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Abstract

We give a comprehensive presentation of methods for calculating the Casimir force to
arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility func-
tions, and separations. The technique is applicable to objects immersed in media other
than vacuum, nonzero temperatures, and spatial arrangements in which one object
is enclosed in another. Our method combines each object's classical electromagnetic
scattering amplitude with universal translation matrices, which convert between the
bases used to calculate scattering for each object, but are otherwise independent of
the details of the individual objects. The method is illustrated by rederiving the Lif-
shitz formula for infinite half spaces, by demonstrating the Casimir-Polder to van der
Waals cross-over, and by computing the Casimir interaction energy of two infinite,
parallel, perfect metal cylinders either inside or outside one another. Furthermore, it
is used to obtain recent results: the Casimir energies of i) a sphere or ii) a cylinder
opposite a plate, all with finite permittivity and permeability, to leading order at
large separation, iii) a parabolic cylinder opposite a plate, both representing perfect
metal boundaries, and iv) a sphere or spheroid inside a cavity, where both the inside
object and the cavity walls have realistic material properties.

We also examine whether electrodynamic Casimir forces can lead to stable lev-
itation. Neglecting permeabilities, we find that any equilibrium position of objects
subject to such forces is unstable if the permittivities of all objects are higher or lower
than that of the enveloping medium; the former being the generic case for ordinary
materials in vacuum.

Thesis Supervisor: Mehran Kardar
Title: Professor

Thesis Supervisor: Robert L. Jaffe
Title: Professor



4



Acknowledgments

I had a feeling that getting a PhD would not be easy. But I could not have fathomed

the number of sleepless nights that I would endure to get to this point. The people,

who consistently suffered with me, were my parents, Malihe and Hassan, and my

sister Niloufar.

This thesis is dedicated to them.

It was absolutely not clear what I would do at MIT when I arrived. Many months

before the start of my time here, during the MIT open house days, I had met and

talked to the researcher I was most interested in working with, Prof. Mehran Kardar.

Let us say that the conversation had not gone very well. In response to practically

every future project I proposed, he suggested that I work with any number of other

people at other universities. I did not understand at the time that this was him

looking out for my best interest.

Given our first encounter, I actually felt more at ease to go to each and every

office hour of Kardar's Statistical Mechanics class and ask any question I wanted;

after all, he was clearly not interested in taking me as a student, I thought. Fate has

it, though, that this is exactly what happened.

Now, having been Mehran Kardar's student for the past five years, I am not just

happy I studied with him at MIT, I do not even know any other research group I

would prefer. The physics questions that I was given to investigate were beautiful and

relevant. His feedback was always thoughtful and useful, his record of responding to

my questions and requests impeccable. I thank him for giving me room to define my

own questions and to struggle with research, but investing time and energy to help

me become a better instructor, speaker, and writer. I also thank him for his sense of

responsibility toward me and for being my advocate when things got rough.

From today's perspective, what I had perceived to be a cool reception five years

ago, was, in reality, Mehran Kardar being caring and honest; if I wanted to work on

questions, which were not in his area of expertise, it would be best for me to go to

those other places. But not only did Mehran Kardar always put his student's wishes



first, he also treated me with exceptional kindness and courtesy. From him I learned

that even the most difficult situations with the outside world could be handled with

tact and generosity.

As our research direction turned from biological and statistical physics to quan-

tum fluctuation-induced forces, my interactions with Prof. Robert Jaffe intensified

and he became my co-adviser. Robert Jaffe inspired me with his vast knowledge of

physics and mathematical tricks and his emphasis on clarity in writing. I first met

Robert Jaffe when he instructed my graduate quantum mechanics class. He, like

Mehran Kardar, value and excel at lecturing effectively and pedagogically. The de-

tailed properties of scattering matrices that he taught me seemed exotic and distant

from my research at the time but turned out to be crucial for helping us solve the

geometry problem in Casimir forces later.

Dr. Thorsten Emig was not only my most steady collaborator, he also paid for it

by having to write upward of fifty letters of recommendation for me. I thank Thorsten

for working with me and being a most pleasant company at work and at conferences.

From each of the other members of our group, Prof. Noah Graham, Mohammad

Maghrebi, Alexander Shpunt, and Saad Zaheer I benefited through our various col-

laborations. Each of their individual styles made our team richer. Saad was still

an undergraduate when he completed two research projects with me, which included

very complicated calculations.

By working with Prof. Steven Johnson I learned how much ingenuity goes into

numerical methods, and I was struck by his enthusiasm and energy.

Although Prof. Leonid Mirny and I only worked on one project, he was willing

to go along with my dozens of requests for letters of recommendation. I am also

indebted to Dr. Peter Virnau, who was a postdoc in our group and was instrumental

in that joint project.

My friends and colleagues at MIT created an environment, in which pursuing our

studies was a pleasure. Here, I met some of the most interesting people I have ever

met, and I thank my friends and colleagues for our interactions over the past years:

Masoud Akbarzadeh, Peyman Ahmadi, Daria Amin-Shahidi, Rana Amirtahmasebi,



Maissam Barkeshli, Orkideh Behrouzan, Hoda Bidkhori, Mihai Bora, Clement Chate-

lain, Davoud Ebrahimi, Hossein Fariborzi, John Frank, Alborz Geramifard, Pouyan

Ghaemi, Tarun Grover, Nan Gu, Christoph Haselwandter, Hila Hashemi, Pedram

Hekmati, Mark Hertzberg, Hamid Hezari, Tilke Judd, Florian Kimpfer, Vijay Kumar,

Danial Lashkari, Alexander McCauley, Kaveh Milaninia, Ramis Movassagh, Shamim

Nemati, Alejandro Rodriguez, Alberto Rosso, Mark Rudner, Saeed Saremi, Antonello

Scardicchio, Reza Sharifi, Rouzbeh Shahsavari, Brian Swingle, Hadi Tavakoli Nia,

Anahita Tafvizi, Abolhassan Vaezi, and Andrea Zoia.

Knowing that my uncle Reza, his wife Simin, my uncle Amir, and his girlfriend

Feri were always there to help if I ended up in a non-academic disaster, on the other

hand, helped my parents go to bed with fewer worries. I thank them for helping

ensure that I had everything I needed.



8



Contents

1 Introduction 17

2 Methods 27

2.1 Casimir energy from field theory . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Electromagnetic Lagrangian and action . . . . . . . . . . . . . 27

2.1.2 Casimir energy of a quantum field . . . . . . . . . . . . . . . . 29

2.1.3 Euclidean Electromagnetic Action . . . . . . . . . . . . . . . . 30

2.2 Green's function expansions and translation formulas . . . . . . . . . 31

2.2.1 The free Green's function . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Translation matrices . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Green's functions and translation matrices . . . . . . . . . . . 39

2.3 A review of aspects of the classical scattering of electromagnetic fields 40

2.4 Partition function in terms of the scattering amplitude . . . . . . . . 45

3 Results 53

3.1 Constraints on stable equilibria . . . . . . . . . . . . . . . . . . . . . 53

3.2 A pplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 London and Casimir-Polder interaction between two atoms . . 60

3.2.2 Derivation of the Lifshitz formula . . . . . . . . . . . . . . . . 62

3.2.3 Two cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4 Sphere and plate . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.5 Object inside a sphere or spheroid . . . . . . . . . . . . . . . . 70

3.2.6 Cylinder and plate . . . . . . . . . . . . . . . . . . . . . . . . 84



3.2.7 Parabolic cylinder and plate . . . . . . . . . . . . . . . . . . . 86

4 Concluding Remarks 95

4.1 O utlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Derivation of the macroscopic field theory 97

B Green's function expansions and modified eigenfunctions 101

B.1 Green's function and eigenfunctions - plane wave basis . . . . . . . . 102

B.2 Green's function and eigenfunctions - cylindrical wave basis . . . . . 103

B.3 Green's function and eigenfunctions - spherical wave basis . . . . . . 104

B.4 Green's function and eigenfunctions - parabolic cylinder wave basis . 104

B.5 Green's function - elliptic cylindrical basis . . . . . . . . . . . . . . . 105

C Translation matrices 109

C.1 Plane wave basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.2 Cylindrical wave basis . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.3 Spherical wave basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

D Wave conversion matrices 113

D.1 Vector plane wave functions to spherical vector wave functions . . . 113

D.2 Vector plane wave functions to cylindrical vector wave functions . . . 114

D.3 Vector plane wave functions to parabolic cylinder vector wave functions 115



List of Figures

1-1 Force between a sphere of radius ~ 10 0 pm and a plate, both coated

with Au-Pd [2]. Square dots represent measurements, the solid line

is a theoretical computation using the PFA approximation and taking

into account roughness and finite temperature corrections as well as

material properties. The other lines represent calculations, where some

of these corrections are not taken into account. . . . . . . . . . . . . 18

2-1 Geometry of the outside (left) and inside (right) configurations. The

dotted lines show surfaces separating the objects on which the radial

variable is constant. The translation vector Xij = xi - xj = -Xj

describes the relative positions of the two origins. . . . . . . . . . . . 36

2-2 An elliptic cylinder approaching another cylinder. When the elliptic

cylinder is far (a), every point on the cylinder has smaller radius than

any point on the lower cylinder and an expansion using an ordinary

cylindrical basis can be used. This expansion breaks down once the

elliptic cylinder is close (b), but in that case an expansion using an

elliptic cylindrical basis applies (c). . . . . . . . . . . . . . . . . . . . 37



2-3 The scattering waves for outside scattering (left panel) and inside scat-

tering (right panel). In both cases the homogeneous solution Ea(w) is

shown in bold. For outside scattering, the homogeneous solution is

a regular wave, which produces a regular wave inside the object and

an outgoing wave outside the object. For inside scattering, the homo-

geneous solution is an outgoing wave, which produces a regular wave

inside the object and an outgoing wave outside the object. . . . . . . 42

3-1 The Casimir energy is considered for objects with electric permittivity

Ei(w,x) and magnetic permeability pi(w,x), embedded in a medium

with uniform, isotropic, EM(w) and pM(w). To study the stability of

object A, the rest of the objects are grouped in the combined entity

R. The stability of the position of object A is probed by displacing it

infinitesimally by vector d. . . . . . . . . . . . . . . . . . . . . . . . . 54

3-2 Interaction energy E of two identical atoms, Eq. (3.2.6), as a function of

their separation d. The curve shows the crossover between the London

interaction (d < dio = c/wio), Eq. (3.2.7), and the Casimir-Polder

interaction (d > dio), Eq. (3.2.8). . . . . . . . . . . . . . . . . . . . . 62

3-3 The upper infinite half space a is located a distance d above the half

space b. This is the original configuration considered by Lifshitz. Each

half space has its own uniform electric permittivity ei(ics) and mag-

netic permeability py(ic). We note that our calculation holds even if

the two origins 0 a and Ob are displaced horizontally from one another,

as show n here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3-4 Two perfectly conducting infinite cylinders with radii Ra and Rb are

separated by a center-to-center distance d. They can be outside one

another, or one may be inside the other. . . . . . . . . . . . . . . . . 65

3-5 A sphere b of radius R is located opposite a plate a, separated by a

center-to-surface distance d. . . . . . . . . . . . . . . . . . . . . . . . 67



3-6 Plots of #E (blue, positive) and #' (red, negative) as functions of

1/eao for fixed tO = 0 (left) or fixed po = 1 (right). For peo= 1

the two functions #E and #M approach 1 rather slowly from the right

(perfect metal limit). So, for comparison with experiments, it may

not be justified to use the perfect metal limit ea -+ oo of the plate to

compute the Casimir energy. . . . . . . . . . . . . . . . . . . . . . . . 70

3-7 Summary of the configurations we consider and of the results. We

have assumed that the small spheroid's zero frequency permittivity

satisfies er,o > 6M,o and that it is larger in the body-fixed i direction,

so > I . Furthermore, the magnetic permeabilities are all set to

one. a) Direction of the force F on such a spheroid in a spherical cavity

if Em,o > Eo,o, and the direction of the torque -r when either eM,o > co,o

or eM,o < eo,o. b) A finite size sphere experiences a restoring force

F for the various combinations of materials listed in Table 3.1. c)

Direction of the torque r in the center of a slightly spheroidal cavity

if either EM,O < 6o,o or EM,o > Eo,o . . . . . . . . - - - - - - - . 71

3-8 ff and ffu describe the part of the spring constant kR,-, which is

invariant under a rotation of the inside object. The vertical lines indi-

cate the values pertaining to the configurations presented in Table 3.1,

ethanol-vacuum (0.16), bromobenzene-vacuum (0.30), and gold cavity

walls (1). In this plot, pM,o = to,o. . . . . . . . . . . . . . . . . . . . 76

3-9 ff and fj' describe the part of the spring constant kRa, 0 , which

changes with the orientation of the inside spheroid. In this plot,

1UM,O = oo. . . . . . . . . . - - - . . . - - - - - - - - - - - - - - - 79

3-10 gE and gM describe the dependence of the energy Eo on the relative

orientation of the inside spheroid and the deformed cavity walls. . . . 80



3-11 PFA correction coefficients for spheres. r/R ranges from -1 (interior

concentric), to zero (sphere-plane), to +1 (exterior, equal radii). The

data points correspond to the exact values of 01 calculated numerically,

while the solid black curve is a fit (see text). Inset: "interior" and

"exterior" geometrical configurations. . . . . . . . . . . . . . . . . . . 83

3-12 A cylinder b of radius R is located opposite a plate a, separated by a

center-to-surface distance d. . . . . . . . . . . . . . . . . . . . . . . . 84

3-13 Plots of #E versus 1/Eao for fixed values of pUo. #E decreases both with

increasing 1/eao and increasing paO. The perfect metal limit (# E 1)

is approached slowly for large paO, as in the case of a sphere oppo-

site a plate. For large paO the interaction becomes repulsive, which is

expected given similar results for two infinite plates [95]. . . . . . . . 87

3-14 A parabolic cylinder a with radius of curvature R = po at the tip is

located opposite a plate b. The two are separated by a distance d,

which is defined in the main text. . . . . . . . . . . . . . . . . . . . . 88

3-15 The energy per unit length times H2 , EH 2 /(hcL), plotted versus H/R

for 0 = 0 and R = 1 on a log-linear scale. The dashed line gives the

R = 0 limit and the solid curve gives the PFA result. . . . . . . . . . 90

3-16 The coefficient c(0) as a function of angle for R = 0. The exact result at

0 = -r/2 is marked with a cross. Inset: Dirichlet (circles) and Neumann

(squares) contributions to the full electromagnetic result. . . . . . . 91



List of Tables

3.1 k, kRa-, k4 , and k6 are listed for various combinations of materials for

the case of a spherical inner object inside a spherical cavity, depicted

in Fig. 3-7 b). The dimensionless numbers in the table have to be

multiplied by 9. R is given in microns [pm]. kR,-o depends on R only

through the ratios 2 and I, so its numerical prefactor is the same forR R

all R. The highest cutoff used was lmax = 30. (The asymptotic result

kR,oo only requires 1 = 1, 2.) . . . . . . . . . . . . . . . . . . . . . . . 77



16



Chapter 1

Introduction

Neutral objects exert a force on one another through electromagnetic fields even if

they do not possess permanent multipole moments. Materials that couple to the elec-

tromagnetic field alter the spectrum of the field's quantum and thermal fluctuations.

The resulting change in energy depends on the relative positions of the objects, lead-

ing to a fluctuation-induced force, usually called the Casimir force. Alternatively, one

can regard the cause of these forces to be spontaneous charges and currents, which

fluctuate in and out of existence in the objects due to quantum mechanics. The name

'Van der Waals force' is sometimes used interchangeably but it usually refers to the

Casimir force in the regime where objects are close to one another so that the speed

of light is effectively infinite. The Casimir force has been the subject of precision

experimental measurements [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and

can influence the operation of nanoscale devices [5, 18], see reference [19] for a review

of the experiments.

Casimir and Polder calculated the fluctuation-induced force on a polarizable atom

in front of a perfectly conducting plate and between two polarizable atoms, both

to leading order at large separation, and obtained a simple result depending only

on the atoms' static polarizabilities [20]. Casimir then extended this result to his

famous calculation of the pressure on two perfectly conducting parallel plates [21].

Feinberg and Sucher [22, 23] generalized the result of Casimir and Polder to include

both electric and magnetic polarizabilities. Lifshitz, Dzyaloshinskii, and Pitaevskii



extended Casimir's result for parallel plates by incorporating nonzero temperature,

permittivity, and permeability into a general formula for the pressure on two infinite

half-spaces separated by a gap [24, 25, 26, 27, 28].

While these early theoretical predictions of the Casimir force applied only to infi-

nite planar geometries (or atoms), the first precision experiments measured the force

between a plate and a sphere. This geometry was preferred because keeping two

plane surfaces parallel introduces additional challenges for the experimentalist. To

compare the measurements with theory, however, a makeshift solution had to be used;

the Casimir force in the so-called Proximity Force Approximation (PFA) is calculated

by integrating the Casimir pressure of two parallel half spaces over the area that the

sphere and the plate expose to one another [29]. In general, this simple approximation

does not capture curvature corrections but in many experimental situations, it per-

forms surprisingly well, as can be seen in Fig. 1, for example; at the small separations

at which the force is typically probed in precision measurements the sphere and the

plate surfaces are well approximated by a collection of infinitesimal parallel plates.

20

0 -

A- -

-20 -
-40.

-100

-120

-140
100 200 300 400 500 600 700 800 900 1000

Plate-sphere separation (nm)

Figure 1-1: Force between a sphere of radius ~ 100pm and a plate, both coated
with Au-Pd [2]. Square dots represent measurements, the solid line is a theoretical
computation using the PFA approximation and taking into account roughness and
finite temperature corrections as well as material properties. The other lines represent
calculations, where some of these corrections are not taken into account.

Clearly, for larger separations and for surfaces that are not smooth the PFA must



fail. For example, in measurements of the Casimir force between a sphere and a trench

array significant discrepancies were found [14]. And even for the regimes in which the

PFA yields good estimates it would be desirable to know what the corrections to it

are.

In order to study Casimir forces in more general geometries, it turns out to be

advantageous to describe the influence of an arrangement of objects on the electro-

magnetic field by the way they scatter electromagnetic waves. Here, we derive and

apply a representation of the Casimir energy, first developed with various limitations

in Refs. [30, 31] and then fully generalized in Ref. [32], that characterizes each object

by its on-shell electromagnetic scattering amplitude. The separations and orienta-

tions of the objects are encoded in universal translation matrices, which describe

how a solution to the source-free Maxwell's equations in the basis appropriate to one

object looks when expanded in the basis appropriate to another. The translation

matrices depend on the displacement and orientation of coordinate systems, but not

on the nature of the objects themselves. The scattering amplitudes and translation

matrices are then combined in a simple algorithm that allows efficient numerical and,

in some cases, analytical calculations of Casimir forces and torques for a wide variety

of geometries, materials, and external conditions. The formalism applies to a wide

variety of circumstances, including:

" n arbitrarily shaped objects, whose surfaces may be smooth or rough or may

include edges and cusps;

* objects with arbitrary linear electromagnetic response, including frequency-

dependent, lossy electric permittivity and magnetic permeability tensors;

* objects separated by vacuum or by a medium with uniform, frequency-dependent

isotropic permittivity and permeability;

" zero or nonzero temperature;

* and objects outside of one another or enclosed in each other.



These ideas build on a range of previous related work, an inevitably incomplete

subset of which is briefly reviewed here: Scattering theory methods were first ap-

plied to the parallel plate geometry, when Kats reformulated Lifshitz theory in terms

of reflection coefficients [33]. Jaekel and Reynaud derived the Lifshitz formula us-

ing reflection coefficients for lossless infinite plates [34] and Genet, Lambrecht, and

Reynaud extended this analysis to the lossy case [35]. Lambrecht, Maia Neto, and

Reynaud generalized these results to include non-specular reflection [36].

Around the same time as Kats's work, Balian and Duplantier developed a multiple

scattering approach to the Casimir energy for perfect metal objects and used it to

compute the Casimir energy at asymptotically large separations [37, 38] at both zero

and nonzero temperature. In their approach, information about the conductors is

encoded in a local surface scattering kernel, whose relation to more conventional

scattering formalisms is not transparent, and their approach was not pursued further

at the time. One can find multiple scattering formulas in an even earlier article by

Renne [39], but scattering is not explicitly mentioned, and the technique is only used

to rederive older results.

Another scattering-based approach has been to express the Casimir energy as an

integral over the density of states of the fluctuating field, using the Krein formula

[40, 41, 42] to relate the density of states to the S-matrix for scattering from the

ensemble of objects. This S-matrix is difficult to compute in general. In studying

many-body scattering, Henseler and Wirzba connected the S-matrix of a collection

of spheres [43] or disks [44] to the objects' individual S-matrices, which are easy to

find. Bulgac, Magierski, and Wirzba combined this result with the Krein formula

to investigate the scalar and fermionic Casimir effect for disks and spheres [45, 46,

47]. Casimir energies of solitons in renormalizable quantum field theories have been

computed using scattering theory techniques that combine analytic and numerical

methods [48].

Bordag, Robaschik, Scharnhorst, and Wieczorek [49, 50] introduced path integral

methods to the study of Casimir effects and used them to investigate the electro-

magnetic Casimir effect for two parallel perfect metal plates. Li and Kardar used



similar methods to study the scalar thermal Casimir effect for Dirichlet, Neumann,

and mixed boundary conditions [51, 52]. The quantum extension was developed fur-

ther by Golestanian and Kardar [53, 54] and was subsequently applied to the quantum

electromagnetic Casimir effect by Emig, Hanke, Golestanian, and Kardar, who stud-

ied the Casimir interaction between plates with roughness [55] and between deformed

plates [56]. (Techniques developed to study the scalar Casimir effect can be applied to

the electromagnetic case for perfect metals with translation symmetry in one spatial

direction, since then the electromagnetic problem decomposes into two scalar ones.)

Finally, the path integral approach was connected to scattering theory by Emig and

Buescher [57].

Closely related to the work we present here is that of Kenneth and Klich, who

expressed the data required to characterize Casimir fluctuations in terms of the tran-

sition T-operator for scattering of the fluctuating field from the objects [58]. Their

abstract representation made it possible to prove general properties of the sign of the

Casimir force. In Refs. [30, 31], we developed a framework in which this abstract re-

sult can be applied to concrete calculations. In this approach, the T-operator is related

to the scattering amplitude for each object individually, which in turn is expressed

in an appropriate basis of multipoles. While the T-operator is in general "off-shell,"

meaning it has matrix elements between states with different spatial frequencies, the

scattering amplitudes are the "on-shell" matrix elements of this operator between

states of equal spatial frequency. 1 So, it is not the T-operator itself that connects,

say, outgoing and standing waves in the case of outside scattering but its on-shell ma-

trix elements, the scattering amplitudes. In this approach, the objects can have any

shape or material properties, as long as the scattering amplitude can be computed in

a multipole expansion (or measured). The approach can be regarded as a concrete

implementation of the proposal emphasized by Schwinger [59] that the fluctuations

of the electromagnetic field can be traced back to charge and current fluctuations on

1Because of this relationship, these scattering amplitudes are also referred to as elements of the
T-matrix. In standard conventions, however, the T-matrix differs from the matrix elements of the
T-operator by a basis-dependent constant, so we will use the term "scattering amplitude" to avoid
confusion.



the objects. This formalism has been applied and extended in a number of Casimir

calculations [60, 61, 62, 63, 64, 65].

The basis in which the scattering amplitude for each object is supplied is typically

associated with a coordinate system appropriate to the object. Of course a plane,
a cylinder, or a sphere would be described in Cartesian, cylindrical, or spherical

coordinates, respectively. However, any compact object can be described, for example,

in spherical coordinates, provided that the matrix of scattering amplitudes can be

either calculated or measured in that coordinate system. There are a limited number

of coordinate systems in which such a partial wave expansion is possible, namely

those for which the vector Helmholtz equation is separable. The translation matrices

for common separable coordinate systems, obtained from the free Green's function,
are supplied in Appendix C. For typical cases, the final computation of the Casimir

energy can be performed on a desktop computer for a wide range of separations.

Asymptotic results at large separation can be obtained analytically.

The primary limitation of the method is on the distance between objects, since the

basis appropriate to a given object may become impractical as two objects approach.

For small separations, sufficient accuracy can only be obtained if the calculation is

taken to very high partial wave order. (Vastly different scales are problematic for nu-

merical evaluations in general.) In the case of two spheres, the scattering amplitude

is available in a spherical basis, but as the two spheres approach, the Casimir energy

is dominated by waves near the point of closest approach [66]. As the spheres come

into contact an infinite number of spherical waves are needed to capture the dominant

contribution (see Section 2.2 for further discussion). A particular basis may also be

fundamentally inappropriate at small separations. For instance, if the interaction of

two elliptic cylinders is expressed in an ordinary cylindrical basis, when the elliptic

cylinders are close enough one may not fit inside the smallest circular cylinder that en-

closes the other. In that case the cylindrical basis would not "resolve" the two objects

(although an elliptic cylindrical basis would; see Section 2.2). Finally, for a variety

of conceptual and computational reasons, we are limited to linear electromagnetic

response.



In spirit and in mathematical form our final result resembles similar expressions

obtained in surface integral equation methods used in computational electrodynam-

ics [67]. Using such a formulation, in which the unknowns are currents and fields on

the objects, one can compute the Casimir energy using more general basis functions,

e.g., localized basis functions associated with a grid or mesh, giving rise to finite

element and boundary elements methods [63].

In addition to an efficient computational approach, the scattering formalism has

provided the basis for proving general theorems regarding Casimir forces. The seem-

ingly natural question whether the force is attractive or repulsive turns out to be an

ill-defined or, at least, a tricky one on closer inspection. When, for example, many

bodies are considered, the direction of the force on any one object depends, of course,

on which other object's perspective one takes. Even for two objects, "attractive"

forces can be arranged to appear as a "repulsive" force, as in the case of two inter-

locking combs [68]. To avoid such ambiguous situations one can restrict oneself to

analyzing two objects that are separable by a plane. Even here, it has turned out that

a simple criterium for the direction of the force could not be found. Based on various

calculations for simple geometries it was thought that the direction of the force can

be predicted based on the relative permittivities and permeabilities of the objects and

the medium. Separating materials into two groups, with (i) permittivity higher than

the medium or permeability lower than the medium (c > em and y < pm), or (ii)

the other way around (c < cM and p ?> pM), Casimir forces had been found to be

attractive between members of the same group and repulsive for different types in the

geometries considered. However, a recent counterexample [69] shows that this is not

always true. A rigorous theorem, which states that Casimir forces are always attrac-

tive, exists only for the special case of mirror symmetric arrangements of objects. It

was proven first with a T-operator formalism [58], similar to our approach used here,

and later using reflection positivity [70]. We have taken an alternative characteri-

zation of the force as fundamental, namely, whether it can produce stable equilibria

[713. Here, the categorization of materials into the two groups is meaningful since

objects made of materials of the same type cannot produce stable levitation. One



practical consequence of this theorem is that it reveals that many current proposals

for producing levitation using metamaterials cannot succeed.

To illustrate the general formulation, we provide some sample applications, includ-

ing the closed-form expressions for computing the interaction of a plate and a sphere

with finite, uniform, frequency-dependent electric permittivity and magnetic perme-

ability. We present the Casimir interaction energy explicitly at asymptotically large

separations in terms of the zero frequency permittivities and permeabilities of the

objects. Although most experiments have centered around the sphere-plate configu-

ration [1, 2, 3, 72, 5, 73, 74, 8, 9, 10, 12, 133, it is only recently that the force between

a dielectric sphere and an idealized metallic plate has been obtained for all distances

[75]. Subsequently, this result has been extended to the situation where both objects

are described by the plasma model [76], or also the Drude model, taking into account

finite temperature corrections [77, 783. In addition, we present the Casimir interac-

tion energy of a plate and a cylinder at asymptotically large distances in terms of

the two objects' zero frequency permittivities and permeabilities. Results beyond the

leading order using our closed-form formulation are not explicitly included, but all the

essential formulas are contained here. These results extend the perfect metal cylinder

and plate results presented in Ref. [79]. Furthermore, we analyze the Casimir effect

for a parabolic cylinder opposite a plate when both represent perfect metal material

boundary conditions [80]. We find that the Casimir force does not vanish in the limit

of an infinitesimally thin parabola, where a half plate is arranged above an infinite

plate, and we compute the edge effect.

Another class of geometries that is treated here consists of configurations, in which

one object is enclosed inside another. We rederive results for one perfect metal cylin-

der inside of another one [81] (in addition to the result for two cylinders outside of

one another [82]). Also, we consider the case of a finite sphere or a small spheroid

inside a spherical cavity, and a small spheroid inside a slightly deformed spherical

cavity [83, 84]. In these situations, we show that one can achieve stable levitation for

a compact object due to the Casimir force alone, when the conditions of the theo-

rem regarding instability are violated. We also find that Casimir torques exhibit an



unexpected and rich dependence on the electromagnetic properties of the materials.

The thesis is organized as follows: In Section 2.1 we review the derivation of

the ground state energy of a field theory using path integrals. In Section 2.2 we

expand the free electromagnetic Green's functions in terms of regular and outgoing

waves, taking into account that the pairs of waves in the expansion are evaluated

with respect to two different coordinate systems. This analysis yields the translation

matrices. Section 2.3 provides an overview of elements of scattering theory we will

use, including the connection between the T-operator and the scattering amplitude.

In Section 2.4 the path integral expression for the energy is re-expressed in terms

of the results of the preceding two sections, yielding the main result, Eq. (2.4.13).

The theorem regarding stability is derived in Section 3.1. In Section 3.2 sample

applications are presented: A short derivation of the Lifshitz formula, the cross-over

between van der Waals and Casimir regimes for two atoms, a general derivation of

previous results for cylinders, and recent results for the energy between a dielectric

sphere or cylinder and a dielectric slab, between a parabolic cylinder and a plate, as

well as between an object and the surrounding cavity walls. Some future research

directions are discussed in Section 4.1, finally.
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Chapter 2

Methods

2.1 Casimir energy from field theory

2.1.1 Electromagnetic Lagrangian and action

We consider the Casimir effect for objects without free charges and currents but

with nonzero electric and magnetic susceptibilities. The macroscopic electromagnetic

Lagrangian density is
1
2

The electric field E(t, x) and the magnetic field B(t, x) are related to the fundamental

four-vector potential All by E = -c- 1 8tA - VA' and B = V x A. We treat

stationary objects whose responses to the electric and magnetic fields are linear.

For such materials, the D and B fields are related to the E and H fields by the

convolutions D(t, x) = f_ dt' c(t', x)E(t - t', x) and B(t, x) = f dt' y(t', x)H(t -

t', x) in time. We consider local, isotropic permittivity and permeability, although

our derivation can be adapted to apply to non-local and non-isotropic media simply

by substituting the appropriate non-local and tensor permittivity and permeability

functions. A more formal derivation of our starting point Eq. (2.1.1), which elucidates

the causality properties of the permeability and permittivity response functions, is

given in Appendix A. An alternative route to seeing that this Lagrangian density,



even for dispersive media. is the correct one for use inside a path integral is presented

in Ref. [85].

We define the quantum-mechanical energy through the path integral, which sums

all configurations of the electromagnetic fields constrained by periodic boundary

conditions in time between 0 and T. Outside of this time interval the fields are

periodically continued. Substituting the Fourier expansions of the form E(t, x)

E(Wn, x)e'iw with wn= 2rn/T, we obtain the action

S(T) = jdt dx (E -D - B - H) = T Jdx (E* cE - B* -1B),

(2.1.2)

where c, E, y, and B on the right-hand side are functions of position x and frequency

wn, and we have used D(c, x) = c(w, x)E(w, x) and H(w, x) = B(w, x).

From the definition of the fields E and B in terms of the vector potential At, we

have V x E =iB, which enables us to eliminate B in the action,

S(T) T dx E* 2  V>x E - E* -VEl

where

V 2=1[ (1 -E(on, X)) + V X I V x (2.1.4)
c2 (o U, X)

is the potential operator and we have restored the explicit frequency dependence of

6 and p. The potential operator is nonzero only at those points in space where the

objects are located (c / 1 or t / 1).

In the functional integral we will sum over configurations of the field At. This

sum must be restricted by a choice of gauge, so that it does not include the infinitely

redundant gauge orbits. We will choose to work in the gauge A0 = 0, although of

course no physical results depend on this choice.



2.1.2 Casimir energy of a quantum field

We use standard tools to obtain a functional integral expression for the ground state

energy of a quantum field in a fixed background described by V(w, x). The overlap

between the initial state |Ea) of a system with the state |Eb) after time T can be

expressed as a functional integral with the fields fixed at the temporal boundaries [86],

(Ele -iHTh|Ea) f DA (E(t=0)Ea e 2.1.5)
E(t=T)=Eb

where S(T) is the action of Eq. (2.1.2) with the time integrals taken between zero

and T, and H is the corresponding Hamiltonian.

If the initial and final states are set equal and summed over, the resulting func-

tional integration defines the Minkowski space functional integral

Z(T) =(EaeiHThl Ea) = tr eiHTh S[T].16)
a

which depends on the time T and the background potential V(w, x). The partition

function that describes this system at temperature 1/# is defined by

Z(#) = Z(-ihp) = tr e-B3H(217

and the free energy F of the field is

F(3) = log Z(3). (2.1.8)

The limit # -- oo projects the ground state energy out of the trace,

Eo = F( = oo)=- lim log Z(#). (2.1.9)

The unrenormalized energy So generally depends on the ultraviolet cutoff, but cutoff-

dependent contributions arise from the objects individually and do not depend on

their separations or orientations. Such terms can also arise after renormalization if



objects are assumed to constrain electromagnetic waves with arbitrarily high frequen-

cies (for example, if the fields are forced to vanish on a surface). Such boundary condi-

tions should be regarded as artificial idealizations; in reality, when the wavelengths of

the electromagnetic waves become shorter than the length scales that characterize the

interactions of the material, the influence of the material on the waves vanishes [87].

Accordingly, the potential V should vanish for real materials in the high-frequency

limit. Since we are only interested in energy differences, we can remove these diver-

gences by subtracting the ground state energy of the system when the objects are in

some reference configuration. In most cases we will take this configuration to have

the objects infinitely far apart, but when calculating Casimir energies for one ob-

ject inside another, some other configuration must be used. We denote the partition

function for this reference configuration by Z. In this way we obtain the Casimir

energy,

E - lim - log Z( (2.1.10)
0-- Oc 0

Throughout our calculation of E, we will thus be able to neglect any overall factors

that are independent of the relative positions and orientations of the objects.

2.1.3 Euclidean Electromagnetic Action

By replacing the time T by -ih, we transform the Minkowski space functional

integral Z(T) into the partition function Z(). In A' = 0 gauge, the result is simply

to replace the frequencies wa, =2 in Eq. (2.1.4) by i2 = ican, where is is the nth

Matsubara frequency divided by c. (In other gauges the temporal component A0 of

the vector field must be rotated too.)

The Lagrangian is quadratic, so the modes with different ,in decouple and the

partition function decomposes into a product of partition functions for each mode.

Since the electromagnetic field is real, we have E*(w) = E(-w) on the real axis. We

can thus further simplify this decomposition on the imaginary axis by considering /,' >

0 only, but allowing E and E* to vary independently in the path integral. Restricting

to positive K is possible because the response functions e(ick, x) and p(icK, x) are



invariant under a change of sign in ics, as shown Appendix A. In the limit f3 -- 00,

the sum En>O turns into an integral 00 dK, and we have

hc DO
so = -- dK log Z(n),

27 J0
(2.1.11)

where

Z(r) JDADA* exp -# +1dxE* - (I

V(icK, x) = R K2 (E(icK, x) - 1) + V x

V x Vx)

1( p(icK, x)

E+ 12E* -V(icK, x) Ej

(2.1.12)

- 1) V X . (2.1.13)

The potential V(ic/-, x) is real for real K, even though E and y can have imaginary

parts for real frequencies w. Our goal is now to manipulate Z(K) in Eq. (2.1.12) so

that it is computable from the scattering properties of the objects.

2.2 Green's function expansions and translation

formulas

2.2.1 The free Green's function

The free Green's function and its representations in various coordinate systems are

crucial to our formalism. The free electromagnetic field (V = 0) obeys equations of

motion obtained by extremizing the corresponding action, Eq. (2.1.2),

( L + V x VX E(w,x)= 0. (2.2.1)

We will employ the electromagnetic dyadic Green's function Go, defined by

2 +

(-Ei ±2 + VX ) V G(W, x, XI) - (3)~ (X - I (2.2.2)



written here in the position space representation. It is easy to express Go as a Fourier

transform,

Iw/ dk e ik -(x-x') c 2

GO(WX, X) (27r )3 k 2 - (W/C + ie)2 W2 k0) (2.2.3)

where the displacement of the singularities at k = ± corresponds to outgoing waveC

boundary conditions at infinity. By replacing the factors of k by gradients, Go may

be expressed in terms of elementary functions,

(2.2.4)W4 
x2 iW x-x '/c

I X W2 47rIx - x'I

In this representation it is easy to see that Go is transverse, i. e. V -Go (x, x', w)

Go(x, x', w) - V' = 0, for x # x'. Go is not transverse at x = x', as can be seen by

taking the divergence of Eq. (2.2.2).

We work in coordinate systems in which we can use separation of variables and

employ a spectral representation of Go(x, x', w). That is, we represent the Green's

function through the complete set of non-singular ("regular"), transverse solutions to

the differential equation, Eq. (2.2.1),

Ere(w, x) = (xlE e(w)), (2.2.5)

represented formally by the eigenstate kets |Es(w)), where the generalized index a

labels the scattering channel, including the polarization. For example, for spherical

wave functions it represents the angular momentum quantum numbers (1, m) and the

polarization E or M. We will choose to normalize these states in accord with standard

conventions in electromagnetic scattering theory; as a result they are not necessarily

normalized according to the conventions typically used in quantum mechanics. A list

of the eigenfunctions for various common bases is given in Appendix B. The Green's

functions can be expressed as the coordinate-space matrix element of the operator

Go(w) - (dEa'C(w')
Go (w'/c) 2 - (w/c + iC) 2 'a

(2.2.6)



where the ie has again been included to implement outgoing wave boundary condi-

tions, so that the Green's function is causal.1 We use the symbol Go to represent both

the matrix-valued representation of the Green's function in position space, Eq. (2.2.2),

and the abstract Hilbert space operator, Eq. (2.2.6). The coefficients C,(w') are in-

serted because of our choice of normalization and ensure that

j dw' Ca(w') IEls(w')) (Egs(w') = I[. (2.2.7)
0 a

It is also useful to represent the Green's function in a different way, in which

one of the separable coordinates is identified as the "radial" variable and treated

differently from the remaining coordinates. We let (1 represent this coordinate and

denote the remaining coordinates as 2 and 6. We introduce the "outgoing" solution

in (1, which is in the same scattering channel as the corresponding regular solution

but obeys outgoing wave boundary conditions as 1 -- oo. It is linearly independent

of the regular solution. The full outgoing solution is then obtained by multiplying the

outgoing solution for (i by the regular solutions for 2 and (3. We can then express

one of the regular wave functions in the position space representation of Eq. (2.2.6) as

a sum of the outgoing solution for w and the outgoing solution for -w. By specifying

explicitly which of the two arguments of the Green's function has a greater value of

(1, we can carry out the w integral for each of these two terms separately by closing

the contour in the appropriate half-plane (88], and obtain

Eout (w, 1, 2, 3) 0 E r*(w, ', ( , () if X(x) > ((x')
Go(w,x,x')= Ca(W) C a fx

CeEasw E1, 2, 13 o i"( 1 76 GO) if 1X) < ((x')

(2.2.8)

In this form, the outgoing wave boundary condition is implemented explicitly. Since

the Green's function is written as a linear combination of solutions to the free wave

1The coordinate space matrix element of Eq. (2.2.6) is transverse for all x and x', and therefore
differs from the Green's function defined in Eq. (2.2.4) by terms local at x = x'. Since we never
employ Go at coincident points, we ignore this subtlety [88]. The use of the retarded Green's function
not only makes sense physically, but is also dictated by the imaginary-frequency formalism, just as is
the case for the response functions e and p. It is the retarded response functions that are analytically
continued in the frequency domain to positive imaginary frequency, as shown in Appendix A.



equation, it clearly satisfies Eq. (2.2.2) for x # x'. The normalization constant C(W),

which is determined using the Wronskian of the regular and outgoing solutions and

the completeness relationship for the regular solutions in (2 and (3, sets the correct

"jump condition" for x = x'.

The outgoing solution is typically singular at (i = 0, but the Green's function with

distinct arguments does not encounter that region, because the outgoing function is

always evaluated for the larger argument. For example, in a spherical system the

outgoing solution could take the form of a spherical Hankel function h1 )(kr) kr

with k = w/c, which obeys outgoing wave boundary conditions, is singular at the

origin, and is independent of the corresponding regular solution ji(kr).

We will usually work on the imaginary k-axis, in which case we will encounter

the corresponding modified special functions. We continue to label these functions as

"regular," "outgoing," and "incoming," even though they now increase exponentially

for large (1 for incoming and regular waves and decrease exponentially for outgoing

waves. We also note that it may be convenient to redefine the wave functions to

match the standard form of the corresponding modified functions, and to assign

different phases to the two polarizations. The prefactor C, (W) is then correspondingly

redefined as C,(r) to incorporate these changes. A list of Green's function expansions

in various common bases is given in Appendix B.

For a Cartesian coordinate system some of the previous statements have to be

adapted slightly. We will take one of the Cartesian coordinates, say z, to be the

"radial" coordinate, as required by the context. For example, z might be the direction

normal to the planar surface of a dielectric. The solutions are then given in terms

of plane waves, eikxx+iky i,(w/c) 2 _k!z where k1 is the momentum perpendicular to

the i direction. All are regular and all contribute in the integral representation of

Eq. (2.2.6). After analytic continuation to imaginary frequency, the free Green's

function in Cartesian coordinates is expressed by the above formula if we identify

outgoing solutions with plane wave functions that are exponentially decreasing in

the +i direction, eik~x+ikyy-ti 2+klz and regular solutions with the exponentially

growing solutions eikxxikyy± K2+kI



The wave functions that appear in the series expansion of the free Green's func-

tions in Eq. (2.2.8) satisfy wave equations with frequency w. The integral representa-

tions in Eq. (2.2.6), on the other hand, contain wave functions of all frequencies. As

we will see in Sec. 2.3, the ability to express the Casimir energy entirely in terms of an

"on-shell" partial wave expansion with fixed w will greatly simplify our calculations.

2.2.2 Translation matrices

We will use the free Green's function described in the previous subsection to combine

the scattering amplitudes for two different objects. In this calculation, the one argu-

ment of the Green's function will be located on each object. As a result, if Eq. (2.2.8)

is written in the basis appropriate to one object, we will want to "translate" one of

the scattering solutions to the basis appropriate to the other object. The configu-

ration of the two objects either outside of each other, or one inside the other -

will determine which object has the larger or smaller value of 61, and therefore which

solution needs to be expanded in the other basis.

We will make use of two expansions:

1. The regular solutions form a complete set no matter what origin is used to define

the decomposition into partial waves. Let { x)} be the regular solutions

expressed with respect to the origin of coordinates appropriate to object j, 0.

It must be possible to expand a regular solution E.*(t, x2 ), defined with respect

to the origin O appropriate to object i, in terms of the {Egs(K, x)},

E(K, xi) = Vo,, (K, Xji) Egx xj), (2.2.9)

where Xi= -- Xji = xi - x is shown in Fig. 2-1. Note that xi and x refer to

the same space point x, expressed as the displacement from different origins.

This expansion will be applicable to the case of one object inside the other.

2. The same type of expansion must also exist when the original wave obeys out-

going boundary conditions except in a region that contains the origin 04, where



E"t (n, xi) is singular. We therefore have the expansion

Eaut (xK, x) = , for x ( N(O) (2.2.10)

where N(O) is a neighborhood of the origin 02. This expansion will be appli-

cable to the case where the objects are outside each other.

XX

Figure 2-1: Geometry of the outside (left) and inside (right) configurations. The
dotted lines show surfaces separating the objects on which the radial variable is
constant. The translation vector Xi, = 2 x-x 9 = -Xyi describes the relative positions
of the two origins.

To apply these results to a given geometry, we must be able to distinguish between

regular and outgoing waves over the whole of each object. That is, we require there to

exist an origin and a separable coordinate system so that for all points x in one object

and x' in another object, (1(x) is always greater than (1 (x'), or vice versa. Having

(1(x) > (1(x') ensures that the Green's function is always evaluated by letting x be

the argument of the outgoing wave function and x' be the argument of the regular

wave function. We therefore require that any two objects be separated by a surface

. .........



Figure 2-2: An elliptic cylinder approaching another cylinder. When the elliptic
cylinder is far (a), every point on the cylinder has smaller radius than any point on
the lower cylinder and an expansion using an ordinary cylindrical basis can be used.
This expansion breaks down once the elliptic cylinder is close (b), but in that case an
expansion using an elliptic cylindrical basis applies (c).

defined by the locations x where 6 (x) is constant, as shown in Fig. 2-1. Depending

on the coordinate system, this surface could be a plane, cylinder, sphere, etc.

The case of an elliptic cylinder and a circular cylinder illustrates this requirement.

At large distances, the elliptic cylinder object can be separated from the circular

cylinder object by a circular cylinder of radius p, as shown in Fig. 2-2a. All points

on the elliptic cylinder object have values of p1 that are smaller than any point on

the circular cylinder object, so in this case we could carry out the calculation in

ordinary cylindrical coordinates. However, as shown in Fig. 2-2b, if the separation

becomes small enough, points on the circular cylinder object are closer to the center

of the elliptic cylinder object (i.e. they lie at smaller pi than points on the elliptic

cylinder object), and our method cannot be used in ordinary cylindrical coordinates.

However, in elliptic cylindrical coordinates (see Appendix B.5), the surface of the

elliptic cylinder object is itself a surface of constant elliptical radius p1, so all points

on the elliptic cylinder object have smaller p1 than any point on the the circular

cylinder object, and our method applies. This case is shown in Fig. 2-2c.

In a plane wave basis, we would exclude the case of two interlocking combs [68],
since each comb has values of z that are both bigger and smaller than points on the



other object, so again a single assignment of regular and outgoing solutions cannot

be made.

When object j lies wholly outside of object i, as shown in the left panel of Fig. 2-1,

in the basis of object i the point on object j will always have greater 64 than the point

on object i. We will therefore need to expand the outgoing wave in the basis for object

j. Since the origin Oi is never encountered when the point x lies on object j, the

outgoing solutions for i can be expanded in terms of the regular solutions for object

j using Eq. (2.2.10). Since i is also wholly outside j, we can also proceed the other

way around and expand the outgoing wave functions in the basis of object j in terms

of regular solutions in the basis of object i. This implies that the translation matrix

satisfies U'i = Ujt. When one object is inside another, as shown in the right panel

of Fig. 2-1, in the basis of object i, the point on object j will always have smaller i

than the point on object i. We will therefore need to expand the regular wave in the

basis for object j using Eq. (2.2.9). In contrast, we cannot use the expansion of the

outgoing wave functions, because the origin of the inside object may overlap with the

origin of the outside object, in which case the expansion does not converge.

For a Cartesian geometry, the translation matrix is proportional to e--ik'Xji,1- r+kix,2

It takes this simple form because plane wave functions are eigenfunctions of the trans-

lation operator. Then the "regular" wave function is evaluated on the object whose

z coordinates are smaller and the outer and inner objects have larger and smaller z

values, respectively.

The criterion for the expansion of the outgoing or regular wave functions is not

topological. Instead, the proximity of the objects and their origins determines which

expansion to use. In practice, it is usually easy to see which expansion is appropriate

for any objects.

After expanding wave functions with respect to another origin using translation

matrices, we can convert the wave functions from one basis to another, for example

from plane wave to spherical or cylindrical wave functions. This transformation is

useful when the two objects are best described in different coordinate bases. The

needed conversion matrices are supplied in Appendix D. Since it is more convenient



to describe this conversion as a change of basis of the scattering amplitudes, we will not

explicitly consider the combination of translation and conversion in this derivation,

but instead we will illustrate the change of basis of the scattering amplitude in the

examples.

2.2.3 Green's functions and translation matrices

To obtain the Green's function when one argument, say x, lies on object i and the

other argument, say x', lies on object j, we expand Go(ich, x, x') in terms of coordi-

nates xi and x that describe each point relative to the origin of the body on which

it lies. For the different situations given above we have

GO (icK, x, x')=

E. (r., xi) 0 U ) (is;, x )

E re X) 0 VQs;)Ei*(K, x)

Ea"(K) o i()E, *(,, x )

is) <

if i and j are outside each other

if i is inside j, or

if i is below j (plane wave basis)

if j is inside i, or

if j is below i (plane wave basis)

(2.2.11)

where W (s() = Vct(r,) - and Ca is the normalization constant defined in Eq. (2.2.8).

We can express these cases in the consolidated form,

Vaios)

0
GO (ic, x, x') = C() (E re(, xi)

a,O

where only one of the three submatrices is nonzero for any pair of objects

given in Eq. (2.2.11). The expansion can be written more formally as

(E i(n)
,(E /)

Eg*(i, x /
(2.2.12)

i and j as

(2.2.13)

E o"t (K, xi)) ugs)

( M"O(,)

(Go(ics,) = [ (-CO(K)) (IE r"eg(r)) I Eout (r))) X'js)
a,p



where the bras and kets are to be evaluated in position space in the appropriately

restricted domains and the X matrix is defined, for convenience, as the negative of

the matrix containing the translation matrices,

Xi() = Vii (2.2.14)

The translation matrices for various geometries are provided in Appendix C.

2.3 A review of aspects of the classical scattering

of electromagnetic fields

In this section, we review the key results from scattering theory needed to compute

the scattering amplitude of each body individually. Comprehensive derivations can

be found in Refs. [89, 90]. The approach we will use was first developed by Waterman

[91, 92], albeit not in the operator form that is used here. In the subsequent section we

will then combine these results with the translation matrices of the previous section

to compute Z(K).

The Fourier-transformed electromagnetic action of Eq. (2.1.2) yields the frequency-

dependent Maxwell equations:

1 
V x E(w, x) = i-B(w, x), V x -B(w, x) = -i-EE(w, x). (2.3.1)

C P C

Combining these two equations, we obtain

2

(Ho + V(w, x))E(w, x) =-E(w, x), (2.3.2)

where

HO = V x Vx,
2 1(2.3.3)

V(W, x) = ]I 2 (1 - C(W, x)) + V X - 1t(,X V x,



which is the same potential operator as the one obtained by rearranging the La-

grangian (see Eq. (2.1.4)). Since the electromagnetic potential is a differential oper-

ator, care must be taken with operator ordering.

The Lippmann-Schwinger equation [93]

|E) = |Eo) - GoVIE) (2.3.4)

expresses the general solution to Eq. (2.3.2). Here Go is the free electromagnetic

tensor Green's function discussed in Sec. 2.2 and the homogeneous solution |Eo)

obeys (-E+ HO) JEo) )= 0, which can be chosen to be either a regular or outgoing

wave for a particular frequency w. We can iteratively substitute for IE) in Eq. (2.3.4)

to obtain the formal expansion

|E) = |Eo) - GoVIEo) + GoVGoVlE) - .2...
(2.3.5)

= IEo) - GoTlEo),

where the electromagnetic T-operator is defined as

T=V = VGG 1 ) (2.3.6)
E + GoV 0

and G is the Green's function of the full Hamiltonian, (- E+ Ho +V) G =E. We

note that T, Go, and G are all functions of frequency w and non-local in space. As can

be seen from expanding T in Eq. (2.3.6) in a power series, T(w, x, x') = (xIT(w)Ix') is

zero whenever x or x' are not located on an object, i.e., where V(w, x) is zero. This

result does not, however, apply to

T- = Go + V-', (2.3.7)

because the free Green's function is nonlocal.

Next we connect the matrix elements of the T-operator between states with equal

w to the scattering amplitude T. In our formalism, only this restricted subset of



T-operator matrix elements is needed in the computation of the Casimir energy.

Figure 2-3: The scattering waves for outside scattering (left panel) and inside scat-
tering (right panel). In both cases the homogeneous solution Eo(w) is shown in bold.
For outside scattering, the homogeneous solution is a regular wave, which produces
a regular wave inside the object and an outgoing wave outside the object. For inside
scattering, the homogeneous solution is an outgoing wave, which produces a regular
wave inside the object and an outgoing wave outside the object.

Outside scattering

We consider a scattering process in which a regular wave interacts with an object

and scatters outward, as depicted in the left panel of Fig. 2-3.2 For outside scattering

the homogeneous solution |Eo) in Eq. (2.3.5) is taken to be the regular wave function

E,,(w)). We choose a convenient "scattering origin" in the inside region, consistent

with any symmetries of the problem if possible.

To find the field E at a coordinate x far enough outside the object, we use

Eq. (2.3.5) in position space and the expansion in Eq. (2.2.8) for Go:

E (w, x) = a E9(W, x) - EOutP, x) fC,3(w)E 1*(o x') -T (w, x' , x"/)E.Ew x)dx'dx".

(2.3.8)

Here "far enough outside" means that x has larger 6, than any point on the object,

meaning that we are always taking the same choice in Eq. (2.2.8), as described in
2 Alternatively, we can set up asymptotically incoming and outgoing waves on the outside and

regular waves inside. The amplitudes of the outgoing waves are then given by the S-matrix, which
is related to the scattering amplitude F by F = (S - 1)/2. Although these two matrices carry
equivalent information, the scattering amplitude will be more convenient for our calculation.

.......... ..... ................ ........ ... .. .. .....



Sec. 2.2. The equation can be written in Dirac notation, again with the condition

that the domain of the functional Hilbert space is chosen appropriately to the type

of solution,

E(w)) = Er,(w)) + |Eo t (w)) x (1)CO(w)(E"'(w)|T(w)|E rgw)), (2.3.9)

,3 f(w)

which defines as the exterior/exterior scattering amplitude (the one evaluated

between two regular solutions). We will use analogous notation in the other cases

below.

At coordinates x "far enough inside" a cavity of the object, meaning that x has

smaller ', than any point on the object, we have the opposite case in Eq. (2.2.8) and

the field E is given by

E(,)) = Ere(w)) + | Eg(w)) x (-1)C,(w)(E (w)|T(w)|Er,(w)), (2.3.10)

Jzie (w)

where again the free states are only defined over the appropriate domain in position

space, and FPe indicates the interior/exterior scattering amplitude.

Inside scattering

In the study of Casimir problems with one object inside the other, it is useful to

imagine a situation that would be difficult to realize in actual scattering experiments,

in which the wave probing the object originates inside the object and is scattered as

a regular wave inside the object and as an outgoing wave outside, as depicted in the

right panel of Fig. 2-3.

The situation is expressed mathematically by letting the homogeneous solution

Ea) in Eq. (2.3.5) be an outgoing wave |Eaut(w)). The equation can be expressed in



condensed form as before. Inside the object we have

E(w)) =|E" t(w)) + |E (w)) x (-1)CO(w)(E(w) 1(w)|Eaut (w)), (2.3.11)

and outside the object we have

E(w)) = Eu t (w)) + E (w)) x (1)CO(L)(EO (w)|T(w)|Ea"t(w)). (2.3.12)
'3

Remarks

We have obtained the scattering amplitude in the basis of free solutions with fixed

w. Since one is normally interested in the scattering of waves outside the object, the

scattering amplitude usually refers to Fee. We will use a more general definition,

which encompasses all possible combinations of inside and outside. The scattering

amplitude is always "on-shell," because the frequencies of the bra and ket wave func-

tions are both equal to w. As a result, it is a special case of the T-operator, which

connects wave functions with different w.

It is usually not practical to calculate the matrix elements by finding the abstract

T-operator and taking its inner products with free wave functions. Instead, one typi-

cally considers an ansatz for the solutions appropriate for inside or outside scattering

in the various regions, with unknown scattering amplitudes, and then solves the wave

equation, matching the solutions in different regions at their boundaries.

We will find it convenient to assemble the scattering amplitudes for inside and

outside into a single matrix,

Fee(K) ei(K)

(E s(r,)|T7(ics)|I E ) E 7 (ZTicrs)|I Eo( 2))

(Ein(r,)|IT(i cs)|IErg (r,)) (Ein(r,)|IT(icsr)|IEou'(r))

(2.3.13)



Here we have written this expression in terms of modified wave functions for W = icri,

with the corresponding normalization constant, since that is the case we will use.

The derivations of the scattering amplitudes carry over directly to this case, with K

replaced by w; for example, Eq. (2.3.9) becomes

-E(K)) =E ) + IE (K)) x ( (2.3.14)

2.4 Partition function in terms of the scattering

amplitude

With the tools of the previous two sections, we are now able to re-express the

Euclidean electromagnetic partition function of Eq. (2.1.12) in terms of the scattering

theory results derived in Section 2.3 for imaginary frequency. We will exchange the

fluctuating field A, which is subject to the potential V(icK, x), for a free field A',

together with fluctuating currents J and charges - ±V - J that are confined to the

objects. The sequence of two changes of variables that will be performed is often

referred to as the Hubbard-Stratonovich transformation in condensed matter physics.

We multiply and divide the partition function Eq. (2.1.12) by

W J DJDJ*|objexp r-0JdxJ*(x) -V-1(icr,x)J(x) = det V(ic, x, x') ,

(2.4.1)

where obj indicates that the currents are defined only over the objects, i.e. the

domain where V is nonzero (and therefore V-1 exists), and we have represented

the local potential as a matrix in position space, V(ic', x, x') = V(ict, x)6(3)(x -

x'). Our derivation generalizes straightforwardly to the case of a nonlocal potential

V(icK, x, x'), assuming it is still confined to each object individually.

We then change variables in the integration, J(x) = J'(x) + .V(icti, x)E(x) and



J*(x) = J'*(x) + 'V(ic, x)E*(x), to obtain

Z() = DADA* DJ'DJ'* obj exp [--- dx H

+ (J'*(x) + V(icsx)E*(x) -V-(ic,x) J'(x) + V(ic, x)E(x))

(2.4.2)

where

/(1 \ 1
'H=E*(x). I+ I V x Vx E(x) + I E*(x) -V(ics, x)E(x). (2.4.3)

Next we use a second change of variables, E(ic', x) = E'(ics, x)-i in f dx' Go(icK, x, x')J'(x')

and E* (icK, x) = E'* (ic', x)-i' f dx' Go (icn, x, x')J'* (x'), which simplifies Eq. (2.4.2)

to

Z() = J DJ'DJ'* b. (2.4.4)

exp -#dxdx'J'* (x) - (Go (icr, x, x') + V--1(icrs, x, x')) J'(x') ,

where

Zo DA'DA'* exp [- fJdx E'*(x) -EI[ + V x Vx E'(x) (2.4.5)

is the partition function of the free field, which is independent of the objects. The new

partition function of Eq. (2.4.4) contains a sum over current fluctuations in place of

the original field fluctuations in Eq. (2.1.12). The interaction of current fluctuations

at different points x and x' is described by the free Green's function Go (icrs, x, x')

alone. (If the potential V(ics, x, x') is nonlocal, this statement still holds for two

points x and x' on two different objects.) This is the expected interaction term. For

example, in the static limit K = 0, the free Green's function is just the Coulomb

interaction term 1 The inverse potential penalizes current fluctuations if the4rlx-xl 'I

potential is small. In vacuum, the potential vanishes, so current fluctuations are



infinitely costly and thus are not permitted. But of course the current fluctuations

are already constrained to the objects.

To put the partition function into a suitable form for practical computations,

we will use the results of the previous sections to re-express the microscopic current

fluctuations as macroscopic multipole fluctuations, which then can be connected to the

individual objects' scattering amplitudes. This transformation comes about naturally

once the current fluctuations are decomposed according to the objects on which they

occur and the appropriate expansions of the Green's function are introduced. We

begin this process by noticing that the operator in the exponent of the integrand in

Eq. (2.4.4) is the negative of the inverse of the T-operator (see Eq. (2.3.7)), and hence

Z(K) = Zo det V-1 (ic, x, x') det T(icK, x, x') (2.4.6)

which is in agreement with a more direct calculation: Since Zo = det Go (icrs, x, x')

and Z(r) = det G(ic, x, x'), we only need to take the determinant of Eq. (2.3.6) to

arrive at the result of Eq. (2.4.6).

Both Zo and det V- 1 (ic, x) are independent of the separation of the objects,

since the former is simply the free Green's function, while the latter is diagonal

in x. Even a nonlocal potential V(ics,, x, x') only connects points within the same

object, so its determinant is also independent of the objects' separation. Because

these determinants do not depend on separation, they will be canceled by a reference

partition function in the final result. We are thus left with the task of computing the

determinant of the T-operator.

As has been discussed in Sec. 2.3, the T-operator T(ics, x, x') is not diagonal in

the spatial coordinates. Its determinant needs to be taken over the spatial indices x

and x', which are restricted to the objects because the fluctuating currents J(x) in

the functional integrals are zero away from the objects. This determinant also runs

over the ordinary vector components of the electromagnetic T operator.

A change of basis to momentum space does not help in computing the determinant

of the T-operator, even though it does help in finding the determinant of the free



Green's function. One reason is that the momentum basis is not orthogonal over the

domain of the indices x and x', which is restricted to the objects. In addition, a

complete momentum basis includes not only all directions of the momentum vector,
but also all magnitudes of the momenta. So, in the matrix element (Ekl|T(w)|Ek')

the wave numbers k and k' would not have to match, and could also differ from w/c.

That is, the matrix elements could be "off-shell." Therefore, the T -operator could

not simply be treated as if it was the scattering amplitude, which is the on-shell

representation of the operator in the subbasis of frequency w (see Sec. 2.3), and is

significantly easier to calculate. Nonetheless, we will see that it is possible to express

the Casimir energy in terms of the on-shell operator only, by remaining in the position

basis.

From Eq. (2.3.6), we know that the inverse of the T-operator equals the sum of the

free Green's function and the inverse of the potential. Since the determinant of the

inverse operator is the reciprocal of the determinant, it is expedient to start with the

inverse T-operator. We then separate the basis involving all the objects into blocks

for the n objects. In a schematic notation, we have

[(x1|T'|x'1)] [(x11|Go1x'2]

[(x|T-x')] = [(x2|G 0 x'1)] [(x2|Tfx'2)] [ ...

where the ijth submatrix refers to x E object i and x' E object j and xi represents

a point in object i measured with respect to some fixed coordinate system. Unlike

the position vectors in Sec. 2.2, at this point the subscript of xi does not indicate

the origin with respect to which the vector is measured, but rather the object on

which the point lies. Square brackets are used to remind us that we are considering

the entire matrix or submatrix and not a single matrix element. We note that the

operators T and Go are functions of icK, but for simplicity we suppress this argument

throughout this derivation. When the two spatial indices lie on different objects,

only the free Green's function remains in the off-diagonal submatrices. Even if the

potential V(ici, x, x') is nonlocal in space, it does not connect points on different

(2.4.7)



objects. It follows that the inverse of the potential is block diagonal in position

space, where each block involves points on the same object, i.e., (xi|V-1 |x') = 0 for

i f j.

Next, we multiply T- by a reference T-operator T,O, without off-diagonal subma-

trices, which can be interpreted as the T-operator at infinite separation,

[(x|Too T-1x")] =

[(Xi 2x)1( fdx' 2x 2 2 X')K x'2|Gox 1)]

[fdx' (x1|T1|x')(x'JGo x2)]

[(x2|x'2)]

Each off-diagonal submatrix [f dx' xilTilx')(x'|Go x')] is the product of the T-operator

of object i, evaluated at two points xi and x' on that object, multiplied by the free

Green's function, which connects x' to some point x' on object j.
Now we shift all variables to the coordinate systems of the objects on which

they lie. As a result, the index on a position vector xi now refers to the object i

on which the point lies and to the coordinate system with origin 09 in which the

vector is represented, in agreement with the notation of Sec. 2.2. The off-diagonal

submatrices in Eq. (2.4.8) can then be rewritten using Eq. (2.2.13) as,

CO(s))] (2.4.9)

The matrix [(xTocT--j1 x")] has the structure R + AB, where

A =E

(2.4.10)

(2.4.8)

(E rg()x

rg (,[(xITIIE ))Xl2 (K))X12.0 [(x1JT1JEOuta ao

((xi|Ti|E *E(r)) (xi|TilE "(K))) X2,

0 0

(x2|T2|JEa ))Xg [(X2|IT2| E "u())X21



and

[-CO(K)(E (E,) xi')] 0 -..

C O(r)(rr)Ix/0 ...
0 [-Cp 3 ( K~)Ix'2')] ...

0O [ C (r) (E )'') - --

(2.4.11)

and the matrix multiplication now encompasses both the object index and the partial

wave index 3. Although the same symbols are used for each wave function, the bases

(spherical, planar, etc.) can be chosen differently for each object.

Using Sylvester's determinant formula det(I + AB) = det (I + BA), we see that the

determinant is unchanged if we replace the off-diagonal submatrices in Eq. (2.4.8) by

(E r,)ITiIEg() (E reg ) Ti IEo"t (K))
(-)C0s XZ . (2.4.12)

(EN"( )ITiIE rg (r)) (Ea" )Ti IEo"ts)

With this change, the diagonal submatrices in Eq. (2.4.8) become diagonal in the par-

tial wave indices rather than in position space. The matrix elements of the T-operator

are the scattering amplitudes, which can be obtained from ordinary scattering calcu-

lations, as demonstrated in Sec. 2.3. The first matrix in Eq. (2.4.12), including the

prefactor (-1)Ca(), is Fi(), the modified scattering amplitude of object i, defined

in Eq. (2.3.13).

Putting together Eqs. (2.1.11), (2.1.12), (2.4.6), and (2.4.8), we obtain

S = -c d log det (MM ), (2.4.13)

where

F-1 X12 X13 ..

M X21 F21 X23 ... (2.4.14)

and M 1 is a block diagonal matrix diag(F1 F2 - -).



Using the block determinant identity

det ( ) det (A) det (ID - CA- 1B) = det (D) det (A - ED-C), (2.4.15)
(C D

we can simplify this expression for the case of the interaction between two objects,

E = hc j dr log det (I - FaXabFbXba). (2.4.16)

Usually, not all of the submatrices of F and X are actually needed for a computa-

tion. For example, if all objects are outside of one another, only the submatrices Fee

of the scattering amplitude that describe outside reflection are needed. If there are

only two objects, one inside another, then only the inside reflection submatrix YF" of

the outside object and the outside reflection submatrix ee of the inside object are

needed.

In order to obtain the free energy at nonzero temperature instead of the ground

state energy, we do not take the limit / - oc in Eq. (2.1.9) [24]. Instead, the integral

i fo dio is replaced everywhere by j C, where cK = ' with n = 0,1,2,3... is

the nth Matsubara frequency. A careful analysis of the derivation shows that the zero

frequency mode is weighted by 1/2 compared to the rest of the terms in the sum;

this modification of the sum is denoted by a prime on the summation symbol. The

factor of 1/2 comes about because the fluctuating charges or currents have to be real

for zero frequency. Thus, for Ko, the expressions on the right hand side of Eq. (2.4.6)

should be placed under a square root. (For a complex field, both signs of the integer

n would be included separately, and n = 0 would be included once, with the normal

weight.)

If the medium between the objects is not vacuum but instead has permittiv-

ity 6m(icK) and magnetic permeability ym(ic) different from unity, then the free

Green's function is multiplied by pm(icK), and its argument r, is replaced by nm(iC K) K,

where nm(ics) = 1em(ics')pm(icK) is the medium's index of refraction. Effectively,

this change just scales all frequency dependencies in the translation matrices X(K),



which become X (nm(icK) i). Furthermore, the scattering amplitudes absorb the fac-

tor pm(icK) from the free Green's function and change non-trivially, i.e. not just by

some overall factor or a scaling of the frequency. They have to be computed with the

nonzero electric and magnetic susceptibilities of the medium.



Chapter 3

Results

3.1 Constraints on stable equilibria

Before presenting particular applications of the Casimir energy expression in Eq. (2.4.13),

we consider some general properties of electrodynamic Casimir interactions in this

section. Explicit calculations for simple geometries indicate that the direction of the

force can be predicted based on the relative permittivities, and permeabilities, of the

objects and the medium. Separating materials into two groups, with (i) permittivity

higher than the medium or permeability lower than the medium (e > Em and y < p'm),

or (ii) the other way around (E < eM and y > pM), Casimir forces are usually found

to be attractive between members of the same group and repulsive for different types.

(While this has been shown in several examples, e.g. in Refs. [27, 22, 23, 94, 951, a

theorem regarding the sign of the force only exists for mirror symmetric arrangements

of objects [58, 70].) Since ordinary materials have permittivity higher than air and

permeability very close to one, this effect causes objects to stick to one another. (The

above statements will be made precise shortly.) Particularly for nanomachines this is-

detrimental as the Casimir force increases rapidly with decreasing separation. This

has motivated research into reversing the force; for example, a recent experiment [17]

shows that, in accord with the above rules, a dielectric medium can lead to repulsion.

But the sign of the force is largely a matter of perspective, since attractive forces can

be easily arranged to produce repulsion along a specific direction, e.g., as in Ref. [68].



Instead, we focus on the question of stability, see Fig. 3-1, which is more relevant

to the design and development of MEMs and levitating devices. We find that in-

teractions between objects within the same class of material cannot produce stable

configurations.

fR

Af

'M |Am

Figure 3-1: The Casimir energy is considered for objects with electric permittivity
ei (w, x) and magnetic permeability pi P, x), embedded in a medium with uniform,
isotropic, EM(w) and pM(w). To study the stability of object A, the rest of the objects
are grouped in the combined entity R. The stability of the position of object A is
probed by displacing it infinitesimally by vector d.

Let us take a step back and consider the question of stability of mechanical equi-

libria in the realm of electromagnetism. Earnshaw's theorem [96] states that a col-

lection of charges cannot be held in stable equilibrium solely by electrostatic forces.

The charges can attract or repel, but cannot be stably levitated. While the stability

of matter (due to quantum phenomena) is a vivid reminder of the caveats to this

theorem, it remains a powerful indicator of the constraints to stability in electrostat-

ics. An extension of Earnshaw's theorem to polarizable objects by Braunbek [97, 98]

establishes that dielectric and paramagnetic (E > 1 and y > 1) matter cannot be

stably levitated by electrostatic forces, while diamagnetic (p < 1) matter can. This

is impressively demonstrated by superconductors and frogs that fly freely above mag-

nets [99]. If the enveloping medium is not vacuum, the criteria for stability are

modified by substituting the static electric permittivity Em and magnetic permeabil-

ity pm of the medium in place of the vacuum value of 1 in the respective inequalities.

In fact, if the medium itself has a dielectric constant higher than the objects (E < cm),

....... ..... - ..: I ~ , ....... ..............



stable levitation is possible, as demonstrated for bubbles in liquids (see Ref. [1001,

and references therein). For dynamic fields the restrictions of electrostatics do not

apply; for example, lasers can lift and hold dielectric beads with index of refraction

n = Vi > 1 [101]. In addition to the force which keeps the bead in the center of the

laser beam there is radiation pressure which pushes the bead along the direction of

the Poynting vector. Ashkin and Gordon have proved that no arrangement of lasers

can stably levitate an object just based on radiation pressure [102].

We begin our analysis of equilibria of the electrodynamic Casimir force with the

precursor of Eq. (2.4.13), which contains the abstract T and G-operators,

jE = - d tr ln T-iT,,, (3.1.1)

where the operator [T-1(icK, x, x')] equals

[T - (ic, x1, x')] [(G(icK, X1, X')] -.-.

[(G(icK, x2, X'1)] [T-1(icK, x2, X')] ,(3.1.2)

and Too is the inverse of T-- with G set to zero. The square brackets "[]" denote

the entire matrix or submatrix with rows indicated by x and columns by x'. To

obtain the free energy at finite temperature, in place of the ground state energy E,

f L- is replaced by the sum LT E'jO over Matsubara 'wavenumbers'K,, = 27nkT/hc

with the Ko = 0 mode weighted by 1/2. The operator [T-'-(ick, x, x')] has indices in

position space. Each spatial index is limited to lie inside the objects A, B, - -.. For

both indices x and x' in the same object A the operator is just the inverse T operator

of that object, [T (icK, x, x')]. For indices on different objects, x in A and x' in B, it

equals the electromagnetic Green's function operator [G(icK, x, x')] for an isotropic,

homogeneous medium. 1 As shown in section 2.4, after a few manipulations, the

'G satisfies (V x pL(icrs)V x +cm(iCri)'2) G(icr', x, x') = 6(x - x')IE, and is related to
GM, the Green's function of the imaginary frequency Helmholtz equation, by G(icr', x, x') =
pM(icr.) (E + (Mr,) -

2 V & V') GM(iCrMK, x, x'). Here, nM(iCr.) e= EM (ic)yM(icA) is the index
of refraction of the medium, whose argument is suppressed to simplify the presentation. Thus G,
in contrast to Go, takes into account the permittivity and permeability of the medium when it is



operators Tj and G turn into the on-shell scattering amplitude matrix, F, of object

J and the translation matrix X, which converts wave functions between the origins

of different objects. While practical computations require evaluation of the matrices

in a particular wave function basis, the position space operators Tj and G are better

suited to our general discussion here.

To investigate the stability of object A, we group the 'rest' of the objects into

a single entity R. So, T consists of 2 x 2 blocks, and the integrand in Eq. (3.1.1)

reduces to tr ln (E - TAGIRG). Merging the components of R poses no conceptual

difficulty given that the operators are expressed in a position basis, while an actual

computation of the force between A and R would remain a daunting task. If object

A is moved infinitesimally by vector d, the Laplacian of the energy is given by

Vd E - dr, tr 2nMi TGTRG (3.1.3)

+ 2TAVGTR (VG)T (3.1.4)

+ 2TAVGTRG _ (3.1.5)

(TAVGTRG + TAGTR (VG)T -AGTRG]

After displacement of object A, the Green's function multiplied by TA on the left

and TR on the right (TAGTR) becomes G(icK, x + d, x'), while that multiplied by

TR on the left and TA on the right (TRGTA) becomes G(icK, x, x'+ d). The two are

related by transposition, and indicated by VG(icri, x, x') = VdG(icK, x + d, X')|d=O

and (VG(ic ,x, x')) T - VdG(ics, x, x' + d)Id=o in the above equation. In the first

line we have substituted n2 (icK)K 2 G for V 2G; the two differ only by derivatives of

6 functions which vanish since G (ics, x, x') is evaluated with x in one object and x'

in another. In expressions not containing inverses of T-operators, we can extend the

domain of all operators to the entire space: Tj(ics, x, x') = 0 if x or x' are not on

object J and thus operator multiplication is unchanged.

To determine the signs of the various terms in V2 Eld~a, we perform an anal-

ysis similar to Ref. [58]. However, we do not investigate convergence issues and

different from one.



treat the operators like matrices from the start. This means that the necessary

criteria (smoothness, boundedness, compact support, etc.) are assumed to be ful-

filled in realistic situations, as dealt with in Ref. [58]. The operators TJ and G

are real and symmetric. An operator is positive (negative) semidefinite if all its

eigenvalues are greater than or equal to zero (smaller than or equal to zero). It

is easy to verify that G is a positive semidefinite operator, since it is diagonal in

momentum space, with G(ics, k) = pM(ic') + ± ) / (k2 + n2(ic')K 2 ), If

L is a real and symmetric matrix, it is positive semidefinite if and only if there

exists a matrix K such that L = KTK. Let us assume that TA and TR are each

either positive or negative semidefinite, indicated by sA = t1 and sR = t1. (We

shall shortly show how the sign of T can be obtained from the object's permit-

tivity and permeability.) The eigenvalues of I - TAGTRG, which equal those of

I - s vsATAGTRGV1SATA, are strictly positive, since the energy is real. (The above

expression appears in the integrand of Eq. (3.1.1) if there are only two objects.)

Under the trace we always encounter the combination (P - TAGTRG)- TA, which,

taking advantage of its symmetries and definite sign, can be written as sAIKTK

where K =(I -- sAsTAGTRGVsATAi/ 2 /sATA. The first term, line (3.1.3),

can now be rearranged as tr sAKTIKGTRG = sAsRtr [(KGR) (RTGKT)] by setting

TR = sRRRT and its sign is sASR. In the same way line (3.1.4) can be recast as

sAsRtr [(KVGR) - (KVGR)T , and its sign is thus also set by sAR. Lastly, the

term in line (3.1.5) can be rewritten as (KVGTRGK T + KGTR (VG)T KT) 2. Since

this is the square of a symmetric matrix, its eigenvalues are greater than or equal to

zero, irrespective of the signs of TA and TR. Overall, the Laplacian of the energy is

smaller than or equal to zero as long as sAsR ;> 0.

How can we determine the sign of Tj, defined in Eq. (2.3.6)? It is positive or nega-

tive semidefinite depending on the sign s of Vj, since Tj = s sJVJ vsJV J.
1I-+-sJ slVgG sJVj

The denominator I + s sJViGvsJV is positive semidefinite, even if s' = -1,

as its eigenvalues are the same as G(G 1 + Vj)/ G; the term in the parantheses

is just the (nonnegative) Hamiltonian of the field and the object J, G4 + Vj =

V x p-'(icr,x)V x +Erc2 (icK, x). Here, we have used Vj as given below, and



e(ic, x) and p(ic', x) are the reponse functions defined everywhere in space, either

of object J or of the medium, depending on the point x.

The analysis so far applies to each imaginary frequency ics. As long as the

signs of TA and TR are the same over all frequencies Vd Ela=O is proportional to

- 8A 8 R - (positive term) 2. We are left to find the sign of the potential Vj(icK, x) =

I[ 2 (cj(ics, x) - cm(icK)) + V x (pu~ 1(ici', x) - p-(icK)) V x of the object A, and

the compound object R 3. The sign is determined by the relative permittivities

and permeabilities of the objects and the medium: If ej(ic, x) > eM(ic) and

pj(ZCK, x) < pm(icK) hold for all x in object J, the potential Vj is positive. If

the opposite inequalities are true, Vj is negative. The curl operators surrounding

the magnetic permeability do not influence the sign, as in computing an inner prod-

uct with Vj they act symmetrically on both sides. For vacuum EM PM = 1, and

material response functions E(icri, x) and p(icK, x) are analytical continuations of the

permittivity and permeability for real frequencies [103]. While e(icK, x) > 1 for pos-

itive i, there are no restrictions other than positivity on p(icK, x). (For non-local

and non-isotropic response, various inequalities must be generalized to the tensorial

operators 7 (icK, x, x') and py (ic, x, x').)

Thus, levitation is not possible for collections of objects characterized by e6(ic', x)

and pj(ics, x) falling into one of the two classes described earlier, i) EJ/Em > 1

and pj/pM < 1 (positive Vj and T), or ii) EjEM < 1 and pj/pM > 1 with

(negative Vj and T). (Under these conditions parallel slabs attract.) The frequency

and space dependence of the functions has been suppressed in these inequalities. In

vacuum, Em(ics) = pM(icc) = 1; since E(icl, x) > 1 and the magnetic response of

ordinary materials is typically negligible [103], one concludes that stable equilibria

of the Casimir force do not exist. If objects A and R, however, belong to different

categories -under which conditions the parallel plate force is repulsive-, then the

terms under the trace in lines (3.1.3) and (3.1.4) are negative. The positive term in

2In practice, TA and TR suffice to have the same sign over the frequencies, which contribute most
to the integral (or the sum) in Eq. (3.1.1).

3The first curl in the operator Vj results from an integration by parts. It is understood that it
acts on the wave function multiplying Vj from the left.



line (3.1.5) is typically smaller than the first two, as it involves higher powers of T

and G. In this case stable equilibrium is possible, as demonstrated below for a small

inclusion within a dielectric filled cavity [84]. For the remaining two combinations of

inequalities involving Ej/EM and pJpM the sign of Vj cannot be determined a priori.

But for realistic distances between objects and the corresponding frequency ranges,

the magnetic susceptibility is negligible for ordinary materials, and the inequalities

involving p can be ignored.

It is clear that even very complicated materials cannot avoid the conditions re-

quired for the above result. In particular, metamaterials, incorporating arrays of

micro-engineered circuity display strong magnetic response at certain frequencies, and

have been discussed as candidates for Casimir repulsion across vacuum [104, 105]. In

our treatment, in accord with the usual electrodynamics of macroscopic media, the

materials are characterized by e(ic', x) and p(ics, x) at mesoscopic scales. This may

not always be valid, as for example in the case of magnetoelectric materials. Chirality,

and large magnetic response, in metamaterials is, however, achieved by patterns made

from ordinary metals and dielectrics with well-behaved e(icK, x) and p(ic, x) ~ 1 at

short scales [106]. Clearly, the coarse-grained response functions, in their region of

validity, should produce the same scattering amplitudes as the detailed mesoscopic

description. Consequently, as long as the metamaterial can be described by c(ic', x)

and p(icr', x) ~ 1, the eigenvalues of the T operators are constrained as described

above, and hence subject to the instability theorem. Finally, we note that instability

also excludes repulsion between such materials, if one of the objects is an infinite slab

with continuous translational symmetry: Repulsion would require that the energy as

a function of separation from the slab should have 8dS > 0 at some point since the

force has to vanish at infinite separation. A metamaterial does not have continuous

translational symmetry at short length scales but this symmetry is approximately

valid in the limit of large separations (long wavelengths), where the material can be

effectively described as a homogeneous medium. In this limit there cannot be repul-

sion while for short separations the material does not act like a metamaterial, that

is, it cannot be described by uniform electromagnetic response functions.



3.2 Applications

Our technique for calculating the Casimir energy applies to a wide range of situations.

In this section we demonstrate the method through a variety of examples.

3.2.1 London and Casimir-Polder interaction between two

atoms

As a simple example, we re-derive the interaction between two identical neutral atoms

in the ground state [20]. The atoms are described in a two-state approximation.

Within this approximation, the electric dipole polarizability of the atoms is given by

E 10  2

where e is the electron charge, m is the mass, fio is the oscillator strength of the 0 - 1

transition, and w10 is the frequency of that transition. We perform a Wick rotation

w -- icr and set r- u/d, where d is the distance between the atoms. By introducing

the characteristic length scale d1o = c/wio and the static electric polarizability

ao = fiorodlo, (3.2.2)

where ro = e2/(mc 2) ~ 10 1 m is the classical electron radius, the polarizability can

be written as
aE(U) (d/dio)2ao

(d/dio) 2 + U2 (3.2.3)

In the isotropic-dipole approximation, the only nonzero element of the scattering

amplitude of the atom is given in terms of the electric dipole polarizability as

FirE,1mE = -5 (3.2.4)3

for m = -1, 0, 1. The atoms are assumed to have no magnetic polarizability. Using

the general expression of Eq. (2.4.16) for the interaction energy between two objects,



we get

E = jdu log I - 4(1 + u) 2 e-2u (E + + -2)2e2u 6 )

=- ~ 1du (a E)2 (3 +6u + 5 2 +U) (3.26)

where we have expanded the logarithm assuming aE (U) d 3 , so that the interaction

energy is proportional to the product of the polarizabilities of the atoms. It is instruc-

tive to consider two limits. First, assume that d < d1 . By the change of variable

a = (d/dio)z, one easily finds that in Eq. (3.2.6), only the leading constant term of

the polynomial in u has to be considered, and the exponential factor can be ignored.

The integral is convergent at large u due to the behavior of the polarizability aE(u)

at large u. The integral over z yields, to leading order in d/dio, the energy

3 a2
L hW10  , (3.2.7)

which is the well-known London interaction [107].

In the opposite limit d > dio retardation is important. From Eq. (3.2.3) we see

that the frequency (u) dependence of the polarizability now can be neglected, so that

a ~ ao. In this retarded limit, the polynomial and exponential in u in Eq. (3.2.6) are

important, and integration yields the energy

2
ECP =~ he _04wP 23 C (3.2.8)47rF d7

which is known as the Casimir-Polder interaction [20].

For general distances d, the interaction between the atoms can be computed

numerically; to quadratic order in the polarizability it is given by the integral of

Eq. (3.2.6). The numerical result and the two limiting forms of the interaction are

shown in Fig. 3-2.
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Figure 3-2: Interaction energy S of two identical atoms, Eq. (3.2.6), as a function
of their separation d. The curve shows the crossover between the London interac-
tion (d < d1o = c/wio), Eq. (3.2.7), and the Casimir-Polder interaction (d > dio),
Eq. (3.2.8).

3.2.2 Derivation of the Lifshitz formula

Next we consider two semi-infinite half-spaces with uniform electric and magnetic

susceptibility, as depicted in Fig. 3-3 [24, 25, 26, 27, 28]. We choose a plane wave

basis oriented along the i axis.

We decompose the scattering amplitude into magnetic (transverse electric) modes

M and electric (transverse magnetic) modes N.

For the upper object a the scattering solution is [108]

kx M i L2 dk'±
out x+ (27r) 2  M x)FPkIM,kI M+ N x)P k' EkM

t'(\- out ~ L2d2kI+N ( - i1
E(r, x) = Nk"1 ( , x) + )' x)Pk' M,k±E + ± (X),Pk' E,k±Ej

(3.2.9)

Here L is the length of each side of the plates, k_ is the momentum perpendicular to

the i direction, and the subscripts M and E on the scattering amplitudes denote the

magnetic and electric polarizations respectively. We consider the limit L -- oo. The
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Figure 3-3: The upper infinite half space a is located a distance d above the half
space b. This is the original configuration considered by Lifshitz. Each half space
has its own uniform electric permittivity e (icrs) and magnetic permeability p (ic).
We note that our calculation holds even if the two origins Oa and 0 b are displaced
horizontally from one another, as shown here.

scattering amplitudes are given by

ak'IE,kIM Fa'k M,k E

(3.2.10)

k'E~iE (2,r) 2 j(2) T C,1+k 2inkEkE - L2 - ktr) r (iCth iFs1 + kcf/fi2

in terms of the Fresnel coefficients

r (icr,, X) -pa(iCK)

Pa (icri)

r E(icK, X) = (2CK)
Ca (ics)

+

V1 + (n (ic) - 1)X 2

1 + (n (icK) - 1)X2

V1 + (n 2(icK) - 1)X 2

V1 + (na (ic) - 1)X2

Here, na is the index of refraction, na(icI) = V/ea(ici)pa(icK). In the literature the

Fresnel coefficients are also sometimes labeled with s instead of M and p in place of

E.

The lower object b has the same scattering properties. The relevant scattering

equation is the same as in Eq. (3.2.9), with "reg" and "out" exchanged and yF

replaced by Fee", which is obtained from Pa simply by substituting the permittivity

Eb(ics) and permeability pb(ics) in place of those of object a.

Using the appropriate X submatrices as specified in Eq. (2.2.11) and the cor-

(3.2.11)

Mit .. ..... .......... -... . . .... ... .. ....... ...

(iCK1 4 1 +kL/K2 -1)

(27r) 2 j(2) M
ak' Mk I M (k-L - k' ) rI L2 I a



responding submatrices of F, the energy (2.4.16) for two objects can be expressed

[c 00 ( i b . e ~ ah- din log det ( a pW b eb)
2w- Jo

(3.2.12)

Since the matrix in the determinant is diagonal in kI, the determinant factors

into a product of determinants, each with fixed kL. The logarithm of the product is

then given by an integral over the two-dimensional space of k1 . Since the integrand

is invariant under rotations in k1 , we can write this integral in polar coordinates as

2 7 o f
-- kidk1 log Ji27r

i=E,M

ririe -22Vi+k2/K2

where kI = |kII.

After a change of variable p = V/1+ k2 _/ 2 we obtain the Lifshitz formula for the

energy,

h L 2 00
i2dK j pdp log [(1 - rMrI-2Kpd) E E e-2pd (3.2.14)

3.2.3 Two cylinders

We now rederive the Casimir energy for two perfectly conducting, infinitely long

cylinders, depicted in Fig. 3-4. The result for one cylinder inside the other has been

presented in Ref. [81] and the result for both outside each other was presented in

Refs. [82, 109].

For scattering from outside cylinder a, we have the scattering solutions

E(Kx) = M (K, x) +

E(K, x) = N , ('X) +

fLd

Jd
ZM out ( e'x+peCout /~~-ekl~' X'a,k' n'M,k~riM + k/,n/ K, X).ta,k'n'E,kznM]

n/

Z[ M out ,(r,, x).Fe +eNou
kink'n'M,kznE ± 'n (K )Fek''~zE

(3.2.15)

(3.2.13)



Figure 3-4: Two perfectly conducting infinite cylinders with radii Ra and Rb are
separated by a center-to-center distance d. They can be outside one another, or one
may be inside the other.

with boundary conditions Ell = 0 and B' = 0 on the cylinder surface. L is the length

of the cylinders, and we are considering the limit L -* oo. We have

Fee ee -oFak'n'E,kz nM a k'n'M,kznE -

Fa,k' n' M,kznM =- T k - k o Q(Rp (3.2.16)
F eeKni. t"x ' (Rap)

Fa,k' n'E,kznE - z n K

and analogous equations hold for scattering from cylinder b. The energy in Eq. (2.4.16)

is given in terms of exterior scattering amplitudes only,

S_= j ds log det (I - Faeub"SelA"a). (3.2.17)

The matrix inside the determinant is diagonal in kz, so the log-determinant over this

index turns into an overall integral. A change of variable to polar coordinates converts

the integrals over K and kz to a single integral over p = /k2 + r 2 , yielding

= pdp (log det M + log detKE) (3.2.18)
47r fo

- - _ . ........................................................



where

=E/- Kn Fn',pd K(pRb)

E S = i
Nnf -n =n,n

In(pRa)
Kn(pRa)

For scattering from inside cylinder a we have the scattering solutions

Ldk

2w-

Ldk'

2r -

E(r, x) = Mi(r, x) +

E(, x) Nut(K, x) +

M n ,(Xx)FaknM,kznM + N X )k'n'E,kznM

rM re,(,x)P kN

(3.2.20)

yielding

;ak'n'E,kznM ak'nM,kznE 0

-a k'n'M,kznM - z~~-k>~,, 4 RpI' (Rap)

zzI z 7 6(k - k' jo Kn (Rap)
Fak' n'E,kznE L z z nn (Rap)

(3.2.21)

We note that the inside scattering amplitude matrix is the the inverse of the corre-

sponding outside result. The energy, expressed in Eq. (2.4.16), now becomes

S w = , dK, log det (I a zv b eb)
2wr Jo

(3.2.22)

which contains the appropriate scattering amplitudes for the inside problem, F" for

interior scattering of object a and Fbee for exterior scattering of object b. Using the

same simplifications as in the outside case, we have

hL j pdp (log det NM + log det NE
47 o

In, (pRb,)
( pd ) K,(b).Kn'+n" ( pd)3.

(3.2.19)

(3.2.23)



where

M K' (ppa)jI',(pRb)
I' (pRa) In+n(pd) K', (pRb) In'+n"(pd) ,n, In'P pa, i(pR)

Kn(pRa In, (pRb)
N,n/f= on'"" - S In(pRa) l"**' Kni(pRb) In'+ni(pd).

ni

(3.2.24)

3.2.4 Sphere and plate

In this subsection we investigate the Casimir interaction of an infinitely thick plate

a opposite a sphere b, each with frequency-dependent permittivity and permeability.

The geometry is depicted in Fig. 3-5.

X a d

Xab d

Figure 3-5: A sphere b of radius
center-to-surface distance d.

R is located opposite a plate a, separated by a

The scattering amplitude for the plate is easy to express in the plane wave basis

using Eq. (3.2.10). We can apply our result from the plane geometry, Eq. (3.2.12),

changing only y3**, which now becomes the scattering amplitude for vector plane wave

functions outside a sphere. To express the scattering amplitude of the sphere in the

spherical vector wave basis, we use Eqs. (D.1.1) and (D.1.2) and obtain

Fb,*ek~y Pk, = ( 1) Cs j~ P)W( Ek **(K) I|T I|Ek*,f P,

Ck P (K),\ rgI reg (\
= ( (-1)C Dt imC (K) (E Ei(K)\ITb |E I,*,/())Dlimi,, e5) -7~) ~ kPlmQGQ tmQ i(.I2m.25

ImQ,I'm'Q' '/',fI) IQkP

= S CkwLP(K)Dt 'ree 'tt/ jmQ

(3.2.25)

................................. ....... .............



where P and P' label the polarizations in the planar basis and Q and Q' label the

polarizations in the spherical basis. The normalization factors Ckap(K) and CQ(K),
defined below Eq. (B.1.1) and Eq. (B.3.1), arise from the definition of the scattering

amplitude (see, for example, Eq. (2.3.9)). For a sphere with uniform permittivity

and permeability, we compute the scattering amplitude by solving Eq. (2.3.9) in the

spherical vector wave basis, which yields

'ee yee6
-Fb,7mE,l'm'M -Fb,lmM,l'm'E

p e -- 6 6I ( R)0(R i (UbKR)) - 1bR(R Z1 (KR))il (nbR)
b ' - i, 6 m,'m kl(KR)aR(Ri(nbKR)) - plbR(Rkl(R))il(nbKR) '226)

e ' - -- 6  m ie lQR)OR(Rij(nbKR)) - eb0R(Rii(KR))ii(nbKR)
b ,1mE,'m'E - mrrkl( R)&R(Ri(nbKR)) - OR ER (Rkl(R))l (fbKR)

where nb is the index of refraction, nb(icl) = eb(icK)pb(icK). The modified spherical

Bessel functions il and k, are defined in Appendix B.

Plugging into Eq. (3.2.12) and using det([ + AB) = det(I[ + BA), the energy

simplifies to

S = j00 d log det (I - K), (3.2.27)

where

AImP,l'm'P' = 6 m,m' hb,mP,1mP

x/ kdki -2d k +,2

o 2 ,r 2 , k 0+ 2

x ( DmPkkQ Ta (iC, 1 + kI /K2 DjqQl,mp,(26Q,p, - 1).
Q

(3.2.28)

Here k1 = |k 1| and rQ, defined in Eq. (3.2.11), is the Fresnel coefficient for reflection

of a wave with polarization Q. The ratio of Ckp(K) to CQ(K) in Eq. (3.2.25) has

opposite signs depending on whether P and Q represent the same polarization or

the opposite polarization, which we have implemented through the term (26pQ - 1).

The integration over all angles of k1 has already been carried out, which makes K
diagonal in m and m'. (Although DImp,k1 Q seems to depend on the angle of k1 , the



multiplication with its Hermitian conjugate cancels this dependence.)

To leading order for large d/R, the 1 1 components of the sphere's scattering am-

plitude and the K -* 0 limit of the permittivities and permeabilities contribute. The

scattering amplitude can be expanded to lowest order in terms of the sphere's electric

and magnetic polarizabilities, F -+ jaMK3 and .FbmE 1mE 2 a E 3, where

the polarizabilities am = 14bo1R
3 and aE EbolR 3 are given in terms of the zero

;bO +
2  

EbO±
2

frequency permittivity EbO = Eb(O) and permeability [1 bo = b (0). To leading order the

energy is given by
3hc MM +±aE )

8 - 4(a +q53..9
87rd

where

jm = dx 1( - X2 r m'(0, x) - X2 r (0 X)] '( . . 0
fo 2 a 2- (3.2.30)

#E dx I - rE(0, X) - M

can be expressed in terms of elementary functions, but the expressions are too com-

plicated to be worth reproducing here. The two functions are plotted in Fig. 3-6.

The expression for the energy in Eq. (3.2.29) agrees with the results in Ref. [75]

for a perfect metal plate e -+ oc and a sphere with general Eb. It also agrees with the

results in Ref. [110] for a perfect metal plate and a perfect metal sphere, Ca - oo,

and 6b - oo . Both of these works arrive at similar general expressions for the energy

to what we have found here; Ref. [75] combines scattering theory techniques we have

used here with the method of images, while Ref. [110] uses Wigner rotation matrices.

In the calculations of Refs. [75] and [110], when e - oc the corresponding yi is

set to zero to reproduce perfect metal boundary conditions within a low-frequency

expansion. (Ref. [27] contains the asymptotic Casimir energy formula Eq. (3.2.29)

in the case where the magnetic permeabilities are set equal to one.) As the plots in

Fig. 3-6 show, however, the perfect reflectivity limit of the plate is approached slowly

with increasing ea. To compare with experiments it is thus important to compute

the energy (3.2.27) using the actual permittivities and permeabilities of the material



instead of perfect metal limits.
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Figure 3-6: Plots of #E (blue, positive) and #" (red, negative) as functions of i/co
for fixed po = 0 (left) or fixed [paO = 1 (right). For po = 1 the two functions #E and
#" approach 1 rather slowly from the right (perfect metal limit). So, for comparison
with experiments, it may not be justified to use the perfect metal limit Ca --+ oo of
the plate to compute the Casimir energy.

3.2.5 Object inside a sphere or spheroid

Typically, it is found that the Casimir force is attractive, as long as the space between

the objects is empty, and the magnetic susceptibility of the objects is negligible com-

pared to their electric susceptibilities. But when space is filled with a medium with

electric permittivity cM intermediate between that of two objects, ei < EM < 62, the

force between the two becomes repulsive [27]. This effect has recently been verified

experimentally in the large separation (retarded) regime [171. But while repulsive

forces are nothing new, they become interesting for applications when they produce

stable equilibria, which, for example, the Coulomb force cannot.

For an infinite cylinder enclosed in another, the Casimir force has recently been

shown to have a stable equilibrium in the two directions perpendicular to the cylinder

axes, when the material properties are chosen so that the force between two slabs of

the same materials would be repulsive [111]. If the inner and outer cylinders have



square cross sections, the direction of the torque exerted by one cylinder on the

other is found to agree qualitatively with the predictions of the pairwise summation

or proximity force approximations (PSA or PFA). Orientation dependence has also

been studied recently for a small spheroid interacting via quantum electrodynamic

fluctuations with another spheroid or an infinite plate [112] and for an ellipsoid near

a wall subject to the critical Casimir effect, which arises from thermal fluctuations in

a liquid near a critical point [113]. (The smallness of the spheroid refers to keeping

only the first term in the series expansion of the Casimir energy in the largest length

scale of the spheroid.)

Here, we present the following cases, studied in Refs. [83, 84]: a finite sphere or a

small spheroid inside a spherical cavity, and a small spheroid inside a slightly deformed

spherical cavity, depicted in Fig. 3-7. The spring constant for displacements from the

center of the cavity and the dependence of the energy on the relative orientations of

the inner object and the cavity walls are computed. We find that the stability of the

force equilibrium can be predicted based on the sign of the force between two parallel

plates of the same material, but the direction of the torque cannot be.

Figure 3-7: Summary of the configurations we consider and of the results. We have
assumed that the small spheroid's zero frequency permittivity satisfies er,o > eM,o
and that it is larger in the body-fixed i direction, so a a E6 Furthermore, the
magnetic permeabilities are all set to one. a) Direction of the force F on such a
spheroid in a spherical cavity if EM,O > eO,o, and the direction of the torque r when
either eM,O > eo,o or eM,O « eo,o. b) A finite size sphere experiences a restoring
force F for the various combinations of materials listed in Table 3.1. c) Direction
of the torque r in the center of a slightly spheroidal cavity if either eM,O < eo,o or
eM,o o

.......... -



The Casimir energy

1 2 1 3 14
E = so + kgL + -ks _ + -k4 __ + --- (..12 R2 ! R3 ! R4(3.2.31)

is characterized by the spring constant k and the coefficients k, in a series expansion

in a/R, where a is the magnitude of the displacement from the center of the cavity and

R the radius of the (undeformed) spherical cavity. (k has units of energy here.) Unlike

the case of infinite cylinders, where one object can be displaced along the cylinder axes

without changing the energy, our case exhibits, for appropriately chosen materials,

true stability in all directions and applies to realistic situations. For example, we

compute the force on a metal sphere in a spherical drop of liquid surrounded by air.

By determining the mean square deviation from the center, (a2 ) = 3kBTR 2/k, the

spring constant k can be measured experimentally. We can estimate that the size of

the droplet R has to be smaller than ~ 3pm 1d, where r is the typical dimension of

the inner object, for the thermal motion to be confined near the center of the cavity.

(This length scale is obtained by balancing 3kBT for room temperature with a rough

estimate of the spring constant, k ~ .) To keep the two objects nearly concentric

against the gravitational force, R has to be smaller than ~ 1-pm for the typical metal

or liquid densities considered here. Our calculations show that, for example, a sphere

of gold of radius r = R inside a spherical drop of ethanol of radius R = .1pm

has an rms deviation V/(a 2) = 0.04R from the center due to thermal motion and a

displacement from the center by a ~ 10- 6 R due to gravity. A variety of applications

may benefit from our analysis; in cancer therapy new treatments utilize nanocarriers

that trap drug particles inside R ~ .1pam polymer or lipid membrane shells [1143,

and molecular cages are proposed as containers for the storage of explosive chemicals

[115]. Our results may guide the search for better materials and sizes of the enclosing

cell.

Whether the center of the cavity is a point of stable or unstable equilibrium turns

out to be correlated with whether the Casimir force is repulsive or attractive for

two parallel plates under those conditions. The direction of the torque, on the other



hand, depends on the dielectric properties of the medium and the cavity walls in

an unintuitive way, which cannot be predicted by the PSA or PFA, see Fig. 3-7.

In particular, this behavior is not due to dispersion effects, which explain similar

phenomena reported in Ref. [111. We calculate the torque on a small spheroid that

is displaced from the center of a spherical cavity (Fig. 3-7 a)) or concentric with a

slightly spheroidal cavity (Fig. 3-7 c)). In the former case, the orientation dependence

manifests itself in k, which captures both the torque and the orientation dependence

of the total force. In the latter case, So depends on the relative orientation of the

spheroid inside the deformed cavity. (If the cavity is spherical, So is a finite constant

that can be ignored.) By choosing appropriate materials, the inside object, e.g., a

nanorod, can be made to align in different ways with the cavity shape, a situation

which is reminiscent of a compass needle aligning with the magnetic field of the earth.

The Casimir energy for one object inside another,

hc 00
S = -- dt ln det(I - PF"Wi"jO Vo) (3.2.32)

is expressed in terms of the inner object's exterior scattering amplitude matrix, Fje,

and the outer object's interior scattering amplitude matrix, Fb , like in the case of one

cylinder inside another, Eq. (3.2.22). The exterior scattering amplitudes describe the

scattering of regular wave functions to outgoing waves when the source lies at infinity.

The interior scattering amplitudes express the opposite, the amplitudes of the regular

wave functions, which result from scattering outgoing waves from a source inside the

object. The translation matrices )'" and V" convert regular wave functions between

the origins of the outer and the inner objects; they are related by complex transpose

up to multiplication by (-1) of some matrix elements.

With uniform, isotropic, and frequency-dependent permittivity e,(icK) and per-

meability p,(icK) functions (x I: inner object; x = 0: outer object; x = M:



medium) the scattering amplitude matrix of the sphere is diagonal. It is given by

F," mE,l (CK) =
7 1E( ) -

it (0)8(ri1(zr()) - - it'(zr()8,(ril (V)
-C ) ((3.2.33)

ki()8,r(rii(zr()) - Li(zi()&r(rki())

for E (electric) polarization and by the same expression with tLL replaced by AI

for M (magnetic) polarization (not to be confused with subscript M indicating the

medium's response functions). The expression is the same as Eq. (3.2.26), except

that it accounts for the surrounding medium, which has non-unit permittivity and

permeability. In Eq. (3.2.33) the frequency dependence of the response functions has

been suppressed. The indices of refraction n. (icK) = ge(ics)pL, (icK) of the sphere

and the medium appear in the ratio zi(icl) = nI(icn)/nM(icri) and the argument

( = nM(iCK)KT. The first equality in Eq. (3.2.33) defines an abbreviation for the

scattering amplitude matrix, in which the superfluous polarization and angular mo-

mentum (1, m) indices are suppressed. The interior scattering amplitude matrix of

the spherical cavity is obtained from the exterior scattering amplitude matrix of the

sphere by inserting the outside object's radius and response functions in place of those

of the inside object and exchanging the modified spherical Bessel functions il and k,

everywhere.

However, the scattering approach is not limited to simple geometries. An array of

techniques is available for calculating the scattering amplitudes of other shapes. We

employ the perturbation approach to find the scattering amplitudes of a deformed

spherical cavity [116, 117] of radius R + 6(1 - 3/2 sin 2 0). The deformation, indicated

in Fig. 3-7 c), is chosen so that the volume is unchanged to first order in 6. We

find the 0(6) correction, Fy(), to the scattering amplitude matrix in a perturbation

series expansion, F = F(O) + FP) + - - - , by matching the regular and outgoing fields

according to the Maxwell boundary conditions along the deformed object's surface

[118]. On the other hand, for a small object (compared to the wavelength of the

radiation), we can approximate the scattering amplitudes to lowest order in i using

the static polarizability tensor, FJmP1.,P = 2/3(nM,O) 3 MI + 0 (5), where the



subscript 0 indicates the static (icK = 0) limit and P is the polarization label. The

scattering amplitudes involving higher angular momenta I > 1 are higher order in s.

For a small ellipsoid, in particular, the electric polarizability tensor aE is diagonal in

a coordinate system aligned with the ellipsoid's body axes,

a E V EI,o - EM,o

S47r EM,o + (Er,o - cM,o)n(

where i E {x, y, z} [103]. The larger the semi-axis in direction i, the smaller the

depolarization factor ni (not to be confused with the index of refraction). The entries

of the magnetic polarizability tensor aM are obtained by exchanging px,o for Ex,o

in Eq. (3.2.34). In the small size limit the polarizability tensor of a perfect metal

ellipsoid is obtained by taking both er,o to infinity and pur,o to zero.

For simplicity we specialize to a spheroid, which has two equal semiaxes. We

choose the semiaxes along x and y to be equal, therefore, ap = aZ = a. We fix

the i axis of the lab frame to be along the direction of displacement of the spheroid

from the center of the cavity. 0 denotes the angle between the spheroid's and the

lab's 2 axes. For such a small spheroid inside a spherical cavity of radius R (Fig. 3-7

a)), the spring constant is obtained by expanding the log-determinant in Eq. (3.2.32)

to first order,

kR-oc [Tr aEfE (3.2.35)
R 4 nM,o

+ (aE- al_) 3 cos 2 1 f2 + E -M]

where the material dependent functions

J1Jf 97P L,1M - 2F,1E ,2E

f 2Ef 0 5 d <O 2  --1 (3.2.36)
J o w -F,1E - ,2E ~ ,M

express the rotation invariant and the orientation dependent parts of the energy,

respectively. fiM and f2M are obtained from ff and f2 by exchanging E and M



everywhere. This result is valid for asymptotically large R; it involves only the zero

frequency (icr = 0) response functions since R is greater than any material dependent

length scales as well as the size of the inner object. Notice that only the 1 = 1, 2

scattering amplitudes of the cavity walls appear in Eqs. (3.2.35) and (3.2.36).

The behavior of the functions f1p, depicted in Fig. 3-8 for pM,0 - pO,0, is as

expected: fjb is monotonic, positive when eM,0 > Eo,o, negative when eM,0 < Eo,o, and

ffv always has the opposite sign of ffE. When ff is positive, a small object with

Er,o > EM,o is levitated stably, when f1E is negative, eM,0 > EI,o has to hold. Thus,

stability occurs under the same conditions as repulsion for two objects outside of one

another. The opposite sign of ff1 is expected from equivalent expressions for the two-

infinite-slab geometry [95]. When the dielectric contrast between the medium and the

outer sphere is taken to small or large limits, stability or instability is maximized.

To verify whether stability is observable for realistic materials and object sizes, we

4 ~ ~ EII

4, 1

0..2. .6 0.8 1. ""+1
-1 ---- Lo16 0 ,10
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Figure 3-8: fjE and ff~ describe the part of the spring constant k , which is
invariant under a rotation of the inside object. The vertical lines indicate the val-
ues pertaining to the configurations presented in Table 3.1, ethanol-vacuum (0.16),
bromobenzene-vacuum (0.30), and gold cavity walls (1). In this plot, pM,0 = pO,0.

evaluate Eq. (3.2.32) numerically for a sphere of radius r inside a spherical cavity

of radius R filled with various liquids (Fig. 3-7 b)). ' The coefficients k, k4, and

2
4For the permittivity function of gold we use c(ics,) = 1 + , where w = 1.14 - 1016Hz

and Y = 9.27 - 1013 Hz [119] as used in Ref. [17]. For the other materials we use an oscilla-
tor model, n=1(ics)=1 + EN 1 n , with [wn]n=1,2 = [6.6,114] . 1014 Hz and [Cn]n=1,2
[23.84,0.852] for ethanol [120] as used in Ref. [111], with [w]n=1, 2 = [5.47,128.6] . 1014 Hz and

. ....... ........................ ................................................... . .. ............. ...



k6 in the series expansion in Eq. (3.2.31) are listed in Table 3.1. For comparison,

the asymptotic result kR,,, is also included. If both inside and outside object are

spherically symmetric, the series in Eq. (3.2.31) does not contain terms ~ with n

odd.

Table 3.1: k, kR,-o, k4 , and k6 are listed for various combinations of materials for the
case of a spherical inner object inside a spherical cavity, depicted in Fig. 3-7 b). The
dimensionless numbers in the table have to be multiplied by -. R is given in microns
[pm]. kRa, 0 depends on R only through the ratios L and 1, so its numerical prefactor
is the same for all R. The highest cutoff used was lmax - 30. (The asymptotic result
kRo only requires 1 = 1, 2.)

Inside-Medium-Outside R r/R k kRaoo k4  k6

Gold-Bromobenzene- 0.1 1/4 4.0e-2 5.4e-2 1.2 8.2el
Vacuum 3/4 2.2e1 1.4 4.2e3 1.8e6

1.0 1/4 6.9e-2 5.4e-2 2.6 2.0e2
3/4 7.0el 1.4 1.8e4 1.0e7

Gold-Ethanol- 0.1 1/4 5.0e-2 3.7e-2 1.6 1.0e2
Vacuum 3/4 2.7el 9.9e-1 5.2e3 2.2e6

1.0 1/4 4.5e-2 3.7e-2 1.7 1.4e2
3/4 6.0el 9.9e-1 1.8e4 1.2e7

Silica-Bromobenzene- 0.1 1/4 6.le-3 7.le-3 1.9e-1 1.3el
Gold 3/4 4.2 1.9e-1 8.6e2 4.0e5

1.0 1/4 1.8e-2 7.le-3 7.3e-1 6.0el
3/4 2.3el 1.9e-1 5.7e3 3.1e6

Silica-Ethanol- 0.1 1/4 1.5e-2 1.2e-2 4.6e-1 3.1el
Gold 3/4 1.0e1 3.3e-1 1.9e3 8.4e5

1.0 1/4 1.9e-2 1.2e-2 8.2e-1 7.2el
3/4 4.lel 3.3e-1 1.2e4 7.6e6

The three materials were chosen so that the sequence of permittivities Er, Em, Eo ei-

ther increases or decreases for the imaginary frequencies that dominate in Eq. (3.2.32).

Contrary to the prediction of the PSA and PFA the force is not symmetric with re-

spect to exchange of the inner and outer permittivities. In the same medium, a high

dielectric sphere is held more stably in the center of a cavity with low dielectric walls

than a low dielectric sphere inside a cavity with high dielectric walls.

The asymptotic result kR,-o yields a good approximation of k for i 1 ButR 4

from Eq. (3.2.35) one would expect kRoo to grow linearly with the volume of the

[Cn]l_1,2 = [2.967,1.335] for bromobenzene [120] as used in Ref. [17], and with [wn]_1_4 =
[0.867, 1.508, 2.026, 203.4] .10 14 Hz and [Cnln-1-4 = [0.829,0.095,0.798, 1.098] for silica (SiO 2 ) [121].



inner sphere, since polarizability is proportional to the volume, see Eq. (3.2.34). In

fact, k for r = 3 is about 1000 times larger than for 1 = 1 instead of just 27 times.R 4R 4~ d f t27tms
This means that for a gold sphere in a liquid drop with I= and R = 1pm at room

temperature, indeed, the Casimir spring holds the particle near the center effectively,

V(a 2)/R < 0.1.

Although k, k4 , and k6 increase by three orders of magnitude in some cases,
the prefactor I ensures that the coefficients in the Taylor expansion in Eq. (3.2.31)

increase only by one order of magnitude. Thus, for small excursions from the center,

e.g., a/R < 0.1, the higher corrections n > 4 can be neglected.

Compared to the stability conditions studied thus far, the orientation dependence

of the energy is more varied. fE and f2, plotted in Fig. 3-9, have the same sign

for most ratios of medium to outside permittivities, unlike ff and fim, which always

have opposite signs. In these ranges of values, the contributions to the torque from

electric and magnetic polarizability are opposite for a small perfect metal spheroid,

for which er,o > EM,o and i',o < pU,o. Unlike f1E and f', also, f2 and ffj change

sign again at ~" - 80 and at E ~ 2000, respectively. So, while the direction ofEM'O EM'O

the total force and the stability of the equilibrium can be determined based on the

relative magnitudes of the permittivities, the torque cannot be. The PSA and PFA

predict the orientation with the lowest energy in the vicinity of = 1 correctly butEM, 0

not when , > 1. Furthermore, the second sign change of f2E and ffm raises the

question whether calculations of the Casimir torque for infinite conductivity metals

are 'universal' in the sense that they produce the correct qualitative results for real

materials.

The orientation dependent part of the energy for the configurations discussed thus

far vanishes, of course, when the small spheroid is in the center of the spherical cavity.

If the cavity is slightly deformed, however, the energy, Fo, depends on the relative

orientation of the spheroid and the cavity (Fig. 3-7 c)). We deform the spherical
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Figure 3-9: f2 and f' describe the part of the spring constant kR_.o.., which changes
with the orientation of the inside spheroid. In this plot, [pM,O - po,o.

cavity as described earlier and obtain to first order in 6/R,

hc Cos 2 0J E EJg
O= R 4nMo R [(az - L) E + E -* M], (3.2.37)

where the orientation-independent part of the energy has been dropped. For po,o=

[pM,O, gE and gM are given by

gE = ko+iok
Jo 107r (Ioi1+Ikiozo+iivI/(zo()(1-z)) 2

x (z2 - 1) (4I/(2 - (ko + kl/(zo())2

gM __. iiko+ioki 2 -gM JO f 07 ( iOk+kiZ)2 (4 - 1)k, (3.2.38)
J0 lr (inio+icoizo)2

where the arguments of the modified spherical Bessel functions and of zo(0) are

suppressed. il and k, are functions of (, and k, stands for ki(zo(0)(), where zo(ics) =

no(ic')/nM(icI') is the ratio of the permittivities of the cavity walls and the medium.

The material dependent functions gE and gM are plotted in Fig. 3-10.

Again, gE has the same sign for , -+ 0 (left in Fig. 3-10) and OO -+ oo (right).
EM'O CM'O

In addition to the root at = 1, gE also vanishes at ' ~ 0.46.

The rich orientation dependence of the energy is expected to collapse as the size

of the inside object grows to fill the cavity and the PFA becomes applicable. Based

on the stability analysis for finite inside spheres, though, we expect the asymptotic

results, f9 and gP, to predict the orientation dependence for reasonably small inside

....... ........................ .. .. ............ .. ..... .. . ........... .... .. ......
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Figure 3-10: gE and gM describe the dependence of the energy Eo on the relative
orientation of the inside spheroid and the deformed cavity walls.

spheroids.

In reality, various corrections to the idealized shapes have to be taken into account.

A drop of liquid, which is placed on a surface, is influenced by gravity and interactions

with the substrate. An asymmetric inner object, or one that is displaced from the

center, deforms the shape of the droplet additionally by causing uneven Casimir

stresses.

How does the Casimir torque on a small spheroid inside a cavity relate to the

torque on a spheroid that is adjacent to a plate or another compact object? To

facilitate the discussion, let us assume the spheroid has permittivity greater than

one, permeability equal unity, and the medium is vacuum. Then, in the limit where

the spheroid is small compared to the separation, the torque vanishes if the second

object is a perfect metal plate [37, 38, 112]. The torque aligns the largest semiaxis

of the spheroid towards the second object if that object is a dielectric sphere or

small spheroid [112, 83]. This is in contrast to the inside configuration, where the

spheroid's longest semiaxis is preferred to point away from the closest point on the

metallic spherical cavity. Thus, the preferred orientation of the small spheroid flips

when it is moved between the inside and the outside of a spherical shell so that there

is no torque if the spheroid faces an infinite metal plate, which is the limit of an

infinitely large shell. The smooth continuation of the low energy orientation in the

inside configuration to the high energy orientation in the outside case is discussed in

greater detail in Ref. [83].



Now, let us investigate the opposite limit. We compute the interaction energy

of a finite-size perfect metal sphere of radius r with the perfect metal walls of a

spherical cavity when the separation, d= R - r - a, between their surfaces tends to

zero. The leading term in d/r is known to be given by the PFA. By evaluating our

closed-form expressions numerically, we find the next to leading term in an expansion

in d/r. An understanding of the corrections to the PFA has been sought for some

time [122, 123, 10, 124, 125, 761. Our work extends beyond previous attempts, many of

which have treated hypothetical scalar fields, by considering electromagnetic fields for

two objects with different curvature and relative position. In Ref. [1261 an analytical

approach to PFA corrections for the electrodynamic case is sought. For the sphere-

plane geometry [75, 110] and two spheres of equal radii facing each other [30] the

corrections have recently been computed numerically. We repeat these computations

for other ratios of radii of two spheres outside one another and find that the inside

and outside results connect smoothly. This is of direct experimental significance

because Casimir force measurements are usually performed with spherical rather than

perfectly planar surfaces.

In the limit where when the interior object is nearly touching the cavity wall, the

Casimir force F between two conducting spheres, which is attractive, is proportional

in magnitude to d- 3 , where d is the separation of surfaces. The coefficient of d- 3 is

given by the PFA,

lim d3 F - hc (3.2.39)
0 360 r+R 

This result holds for both the interior and the exterior configuration of two spheres.

For fixed r we formally distinguish the cases: R > 0 for the exterior, R -+ oo for the

plate-sphere, and R < 0 for the interior configuration (see Fig. 3-11 for reference).

All possible configurations are taken into account by considering -1 < r/R < 1.

Our numerical studies of the interior configuration for perfectly conducting spheres

enable us to study the limit d/r - 0. This is a difficult limit because no simplifying

approximations can be applied to Eq. (3.2.32). All powers of FbW'"YeIo contribute,



and the number of partial waves (1, ') necessary to obtain convergence grows as

d/r - 0. Although we know of no derivation of the functional form of the Casimir

force beyond the leading term in the PFA, our numerical data are well fit by a power

series in d/r,

wrohc r R (d d2U~±
F = - P rd R 1 + 01(r/R)- -- 02(r/R) 2 ..

360d3 r + R 2r 2r2

We have used this functional form to extract the coefficient 01(r/R).

It is useful to have an estimate, however crude, of 01(r/R) over the whole range

of r/R with which to compare our results. Although the PFA is accurate only in the

limit d/r -+ 0, it can be extended in various ways to the whole range of d, r, and

R. The PFA is obtained by considering both surfaces as made up of infinitesimal

parallel mirrors. From each point ((1, 2) on the surface of object 0 one computes

the distance L( 1, 2) to the other object's surface along the surface normal fi(( 1 , 2).

By integrating the Casimir energy per unit area for two parallel plates separated by

L( 1, (2) over the surface of object 0 one obtains the "O-based" PFA energy. Clearly,

the result depends on which object one chooses as 0, but the various results do agree

to leading order in d/r. We can choose either of the two spheres to arrive at the

"r-based PFA" or the "R-based PFA", see Fig. 3-11. Either one yields a 'correction'

to the leading order PFA,

0 PFA A ( ±3) 1 - (3X + 1 x ±

where x = r/R. Again, O6FA and 0PFA are only used for comparison with the actual

correction 01. Note that the PFA predicts a smooth continuation from the interior to

the exterior problem.

In Fig. 3-11 we plot the values of 01 extracted from a numerical evaluation of

the force from Eq. (3.2.32) for various values of r/R < 0, along with the values for

r/R = 0 and r/R = 1 from Refs. [30] and [75]. We have also repeated the exterior

analysis of Ref. [30] for other values of r/R > 0. For reference, the two PFA estimates

are also shown.
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Figure 3-11: PFA correction coefficients for spheres. r/R ranges from -1 (interior
concentric), to zero (sphere-plane), to +1 (exterior, equal radii). The data points
correspond to the exact values of 01 calculated numerically, while the solid black
curve is a fit (see text). Inset: "interior" and "exterior" geometrical configurations.

Eq. (3.2.32) is numerically evaluated by truncating the matrix JFzI3  zo"Fe Vz0 at

finite multipole order 1, and extrapolating to obtain the I -* 00 limit. For the data in

Fig. 3-11, the matrix was truncated at 1 = 1' < 60 for the interior and at 1 = ' < 35

for the exterior configuration.

The numerical data in Fig. 3-11 show a smooth transition from the interior to the

exterior configuration. Although the PFA estimates do not describe the data, the

r-based PFA has a similar functional form and divergence as x -+ -1. Therefore, we

fit the data in Fig. 3-11 to a function, 01(x) = -(kix + k2 x/(1 + X) + k3) and find,

ki = 1.05 ±0.14, k2 = 1.08+0.08, k3 = 1.38t0.06. This provides a simple form for the

leading PFA correction for metallic spheres, one inside the other and both outside,

which is relevant for many experiments. Notice, however, that the actual function

01(x) is not known analytically and that our fit represents a reasonable choice which

may not be unique. Our results show that the correction to the PFA has a significant

dependence on ratio of curvatures of the two surfaces. The correction is a factor of

two larger for two spheres of equal radii than for the sphere-plane setup; it vanishes

near r/R = -0.5; and it becomes large positive as r/R -* -1. These effects should

be taken into account in future experimental searches for PFA corrections.



3.2.6 Cylinder and plate

As another example, we investigate the Casimir interaction energy between an in-

finitely thick plate a opposite a cylinder b, each with frequency-dependent permittiv-

ity and permeability (Fig. 3-12). We will focus on presenting asymptotic (d/R -+ oc)

results here, but the derivation is straightforward to extend to intermediate separa-

tions, for which the evaluation of the final expression can be performed easily on a

computer. We choose the i axis as the axis of symmetry of the cylinder and let kI

denote the vector (ky, k,).

X a

Xab d
x
t-i

Figure 3-12: A cylinder b of radius R is located opposite a plate a, separated by a
center-to-surface distance d.

Just as in the sphere-plate case, it is most convenient to express the scattering

amplitude of the cylinder b in a plane wave basis by

, j , k ' =(1) Ck p (K)(E eP (,)|ITb|E ( ))

LwC k_±P,nQQ znQY M b I nQ' n'',z P
nQ,n'Q' Q

- Ckn(-)DekkQ$ kQQ, DkI n/Q/,k3p.4I0

(3.2.40)

where Ck1 p(K) and CQ are defined below Eq. (B.1.1) and Eq. (B.2.1), respectively.

By solving Eq. (2.3.9) in a cylindrical wave basis, it is straightforward to find

the scattering amplitude of the cylinder, Fgez QkQ. For uniform permittivity and

........... ...... ... ...



permeability, the matrix elements are diagonal in kz and the cylindrical wave index n,

but not in TE and TM polarization. The expressions are somewhat complicated; since

we are presenting asymptotic results here, we only need the small-radius expansion,

F",ek P , 7 6(kz - k')6n,n'fkznPP' + O(R 4 ),ZnL

fkzoMM = (2 + kz)R 2 (1 -- b), fkzoEE ~(K2 + kz2 2 1 - Eb)

fk±1MM - k (1+b)(1-ttb)-A
2

(1-eb)(1+Pb) R 2  
-_ k

2
(1-cb)(1+Ab)-K2(1+Eb)(1-Ab) R 2

z1 M2(1+ )(1+b) E2(1+E)(1+p)

fkz1ME fkz--1EM (1kz(bb-1) R2 fkz1EM fkz-1ME = -fkzlME-

(3.2.41)

All other matrix elements (|n| > 1) contribute at higher order in R. It is assumed

here that Eb(ic) is finite. In the infinite conductivity limit (Eb -+ oc) only one of

these scattering amplitudes contributes; this case is discussed below.

We next plug into Eq. (3.2.12). As in the case of two cylinders, the matrix inside

the determinant is diagonal in kz, so the log-determinant over this index turns into

an integral. We obtain for the Casimir energy

hcLf~ f
S = 0d dkz log det (I - N), (3.2.42)

where

-2d k

.A knP,n'P' JkznPP" I y e 2 k2+

zZ ' dk 2  (3.2.43)

x~ ~ DV/~ r is 1 + k2L/K2 D26Q~ ,0-M,p,).x DnkzP'",k± Q ra (Z 1k 1CK k1LQ,nlkzP' 2Qp)

To find the interaction energy at separations outside of the asymptotic limit,

fkznPP' must be replaced by the appropriate scattering amplitude expressions for all

n, valid to all orders in R. Expanding the log det in Eq. (3.2.42) to first order in N,



we obtain for the interaction in the large distance limit d/R -> o,

3hcLR2 [1 d~o i2E'2
E - d2-2 [(7 6b+ L±o -- 4x2 ET O, X) - (3 +ebO)X2r(, x)1287rd4 e eso -+ 1

(3.2.44)

if the zero-frequency magnetic permeability AO of the cylinder is set to one. If we do

not set poO equal to one, but instead take the perfect reflectivity limit for the plate,

we obtain
hcLR 2 (EbO - pMbO)(9 + Ebo - pbO + EbOpO) (3.2.45)
327rd4 (1 + 4o)(1 + /4o)

Finally, if we let Eb be infinite from the beginning (the perfect metal limit for

the cylinder), only the n = 0 TM mode of the scattering amplitude, F1kOEk'z0E

(k2 - k')§) + O(log-2(R/d)), contributes at lowest order; the previous expan-

sions of the cylinder's scattering amplitude in Eq. (3.2.41) are not valid. For a plate

with zero-frequency permittivity eo and permeability pO, we obtain for the Casimir

energy
hcL

16wrd 2 log(R/d) '

where

E d2  r (0,X) _ XrI'X)] (3.2.47)
a 1+zXI

In Fig. 3-13, #E is plotted as a function of the zero-frequency permittivity of the

plate, eao, for various zero-frequency permeability values, pUaO.

3.2.7 Parabolic cylinder and plate

As a final example, we present the Casimir interaction energy between a perfect metal

plate b opposite a parabolic cylinder a [80], depicted in Fig. 3-14. Although taking

into account realistic material properties for the plate would be easy, the scattering

amplitude of the parabolic cylinder is difficult to obtain unless perfect metal boundary

conditions are applied. Here, we confine ourselves to such boundary conditions for

both objects.

The surface of a parabolic cylinder in Cartesian coordinates is described by y =
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Figure 3-13: Plots of #E versus 1/Eo for fixed values of po. #E decreases both with
increasing 1/Eao and increasing Pao. The perfect metal limit (#E = 1) is approached
slowly for large Po, as in the case of a sphere opposite a plate. For large po the
interaction becomes repulsive, which is expected given similar results for two infinite
plates [95].

(x 2 - R 2)/2R for all z, and R is the radius of curvature at the tip. The distance

d to the plate is measured from x = y = 0. In parabolic cylinder coordinates [88],

defined through x = pA, y = (A2 _ p2)/2, z = z, the surface is simply y = po = /N

for -oc < A, z < oc. One advantage of the latter coordinate system is that the

Helmholtz equation

V2(D 1 (d24 d24D d24 r4d2 = + + + = x2 (3.2.48)

which we consider for imaginary wavenumber k = in, admits separable solutions.

Since sending A -* -A and t -+ -- p returns us to the same point, we restrict our at-

tention to y > 0 while considering all values of A. Then y plays the role of the "radial"

coordinate in scattering theory and we have regular and outgoing wave solutions

#jv(nx) = (-i)vD,(~)D,(ip)eikz,

-(x) = D,(~)D_,_1()eikzz, (3.2.49)
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Figure 3-14: A parabolic cylinder a with radius of curvature R = pt at the tip is
located opposite a plate b. The two are separated by a distance d, which is defined
in the main text.

where D,(u) is the parabolic cylinder function, and ~ A 2/k + ,2 and similarly

for p. Enforcing the reflection symmetry A -+ -A and y --> --p for the regular

solutions restricts the separation constant v to integer values. The corresponding

outgoing solutions do not obey this restriction and thus can only be used away from

p = 0; as is typical for outgoing solutions, they are irregular at y = 0. For imaginary

wavenumber, the regular (outgoing) solutions grow (decay) exponentially in 1 and

both (-i)"D,(ip) and D,(A) are real. With these solutions to the scalar Helmholtz

equation we can construct vector wave functions, the appropriate dyadic Green's

function, and conversion matrices to vector plane wave functions. These are listed in

the Appendix.

We choose the i axis as the axis of translational symmetry of the cylinder and let

k_ = (k,, kz). Analogously to the previous cases, we express the scattering amplitude

of the parabolic cylinder a in a plane wave basis by

-- )CkiP(K)Dt Pk QCVQ(E kQ()| pa|E j) (,(K ))Dk QkIP kI

VQV3Q.

CkILP (K)D yee

CvQ k_1 P,kzvQ IkQkvII

(3.2.50)



where Ckp(K) and CvQ are defined below Eq. (B.1.1) and Eq. (B.4.1), respectively.

By solving Eq. (2.3.9) in a parabolic cylinder wave basis, it is straightforward to

find the scattering amplitude of the perfect metal parabolic cylinder,

yee - ~~~6(kz - k§)'~ 5 Q ~Q
-ak~vQ,k'v'Q' L yeeQ

yee H )v+1 DViJo
F,M -- (-+ 1  ( o) (3.2.51)

yee -- -i) D(ipo)
a,,E D_-1(AO)

Next, we plug into Eq. (3.2.12). As in the case of two cylinders, the matrix inside

the determinant is diagonal in kz, so the log-determinant over this index turns into

an integral. We obtain for the Casimir energy

hcLff
E = cL d 0 dkz log det (I - V), (3.2.52)

where

e c* dkx -2dak
2 +_2

AkzvP,v'P' TavP
22 (3.2.53)

x DkzvP,kQ b ics, 1 + k-/I2 Dk72kVI,,(, -- rQp2).

In the perfect metal limit for the plate, K becomes diagonal in P and P'. Numeri-

cal computations are performed by truncating the determinant at index Vmax. For the

numbers quoted below, we have computed for uma, up to 200 and then extrapolated

the result for vma. -+ oo, and in the figures we have generally used vmax = 100. We

note that the integrals over , and kz can be expressed as a single integral in polar

coordinates, and for 0 = 0 the kx integral is symmetric and the translation matrix ele-

ments vanish for v + v' odd. Since the plane we are considering is a perfect mirror, its

scattering amplitude is independent of kx and we can further simplify the calculation



for 0 = 0 using the integral

(tan 0)2n
dk 1 e ,+k!+k!2d - 27rk-2n-1(2d Kx2 + k,2), (3.2.54)
-x fx2 +kx + gCos2

where tan# -ik2/vkx+ k + 2 and kj(u) = r(U1) U(-j,0, 2u) is the Bateman

k-function [127], which is zero if f is a negative even integer. Here U(a, b, u) is the

confluent hypergeometric function of the second kind.

As a first demonstration, we report on the dependence of the energy on the sep-

aration H = d - R/2 for 0 = 0. At small separations (H/R < 1) the PFA, given

by

Spfa 7r2  dx 3
-- - (3.2.55)

hcL 720 _x [H + x 2 /(2R)] 960/V H/ '

should be valid. The numerical results in Fig. 3-15 confirm this expectation with a

ratio of actual to PFA energy of 0.9961 at H/R = 0.25 (for R = 1). We note that

since the main contribution to PFA is from the proximal parts of the two surfaces,

the PFA result in Eq. (3.2.55) also applies to a circular cylinder with the same radius

R.

HIR
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Figure 3-15: The energy per unit length times H2 , EH 2 /(hcL), plotted versus H/R
for 0 = 0 and R = 1 on a log-linear scale. The dashed line gives the R = 0 limit and
the solid curve gives the PFA result.

A more interesting limit is obtained when R/H --> 0, corresponding to a semi-

infinite plate. Then the PFA- result is zero, as are results based on perturbative

approximation for the dilute limit [61]. The scattering amplitudes in Eq. (3.2.51)



simplify and can be combined together as Fa,, =(1),+1v! i/w, where even v

corresponds to Dirichlet and odd v corresponds to Neumann. Using this result, our

expression for the energy for R = 0 and 6 = 0 simplifies to

h - log det (1VV - k_ _V,_1(2qH)) = H , (3.2.56)

where C1 = 0.0067415 is obtained by numerical integration. This geometry was

studied using the world-line method for a scalar field with Dirichlet boundary con-

ditions in Ref. [128, 129]. The world-line approach requires a large-scale numerical

computation, and it is not known how to extend this method to Neumann boundary

conditions (or any case other than a scalar with Dirichlet boundary conditions). In

our calculation, the Dirichlet component of the electromagnetic field makes a con-

tribution Cf = 0.0060485 to our result, in reasonable agreement with the value of

Cf = 0.00600(2) in Ref. [128].

c(6) - C ,

0.00684 0.005

0.00682 0*0'
0.003

0.00680 0.002

0.00678 ,,. 8 " 4 3r/8 r12

0.00676
S

0.006744 S @ e

a/8 3n/8 9/2

Figure 3-16: The coefficient c(O) as a function of angle for R = 0. The exact result
at 0 = 7r/2 is marked with a cross. Inset: Dirichlet (circles) and Neumann (squares)
contributions to the full electromagnetic result.

Reference [129] also considers a tilted semi-infinite plate, which corresponds to

the R -+ 0 limit of our formula for general 0. From dimensional analysis, the Casimir

energy at R = 0 again takes the now 9-dependent form

E C(9)
hcL H 2  (3.2.57)

Following Ref. [129], we plot c(O) = cos(O)C(9) in Fig. 3-16. A particularly interesting

....... .... . ... .... . ...........................................



limit is 0 - -r/2, when the two plates are parallel. In this case, the leading contri-

bution to the Casimir energy should be proportional to the area of the half-plane

according to the parallel plate formula, E11/(hcA) -c 11/H 3 with c11 =r 2/720, plus

a subleading correction due to the edge. Multiplying by cos 0 removes the divergence

in C(9) as 0 -- 7/2. As in Ref. [129], we assume c(O - 7r/2) c 1/2 + (0 - 7r/2) cedge,

although we cannot rule out the possibility of additional non-analytic forms, such as

logarithmic or other singularities. With this assumption, we can estimate the edge

correction cedge 0.0009 from the data in Fig. 3-16. From the inset in Fig. 3-16, we

estimate the Dirichlet and Neumann contributions to this result to be Cge = -0.0025

(in agreement with [129] within our error estimates) and CN = 0.0034 respectively.

Because higher partial waves become more important as 0 -7 r/2, reflecting the

divergence in C(0) in this limit, we have used larger values of vm. for 0 near 7r/2.

It is straightforward to extend these results to nonzero temperature T. We simply

replace the integral fj'e by the sum ' over Matsubara frequencies r =

27rnT/(hc), where the prime indicates that the n = 0 mode is counted with a weight

of 1/2, as discussed in Section 2.4. In the limit of infinite temperature, only the

n = 0 mode contributes and we obtain for R = 0 the energy S/L = -TCT=oc/H,

with CT=-o = 0.0472. The Dirichlet contribution to our result is CTR7o = 0.0394,

again in agreement with [129].

The reduction of the parabolic cylinder to a semi-infinite plate enables us to con-

sider a variety of edge geometries. A thin metal disk perpendicular to a nearby metal

surface would experience a Casimir force described by an extension of Eq. (3.2.56).

Figure 3-15 shows that the PFA breaks down for a thin plate perpendicular to a

plane; the PFA approximation to the energy vanishes as the thickness goes to zero,

while the correct result instead has a different power law dependence on the separa-

tion. Based on the full result for perpendicular planes, however, we can formulate

an "edge PFA" that yields the energy by integrating dE/dL from Eq. (3.2.56) along

the edge of the disk. Letting r be the disk radius, in this approximation we have

EEpfa '-hcC .r(H + r - / X2 )- 2 dxz -hcC 1w Fr/(2H3 ), which is valid

if the thickness of the disk is small compared to its separation from the plane. (For



comparison, note that the ordinary PFA for a metal sphere of radius r and a plate is

proportional to r/H 2 .)

A disk may be more experimentally tractable than a plane, since its edge does

not need to be maintained parallel to the plate. One possibility would be a metal

film, evaporated onto a substrate that either has low permittivity or can be etched

away beneath the edge of the deposited film. Micromechanical torsion oscillators,

which have already been used for Casimir experiments [11], seem readily adaptable

for testing Eq. (3.2.57). Because the overall strength of the Casimir effect is weaker

for a disk than for a sphere, observing Casimir forces in this geometry will require

greater sensitivities or shorter separation distances than the sphere-plane case. As

the separation gets smaller, however, the dominant contributions arise from higher-

frequency fluctuations, and deviations from the perfect conductor limit can become

important. While the effects of finite conductivity could be captured by an extension

of our method, the calculation becomes significantly more difficult in this case because

the matrix of scattering amplitudes is no longer diagonal.

To estimate the range of important fluctuation frequencies, we consider R < H

and 0 = 0. In this case, the integrand in Eq. (3.2.56) is strongly peaked around

q ~ 0.3/H. As a result, by including only values of q up to 2/H, we still capture

95% of the full result (and by going up to 3/H we include 99%). This truncation

corresponds to a minimum fluctuation wavelength Ami = 7H. For the perfect con-

ductor approximation to hold, Amin must be large compared to the metal's plasma

wavelength AP, so that these fluctuations are well described by assuming perfect re-

flectivity. We also need the thickness of the disk to be small enough compared to H

that the deviation from the proximity force calculation is evident (see Fig. 3-15), but

large enough compared to the metal's skin depth 6 that the perfect conductor approx-

imation is valid. For a typical metal film, A, ~ 130 nm and 6 ~ 25 nm at the relevant

wavelengths. For a disk of radius r = 100 pim, the present experimental frontier of

0.1 pN sensitivity corresponds to a separation distance H ~ 350 nm, which then falls

within the expected range of validity of our calculation according to these criteria.

The force could also be enhanced by connecting several identical but well-separated



disks. In that case, the same force could be measured at a larger separation distance,

where our calculation is more accurate.



Chapter 4

Concluding Remarks

4.1 Outlook

To flip the direction of the Casimir force, which tends to stick objects together, var-

ious ideas have been put forth. Some involve unrealistic materials or a dielectric

liquid medium. One promising proposal is to heat bodies to different temperatures

[130, 131]. While the prospect of tuning the Casimir force drives the main interest

here, much need for fundamental research exists at the level of basic statistical me-

chanics. Out-of-equilibrium systems, e.g., systems where different parts have different

temperatures or whose parts are moving, lie at the frontier of statistical physics. Ad-

vances in understanding one example are sure to benefit other areas of physics, for

example, biophysics. The advantages of studying out-of-equilibrium Casimir forces,

in particular, are that the electrodynamic interactions are well understood and pre-

cision measurements have been refined by many research groups over the past years.

While some progress has been made, fundamental questions about the validity of

the underlying assumptions [130] and the influence of geometry, for example, remain

unanswered. Another out-of-equilibrium configuration, where the objects are mov-

ing, has also received much attention, not for practical reasons as for its possible

connections to, for example, the Hawking effect (radiation from a black hole). In

these situations the moving objects emit real photons; the loss of energy and momen-

tum amounts to "vacuum friction". While interest in geometrical considerations is



abundant, see for example, Ref. [132], where a rack driving a pinion at a distance is

attempted with crude but unavoidable approximations, tools for studying them have

been very limited. With our scattering techniques these dynamical Casimir prob-

lems may also become tractable. Since our derivation requires a static configuration

and thermal equilibrium, however, it is unclear whether and through what steps a

scattering formalism can be recovered from an out-of-equilibrium starting point.



Appendix A

Derivation of the macroscopic field

theory

In this appendix we justify the starting point of our derivation, the effective or "macro-

scopic" field theory in Eq. (2.1.1), in order to clarify the causality properties of the

permittivity c and permeability p and incorporate the dissipative properties of the

materials naturally into our formalism. We also show that both non-local and non-

isotropic permittivity and permeability tensors can be used.

In place of Eq. (2.1.1), we begin with the Lagrangian density of the free electro-

magnetic field plus a coupled system of particles. To be concrete, we imagine that

the electromagnetic field couples, say, to electrons of charge -e described by the

Lagrangian density operator

= - g + ihet V--AV + (A.0.1)
22m hh

where e and <I are the fermion field annihilation and creation operators, which are

spinor functions of space x and time t. We implicitly sum over spins and suppress

the spin index and we continue to work in A0 = 0 gauge. The electrons' coupling to

the lattice, their coupling to each other, and their spin-magnetic field interaction can



be explicitly taken into account by adding, for example,

Liattice = P -(t, X) U X) (t, X)

Cint =-1 J dx'Y (t, x)It(t, x')v(x - x')b(t, x')(t, x) (A.0.2)

2mc

We imagine that such systems, confined to the various regions of space, represent the

objects whose Casimir interactions we are calculating. Since the following procedure is

quite general, we are not limited to systems described by these particular Lagrangians,

but modifications to our approach may be needed in some situations.

The electron-lattice and electron-electron interactions are mediated via the quan-

tum electrodynamic field, but the relevant wavelengths are substantially shorter than

the ones dominating the Casimir interaction of different objects, so we can safely ap-

proximate the short wavelength interactions by effective potentials u(x) and v(x-x').

To compute the total partition function, we exponentiate the time integral of the

Lagrangian and analytically continue the time coordinate t to -ir, yielding

Z(4) = DAe-sEM Zelec[A], (A.0.3)

where

SEM J dT dx (E 2 + B 2), (A.0.4)

is the free electromagnetic action and

Zeiec [A] J D'D4' e-hSeee (A.0.5)

is the electronic partition function. The Euclidean electronic action is

~YT±YzAJ)J (V +ieA) &j + interactions)~Seiec =o dr dx (hear + 2mIV - A Vb +h nercin
(A.0.6)

where the interaction terms are taken from Eq. (A.0.2), including at least Llattice to



keep the electrons confined to the various objects. Here the creation and annihilation

operators bt and Q go over to Grassman path integral variables y and 4.

Next, we expand the partition function of the electronic system,

Zeiec[A] I Zeiec[0] 1 + cTd-r' dxdx'Ki (T - T', x, x')A(T, x)Ai(T', x'))

(A.0.7)
where the second derivative of Zeiec,

1 62 Zeiec [A]
Kij (T - T', X, X') = c 6i(Tlx)6A( (A.0.8)

Zeiec [0] ~i (,r, x) Mi (r', X') A='

only depends on the difference in imaginary time T - r'. The linear term has been

omitted in this expansion because it vanishes for systems with no mean currents. We

then obtain the well-known Kubo formula for electrical conductivity, [133]

'(icn, x, x') = dT Kij (T, x, x')e "ic''. (A.0.9)
con 0

Conductivity, here, differs from conductivity in classical electrodynamics where it is

proportional to only the imaginary part of the permittivity at real frequencies. The T

superscript indicates that this is the imaginary-time ordered response function. The

retarded response function can be obtained by the substitution ico -- w + iO+. The

conductivity is related to the permittivity by

oa(icCn, x, x') = cn ((icKn, x, x') - 6oj6(x - x')) . (A.O.10)

After substituting into Eq. (A.0.7), we obtain

Zeiec ~ Zeiec[o i + 2ddxdx'E*(iCrn, X) -(I1(x - x') - ET(icI ,x, x')) E(icI/, x')

(A.0.11)



and, finally, after reexponentiating and plugging into Eq. (A.0.3) we obtain

Z(#3) ~Zeec[0] JDA exp [- dxdx'E*(iCIn, X) - E' (icran,x, x')E(iCri, X')

+J dxB*(icn+, X) - B(icn, X)).

(A.0. 12)

The imaginary-time ordered response function can be obtained from the retarded

real time response function, which is experimentally accessible, by analytic contin-

uation to imaginary frequencies. The relationship E (icKn, x, x') = e(icl1 i, x, x')

between the two response functions and the symmetry of the retarded response func-

tion in the indices (i, x) and (j, x') is discussed in Refs. [134, 135].

To be able to consider two objects as separate and distinct, we assume that

eT(icrIn X, x) is zero when x and x' are on different objects, separated by the vacuum

or a medium. This is justified even for small gaps between the objects, since tunneling

probabilities decay exponentially in the gap distance.

Although the dissipative part of the electric response (the conductivity) appears

in the above equations, there is not actual dissipation at zero temperature. Rather,

Eqs. (A.0.7) (A.0.9) merely show that the conductivity o-R, which can be measured

in an experiment, can be related to the fluctuations that exist in a system in the

absence of an external perturbation. The size of these fluctuations is represented by

the second derivative of the partition function, Eq. (A.0.8).

Although the magnetic susceptibility is usually negligible compared to the elec-

tric susceptibility at visible and infrared frequencies, we have kept the permeability

function p in our derivations of Casimir interactions. If the spin-magnetic field cou-

pling term 4 pin replaces or dominates the standard coupling between charge and

electromagnetic field in Eq. (A.0.1), an analogous procedure introduces the magnetic

permeability function into the action. In that case, the partition function of the mat-

ter field, the analogue of Eq. (A.0.7), has to be expanded in B = (V x A)' instead

of A'.
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Appendix B

Green's function expansions and

modified eigenfunctions

In this appendix we supply the Green's function expansions for imaginary frequency

ics and the associated modified eigenfunctions in various bases. After analytically

continuing the wave functions in Eq. (2.2.8), it is convenient to redefine them by

multiplication by an overall factor in order to obtain the conventional definitions of

the modified wave functions. Since Ei"*(r,, x) = Eout(, x), it suffices to supply the

modified regular and outgoing wave functions.

Electromagnetic vector waves are typically divided into TE and TM modes, e.g.,

in media with high symmetry such as homogeneous media. It is customary to name

the TE wave functions M(w, x) and the TM waves N(w, x). Often TE modes are

referred to as magnetic modes, labeled by M, and TM modes are referred to as electric

modes, labeled by E.
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B.1 Green's function and eigenfunctions - plane

wave basis

We choose the i axis as a convenient symmetry axis and let ki denote momentum

perpendicular to this axis. The free dyadic Green's function is

Go(ic, x, x') -

f L2 dk 1  CkM (K)Mout"(, x) ( Mg*(K, x') + CkE(s)Nout(, x) @ N X*(K,x') if z > z'

(2r)2  (K, x)oM *(K, x') + Ck1 E ()N (K, x) 0 N(k, x') if z < z'

(B.1.1)

Here, Ck-M(K) 222 1 (-1)CkE(K). Often, it is necessary to discretize the

integral expression in (B.1.1) by replacing f 2, by Ek . For simplicity, therefore,
factors of L denoting the extent of the total system in the directions perpendicular

to z have been introduced here, although in the integral expression they cancel in

numerator and denominator. The modified vector plane wave functions are given by

Mgf (Kx) = V Xx (, x)i, M

eg (X) = IV X V x 4eg(K, x)j,

out I_ 1u
(tx) = = x

Nj (Kx) = V x V x # u

(B.1.2)

in terms of the modified scalar plane wave functions,

# , x ik x+ k
2 z out i-x- kI± 2

"z

As discussed in the text, the labels "reg," "out," and "in" are not really appropriate

for plane wave functions, but the mathematical results all carry over.
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B.2 Green's function and eigenfunctions - cylin-

drical wave basis

Again, let us take the i axis as a convenient symmetry axis and let p = Vx 2 + y 2 be

the distance to the i axis. The free dyadic Green's function is given by

Go(ic, x, x') =

/Ldkz
27rn

CMM out(I, X) 0 Meg*(, x') + CENk"fl(K, X) 0 Ne* (Kx')

CMM g (,7 x) Mn* (K, x') + CEN(Isi, x) 0 Ni* (K, x')

if p > p'

if p < p'

(B.2.1)

Here CE-= (-M)Cm, the vector cylindrical wave functions are given by

M eg(Kx) =
1

k 2V x ( x
V kv + K2

Mout (x x) =- x #_"_(K, x)i,kzn VZ +K z

z
1

Nreg( ,x) V x V x #r,(r, x)
z jk + r2

N2 2out x) - 1 V x V x %"'(K, X),
Nn(k + k 2

and the modified cylindrical wave functions are

p$(i'c, x)

(B.2.2)

= I(pkz + .2) eikzz+inO, pun(x x) = K p zk + .2) ikzz+inO,

(B.2.3)

where I, is the modified Bessel function of the first kind and Kn is the modified Bessel

function of the third kind.
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B.3 Green's function and eigenfunctions - spheri-

cal wave basis

In spherical coordinates the free dyadic Green's function is given by

Go(ic, x, x') =

Cm (K) Mo'(K, x) @ Mg* (, x') + CE (,) No (K, x) 9 N (/-, x')

C1M Mre (K, X) (g Mi",*(K, X') + CE (K)N2 (9 N in* (, X')

if |x| > |x'|

if |x| < Ix'|

(B.3.1)

Here CM(I) = (-1)CE(), the vector spherical wave functions are

M (xx) = V x# , 1M (,)V x#

N r(, x) - V x V x (i'i, x)x,
V1(1±+1)

Nout X) VNM (Kx) ' 111 x V x (K, x)x,

(B.3.2)

and the modified spherical wave functions are

# (K, x)I = X i(KIX|)Yim(k), #1" (Kx) = ki(Kjx )Yim(k),

where il(z) = 7'I+1/ 2 (z) is the modified spherical Bessel function of the first kind,

and ki(z) = K+1/ 2 (z) is the modified spherical Bessel function of the third kind.

B.4 Green's function and eigenfunctions - parabolic

cylinder wave basis

Let us take the i axis as a convenient symmetry axis. The parabolic cylinder coor-

dinates are defined through x = pA, y = (A 2 _ p2)/2, z = z. We assume y ;> 0 since

A --+ -A and yi - -yt returns us to the same point. The free dyadic Green's function
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is given by

Go(icr, x, x') =

Ldk CMMU, (K, x)

27 E u~~ )
J vdzzCMre KX

kzv 1Kx

Here CE !

by

o Mg*( x') + CENU'(K, x) 0 Ne* (K, x')

o Mi"* (K, x') + CEN(, x) N"*(K, x')

= (-1)CM. The vector parabolic cylinder wave functions are given

M[reg x =kzv kKX
1
k V x # (, x)i,

ut ___ __ V out i
Mk"(K x, ) = 2  V X #k(, x z,

Zk + r2

Nz(Kx) =

z" (Kx)

1

1 V x V x #' (K, x)i,

s lk! + 2

(B.4.2)

and the parabolic cylinder wave functions are

#kzvXx) = (-i)"Dv(1)Dv i)eiz, out (x)-D )Diijeikzz
#1",x) =D(l)D_v_1 (A)Be Iz

(B.4.3)

where Dv(x) is the parabolic cylinder function, and A = A 2k + K2 , + = 2 2 k? + K2

B.5 Green's function - elliptic cylindrical basis

In order to study geometry and orientation dependence of Casimir interactions, it

is helpful to be able to study objects with reduced symmetry. In Ref. [112), this

formalism was applied to spheroids in scalar field theory. Unfortunately, the vector

Helmholtz equation is not separable in spheroidal coordinates as it is in spherical co-

ordinates. While the analogous vector spheroidal harmonics can still be constructed,

the scattering matrix for a perfectly conducting spheroid is not diagonal, although it
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can be obtained from a more elaborate calculation [136]. For a perfectly conducting

elliptic cylinder, however, the vector scattering problem is separable, so we describe

that case here. Throughout this appendix, we use the same normalization and con-

ventions as in Ref. [137], in which all functions in elliptic cylindrical coordinates have

the same normalization as their circular analogs. As a result, all the functions in-

herit the usual completeness and orthonormality relations and approach their circular

analogs in the limit of long wavelength.

In elliptic cylindrical coordinates, the z coordinate is unchanged, while the com-

ponents of x 1 become x = a cosh p cos 0 and y = a sinh p sin 0, where the interfocal

separation of the ellipse is 2a. Far away, 0 approaches the ordinary angle in cylindri-

cal coordinates and |x1  ~ let. Separation of variables in these coordinates yields

angular and radial Mathieu functions for 0 and p, respectively. The even and odd

angular Mathieu functions are cen(0, -y) with n > 0 and sen(0,Y) with n > 0, which

are the analogs of cos nO and sin nO in the circular case. (We used a complex expo-

nential basis for the circular case, but it could equally well be represented in terms of

sines and cosines.) The angular functions now depend on the wave number through

the combination y = (k2 + K2)a2/2. The corresponding radial functions are now

different for the even and odd cases and depend on y and y separately rather than

through a single product of the two. The even and odd modified radial Mathieu func-

tions of the first kind are denoted Iem(t, 7) and Iom(p, -y) respectively, and the even

and odd modified radial Mathieu functions of the third kind are denoted Ke (p, '7)

and Kom(t, -y), respectively.

We then obtain the same results as in cylindrical coordinates, but now with

reg (,(, X) = Ien(P, 7)cen(0, 7)eikzz, #ut(/,x) =YKen(, 7)ce(,7)eikzz,

, x) =Ion(p, 7)sen(O,7)eik22, #$u(, x) = Kon(p,7)sen(0,7)eik22

(B.5.1)

For numerical calculation the required Mathieu functions can be efficiently computed

using the C++ package of Alhargan [138, 139]. Analogous replacements convert the
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translation matrices and wave conversion matrices described below into this basis.
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Appendix C

Translation matrices

In the following, we list the translation matrices that make up Xi, defined in Eq. (2.2.14).

The definition of the vector Xij, which points from the origin of object i to the origin

of object j, is illustrated in Fig. 2-1.

C.1 Plane wave basis

Plane waves are eigenfunctions of the translation operator, which does not mix TE

and TM vector plane wave functions.

If the z coordinates of object i are smaller than those of object j, then -V'i is

the only nonzero entry in X. Taking Xij to point from the origin of object i, 02, to

the origin of object j, O( (that is, upward), we obtain

y - iki-1-- k i (27r) 2 (2)(ki - k')6pp.VkIP,kI, P' L2 
1

I
(C.1.1)

If i is located above j, then -Wi is the only nonzero entry in Xii. The vector

Xji points upward from O to O, and we have

V] .t* Ok LP(rl)
k-i-P,k' P' k LP',kP Ck' P'W()

= eik.xi,1-- ki±+2Xji,;, (2702 6(2)(k 1

(C. 1.2)

- k's) 6pp'.
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Since the matrix is diagonal in k1 and P, the factor Ck1 P cancels.0
k' I PI~

C.2 Cylindrical wave basis

Translations do not mix the TE and TM modes of vector cylindrical wave functions.

They are constructed by taking the scalar cylindrical wave function, multiplying by

the unit vector i, and performing one or two curl operations. A TE vector cylindrical

wave function is perpendicular to z, while the curl of a TM vector cylindrical wave

function is perpendicular to z. Expanding any of the two vector wave functions around

any other point in space must preserve its orthogonality property with respect to the

constant vector i. So, the two are not mixed by the translation matrix.

If two objects i and j are outside of one another, -UjP is the only nonzero sub-

matrix of X. Again, let Xji point from O.- to 0,. We have

~ (x3~,1  ~ -H-- i kzXji,,-i(n-n')Oji (-)%5p/ 3kH ,,, =Kn-n 2|y~|k + x2) 6-kxP-~-n)i (-"6, 1 6 (kz - k'1)

(C.2.1)

where IXji,il is the distance of Xji to the i axis, i.e. the length of the projection

onto the x-y plane, and Oji is the angle of Xji in the x-y plane.

When object i is enclosed inside the surface of an infinite cylinder, inside object

j, submatrix -Vui is the only nonzero entry in X. We have

V ,, - Inn , (Xi|/k2 + e -ikzxi,z-i(n-n')Oi( _I)n+n'o5 2i 6 (kz - k' ),

(C.2.2)

where Xij points from O to O(,

If the roles of i and j are reversed, then -Wj' is the nonzero submatrix of X',
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with

kznP,k'n'PI 'n'P',kznP

In-n! | kz + r2) e+ikzxi,z -i(n-n')Oii(_ )n+n'6pp' o (kz - k').

(C.2.3)

Since the matrix is diagonal in P, the factor -- cancels.
cP'

C.3 Spherical wave basis

The TE vector wave functions are orthogonal to the radius vector x. Since the same

vector wave function cannot also be orthogonal everywhere to the radius vector of a

shifted coordinate system, TE and TM polarizations mix under translation.

Suppose object i and its origin are outside a spherical separating surface, which

encloses j. The nonzero submatrix of X is -U, with

( 1 ~ +3E~ 1) + l/(l/ + 1)- + 1) 7r(21_-+ 1)(21/ + 1)(211" + 1)
Um'M,lmM 1(1 ± 1)l/(l1 +

mE M - (AmAi'mrtm+1(Xji) + imA'mim1(Xji))
S l+ 1)''+X1) 2 + M

+ 9 ( A+ Al'm'im+1 (Xji ) - A- Airmiim_1 (Xji)) + i m Aiimiim (Xj

Uj'm'M,lmE - I'm'E,lmM1 l'3M'E,lmE = II'MMI

where

A'm'im (Xji) = (-1)m +Z E 47(21
X"

+ 1)(21' + 1)(21" + 1)

I'

-m' m ' -m )k (r X ji|)Y m-m (
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and A"j = \/(l Tm)(l±m+ 1).

The translations between regular waves are described by the matrix elements

vi'm'M,lmM
J"

XI
0

i' i" I

0 0 m
r

l'm'E,lmM +(1 (l I

+ 9 (A+ Bmm+1(

+ 11(11)3+ + (21 + 1)(21/ + 1)(21"1+
W + 1)l'(l' + 1)

iJ (rI X 1)(-1)1"y Im-m (XiJ),
-M, M - M)

X. K1 (A- + B'mim+1(Xij) + A1-MBiimm1(Xij))
2J L m

Xi ) - A-Bi'm'm1(Xij))

l'm'E,lmE - l'm'M,lmM'

-/4w7r(2l + 1) (21' + 1)(21"+± 1)(-1)" E

0 0 m0 -M' M' - M)
ii" (Kli )(D(- 1)" Y1//rjfI~i)

and Afm = \/(l F m) (l m± 1).

The matrix W3 is related to Va'

Yvi'm'P',lmP I''P',lmP Cp( -

V7, of course, is the same as V'j with Xj3 replaced by Xjj. To be more specific,
the elements correspond in the following way,

m'M,lmM lmM,1'm'M)

Wlm'M,lm E - - mE,l' m'M'

VVl'm'E,lmM imM,l'mIE

l'm'E,lmE lmE,l'm'E
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where

+ 2 m BI'milm(Xij)I

Biim'im(Xij)

(C.3.3)

(C.3.4)



Appendix D

Wave conversion matrices

It is not necessary to express all the objects' scattering amplitudes in the same basis.

Here, we supply the matrices that convert modified vector plane wave functions to

spherical or cylindrical vector wave functions.

D.1 Vector plane wave functions to spherical vec-

tor wave functions

Mk- (K, x) = DmM,k MM (, x) + DimE,kj MN g(,, x),

N r(K, x) = DlmM,k EM (K, x) + DImE,k1 E (r,(x).
(D.1.1)

The conversion matrices are obtained from the decomposition of a plane wave in

spherical coordinates,

DlmM,k1 M

DlmE,k±M

4-Fw(21 + 1)(1 -in)! JkJ e-imekI
p'm (

kI72 + k2/)
(D.1.2)

DimE,k1 E= DlmM,kjM, DlmM,kIE =-DimE,kIM,
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47r (21 + 1) (1 - m)! ' K -i kP

(1e im - , 1
l~l 1)l + )! 1k,



where P{' is the associated Legendre polynomial and prime indicates the derivative

of P" with respect to its argument.

D.2 Vector plane wave functions to cylindrical vec-

tor wave functions

The cylindrical vector wave functions are defined as before, but now we consider

regular vector plane wave functions that decay along the -Xc axis instead of the -i

axis,

X e2+k2+kx+ikYY+ikzz
k2+ k2

1 x .
N7X N7 X e +k+kx+ikyy+ikzz5

Vjk2+ k

(D.2.1)

The vector plane wave functions can be decomposed in vector cylindrical wave

functions,

Mg (, x) = DkznM,kWMM (K, x) + DkznE,kIMNe(K, x),

(D.2.2)
Nkf (K, x) = DkzfnM,kEM (K, x) + DkznE,kENkn(K, x),

using the conversion matrix elements

DkznM,kiM

Dk~nE,k1 M k±k 1±42± )+V
Vk + k

DkznE,kiE = DkznMk M ,

where ( = and k1 = (ky, kz).
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n

(D.2.3)

DkznM,k1 E = -DkznE,kIM,



D.3 Vector plane wave functions to parabolic cylin-

der vector wave functions

To agree with the coordinate choices in Ref. [80], we must convert the outgoing vector

plane wave functions,

M/ (K)

N/ (K, ')

1 V' x eik x'-V_ ±k2+k2y'+ik'zz'-1

k z

JI ik V x
Viv'e

(D.3.1)
+k+2y'+ik'z'/

to regular vector parabolic cylinder wave functions,

oo

Mz ( x DkzvM,k'MM ( , x) + DkzvE,k' MN~g(K, x),
v-OvI z

N (Kx') = DkzvM,k' EMv (K, x) + DkzvE,k' ENg (K, x),

(D.3.2)

using the conversion matrix elements

ik z V2 + k/2+ k/22

, + 2

DkZvE,ki _X
M 'rS2 +kz' Vk2 +k/2,

DkzvE,ki E= DkzvM kM,

.kyl/ g2+k?2-1

ky/V/K
2+k+1J

ky / 2+k -1

ky| +kl+2 kz

DkzvM,k, E =-DkzvE,ki M ,

(D.3.3)

The coordinate system has been rotated by 0 around the i

axis so that x = (X y, z) and x' (x', y', z') are related by x = z'cos 0 + y' sin 0,

y = -x'sin0 + y'cos0, and z z'. The momenta labels are related by k=

12 +k? + k1 cos 0+ ik' sin 0 and kz = k'.
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