choice not to use these sets. Chapters 4, 5, 6 and 7, as well as previous

investigations [Shamir, 2008; Ponce et al., 2006], have raised concerns with many of

these sets, calling into question whether they appropriately capture the problem of

interest. As a result, we chose to focus here on image sets that include substantial

image variation by design, be they synthetic (as in our rendered set) or natural (as in

the MultiPIE Hybrid set) in origin.

9.2.4 Performance Comparison with Other Algorithms

“V1-like” Baseline

Since object recognition performance measures are impossible to interpret in a vacuum,

we used a simple V1-like model to serve as one baseline against which model perfor-

mance can be compared. This V1-like model was taken, without modification, from

Chapter 4, and was shown previously to match or exceed the performance of a vari-

ety of purpose-built vision systems on the popular (but, we argue, flawed as a test of

invariant object recognition) Caltech101 object recognition set and a wide variety of
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standard face recognition sets (ORL, Yale, CVL, AR, and Labeled Faces in the Wild

(Chapters 5 and 6). Importantly, this model is based on only a first-order description

of the first stage of visual processing in the brain, and it contains no mechanisms that

should allow it to tolerate the substantial image variation that makes object recogni-

tion hard in the first place [DiCarlo and Cox, 2007]. Here, this model serves as a lower

bound on the amount of trivial regularity that exists in the test set. To be considered

promising object recognition systems, models should at least exceed the performance

of the V1-like model.

Comparison with State-of-the-art Algorithms

To facilitate comparison with other models in the literature, we obtained code for, or

re-implemented five “state-of-the-art” object recognition algorithms from the extant lit-

erature: “Pyramid Histogram of Oriented Gradients” (PHOG) [Dalal and Triggs, 2005;

Bosch et al., 2007; Varma and Ray, 2007], “Pyramid Histogram of Words” (PHOW)

(also known as the Spatial Pyramid [Bosch et al., 2007; Varma and Ray, 2007; Lazeb-

nik et al., 2009]), the “Geometric Blur” shape descriptors [Berg and Malik, 2001; Zhang

et al., 2006], the descriptors from the “Scale Invariant Feature Transformation” (SIFT)

[Lowe, 2004], and the “Sparse Localized Features” (SLF) features of Mutch and Lowe

[2008] (a sparse extension of the C2 features from the Serre et al. HMAX model [Serre

et al., 2007c]). In all cases, we were able to reproduce or exceed the authors’ reported

performance for each system on the Caltech101 test set, which served as a sanity check

that we had correctly implemented and used each algorithm as intended by its creators

(see Figure 7.1 in Chapter 7).

Each algorithm was applied using an identical testing protocol to our validation

sets. In cases where an algorithm from the literature dictated that filters be optimized

relative to each training set (e.g. PHOW and SLF), we remained faithful to the authors’

published descriptions and allowed this optimization, resulting in a different individually

tailored model for each validation set. This was done even though our own high-

throughput-derived models were not allowed such per-set optimizations (i.e. the same

representation was used for all validation sets), and could therefore theoretically be

“handicapped” relative to the state-of-the-art models.
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9.3 Results

9.3.1 Object Recognition Performance
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Figure 9.5: High-throughput screening in the “Law and Order” Petri Dish. (a) Histogram
of the performance of 2,500 models on the “Cars vs. Planes” screening task (averaged over 10 random
splits; error bars represent standard error of the mean). The top five performing models were selected
for further analysis. (b) Performance of the top five models (1-5), and the performance achieved by
averaging the five SVM kernels (red bar labeled “blend”). (c) Performance of the top five models (1-5)
when trained with a different random initialization of filter weights (top) or with a different set of
video clips taken from the “Law and Order” television program (bottom).

As a first exploration of our high-throughput approach, we generated 7,500 model

instantiations, in three groups of 2,500, with each group corresponding to a different

class of unsupervised learning videos (“petri dishes”; see Methods Section 9.2). During

the Screening Phase, we used the “Cars vs. Planes” object discrimination task (Chapter

4 to assess the performance of each model, and the most promising five models from each

set of 2,500 models was submitted to further analysis. The raw computation required

to generate, train and screen these 7,500 models was completed in approximately one

week, using 23 PlayStation 3 systems. Results for models trained with the “Law and

Order” petri dish during the Unsupervised Learning Phase are shown in Figure 9.5a. As

expected, the population of randomly-generated models exhibited a broad distribution

of performance on the screening task, ranging from chance performance (50%) to better

than 80% correct. Figure 9.5b shows the performance of the best five models drawn from
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the pool of 2,500 models in the “Law and Order” petri dish. These models consistently

outperformed the V1-like model baseline (Figure 9.6), and this performance was roughly

maintained even when the model was retrained with a different video set (e.g. a different

clip from Law and Order), or with a different random initialization of the filter kernel

weights (Figure 9.5c).

Since these top models were selected for their high performance on the screening

task, it is perhaps not surprising that they all show a high level of performance on

that task. To determine whether the performance of these models generalized to other

test sets, a series of Validation tests were performed. Specifically, we tested the best

five models from each Unsupervised Learning petri dish on four test sets: two rendered

object sets, one rendered face set, and a modified subset of the MultiPIE face recognition

image set (see Validation Phase in Methods Section 9.2). Performance across each of

these validation sets is shown in Figure 9.6 (black bars). While the exact ordering of

model performance varied somewhat from validation set to validation set, the models

selected during the Screening Phase performed well across the range of validation tasks.

The top five models found by our high-throughput screening procedure generally

outperformed state-of-the-art models from the literature (see Methods Section 9.2)

across all sets, with the best model found by the high-throughput search uniformly

yielding the highest performance across all validation sets. Even greater performance

was achieved by a simple summing of the SVM kernels from the top five models (red

bar, Figure 9.6). Of note, the nearest contender from the set of state-of-the-art models

is another biologically-inspired model [Serre et al., 2007c; Mutch and Lowe, 2008].

Interestingly, a large performance advantage between our high-throughput-derived

models and state-of-the-art models was observed for the MultiPIE hybrid set, even

though this is arguably the most different from the task used for screening, since it is

composed from natural images (photographs), rather than synthetic (rendered) ones.

It should be noted that several of the state-of-the-art models, including the sparse C2

features (“SLF” in Figure 9.6), which was consistently the nearest competitor to our

models, used filters that were individually tailored to each validation test – i.e. the

representation used for “Boats vs. Planes” was optimized for that set, and was dif-

ferent from the representation used for the MultiPIE Hybrid set. This is in contrast
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Figure 9.6: Validation. Performance of the top five models from the Screening Phase on a variety
of other object recognition challenges. Example images from each object recognition test are shown
in Figure 9.4. For each validation set, the performance (averaged over 10 random splits; error bars
represent standard error of the mean) is first plotted for V1-like and V1-like+ baseline models (see
Chapters 4, 5 and 6 for a detailed description of these two variants) (gray bars), and for five state-of-
the-art vision systems (green bars): Scale Invariant Feature Transform (SIFT, [Lowe, 2004]), Geometric
Blur Descriptor (GB, [Berg and Malik, 2001; Zhang et al., 2006]), Pyramidal Histogram of Gradients
(PHOG, [Dalal and Triggs, 2005; Bosch et al., 2007; Varma and Ray, 2007]), Pyramidal Histogram of
Words (PHOW, [Bosch et al., 2007; Varma and Ray, 2007; Lazebnik et al., 2009]), and a biologically-
inspired hierarchical model (“Sparse Localized Features” SLF, [Mutch and Lowe, 2008]). Finally,
performance of the five best models derived from the high-throughput screening approach presented
in this paper (black bars), and the performance achieved by averaging the five SVM kernels (red
bar labeled “blend”). In general, high-throughput-derived models outperformed the V1-like baseline
models, and tended to outperform a variety of state-of-the-art systems from the literature. Model
instantiation 3281 and the blend of all five top models uniformly produced the best results across all
test sets considered here.

to our models, which learned their filters from a completely unrelated video data set

(Law and Order) and were screened using an unrelated task (“Cars vs. Planes”, see

Methods Section 9.2). While even better performance could no doubt be obtained by
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screening with a subset taken from each individual validation test, the generalizabil-

ity of performance across a range of different tasks argues that our approach may be

uncovering features and representations that are broadly useful. Such generality is in

keeping with the models’ biological inspiration, since biological visual representations

must be flexible enough to represent a massive diversity of objects in order to be useful.

Results for the 2,500 models in each of the other two “petri dishes” (i.e. models

trained with alternate video sets during unsupervised learning) were appreciably similar,

and are shown in Supplemental Figures S7 and S8, using the same display conventions

set forth in Figures 9.5 and 9.6.

9.4 Discussion

We have demonstrated a high-throughput framework, within which a massive number of

candidate vision models can be generated, screened, and analyzed. Models found in this

way were found to consistently outperform an experimentally-motivated baseline model

(a V1-like model; see Chapter 4), and the representations of visual space instantiated

by these models were found to be useful generally across a variety of object recognition

tasks. The best of these models and the blend of the five best models were both found

to consistently outperform a variety of state-of-the-art machine vision systems for all

of the test sets explored here, even without any additional optimization.

This work builds on a long tradition of machine vision systems inspired by biology

(e.g. [Fukushima, 1980; Hinton, 1989; Haykin, 1994; Riesenhuber and Poggio, 1999b;

Rolls and Milward, 2000; Rolls and Deco, 2002; LeCun et al., 2004; Serre et al., 2007c]).

However, while this past work has generated impressive progress towards building arti-

ficial visual systems, it has explored only a few examples drawn from the larger space of

biologically-inspired models. While the task of exploring the full space of possible model

instantiations remains daunting (even within the relatively restricted “first-order” class

of models explored here), our results suggest that even a relatively simple, brute-force

high-throughput search strategy is effective in identifying promising models for further

study. In the parameter space used here, we found that a handful of model instantia-

tions performed substantially better than the rest, with these “good” models occurring
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at a rate of approximately one in five-hundred. The relative rarity of these models

underscores the importance of performing large-scale experiments with many model

instantiations, since these models would be easy to miss in a “one-off ” mode of explo-

ration. Importantly, these rare, high-performing models performed well across a range

of object recognition tasks, indicating that our approach does not simply optimize for

a given task, but can uncover visual representations of general utility.

Though not conceptually critical to our approach, modern graphics hardware played

an essential role in making our experiments possible. In approximately one week, we

were able to test 7,500 model instantiations, which would have taken approximately

two years using a conventional (e.g. MATLAB-based) approach. While it is certainly

possible to use better-optimized CPU-based implementations, GPU hardware provides

large increases in attainable computational power (see Table 9.1 and Supplemental

Figure S1).

An important theme in this work is the use of parametrically controlled objects

as a way of guiding progress. While we are ultimately interested in building systems

that tolerate image variation in real-world settings, such sets are difficult to create, and

many popular currently-available “natural” object sets have been shown to lack realis-

tic amounts of variation. Our results show that it is possible to design a small synthetic

set to screen and select models that generalize well across various visual classification

tasks, suggesting that parametric sets can capture the essence of the invariant object

recognition problem. Another critical advantage of the parametric screening approach

presented here is that task difficulty can be increased on demand – that is, as mod-

els are found that succeed for a given level of image variation, the level of variation

(and therefore the level of task difficulty), can be “ratcheted up” as well, maintaining

evolutionary “pressure” towards better and better models.

While we have used a variety of synthetic (rendered) object image sets, images need

not be synthetic to meet the requirements of our approach. The modified subset of

the MultiPIE set used here (“MultiPIE Hybrid”, Figure 9.4) is an example of how

parametric variation can also be achieved using carefully controlled photography.
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9.4.1 Future Directions

While our approach has yielded a first crop of promising biologically-inspired visual

representations, it is another, larger task to understand how these models work, and

why they are better than other alternatives. While such insights are beyond the scope

of the present paper, our framework provides a number of promising avenues for further

understanding.

One obvious direction is to directly analyze the parameter values of the best models

in order to understand which parameters are critical for performance. Figure 9.7 shows

distributions of parameter values for four arbitrarily chosen parameters. While in no

way conclusive, there are hints that some particular parameter values may be more

important for performance than others (for quantitative analysis of the relationship

between model parameters and performance, see Supplemental Text S3, Figures S9

and S10). The speed with which large collections of models can be evaluated opens up

the possibility of running large-scale experiments where given parameters are held fixed,

or varied systematically. Insights derived from such experiments can then be fed back

into the next round of high-throughput search, either by adjusting the parameter search

space or by fundamentally adjusting the algorithm itself. Such iterative refinement is

an active area of research in our group.

The search procedure presented here has already uncovered promising visual repre-

sentations, however, it represents just the simplest first step one might take in conduct-

ing a large-scale search. For the sake of minimizing conceptual complexity, and max-

imizing the diversity of models analyzed, we chose to use random, brute-force search

strategy. However, a rich set of search algorithms exist for potentially increasingly

the efficiency with which this search is done (e.g. evolutionary algorithms [Deb, 2001;

Hansen and Ostermeier, 2001; Igel et al., 2007], simulated annealing [Rutenbar, 1989], or

particle swarm techniques [Kennedy and Eberhart, 1995] among others). Interestingly,

our brute-force search found strong models with relatively high probability, suggesting

that, while these models would be hard to find by “manual” trial-and-error, they are

not especially rare in the context of our high-throughput search.

While better search algorithms will no doubt find better instances from the model
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Figure 9.7: Distributions of Screening Task performance, as a function of parameter
values for four arbitrarily-chosen parameters. See Supplemental Text S1 for an exhaustive
description of the meaning of each parameter. The top five best performing models are plotted in red,
with the other models overplotted in semi-transparent blue. The parameters considered in (a) and (b)
show hints of a relationship between parameter value and inclusion in the top five. In (a) all of the
five best models had the same value of the parameter, and in (b) best models were clustered in lower
ranges of parameter value. (c) and (d) show parameters where the best models were distributed across
a range of parameter values. Such examinations of parameter values are in no way conclusive, but can
provide hints as to which parameters might be important for performance.

class used here, an important future direction is to refine the parameter-ranges searched

and to refine the algorithms themselves. While the model class described here is large,

the class of all models that would count as “biologically-inspired” is even larger. A

critical component of future work will be to adjust existing mechanisms to achieve better

performance, and to add new mechanisms (including more complex features such as
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long-range feedback projections). Importantly, the high-throughput search framework

presented here provides a coherent means to find and compare models and algorithms,

without being unduly led astray by weak sampling of the potential parameter space.

Another area of future work is the application of high-throughput screening to new

problem domains. While we have here searched for visual representations that are good

for object recognition, our approach could also be applied to a variety of other related

problems, such as object tracking, texture recognition, gesture recognition, feature-

based stereo-matching, etc. Indeed, to the extent that natural visual representations

are flexibly able to solve all of these tasks, we might likewise hope to mine artificial

representations that are useful in a wide range of tasks.

Finally, as the scale of available computational resources steadily increases, our

approach naturally scales as well, allowing more numerous, larger, and more complex

models to be examined. This will give us both the ability to generate more powerful

machine vision systems, and to generate models that better match the scale of natural

systems, providing more direct footing for comparison and hypothesis generation. Such

scaling holds great potential to accelerate both artificial vision research, as well as our

understanding of the computational underpinnings of biological vision.

9.5 Supplemental Text S1: Search Space of Candi-

date Models

Candidate models were composed of a hierarchy of three layers, with each layer includ-

ing a cascade of linear and nonlinear operations that produce successively elaborated

nonlinear feature-map representations of the original image. A diagram detailing the

flow of operations is shown in Figure 9.8, and, for the purposes of notation, the cascade

of operations is represented as follows:
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𝐿𝑎𝑦𝑒𝑟0 :

Input
Grayscale−→ Normalize−→ N0

𝐿𝑎𝑦𝑒𝑟1 :

N0 Filter−→ F1 Activate−→ A1 Pool−→ P1 Normalize−→ N1

and generally, for all ℓ ≥ 1:

𝐿𝑎𝑦𝑒𝑟ℓ :

Nℓ−1 Filter−→ Fℓ Activate−→ Aℓ Pool−→ Pℓ Normalize−→ Nℓ

Details of these steps along with the range of parameter values included in the

random search space are described below. We varied 52 parameters (described below),

with a total of 2.807930 × 1025 possible unique combinations of parameter values.

9.5.1 Input and Pre-processing

The input of the model was a 200 × 200 pixel image. In the pre-processing stage,

referred to as 𝐿𝑎𝑦𝑒𝑟0, this input was converted to grayscale and locally normalized:

N0 = Normalize(Grayscale(Input)) (9.1)

where the Normalize operation is described in detail below. Because this normaliza-

tion is the final operation of each layer, in the following sections, we refer to 𝑁 ℓ−1 as

the input of each 𝐿𝑎𝑦𝑒𝑟ℓ>0 and 𝑁 ℓ as the output.

9.5.2 Linear Filtering

Description: The input 𝑁 ℓ−1 of each subsequent layer (i.e. 𝐿𝑎𝑦𝑒𝑟ℓ, ℓ ∈ {1, 2, 3})

was first linearly filtered using a bank of 𝑘ℓ filters to produce a stack of 𝑘ℓ feature

maps, denoted 𝐹 ℓ. In a biologically-inspired context, this operation is analogous to the
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weighted integration of synaptic inputs, where each filter in the filterbank represents a

different cell.

Definitions: The filtering operation for 𝐿𝑎𝑦𝑒𝑟ℓ is denoted:

Fℓ = Filter(Nℓ−1,Φℓ) (9.2)

and produces a stack, 𝐹 ℓ, of 𝑘ℓ feature maps, with each map, 𝐹 ℓ
𝑖 , given by:

𝐹 ℓ
𝑖 = 𝑁 ℓ−1 ⊗ Φℓ

𝑖 ∀𝑖 ∈ {1, 2, . . . , 𝑘ℓ} (9.3)

where ⊗ denotes a correlation of the output of the previous layer, 𝑁 ℓ−1 with the fil-

ter Φℓ
𝑖 (e.g. sliding along the first and second dimensions of 𝑁 ℓ−1). Because each

successive layer after 𝐿𝑎𝑦𝑒𝑟0, is based on a stack of feature maps, 𝑁 ℓ−1 is itself a

stack of 2-dimensional feature maps. Thus the filters contained within Φℓ are, in turn,

3-dimensional, with the their third dimension matching the number of filters (and there-

fore, the number of feature maps) from the previous layer (i.e. 𝑘ℓ−1).

Parameters:

• The filter shapes 𝑓𝑠
ℓ × 𝑓𝑠

ℓ × 𝑓𝑑
ℓ were chosen randomly with 𝑓𝑠

ℓ ∈ {3, 5, 7, 9} and

𝑓𝑑
ℓ = 𝑘ℓ−1.

• Depending on the layer ℓ considered, the number of filters 𝑘ℓ was chosen randomly

from the following lists:

– In 𝐿𝑎𝑦𝑒𝑟1, 𝑘1 ∈ {16, 32, 64}

– In 𝐿𝑎𝑦𝑒𝑟2, 𝑘2 ∈ {16, 32, 64, 128}

– In 𝐿𝑎𝑦𝑒𝑟3, 𝑘3 ∈ {16, 32, 64, 128, 256}

All filters were initialized to random starting values, and their weights were then learned

during the Unsupervised Learning Phase (described below; an example of a set of learned

filterbanks from one model instance is shown in Figure 9.13).
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9.5.3 Activation Function

Description: Filter outputs were subjected to threshold and saturation activation

function, wherein output values were clipped to be within a parametrically defined

range. This operation is analogous to the spontaneous activity thresholds and firing

saturation levels observed in biological neurons.

Definitions: We define the activation function:

Aℓ = Activate(Fℓ) (9.4)

that clips the outputs of the filtering step, such that:

Activate(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛾𝑚𝑎𝑥

ℓ if 𝑥 > 𝛾𝑚𝑎𝑥
ℓ

𝛾𝑚𝑖𝑛
ℓ if 𝑥 < 𝛾𝑚𝑖𝑛

ℓ

𝑥 otherwise

(9.5)

Where the two parameters 𝛾𝑚𝑖𝑛
ℓ and 𝛾𝑚𝑎𝑥

ℓ control the threshold and saturation, re-

spectively. Note that if both minimum and maximum threshold values are −∞ and

+∞, the activation is linear (no output is clipped).

Parameters:

• 𝛾𝑚𝑖𝑛
ℓ was randomly chosen to be −∞ or 0

• 𝛾𝑚𝑎𝑥
ℓ was randomly chosen to be 1 or +∞

9.5.4 Pooling

Description: The activations of each filter within some neighboring region were

then pooled together and the resulting outputs were spatially downsampled.

Definitions: We define the pooling function:

Pℓ = Pool(Aℓ) (9.6)
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such that:

Pℓ
i = Downsample𝛼( 𝑝ℓ

√︁
(𝐴ℓ

𝑖)
𝑝ℓ ⊙ 1𝑎ℓ×𝑎ℓ) (9.7)

Where ⊙ is the 2-dimensional correlation function with 1𝑎ℓ×𝑎ℓ being an 𝑎ℓ × 𝑎ℓ matrix

of ones (𝑎ℓ can be seen as the size of the pooling “neighborhood”). The variable 𝑝ℓ

controls the exponents in the pooling function.

Parameters:

• The stride parameter 𝛼 was fixed to 2, resulting in a downsampling factor of 4.

• The size of the neighborhood 𝑎ℓ was randomly chosen from {3, 5, 7, 9}.

• The exponent 𝑝ℓ was randomly chosen from {1, 2, 10}.

Note that for 𝑝ℓ = 1, this is equivalent to blurring with a 𝑎ℓ × 𝑎ℓ boxcar filter. When

𝑝ℓ = 2 or 𝑝ℓ = 10 the output is the 𝐿𝑝ℓ-norm 2.

9.5.5 Normalization

Description: As a final stage of processing within each layer, the output of the

Pooling step were normalized by the activity of their neighbors within some radius

(across space and across feature maps). Specifically, each response was divided by

the magnitude of the vector of neighboring values if above a given threshold. This

operation draws biological inspiration from the competitive interactions observed in

natural neuronal systems (e.g. contrast gain control mechanisms in cortical area V1,

and elsewhere [Geisler and Albrecht, 1992; Rolls and Deco, 2002]).

Definitions: We define the normalization function:

Nℓ = Normalize(Pℓ) (9.8)

such that:

2The 𝐿10-norm produces outputs similar to a max operation (i.e. softmax ).
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𝑁 ℓ =

⎧⎪⎨⎪⎩
𝜌ℓ · 𝐶ℓ if 𝜌ℓ ·

⃒⃒⃒⃒
𝐶ℓ ⊗ 1𝑏ℓ×𝑏ℓ×𝑘ℓ

⃒⃒⃒⃒
2
< 𝜏 ℓ

𝐶ℓ

||𝐶ℓ⊗1
𝑏ℓ×𝑏ℓ×𝑘ℓ ||2

otherwise
(9.9)

with

𝐶ℓ = 𝑃 ℓ − 𝛿ℓ · 𝑃
ℓ ⊗ 1𝑏ℓ×𝑏ℓ×𝑘ℓ

𝑏ℓ · 𝑏ℓ · 𝑘ℓ
(9.10)

Where 𝛿ℓ ∈ {0, 1}, ⊗ is a 3-dimensional correlation over the “valid” domain (i.e. sliding

over the first two dimensions only), and 1𝑏ℓ×𝑏ℓ×𝑘ℓ is a 𝑏ℓ × 𝑏ℓ × 𝑘ℓ array full of ones. 𝑏ℓ

can be seen as the normalization “neighborhood” and 𝛿ℓ controls if this neighborhood is

centered (i.e. subtracting the mean of the vector of neighboring values) before divisive

normalization. 𝜌ℓ is a “magnitude gain” parameter and 𝜏 ℓ is a threshold parameter

below which no divisive normalization occurs.

Parameters:

• The size 𝑏ℓ of the neighborhood region was randomly chosen from {3, 5, 7, 9}.

• The 𝛿ℓ parameter was chosen from {0, 1}.

• The vector of neighboring values could also be stretched by gain values 𝜌ℓ ∈
{10−1, 100, 101}. Note that when 𝜌ℓ = 100 = 1, no gain is applied.

• The threshold value 𝜏 ℓ was randomly chosen from {10−1, 100, 101}.

9.5.6 Final model output dimensionality

The output dimensionality of each candidate model was determined by the number of

filters in the final layer, and the x-y “footprint” of the layer (which, in turn, depends on

the subsampling at each previous layer). In the model space explored here, the possible

output dimensionalities ranged from 256 to 73,984.

9.5.7 Unsupervised Learning

Description: During the Unsupervised Learning Phase, filter weights are learned

from input video sequences. This procedure bears similarity to nonparametric density
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estimation, e.g. online K-means clustering. The algorithm for this phase additionally

contains simple mechanisms for taking advantage of temporal information in a video

sequence, and thus Unsupervised Learning was conducted on sequences of video frames.

In this work, 15,000 video frames were used.

Definitions: For each incoming video frame, an output for each filter at each location

was computed, and a “winning” filter Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟 was selected:

𝑤𝑖𝑛𝑛𝑒𝑟 = arg max
𝑖

(𝐹 ℓ
𝑖 ) (9.11)

This winning filter was adapted to the input, by adding the corresponding input

patch, times a fixed learning rate 𝜆, to the filter weights:

Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟

′
= (1 − 𝜆ℓ) · Φℓ

𝑤𝑖𝑛𝑛𝑒𝑟 + 𝜆ℓ · 𝑝𝑎𝑡𝑐ℎ (9.12)

The resulting updated filter was then re-normalized to zero-mean and unit-length:

Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟

′′
=

Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟

′ − ⟨Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟

′⟩⃒⃒⃒⃒
Φℓ

𝑤𝑖𝑛𝑛𝑒𝑟
′ − ⟨Φℓ

𝑤𝑖𝑛𝑛𝑒𝑟
′⟩
⃒⃒⃒⃒
2

(9.13)

Where ⟨Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟

′⟩ represents the mean of the winner’s weights and Φℓ
𝑤𝑖𝑛𝑛𝑒𝑟

′′
is the filter

carried forward into the next learning iteration.

The incoming patch could be normalized (i.e. ||𝑝𝑎𝑡𝑐ℎ||2 = 1), or not, under para-

metric control, and multiple patches could enter into one “round” of competition at the

same time (e.g. filter stack outputs corresponding to multiple patches could be evalu-

ated, and the largest output across all patches could decide the winner). The selection

of the number of patches simultaneously competing was governed by the Competition

Neighborhood Size and Competition Neighborhood Stride parameters, which served tile

a set of competing filter stacks across the input.

Parameters:

• Learning rate parameter 𝜆ℓ ∈ {10−4, 10−3, 10−2}
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• Patch Normalization: normalize 𝑝𝑎𝑡𝑐ℎ to unit-length, or do not normalize (2

choices)

• Competition Neighborhood Size ∈ {1, 3, 5, 7, 9}

• Competition Neighborhood Stride ∈ {1, 3, 5, 7, 9}

• “Rebalancing”: if the relative winning ratio 3 of a given filter Φℓ
𝑖 is less than

{1%, 10% or 50%} (3 choices), its weights are reinitialized to the values of the

most-winning filter plus a random jitter. This prevents filters from never winning.

• “Temporal Advantage” (or “trace”, see also [Földiak, 1991; Rolls and Milward,

2000; Einhäuser et al., 2005; Franzius et al., 2008] for variants): the output score of

the last-winning filter is multiplied by {1, 2 or 4} (3 choices) prior to determining

which filter “wins.” A value of 1 is the equivalent of no advantage; a value of 2

doubles the effective output of the filter for the purposes of competition, biasing

it to win again.

9.5.8 Classification during Screening and Validation Phases

During the Screening and Validation Phases, the representations generated during the

Unsupervised Learning Phase were evaluated in a variety of object recognition tasks

(see main text). This Classification Phase consisted of the following steps, with fixed

parameters across all model instantiations:

• A random sampling of up to 5,000 outputs from the full representation were taken

(to accelerate processing).

• Dimensionality was further reduced by PCA (using training data only, keeping

the full eigensubspace projection, i.e. as many dimensions as training examples).

• A linear SVM (using the LIBSVM4 solver, with regularization parameter 𝐶 =

10) was used with a 10-trial random subsampling cross-validation scheme (150

3the number of times Φℓ
𝑖 won multiplied by the number of filters, divided by the running count of

completed updates
4http://www.csie.ntu.edu.tw/~cjlin/libsvm
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training and 150 testing examples).

9.5.9 Random Exploration

Note that the parameters and parameter ranges described here are clearly not the most

comprehensive search space; rather they represent a starting point intended to demon-

strate the utility of the overarching approach. While a brute force search procedure

was used here, other more elaborate optimization schemes (e.g. evolutionary algorithms

[Deb, 2001; Hansen and Ostermeier, 2001; Igel et al., 2007]) could also be used.

9.6 Supplemental Text S2: Technical Details of the

Computational Framework

9.6.1 Coarse-to-fine Parallelism

The high-throughput search described in this paper takes advantage of multiple levels

of parallelism, from coarse to fine-grained. Roughly speaking, fine-grained parallelism

is exploited by allocating one core (of which modern graphics hardware have many; and

their number is exponentially growing over the years) to one or more virtual neurons,

while coarse-scale parallelism is achieved by allocating one model instantiation to each

of many multi-core pools (i.e. CPUs, Cell Processors, GPUs). Because we evaluated

thousands of model instantiations, it was straightforward to spread these evaluations

across a cluster of GPU-enabled nodes, with the throughput of each node maximized

by taking full advantage of fine-grained parallelism.

In practice, as a general rule in modern high-performance computing, the level of

speed-up that is achievable depends more fundamentally on the ability to bring relevant

memory fetches to the parallel arithmetic processing units, than on the number of

these units per se. For this reason, stream processing architectures contain special

mechanisms for explicit manipulation of fast local caches (e.g. the Local Stores on the

Cell processor and Shared Memory on NVIDIA GPUs). Importantly for maximizing

the usage of the parallel resources in these processors, some of the largest computational
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bottlenecks present in our model class (e.g. filtering operations), lend themselves to

the usage of such caches by loading small tiles of data into local caches. More broadly,

because each layer of each model maintains a notion of x-y space, and because most of

the operations operate over spatially local regions (e.g. normalization occurs within a

spatially-restricted neighborhood), our coarse-to-fine-grain parallelism can be exploited

throughout a large portion of our model implementation.

9.6.2 Distributed Job System

More specifically, we implemented a simple distributed job system where all candidate

model instantiations in a given “petri dish” were submitted. Each job consisted in the

unsupervised learning of the model followed by performance evaluation on the screening

task. Computing agents were responsible for fetching these jobs one by one, running

them until completion and submitting their results back to a relational database for

further analysis (we now use NoSQL-like distributed databases). Each multi-core was

responsible for keeping one computing agent alive. In our experiments, we used 23

computing agents running on 23 PlayStation 3 systems. The screening throughput of

this cluster was roughly 40 models per hour, for a total cost of $12,000.

9.6.3 Software Engineering and Programming

The use of commodity graphics hardware has drastically reduced the cost of a scien-

tific exploration of this scale (see Table 9.1 and Supplemental Figure S1), but writing

reliable code for these multi-core platforms can be a demanding task. On one hand, sci-

entific software can be difficult to handle because of constantly changing requirements.

On the other hand, these architectures are advancing at a very rapid pace and we have

experienced three different paradigms in three years (i.e. programming GPUs with

graphics primitives in 2006, programming the PlayStation 3 using low-level Cell intrin-

sics in 2007 and programming GPUs with compute primitives in 2008; see below). To

overcome these difficulties, we combined careful engineering, high-level languages (such
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as Python5 and its numerous scientific bindings6,7) and template meta-programming

techniques. Inspired by automatically-tuned scientific libraries such as the Automat-

ically Tuned Linear Algebra Software (ATLAS8) or the Fastest Fourier Transform in

the West library (FFTW9), we found that empirical optimization through automatic

run-time code generation was a useful way to abstract the low-level details away from

the end-user. Integrating these heterogeneous technologies in our large-scale compu-

tational software shows us that it is possible to achieve a favorable balance between

ease-of-use, ease-of-programming and peak computing speed.

Details

An extensive description on how we used these techniques is well beyond the scope of

this paper, however, we highlight a few important high-level points here:

• Meta-programming and combining high-level with low-level languages. In our im-

plementation, each core operation (see Text S1) has two levels of abstraction.

The high-level abstraction is designed for the user and is written in a high-level

language (we used Python). The low-level abstraction is designed to achieve max-

imum throughput on heterogeneous hardware and as a consequence it must be

able to handle low-level languages and “close to the metal” code optimization

techniques (e.g. involving assembly) if needed. The interface between the two

abstractions is a templating engine (we used Cheetah10) that is responsible for

dynamically generating optimized low-level code at runtime, many specialized

versions of which are compiled and auto-tuned prior to running a given model

simulation. Such an approach is equivalent to “just-in-time” (JIT11) compilation

techniques used elsewhere for portability and dynamic specialization12.

The primary goal of the developer is to come up with various optimization strate-

5http://www.python.org
6http://numpy.scipy.org
7http://www.scipy.org
8http://www.netlib.org/atlas
9http://www.fftw.org

10http://www.cheetahtemplate.org
11http://en.wikipedia.org/wiki/Just-in-time_compilation
12http://psyco.sourceforge.net
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gies that instrument low-level code and manipulate it from a high-level language

(using templates). These strategies may involve loop unrolling13, software pipelin-

ing14, register pressure15, communication and computation load distribution (aka

“latency hiding”), to name just a few.

Producing a large number of hand-tuned implementations, corresponding to opti-

mized lower-level code across a range of implementations would be impractically

time-consuming. A meta-programming approach circumvents this difficulty by

producing code that can itself generate a variety of specialized compiled ver-

sions under parametric control. This large number of candidate implementations

of the meta-program can be empirically tested to find which is the fastest (see

Auto-tuning below)

It is important to note that the high-level language must be mature and gen-

eral enough to allow a seamless interaction between all the components of the

system, from the distributed job system and its database to its template meta-

programming capabilities and its interaction with other (low-level) languages.

The Python programming language was a natural choice as it is often referred as

a versatile “glue” language (i.e. used to connect software components of different

levels together), and allows quick prototyping and experimentation.

While MATLAB, by itself, does not support easy meta-programming on GPUs,

commercial companions to MATLAB like AccelerEyes’s Jacket16 could potentially

enable some of the gains necessary for our approach. However, such solutions

typically do not necessarily achieve the full performance of stream processing

hardware 17.

• Auto-tuning To auto-tune our instrumented (i.e. templated) code, we used the

simplest approach: random search on a coarse grid. Using this simple approach,

we achieved comfortable speed-ups, and thus we did not explore more complex

13http://en.wikipedia.org/wiki/Loop_unwinding
14http://en.wikipedia.org/wiki/Software_pipelining
15http://en.wikipedia.org/wiki/Register_allocation
16http://www.accelereyes.com
17http://www.nvidia.com/object/matlab_acceleration.html
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schemes before launching the experiments presented in this study. In the future,

we plan to investigate the use of machine learning techniques to auto-tune the

code, an approach recently undertaken by IBM’s Milepost GCC18.

• Use of specialized extensions and libraries:

Our first implementation in 2006 on the NVIDIA 7900GTX was probably the

most challenging to complete. At this time, there was no compute language

to exploit the horsepower of GPUs and we were forced map our problem into a

graphics domain where matrices were textures and computations were quad draw-

ings. We had to translate our algorithms using OpenGL19 primitives and Cg20

shaders, while trying to maintain our code under unstable graphics drivers re-

leases and scarce GNU/Linux support. Interfacing these programs with Python

was straightforward with PyOpenGL21 bindings and home-made Cg swig22 bind-

ings.

Our PlayStation 3 implementation was created using tools provided in IBM’s

Cell SDK (Software Development Kit23) were mature and comprehensive (e.g.

availability of a simulator, profiler, debugger, etc.), interfaced using ctypes24 from

the Python standard library. These tools allow one to program primarily in C

(or in a language that can bind to an underlying C implementation), but require

specialized knowledge of the architecture of the Cell processor in order to achieve

high levels of performance.

In 2007, NVIDIA released the CUDA (Compute Unified Device Architecture)

technology. They extended the function of their GPUs and provided a new level

of control to address a wide range of computationally intensive problems. At

this point, the use of graphics primitives became obsolete and the GPU par-

allel computing power was made more accessible through NVIDIA’s extensions

18http://www.milepost.eu
19http://www.khronos.org/opengl
20http://developer.nvidia.com/page/cg_main.html
21http://pyopengl.sourceforge.net
22http://www.swig.org
23http://www.ibm.com/developerworks/power/cell
24http://docs.python.org/library/ctypes.html
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to the standard C programming language. Today, CUDA is very mature and

many optimized libraries are available: Fourier transform (CUFFT), linear alge-

bra (CUBLAS), standard parallel primitives (CUDPP), templating (Thrust), etc.

We first interfaced CUDA programs using home-made ctypes bindings.

Our GPU implementations are now managed via PyCUDA [Klöckner et al., 2009]

and python-cuda, Python libraries that bind to the underlying NVIDIA CUDA

libraries. Meta programs were created using the Cheetah template library (see

above) that would emit specialized CUDA code which was compiled on the fly

and run on the GPU.

While the efforts described here relied on vendor-specific software development

kits (which arguably imposes a significant barrier-to-entry for developer scien-

tists), efforts are underway in industry to provide a unified programming model

and tool set for developing applications of the sort presented here. In particular,

the lack of general-purpose programming standard for heterogeneous systems was

recently addressed through the introduction of OpenCL25 (Open Computing Lan-

guage) by the Khronos Group. OpenCL is being driven by industry-leading com-

panies including AMD/ATI, Apple, ARM, Codeplay, Ericsson, Freescale, Imag-

ination Technologies, IBM, Intel, Nokia, NVIDIA, Motorola, RapidMind and

Texas Instruments. Interfacing OpenCL with Python is already supported by

PyOpenCL26. We anticipate future work to utilize these tools will enable us to

target more platforms, and will ease the cost of incorporating ideas of the sort

presented here into the work of other groups.

• Understanding the hardware: Even though achieving peak performance may re-

quire deep understanding of the underlying architecture, it is usually possible to

get one order of magnitude speed-up by just “porting” your code and exposing its

parallelism. With more knowledge of the threading and memory / communication

hierarchies, it is possible to achieve two orders of magnitude by maximizing the

arithmetic intensity (i.e. the ratio of mathematical operations per memory fetch)

25http://www.khronos.org/opencl
26http://pypi.python.org/pypi/pyopencl
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to amortize the latency of transferring data. Up to three orders of magnitude

can be obtain with a deeper understanding including, for example, latencies of

the ISA (Instruction Set Architecture) assembly operands, instruction level par-

allelism, or number of registers per multi-processors, and how to fine-tune their

usage.

• Learning these techniques: With the recent introduction of programming “stan-

dards” and documentation online, it has become increasingly easy to learn how

to exploit graphics hardware for general computing. For example, early in 2009,

we had the opportunity to teach a one-month intensive course27 on the subject to

undergraduate and graduate students at MIT, and in only a few weeks, they were

able to learn and apply these techniques, and finally achieve up to two orders of

magnitude speed-ups in scientific applications such as Lipid Bilayers Simulation,

H.264 Compression, Particle Interaction Simulation, High-Definition Pedestrian

Detection, Bio-Inspired Computer Vision or Regression Analysis (see the course’s

website for more information).

9.7 Supplemental Text S3: First-Order Analyzes of

Model Parameters and Behavior

The results presented in the main text show that the five best model instantiations

found by a screening procedure are well-suited to a variety of object recognition tasks,

but they do not speak to how these models achieve their performance. While fully

answering this question is beyond the scope of the present paper, as a first step in

understanding model performance, we asked a series of first-order questions about the

relationship between model parameters and performance. These analyzes are in no way

intended to be definitive; rather, they primarily suggest directions and challenges for

future experiments.

First, we asked which (if any) of the parameters were predictive of model per-

formance, using simple linear regression. While complex interdependencies between

27http://sites.google.com/site/cudaiap2009
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parameters can (and almost certainly do) exist, linear regression provides a first-order

tool to identify parameters that are especially important to performance. Significance

values for individual parameters are shown in a histogram in Figure 9.16. A handful

of parameters were found to be significantly predictive of model performance. To de-

termine if a particular category of model parameters were more important than any

other, we divided the parameters into three groups: linear filter parameters, normal-

ization/activation/pooling nonlinear parameters, and learning parameters. We found

that normalization/activation/pooling parameters shared a trend toward being over-

represented in the set of significantly predictive parameters, but that the distribution

of significant parameters from each of these three categories were not significantly dif-

ferent than would be predicted by chance (𝑝 = 0.338; Fisher’s exact test).

Another reasonable first-order question to ask is whether the top models are some-

how similar to one another. In this context, similarity might be assessed along a number

of axes. One possibility is to simply compare the parameter values for the best mod-

els, to see if they share more parameter settings in common with each other than one

would expect by chance. To do this, an expanded binary parameter vector was first

created in which each parameter value combination was included as a binary element

(e.g. if a parameter 𝜔 could take of values 3, 5, and 7, three binary values [𝜔 = 3],

[𝜔 = 5], and [𝜔 = 7] were generated for each model). The Hamming distance was then

computed between these vectors to assess the similarity between models. To determine

whether the top five models were more similar to each other than to the population

of models, we computed the median pairwise Hamming distance among the top five,

and among randomly chosen sets of five models (𝑁 = 100, 000) taken from the re-

maining (non-top-five) models (Figure 9.17a). By this measure, the median distance

between the top five trended toward higher than expected similarity but was not found

to be significantly different from the median distance over the full population of mod-

els (𝑝 = 0.136; permutation test). Thus, at least by this simple measure, we could find

no evidence that the best models were any more similar to each other than would be

expected by chance. Attempts to compare parameter vector using ℓ1 and ℓ2 distances

also failed to find any increased similarity amongst the best models, though these ana-

lyzes are intrinsically difficult to interpret, as it is unclear how to scale one parameter
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relative to another.

Another approach to comparing models is to compare the structure of the space of

their outputs. That is, for a given set of images, do the best models somehow transform

these images in a similar way? To explore this issue, we transformed 600 images from

the screening set for each model, and then formed the similarity (Euclidean distance)

matrix for the set of transformed image vectors. We then computed the Euclidean

distance between the upper triangular part of these symmetric matrices (similar to the

Frobenius distance) to assess their similarity. As before, we computed distributions

of pairwise distances within the top five models (𝑁 =
(︀
5
2

)︀
= 10), and in the random

sampling from the full population (𝑁 = 10, 000) in order to test whether the top five

models were more similar to each other than would be expected from random draws

of five models (Figure 9.17b,c). We found that the similarity matrices of the top five

models tended to be more similar to each other, but that this effect was not significant

(𝑝 = 0.082; permutation test).

Taken together, these analyzes of model parameters and performance show that

model comparison is not a straightforward endeavor, but that there are clues to which

parameters may be important to focus on in achieving greater performance.
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9.8 Supplemental Figures
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Figure 9.8: A schematic of the flow of transformations performed in our family of
biologically-inspired models. Blue-labeled boxes indicate the cascade of operations performed in
each of the three layers in the canonical model. Gray-labeled boxes to the right indicate filter weight
update steps that take place during the Unsupervised Learning Phase after the processing of each in-
put video frame. The top gray-labeled box shows processing steps undertaken during the Screening
and Validation Phases to evaluate the performance achievable with each model instantiation.
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Figure 9.9: Processing Performance of the Linear Filtering Operation. The theoretical
and observed processing performance in GFLOPS (billions of floating point operations per second)
is plotted for a key filtering operation in our biologically-inspired model implementation. Theoret-
ical performance numbers were taken from manufacturer marketing materials and are generally not
achievable in real-world conditions, as they consider multiple floating operations per clock cycle, with-
out regard to memory communication latencies (which typically are the key determinant of real-world
performance). Observed processing performance for the filtering operation varied across candidate
models in the search space, as input and filter sizes varied. Note that the choice of search space can
be adjusted to take maximum advantage of the underlying hardware at hand. We plot the “max” ob-
served performance for a range of CPU and GPU implementations, as well as the “mean” and “min”
performance of our PlayStation 3 implementation observed while running the 7,500 models presented
in this study. The relative speedup denotes the peak performance ratio of our optimized implemen-
tations over a reference MATLAB code on one of the Intel QX9450’s core (e.g. using filter2, which
is itself coded in C++), whereas the relative GFLOPS per dollar indicates the peak performance per
dollar ratio. Costs of typical hardware for each approach and cost per FLOPS are shown at the bot-
tom. * These ranges indicate the performance and cost of a single system containing from one (left)
to four (right) GPUs. ** These costs include both the hardware and MATLAB yearly licenses (based
on an academic discount pricing, for one year).
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Figure 9.10: Examples of Layer 1 filters taken from different models. A random assortment
of linear filter kernels taken from the first layers of the top five (a) and fifteen randomly chosen other
model instantiations (b) taken from the “Law and Order” petri dish. Each square represents a single
two-dimensional filter kernel, with the values of each filter element represented in gray scale (the gray-
scale is assigned on a per-filter basis, such that black is the smallest value found in the kernel, and
white is the largest). For purposes of comparison, a fixed number of filters were taken from each
model’s Layer 1, even though different models have differing number of filters in each layer. Filter
kernels are initialized with random values and learn their structure during the Unsupervised Learning
Phase of model generation. Interestingly, oriented structures are common in filter from both the top
five models and from non-top-five models.
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Figure 9.11: Examples of Layer 2 filters taken from different models. Following the same
basic convention as in Supplemental Figure S3, a random assortment of portions of filter kernels from
Layer 2 of the top five (a) and fifteen other randomly-chosen model instantiations (b) are shown in gray-
scale to provide a qualitative sense of what the linear filters (produced as a result of the Unsupervised
Learning Phase) look like. Note that since each Layer 1 is itself a stack of 𝑘ℓ=1 two-dimensional planes
(or “feature maps”) resulting from filtering with a stack of 𝑘ℓ=1 filters (see Supplemental Text S1 and
Supplemental Figure S6, each Layer 2 filter is actually a 𝑓 ℓ=2

𝑠 ×𝑓 ℓ=2
𝑠 ×𝑘ℓ=1 kernel For the sake of visual

clarity, we here present just one randomly-chosen 𝑓 ℓ=2
𝑠 ×𝑓 ℓ=2

𝑠 “slice” from each of the randomly-chosen
filters. As in Supplemental Figure S3, there are signs of “structure” in the filters of both the top five
and non-top-five models.
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Figure 9.12: Examples of Layer 3 filters taken from different models. Following the same
basic convention as in Supplemental Figures S3 and S4, a random assortment of portions of filter
kernels from Layer 3 of the top five (a) and fifteen other randomly-chosen model instantiations (b)
are shown in gray-scale to provide a qualitative sense of what the linear filters (produced as a result
of the Unsupervised Learning Phase) look like. Note that since each Layer 2 is itself a stack of 𝑘ℓ=2

two-dimensional planes (or “feature maps”) resulting from filtering with a stack of 𝑘ℓ=2 filters (see
Supplemental Text S1 and Supplemental Figure S6), each Layer 3 filter is actually a 𝑓 ℓ=3

𝑠 ×𝑓 ℓ=3
𝑠 ×𝑘ℓ=2

kernel. For the sake of visual clarity, we here present just one randomly-chosen 𝑓 ℓ=3
𝑠 × 𝑓 ℓ=3

𝑠 “slice”
from each of the randomly-chosen filters. As in Supplemental Figures S3 and S4, there are signs of
“structure” in the filters of both the top five and non-top-five models.
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Layer 1 Layer 2 Layer 3

...

...

Best Model in the “Law and Order” Petri Dish

�lter 61
Layer 2,

x

y

Figure 9.13: Example filterbanks from the best model instantiation in the “Law and
Order” Petri Dish. Filter kernels were learned during the Unsupervised Learning Phase, after which
filter weights were fixed. Colors indicate filter weights, and were individually normalized to make
filter structure clearer (black-body color scale with black indicating the smallest filter weight, white
representing the largest filter weight). The filter stack for each layer consists of 𝑘ℓ filters, with size
𝑓𝑠. Because the Layer 1 filterbank for this model includes 16 filters, the Layer 1 output will have a
feature “depth” of 16, and thus each Layer 2 filter is a stack of 16 𝑓𝑠 × 𝑓𝑠 kernels. One filter (filter
61) is shown expanded for illustration purposes. Similarly, since the Layer 2 filterbank in this example
model includes 64 filters, the output of Layer 2 will have a depth of 64, and thus each filter in Layer
3 filterbank must also be 64-deep.
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Figure 9.14: High-throughput screening in the “Cars and Planes” Petri Dish. Data are
shown according to the same display convention set forth in the main paper. (a) Histogram of the
performance of 2,500 models on the “Cars vs. Planes” screening task. The top five performing models
were selected for further analysis. (b) Performance of the top five models (1-5). (c) Performance of
the top five models when trained with a different random initialization of filter weights (top) or with a
different set of video clips (bottom). (d) Performance of the top five models from the Screening Phase
on a variety of other object recognition challenges.
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Figure 9.15: High-throughput screening and validation in the “Boats” Petri Dish. Data
are shown according to the same display convention set forth in the main paper. (a) Histogram of the
performance of 2,500 models on the “Cars vs. Planes” screening task. The top five performing models
were selected for further analysis. (b) Performance of the top five models (1-5). (c) Performance of
the top five models when trained with a different random initialization of filter weights (top) or with a
different set of video clips (bottom). (d) Performance of the top five models from the Screening Phase
on a variety of other object recognition challenges.
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Figure 9.16: Linear regression analysis of relationship between parameter values and model perfor-
mance. As a first-order analysis of the relationship between model parameters and model performance, we performed
a linear regression analysis in which the values of each of the 52 parameters were included as predictors in a multiple
linear regression analysis. Next, p-values were computed for the t statistic on each beta weight in the regression. A
histogram of the negative natural log of the p-values is shown here, with the bin including significant p-values high-
lighted in orange (each count corresponds to one model parameter). For reference, the histogram is divided into three
ranges (low-nonsignificant, medium-nonsignificant, and significant) and a listing of parameters included each significance
range is printed below the histogram. Each parameter listing includes a 1) verbal description of the parameter, 2) its
symbol according to the terminology in the Supplemental Methods, 3) the section number where it is referenced, and
4) whether it was positively (“+”) or negatively (“-”) correlated with performance. In addition, the parameters were
divided into three rough conceptual groups and were color-coded accordingly: Filtering (green), Normalization/Activa-
tion/Pooling (red), and Learning (blue). Beneath the bin corresponding to significantly predictive parameters, a bar
plot showing the fraction of each group found in the set of significant parameters. The expected fraction, if the param-
eters were distributed randomly, is shown as a dotted line. Activation/Normalization/Pooling parameters were slightly
over-represented in the set of significantly-predictive parameters, but no group was found to be significantly over- or
under-represented (𝑝 = 0.338; Fischer’s exact test).
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Figure 9.17: How similar are the top models? (a) Model similarity on the basis of parameter values (ℓ0
or Hamming Distance). Each model is specified by a vector of 52 parameter values. As a first attempt at comparing
models, we generated an expanded binary parameter vector in which every possible parameter/value combination was
represented as a separate variable (e.g. a parameter 𝜔 that can take on values 3, 5, and 7 would be included in the
expanded vector as three binary values [𝜔 = 3], [𝜔 = 5], and [𝜔 = 7]). The Hamming distance distance between any two
vectors can then serve as a metric of the similarity between any two models. In order to determine if the top five models
taken from the “Law and Order” petri dish were more similar to each than would be expected of five randomly selected
models, we computed the median pairwise Hamming distance between the top five models, and between a random
sampling of 100,000 sets of five models taken from the remaining (non-top-five) models. The distribution of randomly
selected model pairs is shown in (a), and the observed median distance amongst the top five models is indicated by an
arrow. The top-five models tended to be more similar to one another than to a random selection of models from the full
population, but this effect was not significant (𝑝 = 0.136; permutation test). (b) Model similarity on the basis of output
(“Representation” similarity). As another way to compare model similarity, for each model we computed model output
vectors for a selection of 600 images taken from the Screening task image sets. We then computed the ℓ2 (Euclidean)
distance matrix between these “re-represented” image vectors as a proxy for the structure of the output space of each
model. A distance metric between any two models was then defined as the ℓ2 distance between the unrolled upper-
diagonal portion of the two models’ similarity matrices (this distance metric is similar to the Frobenius norm). Finally,
as in (a), the median distances between the top five models and between a collection of 10, 000 randomly drawn sets of
five models were computed. The histogram in (b) shows the distribution of median distances from randomly drawn sets
of five models, and the arrow indicates the median distance observed in the top-five set. As in (a), the top-five models
tended to be more similar to one another (lower distance), but this effect was not significant (𝑝 = 0.082; permutation
test).
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Chapter 10

GPU Meta-Programming and

Auto-Tuning: A Case Study in

Biologically-Inspired Computer

Vision∗

“Premature optimization is the root of all evil.”

Donald Knuth

W
e here describe a tutorial on ways that meta-programming techniques –

dynamically generating specialized code at runtime and compiling it just-

in-time – can be used to greatly accelerate an implementation. We use filterbank

convolution, a key component of the biologically-inspired machine vision systems that

form the core of our research program, as a case study to illustrate these techniques.

We present an overview of several key themes in template meta-programming, and

culminate in a full example of GPU auto-tuning in which an instrumented GPU kernel

template is built and the space of all possible instantiations of this kernel is auto-

matically grid-searched to find the best implementation on various hardware/software

∗This chapter presents work done in collaboration with David D. Cox and will appear in the book
“GPU Computing Gems Vol.2” [Pinto and Cox, 2011b].
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platforms. We show that this method yields significant speed-ups over hand-tuned GPU

kernels.

10.1 Problem Statement and Context

In recent years, digital cameras have become increasingly inexpensive and ubiquitous,

and cameras are now embedded in a wide array of devices, from cellphones to cars.

This explosion in imaging has led to enormous opportunity in the field of computer

vision, as the need grows for algorithms that can automatically analyze, organize, and

react to the new torrent of digital imagery.

While traditional machine vision algorithms achieve modest success in certain task

(e.g. detecting the presence of a face in an image), many other visual tasks that come

easily for humans remain extremely challenging for computers (e.g. recognizing the

identity of a particular face).

Inspired by the ease with which the human brain is able to solve visual tasks, many

so-called “biologically-inspired” vision approaches have emerged. The basic architecture

of the brain-inspired vision systems that we work with is shown in schematic form in

Figures 9.2 and 9.8. Briefly, this architecture consists of a cascade of multiple layers

of linear filtering operations and static nonlinearities. Learning algorithms adjust the

parameters of these operations and adapt the network to a given kind of input. Models

from this class have been shown to achieve state-of-the-art performance in variety of

object and face recognition domains (see Parts II and IV, and Chapter 9).

However, there are two major challenges associated with the construction of biologically-

inspired vision systems. First, the brain is a massively parallel computer, with millions

of processing elements; mimicking this level of computational power is not a trivial

undertaking. Second, while biology has given us some hints about how to organize a

biologically-inspired visual system, neuroscience experiments have provided us to date

with relatively few constraints on the details and parameters to be used. As a result,

we are often left exploring the space of possible models, rather than evaluating any one

model, per se.

The combination of these two challenges raises a unique problem in high-performance
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computing. The scale of the models to be studied demands enormous compute power.

Properly utilized, GPUs begin to provide the level of power needed to undertake se-

rious large-scale visual system modeling. However, the second challenge — the need

to explore a wide range of different kinds of biologically-inspired models — poses a se-

rious challenge for optimization. Optimization is often an exercise in specialization:

an algorithm is carefully matched to set of hardware/software resources, exploiting as

much regularity in the underlying problem and inputs as possible. For instance, if an

input image is always known to be small, or of a power-of-two in width and height,

such information can be exploited to craft an optimal implementation. However, for

our problem, we must build algorithms that can tolerate widely varying inputs, since

a major drive of our work is to find model parameters that can provide high levels of

generic object recognition performance.

Here, we focus on one key sub-operation of our models: filterbank convolution (i.e.

the application of a number of filters to an incoming image, in parallel). We show

how this operation can be performed efficiently, in spite of widely varying conditions

(e.g. different sizes and number of filters) using a dynamically-specialized template

meta-programming approach.

10.2 Core Method

Optimization is often an exercise in specialization — increasing the performance of a

given algorithm on a given piece of hardware requires taking advantage of specific de-

tails of the algorithm, the kinds of inputs it will see, and the resources available in the

hardware (and software stack) on which the algorithm will run. In many contexts, how-

ever, we must operate within a indeterminate, broadly-defined, or changing parameter

space, where we cannot be guaranteed that all inputs will look similar. In our own

research, a key computational bottleneck is a compute-intensive filterbank 3D convo-

lution operation (which mimics one part of the processing that is thought to be done

by biological neurons). However, while such operations are straightforward to optimize

using standard techniques when all of the relevant dimensions of the input and filters

are known, in our research, we must search a wide range of possible neural network ar-
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chitectures to find those that are best at specific tasks (see Chapter 9). Thus, we need

high-performance solutions not just to one particular problem, but a family of possible

instantiations.

We employ a meta-programming approach in which we use the high-level language

Python, to generate parameterized CUDA kernel code using a string template engine.

These generated kernels are then just-in-time compiled and run with the “behind-the-

scenes” help of the PyCUDA toolkit [Klöckner et al., 2009]. Meta-kernels such as these

allow the developer to achieve a high degree of flexibility in exploring many different

optimization strategies while avoiding unnecessary hand-coding or combinatorial issues

when multiple strategic decisions interact. Finally, we show how meta-parameter selec-

tion can be turned over to an automated process, allowing for auto-tuning of kernels

across different inputs (where resource requirements vary wildly) and different hardware

generations (where resource availability varies).

While Python’s strength in string processing (e.g. Cheetah, Mako, Jinja), gen-

eral scientific computing (e.g. Numpy, Scipy, Matplotlib), and GPU programming

(e.g. PyCUDA, PyOpenCL) provides a particularly convenient platform for template

meta-programming, the techniques described here could just as well be applied in any

programming language. Indeed, the only language facilities one needs to apply meta-

programming are a means of transforming a template string (available in one form

another in effectively every language), and a means to compile and run a kernel (which

is readily available in both CUDA and OpenCL).

In this case study, we describe several basic regimes where meta-programming can

lead to cleaner code, improved understanding, and ultimately better performance. We

discuss how a meta-programming philosophy can lower the cost of trying out new

ideas, since these ideas can be merged into an existing common code base, and how

some relatively simple template-driven features (such as full/partial loop unrolling)

can produce significant speed-ups without cluttering code. Finally, we show how meta-

parameter auto-tuning can yield significant speed-ups, by generating many dynamically

specialized kernels from a single, understandable kernel template. A sample of our

approach to this problem is presented below.
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10.3 Algorithms, Implementations, and Evaluations

10.3.1 Towards General, Optimized Code

Kernel Template

Template 
Engine

Dynamically-Generated 
Kernel Code

JIT Frontend 

parameters

Auto-tuning
Framework

texture<float4, 1, cudaReadModeElementType> tex_float4;
__constant__ float constant[$FILTER_D][$FILTER_W]
[$N_FILTERS];

#define IMUL(a, b) __mul24(a, b)
extern "C" {

#for j in xrange($FILTER_H)

  __global__ void convolve_beta_j${j}(float4 *input, float4 
*output)
  {

#set INPUT_BLOCK_W = $BLOCK_W+$FILTER_W-1
    __shared__ float shared_in[$INPUT_BLOCK_W][4+1];

    // -- input/output offsets

Hand-tuning / 
Experimentation

(Python/Cheetah)

texture<float4, 1, cudaReadModeElementType> tex_float4;
__constant__ float constant[$FILTER_D][$FILTER_W]
[$N_FILTERS];

#define IMUL(a, b) __mul24(a, b)
extern "C" {

#for j in xrange($FILTER_H)

  __global__ void convolve_beta_j${j}(float4 *input, float4 
*output)
  {

#set INPUT_BLOCK_W = $BLOCK_W+$FILTER_W-1
    __shared__ float shared_in[$INPUT_BLOCK_W][4+1];

    // -- input/output offsets
    const uint in_idx = (blockIdx.y+$j)*INPUT_W + 
blockIdx.x*blockDim.x + threadIdx.x;
    const uint out_idx = blockIdx.y*OUTPUT_W + 
blockIdx.x*blockDim.x + threadIdx.x;
    float4 input_v4;

    // -- load input to shared memory
#for i in xrange($LOAD_ITERATIONS)
#if $i==($LOAD_ITERATIONS-1)
    if((threadIdx.x+$BLOCK_W*$i)<$INPUT_BLOCK_W)
#end if
      {

input_v4 = tex1Dfetch(tex_float4, in_idx+$BLOCK_W*
$i);

shared_in[threadIdx.x+$BLOCK_W*$i][0] = input_v4.x;
shared_in[threadIdx.x+$BLOCK_W*$i][1] = input_v4.y;
shared_in[threadIdx.x+$BLOCK_W*$i][2] = input_v4.z;
shared_in[threadIdx.x+$BLOCK_W*$i][3] = input_v4.w;

      }
#end for

(PyCuda)

Driver API

performance benchmarks

NVCC

Figure 10.1: A schematic diagram of a basic GPU meta-programming system.

Figure 10.1 shows the basic components of a GPU meta-programming approach.

The central insight is that rather than writing GPU kernels, one can write kernel

templates, with multiple optimization strategies and optional paths embedded in a single

piece of code. With an appropriate template transformation module, a dynamically-

specialized kernel is generated based on given set of parameters, and this code is just-in-

time compiled. The choice of parameters can either be done by manually, or it can be

turned over to an auto-tuning algorithm. We will begin by discussion general strategies

for template meta-programming, and will close with a complete auto-tuning example.

In the following examples, we use Python, a high-level language, in combination with

PyCUDA, a package that seamlessly wraps the CUDA Driver Application Programming

Interface (API). While the use of an interpreted language might initially seem at odds

with the goals of high-performance computing, the fraction of time spent in the “outer

loop” of an High-Performance Computing (HPC) application is typically small relative
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to that spent in a handful of critical sections.

A key advantage of just-in-time compilation of a kernel from a string is that new

kernels can easily be generated on the fly. Below, using a standard Python string tem-

plating package, Cheetah1, we can substitute values into a kernel, evaluate conditionals,

and generate iterated structures using loops. As an example (the details of which are

not important, for the moment):

...

#for nk in xrange($N_KERNELS)

__global__

void cudafilter_kernel_${nk}

(

float4 *input

#for o in xrange($N_OUTPUT4S)

, float4 *output$o

#end for

)

{

// -- Shared -memory buffer for the input tiles

__shared__ float shared_in \

[$BLOCK_H] \

[$N_FILTER_ROWS] \

[$INPUT_D] \

[$INPUT_BLOCK_W + ${int($PAD_SHARED )}];

...

}

At run time, instances of $N KERNELS, for instance, are replaced by a value passed

into the template engine in a dictionary, and conditionals (#if) and loops (#for) are

evaluated and expanded. Note that the template allows for the manipulation of struc-

tures that are not easily accessible in C code: variable length argument lists, run-time

generation of new functions and variable names. The resulting kernel code is then com-

1http://www.cheetahtemplate.org
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piled and called entirely from Python. Such dynamic code generation opens up a wide

range of possibilities, some of which are described below.

10.3.2 Syntax-Level Code Control

One major advantage of a template meta-programming approach is that it make it easy

to produce CUDA kernels that would otherwise be tedious or error-prone to produce

by hand. One such area is fine-controlled loop unrolling: performance gains can often

be achieved by avoiding for loops and unrolling a loop manually. In a template meta-

programming context, this is easy. For example, in the inner loop of our filtering

operation, we could write:

// Loop unrolling example

#for d in xrange($FILTER_D)

#for i in xrange($FILTER_W)

v = shared_in[threadIdx.x+$i][$d];

#for n in xrange($N_FILTERS)

w = constant[$d][$i][$n];

sum$n += v*w;

#end for

#end for

#end for

Which would at runtime generate the following code, dependent on the values of

FILTER D, FILTER W and N FILTERS:

...

v = shared_in[threadIdx.x+0][0];

w = constant [0][0][0];

sum0 += v*w;

w = constant [0][0][1];

sum1 += v*w;

w = constant [0][0][2];

sum2 += v*w;

w = constant [0][0][3];

sum3 += v*w;
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v = shared_in[threadIdx.x+1][0];

w = constant [0][1][0];

sum0 += v*w;

w = constant [0][1][1];

...

One consequence of the above template-based approach, is that we can generate

distinct, specialized versions of kernels with very fine control for, say, a Nx4x4x8 filter-

bank and for a Nx8x8x4 filterbank. Creating such specialized version by hand would

be tedious and/or error-prone.

Of course, loop unrolling isn’t universally beneficial; unrolling a loop consumes a

larger number of registers, which, depending on what register usage in the rest of the

kernel, can lead to dramatic decreases in performance if the number of available registers

is exceeded. In addition to allowing a straightforward framework for turning on and

off unrolling, it is easy to imagine how the above example could be updated to support

partial loop unrolling, balancing register usage against branching costs.

Control of a kernel’s code at a syntactic level also enables one to have a much more

fluid relationship with memory resources. Since templates operate at the level of syntax,

it is, for instance, possible to use registers as an “indexable” resource (e.g. register -

masquerading as array$index) without overly complexifying code. Conversely, if one

is register-limited, one can instead use shared memory resources as if they were registers

(a technique known as “register spilling”).

10.3.3 Exploring Design Decision Space More Freely

Another important area where meta-programming can be highly valuable is in exploring

a space of design decisions. A GPU developer is typically confronted with a multitude

of decisions when developing a CUDA implementation: what kind of memory to use

and how to access it (e.g. linear memory, tex1D, tex2D, etc.), how to layout data in

memory, etc.

In some cases, subtle decisions can produce large differences in performance. Below

we illustrate one such design decision, wherein a given filter weight is stored in constant
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memory (organized as filter x height x width), and the kernel is either configured to ei-

ther index the filter to be computed by thread index, or by a constant (with multiple

filter responses being computed through multiple kernel executions). A templated ex-

ample is shown below, wherein the inner loop is conditioned (at template-time) by the

variable USE THREAD PER FILTER:

# -- Constant memory usage example

#for i in xrange($FILTER_W)

#for k in xrange($FILTER_D)

v = shared_in [( threadIdx.x+$i)][$k];

#if $USE_THREAD_PER_FILTER

w = constant[threadIdx.y][$i][$k];

#else

w = constant[$FILTER_ID ][$i][$k];

#end if

sum += v*w;

#end for

#end for

Benchmarking the code, we find that our performance is cut in half when USE -

THREAD PER FILTER is true. Here, inspection of the disassembled cubin (using the

decuda disassembler) is instructive. A snippet from the disassembled cubin when USE -

THREAD PER FILTER is false is shown below:

...

mad.rn.f32 $r0 , s[$ofs2 +0 x0000], c0[$ofs2 +0 x0000], $r0

mad.rn.f32 $r0 , s[$ofs2 +0 x0008], c0[$ofs2 +0 x0008], $r0

mad.rn.f32 $r0 , s[$ofs2 +0 x000c], c0[$ofs2 +0 x000c], $r0

mad.rn.f32 $r0 , s[$ofs2 +0 x0010], c0[$ofs2 +0 x0010], $r0

...

Here, each mad is a multiply-add instruction, and the cubin is dominated by a long,

back-to-back stream of arithmetic. If, on the other hand, USE THREAD PER FILTER is

true, we see a very different pattern of instructions:

...
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mad.rn.f32 $r4 , s[$ofs3 +0 x0000], $r4 , $r1

mov.b32 $r1 , c0[$ofs2 +0x0008]

mad.rn.f32 $r4 , s[$ofs3 +0 x0008], $r1 , $r4

mov.b32 $r1 , c0[$ofs2 +0x000c]

...

Here, multiply-adds are interleaved with “move” instructions, resulting in a compu-

tation that is vastly less efficient.

It should be noted that, strictly speaking, this issue has now been properly docu-

mented in the CUDA developers guide – indexing constant memory by a threadIdx

leads to sub-optimal constant memory access patterns. However, the issues here are

subtle, and easy to miss. Meta-programming provides a mechanism for flexibly ex-

ploring multiple optimization paths at the same time, which provides a powerful tool

for understanding the hardware at a deeper level. Importantly, not all aspects of the

hardware contributing to performance are (or reasonably can be, e.g. for proprietary/-

competitive reasons) documented. In such cases, template meta-programming lowers

the cost of trying different strategies, allowing one to exploit the hardware much more

fully.

There is also no guarantee that the many design choices that one must make are

independent. That is, at given stage of optimization, a particular path may legitimately

represent the best one, given the current context of the rest of the program. However,

as other aspects of the design are tweaked and iterated, there is no guarantee that these

earlier insights still hold, especially as different approaches differential tax the scarce

resources of the hardware (e.g. registers, shared memory, memory bandwidth). Meta-

programming yields the significant advantage that intermediate design decisions can

be made explicit and both “forks” in the path can be kept in place, without incurring

actual, performance-eroding if/then branches in the kernel itself. This approach frees

up the developer to revisit past choices, without incurring a combinatorial explosion

of separate pieces of code. Retesting sets of assumptions can be done frequently and

programmatically from the “outer” framework of code.
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10.3.4 Auto-Tuning

Above, we have shown how meta-programming can assist in the manual optimization

of an implementation in a regime where the parameters of the input (e.g. input size,

filter size, number of filters, etc.) are fixed. Our optimization process also implicitly

assumes a given hardware context, unless we explicitly tweak our designs on different

generations and grades of GPUs. In reality, our particular problem-of-interest (like

many problems) demands that our implementation must work over a wide range of

input parameters, and on a variety of different kinds of hardware. Ideally, we’d like to

have the best possible implementation in each context, without having to undertake a

massive effort in hand-tuning. A powerful extension of template meta-programming is

auto-tuning : allowing software to choose the best set of meta-parameters for a given

set of inputs and hardware / software stack.

Here, we take the simplest possible approach to auto-tuning, performing a coarse

grid search across a range of possible meta-parameter values.

The meta-parameters to be tuned can include:

1. Degree of Loop Unrolling

2. Register Spilling

3. Memory structure type – e.g. linear memory, tex1D, tex2D, etc.

4. Block and Grid dimensions

5. Number of filters to compute per kernel invocation (i.e. thread work size)

6. Shared-memory padding

7. etc.

Pseudo-code demonstrating a basic auto-tuning algorithm is shown below; code for a

proof-of-concept auto-tuned implementation of filterbank convolution is available upon

request.
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"""

====================================================

Auto -Tuning Pseudo -Code (Filterbank Convolution)

====================================================

Parameters

----------

arr: input array (height x width x depth)

fb: filter -bank (nfilters x fsize x fsize x depth)

"""

# -- Get the set of meta -programming / templating parameters

# to explore during auto -tuning

mp_set = get_metaprog_parameter_set ()

# -- Get informations about the hardware

# (may include GPU architecture , host CPU , memory , etc.)

hw = get_hardware_specs ()

# -- Get informations about the software stack

# (may include CUDA SDK version , CUDA Driver version , etc.)

sw = get_software_specs ()

db = autotuning_db () # the auto -tuning database

# -- Has this combination of input array , filter -bank ,

# hardware and software already been tuned ?

if (arr , fb , hw , sw) not in db:

# -- If not , we'll loop over each element in the

# meta -programming parameter set , gather timing

# informations and select the fastest code

n_warmups , n_runs = get_n_trials ()

best_func , best_time = None , inf

for mp in mp_set:

tmpl = get_gpu_src_template(arr , fb)

# Render the code template (using e.g. Cheetah ).

# Note that only a subset of 'mp' will be used here

# (e.g. unrolling factor , register spilling , etc.)

gpu_src = render_gpu_src_template(tmpl , mp)

# Compile the source code or retrieve it from a cache

# (using NVCC through e.g. PyCUDA)

# Note that only a subset of 'mp' will be used here
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# (e.g. using fast math , constraining the number

# of registers through the compiler , etc.)

gpu_bin = compile_and_cache_gpu_src(hw , sw , gpu_src , mp)

# Load the GPU binary code and prepare the device

# for execution (using the Driver API through e.g. PyCUDA)

func = load_and_prepare_gpu_execution(gpu_bin , mp)

# Warm up the GPU

for _ in n_warmups: func()

# Collect timings

timings = list()

for _ in n_runs:

start = time()

func()

end = time()

timings.append(end -start)

# Is this version of the code faster?

if median(timings) < best_time:

best_time = median(timings)

best_func = func

# -- Add the result to the database

db.add(arr , fb , hw , sw , best_func)

else:

best_func = db.get(arr , fb, hw, sw)

# -- Return the best performing code

return best_func

10.4 Final Evaluation

For the purposes of demonstration, we chose set of 73 meta-parameter configurations

(i.e. 73 unique combinations values of the above meta-parameters) and auto-tuned

for four different input parameter sets, which roughly bracket the range of possible

input shapes and sizes that the are encountered in our experiments. The results of

auto-tuning, on different NVIDIA GPUs spanning multiple generations of graphics

hardware, multiple end-user markets (gaming versus professional), and a wide range of
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variation in hardware-level resources available, are shown below:

GPU / SDK Input Filterbank Default (gflops) Auto-tuned (gflops) Boost

8600GT

CUDA2.3

256x256x8 64x9x9x8 5.493 ± 0.019 33.881 ± 0.068 516.8 %

512x512x4 32x13x13x4 11.619 ± 0.007 33.456 ± 0.045 187.9 %

1024x1024x8 16x5x5x8 19.056 ± 0.017 33.109 ± 0.632 73.7 %

2048x2048x4 4x8x8x4 23.824 ± 0.055 38.867 ± 0.118 63.1 %

9400M

CUDA3.1

256x256x8 64x9x9x8 2.177 ± 0.013 15.796 ± 0.049 625.6 %

512x512x4 32x13x13x4 5.562 ± 0.001 15.331 ± 0.004 175.6 %

1024x1024x8 16x5x5x8 2.309 ± 0.022 4.571 ± 0.015 98.0 %

9600M GT

CUDA3.1

256x256x8 64x9x9x8 6.710 ± 0.005 36.584 ± 0.023 445.2 %

512x512x4 32x13x13x4 13.606 ± 0.002 35.582 ± 0.003 161.5 %

1024x1024x8 16x5x5x8 20.034 ± 0.113 26.084 ± 6.243 30.2 %

2048x2048x4 4x8x8x4 25.781 ± 0.044 46.945 ± 0.100 82.1 %

C1060

CUDA2.3

256x256x8 64x9x9x8 104.188 ± 0.051 168.083 ± 0.372 61.3 %

512x512x4 32x13x13x4 125.739 ± 0.109 234.053 ± 0.266 86.1 %

1024x1024x8 16x5x5x8 144.279 ± 0.764 243.697 ± 0.346 68.9 %

2048x2048x4 4x8x8x4 180.060 ± 0.018 322.328 ± 0.348 79.0 %

GTX295

CUDA2.3

256x256x8 64x9x9x8 126.563 ± 0.590 262.848 ± 0.176 107.7 %

512x512x4 32x13x13x4 172.701 ± 0.014 317.108 ± 0.056 83.6 %

1024x1024x8 16x5x5x8 104.972 ± 0.011 168.298 ± 0.174 60.3 %

2048x2048x4 4x8x8x4 120.693 ± 0.020 226.534 ± 0.195 87.7 %

GTX285

CUDA2.3

256x256x8 64x9x9x8 123.396 ± 0.016 197.006 ± 0.219 59.7 %

512x512x4 32x13x13x4 143.277 ± 0.044 270.206 ± 0.209 88.6 %

1024x1024x8 16x5x5x8 148.841 ± 0.465 310.276 ± 0.538 108.5 %

2048x2048x4 4x8x8x4 205.152 ± 0.015 376.685 ± 0.070 83.6 %

GTX480

CUDA3.1

256x256x8 64x9x9x8 467.631 ± 19.100 471.902 ± 11.419 0.9 %

512x512x4 32x13x13x4 834.838 ± 8.275 974.266 ± 3.809 16.7 %

1024x1024x8 16x5x5x8 542.808 ± 1.135 614.019 ± 0.904 13.1 %

2048x2048x4 4x8x8x4 378.165 ± 0.537 806.628 ± 0.168 113.3 %

Large performance gains are observed for the auto-tuned meta-kernels as compared
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to the “default” parameter set, which was hand-picked to allow correct execution of all

input ranges on all GPUs – without running up against hardware limitations.

Interestingly, we note that a different peak-performing meta-parameter set was cho-

sen for each input size, and for different hardware platforms. Given the many demands

on system resources that trade-off against each other, a different “sweet-spot” imple-

mentation exists for different incoming inputs and for different constellations of hard-

ware resources. To illustrate this point, in Table 10.2 we show the performance with

best auto-tuned parameters for two different hardware platforms (a 9400M laptop-grade

GPU, and a GTX480 high-end desktop GPU), as well as the performance for each if the

parameter sets were swapped (i.e. if we tuned on the 9400M and ran on the GTX480,

and vice versa). In all cases, best parameter sets were chosen using half of the time

trials, and the median performances shown in the table were computed using the re-

maining trials. We see large differences in performance (in some cases over 100%) when

a custom hardware auto-tuned kernel is used, as compared to when an optimal kernel

for a different platform is used. Such performance differences are particularly impor-

tant when development is done on a different machine (e.g. a laptop) than where the

code will be run in production mode. Similarly, for applications that are widely de-

ployed on a variety of user hardware, optimal performance can be achieved by either

optimizing in situ or shipping with a database of parameter sets for different platforms.

Similarly, in Table 10.3 we show the effect of tuning on one input configuration and

running on another. Again, significant speed-ups are obtained using kernels tailored to

a specific input configuration, as opposed to generic kernels optimized under different

conditions. Without meta-programming, hand-tuning for each of the many hardware

configuration in existence and for many different input configurations would be a tedious

and error-prone process. By contrast, template meta-programming in combination

with a simple auto-tuning scheme allows optimal implementations to be chosen for any

platform and input size.

optimized for:

run on: 9400M GTX480 tuning speedup

9400M 0.32s 2.52s 675%
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GTX480 0.016s 0.011s 52%

Table 10.2: Performance of auto-tuned implementations on two hardware platforms, including per-
formance tuned on one platform and run on the other.

optimized for:

run on: config1 config2 tuning speedup

config1 11.1ms 15.7ms 41%

config2 fails 10.8ms not comparable

Table 10.3: Performance of auto-tuned implementations on two input configurations, including per-
formance tuned for one configuration and run with the other.

10.5 Future Directions

Above, we have demonstrated how writing kernel templates, rather than kernels per se

can result in cleaner, more readable code, and can provide a coherent framework for

exploring the interactions of many implementation decisions. In our auto-tuning ex-

ample code, we show a straightforward implementation of a brute-force auto-tuning

approach, in which we grid search a large number of combinations and permutations

of template parameters and auto-benchmark. While this brute-force search procedure

leads to surprisingly good results despite its simplicity, it clearly becomes suboptimal

as the number of template parameters increases. Thus, an important future direction

is the application of more intelligent optimization algorithms – e.g. decision trees, sim-

plex search, simulated annealing, genetic algorithms, or derivative-free de-randomized

methods (such as Covariance Matrix Adaptation) – to more efficient search the space

of possible implementations.
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Chapter 11

Beyond Simple Features: A

Large-Scale Neuromorphic Feature

Search Approach to Unconstrained

Face Recognition∗

“In the beginner’s mind there are many

possibilities, but in the expert’s mind there are

few.”

Shunryu Suzuki

M
any modern computer vision algorithms are built atop of a set of low-

level feature operators (such as SIFT [Lowe, 2004; Luo et al., 2007]; HOG

[Dalal and Triggs, 2005; Albiol et al., 2008]; or LBP [Ahonen et al., 2004, 2006]) that

transform raw pixel values into a representation better suited to subsequent processing

and classification. While the choice of feature representation is often not central to the

logic of a given algorithm, the quality of the feature representation can have critically

∗This chapter presents preliminary work done in collaboration with David D. Cox [Pinto and Cox,
2011a].
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important implications for performance. Here, we demonstrate a large-scale feature

search approach to generating new, more powerful feature representations in which a

multitude of nonlinear, multilayer neuromorphic feature representations are randomly

generated and screened to find those best suited for the task at hand.

In particular, we show that this approach can generate representations that, in com-

bination with standard machine learning blending techniques, achieve state-of-the-art

performance on the Labeled Faces in the Wild (LFW) [Huang et al., 2007, 2008] un-

constrained face recognition challenge set. These representations outperform previous

state-of-the-art approaches, in spite of requiring less training data and using a concep-

tually much simpler machine learning backend. We argue that such large-scale-search-

derived feature sets can play a synergistic role with other computer vision approaches

by providing a richer base of features with which to work.

At the same time, we present an analysis of the errors made by our various models,

and show that each of them makes appreciably the same errors, and that a large fraction

of errors can be qualitatively explained by variation in the view of the targets. We argue

that seriously tackling such image variation, and building sets that contain more real-

world variation, will be an essential component of future research in unconstrained face

recognition.

11.1 Introduction

Face recognition has long been, and continues to be, a highly active area of research

[Belhumeur et al., 2002; Yang, 2002; Vasilescu and Terzopoulos, 2002; Zhao et al., 2003;

He et al., 2005; Zou et al., 2007; Hua et al., 2007; Hua and Akbarzadeh, 2009; Guil-

laumin et al., 2009; Wright and Hua, 2009]. In recent years, interest in the problem

of unconstrained face recognition has grown in the community, driven in large part by

the creation of the Labeled Faces in the Wild (LFW) [Huang et al., 2007, 2008] test

set, which has provided a standardized benchmark against which to measure progress.

While face recognition research per se has a long and rich history, much work prior to

the last decade was focused on face recognition in relatively constrained environments

(e.g. posed photographs, under controlled lighting conditions [Olivetti Research Labo-
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ratory, 1994; Yale Center for Computational Vision and Control, 1997; Martinez and

Benavente, 1998; Phillips et al., 1998; Computer Vision Lab at the University of Ljubl-

jana, 1999; Sim et al., 2003; Gao et al., 2007; Gross et al., 2010]). More recently, thanks

in large part to the rise of the internet, it has become possible to assemble large collec-

tions of face images “in the wild” in the sense that they come from a wide variety of

sources and were not posed for the purpose of research. While this set has proven to be

quite challenging, large strides have been in made in recent years towards higher per-

formance (e.g. [Taigman et al., 2009; Wolf et al., 2009; Kumar et al., 2009; Cao et al.,

2010] – see also Chapters 5 and 6).

While a variety of different approaches to the LFW set have been taken, a common

feature of most approaches is the use of some low-level visual feature set, such as SIFT

[Lowe, 2004; Luo et al., 2007]; HOG [Dalal and Triggs, 2005; Albiol et al., 2008]; or

LBP [Ahonen et al., 2004, 2006] that transforms raw pixels values into a better form

for subsequent processing. While individual algorithms often do not depend critically

on the choice of a particular feature representation used, the choice of features used

does frequently play a key role in determining performance. Meanwhile, there are only

a handful of visual feature representations in common use, and arguably less attention

has been paid to developing new or better features.

One potentially promising source for new, more complex visual feature represen-

tations is the class of “biologically-inspired” representations. Biologically-inspired ap-

proaches seek to build artificial visual systems that capture aspects of the computational

architecture of the brain, in the hope of eventually mimicking its computational abili-

ties. Such efforts to model visual computations done by the brain have a long history, at

least dating back to Fukushima’s Neocognitron (1980; [Fukushima, 1980]). More recent

experiments with biologically-inspired models have shown them to be highly compet-

itive in a variety of different face and object recognition contexts (e.g. [LeCun et al.,

2004; Chopra et al., 2005; Serre et al., 2007c; Mutch and Lowe, 2008; Jarrett et al.,

2009; Kavukcuoglu et al., 2009; Boureau et al., 2010a] – see also Chapters 4, 5 and 6).

However, the range of possible feature representations that would count as “biologically-

inspired” is broad, and it is not clear which particular instantiations of biologically-

inspired ideas are best for a given task. In Chapter 9, we previously demonstrated a con-
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ceptually simple high-throughput screening approach for model selection of biologically-

inspired algorithms, wherein a large number of possible candidate models from an inclu-

sive model family are considered, and the best performing models are “skimmed off the

top” and evaluated further. However, while that work showed success with synthetic

test images, it has not been known to date whether models from this class are compet-

itive with current state-of-the-art approaches on standard face and object recognition

test sets.

Here we present a modified large-scale feature search procedure that simplifies and

accelerates the search procedure described in Chapter 9, with the goal of generat-

ing feature representations tailored for unconstrained face recognition, as embodied

by the LFW test set. Multiple complimentary representations are further derived

through training set augmentation, alternative face comparison functions, and feature

set searches with a varying number of model layers. These individual feature represen-

tations are then combined using kernel techniques to achieve even better performance.

We show that our approach yields multiple feature sets that outperform previous state-

of-the-art approaches on the LFW set, even while requiring less training data and using

simpler machine learning backends. In addition to providing evidence for the utility of

large-scale feature search for standard “real world” test sets, these results emphasize

the value of good underlying representations and point a path forward in the generation

of new, more powerful visual features.

11.2 Methods

11.2.1 Large-scale feature search framework

The large-scale feature search approach used here consists of four basic components:

1. a parametric family of feature representation, wherein key aspects of the behavior

of the features are controlled by a fixed set of parameters,

2. a generation procedure for choosing models from the larger family to evaluate,
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Figure 11.1: A schematic diagram of the system architecture of the family of models
considered. Each model consists of one to three feed-forward filtering layers, with the filters in each
layer being applied across the previous layer.

3. a screening procedure, run on each candidate feature representation, to determine

which models to evaluate further and

4. a validation procedure, using independent data, to evaluate the utility of repre-

sentations found during the screening procedure.

The approach we follow here is similar to that described in Chapter 9, with two

important differences, which we describe briefly here, and detail in depth below. First,

in Chapter 9, we used an unsupervised learning procedure in order to learn certain

model parameters from a pre-training video set (see Methods Sections 9.2.3 and 9.5.7).

Here, we dispense with this unsupervised learning procedure, instead opting for greatly

speeded model generation, allowing more model architectures to be evaluated per unit

time. Second, we used the LFW View 1 subset as a screening set. Details of the
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model family considered, and generation, screening and validation procedures used are

described below.

11.2.2 Biologically-Inspired Visual Representations

In our experiments, we used two basic classes of biologically-inspired visual representa-

tions, shown in Figure 11.1.

First, as a control, we used V1-like, a one-layer model characterized by a cascade of

linear and nonlinear processing steps and designed to encapsulate some of the known

properties of the first cortical processing stage in the primate brain. Our V1-like im-

plementation was taken without modification from Chapters 4, 5 and 6.

Second, we used two and three layer models following the basic multi-layer model

scheme described in Chapter 9. Briefly, these models consist of multiple stacked layers

of linear-nonlinear processing stages, similar to those in the V1-like model. Importantly,

in order to speed the processing of these models, we disabled the unsupervised learning

mechanisms described in Chapter 9 and instead used random filter kernels drawn from a

uniform distribution. Prior experience of our group and others [Jarrett et al., 2009] has

suggested that random filters can in many cases function surprisingly well for models

belonging to this general class.

Details of each model class follow.

11.2.3 “V1-like” Visual Representation

In the V1-like representation, features were taken without additional optimization from

Chapter 4’s V1S+. This visual representation is based on a first-order description of

primary visual cortex V1 and consists of a collection of locally-normalized, thresholded

Gabor wavelet functions spanning a range of orientations and spatial frequencies.

We have proposed these V1-like features as a neuroscientist “null” model (a baseline

against which performance can be compared) for object and face recognition since they

do not contain a particularly sophisticated representation of shape or appearance, nor do

they possess any explicit mechanism designed to tolerate image variation (e.g. changes

in view, lighting, position, etc. [DiCarlo and Cox, 2007]). Here, this model serves as
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a lower bound on the level of performance that can be achieved by only relying on

relatively low-level regularities that exist in the test set. To be considered a promising

face recognition system in unconstrained settings, a model should minimally exceed the

performance of the V1-like model.

In spite of their simplicity, these features have been shown to be among the best-

performing non-blended features set on standard natural face and object recognition

benchmarks (i.e. Caltech101 [Fei-Fei et al., 2004a], Caltech256 [Griffin et al., 2007],

ORL [Olivetti Research Laboratory, 1994], Yale [Yale Center for Computational Vision

and Control, 1997], CVL [Computer Vision Lab at the University of Ljubljana, 1999],

AR [Martinez and Benavente, 1998], LFW [Huang et al., 2007]) and they are a key

component of the best blended solutions for some of these same benchmarks [Gehler

and Nowozin, 2009]. We used the publicly available source code to generate these

features and followed the same basic read-out/classification procedure as detailed in

Chapter 4, with two minor modifications. Specifically, no PCA dimensionality reduction

was performed prior to classification (the full vector was used), and a different SVM

regularization parameter was used (𝐶 = 105 instead of 𝐶 = 10, see below).

For a detailed description of the V1-like visual representation, we refer the interested

reader to the methods of Section 4.4, and the publicly available open-source code1 2.

11.2.4 High-Throughput-Derived Multilayer Visual Repre-

sentations: HT-L2 and HT-L3

In this study, we considered the five best two- and three-layer models generated from a

high-throughput feature search procedure (model selection) for a total of 10 multilayer

visual representations. An important feature of the generation of these representations,

according to the basic scheme set forth in Chapter 9, is the use of a massively parallel,

high-throughput search over the parameter space of all possible instances of a large class

of biologically-inspired models. This model class and the high-throughput screening

(model selection) procedure are modified from Chapter 9, as described below.

1http://pinto.scripts.mit.edu/Code
2https://github.com/npinto/v1like
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Model Architecture

Candidate models were composed of a hierarchy of two (HT-L2 ) or three layers (HT-

L3 ), with each layer including a cascade of linear and nonlinear operations that produce

successively elaborated nonlinear feature-map representations of the original image. A

diagram detailing the flow of operations is shown in Figure 11.1.

Input and Pre-processing

The input of the HT-L2 and HT-L3 models were 100x100 and 200x200 pixel images,

respectively. In the pre-processing stage, this input was converted to grayscale and

locally normalized as in Section 9.5.1.

Linear Filtering

All filter kernels were fixed to random values drawn from a uniform distribution.

11.2.5 Final Model Output Dimensionality

The output dimensionality of each candidate model was determined by the number of

filters in the final layer, and the x-y “footprint” of the layer (which, in turn, depends on

the subsampling at each previous layer). In the model space explored here, the possible

output dimensionality ranged from 256 to 73,984.

11.2.6 Screening (Model Selection)

A total of 5,915 HT-L2 and 6,917 HT-L3 models were screened on the LFW View

1 “aligned” set [Taigman et al., 2009]. We selected the best five models from each

“pool” for further analysis on the LFW View 2 set (Restricted Protocol). Note that

LFW View 1 and View 2 do not contain the same individuals and are thus mutually

exclusive sets. View 1 was designed as a model selection set while View 2 is used as an

independent validation set for the purpose of comparing different methods.

Examples of the screening procedure for HT-L2 and HT-L3 models on the LFW

View 1 task screening task are shown in Figure 11.2. Performance of randomly gener-
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top 5 models
LFW view 1 performance

Figure 11.2: The high-throughput screening process used to find good representations.
Here, data is shown for the screening of HT-L3 models. A distribution of the performance of 6,917
randomly generated models is shown on the left, with the top five high-performing models replotted
on the right. Following screening, the models were evaluated exclusively with sets that do not overlap
with the screening set.

ated HT-L3 models ranged from chance performance (50%) to better than 80% correct;

the best five models were drawn from this set and are denoted HT-L3-1st, HT-L3-2nd,

and so on. An analogous procedure was undertaken to generate five two-layer models,

denoted HT-L2-1st, HT-L2-2nd, etc.

11.2.7 Evaluation Protocol

To evaluate the performance of our biologically-inspired representations, we followed

the standard LFW face verification “Restricted View 2” protocol. 6,000 different face

image pairs (half “same”, half “different”) were drawn randomly from the sets and

divided into 10-fold cross validation splits with 5,400 training and 600 testing examples

each.

Because the biologically-inspired representations used here generate one feature vec-

tor per image, comparison functions were used to generate a new feature vector for each

pair, and these “comparison” features were used to train binary (“same” / “different”)
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hard-margin linear SVM classifiers. Following what was presented in Chapter 6, we

used the following element-wise comparison functions:

|𝐹1 − 𝐹2|,
√︀
|𝐹1 − 𝐹2|, and (𝐹1 − 𝐹2)

2, where 𝐹1 and 𝐹2 are the feature vectors gen-

erated from the first and the second image of the pair, respectively. We additionally

added the comparison function (𝐹1 · 𝐹2), which was not used in Chapter 6, under the

logic that it serves as a soft “AND-like” function (i.e. it primarily results in a large

response for elements where both 𝐹1 and 𝐹2 are large). We hypothesized that such a

function would be valuable since our representations are all quite sparse, and thus a

coincidence of high feature values in common between the two test images is likely to

provide meaningful evidence of similarity.

11.2.8 Kernel Combinations And Data-Set Augmentation

While the high-throughput search techniques described above are capable of yielding

relatively high-performing individual representations for LFW by themselves, effec-

tively all of the top-performing face recognition systems on LFW employ some form

of more advanced machine learning backend to enhance their performance [Taigman

et al., 2009; Wolf et al., 2009; Kumar et al., 2009; Cao et al., 2010]. One common ap-

proach in this regard is to blend together a large number of weak learners to produce

a blended classifier.

To explore what performance enhancement can be gained with modest amounts

of blending on top of our feature representations, we pursued a progressive strategy

of layering on additional kernels to produce successively larger and higher performing

blends. Two basic strategies were used for generating new kernels:

1. feature augmentation, performing operations on the input image, such as cropping

and rescaling to produce alternate kernels using the same representation,

2. representation blending, that is, combining together kernels derived from multiple

separate feature representations (e.g. blending over the five HT-L2 top models,

or combining the top five HT-L2 and HT-L3 models).

The progression of these additional elaborations is described next:
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Multiple rescaled crops

As in Chapter 6, we augmented the dataset by computing features on three different

centered crops of the image: 250x250 (original), 150x150 and 125x75. Each of these

crops was resized to the standard input size of each representation, and SVMs were

trained separately for each crop size. Blending of the resulting kernels was done by

simple kernel addition, with each kernel being trace-normalized (by the training kernel

trace) prior to summation. More sophisticated blending, for example Multi (or Infi-

nite) Kernel Learning (MKL/IKL) [Sonnenburg et al., 2006], or LP-Boost [Gehler and

Nowozin, 2009] were not used at this stage.

Blending of the Top 5 Models Within Class

While the top five models found by our high-throughput search all yield similar levels

of performance, they achieve this performance with different parameter sets. Conse-

quently, to the extent that the top five models represent a diversity of different ways

to achieve good performance, we would expect that blending these models would yield

further enhancement of performance. At this stage, we combined all of the Stage 1

kernels above (multiple rescaled crops) from each of the top five models within each

model-class (e.g. HT-L2 and HT-L3 ).

Hierarchical (weighted) blends across model class

Finally, we also explored a more principled way to blend the representations from each

model class. Following [Lazebnik et al., 2009] we assigned exponentially larger weight

to higher-level representation (V1-like < HT-L2 < HT-L3 ) resulting in the following

kernel:

𝐾(·, ·) =
∑︁
ℓ

(2ℓ−1)𝑘ℓ(·, ·) (11.1)

where ℓ = 1 for V1-like (one layer), ℓ = 2 for the top five HT-L2 (two layers) and

ℓ = 3 for the top five HT-L3 (three layers).

We note that the choice of blending strategies to consider on the View 2 set was
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alone +crops within blend V1+L2+L3 V1+L2+L3(weighted )
V1-like 77.0 ± 0.5 82.4 ± 0.5

87.6 ± 0.6 88.1 ± 0.6

HT-L2
5th 77.8 ± 0.4 82.8 ± 0.5

87.5 ± 0.5
4th 81.3 ± 0.4 85.4 ± 0.6
3rd 81.5 ± 0.6 85.1 ± 0.5
2nd 80.8 ± 0.4 83.6 ± 0.5
1st 81.0 ± 0.3 83.3 ± 0.5
HT-L3
5th 82.8 ± 0.6 84.5 ± 0.6

87.8 ± 0.4
4th 82.3 ± 0.3 82.7 ± 0.5
3rd 83.3 ± 0.4 85.6 ± 0.6
2nd 83.9 ± 0.3 86.8 ± 0.4
1st 84.1 ± 0.3 86.8 ± 0.3

Table 11.1: Performance (LFW Restricted View 2) of the family of biologically-inspired models and
blends thereof.

driven by performance on the View 1 set, thereby avoiding selection bias artifacts.

11.3 Results

11.3.1 High-throughput screening with LFW View 1

Figure 11.2 shows the results of high-throughput screening to select model instantiations

that are well-suited to the LFW verification task. For each model class, a multitude of

models were randomly generated and evaluated on the LFW view 1 set, and the best

five were selected for further analysis.

11.3.2 Performance on LFW Restricted View 2

Performance of individual models and model blends are shown in Table 11.1. Perfor-

mance ranging from 77.1% for the simplest V1-like model to 88.1% for the largest

blend were observed. Taken together, these results show that state-of-the-art level

performance is possible within the model family, and there exist multiple paths (e.g.

based purely on V1-like models, and based on high-throughput, multi-layer models) to

achieving high levels of performance. Figure 11.3 shows receiver-operator characteristic
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Figure 11.3: ROC curves for various model sub-families on LFW Restricted View 2. Plots
are zoomed-in to facilitate comparison.

(ROC) curves for each of these models.

Interestingly, the inclusion of a single additional comparison function to the V1-like

model blend described in Chapter 6 brings an additional 3% performance, placing it

close to the last reported best performance on this set, even without extensive blending.

Furthermore, we see that individual HT-L3 models also perform surprisingly well –

coming to within a few percent correct of the previous state-of-the-art.

A major advantage of our high-throughput approach is that it produces not one,

but a diversity of models, and this situation is ideally suited to kernel blending ap-

proaches. Once blending is added, especially when coupled with an intelligent algo-

rithm for weighting blended kernels, several different blends achieved performance ex-

ceeding previously reported state-of-the-art values (see Figure 11.4 and Table 11.2).

ROC curves for various blend groupings are shown in Figure 11.3.
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Figure 11.4: Comparison with the state-of-the-art on LFW Restricted View 2. ROC curves
for [Wolf et al., 2009], [Kumar et al., 2009] and [Cao et al., 2010] are retrieved from the official LFW
website. Plots are zoomed-in to facilitate comparison.

Reference [Kumar et al., 2009] [Wolf et al., 2009] [Cao et al., 2010] Ours

(ICCV09) (ACCV09) (CVPR10)

Mean

classification 14.7% 13.2% 15.5% 11.9%

error ±1.2 ±0.3 ±0.5 ±0.6

Table 11.2: Mean classification errors for different state-of-the-art methods.

11.3.3 Analysis of Errors

To understand better where room for improvement lies, we examined the error trials

(misses and false alarms) produced by each model for quantitative and qualitative

trends. To determine whether different models were primarily making the same or
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(a) Misses (b) False Positives

Figure 11.5: Examples of common errors across models. Misses tend to be dominated by
differences in view, while false positives frequently occur when different individuals share a common
view or expression.

different errors, we segregated the responses of the V1-like and HT-L3 models (rescaled-

crop augmented variants, see Methods) into four categories: hits, misses, false positives,

and correct rejections. We then computed the fraction of errors that these two models

held in common and found 84.3% of false positives were the same across the two models,

and that 87.3% of misses were missed by both models. This high level of consistency

between error cases across the two models led us to ask whether a subset of “hard”

images within the larger LFW set could be driving errors and capping performance.

Figure 11.5 shows examples of misses and false positives held in common for both

models. While developing a quantitative framework within which to analyze these errors

is beyond the scope of this paper, several patterns are evident, even upon casual inspec-
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tion. First, misses are dominated by situations where the individual-to-be-matched is

seen in non-frontal view in at least one of the images. Second, false positives appear to

occur more often in cases where different individuals appear in a very similar view, or

with a similar expression.

11.4 Discussion

Our results provide more evidence that biologically-inspired models represent a promis-

ing and powerful direction in face recognition research. Individual models from this

class are able to achieve good performance (e.g. around 77% for V1-like models, 84%

for HT-L3 ), and blends of these models achieve more than 88% correct performance,

beating previously reported state-of-the-art values.

Consistent with expectations, progressively more complex, multi-layer models are

able to outperform the simpler V1-like model. Whether this higher performance is due

to a greater ability to tolerate image variation – one of the original purposes for the

construction of the HT-L3 model class (see Chapter 9) – or some other factor remains to

be seen (Chapter 13). It should be noted that the HT-L2 and HT-L3 models used here

were substantially simplified from those presented in Chapter 9, in that they did not

have structured filter kernels, nor were they subjected to any unsupervised learning.

Whether adding these features back will result in higher levels of performance is an

important future research question.

While there still remains substantial room for improvement, concerns that the LFW

set does not necessarily accurately reflect the “full” problem of unconstrained face

recognition remain. LFW includes only a handful of examples per individual, and these

photographs were often taken in the same setting and at the same event. Furthermore,

Kumar et al. [Kumar et al., 2009] showed that human observers were able to perform

at greater-than-90% correct even when the faces themselves were masked out of the

test images, indicating that the backgrounds in the LFW are more than sufficient for

solving the task at a level higher than the current machine state of the art.

An analysis of the errors made by our models provides some clues about which parts

of the LFW set are difficult and which ones are not. Our models failed on remarkably
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similar sets of face pairs, indicating that a common core of “hard” images may exist

within the larger LFW set. A striking, albeit anecdotal, observation is that common

error cases are dominated by misses when the same individual is shown in differing

views and by false positives when two different individuals are compared while viewed

from a similar angle (e.g. Figure 11.5). An important feature of the LFW set is that

faces must be detected by a Viola-Jones face detector [Viola and Jones, 2001] in order

to be included in the set [Huang et al., 2007], and this effectively restricts the range

of face views that enter into the set (i.e. there is a bias towards frontal views). We

hypothesize that those more off-axis views that do manage to pass the face detection

filter will present a particularly difficult challenge for a system trained on the LFW

set. The low-level (e.g. pixel-level) difference between two different views of the same

individual can easily be larger than the low-level differences between two individuals in

a similar pose. A system that is not specially designed to tolerate this kind of variation

will have a high false alarm rate on trials where two different individuals are seen in the

same pose and a high miss rate where the same individual is compared across different

poses. At the same time, if the LFW set contains a relatively small fraction of these

off-axis faces, then a system trained exclusively on the LFW set will face difficulty

learning to tolerate these cases, even if that system has the capability to learn such

tolerance in principle.

As continued research manages to chip away at the remaining “performance gap”

between human and machines on the LFW set, increased attention will need to be paid

to whether LFW truly represents the problem of interest. On one hand, as long as

some performance gap exists, the set is obviously valid at a basic level. However, the

question remains whether a “fuller” formulation of the problem (i.e. more natural, less

filtered) might lead to faster progress.
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Chapter 12

From Face Verification to

Large-Scale Face Identification:

A Case Study with

Biologically-Inspired Visual

Representations∗

“Academic approaches to solutions tend not to

be useful in the real world. [...] Finding the

right balance between hackery and not ignoring

the many years of academic research is what is

needed.”

Con Kolivas

T
he problem of unconstrained face recognition has attracted increasing interest

from the community in recent years. However, while much work has focused

∗This chapter is modified from a preliminary study done in collaboration with Zak Stone, Todd
Zickler and David D. Cox [Pinto et al., 2011b].
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on face verification (asking whether two faces are the same) “in the wild”, relatively less

attention has been paid to face identification (labeling a face from a set of examples) in

realistic photographs. While face verification is interesting in its own right, real-world

face identification is increasingly relevant, given the rapid growth of personal digital

photo and video collections. To explore a large-scale identification regime, we created

two new face sets: Facebook100, a set gathered from the Facebook social network site,

and PubFig83, a subset of the publicly-available PubFig data adapted for identification

tasks. To benchmark these sets, we present experiments with a family of biologically-

inspired models – which have previously achieved state-of-the-art performance on the

LFW face verification set – and show that they yield high levels of face-identification

performance even when large numbers of individuals are considered; this performance

increases steadily as more examples are used. Finally, we discuss current limitations

and future opportunities associated with datasets such as these and argue that careful

creation of large sets that support both verification and identification is an important

future direction.

12.1 Introduction

In recent years, several serious efforts have emerged to move face recognition research

towards more and more unconstrained, “real-world” settings. A major driver of this

push has been the Labeled Faces in the Wild (LFW) data set, which brings together

thousands of face images of public figures from the internet. While some concerns have

been raised about whether this set is an ideal surrogate for the “full” problem of real-

world face recognition (see Chapters 5 and 6), it nonetheless has served to focus the

efforts of the community. More recently, a set in the same vein called PubFig [Kumar

et al., 2009] has been introduced to help facilitate larger-scale explorations in real-world

face recognition.

One property that LFW and PubFig have in common (at least in their usage to

date) is that they are designed primarily as tests of face verification – deciding whether

two faces represent the same person – rather than face identification, which requires

matching an unknown face or face set against a gallery of labeled face samples. Clearly,
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a continuum exists between these two, and, within limits, a system built under one

regime can be reconfigured to perform in the other. That is, if a system has previously

learned identities, it can perform verification by identifying each individual first and

comparing the labels to determine whether they are the same or different. Similarly,

a face verification system can be the primary component of an identification system,

with verification used to compare a test image pairwise with many training images;

the resulting similarity scores can then inform the identification choice. In practice,

however, a system that does identification by verification may be very sensitive to

verification errors, and it may not fully utilize the advantages of having a large, labeled

training set per individual.

Verification is a natural paradigm in many contexts (e.g. biometric authentication),

and it is obviously desirable to have face recognition systems that can function even

without a large amount of training data. But experiments in a large-scale face iden-

tification regime have become increasingly practical and relevant. The explosion in

usage of digital cameras has greatly increased the number of real-world photos that

are captured, and photo-sharing software and services (e.g. Facebook, Flickr, iPhoto,

and Picasa) have aggregated and organized these photos. Today, it is not uncommon

for individuals to have large personal databases of photos of familiar faces, with hun-

dreds or even thousands of images per individual. The ubiquity of personal and shared

photo databases presents opportunities both in terms of assembling data sets to guide

face recognition research and for potential use cases for working face recognition sys-

tems. Already, several available software applications attempt to perform automatic

face tagging, with varying levels of success.

The problem of face identification is also intimately related to familiar face recogni-

tion in humans. While humans are able in many contexts to identify a face with only a

single prior exposure (e.g. [Clutterbuck and Johnston, 2002]), day-to-day visual experi-

ence is dominated by repeated exposure to a much smaller group of familiar individuals.

Numerous human psychophysical studies have shown that processing of familiar faces

is enhanced relative to unfamiliar face recognition (e.g. [Bruce, 1986]), even for tasks

that don’t depend on identity (e.g. gender recognition; [Rossion, 2002; Balas et al.,

2007]).
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Research on face identification requires datasets for evaluation; unfortunately, how-

ever, it is not always possible to convert existing verification datasets into identification

datasets. The LFW data set, for example, contains few face samples for most individ-

uals and few individuals with large numbers of face samples. To address this problem,

we introduce two new datasets for identification research, both of which are derived

from images taken “in the wild”, and both of which include many face samples per

individual.

The first dataset we created is a set of face samples drawn from photos shared

online through the Facebook social network; images were collected in the manner of

[Stone et al., 2008, 2010]. Due to the vast size of the network, we were able to extract

many labeled samples of many distinct individuals, and it will be straightforward to

expand our benchmark set to increase the difficulty of the identification problem. As

a public complement to this private set of Facebook photos, we assembled a subset of

the PubFig dataset with an emphasis on removing near-duplicate images, which are

commonly encountered when seeking images of celebrities online.

To benchmark these sets, we used a family of biologically-inspired visual models.

These models seek to instantiate biologically-plausible neural-network-style computa-

tional elements organized either into a single- (Chapters 5 and 6) or multi-layer (Chapter

9) architecture. These models have been shown to excel in a standard face verification

task (LFW ), previously achieving state-of-the-art performance on that set (Chapter

11).

12.2 Datasets

12.2.1 The “Facebook100” Dataset

The Facebook100 data set used in this study contains 100 distinct person categories,

each of which is represented by 100 cropped face samples. These labeled face samples

were extracted from a set of shared Facebook photos and their associated “tags”, which

identify the locations of particular people in specific photographs. Figure 12.1 shows a

typical Facebook photo with its manually-applied tag locations superimposed in white.
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Facebook users tag themselves and their friends in photos for a variety of social

purposes [Nov et al., 2008; Marlow et al., 2006; Ames and Naaman, 2007], and they

typically manually assign a tag to a photograph by clicking somewhere on the photo

and entering a name. The coordinates of the click are used to place the tag, and

these coordinates are often conveniently centered on faces [Stone et al., 2008, 2010].

At present, the Facebook interface does not allow users to specify the size of a tagged

region, so the tags are assumed to label square regions of a standard size as shown in

Figure 12.1. Because the act of assigning a tag to a photo typically triggers a notification

to the person tagged and all of the friends of that person and the photographer (at least),

the identities assigned with tags tend to be extremely accurate.

Given a photo and its associated tags, we ran the OpenCV face detector to identify

actual face locations (shown as green circles in Figure 12.1), and we associated the

detected face regions with nearby identity tags using a conservative distance threshold.

In the photo shown in Figure 12.1, the detected foreground face is successfully matched

with a tag to yield a labeled face sample; the face detected in the background is correctly

not matched with the remaining tag, which is too spatially distant. More intensive and

sophisticated face detection techniques would allow us to harvest the tagged, rotated

foreground face that OpenCV missed in addition to more challenging tagged face images

throughout the Facebook dataset.

The face samples used in the Facebook100 dataset were drawn from the user-tagged

photos of approximately 50 college-age volunteers and their friends on the Facebook

social network; each volunteer authorized a Facebook application to allow us to col-

lect this data. Face samples were extracted and labeled as described above and then

grouped by individual, and face samples with OpenCV detection diameters less than

80 pixels were discarded for the purposes of this study. The 500 individuals with the

largest number of remaining face samples were selected to create a larger database of

individuals, and 100 of those individuals were chosen at random to form the dataset

used here. Each individual is represented by 100 face samples chosen at random from

the set of their available samples. We reserve the full set of 500 individuals for ongoing

work.
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12.2.2 The “PubFig83” Data set

The main disadvantage of the Facebook data set is that the images it contains are

currently private. Facebook has recently made it easier for users to share their pho-

tographs with “Everyone”, and, as a consequence, we expect that many numbers of

tagged photographs and videos of an extremely large number of individuals will even-

tually be available to the public from Facebook and other sources. In an effort to

facilitate academic research on familiar face recognition in the wild at the current time,

however, we have created a data set of public face images culled from the web that we

call PubFig83. Our hope is that recognition performance on PubFig83 will be broadly

predictive of recognition performance on more realistic face images from personal pho-

tos such as those shared on Facebook, and we can then use the much larger repository of

Facebook images to explore how various algorithms perform with increasingly difficult

images and much larger databases of people.

To create the PubFig83 dataset, we began with the recently released PubFig dataset

[Kumar et al., 2009], which consists of a set of nearly 60,000 image URLs that depict

200 people, most of whom are well-known celebrities. In a series of processing steps,

we selected a subset of PubFig that we hope will provide a stable foundation for face

recognition research. First, we downloaded all of the images that were still available

from the original image lists for both the development and evaluation sets, and we

obtained roughly 89% of the original images. We then ran the OpenCV face detector

on all downloaded images and treated the provided face label locations as “tags”; we

proceeded to match the face detections with identity labels just as we did for the

Facebook data set. This OpenCV filtering step left us with 90.6% of the readable

images (80.9% of the original PubFig set).

Upon examination of the remaining images, we noticed several sets of near-duplicate

images in many individual identity categories. These near-duplicate copies of a single

image varied from the original in many ways: some were scaled, cropped, and com-

pressed differently, some had their color spaces altered, and some had been digitally

edited more substantially, with whole backgrounds replaced or overlays added. With

millions of within-class image pairs to consider, we could not evaluate each pair manu-
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ally. To remove the vast majority of images that could be duplicates and produce the

final PubFig83 dataset, we applied a simple but coarse method: we globally ranked all

within-class image pairs by the similarity of their labeled face samples, and we treated

a portion of the most similar image pairs as duplicates. We compared images on the

basis of their face samples to avoid the effects of extreme cropping, and we scored each

pair by the maximum correlation of the central region of the face sample in one image

to the central region of the face sample in the other. After browsing the globally-ranked

list of image pairs manually, we determined that most obvious near-duplicates landed

in the top 4% of the list, so we treated all pairs in that range as duplicates. Manual

inspection of the remaining images suggested that this technique eliminated the ma-

jority of the near-duplicate image pairs, but it also eliminated pairs of images in which

the same individual makes nearly identical expressions on different occasions. This ar-

tificial culling of similar facial expressions makes this dataset more challenging than it

would have been if we could have removed only the true duplicate images.

For this study, we further selected all of the individuals in both the development

and evaluation sets for whom 100 or more face samples remained. This yielded a final

dataset of 83 individuals suitable for large-scale face identification testing.

12.3 Biologically-Inspired Visual Representations

In order to produce benchmarks for identification performance on the Facebook100 and

PubFig83 data sets, we relied on the family of biologically-inspired visual represen-

tations described in previous chapters and designed to model various stages of visual

cortex in the brain.

As in Chapter 11, two basic model classes were used (see Figure 11.1). First, we used

“V1-like,” a simple one-layer model characterized by a cascade of linear and nonlinear

processing steps and designed to encapsulate some of the known properties of the first

cortical processing stage in the primate brain. Again, our V1-like implementation was

taken without modification from Chapters 4, 5 and 6.

Second, we used two- and three-layer models following the basic multi-layer model

scheme described in Chapters 9 and 11. Briefly, these models consist of multiple stacked
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Figure 12.2: An example of the high-throughput screening process used to find HT-
L2 and HT-L3 representations. Here, data is shown for the screening of HT-L2 models. A
distribution of the performance of 5,915 randomly generated models is shown on the left, with the top
five high-performing models replotted on the right. Following screening, the models were evaluated
exclusively with sets that do not overlap with the screening set.

layers of linear-nonlinear processing stages, similar to those in V1-like. Importantly, in

order to speed the processing of these models, the learning mechanisms described in

Chapter 9 was disabled and instead used random filter kernels drawn from a uniform

distribution.

For a detailed description of these visual representations, we refer the interested

reader to the methods in Section 11.2.2.

12.3.1 Screening (Model Selection)

A total of 5,915 HT-L2 and 6,917 HT-L3 models were screened on the LFW View 1

“aligned” set [Taigman et al., 2009]. Following Chapter 11, we selected the best five

models from each “pool” for further analysis on the Facebook100, PubFig83 and LFW

Restricted View 2 sets. Note that LFW View 1 and View 2 do not contain the same

individuals and are thus fully mutually exclusive sets. View 1 was designed as a model

selection set while View 2 is used as an independent validation set for the purpose of

comparing different methods. Importantly, no special optimization of these models was
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done for either Facebook100 or PubFig83.

An example of the screening procedure for the HT-L2 models on the LFW View

1 task screening task is shown in Figure 12.2. Performance of randomly generated

HT-L2 models ranged from chance performance (50%) to 80% correct; the best five

models were drawn from this set and are denoted HT-L2-1st, HT-L2-2nd, and so on.

An analogous procedure was undertaken to generate five three-layer models, denoted

HT-L3-1st, HT-L3-2nd, etc.

12.3.2 Identification

To test in an identification mode for a given feature representation and data set, we first

generated feature vectors for each image in the set. These feature vectors were then used

to train a binary linear support vector machine (SVM) [Scholkopf and Smola, 2002] per

individual in a one-versus-all configuration [Rifkin and Klautau, 2004] using the Shogun

Toolbox [Sonnenburg et al., 2006] with the LIBSVM solver [Chang and Lin, 2001]. To

avoid the computational cost of fitting the SVM’s regularization hyperparameter 𝐶,

we fixed 𝐶 to a very high value (105), allowing no slack and thus resulting in a quasi-

parameter-free hard-margin SVM.

Final performance values were computed as the average of ten random test/train

splits of the data, with a variable number of training examples (see Figures 12.3 and

12.4) and ten testing examples per individual. In the case of the Facebook100 set, all

performance values presented here were the results of 100-way classification. For the

PubFig83 set, 83-way classifiers were used.

12.3.3 Verification

To explore the relationship between identification and verification, we also used the

Facebook100 and PubFig83 sets in a verification mode, following the structure of the

LFW face verification protocol (Restricted View 2 ) as closely as possible. 6,000 different

face image pairs (half “same”, half “different”) were drawn randomly from the sets and

divided into 10-fold cross validation splits with 5,400 training and 600 testing examples

each.
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Because the biologically-inspired representations used here generate one feature vec-

tor per image, comparison functions were used to generate a new feature vector for each

pair, and these “comparison” features were used to train binary (“same”/“different”)

hard-margin linear SVM classifiers. As in Chapter 11, we used four comparison func-

tions: |𝐹1 −𝐹2|,
√︀
|𝐹1 − 𝐹2|, (𝐹1 −𝐹2)

2, and (𝐹1 ·𝐹2), where 𝐹1 and 𝐹2 are the feature

vectors generated from the first and the second image of the pair, respectively.

As an additional point of reference, we also include verification performance on the

LFW set. Verification performance was derived for the Restricted View 2 portion of

the set. Performance of the selected V1-like, HT-L2, and HT-L3 models on LFW was

also reported in Chapter 11. While that work showed that relatively simple blended

combinations of multiple models belonging to this class were able to significantly out-

perform the state-of-the-art on the LFW set (> 88% performance), here we opted to

use each model individually for the sake of simplicity (a total of 11 models were evalu-

ated: one from V1-like, five from HT-L2, and five from HT-L3 ). Also, in contrast with

Chapters 6 and 11, we restricted ourselves to grayscale versions of the original image

crops.

12.4 Results

12.4.1 Facebook100

Performance using our biologically-inspired feature representations on the Facebook100

followed the same basic pattern as had been previously observed for Labeled Faces

in the Wild (in Chapter 11), with progressively more complex models (those with

more layers) yielding progressively higher performance (i.e. HT-L3 > HT-L2 > V1-

like). Figure 12.3 shows performance as a function of number of training examples per

individual for the V1-like, HT-L2-1st (i.e. the best-ranked two-layer model, as ranked

by its performance on the Labeled Faces in the Wild view-1 set), and the HT-L3-1st

models. Interestingly, we find that relatively high levels of performance (up to 86%)

are possible on this 100-way identification task, especially as the number of training

examples increases to 90.
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Figure 12.3: Facebook100. Performance of three models as a function of the number of training
examples per individual.

12.4.2 Pubfig83

Performance on the PubFig83 set followed appreciably the same trend as for the Face-

book100 set. Figure 12.4 shows performance of V1-like, HT-L2-1st, and HT-L3-2nd as

a function of the number of training examples per individual.

Asymptotic performance on the PubFig83 set was lower for all feature representa-

tions as compared to performance on the Facebook100 set. This is consistent with the

fact that the creation of PubFig83 involved an aggressive screening process designed

to remove duplicates, which also removed many legitimate faces from the set that were

similar to other faces in the set. We hypothesize that these “typical” faces would be

easier to classify, because their presence increases the odds that, for each test face, one

or more similar faces would normally exist in the training set. Figure 12.5 shows a
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Figure 12.4: PubFig83. Performance of three models as a function of the number of training
examples per individual.

scatter plot of the relative performance on these two sets for each of the 11 models

considered here (V1-like, five HT-L2 models, and five HT-L3 models). While the per-

formance on the PubFig83 set is displaced downward for all models, the relationship

between performance on the PubFig83 and Facebook100 sets is remarkably linear.

12.4.3 Comparing Verification and Identification Paradigms

To explore the relationship between face verification and identification paradigms, we

ran verification-mode experiments (in the style of Labeled Faces in the Wild) using

the Facebook100 and PubFig83 sets. Verification performance on the Facebook100 set

ranged from 62.45%, with the V1-like model, to 69.5% for the best HT-L3 model.

Verification performance on the PubFig83 set followed a similar range, with the V1-like

229



Chapter 12: From Face Verification to Large-Scale Identification

65 70 75 80 85 90

PubFig83 performance

65

70

75

80

85

90

Fa
ce

bo
ok

10
0

pe
rfo

rm
an

ce

Figure 12.5: Performance comparisons across models and data sets. Comparison of iden-
tification performance on the PubFig83 and Facebook100 data sets. Red triangles indicate HT-L3
models, green circles indicate HT-L2 models, and the blue star indicates V1-like.

model achieving 63.4% and the best HT-L3 achieving 70.2%. Figure 12.6 shows the

verification-mode performance of each of the 11 models considered here, plotted against

their identification-mode performance. Interestingly, the rough rank order of models

(from V1-like to HT-L2 to HT-L3 ) is preserved in both verification and identification

modes, and the approximately linear relationship between verification and identification

in the Facebook100 and PubFig83 is quite similar, despite these sets’ substantially

different provenance.

Finally, Figures 12.6(c) and 12.6(d) show the relationship between verification on

the Labeled Faces in the Wild set and identification-mode performance on Facebook100

and PubFig83. Again, a roughly similar, albeit shifted, relationship between verification

and identification performance is observed.
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12.4.4 Comparing Verification Paradigms Across Sets

For the sake of completeness, one final area that our experiments enable us to explore

is the relationship between verification-mode tasks across different sets. Figures 12.6(e)

and 12.6(f) show the performance of our model family on LFW versus verification

performance on each of our new sets. Here we see that while Facebook100 and PubFig83

continue to behave in a highly similar manner, both sets are substantially more difficult

in a verification task than the LFW view 2 set. It should be noted that the models

used here were originally screened from a larger set of models using the LFW view 1

set (see Section 12.3.1), so to the extent that LFW view 1 is somehow more similar to

LFW view 2 than it is to either PubFig83 or Facebook100, these models might be better

tailored to this set. In any event, this result underscores the fact that not all verification

challenges are created equal, and argues that one should be careful in comparing results

across sets, even when the sets were ostensibly produced by a similar process.

12.5 Discussion

Here we have presented experiments with face-identification in real-world settings. We

introduced two new large-scale face identification sets: Facebook100, a naturalistic set

of face images from users of the Facebook social networking website, and PubFig83, a

filtered subset of the original PubFig data set with many near-duplicate images removed.

While the Facebook100 cannot be shared due to privacy concerns, our results indicate

that, at least for the set of representations considered here, performance on PubFig83

is highly predictive of performance on the Facebook100 set, and we will make the

PubFig83 dataset available online. As privacy norms continue to evolve on Facebook, we

anticipate that much larger face sets (more individuals, more examples per individual)

will eventually become available for research purposes.

The methods used to collect our datasets are samples from a larger space of possi-

bilities. The original PubFig dataset leveraged text-image co-occurrence on the web to

harvest facial images of famous individuals, and similar results can be obtained by ex-

ploiting captions in news feeds and videos [Berg et al., 2004; Everingham et al., 2006]
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(a) FB100(verif.) vs FB100(ident.)
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(b) PF83(verif.) vs PF83(ident.)
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(c) LFW (verif.) vs FB100(ident.)
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(d) LFW (verif.) vs PF83(ident.)
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(e) LFW (verif.) vs FB100(verif.)
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Figure 12.6: Comparison of face verification and identification for 11 biologically-inspired
models. Symbols and colors follow the same conventions as in Figures 12.3 and 12.4.
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or by combining image and video data [Zhao et al., 2008]. In fact, because clothing and

hair features allow faces in videos to be tracked through partial occlusion and drastic

pose changes, face datasets harvested from video can more easily be built to include

these large-scale effects [Ramanan et al., 2007]. In contrast, the faces in our datasets are

currently filtered by a frontal face detector and therefore include only limited variations

in pose.

All of these approaches ([Berg et al., 2004; Everingham et al., 2006; Ramanan et al.,

2007; Zhao et al., 2008]) to dataset construction exploit metadata that is associated

with public figures, and the resulting datasets are consequently limited in the number

and diversity of individuals they contain. Furthermore, while many face samples can

be extracted from polished video sources such as movies and television shows, the

appearance variations of the people they represent are typically artificial and tightly

controlled. We are entering an era in which repositories of “user-generated content”

will grow vastly larger than collections of professionally-produced photos and videos,

and the models and the Facebook100 dataset we present here are intended for this new

era. We expect that most users of the Web will appear in an increasing number of

photos and videos online that are captured under natural, uncontrolled conditions over

larger and larger timespans, and it will become feasible to combine several of the data

collection techniques above to collect high-quality labeled face samples and tracks that

richly represent millions of individuals with extreme variations in appearance, pose,

expression, age, and other variables. Furthermore, the behavior of existing Facebook

users suggests that future user-generated content will also be annotated with socially-

incentivized metadata. In addition to enabling the harvesting of test sets, this metadata

can be used as another channel of information to further improve image-based face

identification rates at run-time [Stone et al., 2008, 2010].

Our experiments provide some indication of how a given set of representations will

perform across verification and identification tasks. It is not obvious a priori how per-

formance with a given model on a verification task ought to relate to performance on an

identification task. It is also difficult to reason about which task ought to be “harder.”

On one hand, verification-mode decisions are made with relatively impoverished data

(only a pair of images) and can require judgments to be made about two individuals
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whose faces do not occur anywhere in the training set. On the other hand, verifica-

tion tasks are binary decisions, so performance values will naturally be numerically

higher because chance performance is 50%. Ultimately, given the diversity in different

sets being used in face recognition research, it does not make sense to expect any sort

of predictable relationship between performance in various contexts, and thus this re-

lationship is a largely empirical question for each set. Our results in this regard are

reassuring in that the rough ranking of models we considered is well preserved through-

out, suggesting that there is some consistency across verification and identification. Our

data also provide hints at trends that may exist in the relationship between verifica-

tion and identification, though the evaluation of more systems, including systems from

other families, would be required to say anything definitive about these trends.

Another important finding from this study is that high levels of performance (<86%)

are achievable when reasonable quantities of training data are available. We note that

we did not attempt to optimize any of the representations used here for face identi-

fication, nor did we pursue any blending strategies to combine together multiple re-

presentation (such strategies have been demonstrated to yield even better performance,

see Chapters 6 and 11). Consequently, the performance numbers presented here likely

serve as a lower bound on performance that might be possible. Similarly, as even larger

numbers of examples per individual are included (Facebook users are routinely tagged

in hundreds if not thousands of photos), we anticipate higher performance still.
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Figure 12.7: Examples of near-duplicate images in the original PubFig set [Kumar et al., 2009]
before duplicate removal (top) and after (bottom). In this case, our correlation-based filtering process
correctly retains only a single unique example. Figure from Zak Stone.
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Figure 12.1: A representative Facebook photo with manually-applied “tags” (white square outlines)
and OpenCV face detections (green circles) superimposed. Detected face regions are matched with
nearby tags to yield labeled face samples, as shown above. Note that the untagged face detected in
the background is correctly not matched with the unassigned tag. Because tags carry social meaning
and can trigger notifications to hundreds of people when assigned, the identities that they specify are
typically extremely accurate. In the photo above, the leftmost foreground face is rotated too far to be
detected by OpenCV; more sophisticated face detection techniques would make it possible to harvest
this labeled face sample as well. Figure from Zak Stone.
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Chapter 13

Evaluating the Invariance

Properties of Successful

Biologically-Inspired Face

Recognition Systems∗

“If there is no solution, it is because there is no

problem.”

Les Shadoks

A
key challenge in building face recognition systems – biologically-inspired

or otherwise – is evaluating performance. While much of face recognition

research has traditionally used posed photographs for evaluation, recent efforts have

emerged to build more naturalistic, unconstrained test sets by collecting large numbers

of face images from the internet (e.g. the “Labeled Faces in the Wild” (LFW) test set

[Huang et al., 2007]). While such efforts represent a large step forward in the direction

of realism, the nature of posed photographs from the internet arguably represents an

∗This chapter is modified from a study that will be published in the proceedings of the Interna-
tional ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems
(BIONETICS) in collaboration with David D. Cox [Pinto et al., 2011a].
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incomplete sampling of the range of variation in view, lighting, etc. found in the real

world.

Here, we evaluate further the family of large-scale biologically-inspired vision algo-

rithms that has previously proven to outperform the current state-of-the-art approaches

on a variety of object and face recognition test sets, and specifically on the challenging

LFW, PubFig83 and Facebook100 face benchmarks (see Chapters 11 and 12).

As a counterpoint to internet-photo based approaches, we use synthetic (rendered)

face images where the amount of view variation is controllable and known by design (as

in Chapters 5, 6, 7 and 9). We show that while there is gross agreement between the

LFW benchmark and synthetic benchmarks, the synthetic benchmarks reveal a sub-

stantially greater degree of tolerance to view variation than is apparent from the LFW

benchmark in models containing deeper hierarchies. Furthermore, such an approach

yields important insights into which axes of variation are most challenging.

These results underscore, again, that parametric synthetic benchmarks can play

a critical role in guiding and monitoring the progress of biologically-inspired vision

systems.

13.1 Introduction

In Chapter 9, we described a very simple but large-scale feature search approach in

which thousands of candidate biologically-inspired feature sets are rapidly “screened” to

find model architectures that are well suited to a given problem domain. In Chapter 11,

we applied this method to the LFW face verification challenge, and find that it achieves

high levels of performance, on par with state-of-the-art methods, even without using any

particularly sophisticated machine-learning backend. In Chapter 12, we showed that

the models screened achieved excellent performance on PubFig83 and Facebook100 face

identification benchmarks.

However, face sets like LFW provide little direct insight into why one model performs

better than another, and the extent to which the LFW set – which is primarily composed

of posed photographs of celebrities – is reflective of the “real” problem of unconstrained

face recognition is not entirely clear. In particular, it is not clear that this set contains an
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accurate sampling of the range of view variation found in the real world (see Chapters

5 and 6) since most images are frontal views, and some of the examples of a given

individual are taken on the same day, at the same event (e.g. multiple photos of Halle

Berry taken from the academy awards ceremony). Thus, while the LFW challenge is

clearly useful, and an improvement over more controlled sets, it does not provide an

obvious path to the full evaluation of a vision model, nor is it clear how performance

on the LFW sets will transfer to other real-world scenarios.

As an complement to the LFW set, we here draw upon carefully-crafted synthetic

image sets. While synthetic images have fallen out of favor in the computer vision com-

munity in recent years, advances in 3D rendering software have increasingly narrowed

the gap between real and synthetic imagery, and rendered images offer several critical

advantages over collected photographs. In particular, rendered images allow for com-

plete knowledge and control over the view, position, scale, lighting, presence of other

objects etc. in a scene. As a result, synthetic test sets that span whatever range of

variation the experimenter desires can be easily generated, and tasks of parametrically

variable difficulty can be constructed. Importantly, such data sets also allow one to

specifically test the performance of a model as a function of variation in view, lighting,

etc. The ability of a model to tolerate such variation – referred to as “invariance” in

the parlance of neuroscience – is a critical property of natural vision systems, and is a

key stumbling block in the creation of artificial systems.

13.2 Methods

In the experiments presented below, we studied the biologically-inspired visual represen-

tations used and described in previous chapters: V1-like, multi-layer “High-Throughput”

(HT) models (see Methods Section 11.2). The HT models having either two or three

layers (referred to hereafter as HT-L2 and HT-L3, respectively).
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5th 4th 3rd 2nd 1st
V1-like 77.0 ± 0.5
HT-L2 77.8 ± 0.4 81.3 ± 0.4 81.5 ± 0.6 80.8 ± 0.4 81.0 ± 0.3
HT-L3 82.8 ± 0.6 82.3 ± 0.4 83.3 ± 0.4 83.9 ± 0.3 84.1 ± 0.3

Table 13.1: Performance of the family of biologically-inspired models on the LFW chal-
lenge set (Restricted View 2). For the HT-L2 and HT-L3 models, the cross-validated perfor-
mance of the top 5 randomly-generated models is shown (e.g. 1st, 2nd, etc.). The performance of the
simpler single layer V1-like model is provided for comparison.

13.2.1 Synthetic Face Images

In order to assess model performance on an image set with a known amount of variation,

we generated a set of 3D-rendered face images as in Chapters 5, 6 and 7. For the

experiments presented here, rotation, size, and position were combined into a single

composite “variation level” wherein the variation in the pixel-level euclidean norm was

equalized for each kind of variation (e.g. one “unit” of rotation variation produced an

equivalent pixel-level change as one “unit” of position variation). Examples of several

variation “levels” are shown in Figure 13.1(a).

The rendered face/head was next composited onto one of four kinds of backgrounds:

no background, a white noise background, a phase-scrambled natural background (ap-

proximately equivalent to 1
𝑓

“pink” noise), and a randomly chosen natural background,

chosen from a large pool of outdoor background images (Figure 13.1(b)). Care was

taken to ensure that the same background image was never used in more than one final

image.

13.2.2 Classification and Performance Evaluation

To evaluate the performance of a given model with a given stimulus set, we trained a

multi-class support vector machine (SVM) classifier [Scholkopf and Smola, 2002] using

a one-vs-all configuration [Rifkin and Klautau, 2004] for each target class.

Training and test data were strictly segregated, and performance was evaluated

using five 250 train / 50 test random folds of the data. Error bars in all plots show the
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no variation variation level 2 variation level 6

(a) View, position an scale variation

no background white noise phase scrambled
background (~1/f )

natural background

(b) Background variation

Figure 13.1: Synthetic face stimuli.

standard deviation of performance across these five folds.

13.3 Results

13.3.1 LFW performance

Performance on the LFW data set for these models is presented in Table 13.1. Perfor-

mance ranged as high as 84.1% percent correct for the best HT-L3 model, achieving

performance within a few percent of state-of-the-art methods [Kumar et al., 2009; Wolf

et al., 2009]. While more sophisticated kernel blending techniques have previously been
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used to achieve better performance on the LFW challenge set by leveraging multiple

feature representations (as in Chapters 6 and 11), we here restrict ourselves here to

unblended model performance for the sake of clarity. Further, for simplicity, we also

here only consider the best-performing model from each group (i.e. HT-L2-1st and

HT-L3-1st).
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Figure 13.2: Model performance on synthetic faces as a function of level of variation.
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13.3.2 Performance as a function of variation level

The synthetic face evaluation sets used here provide us with the ability to parametrically

control the level of rotation, position and scale variation that our models are required

to tolerate. Figure 13.2 shows the performance the best models from each model class

(V1-like, HT-L2, HT-L3) as a function of (composite) variation level for an eight-way

face classification task.

13.3.3 Effect of number of faces to be discriminated

To further explore the behavior of our models with a controlled stimulus, we examined

model performance as a function of the number of faces to be discriminated. In partic-

ular, we considered cases with two, four, six, and eight faces. Performance, grouped by

model is shown in Figure 13.3, and is shown grouped by variation level in Figure 13.4.

Predictably, absolute performance level is depressed as a larger number of faces is con-

sidered, as is the chance performance level (dotted line). Interestingly, the rate at which

performance falls off varies between models as a function of both number of faces to

be discriminated, and as a function of variation level. The stability of the performance

of the largest/deepest model – HT-L3-1st – is most pronounced when large number of

faces and large amounts of variation are considered. Differences between models are far

less pronounced with smaller numbers of faces and lesser degrees of variation.

13.3.4 Effect of background

To explore the role of background variation, we evaluated model performance with

four different background conditions: no background, white-noise background, phase-

scrambled natural backgrounds (i.e. 1
𝑓

“pink” noise), and natural backgrounds. Perfor-

mance as a function of background and variation level is shown Figure 13.5. Choice of

background was found to have a profound effect on model performance. In the absence

of a background, the performance for most models remained high, even at relatively

high levels of variation in view, position, and scale (e.g. greater than 90% performance

at variation level 4 for the HT-L3-1st and V1-like models). However, the inclusion of
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Figure 13.3: Effect of number of synthetic faces to be discriminated, sorted by model.

any background resulted in a precipitous drop-off in performance for all models, except

for the HT-L3-1st model, whose performance degraded gradually. In general, progres-

sively more realistic backgrounds proved increasingly difficult for all models.
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Figure 13.4: Effect of number of synthetic faces to be discriminated, sorted by variation
level. Note that the performance was 100% in all cases for the zero variation.

13.4 Discussion

While it is standard practice to test computer vision algorithms with standardized

“natural” image test sets such as the LFW set, the performance obtained on such a set

provides a relatively narrow window onto behavior of a given system. Here, we used
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Figure 13.5: Effect of background type on performance with synthetic faces. Note that the
performance was 100% in all cases for the zero variation condition.

synthetic test images, rendered with known amounts of variation, to provide a much

richer multidimensional assessment of the invariance properties of a class of models that

have achieved high levels of performance on the LFW set.

While the ordinal performance of the one-, two- and three-layer models considered
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here is roughly the same as is observed for the LFW set (i.e. V1-like < HT-L2 < HT-

L3), tests with synthetic sets reveal that the model with the deepest hierarchy (HT-L3)

is substantially better able to tolerate variation in view, position, scale and background

as compared to the other models considered here. This dramatic difference was not at

all apparent from the LFW performance, where the best HT-L3 model performed only

a few percent higher than its nearest rivals. While there is no hard evidence one way

or another, we speculate that the relatively compressed range of performance between

the various models on the LFW set is reflective of the relatively limited range of view

variation found in that set. Indeed, when we examine a relatively low level of variation

with our synthetic faces, we see a similarly compressed range of performance variation

across the models.

More broadly, our results suggest that the level of variation present in a set, both in

terms of view and in terms of background can have a large effect on the “dynamic range”

within which one has the ability to distinguish between models. Indeed, without any

background, and at low levels of variation, the differences between models can become

vanishing small, and in some cases can even reverse. These results underscore the

importance of building sets, be they synthetic or natural, that contain more realistic

ranges of variation.
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Chapter 14

Summary and Key Contributions

T
his chapter highlights the key contributions of this thesis and outlines their

implications.

14.1 New Baselines and Benchmarks

In Part II, we introduced clear and measurable indicators of progress to support efforts

in developing visual object recognition models.

We found that caution is warranted when using large databases of ostensibly “nat-

ural” images (collected from the web) by showing that very simple neuroscience “toy”

models (capable only of extracting trivial regularities from a set of images) were able to

outperform most state-of-the-art object and face recognition systems on many standard

“natural” image benchmarks.

At the same time, these rudimentary models were easily defeated by apparently

“simpler” synthetic (ray-traced) recognition tasks that we designed to efficiently capture

many of the key parameters that make visual object recognition challenging, and thus

to better span the range of real world image variation (object pose, position, scale, etc.)

in a tightly controlled way (Chapters 4, 5 and 6).

We also compared and contrasted a variety of state-of-the-art visual recognition

systems on the same controlled tasks and reported that most of them performed very
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poorly on invariant recognition (with the exception of a single high-level biologically-

inspired model), despite the expectation from leaders in the field that they should be

capable of dealing “fairly well” with simpler synthetic invariance tests, even though

some of these tests remain trivially easy for human observers. With a relatively small

image set and minimal effort, we showed how this approach can more deeply illuminate

the strengths and weaknesses of different visual systems (Chapters 7 and 8).

Taken together, our experiments demonstrated that even though current uncon-

trolled image sets that look “natural” to human observers are laudable because they

encourage systematic comparison of various algorithms. Furthermore, they can be dan-

gerous when hidden confounds exist in the sets, or misleading when it is not clear why

the sets are difficult – hence potentially guiding progress in the wrong direction. In

addition to tempering claims of success in the computer vision literature, these results

(1) suggest that care must be taken to establish appropriate baselines against which

performance can be judged, (2) call for a reexamination of what it means for images

to be natural and point the way forward by renewing our focus on image variation as

a central computational challenge in visual recognition, and (3) underscore the impor-

tance of building efficient parametric tests focused on capturing important insights into

which axes of variation are most challenging.

14.2 High-Throughput Solution Discovery

In Part III, we showed that a high-throughput exploration of the large hypothesis space

of possible computational vision models inspired by the visual cortex was attainable by

harnessing the power of massively parallel ubiquitous graphics hardware (e.g. Sony’s

PlayStation 3 and NVIDIA GPUs).

We demonstrated that this conceptually straightforward proof-of-concept (which is

no more and no less than a pure brute-force controlled model selection procedure or

“fishing expedition”) was extremely effective at identifying promising models within

a relatively restricted “first-order” family of semi-supervised hierarchical feature-based

models composed of three basic layers. The models we found consistently outperformed

the experimentally-motivated baseline models set forth in Part II as well as a crop of
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state-of-the-art computer vision systems that have been hand-tuned for many years.

Furthermore, we validated that the use of small synthetic sets proposed in Part II

was an efficient way of screening and selecting models that generalize well since the

representations of visual space instantiated by these models were found to be useful

generally across a variety of controlled object and face recognition tasks, even without

any specific optimization (which are usually performed by other approaches). This

reinforces our belief that parametric sets can capture the essence of the invariant object

recognition problem. Another critical advantage of this parametric screening approach

is that task difficulty can be increased on demand – that is, as models are found to

succeed at a given level of image variation, the level of variation (and therefore the level

of task difficulty), can be “ratcheted up” as well, maintaining evolutionary “pressure”

towards better and better models.

Our computational framework – based on flexible open-source tools with no com-

mercial dependency (e.g. Python), simple automated code optimization techniques

(see Section 9.6 and Chapter 10), and large computing resources (e.g. “do-it-yourself”

custom-built clusters of GPUs) – played an essential role in making our experiments

possible. Instead of spending many years and/or hundreds of thousand dollars with

conventional methods (e.g. MATLAB with CPUs), our approach can be applied in a

couple of weeks at a low cost. We believe that our models are among the first to achieve

state-of-the-art performance while being applied at scales approaching that of high-level

biological visual systems, both in terms of input dimensionality and the amount of ex-

perience obtained during development.

From the “first-order” family used here, we observed that only a handful of model

instantiations performed substantially better than the rest, with these “good” models

occurring at a low rate. The relative rarity of these models illustrates the importance

of performing large-scale experiments with many instantiations, since they would oth-

erwise be easy to miss in traditional “one-off” modes of exploration.

In sum, these results point a new way forward in the creation of high-performing

computer vision systems and underscore the importance of directly tackling one of

the primary obstacles to understanding the computational underpinnings of biological

vision: its sheer scale.
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14.3 Large-Scale Applications

In Part IV, we applied models harvested from our high-throughput approach to new

large-scale application domains such as face recognition “in the wild”. The primary

purpose was to validate the generality and scalability of our simple method.

We screened thousands of stripped-down1 two- and three-layer models on the La-

beled Faces in the Wild (LFW) unconstrained face verification2 training set. Consistent

with expectations, progressively deeper multi-layer models achieved increasingly better

performance and were able to outperform the simpler one-layer neuroscientist “null”

model proposed as a baseline in Part II. Interestingly, straightforward blends of the

best models defeated other state-of-the-art approaches on the LFW test set, in spite of

requiring less training data and using a conceptually simpler machine learning backend

(Chapter 11).

In addition, we showed that the same models were capable of dealing fairly well

with large-scale face identification3 as it is not obvious a priori how performance on

a verification task ought to relate to performance on an identification task. To this

end, we introduced two new sets: (1) Facebook100 : a naturalistic set of face images

gather from the Facebook social networking website, and (2) PubFig83 : a filtered

subset of the publicly-available PubFig data adapted for identification tasks with many

near-duplicate images removed. Interestingly, our models yielded high levels of face-

identification performance even when large numbers of individuals were considered and

the accuracy increased steadily as more training examples were used (Chapter 12).

We also addressed the concern raised in Part II that high performance on uncon-

trolled “natural” sets may not come from the ability to tolerate image variation, even

though it was one of the original purposes for the construction of the model class

(Chapter 9). First, we presented an analysis of the errors made by our various models

(Chapter 11), and observed that each of them makes appreciably the same errors, and

that a large fraction of errors can be qualitatively explained by variation in the view

1For the sake of simplicity, and to be able to screen more models per unit time, these models did
not have any structure in their filter kernels, nor were they subjected to the unsupervised learning
stage described in Part III

2Asking whether two faces are from the same person.
3Labeling the face, i.e. asking “which person is this?”
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of the targets (i.e. common error cases were dominated by misses when the same indi-

vidual is shown in differing views and by false positives when two different individuals

are compared while viewed from a similar angle). Then, we evaluated the best per-

forming models using the controlled synthetic procedure described in Part II and we

showed that while there is gross agreement between the “natural” face benchmarks and

the synthetic benchmarks, the synthetic benchmarks reveal a substantially greater de-

gree of tolerance to image variation (in view, position, scale and background) than the

“natural” benchmarks in models containing deeper hierarchies. Finally, we discovered

that the deepest (three-layer) screened model was substantially better able to tolerate

variation as compared to the other models considered (Chapter 13).

Collectively, these results provide convincing evidence that high-throughput screen-

ing of biologically-inspired models represent a promising and powerful direction in

the development of large-scale “real-world” applications, especially because the per-

formance numbers reported only serve as a lower bound on the performance that might

be possible. In addition, these results underscore, again, the importance of building

benchmarks, be they synthetic or natural, that contain more realistic ranges of varia-

tion.

14.4 Expectations

As the scale of the available computational power provided by massively parallel tech-

nology continues to expand, we believe that this research holds great potential for

rapidly advancing our understanding of the principles underlying visual perception,

accelerating progress in computer vision, and, most importantly, to generate new ex-

perimentally testable hypotheses for the study of biological vision.

In addition to guide future experiments aimed at “reverse-engineering” the brain, we

hope this thesis will contribute to the development of new intelligent visual technologies.
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