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Abstract

We present theoretical and numerical methods for studying Casimir forces and nonlinear
frequency conversion in nanophotonic media consisting of arbitrary geometries and materi-
als.

The first section of the thesis focuses on the study of various geometry-enabled reso-
nant effects leading to strong nonlinear interactions. The starting point of this work is a
coupled-mode theory framework for modeling a wide range of resonant nonlinear frequency-
conversion processes in general geometries, ameliorating the need for repeated and expensive
finite-difference time-domain simulations. We examine the predictions of the theory for two
particular nonlinear processes: harmonic generation and difference-frequency generation.
Our results demonstrate strong enhancement of nonlinear interactions at a "critical" in-
put power leading to 100% frequency conversion, among many other interesting dynamical
effects. Using a quantum-mechanical description of light, based on cavity quantum electro-
dynamics, similar enhancement effects are demonstrated at the single-photon level, leading
to the possibility of achieving all-optical switching of a single signal photon by a single gating
photon in a waveguide-cavity geometry consistsing of pumped four-level atoms embedded
in a cavity. Finally, we describe how one may tailor the geometry of certain materials to
enhance their nonlinear susceptibilities by exploiting a consequence of the Purcell effect.

The second section of the thesis, the main contribution of this work, presents a new
formulation for studying Casimir forces in arbitrary geometries and materials that directly
exploits efficient and well-developed techniques in computational electromagnetism. To be-
gin with, we present the step-by-step conceptual development of our computational method,
based on a well-knonwn stress tensor formalism for computing Casimir forces. A proof-
of-concept finite-difference frequency-domain implementation of the stress-tensor method
is described and checked against known results in simple geometries. Building on this
work, we then describe the basic theoretical ingredients of a new technique for determining
Casimir forces via antenna measurements in tabletop experiments. This technique is based
on a (derived) correspondence between the complex-frequency deformation of the Casimir
frequency-integrand for any given geometry and the real-frequency classical electromagnetic
response of the same geometry, but with dissipation added everywhere. This correspondence
forms the starting point of a numerical Casimir solver based on the finite-difference time-
domain method, which we describe and then implement via an off-the-shelf time-domain
solver, requiring no modifications. These numerical methods are then used to explore a
wide range of geometries and materials, of various levels of complexity: First, a four-body
piston-like geometry consisting of two cylinders next to adjacent walls, which exhibits a
non-monotonic lateral Casimir force (explained via ray optics and the method of images);



Second, a zipper-like, glide-symmetric structure that leads to a net repulsive force arising
from a competition between attractive interactions. Finally, we examine a number of ge-
ometries consisting of fluid-separated objects and find a number of interesting results. These
include: stable levitation and suspension of compact objects, dispersion-induced orientation
transitions, and strong non-zero temperature Casimir effects.

Thesis Supervisor: John D. Joannopoulos
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Thesis Supervisor: Steven G. Johnson
Title: Associate Professor of Applied Mathematics
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limit cycles and lower-efficiency stable solutions. Various typical points A-G

in each region are labeled for reference in the subsequent figures. . . . . . . 74



2-8 An example of a limit-cycle solution, with a periodically oscillating harmonic-

generation efficiency as a function of time, corresponding to point D in Fig. 2-

7. Perturbations in the initial conditions produce only phase shifts in the

asymptotic cycle. Here, the limit cycle has a period of around 3 x 104 op-

tical cycles. Inset: Square of Fourier amplitudes (arbitrary units) for each

harmonic component of the limit cycle in the Fourier-series expansion of the

A 3 . . . . . . . . . . .  . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .. . . . . 76

2-9 Bifurcation diagram showing the harmonic-generation efficiency of the stable

(solid red lines) and unstable (dashed blue lines) steady-state solutions as a

function of a/01 for a fixed T3 /T1 = 0.7, corresponding to the line ACF in

Fig. 2-7 (see inset). The input power is the critical power Pcrit, so there is

always a 100%-efficiency stable solution, but as a//31 increases new stable

and unstable solutions appear at lower efficiencies. . . . . . . . . . . . . . . 77

2-10 Bifurcation diagram showing the harmonic-generation efficiency of the stable

(solid red lines) and unstable (dashed blue lines) steady-state solutions as a

function of T3/T1 for a fixed a/#1 = 3 (left) or = 8 (right), corresponding to

the lines BCD or EFG, respectively, in Fig. 2-7 (see insets). The input power

is the critical power Pcrit, so there is always a 100%-efficiency steady-state

solution, but it becomes unstable for r3 > r1 (a Hopf bifurcation leading to

lim it cycles as in Fig. 2-8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2-11 (Left:) Bifurcation diagram showing the harmonic-generation efficiency of the

stable (solid red lines) and unstable (dashed blue lines) steady-state solutions

as a function of input power Pin/Perit at fixed a/#1 = 3 and T3/T1 = 0.7,

corresponding to point C in Fig. 2-7; the inset shows an enlarged view of the

high-efficiency solutions. (Right:) Bifurcation diagram as a function of a/,1

for fixed Pin/Prit = 1.35 and fixed T3/T1 = 0.7; in this case, because it is not

at the critical power, there are no 100%-efficiency solutions. . . . . . . . . . 79



2-12 Asymptotic steady-state efficiency at point C (triply-stable) in the phase

diagram (Fig. 2-7), with the initial conditions perturbed from the 100%-

efficiency stable solution. The initial amplitudes Aio and Aso are perturbed

by 6A 10 and 6A 30, respectively, with SAio/Acrit =Aso/Arit. The oscillation

of the steady-state efficiency with the perturbation strength is an indication

of the complexity of the phase space and the shapes of the basins of attraction

of each fixed point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2-13 One way of exciting the system into a controlled stable solution: the input

power is the sum of an exponential turn-on (the blue curve, P) and a Gaus-

sian pulse with amplitude P and width 6T. The amplitude P is altered to

control which stable solution the system ends up in. . . . . . . . . . . . . . 81

2-14 (Left:) Steady-state efficiency at point C in Fig. 2-7 as a function of the

transient input-pulse power P from Fig. 2-13, showing how all three stable

solutions can be excited by an appropriate input-pulse amplitude. (Right:)

Same, but for an asymptotic input power P1 * 0 8 Pcrit, for which the maxi-

mum efficiency is - 90% from Fig. 2-11(right), but is easier to excite. . . . 82

2-15 (Left:) Green line with arrows indicates instantaneous "efficiency" (harmonic

output power / input power) as the input power is slowly decreased, start-

ing at a power ~ 1.7Perit. For comparison, Fig. 2-11(left) is superimposed

as solid-red and dashed-blue lines. The solution "adiabatically" follows a

steady state until the steady state becomes unstable, at which point it en-

ters limit cycles, and then returns to a high-efficiency steady state, and fi-

nally goes drops to a low-efficiency steady-state if the power is further de-

creased. (Right:) Similar, but here the power is increased starting at the

high-efficiency steady state solution for P < Pcrit. In this case, it again en-

ters limit cycles, but then it returns to a high-efficiency steady-state solution

as the power is further increased, eventually reaching the 100%-efficiency sta-

ble solution. If the power is further increased, it drops discontinuously to the

remaining lower-efficiency steady-state stable solution. . . . . . . . . . . . . 83



2-16 Schematic of general scheme for X(2) difference-frequency generation, includ-

ing dynamical variables for coupled-mode equations: two input (output)

channels (with incoming (outgoing) field amplitudes s±) are coupled to a

resonant cavity with three modes at frequencies wi and W2 and WT = W2 - Wi

(with corresponding amplitudes ai, a2, and aT). The two resonant modes

are nonlinearly coupled by a Pockels (X(2)) nonlinearity. All three modes leak

energy at a rate determined by their corresponding quality factors Q. . . . 87

2-17 (a) Schematic illustration of triply-resonant monolithic (GaAs) geometry.

P1,,i = Is1+| 2 and P2,in = |S2+|2 denote the input power of light at pump w1

and idler W2 frequencies, respectively, while PT = JST- -2 stands for the THz

output power. The transmitted power at the pump and idler frequencies are

denoted by Pi,tr and P2,tr, respectively. (b) Main panel: electric field profile

Ez corresponding o the resonant mode appearing at 1 THz in the dielectric

structure of (a). The value of the geometrical parameters are: a = 102pm,

di = 40.8pm, d2 = 25.1pm, d3 = 18.8pm, and w = 0.8pim. (Inset:) Enlarged

view of the x-polarized electric field profile Ex, corresponding to a whispery-

gallery mode with m = 572 circulating inside the dielectric ring, shown in

the main figure. The internal/external radii of the ring resonator are 30.5pm

and 40.1pm, respectively. Shaded/white areas represent GaAs/air regions. . 91

2-18 Total efficiency (blue) of THz light IST_ 2/(IS1+2+ S2+1 2) emitted by the

system, for WT = 1 THz. The results also show the depletion efficiency

is _/(Is±1 2 + Is2+ 1) of the pump (k = 1, green line) and idler (k = 2, red

line) photons. The horizontal dashed line displays the maximum possible THz

(quantum-limited) conversion efficiency, determined by the Manley-Rowe re-

lations. The dotted line displays the effect of realistic absorption losses on

the conversion efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3-1 Schematic illustration of the system investigated. A waveguide is coupled to

a cavity with an EIT atom at its center. In the upper left-hand corner, an

FDTD simulation that can be used to calculate the model parameters is shown. 100



3-2 Waveguide reflection for a lossless 3-level EIT atom for the four labeled values

of the atomic coupling strength 913, in GHz. The radiation rate P. = 21.5

GHz and the ratio 913/Qc = 2 are fixed. Larger 913 produces larger peak

separations (the blue curve shows Rabi peaks outside of the plot), favorable

for sw itching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3-3 Waveguide reflection (blue) and absorption (red) in the absence (solid) and

presence (dashed) of an control photon, demonstrating nonlinear single-photon

switching (F,, = 21.5 GHz, 913 = 20.5 GHz, Qc = 2 GHz, F3 = 30 GHz,

924 = 8 GHz, and AC24 = 30 GHz). . . . . . . . . . . . . . . . . . . . ... 105

3-4 Waveguide reflection with (dashed) and without (solid) a control photon,

demonstrating lossless switching. (Left:) A higher quality factor has made

the resonant peaks narrow enough to be shifted by more than their full width

at half maximum by a single photon (r,, = 3 GHz, 913 = 20.5 GHz, Qc = 30

GHz, F3 = 0, 924 = 30 GHz and AC24 = 20 GHz). (Right:) Multiple (49)

EIT atoms have been used to push the Rabi-split peaks farther away in the

presence of negligible loss (IF, = 21.5 GHz, 913 = 143.5 GHz, Qc = 210 GHz,

F3 = 0, 924 = 210 GHz and AC 24 = 20 GHz). . . . . . . . . . . . . . . . . . 106

3-5 A 2D triangular lattice of air holes in dielectric (E = 13). On top of the

dielectric structure in grey, the Ez field is plotted, with positive values in red,

and negative values in blue. A small region of nonlinear material is placed

exactly in the center of the structure. This material may be, for example,

either two-level atoms, quantum wells, or some semiconductors such as InSb. 112

3-6 Relative enhancement of the TM local density of states for Fig. 3-5, as mea-

sured in the time-domain simulation rate of emission, F, normalized by the

emission rate in vacuum, Io... .. . ....................... 113

3-7 Contour plot of Kerr enhancement r= Rex((3i)/ Re x(3) as a function of

probe (wph) and electronic transition (Weiec) frequencies, for a single quantum

well of GaAs-AlGaAs, (a) at T = 200 K, with 0.1lphase =O1nr Frad, and

(b) at T = 225 K, with 0 . 1
Yphase -- r - r. d....... . . . . . . . . . . . . . . . . . 113



4-1 (Left:) Two atoms separated by a distance d are interacting via fluctuation-

induced dipole moments (polarizabilities al and a2). (Right:) Two macro-

scopic objects separated by a distance d are interacting via the electromag-

netic field produced by the fluctuation-induced charges on the interior and

surface of the bodies, described by macroscopic polarizations fields P1 and P 2.119

5-1 Schematic of one dimensional geometry, showing two 1d metal plates sepa-

rated by a distance a, embedded in a computational cell of length L = a+ 4a,

with periodic boundary conditions, and resolution Ax. . . . . . . . . . . . . 132

5-2 (Left:) Plot of force summand, or spectral density, hAw/2Ax vs. w for

1d parallel metal plates from Fig. 5-1. (Right:) Plot of force partial sum

E ' hAw/2Ax vs. w. . . . . . . . . . . . . . . . . . . . .. -. - - - . . 133

5-3 Plot of Casimir force integrand dUlda between two 1d parallel plates sepa-

rated by a distance a = 1 versus imaginary frequency w = Imw, using the

m ethod of Sec. 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5-4 Schematic illustration of the finite-difference Yee grid: the vector compo-

nents of the electric E and magnetic H fields are spatially staggered about a

rectangular unit cell of a Cartesian computational grid so that each E-field

vector component is located midway between a pair of H-field vector com-

ponents, and vice versa. The electric field components form the edges of the

cube, and the magnetic field components form the normals to the faces of

the cube. ........ ..................................... 140

5-5 Schematic illustration of a possible contour around a body; the force on the

body is given by an integral of the stress tensor around this contour. . . . . 141

5-6 Plot of Casimir force integrand @f T - dA between two Id parallel plates

separated by a distance a = 1 versus imaginary frequency w = ImW, using

the stress-tensor method of Sec. 5.4. . . . . . . . . . . . . . . . . . . . . .. 147



5-7 Casimir force between a 3d radius-R cylinder and a plate (inset), relative

to the proximity-force approximation FPFA, vs. normalized separation a/R.

The solid lines are the Casimir force computed in Ref. [141] for TE (gray)

and TM (blue) polarizations, along with results computed by our method

with a simple finite-difference discretization (gray squares). Error bars were

estimated for some data points by using computations at multiple spatial res-

olutions. Inset shows interaction stress tensor A(T,,) at a typical imaginary

frequency w = 2-rc/a, where red indicates attractive stress. . . . . . . . . . 148

6-1 Schematic illustration of correspondence between two methods of calculat-

ing Casimir forces. (Left): Numerical method requiring evaluation of the

force integrand over the imaginary-frequency axis (or some suitable complex-

frequency contour). (Right): Antenna (S-matrix) measurements of the elec-

tromagnetic response at tabletop (e.g. cm) lengthscales. Here, the effect of a

contour deformation is achieved by a material deformation which corresponds

to the presence of a conductive fluid between the objects. . . . . . . . . . . 156

6-2 Complex-frequency w plot of the Casimir force integrand (ln Re dFz/dw),

where dF,/dw is in units of h/d 2, for the geometry of Fig. 6-8. As the

real-w axis is approached, the integrand becomes highly oscillatory, which is

only partially revealed here due to the finite frequency resolution. Various

integration contours of interest are labeled as black and dashed lines. (Inset:)

Vacuum e = 1 contour deformations w( ) and their corresponding (real-

frequency) physical realizations Ec((). . . . . . . . . . . . . . . . . . . . . . 160



6-3 (Top:) Partial force integral f5' dFx, normalized by F2, as a function of (, for

the various w(()-contours (equivalently, various Ec = w2162) shown in Fig. 6-

3. The solid green, red and black lines correspond to conductive media with

o = 10, 102 and 103, respectively (o has units of c/d). The dashed grey

and solid blue lines correspond to 4 = r/4 and # = 7r/2 (Wick) rotations.

(Bottom:) Illustration of the required frequency bandwidth for a possible

realizations using saline solution at separation d = 30cm. The red lines

plot the xx-component of the photon GF Gxx at a single location on the

surface contour (see inset) as a function of 6 (GHz). The black line is the

corresponding partial force integrand.. . . . . . . . . . . ... . . . . . . 164

6-4 |Im g(t) | for various values of -, illustrating the transition from t 1 to t- 1/ 2

power-law decay as o- increases. Because there are strong oscillations in g(t)

at the Nyquist frequency for intermediate a, for clarity we plot the positive

and negative terms in g(t) as separate components. . . . . . . . . . . . . . . 178

6-5 Plot of the force error (force after a finite time integration vs. the force

after a very long run time) for g(t) determined from a numerical trans-

form as in Ref. [449] and from the analytic transform of the high-frequency

components. Inset: Im[g(-t)] obtained without a cutoff, in which the high-

frequency divergence is integrated analytically. Compare with Fig. 1 of Ref. [449] 180

6-6 Tf(t) + F'(t) for a set of one-dimensional parallel plates as the separation

h is varied. The inset shows the physical setup. . . . . . . . . . . . . . . . . 181

6-7 Partial force as defined in Eq. (6.37) for one-dimensional parallel plates as a

function of time t. (Inset): Relative error A(t) as a function of t on a semi

log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6-8 Schematic illustration of a possible contour around a body; the force on the

body as computed by Eq. (6.49), involves an integral of the fields over the

contour S.... ..... ...................................... 189



7-1 Casimir force between 2d (z-invariant fields) metal squares F/FPFA, vs. dis-

tance from metal plate h (inset), normalized by the total force (TE+TM)

obtained using the PFA, FPFA = hc(3)s/87a3. The total force is plotted

(black squares) along with the TE (red dots) and TM (blue circles) contri-

b utions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7-2 (a-f): TM stress map of the geometry in Fig. 7-1 for various h. The interac-

tion stress tensors (Txx) (left) and (Txy) (right) for: (a),(d): h = 0.5a; (b),(e):

h = a; and (c),(f): h = 2a, where blue/white/red = repulsive/zero/attractive. 196

7-3 Casimir force between 2d (z-invariant fields) dielectric (e = 4, left) or gold

(right) squares F/FPFA, vs. distance from metal plate h (inset), normalized

by the total force (TE+TM) obtained using the PFA (Here, the PFA force is

computed for x-infinite slabs of corresponding dielectric e). The total force is

plotted (black squares) along with the TE (red dots) and TM (blue circles)

contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7-4 Casimir force per unit length between z-invariant 3d metal blocks F/FPFA, vs.

distance from metal plate h (inset), normalized by the total force (TE+TM)

obtained using the PFA, FPFA = hcsw72/480a 4 . The total force is plotted

(black squares) along with the TE (red dots) and TM (blue circles) contri-

butions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7-5 Schematic of cylinder-plate geometry consisting of two z-invariant metallic

cylinders of radius R, separated by a distance a from each other, and by a

distance h from one (top) or two (bottom) metallic sidewall(s). . . . . . . . 200

7-6 Casimir force per unit length between two cylinders (black) vs. normal-

ized cylinder-sidewall separation h/R, at fixed a/R = 2, normalized by

the total PFA force per unit length between two isolated cylinders FPFA =

5 (hcr 3/1920)VR/a 7 [425] for the two cases shown on the inset. Also shown

are the individual TE (red) and TM (blue) forces. Inset: Schematic of ge-

ometry in the case of one (dashed lines) and two (solid lines) sidewalls. . . . 201



7-7 Casimir force per unit length between two cylinders of fixed radius R vs.

normalized cylinder-sidewall separation h/R (for one plate), normalized by

the total PFA force per unit length between two isolated cylinders FPFA =

1(hcir3/1920)VR/a 7 . The force is plotted for different cylinder separations

aIR = 0.2, 0.6, 1.0, 2.0, 3.0, and 4.0. . . . . . . . . . . . . . . . . . . . . . . 202

7-8 Casimir force per unit length between a plate and two cylinders of fixed

radius R vs. normalized cylinder-cylinder separation a/R, normalized by

the total PFA force per unit length between two isolated cylinders FPFA =

5 (hcr 3/960) R/2a7 [425]. The force is plotted for different plate separations

h/R = 0.28, 0.6, 1.0, and 2.0 . . . . . . . .. . . . . . . . . . . . . . . . . . . 203

7-9 Force for the double cylinders of [428] as a function of sidewall separation

h/a, normalized by the PFA force FPFA = hc((3)d/87ra3. Red/blue/black

squares show the TE/TM/total force in the presence of metallic sidewalls,

as computed by the FDTD method (squares). The solid lines indicate the

results from the scattering calculations of [428], showing excellent agreement.

Dashed lines indicate the same force components, but in the presence of

perfect magnetic-conductor sidewalls (computed via FDTD). Note that the

total force is nonmonotonic for electric sidewalls and monotonic for magnetic

sidew alls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7-10 Schematic of a two-dimensional geometry: two metal squares s x s sepa-

rated by a distance a, and separated from two adjacent metal sidewalls by a

distance h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7-11 Casimir even (red) and odd (blue) forces vs. sidewall separation h normalized

by the PFA force FPFA = -hci(3)s/87a 3 (dashed black), computed using

the ray-optics (solid) and stress-tensor (dashed) methods. Note that the

ray-optics results become exact as h - 0. . . . . . . . . . . . . . . . . . . . 213

7-12 Casimir force vs. sidewall separation h normalized by the PFA force FPFA =

-hc((3)s/87ra 3 , computed using the ray-optics (solid) and stress-tensor (dashed)

methods. The Neumann (green), Dirichlet (orange) and total (black) forces

are all normalized by the total Neumann+Dirichlet PFA force. . . . . . . . 214



7-13 Casimir force vs. separation between squares a with constant sidewall sep-

aration h = 0.25, normalized by the FPFA = -hc((3)s/87ra3 (top) and the

corresponding h = 0 force (bottom). The force is computed for both even

(red) and odd (blue) contributions, separately. Inset: schematic of geometry

consisting of two isolated squares with adjacent sidewalls. . . . . . . . . . . 216

7-14 Schematic of general 2d squares+sidewalls lattice. Lines extending from solid

circles unto solid circles represent even reflection paths. Lines extending from

open solid circles unto open circles represent odd reflection paths. (Here,

h/a ~ 0.2 and s/a ~ 1.) A possible even (red) and forbidden odd (blue)

path is show n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7-15 Schematic of three-reflection paths. Blue/red represent (1, 2)/(2, 1) paths,

and the lengths £2 shown are used the calculation of the energy. . . . . . . . 221

7-16 Convergence error (Er+1 - Sr)/r in the even (solid) and odd (dashed) path

contributions vs. reflection order r for values of h = 0 (red), h = 0.01 (blue),

and h = 0.1 (black) (here, Er means the energy computed up to order r).

Inset: Absolute error (Eexact - )/Eexact for both even (solid black) and odd

(dashed red) contributions for h = 0. . . . . . . . . . . . . . . . . . . . . . . 225

7-17 Three-dimensional schematic of the Casimir "zipper" geometry of interlock-

ing metal brackets (shown in different colors for illustration only), along

with a two-dimensional xy cross-section. The dashed lines extruding from

the plates to the squares indicate their out-of-plane connectivity. . . . . . . 227

7-18 (Top:) Plot of the Neumann (blue, TE), Dirichlet (red, TM) and total (black,

TE+TM) Casimir pressure (in units of hc/A 4) between the objects of Fig. 7-

17, as a function of a/s. The inset illustrates a two-dimensional cross-section.

(Bottom:) Schematic indicating the various qualitatively different Casimir

force regimes between the two structures. . . . . . . . . . . . . . . . . . . . 229

7-19 Comparison of Casimir pressure (in units of hc/A 4) as a function of a/s

between the stress-tensor (exact) numerical results (black squares) and the

proximity-force approximation (solid green). Also shown are the individual

square-square (dashed blue) and square-plate (dashed orange) contributions

to the PFA force. Inset: Schematic illustration of the chosen PFA "lines of

interaction" between squares (dashed black lines). . . . . . . . . . . . . . . 232



8-1 Schematic of Lifshitz geometry, consisting of two semi-infinite plates (per-

mittivities E1 and E2) separated by a dielectric with permittivity es. . . . . 239

8-2 Casimir force F, in the x-direction, per unit z-length, on a SiO 2 cylinder

suspended within a perfectly-metallic cylinder (inset), separated by fluid

(ethanol), as a function of the x-displacement from equilibrium (eccentric-

ity) d [in units of a = 0.5(D - s)] for both circular (solid-line) and square

(dashed-line) cylinders. d = 0 is seen to be a stable equilibrium. . . . . . . . 243

8-3 Casimir torque -r, per unit z-length, on the inner square rod of eccentric

square cylinders as a function of the angle 0 with respect to the x-axis (see

right insets) for two material choices as shown in the top insets. Error bars

are estimates of the effect of finite grid resolution. . . . . . . . . . . . . . . 244

8-4 Derivative of the Casimir torque in the z-direction with respect to 0, drz/dO,

in units of hc/a 2, evaluated at 0 ~ 00, as a function of lengthscale a =

0.5(D-s). The solid line is a fit to the exact Casimir torque, computed by our

numerical method (solid squares), and the dashed line is the torque as com-

puted by a PFA approximation. Both curves display a change (dispersion-

induced transition) in the stable orientation of the square. . . . . . . . . . . 245

8-5 Casimir force F, in the x-direction, per unit area, between a planar SiO 2

slab suspended between two perfect-metal plates (solid red and black lines)

or gold half-spaces (dashed red line), separated by a fluid (ethanol), as a

function of the dimensionless x-displacement d from equilibrium. The force

is plotted also at two lengthscales a = 0.5(D - s) = 0.0955 pm (red lines) and

a = 0.6 pm (black line). The solid blue line shows the same quantity for the

case of a lithium-niobate slab and a gold half-space, for a = 0.5 pm. (Insets:)

Top inset: E(i() for SiO 2 (black), LiNbO 3 (solid and dashed blue), ethanol

(orange) and gold (red) as a function of imaginary frequency (. Bottom inset:

schem atic of geom etry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8-6 Schematic of silica sphere levitated above a gold plate. At the equilibrium

point, the force of gravity counters the Casimir force, while the Casimir force

from the walls of the spherical indentation confine the sphere laterally (x-y

plane). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



8-7 (Left:) Total (Casimir + gravity) vertical (z) force on the silica sphere (de-

picted in the inset) as the height h of the sphere's surface above the inden-

tation surface is varied. The point of vertical equilibrium occurs at hc ~ 450

nm. (Right:) Casimir restoring force on the sphere as a function of lateral

displacement Ax, when the vertical position is fixed at he, the height at

which gravity balances the Casimir force. . . . . . . . . . . . . . . . . . . . 250

8-8 Schematic schemes for stable suspension of fluid-separated objects, involving:

(a) enclosed geometries; (b) gravity countering Casimir repulsion; arrd (c)

material dispersion producing repulsive and attractive Casimir forces (here). 251

8-9 (Top): Plot of the dielectric permittivity E(i() of various materials evaluated

at imaginary frequency ( (units of c/pm). (Bottom:) Casimir force be-

tween a semi-infinite slab and a sphere (dots) and Casimir pressure between

semi-finite slabs (lines), normalized by the corresponding perfect-metal PFA

force FPFA = hc7r3 /720d 3 (slab-sphere) and pressure FPFA = hc7r2 /240d 4

(slab-slab). The force/pressure is plotted for various material configurations,

described in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8-10 Equilibrium separation de vs. sphere-radius (R) or slab-thickness (t) for var-

ious slab-sphere (dots) and slab-slab (lines) configurations. Dashed lines

correspond to slab-slab geometries with materials swapped (semi-infinite sil-

icon slab). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

8-11 (Top:) Plot of the stable equilibrium center-surface (Lc) and surface-surface

(hc) separation between either a teflon (yellow) or silicon (blue) sphere and a

semi-infinite gold slab (depicted schematically on the left inset), as a function

of sphere radius R. The black lines also show the presence of an unstable

equilibrium in the silicon-sphere case. (Bottom:) Plot of the force Fss be-

tween two teflon/silicon spheres of radii RS/RT, showing the existence of a

stable equilibrium................. . . . . . . . . . . . . . . . . 256



8-12 Relative permittivity E(i() of various materials as a function of imaginary

frequency ( (in units of c/pm) or "Matsubara" temperature T = h(/27rkB-

Doped silicon corresponds (bottom to top) to doping density Pd = {1, 3, 5, 10, 1021 x

1016, modeled via an empirical Drude model [127], as is gold [34]. Water,

polystyrene, ethanol, teflon, and lithium niobate are all modeled via standard

Lorentz-oscillator models [325]. . . . . . . . . . . . . . . . . . . . . . . . . . 260

8-13 Equilibrium separation de (in units of pm) as a function of temperature T

(in Kelvin), for a geometry consisting of fluid-separated semi-infinite slabs

(no gravity). The various curves correspond to de for various material com-

binations. Solid/dashed lines correspond to stable/unstable equilibria, and

shaded regions are T where ethanol is non-liquid at 1 atm [161]. Doped-

silicon is plotted for various doping densities Pd = {1, 10, 100, 500, 103} x 1017. 261

8-14 Equilibrium position dc (in units of pm) of a semi-infinite polystyrene (PS)

slab immersed in ethanol (shaded T = non-liquid) and suspended against

gravity by a repulsive Casimir force exerted by a doped-silicon (Si) slab. The

solid/dashed lines correspond to stable/unstable dc, and each color represents

a different value of PS slab-thickness h (in units of pm). The inset shows the

magnitude of the total energy UT(d) (in units of kBT) as a function of d for

h = 150 nm , at various T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8-15 Average separation (d) (circles) and equilibrium separation d, (red line), in

units of pm, vs. temperature T (in Kelvin), for a geometry consisting of

a fluid-separated hollow PS sphere of inner/outer radius r/R = 3.2/5 Pm

suspended in ethanol against gravity by a doped-silicon slab and subject to

Brownian motion. Shaded region indicates where sphere is found with 95%

probability. The thin black line is the average (d) 140 if the Casimir energy at

140 K is used instead of the true temperature-dependent energy landscape. 263

A-1 Cavity mode Ez (blue/white/red = positive/zero/negative) for a 2d structure

with (a) no disorder, (b) surface disorder, and (c) surface + position disorder,

and for a (horizontal) cross-section of a 3d structure with (A) no disorder

and (B) sidewall disorder...... . . . . . . . . . . . . . . . . . . . . . . 268



A-2 Q vs. # layers for a 2d cavity (inset shows 2 layers), for disorder types (de-

scending by Q): position (red), no disorder (black), E (cyan), surface+position (blue),

and surface (magenta). Error bars show std. dev. over 15 runs. . . . . . . . 270

A-3 2d band gap and cavity mode frequencies vs. strength of e disorder (maxi-

mum % variation of rod E). Error bars show std. dev. for 10/100 runs for

gap/cavity frequencies. Inset shows cavity structure (4 layers). . . . . . . . 271

A-4 Q vs. # layers for cavity in the 3d structure (left inset), for disorder types (de-

scending by Q): no disorder (black), height (blue), sidewall roughness (red).

Right inset: mode EIE12 in vertical cross-section (3 layers). Error bars show

std. dev. over 15 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

B-1 Unit cell of the Fibonacci superspace dielectric. The physical dielectric is ob-

tained by taking a slice at an angle tan # = r. Black/white are the dielectric

constants of the structure factor material and air, chosen to be e = 4.84 and

e = 2.56, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

B-2 (Left:) Frequency spectrum w of the Fibonacci quasicrystal vs. "wave-

vector" k,. The blue lines indicate spurious states which arise due to finite

resolution effects (see text). (Right:) Corresponding density of states p(w)

computed using a transfer-matrix technique with a supercell of 104 layers. . 281

B-3 Integrated density of states (DOS) vs. band index (normalized by resolution),

for various resolutions. The dashed red, diamond blue and solid black lines

denote resolutions of 20, 50 and 200, respectively. . . . . . . . . . . . . . . . 282

B-4 Plot of the magnetic field amplitude JHz for a band-edge state taken along

a slice of the two-dimensional superspace (in the # direction). Inset: Two-

dimensional superspace field profile (red/white/blue indicates positive/zero/negative

am plitude).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

B-5 Electric field energy distribution of the band edge states of gaps 1 and 2 in

Fig. B-2. Although they have a complex small-scale structure, the large-scale

variation is easily understood in terms of the structure of the superspace. . 284



B-6 Enlarged view of the Fibonacci spectrum (Fig. B-2) showing a gap with a

spurious band crossing it. Insets show the magnetic field IHz for the spurious

band at various kr-the localization of this mode around the X-parallel edges

of the dielectric indicate that this is a discretization artifact . . . . . . . . . 285

B-7 Dielectric for the Fibonacci chain with E = 2.56 (light blue), and a defect-an

additional Ed = 8.0 layer, shown in gray. . . . . . . . . . . . . . . . . . . . . 286

B-8 Varying the defect epsilon for resolutions 50 (blue) and 100 (red). The thick-

ness of the defect is fixed to 0.02 lattice constants. The number of spurious

modes increases with the resolution, the true defect state being the lowest of

these m odes. . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . 287

B-9 Semi-log plots of the magnetic field magnitude Hz for the lowest (top) and

highest (bottom) defect state for the configuration shown in Fig. B-7. Insets:

Two-dimensional superspace visualizations of the defect states. Note the

additional node in the lower figure (corresponding to an unphysical oscillation).288

B-10 Projected band structure vs. cut angle #, showing different one-dimensional

quasicrystal realizations. The vertical red line indicates the spectrum when

the slope is the golden ratio r (the spectra of # and 7r - # are equivalent) . 289

B-11 Schematic showing the superspace slice X (left) and the projected slice mod-

ulo 1 into the unit cell X (right), along with the intersection T of X with

the s = 0 hyperplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



30



List of Tables

6.1 Vacuum e =1 contour deformations w(() and their corresponding (real-

frequency) physical realizations Ec(). . . . . . . . . . . . . . . . . . . . . . 163



32



Chapter 1

Introduction

Controlling and harnessing light has been a goal of many scientists and engineers for the

past century. Beginning with the work of James Maxwell and others [8, 265, 347, 380],

our understanding of light has led to a number of remarkable technological advances. By

manipulating light using materials, scientists revolutionized the telecommunications indus-

try and paved the way for many important technologies involving fiber-optic cables [336],

antennas [20,205], lasers [493], and dozens of different spectroscopic methods [114].

The physics of classical electromagnetic fields can be accurately described by a set

of simple coupled partial differential equations, known as Maxwell's equations. Originally,

research in classical electromagnetism was confined to the study of light in simple geometries,

largely due to a lack of computational resources 1 and techniques capable of solving these

equations in complicated settings. On the one hand, a basic understanding of the physics of

light in simple geometries, such as in one-dimensional periodic structures or index-guided

waveguides, was sufficient to usher a flood of discoveries and applications. On the other

hand, if our experience in physics has taught us anything is that simple wave phenomena

(e.g. interference, dispersion, diffraction) in complicated geometries can lead to new and

unexpected phenomena. Toward that end, especially spurred by the growing availability of

general-purpose computers in the 1960s, physicists and engineers set out to formulate ways

by which to solve Maxwell's equations in arbitrary geometries. These efforts led to a wealth

of computational techniques for solving various classes of complicated wave equations (even

beyond the realm of electromagnetism) [25,45,91, 237, 252, 515, 531, 532, 548, 581, 596] that

'The study of index-guiding, antennas and lenses predates the invention of computers.



prompted the discovery of many fundamentally new electromagnetic effects. Over the past

few decades, the study of light in complicated geometries with features at the scale of the

electromagnetic wavelength has revealed fundamentally new ways to manipulate and guide

light 2 [155,222,238,241,290,512,584], such as periodic structures with photonic band-gaps

that allow confinement of light in small volumes for very long times [95, 158, 241,395,397,

420,511,537,544,545] as well as new forms of electromagnetic dispersion [188,223,224,241,

335, 584]. These discoveries have in turn led to the development of new techniques and

devices: guiding of light in air with low losses [58,155,156,222,247,270,290,317], new types

of optical insulators [241], lasers [316], linear filters [6, 7], and low-power logic gates [377],

to name a few.

The realization of greater control and manipulation of light by way of geometry alone has

also paved the way for new developments in the field of nonlinear optics. When the inten-

sity of light interacting with a polarizable material exceeds a certain (material-dependent)

threshold, its dielectric response can no longer be described by a linear permittivity, and

the corresponding Maxwell's equations become nonlinear [51, 469], coupling photons via

material-mediated interactions 3. Although these nonlinearities are often relatively weak,

and therefore negligible, they can give rise to a number of fascinating and important elec-

tromagnetic effects with many applications [14, 145, 308, 345, 366, 469, 477]. The key to

strengthening nonlinear interactions is to require that the nonlinear "mixing" occur inside

a resonant environment: a cavity or geometry in which light is confined for long times.

The smaller the cavity (compared to the wavelength of light) and the longer the modal

lifetime, the stronger the field intensity and the more time the light has to interact with it-

2 The appendix section of the thesis provides examples of the kinds of novel classical electromagnetic
phenomena that can arise in complicated geometries. For example, appendix A studies the influence of
fabrication-induced disorder on a class of photonic microcavities formed by the creation of a defect in an
otherwise perfectly-periodic photonic crystal environment (periodic structures whose period is on the order of
the wavelength of light) [289,419]. It is shown that the electromagnetic modes of these kinds of microcavities
are immune to relatively large amounts of disorder, all the way up to the Anderson localization regime [444].

3A simple (heuristic) microscopic picture suffices to understand the origin of nonlinearities: macroscopic
objects are composed of many atoms, each consisting of charged constituents. When incident light interacts
with these charges, it gives rise to a redistribution of charge (momentary dipoles) that in turn radiate new
light. The sum of the incident and radiated light can then be used to define an effective macroscopic electro-
magnetic field in the medium, which enters Maxwell's equations via the polarization field. For low-intensity
light (composed of few photons), this response is linear in the incident field amplitude; anthropomorphically
speaking, the atom-photon ratio is so large that each photon has at least one atom all to itself. For high-
intensity light (composed of many photons), the response becomes nonlinear in the incident amplitude; the
atom-photon ratio is low that multiple photons begin to compete for the same atom's attention. Namely, the
interaction of a photon with an atom will induce a new charge redistribution on the atom, so that another
photon simultaneously interacting with the atom will experience a different atom-photon interaction.



self. These two objectives were often at odds with each other in conventional cavities based

on index-guiding (such as ring resonators). However, nanophotonic media (with compli-

cated features at the scale of the electromagnetic wavelength), such as new generations of

micro-cavities, can simultaneously achieve small modal volumes and long lifetimes, inde-

pendent of one another [211,248,459,509,546,549]. This ability not only allows a decrease

in the power requirements of many nonlinear devices, but also leads to novel phenomena

absent in conventional settings, such as optical bistability [81,175,387,501,507,526], limit

cycles [198], and many other dynamical effects. As the power requirements for nonlinear

interactions continue to decrease, it becomes possible to even reach the single-photon level,

where quantum-mechanical. effects of light become important, leading to the possibility of

observing strong photon-photon interactions. For example, recent developments in nanofab-

rication led to the observation of a phenomenon known as "photon blockade" in which a

photon interacting with an atom "blocks" the interaction of another photon with the same

atom [12, 149, 482]. The study of nonlinear interactions at low power levels has been at

the frontier of many research areas, such as quantum information [379,549]. Advances in

micro-fabrication techniques and developments in our understanding of nonlinear processes

in complicated geometries has led many researchers to dream about the not-so-distant pos-

sibility of realizing ultrafast integrated optical devices [57, 216, 346], similar in scope and

functionality to the electronic transistors, switches and logic gates that preceded the birth

of modern computers.

Although our ability to study light in complicated geometries has grown considerably,

there remain many aspects of nonlinear optics yet unexplored, especially in the context

of nanophotonic media (at the A-scale). One problem of interest that has yet to be fully

explored is a process known as nonlinear frequency conversion: input light at some frequency

is converted to output light at a different frequency by a nonlinear interaction. These kinds

of processes are at the heart of many up-and-coming technologies in the realm of optical

devices, such as high-frequency sources [33], ultracompact-coherent optical sources [145,308,

366], imaging [477], spectroscopy [345], and let us not forget the light-emitting diodes that

permeate many of our television screens. Early attempts at reducing the power requirements

of frequency conversion focused on large-etalon cavities that do not fully take advantage

of the spatial and temporal confinement present in micro-photonic cavities, such as new

generations of photonic-crystal nanobeam cavities [70, 115,317]. More recently, there has



been renewed interest in studying these nonlinear processes in more complicated structures

that offer greater confinement (in the context of frequency conversion, for both input and

output light).

The first part of this thesis (chapters 2 and 3) studies how and to what extent one

can enhance nonlinear interactions, both for classical and quantum light, by exploiting

geometry-induced resonances.

Chapter 2 develops a universal framework for studying nonlinear frequency conversion

in resonant environments consisting of arbitrary geometries and materials. This approach

is based on a general class of methods known as coupled-mode theories [202,520], applica-

ble for geometries consisting of weakly-coupled components, e.g. waveguides and cavities.

Using this formalism, we investigate some of the possible types of nonlinear behaviors that

one can expect in strongly-resonant geometries: under coupled-mode theory, the precise

features of the geometries are not important, but are rather captured by a small set of

parameters related to the decay rates and modal volumes of the electromagnetic modes of

the geometries. An important figure of merit for studying frequency conversion are the cou-

pling coefficients describing the nonlinear interactions. We derive these coupling coefficients

in general geometries (not restricted to large-etalon or specific structures, unlike previous

work). We find that frequency conversion can be dramatically enhanced by the presence of

simultaneous resonant cavities for both input and output light, in agreement with previous

predictions in specific geometries. We focus on studying two important nonlinear processes,

known as second- and third-harmonic generation, in which light at some input frequency is

converted to output light at two and three times that input frequency. Frequency conver-

sion is studied in a general class of geometries consisting of a waveguide directly coupled

to a doubly-resonant cavity (resonant at the input and output frequencies). Our results

demonstrate the existence of a critical power at which 100% of the input light is converted

into output light. We examine the conditions under which this is achieved.

The possibility of achieving 100% conversion in doubly-resonant cavities was previously

studied by a number of works (again for particular geometries or large-etalon cavities) in

the case of second-harmonic generation. The third-harmonic generation case had only been

studied in geometries consisting of waveguides or singly-resonant cavities. This latter case

is sufficiently more complicated due to the presence of cross- and self-phase modulation

effects: the frequencies of the input and output waves change as a function of the intensity



of the input and output light [51]. We demonstrate that these effects can play a dramatic

role on the stability of the conversion process and give rise to dynamical behaviors unique to

the doubly-resonant context, including limit cycles, multi-stability, and hysteresis. Obtain-

ing and exciting efficient solutions turns out to require new (geometrical and operational)

considerations, such as shifting of the cavity resonant frequencies and priming of the input

light. We conclude our discussion of geometry-enabled nonlinear effects by studying two

other types of frequency conversion schemes, one of which can be used to generate light at

terahertz frequencies. Terahertz light is of consequence to many applications and extremely

difficult to generate due to the lack of natural sources operating at room temperature.

Chapter 3 explores a different set of nonlinear problems. In particular, we explain how

one may combine geometry-enabled resonances with novel materials to further enhance

nonlinear interactions (decreasing their power requirements), so as to reach the single-

photon operation regime. Light consisting of a single photon does not behave according to

the standard rules of classical electromagnetism, requiring a different theoretical framework.

In addition to exhibiting standard classical wave behavior, single photons must also conform

to the rules of quantum mechanics, i.e. Heisenberg's uncertainty principle, which can have

dramatic consequences on their behavior [478,551,571].

Using a quantized version of the coupled-mode theory framework of chapter 2, a close

cousin of the so-called Breit-Wigner scattering approach in quantum mechanics, we study

some of the consequences of coupling single photons to single atoms embedded inside cavi-

ties. In particular, we consider a class of geometries similar to that of chapter 2, in which a

waveguide is side-coupled (rather than directly coupled) to a cavity. An atom whose atomic

transition energy is in resonance with the fundamental cavity mode is then embedded inside

the cavity. This confluence of geometry and material resonances is a key component for

achieving strong coupling between the atom and any resonant photon residing in the cav-

ity [263, 323, 346,488-490, 510, 534, 571]. In theory, this simple setup presents an excellent

opportunity for entangling the fate of photons. In particular, one can imagine sending two

photons into the cavity via the waveguide. In the absence of the atom the two photons

"miss" each other, and are both simultaneously transmitted. In the presence of the atom,

however, the photons can "compete" for the atom's affection, with one photon "blocking"

another photon from interacting with the atom, causing the two transmitted photons to be

delayed relative to one another at the output due to the effective "repulsion" mediated by



the atom [12,43,149,263,482,571]. Under other circumstances, the photons can instead be

made to bond to one another via an atom-mediated "attraction" [117,487]. A number of

these effects have been observed experimentally under low temperature conditions.

Unfortunately, a big problem with many atom-photon interaction schemes is the fact

that excited atoms tend to spontaneously radiate energy due to quantum and thermo-

dynamic fluctuations. In particular, charge and electromagnetic fluctuations induced by

quantum and thermal effects can exchange energy with otherwise static (stable) charge dis-

tributions (excited electrons in atoms) [286,415,479,570, 579]. The consequence for strong

coupling are devastating: the entanglement of a photon to incoherent forms of energy (ra-

diative and non-radiative, e.g. phonons) via the atom results in a loss of phase information

(possibly even the very photon). By "cooling" down single atoms, it is possible to reduce

these undesired consequences of fluctuations, but this obviously presents a problem for ap-

plications. One way to go around this problem is to take advantage of an effect known

as electromagnetically-induced transparency: an external classical oscillating field allows

photons to interact with three-level atoms in a way that makes the photons "immune" to

undesirable decay mechanisms [10,133,321]. By taking advantage of this effect (explored in

chapter 3), we demonstrate the possibility of switching the behavior of a single signal pho-

ton by a single gating photon of a different frequency, via a type of cross-phase-modulation

effect mediated by a four-level atom inside the cavity (a quantum analogue of the cross-

phase modulation effect studied for classical light in chapter 2). The steady-state behavior

of the system is solved exactly and analyzed using experimentally accessible parameters,

which we use to confirm that the strong coupling regime is required for lossless two-photon

quantum entanglement 4.

Following our discussion of single-photon switching, we go on to explore yet another

consequence of quantum and thermodynamic fluctuations: we demonstrate the possibility

of strengthening the nonlinear susceptibility (interaction) of certain classes of nonlinear

materials by exploiting the Purcell effect [415,569]. The Purcell effect, discovered by Edward

Purcell in 1946, is based on the simple yet profound statement that the spontaneous emission

rate of an atom depends on the photonic environment in which the atom resides-technically

speaking, on the density of photonic modes available to the atom. Purcell discovered that

4The reason why single photons interact so strongly in the presence of an atom, as opposed to a medium
composed of many atoms, is simple: a single photon can single-handedly saturate the response of an atom,
whereas the same is not true of many atoms [51].



by placing the atom in an environment (geometry) with modes resonant at the atomic

transition energies, one could enhance the rate of spontaneous emission. Specifically, by

placing an atom in a microcavity with a resonance at the transition energy of the atom, it is

possible to enhance the spontaneous emission rate of the atom by a factor proportional to the

lifetime of the cavity resonance and inversely proportional the volume of the corresponding

mode [381,382,585]. Note that the qualitative relationship between the lifetime and volume

of a geometric resonance and the strength of nonlinear interactions (whether it be mediated

via atoms or macroscopic materials) is universal [55, 57, 241, 252, 549, 574]: it is the basis

of the nonlinear enhancement of chapter 2 and is directly related to the strong coupling

regime of atom-photon interactions discussed above.

Shortly after Purcell's discovery, another major discovery concerning the effects of

fluctuation-induced interactions was made, this time by Dutch physicists Hendrick Casimir

and Dirk Polder [78]. Casimir and Polder proposed the existence of a tiny, yet observable

force between macroscopic neutral perfectly-metallic parallel plates that arises purely out

of the quantum (zero-temperature) fluctuations of the electromagnetic field [77, 302], the

same fluctuations that lead to some of the undesirable effects described in chapter 3.

The second part of this thesis (chapters 4-8) revolves around the study of Casimir forces

in arbitrary geometries and materials.

The theory of fluctuation-induced interactions between atoms originated in the early

1930s with the works of Ref. [134, 318]. It was then recognized that thermodynamic and

quantum fluctuations between atoms separated by large distances contributed significantly

to what are now known as van der Waals forces [68,77,78,116,302,318,352]. In particular,

even in its ground state, the electric charge on an atom will tend to fluctuate due to thermal

agitations. The stochastically fluctuating charges will in turn cause electromagnetic radia-

tion, and this radiation will consequently cause the otherwise neutral atoms to interact with

one another. At zero-temperature, the fluctuations remain, but this time due to quantum-

mechanical effects (the Heisenberg uncertainty principle). The first prediction of short-range

van der Waals or London-dispersion forces between atoms was made in the late 1920s [134].

Casimir and Polder generalized these predictions to include the case of atoms separated

by large distances (compared to the wavelength of their corresponding transitions), which

required a full electrodynamical treatment of the "retardation effects" associated with the

finite speed of light [78]. Casimir however, generalized this prediction even further by



also considering the possible interactions between macroscopic object (consisting of many

atoms). The predicted force between two parallel metallic plates is considerably different

from that of two atoms, owing to the strong dependence of the equilibrium fluctuating

electromagnetic fields on the shapes and material composition of macroscopic objects. For

example, the force between two metal plates was shown to be attractive and decaying as

a quartic power-law of the plate-plate separation [77]. This strong geometry dependence

of the force has been a subject of considerable attention among physicists interested in

fluctuation-induced interactions.

It took a number of decades, and many developments in the field of nanofabrication, for

the tiny Casimir force to go from being an amusing and certainly fundamentally important

consequence of quantum fluctuations, to being an object of concern for engineers working at

the frontiers of nano-devices. In particular, the magnitude of the Casimir force between two

1pmx1pm parallel metallic plates separated by 100nm is comparable to one atmospheric

pressure (100 kPa), surprisingly large considering the size and proximity of some of the

new classes of micro-electromechanical systems [83]. Because the force is usually attractive,

the Casimir force has been considered recently as a likely source of "stiction", leading to

the failure of many nano-devices operating in this regime. Deviations from the standard

attractive, decaying force first predicted in 1948 are therefore sought after by both physicists

and engineers. In fact, many researchers have become interested in exploring the shape and

material dependence of the Casimir force with the goal of achieving repulsive forces or

other exotic effects that may help to combat stiction, as well as reveal new insights into the

Casimir effect.

There have been many experimental validations of the Casimir effect, albeit in parallel-

plate geometries or simple-approximations thereof [169,268,352,358]. Theoretical tools were

so under-developed just a few years ago that had experimentalists had the experimental tools

needed to perform experiments on more complicated geometries back then, they would have

had to go alone and blindly. Although the properties of the force were very well understood

in simple parallel-plate geometries, based on the methods of Ref. [129, 302, 304], not until

recently were there methods that allowed calculations of forces in arbitrary geometries 5.

In fact, the most sophisticated theoretical calculation prior to 2007 was a calculation of

5Many unusual effects were actually discovered prior to advent of sophisticated numerical methods capable
of handling arbitrary geometries. However, they all involved either exotic materials [54,162,189, 217, 219,
229, 259,485,491,557,594,595} or fluids [74,129].



the force between a plate and a cylinder [141]. On the one hand, this rather long hiatus

between the work of Casimir and Ref. [141] mirrors some of the historical developments

in the field of classical electromagnetism, which took painstakingly small steps in order

to develop robust and efficient computational tools for studying complicated structures

[ref]. On the other hand, the calculation of Casimir forces shares many similarities with

standard problems in computational classical electromagnetism, as discussed in chapter 5,

which begs the question: how can one bring all of the wisdom, work and tools of classical

electromagnetism to bear on the problem of computing Casimir forces?

In 2007, inspired by the great theoretical and experimental leaps achieved in the field of

classical electromagnetism, we set out to develop numerical methods for computing Casimir

forces in arbitrary geometries and materials that could directly exploit standard techniques

in classical electromagnetism. The main focus of this thesis is the development of two

different numerical tools based on the finite-difference frequency- and time-domain methods

that require very little if any modification of standard tools developed for computational

electromagnetism and which allow calculations of Casimir forces in a very wide range of

geometries (see description below). Furthermore, we demonstrate the proficiency of these

tools by applying them to complicated geometries exhibiting unusual Casimir effects. This

presentation is organized as follows:

Chapter 4 presents an overview of Casimir forces, emphasizing some of the theoretical

and experimental developments of the last few years

Chapter 5 explores several ways in which well-established, efficient techniques from stan-

dard computational electromagnetism can be brought to bear on the problem of computing

Casimir forces, in order to predict forces for arbitrary geometries and materials with arbi-

trary accuracy with no uncontrolled approximations [443]. Starting from the simplest, most

direct approaches, we show that practical considerations naturally lead towards a particular

method involving the integral of the Minkowski stress tensor by repeated evaluation of the

imaginary-frequency Green's function-a method previously developed for purely analytical

calculations [129, 303, 304]. Because evaluation of the Green's function is such a standard

problem in classical computational electromagnetism, this approach makes it possible to

6We apologize for any citation gaps and admit that the discussion of previous works is in no way a review

of the literature. For a more holistic view of developments in the Casimir field starting from the early

works of Casimir and Polder, the reader is encouraged to read Ref. [46,68,74,169,268,352,355,358,390] and

references therein.



exploit many developments in fast solvers, based on finite-element [91,237,548,596], spec-

tral [50,91], or boundary-element methods [90,91,191,237,430,548, although our work cen-

ters only around the simplest of these methods: the finite-difference frequency-domain [93].

Our approach is tested for geometries with known solutions.

Chapter 6 describes two different methods for computing Casimir forces, both of which

abandon the frequency domain altogether in favor of the time domain. As argued, there are

many advantages to the time-domain perspective, most importantly, the fact that it makes

it possible to obtain the entire frequency spectrum by iterating Maxwell's equations (few

time steps) in response to a single dipole source. This time-domain approach is based on

a correspondence between the calculation of Casimir forces for vacuum-separated objects

and a similar electromagnetic-force calculation in which the objects are instead separated

by a conducting fluid, also described in the chapter. The requirement that the geometry

be mapped in this fashion turns out to be a practical consideration for any calculation

based on the time domain (real-frequencies). In fact, it is the theoretical equivalent of

a crucial and well-known technique for accurate numerical evaluation of Casimir forces, in

which the force integrand is deformed via contour integration, and commonly evaluated over

the imaginary-frequency axis [304,443]. This mathematical equivalence between complex

contour mappings and physical dielectric deformations reveals new opportunities for the

experimental and theoretical study of Casimir interactions. On the theoretical side, this

correspondence makes it easier to understand Casimir systems from the perspective of

conventional classical electromagnetism, based on real-frequency responses, in contrast to

the standard point of view based on Wick rotations (imaginary frequencies). Furthermore,

it lead to a finite-difference time-domain numerical method for calculation of Casimir forces

in arbitrary geometries and materials [344,449], discussed at the end of the chapter.

Chapter 7 demonstrates the flexibility and capabilities of the finite-difference methods of

chapter 5 and 6, by presenting results on a number of complicated geometries consisting of

vacuum-separated metallic objects. Our methods are first used to obtain the first predictions

of Casimir forces in a multi-body geometry. In particular, we study a structure consisting

of two cylinders adjacent to two metallic walls, exhibiting an interesting non-monotonic de-

pendence arising purely from the non-additivity of the Casimir force. The effect is explored

for cylinders of different cross-sectional shape (squares, cylinders), and also for metallic and

magnetic plates. Finally, we demonstrate how one may achieve one-dimensional Casimir



stability in a glide-symmetric geometry consisting of interlocked brackets in which repulsion

is obtained via a competition of attractive surfaces that can be explained using simple pair-

wise approximations. While this type of repulsion is technically considered "cheating" due

to its origins on standard attractive interactions, it does nevertheless suggest an interesting

possibility for micro-electromechanical systems.

The final chapter of the thesis, chapter 8, examines a number of ways in which one can

exploit fluids to obtain novel and interesting Casimir effects: these include stable suspension,

aggregation of compact objects, and dramatic Casimir temperature effects.

The appendix of the thesis describes work on two selected topics in the field of classical

electromagnetism that reveal some of the novel electromagnetic effects that can arise in com-

plicated environments. Appendix A studies the influence of fabrication-induced disorder on

microcavity modes formed by the presence of defects in complete-gap structures, such as

two- and three-dimensional photonic crystals (periodic arrays of materials with period on

the scale of the electromagnetic wavelength). The existence of band gaps in photonic crys-

tals, contiguous range of electromagnetic frequencies for which propagation in the crystal

is forbidden, is a direct consequence of the wave nature of light: the coherent (scatterless)

interference of light propagating in periodic structures commensurate with its wavelength '.

The presence of a defect on a photonic crystal allows light to be trapped inside the defect

(under certain conditions), due to its inability to escape (propagate) through the surround-

ing medium. Because crystal disorder turns out to have a very small effect on the band gaps

of the periodic structure, modes formed by defects in these structures are immune to scat-

tering induced by the disorder [2411, unlike the modes of conventional microcavities based

on index-guiding principles [518]. We demonstrate that disorder merely reduces the life-

times and shapes of complete-gap localized modes by performing larce-scale finite-difference

time-domain simulations on two particular photonic-crystal microcavities [444]. Appendix

B presents work on a new numerical approach for studying a class of photonic structures

known as photonic quasicrystals: aperiodic structures with long-range order that offer a

number of unique properties of interest, compared to ordinary periodic structures [447].

Previous methods for determining photonic quasicrystal spectra relied on the use of large

supercells to compute the eigenfrequencies and/or local density of states. We present a

method by which the energy spectrum and the eigenstates of a photonic quasicrystal can be

7 A similar effect is observed in crystal solids for propagation of electrons.



obtained by solving Maxwell's equations in higher dimensions, to which a generalization of

Blochs theorem applies. In addition, we demonstrate how one can compute band structures

with defect states in the same higher-dimensional superspace. As a proof of concept, these

general ideas are demonstrated for the simple case of one-dimensional quasicrystals, which

can also be solved by simple transfer-matrix techniques.



Chapter 2

Classical Nonlinear Nanophotonics

"I'm astounded by people who want to 'know' the universe when it's hard enough to find

your way around Chinatown." Woody Allen

2.1 Overview

In this chapter, we explore some of the consequences of geometric resonances on classical

nonlinear electromagnetic interactions. In particular, we present a general description of

nonlinear frequency conversion in resonant microcavities (structures with geometric or ma-

terial features at the scale of the electromagnetic wavelength) which exploits the generality

of a theoretical approach to resonant interactions known as temporal coupled-mode theory

(CMT). This approach provides both quantitative and qualitative predictions for cavity-

based frequency conversion, regardless of geometric structure (described by the symmetries,

frequencies, and decay rates of the cavity).

The chapter is broken down into the following sections: Section 2.1.1 presents a general

introduction to the field of nonlinear nanophotonics that emphasizes recent work involving

photonic-crystal microcavity resonators. Section 2.1.2 provides a brief introduction to linear

CMT-the formalism is illustrated via a simple example system known as a linear electro-

magnetic filter, in which light incident from a waveguide that is coupled to a microcavity

is only transmitted for light frequencies lying in a specified frequency band.

Section 2.2 extends the linear CMT of Sec. 2.1.2 to include the presence of nonlinear

processes occurring within the microcavity. In particular, we develop nonlinear coupled-

mode equations for a process known as harmonic generation, in which input light at some



frequency w is converted to light at some multiple of this frequency kw due to the non-

linearities. However, because the construction of nonlinear coupled-mode theories hinges

on very general symmetry arguments, independent of the details of the underlying wave

equation, the formalism is easily applicable to other forms of nonlinear frequency conver-

sion, as demonstrated in later sections. Section 2.2.2 describes how to compute all of the

required CMT parameters, e.g. coupling coefficients, which requires performing a simple

perturbation-theory calculation starting from the linear Maxwell's equations. Once all of

the basic components of the CMT are established, it becomes feasible to analyze harmonic

generation in general geometries. Sections 2.2.3-2.2.8 are devoted to analyzing second-

(X(2)) and third- (x(3)) harmonic. generation in doubly resonant cavities. X(2) and X(3) har-

monic generation involve the conversion of input light of frequency w to output light of

frequency 2w and 3w, respectively. Whereas it is well known that 100% harmonic conver-

sion is possible, at least in x(2) media, we explore and identify the conditions under which

this can be achieved in the doubly-resonant setting. Most importantly, we demonstrate the

existence of a critical input power at which harmonic generation is maximized, in contrast

to previous work that focused largely on the low-power (undepleted) limit, for which the

efficiency increases monotonically with input power. As a check on the accuracy of our

CMT, we examine third-harmonic generation (THG) via "exact" numerical experiments

using an FDTD simulation in a simple one-dimensional geometry. The results of these nu-

merical experiments allow us to quantify the accuracy of the CMT and identify its limits of

applicability. In addition, they also reveal a number of important features crucial to THG,

related to frequency-shifting effects due to cross- and self-phase modulation, the focus of

Sec. 2.2.5-2.2.7.

Sections 2.2.5-2.2.7 are devoted to an investigation of the dynamics of THG. This is

achieved by performing a simple stability analysis of the desired, high-efficiency solutions,

which demonstrates that resonant harmonic generation can yield many rich dynamical be-

haviors absent in conventional (non-resonant) schemes, such as the existence of limit cycles

and multistability. It is shown that achieving efficient THG requires additional considera-

tions, such as shifting of the original cavity frequencies and proper priming of the steady-

state solutions. The final sections on harmonic generation are devoted to a study of the

effects of external losses (e.g. absorption or radiation loss) and a brief note on some of the

outstanding questions for future work.



We conclude the chapter by discussing two additional types of nonlinear frequency con-

version processes. Section 2.3 focuses on a process known as difference-frequency generation,

in which incident light composed of two frequencies wi and W2 is converted to light at a third

frequency WT = W2 - wi. A promising application of resonant DFG, explored in Sec. 2.3.1,

is the possibility of efficiently generating an output signal WT - 1 THz. In particular, we

present the first predictions of all-optical THz generation in triply-resonant cavities, a cur-

rent topic of interest due to the many important applications based on THz light, and the

unfortunate scarcity of THz sources. Finally, Sec. 2.4 briefly surveys nonlinear three-wave

mixing in triply-resonant cavities. Three-wave mixing is a process by which incident light

composed of two frequencies Wo and wo + A is converted to light at a third frequency wo - A.

2.1.1 Nonlinear Nanophotonics

When the intensity of light interacting with a polarizable material exceeds a certain (material-

dependent) threshold, its dielectric response can no longer be described by a linear permit-

tivity, and the corresponding Maxwell's equations become nonlinear [51, 469]. Although

these nonlinearities are often relatively weak, and therefore negligible, they can give rise

to a number of fascinating and important electromagnetic effects, with many promising

applications [145,308,345,366,469,477]. Not surprisingly, there has been intense theoret-

ical and experimental work on the problem of strengthening nonlinear interactions. One

particular approach involves either engineering or discovering novel materials with stronger

nonlinear susceptibilities. A different approach, the focus of this chapter, involves tailoring

the geometric features of nanophotonic media to obtain novel effects [241].

Since the early days of nonlinear optics, optical resonators have been seen as an attractive

way to enhance nonlinear optical phenomena, such as frequency conversion processes [51]

(in optical parametric oscillators) or optical bistability properties [175]. Traditionally, these

nonlinear optical resonators have consisted of a nonlinear material located between two

partially transmitting mirrors. Although interesting in their own right, the application of

these nonlinear Fabry-Perot interferometers for designing all-optical logical devices is rather

limited, as they cannot fulfill the requirements in size, switching time and operating power

of practical integrated optical systems [57].

On a separate front, the rapid development of fabrication techniques at micro and nano-

metric scale has enabled the successful demonstration of optical micro- and nano-cavities



where light is strongly confined in a very small volume. This corresponds to the case where

the ratio between the quality factor Q and the modal volume V is extremely large, such

that Q/V 1/A 3 ). Here, it is important to emphasize that the modal volume is a measure

of the spatial extent of the mode in the material of interest, but its precise definition will

depend on the physical phenomenon of interest [57].

During the last decade, different types of optical cavities characterized by ultra-small

modal volumes and extremely high quality factors have been successfully demonstrated

(such as photonic-crystal (PhC) cavities or microtoroid and microsphere resonators, just to

cite some examples [537]). Among them, due to their unique confinement mechanism [241],

PhCs cavities have proved to be a versatile route to develop-novel optical integrated devices.

PhC optical cavities are usually created by introducing a small defect in an otherwise per-

fectly periodically modulated refractive index profile in either one, two or three dimensions.

The linear properties of PhCs including such defects have been extensively studied both

theoretically and experimentally [6,148,158,246,381,395,464,508,511,549,587]. Recently, it

has been experimentally demonstrated that it is possible to design PhC microcavities with

quality factors of Q ~ 106 and modal volumes of the order of a cubic wavelength [382].

As a consequence of these recent advances in nanophotonic fabrication, many of the

nonlinear phenomena previously analyzed in conventional large-etalon structures are being

revisited within the context of PhC cavities [5,24,36,55,81,101,102, 123, 150,203,337,361,

387,436,437,445,500,501,504,506,507,523,526,533,575,576]. Although it is true that the

physical mechanisms producing nonlinear phenomena (such as optical bistability or nonlin-

ear frequency conversion) in PhC cavities are similar to those observed in their conventional

counterparts, it has been demonstrated that PhC microresonators enhance the performance

of traditional nonlinear devices by several orders of magnitude. In addition, due to their

design versatility, PhC cavities can be used as the basis of completely new congurations

performing all-optical logic functions, such as all-optical transistor action [575]. Moreover,

as detailed in chapter 3, PhC resonators offer new fundamental ways of tailoring optical

nonlinearities by using the so-called Purcell effect [36,569]. Finally, in this context, note that

not only PhC resonators can lead to a strong enhancement of nonlinear phenomena, but

also nonlinear effects can be enhanced by using slow-light properties of PhCs, via the corre-

sponding band edges [5,411] or by means of coupled-cavity waveguides [405,504,567,580].

It is important to mention that, together with the aforementioned rapid development of



the experimental techniques, during the last decade there has also been an important growth

in large-scale computing technologies. Thus, the combination of purely numerical methods,

such as the nonlinear finite-difference-time domain method (FDTD) [523] (which simulates

Maxwells equations with no approximation apart from discretization), in conjunction to

analytical approaches such as coupled-mode theory [203] or perturbation theory [501], allow

a complete characterization of the electromagnetic response of the nonlinear PhC cavities

under study. In particular, all the theoretical calculations presented in this chapter have

been obtained by using one of the tools just mentioned. However, since this work is mainly

focused in explaining the physical mechanisms responsible for the observed results, we refer

to the reader to more specialized references for details on the numerical calculations [5, 55,

150, 203,523].

2.1.2 Temporal Coupled-Mode Theory

As mentioned in the previous section, coupled-mode theories are often constructed to de-

scribe weakly-coupled systems in terms of a set of idealized components (e.g. isolated waveg-

uides and cavities) that are coupled in some fashion [203,214,241,245,495,520,574,576,578],

similar to simple time-dependent perturbation theory (Breit-Wigner scattering) in quan-

tum mechanics [286]. The idea is that, to a first approximation, the interaction of localized

cavity modes with their environment is weak, making it possible to represent the solutions

of the entire coupled system as a perturbative expansion in terms of the localized (compo-

nent) modes. As discussed in Ref. [241], the construction of the linear theory relies only on

a few, but general assumptions: weak coupling, linearity, time-invariant material/geometric

properties, conservation of energy, and time-reversal invariance. In what follows, I will

briefly describe some of the basic components of temporal coupled-mode theory. For a

more in-depth presentation of the theory, the reader is encouraged to read chapter 10 in

Ref. [241].

Let us first construct the coupled-mode equations describing the interaction of light in

a multi-mode cavity coupled to a single set of input/output ports, from which light can

couple in (s+) and out (s_) of the cavity. A schematic illustration of the system is shown

in Fig. 6-8. Specifically, we follow the formalism described in Ref. [202], adapted to handle

non-linearly coupled modes with frequencies Wk, which is parameterized as follows.

We let ak denote the time-dependent complex amplitude of the kth mode, conveniently



normalized so that |ak 2 is the electromagnetic energy stored in this mode. We let s± denote

the time-dependent amplitude of the incoming (+) or outgoing (-) wave, normalized so that

1s± 2 is the power. (More precisely, s±(t) is normalized so that its Fourier transform Ig±(w)12

is the power at w.) 1 By itself, a linear cavity mode decaying with a lifetime Tk would be

described by dak/dt = (iwk - 1/rk)ak, which corresponds to a mode ak with solution:

ak(t) ak(0)e-k k (2.1)

Technically, such a decaying mode is not a true eigenmode, but is rather a "leaky mode" [499],

corresponding to a "quasi-bound state" in the Breit-Wigner scattering theory [286]. The

decay rate 1/Tk can be decomposed into 1/Tk = 1/re,k + 1/T,k where 1/re,k is the "external"

loss rate (absorption etc.) and 1/rs,k is the decay rate into s-. When the weak coupling

(wrk > 1) to s± is included, energy conservation and similar fundamental constraints lead

to equations of the form [2031:

dak . 1 )a 2
dt= wk - - + s+ (2.2)dt rk rsk

S_ = -S+ a -ak (2.3)

This model can be generalized to incorporate multiple input/output ports, direct cou-

pling between the ports, and so on [520], although the main situation(s) of interest involve

either a single or two ports [483]. The only unknown parameters in this model are then the

frequencies Wk and the decay rates 1/'rk, which can be determined by any numerical method

to solve for the cavity modes (e.g. FDTD, below). (Note that instead of Tk, one commonly

uses the quality factor Qk = Wkrk/2.)

The fact that ak is not a true eigenmode of the entire system is evident upon inspection

'In 1d, the units of jak| 2 and |s±l 2 are those of energy and power per unit area, respectively. More
generally, in d dimensions, the units of lak 2 and 1s± 2 are those of energy and power per length 3 d.



of its Fourier spectrum ak, which has a Lorentzian lineshape 2:

ak(0)/ 2
(w-k) l/k~ (2.4)

In particular, ak is a superposition of harmonic modes eiwt with frequencies in the vicin-

ity of Wk, and with bandwidth or spectral support inversely proportional to its lifetime, i.e.,

Ao = 1/r. The size of the domain over which frequencies o # Wk in &k contribute to ak is

a measure of the accuracy of the coupled-mode approximation: For small Tk (corresponding

to strong coupling to the waveguide), the number of modes contributing to ak is large.

As rk grows (corresponding to a more weakly-coupled cavity), the contribution of modes

W Wk to ak decreases, and it becomes more sensible to view ak as a mode of the system.

[Note that in the limit as Tk -+ oc, corresponding to an infinitely lived cavity mode with

no coupling to the waveguide, ak becomes a true eigenmode with Fourier transform given

by dk ~ (o - WO).] In practice, temporal-coupled-mode theory (or this quasi-bound state

approximation) becomes nearly exact for Qk > 30.

Equation (2.2) allows us to predict the transmission/reflection spectrum of any weakly-

coupled waveguide-cavity system. We now consider a simple example system for illustration

purposes, known as a narrow-band filter. In particular, consider the system shown in Fig. 2-

1: a lossy cavity of frequency wo coupled to two waveguides, denoted by input pots s1+ and

S2+, with decay rates 1/1 and 1/r 2 , respectively, and absorption rate 1/r'. Let us assume

that there is only incident light through the left waveguide (s2+ = 0). Since frequency is

conserved in a linear system, if the input oscillates at a fixed frequency w, then the field

everywhere must oscillates as e-iwt, and da/dt = -iwa. Plugging this ansatz, and s2+ = 0,

2An alternative, and more mathematical way to understand the leaky-mode approximation involves an

analysis of the complex-frequency Green's function G(w) of a weakly-coupled system of resonances, but this

is outside of the scope of this thesis. The basic idea goes as follows: The eigenmodes of the individual

components of the coupled mode theory, i.e. the cavities, are manifested as poles in G located along the

real-w axis. The act of coupling the cavity to an output port is equivalent to that of introducing a small

absorption loss into the system, leading to a complex pole in G at w + i6, where 6 is a small imaginary term

that is proportional to the "coupling" to the port. The stronger the coupling, the farther the pole from the

real-frequency axis, and the less it behaves like a true eigenmode.
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Figure 2-1: (Top:) Schematic of narrow-band filter system, consisting of a cavity with a
mode a of frequency wo, coupled to two input/output ports si± and 82±, with decay rates
1/1 and 1/T2, respectively. The cavity is filled with an absorptive medium and has an
absorption rate 1/T'. (Bottom:) transmission T = 12-| 2/1|1+1 2 (red line) and reflection
R = Is1_| 2/11+i12 (blue line) coefficients of input light from the left (81+) as a function of
W, for T' = 00 (solid line) and r' - ri (dashed line). The inset (green line) shows a generic
Lorentzian line spectrum.

into the coupled-mode equations, we obtain:

2 r
-zwa = -zooa - -+ - + - + -s1+ (2.5)

rT 71 72 7

si_ = 81+ + -a (2.6)
Ti

S2- = a, (2.7)
T2

which yields the following transmission T(w) and reflection R(w) spectra:

2)- 2 _ 4/TiT2 
(2.8)

1 s1+|2 (W - wo) 2 + (1/Ti + 1/T2 + 1/T') 2

si_|2 (W _ WO) 2 + (1/1 - 1/T2 - 1/T')2
R (W) = = (2.9)

s1+12 (W - W0)2 + (1/1 + 1/T2 + 1/T') 2

The (Lorentzian) transmission and reflection spectra for Ti = T2 are plotted in Fig. 2-1

for various values of T. In the absence of loss T' = 00, it is easy to verify that R + T = 1

at all frequencies (energy is conserved) and that light is perfectly transmitted at w = wo if



and only if T1 = T2; equivalently, only when the rates at which the cavity decays into the

two ports are equal, can there exist 100% transmission. In addition, if this "rate-matching"

condition is satisfied, the reflection of the system is identically zero: what is occurring here

is that the light reflected directly from the cavity is destructively canceled by the decay

rate of the cavity mode, to yield zero reflection 3 The effect of the losses is to simply

reduce the transmission and reflection of the system, as shown by the figure. Intuitively,

the presence of loss in this system creates another port (decay mechanism) through which

the light can escape. In general, frequency conversion or filtering in systems composed of

multiple ports is undesirable because the strong "rate-matching" (interference) conditions

that lead to 100% transmission/reflection is weakened by the presence of additional ports

(energy-escape channels), leading to a degradation of the possible maximum efficiency of

the device.

2.2 Second and Third Harmonic Generation

In this section, we extend the linear CMT developed in the previous section, to allow non-

linear interactions between cavity modes. The focus of this section is a particular type

of nonlinear process known as harmonic generation, which we shall examine in two differ-

ent cases, corresponding to x(2) and X( 3) nonlinear interactions [51]. We derive nonlinear

coupled-mode equations for both of these processes, investigate the possible steady-state

solutions and corresponding stability (dynamics), and point out the most important con-

siderations that go into achieving high-efficiency harmonic generation in both cases.

2.2.1 Nonlinear Coupled-Mode Theory

Nonlinearities modify the linear picture presented in Sec. 2.1.2 by introducing two new

amplitude-dependent effects: a shift in the frequency (and decay rate) of the cavity, and a

coupling of one cavity mode to another. We neglect nonlinear effects on the input/output

ports, under the assumption that intense fields are only present in the cavity (due to spatial

and temporal confinement). We will also make two standard assumptions of nonlinear

systems. First, that the nonlinearities are weak, in the sense that we can neglect terms

of order (X(e))2 or higher; this is true in practice because nonlinear index shifts are always

3As discussed below, a similar "rate-matching" criteria leads to 100% nonlinear frequency conversion

efficiency at a critical power.



under 1% lest material breakdown occur. Second, we make the rotating wave approximation:

since the coupling is weak, we only include terms for ak that have frequency near Wk. In

particular, we suppose that Wk ~ kwi, so that wk is the kth harmonic. Then, for a X(2)

nonlinearity with two modes wi and its second harmonic w2, the coupled-mode equations

must take the form:

dal _ (.I 1 2I ,-zll 2+ 8 (2.10)
dt Ti F

1
S T1dai 1 2 2

= dWi - - ai - iWi01a2 + -+ (2.11)
dt T2 T,2

Similarly, for a X(3) nonlinearity with two modes wi and its third harmonic W3, the

coupled-mode equations must take the form:

dal (iw ~ -cl li2 12* ,- '~*2 2
dt = - an ai - a13 - ai - iwi/1(a*) a 3 + s+ (2.12)

da3  (1/2 3a' +> F2, 2+
dt = is (1 - a3 3 |a3 - a31ai 12- a 3 - iw3/33ai + s+ (2.13)

11 T3/T,

In Eqs. (2.12-2.13), one sees two kinds of terms. The first are frequency-shifting terms,

with coefficients aj, dependent on one of the field amplitudes. For X( 3), this effect is

known as self-phase and cross-phase modulation, which is absent for X(2) (under the first-

order rotating-wave approximation). The second kind of term transfers energy between the

modes, with coupling coefficients 13j, corresponding to four-wave mixing for X(3). Further-

more, we can constrain the coupling terms fi by energy conservation: (jai 12 + |a2 |2) = 0.

For X(2), the constraint that follows is: wi# 1 = w20f; for X(3), the constraint is wi3 1 = w33-.

The general process for construction of these coupled-mode equations is as follows. The

underlying nonlinearity must depend on the physical, real part of the fields, corresponding

to (ak + a*)/2. It then follows that the X() term will have f powers of this real part,

giving various product terms like a*a2 (for x(2)) and a*aia1 (for x(3)). Most of these terms,

however, can be eliminated by the rotating-wave approximation. In particular, we assume

that each ak term is proportional to ekiw multiplied by a slowly varying envelope, and we

discard any product term whose total frequency differs from kw for the dak/dt equation.

Thus, a term like ata3a3 would be proportional to e5 iw, and would only appear in a da5/dt

equation. (We focus on the simpler case of doubly resonant cavities here.)



At this point, the equations are already useful in order to reason about what types of

qualitative behaviors are possible in general. In fact, they are not even specific to electro-

magnetism and would also apply to other situations such as acoustic resonators. However,

in order to make quantitative predictions, one needs to know the nonlinear coefficients aj

and /i (as well as the linear frequencies and decay rates). The evaluation of these coefficients

requires a more detailed analysis of Maxwell's equations as described below.

2.2.2 Coupling Coefficients via Perturbation Theory

When a dielectric structure is perturbed by a small 6e, a well-known result of perturbation

theory states that the corresponding change 6w in an eigenfrequency w is, to first order [239]:

6w 1 f d3x 6EE12  1f d3x E* -6P
- - - (2.14)

w 2 f d3xeE12  2 f d3xeIE 2

where E is the unperturbed electric field and 6P = JeE is the change in polarization

density due to JE. In fact, Eq. (2.14) is general enough to be used with any 6P, including

the polarization that arises from a nonlinear susceptibility. In particular, we can use it to

obtain the coupling coefficients of the CMT.

To do so, we first compute the nonlinear first-order frequency perturbation due to the

total field E present from all of the modes. Once the frequency perturbations owk are known,

we can re-introduce these into the coupled-mode theory by simply setting Wk -* Wk + wk

in Eq. (2.2). By comparison with Eqs. (2.10-2.13), we can then identify the a and #

coefficients.

We consider first a X( nonlinearity, with P given by Pi = Eijk -oXEjEk, in a cavity

with two modes E1 and E2. As before, we require that the modes oscillate with frequency Wi

and w2 ~~ 2wi, respectively. Taking E = Re[Eiewlt + E 2eim2) and using the rotating-wave

approximation, we can separate the contribution of JP to each SWk, to obtain the following



frequency perturbations:

o i1 f d3x >k Eox. E* (E2jE* + E* E2k)-j =. . , k i ( 2 .1 5 )4 fd3xe|E1|2

ow2_ 1 f d3 x (2E)oX E5Ei E(i2.6=W -- kEO ik 2 1 (2.16)W2 4 f d3xE eE 2 
2

Similarly, for a centro-symmetric x(3) medium, P is given by P = Eox(3)|IE 2E, with

E Re[Eie'wlt + E3 e"'3t]. We obtain the following frequency perturbations:

1 fd3xeox(3) (E 1 E 12 + 2|E1 -E 12 + 2(E1 E*)(E 3 . E*)
Wi 8 f d3xE |E1 

2

2lE1 -E31 + 2E 1 . E* |2
+3 +fd 3x E -E3))(2.17)

f d3xE 3|E12

1 fd3XEOX(3) (l 3 E3  2 + 2E 3 -E*l2 + 2(E1 -E*)(E 3 -E*)
W3 8 f d3xe lE312

2|JE1 - E3 12+ 2|JE1 - E* 1 + (E1l E1) (E1 . E*)
+ 12  1(2.18)

f d3xe |E3|

There is a subtlety in the application of perturbation theory to decaying modes, such as

those of a cavity coupled to output ports. In this case, the modes are not truly eigenmodes,

but are rather "leaky modes" [499], and are not normalizable. Perturbative methods in

this context are discussed in more detail by Ref. [499,520], but for a tightly confined cavity

mode it is sufficient to simply ignore the small radiating field far away from the cavity. The

field in the cavity is very nearly that of a true eigenmode of an isolated cavity.

As stated above, we can arrive at the coupling coefficients by setting Wk ---+ Wk + 6Wk

in Eq. (2.2). However, the frequency perturbations 3 Wk are time-independent quantities,

and we need to connect them to the time-dependent ak amplitudes. Therefore, to re-

introduce the time dependence, one can use the slowly varying envelope approximation: a

slowly varying, time-dependent amplitude ak(t) is introduced into the unperturbed fields

Ek -> Ekak(t). The eigenmode must be normalized so that lak| 2 is the energy, as assumed

for the coupled-mode theory. Thus, we divide each Ek by 1f e|Ek| 2.



First, we consider the X(2) medium. Carrying out the above substitutions in Eq. (2.2)

and grouping terms proportional ak yields Eqs. (2.10-2.11) with aij and fi given by:

aig =_ 0 (2.19)

1 f d3x ijk Eox [ E* (E2jE*k E* E2k)
41[fd3XE 12] [fd3XEE 2 12/2  (2.20)

1 f d3x ) E(E2.21)
02 =- 4ij 1/2k2-pl--lk(.14[f d3x Ei2] [f d3x E |E2 12]1/ 2

A similar calculation yields the x(3) coupled-mode equations with coefficients given by:

= If d3x EoX(3) |E -E1 2 + Ej .-E* 12  (2.22)
8 [f d3x, eEj12

1 f d3x eX(3) E1 2 E312 + IE1 . E3 |2 + E1 . E*I2  2.2asi = -(2.23)
4 [fd3x eE2] [f d3x e E3 2]

a13 = a31

3 f d3x EoX(3)(E* - E*)(E* - E3 ) (2.24)01 8 3/2 1 1 1'E)1/2 (.4
[f d3x E E 1 12] f d3x e E3 12]

1 f d3x 6ex(3)(E1 .E)(E1 - E*) (2.25)
03- 8 3/2 31/2 (.5

8 [fd3x E|E 1 12 [f d3x E|E 3 12

Note that Eqs. (2.19-2.25) verify the conditions w1,31 = W2/3 and wi3 1 = W03#, pre-

viously derived from conservation of energy-for x(2) , this requires that one apply the

symmetries of the X (2 tensor, which is invariant under permutations of ijk for a frequency-

independent X(2) [51]. Furthermore, we can relate the coefficients a and /3 to an effective

modal volume V, similar to Ref. [501). In particular, the strongest possible nonlinear cou-

pling will occur if the eigenfields are a constant in the nonlinear material and zero elsewhere.

In this case, any integral over the fields will simply yield the geometric volume V of the

nonlinear material. Thus, for the X(2) effect we would obtain #i ~ x(2)/ VE 3 ; similarly,

for the x(3) effect we would obtain aij, -x X(3)/VE2 . This proportionality to 1//V and

1/V carries over to more realistic field profiles (and in fact could be used to define a modal

volume for these effects).



2.2.3 Complete Frequency Conversion at a Critical Power

In what follows, we investigate the steady-state behavior of second- and third-harmonic

generation in the particular system of Fig. 6-8, consisting of a single input/output port

coupled to a doubly resonant cavity. Using a universal framework based on the nonlinear

coupled-mode equations of Sec. 2.2.1, along with the coupling coefficients of Sec. 2.2.2, we

generalize previous experimental and theoretical work on this subject, which had focused

primarily on X(2) nonlinearities in large Fabry-Perot etalons or on specific geometries such

as micro-ring resonators, to general geometries consisting of fully vectorial electromagnetic

fields. We develop several results from this generalization: whereas it is well known that

100% harmonic conversion is possible, at least in X(2) media, in this section we further

explore and identify the conditions under which this can be achieved. First, we demon-

strate the existence of a critical input power at which harmonic generation is maximized.

A number of works have derived exact equations of motion, albeit for specific structures,

and determined the existence of this critical power [163, 225, 474]. However, these works

have focused only on specific structures and the relationship between critical power and the

cavity parameters seems to have been unappreciated. Second, while it is well known that

harmonic conversion can be achieved at arbitrarily low powers given sufficiently long cavity

lifetimes, this implies a narrow bandwidth-we show that, by combining moderate lifetimes

(0.1% bandwidth) with tight spatial confinement, 100% second- and third-harmonic con-

version can theoretically be achieved with sub-milliwatt power levels, without using gain or

amplification of any kind. Such low-power conversion could find applications such as high-

frequency sources [33], ultracompact-coherent optical sources [145,308,366], imaging [477],

and spectroscopy [345].

Nonlinear frequency conversion has been commonly realized in the context of waveg-

uides [4,102,128,329], or even for free propagation in the nonlinear materials, in which light

at one frequency co-propagates with the generated light at the harmonic frequency [5,19,

383,405]. A phase-matching condition between the two frequencies must be satisfied in this

case in order to obtain efficient conversion [33]. Moreover, as the input power is increased,

the frequency conversion eventually saturates due to competition between up and down

conversion. Frequency conversion in a doubly-resonant cavity, as we shall derive, has three

fundamental differences from this familiar case of propagating modes. First, light in a cavity
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Figure 2-2: (Top:) Schematic of general scheme for third-harmonic generation, including
dynamical variables for coupled-mode equations: a single input (output) channel (with
incoming (outgoing) field amplitudes s±) is coupled to a resonant cavity with two modes at
frequencies wi and w3 = 3w1 (with corresponding amplitudes ai and a3). The two resonant
modes are nonlinearly coupled by a Kerr (x(3)) nonlinearity. Reflections at the fundamental
frequency (s1_) may also occur. (Bottom:) An example realization [445], in one dimension,
using a semi-infinite quarter-wave stack of dielectric layers with a doubled-layer defect

(resonant cavity) that is coupled to incident plane waves. Dielectric material is yellow, and
the steady-state electric field Ez of third-harmonic mode is shown as blue/white/red for
positive/zero/negative amplitude.

can be much more intense for the same input power, because of the spatial (modal volume

V) and temporal (lifetime Q) confinement. We show that this enhances second-harmonic

(X(2)) conversion by a factor of Q3/V and enhances third-harmonic (x(3)) conversion by

a factor of Q2/V. Second, the phase-matching condition is replaced by two conditions:

First, the cavity must support two modes of the requisite frequencies-the frequencies can

be designed by tuning any of a number of cavity parameters; Second: a selection rule be-

tween the modes participating in the interaction, determined by the symmetry of the cavity.

As opposed to the non-resonant case, frequency conversion in doubly-resonant cavities no

longer saturates-instead, it peaks (at 100%, with proper design) for a certain critical input

power satisfying a resonant condition, and goes to zero if the power is either too small or

too large.

Previous experimental and theoretical work on second-harmonic generation in cavities

has largely focused on cavities with a single resonant mode at the pump frequency [15,16,

38,65,121,123,172,192,275,312,345,366,371,406,476,498]. (A singly-resonant cavity at the

harmonic frequency instead of the pump frequency was considered by [118].) Such struc-

tures require much higher powers than our proposed doubly-resonant cavity, however, ap-

proaching one Watt [393] and/or requiring amplification within the cavity. Second-harmonic

generation in a doubly resonant cavity, with a resonance at both the pump and harmonic

frequency, have previously been analyzed [33,125,309,324,393,402, 437,563,602] both in the

limit where nonlinear down-conversion can be neglected, and in the depleted-pump limit,



but in a non-universal framework specific to particular geometries [163, 225, 474]. Since

we wish to obtain 100% conversion at minimal power without amplification, however, we

have no choice but to include down-conversion processes. Previous work on third-harmonic

generation in cavities, similarly, considered only singly resonant cavities [76,264]; moreover,

past work focused on the case of X(2 materials where 3w is generated by cascading two non-

linear processes (harmonic generation and frequency summing) [271,345]. Here, we examine

third-harmonic generation using X( 3) materials so that only a single resonant process need

be designed. Furthermore, the previous theoretical work, with a few exceptions [118], fo-

cused on one-dimensional Fabry-Perot cavity geometries, in which the problem of obtaining

cavity modes with the correct frequency ratio was posed as a problem of phase-matching,

and addressed by methods such as using off-normal beams. In contrast, our formalism is

appropriate for any cavity geometry, and we note that in an arbitrary geometry there are

countless parameters that can be tuned in order to design a particular frequency ratio.

In particular, we consider the general situation depicted schematically in Fig. 6-8: a two-

mode nonlinear cavity coupled to an input/output channel. For example, a one-dimensional

realization of this is shown in Fig. 6-8: a Fabry-Perot cavity between two quarter-wave

stacks [239], where the stack has fewer layers on one side so that light can enter/escape.

For a nonlinear effect, we consider specifically a X() nonlinearity, corresponding essentially

to a shift in the refractive index proportional to the nonlinear susceptibility x() multiplied

by electric field E to the (y - 1)th power. Most commonly, one would have either a X(2)

(Pockels) or X(3) (Kerr) effect. Such a nonlinearity results in harmonic generation [51]:

light with frequency w is coupled to light with frequency Lw. Therefore, if we design the

cavity so that it supports two modes, one at w and one at Lw, then input power at w can

be converted, at least partially, to output power at Ew.

In order to achieve 100% conversion from w to Lw inside a cavity, it is not always sufficient

to simply increase the input power in order to increase the rate of nonlinear transfer. Putting

aside the question of at what point material breakdown will occur, increasing the input

power for a X(3) medium (or any odd f) also causes a shift in the resonant frequency (self-

phase modulation) that, unchecked, will prevent 100% conversion by making the frequency

ratio # L. To address this mismatch, we describe how one can use two materials with

opposite-sign X() to cancel the frequency-shifting effect; it may also be possible to pre-shift

the cavity resonant frequency to correct for the nonlinear shift. On the other hand, a X(2)



medium has no self-phase modulation, and so in this case it is sufficient to increase the

input power until 100% frequency conversion is reached. Regarding material breakdown,

we show that it is sufficient to use modes with a large quality factor (lifetime) Q so that a

slow conversion due to a weak nonlinear effect has enough time to occur.

Nonlinear frequency conversion has previously been studied with both direct simula-

tion [39, 199, 324] and by semi-analytic perturbative methods [33, 579]. In particular, the

most common perturbative approach is known as "coupled-wave" or "coupled-mode" theory

(CMT): essentially, one writes a set of ordinary differential equations for the amplitudes of

the linear modes, in which these amplitudes are weakly coupled by the nonlinearity. The

most common variation of this CMT approach is for waveguides, in which the only degrees

of freedom are two (or more) coupled waveguide modes, as described in Ref. [520]. In our

case, the problem is modified by the fact that our modes are continuously "pumped" by

an external input, and the quantity of interest is the power radiated to an external output.

There are two approaches to developing a CMT for such a problem. First, in the "tempo-

ral" CMT of Ref. [202,520], the most general possible CMT is derived from fundamental

principles such as conservation of energy and reciprocity, parameterized by a few unknown

frequencies and coupling factors that reflect the specific geometry. Second, one can ap-

ply perturbative expansions directly to Maxwell's equations to derive explicit expressions

for the coupling factors. Although both approaches have been successfully employed to

describe various nonlinear phenomena [33, 312, 345, 366], frequency conversion in doubly-

resonant cavities does not seem to have been fully addressed. In the following, we apply

both approaches to derive both the most general CMT and also the specific coupling factors

for f = 2, 3.

We now consider the conditions under which one may achieve complete frequency con-

version: 100% of the incident power converted to output at the second or third harmonic

frequency. As we shall see, this is easiest to achieve in the X(2 case, and requires additional

design criteria in the X(3 ) case.

The key fact in a X(2 medium is that there are no frequency-shifting terms (a = 0),

so the resonance condition w2 = 2wi is not spoiled as one increases the power. The only

requirement that we must impose is that external losses such as absorption are negligible

(Te,k > Ts,k). (We consider the effect of losses in Sec. 2.2.8.) In this lossless case, 100%

conversion corresponds to setting s1_ = 0 in the steady-state. Using this fact, Eqs. (2.10-



2.11) for an input source s+(t) = s1+ exp(iwit) yields the following condition on the input

power for 100% conversion:

| W = 12 T - 11 2 Q2 (2.26)
S1| Ts,221 - 2 I0

(A similar dependence of efficiency on Q2Q2 was previously observed [33,309], although a

critical power was not identified.) Thus, we can always choose an input power to obtain

100% conversion. If Qi - Q2, then this critical power Pcrit = |s 1 2 scales as V/Q 3 where

V is the modal volume (recall that # ~ 1/,r/V').

This is limited, however, by our first-order approximation: if the input power becomes

so large that second-order effects (or material breakdown) become significant, then this

prediction of 100% conversion is no longer valid. However, if one chooses Q1 and/or Q2 to

be sufficiently large, then Prit can be made arbitrarily small in principle. Not only does

the critical power decrease with Q3, but the field intensity in the cavity (jai12) decreases as

V/QiQ 2 , and thus one can avoid material breakdown as well as lowering the power.
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Figure 2-3: Plot of first and second harmonic efficiency, Is1_ 2/lS1+ 2 (black) and
s2-|12/|81+12 (red), vs. x(2)|s1+|. 100% power transfer from w1 to W2 = 2wi is achieved

at x(2)Is1+l = 1.8 x 10-3.

To illustrate second-harmonic conversion for a X(2) medium, we plot the solution to the

coupled-mode equations as a function of input power in Fig. 3-3. The 100% conversion at the

predicted critical power is clearly visible. For this calculation, we chose modal parameters

similar to the ones from the FDTD computation of Sec. 6.3.2: wi = 0.3, W2 = 0.6, Q1 = 104 ,

Q2 = 2 x 104, with dimensionless #1 = (4.55985 - 0.7244) x 10-5.



A X(3) medium, on the other hand, does suffer from nonlinear frequency shifts. For

example, as demonstrated in Sec. 6.3.2, Fig. 6-8, which is by no means the optimal geometry,

exhibits a maximal efficiency of s3- 12/Is1+1 2 ~~ 4 x 10-3 , almost three orders of magnitude

away from complete frequency conversion. We consider the effects of frequency shifting in

Sec. 2.2.5, but for simplicity, we focus first on the aij = 0 case. In reality, achieving 100%

conversion efficiency even for aij f 0 could be done in two ways: First, one could employ

two x(3) materials with opposite-sign X(3) values (e.g., as in Ref. [497]). For example, if

the X(3) is an odd function around the cavity center, then the integrals for aji will vanish

while the 3 integrals will not. (In practice, a < 3 should suffice.) Second, one could

pre-compensate for the nonlinear frequency shifts: design the cavity so that the shifted

frequencies, at the Pcrit below, satisfy the resonant condition w3 + Aw3 = 3(wi + Awi).

Equivalently, design the device for aij = 0 and then adjust the linear cavity frequencies a

posteriori to compensate for the frequency shift at the critical power. (This last scheme is

further explored in Sec. 2.2.5.)

If aij is thereby forced to be zero, and we can also neglect external losses (absorption,

etc.) as above, then 100% third-harmonic conversion (si_ = 0) is obtained when:

crit 2 __4 __ [ 13 -1/2  (2.27)
1+ W21 3 ,1 T, 3_ 4 |#310 2 3 _

If Q1 ~ Q3, then this critical power scales as V/Q 2 where V is the modal volume (recall that

/ ~ 1/V). This is precisely the scaling that was predicted for the power to obtain nonlinear

bistability in a single-mode cavity [576]. Similarly, one finds that the energy density in the

cavity (|ai 2) decreases proportional to V/VQiQ3.

We demonstrate the third-harmonic conversion for aig = 0 by plotting the solution to the

coupled-mode equations as a function of input power in Fig. 2-4. Again, 100% conversion is

only obtained at a single critical power. Here, we used the same parameters as in the FDTD

calculation of Sec. 6.3.2, but with a = 0. In this case, comparing with Fig. 2-5, we observe

that complete frequency conversion occurs at a power corresponding to An/n ~ 10-2. This

is close to the maximum power before coupled-mode theory becomes invalid (either because

of second-order effects or material breakdown), but we could easily decrease the critical

power by increasing Q.

For both the X(2) and the X( 3) effects, in Figs. 3-3 and 2-4, we see that the harmonic
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Figure 2-4: Plot of first and third harmonic steady-state efficiency, s1_| 2/1s+ 12 (black line)
and 1s3-|2/|SI12 (red line), for a = 0 (no self/cross-phase modulation), as a function of
input power Is1+|2 scaled by the Kerr coefficient n2 = 3X(3)/4c.. The reflected power at
the incident frequency wi is shown as a dashed black line. 100% power transfer from W1

to w3 = '3wi is achieved at n2|si+12 = 2.8 x 10-4. The parameters used in this plot are
Q1 = 1000, Q3 = 3000, 01 = (4.55985 - 0.7244i) x 10-5 in dimensionless units of X( 3)/V.

conversion efficiency goes to zero if the input power (or x) is either too small or too large.

It is not surprising that frequency conversion decreases for low powers, but the decrease

in efficiency for high powers is less intuitive. It corresponds to a well-known phenomenon

in coupled-mode systems: in order to get 100% transmission from an input port to an

output port, the coupling rates to the two ports must be matched in order to cancel the

back-reflected wave [146, 202]. In the present case, the coupling rate to the input port is

~ 1/Q1, and the coupling rate to the output "port" (the harmonic frequency) is determined

by the strength of the nonlinear coupling. If the nonlinear coupling is either too small or

too large, then the rates are not matched and the light is reflected instead of converted.

(On the other hand, we find that for large input powers, while the conversion efficiency as

a fraction of input power goes to zero, the absolute converted power (S2-12 or |s-1 2) goes

to a constant.)

We have presented a rigorous coupled-mode theory for second- and third-harmonic gen-

eration in doubly resonant nonlinear cavities, accurate to first order in the nonlinear suscep-

tibility. Our theory predicts several interesting consequences. First, it is possible to design

the cavity to yield 100% frequency conversion in a passive (gain-free) device, even when

nonlinear down-conversion processes are included, limited only by fabrication imperfections

and losses. Second, this 100% conversion requires a certain critical input power-powers



either too large or too small lead to lower efficiency. Third, we describe how to compensate

for the self-phase modulation in a x(3) cavity. The motivation for this work was the hope

that a doubly resonant cavity would lead to 100% conversion at very low input powers, and

so we conclude this section by estimating the critical power for reasonable material and

geometry assumptions.

A typical nonlinear material is gallium arsenide (GaAs), with X() ~ 145 pm/V and

n2 = 1.5 x 10-13 cm 2/W at 1.5pm. (Al doping is usually employed to decrease nonlinear

losses near resonance [543].) Although this has both X(2) and X(3) effects, we can selectively

enhance one or the other by choosing the cavity to have resonances at either the second

or third harmonic. Many well confined optical cavity geometries are available at these

wavelengths and have been used for nonlinear devices, such as ring resonators [568] or

photonic-crystal slabs [387]. We will assume conservative parameters for the cavity: a

lifetime Qi = 1000, Q2 = 2000, Q3 = 3000, and a modal volume of 10 cubic half-wavelengths

(V ~ 10(A/2n) 3) with roughly constant field amplitude in the nonlinear material (worse

than a realistic case of strongly peaked fields). In this case, the critical input power,

from Eqs. (2.26-2.27), becomes approximately 70 pW for second-harmonic generation and

2 mW for third-harmonic generation (with a moderate peak index shift An/n ~~ 10-3,

justifying our first-order approximation).

In the following section, we check the correctness of our theoretical predictions (for the

x(3) case) via numerical validation with exact FDTD simulations. In particular, we shall

directly observe the consequences of ignoring the cross- and self-phase modulation effects

present in THG.

2.2.4 Numerical Validation

To check the predictions of the x(3) coupled-mode equations [Eqs. (2.12-2.13)], we performed

an FDTD simulation of the one-dimensional waveguide-cavity system shown in Fig. 6-8,

whose analytical properties are uniquely suited to third-harmonic generation. This geometry

consists of a semi-infinite photonic-crystal structure made of alternating layers of dielectric

(= 13 and E2 = 1) with period a and thicknesses given by the quarter-wave condition

(di = VP 2/(V/ 1 + V'2) and d2 = a - di, respectively). Such a quarter-wave stack possesses

a periodic sequence of photonic band gaps centered on frequencies w1 = ( 1+ V2)/ 4VE1/62

(in units of 27rc/a) for the lowest gap, and higher-order gaps centered on odd multiples of
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Figure 2-5: Log-log plot of s3-12/ISI1 2 vs. n2|s11+1 2 for the coupled-mode theory (grey)
and FDTD (black squares), where n 2 is being varied. Also shown are the corresponding
An/n (dashed blue) and Awi/wi (solid red) curves.

wi. Moreover, a defect formed by doubling the thickness of a Ei layer creates cavity modes

at exactly the middle of every one of these gaps. Therefore, it automatically satisfies the

frequency-matching condition for third-harmonic generation. In fact, it is too good: there

will also be "ninth harmonic" generation from w3 to w9 . This unwanted process is removed,

however, by the discretization error of the FDTD simulation, which introduces numerical

dispersion that shifts the higher-frequency modes. To ensure the W3 = 3wi condition in

the face of this dispersion, we slightly perturbed the structure (increasing the dielectric

constant slightly at the nodes of the third-harmonic eigenfield) to tune the frequencies. The

simulated crystal was effectively semi-infinite, with many more layers on the right than on

the left of the cavity. On the left of the cavity, after two period of the crystal the material

is simply air (F = 1), terminated by a perfectly matched layer (PML) absorbing boundary

region.

We excite the cavity with an incident plane wave of frequency Wi, and compute the

resulting reflection spectrum. The reflected power at W3 , the third-harmonic generation,

was then compared with the prediction of the coupled-mode theory. The frequencies, decay

rates, and a and 3 coefficients in the coupled-mode theory were computed from a linear

FDTD simulation in which the eigenmodes were excited by narrow-band pulses. The freely

available FDTD code of [150] was employed.

The results are shown in Fig. 2-5, in which the output power at wi and W3 = 3wi is

denoted by Isi_ 2 and 1s3 2, respectively, while the input power at wi is denoted by Is1+|2.



In particular, we plot convenient dimensionless quantities: the third-harmonic conversion

efficiency 1s3-12 / 1s1+1 2 as a function of the dimensionless product n2 s1+2 in terms of the

standard Kerr coefficient n2 - 3X( 3)/4cE. There is clear agreement between the FDTD

and CMT for small values of n 2 Is1+12 (in which limit the conversion goes quadratically

with n2 181+12). However, as the input power increases, they eventually begin to disagree,

marking the point where second-order corrections are required. This disagreement is not

a practical concern, however, because the onset of second-order effects coincides with the

limits of typical materials, which usually break down for An/n = x(3)maxIE12/2e > 1%.

This is why we also plot the maximum index shift An/n in the same figure.

Also shown in Fig. 2-5 is a plot of Awi/wi = Re[6w1/wi]. As expected, when Awi is

of the order of 1/1 ~ 10-3, the frequency shift begins to destroy the frequency matching

condition, substantially degrading the third-harmonic conversion. (It might seem that An/n

and Awi/wi should be comparable, but this is not the case because An/n is the maximum

index shift while Awi/wi is due to an average index shift.)

More specifically, the details of our simulation are as follows. To simulate a continu-

ous wave (CW) source spectrum in FDTD, we employ a narrow-frequency Gaussian pulse

incident from the air region. This pulse is carefully normalized so that the peak intensity

is unity, to match the CMT. The field in the air region is Fourier transformed and sub-

tracted from the incident field to yield the reflected flux. Using only two periods of quarter-

wave stack on the left of the cavity we obtained two cavity modes with real frequencies

wi = 0.31818 (27rc/a), w2 = 0.95454 (27rc/a) and quality factors Q1 = 1286 and Q3 = 3726,

respectively. Given these field patterns, we computed the aij and #i coefficients. We ob-

tained the following coupling coefficients, in units of x(3)/a: a11 = 4.7531 x 10-4, a22 =

5.3306 x 10~ 4, a12 = a 21 = 2.7847 x 10~4, /3 = (4.55985 - 0.7244) x 10-5.

2.2.5 Kerr Cross- and Self-Phase Modulation

In this section, I present work described in Ref. [198], in which we extend the theoretical

predictions of THG in cavities with Kerr nonlinearities described in Sec. 2.2.1-6.3.2, to the

realistic case in which there exist self- and cross-phase modulation effects (which can drive

the cavities out of resonance and thereby affect the dynamical stability of the high-efficiency

steady-state solutions). In particular, we show that such doubly-resonant nonlinear optical

systems can display a rich variety of dynamical behaviors, including multistability (dif-



ferent steady states excited by varying initial conditions, a richer version of the bistable

phenomenon observed in single-mode cavities [501]), gap solitons [527], long-period limit

cycles (similar to the "self-pulsing" observed for second-harmonic generation [125, 190]),

and transitions in the stability and multiplicity of solutions as the parameters are varied.

Furthermore, we demonstrate the possibility of achieving high-efficiency conversion with ar-

bitrarily small power requirements for nonlinear devices, especially when compared against

singly-resonant cavities or non-resonant structures [15, 16, 38, 65, 98, 121, 123, 172, 192, 275,

312,345,366,371,406,470,476,498]. An appreciation and understanding of these behaviors

is important to design efficient harmonic converters (the main focus of this chapter), but it

also opens the possibility of new types of devices enabled by other aspects of the nonlinear

dynamics. For example, strong Kerr nonlinearities are desired in the context of quantum

information theory for use in low-loss photon entanglement and other single-photon appli-

cations [37, 173,264,377, 379].

As noted above, in a Kerr (x(3)) medium, there is a change in the refractive index pro-

portional to the square of the electric field; for an oscillating field at a frequency W, this

results in a shift in the index at the same frequency (self-phase modulation, SPM), gen-

eration of power at the third-harmonic frequency 3w, and also other effects when multiple

frequencies are present [cross-phase modulation (XPM) and four-wave mixing (FWM)] [51].

When the field is confined in a cavity, restricting to a small modal volume V for a long

time given by the quality factor Q (a lifetime in units of the optical period) [241], such

nonlinear effects are enhanced by both the increased field strength for the same input

power and by the frequency sensitivity inherent in resonant effects (since the fractional

bandwidth is 1/Q). This enhancement is exploited, for example, in nonlinear harmonic

and sum-frequency generation, most commonly for X( effects where the change in index

is proportional to the electric field (which requires a non-centrosymmetric material) [51].

One can further enhance harmonic generation by using a cavity with two resonant modes,

as demonstrated in Sec. 2.2.1, one at the source frequency and one at the harmonic fre-

quency [33,125,126,309,324,393,402,563,602]. In this case, one must also take into account

a nonlinear downconversion process that competes with harmonic generation [125,393,563],

but it turns out to be theoretically possible to obtain 100% harmonic conversion for either

X( (w -+ 2w) or X(3) (w -+ 3w) nonlinearities at a specific "critical" input power Pcit (both

in a one-dimensional model of propagating waves for X2 nonlinearities [474] and also the



general coupled-mode model for either x(2) or X( 3) nonlinearities [445]).

In the previous sections, we studied the harmonic-generation and downconversion pro-

cesses within the model system of Fig. 6-8: a single input channel (e.g. a waveguide)

coupled to a nonlinear cavity with two resonant frequencies, where both reflected and har-

monic fields are emitted back into the input channel. In that case, we predicted 100%

harmonic generation at a critical power Pcrit proportional to V/Q 3 for X(2) and V/Q 2 for

x(3) [445]. However, we only looked at the steady-state solution of the system and not its

dynamics or stability. Moreover, in the x(3) case there can also be an SPM and XPM effect

that shifts the cavity frequencies out of resonance and spoils the harmonic-generation effect.

Here, we consider both of these effects, describe how to compensate for SPM and XPM,

and demonstrate the different regimes of stability in such X(3) doubly resonant systems. We

show that the parameters and the initial conditions must be chosen within certain regimes

to obtain a stable steady state with high conversion efficiency. In other regimes, we demon-

strate radically different behaviors: not only low-efficiency steady states, but also limit-cycle

solutions where the efficiency oscillates slowly with a repetition period of many thousands

of optical cycles. With infrared light, these limit cycles form a kind of optical oscillator

(clock) with a period in the hundreds of GHz or THz (and possibly lower, depending on the

cavity parameters). Previously, limit-cycle (self-pulsing) behaviors have been observed in a

number of other nonlinear optical systems, such as: doubly-resonant X(2) cavities coupled

by second-harmonic generation [125]; bistable multimode Kerr cavities with time-delayed

nonlinearities [2]; nonresonant distributed feedback in Bragg gratings [398]; and a number of

nonlinear lasing devices [492]. However, the system considered in this work seems unusually

simple, especially among X( 3 ) systems, in that it only requires two modes and an instan-

taneous Kerr nonlinearity, with a constant-frequency input source, to attain self-pulsing,

and partly as a consequence of this simplicity the precise self-pulsing solution is quite in-

sensitive to the initial conditions. In other nonlinear optical systems where self-pulsing was

observed, other authors have also observed chaotic solutions in certain regimes. Here, we

did not observe chaos for any of the parameter regimes considered, where the input was a

constant-frequency source, but it is possible that chaotic solutions may be excited by an

appropriate pulsed input as in the X(2) case [125, 190].

Another interesting phenomenon that can occur in nonlinear systems is multistabil-

ity, where there are multiple possible steady-state solutions that one can switch among by



varying the initial conditions. In Kerr (X(3)) media, an important example of this phe-

nomenon is bistable transmission through nonlinear cavities: for transmission through a

single-mode cavity, output can switch discontinuously between a high-transmission and a

low-transmission state in a hysteresis effect that results from SPM [501]. For example, if

one turns on the power gradually from zero the system stays in the low-transmission state,

but if the power is increased further and then decreased to the original level, the system

can be switched to the high-transmission state. This effect, which has been observed exper-

imentally [387], can be used for all-optical logic, switching, rectification, and many other

functions [501]. In a cavity with multiple closely-spaced resonances, where the nonlinearity

is strong enough to shift one cavity mode's frequency to another's, the same SPM phe-

nomenon can lead to more than two stable solutions [153]. Here, we demonstrate a much

richer variety of multistable phenomena in the doubly-resonant case for widely-separated

cavity frequencies coupled by harmonic generation in addition to SPM-not only can there

be more than two stable states, but the transitions between them can exhibit complicated

oscillatory behaviors as the initial conditions are varied, and there are also Hopf bifurcations

into self-pulsing solutions.

The discussion of the THG dynamics is structured as follows: In Sec. 2.2.6, we demon-

strate the possibility of achieving 100% THG conversion by compensating for frequency

shifting due to SPM and XPM, i.e. by pre-shifting the cavity frequencies. In Sec. 2.2.5, we

analyze the stability of the 100%-efficiency solution, and demonstrate the different regimes

of stable operation that are achieved in practice starting from that theoretical initial condi-

tion. We also present bifurcation diagrams that show how the stable and unstable solutions

evolve as the parameters vary. Finally, in Sec. 2.2.7, we consider how to excite these

high-efficiency solutions in practice, by examining the effect of varying initial conditions

and uncertainties in the cavity parameters. In particular, we demonstrate the multistable

phenomena exhibited as the initial conditions are varied. We close with some concluding

remarks, discussing the many potential directions for future work that are revealed by the

phenomena described here.

There are three different aij parameters in Eqs. (2.22-2.25) (two SPM coefficients a 11

and a33 and one XPM coefficient a 13 = a 31). All three values are different, in general, but

are determined by similar integrals of the field patterns, produce similar frequency-shifting

phenomena, and all scale as 1/V. Therefore, in order to limit the parameter space analyzed



here, we consider the simplified case where all three frequency-shifting terms have the same

strength aij = a.

One can also include various losses, e.g. linear losses correspond to a complex wi and/or

W3, and nonlinear two-photon absorption corresponds to a complex a. As discussed in

Sec. 2.2.8 and in the concluding remarks, however, we have found that such considerations

do not qualitatively change the results (only reducing the efficiency somewhat, as long as

the losses are not too big compared to the radiative lifetimes T), and so in this section, we

restrict ourselves to the idealized lossless case.

Figure 2-4 shows the steady-state conversion efficiency (1s3 
2/1s1+1 2) versus input power

of light that is incident on the cavity at w4 a", for a given set of geometric parameters (i.e.

assuming negligible self- and cross-phase modulation so that a = 0), and not considering

the stability of the steady state. As shown by the solid red curve, as one increases the

input power, the efficiency increases, peaking at 100% conversion for a critical input power

PCrit = |sc, where

it 4
cri= I 1 (2.28)

1+T 373

The efficiency decreases if the power is either too low (in the linear regime) or too high

(dominated by down-conversion). Pcrit scales as V/Q 2 , so one can in principle obtain very

low-power efficient harmonic conversion by increasing Q and/or decreasing V [445]. Again,

including absorption or other losses decreases the peak efficiency, but does not otherwise

qualitatively change this solution [445].

There are two effects that we did not previously analyze in detail, however, which can

degrade this promising solution: nonlinear frequency shifts and instability. Here, we first

consider frequency shifts, which arise whenever a 0 0, and consider stability in the next

section. The problem with the a terms is that efficient harmonic conversion depends on

the cavities being tuned to harmonic frequencies W3 = 3w1; a nonlinear shift in the cavity

frequencies due to self- and cross-phase modulation will spoil this resonance. In principle,

there is a straightforward solution to this problem, as depicted in Fig. 2-6. Originally

(for a = 0), the cavity was designed to have the frequency wi in the linear regime, but

with a f 0 the effective cavity frequency wNL (including self- and cross-phase modulation

terms) is shifted away from the design frequency as shown by the blue line. Instead, we

can simply design the linear cavity to have a frequency wcav slightly different from the



Figure 2-6: Shift in the resonant frequency o,)L as a function of input power, due to self-
and cross-phase modulation. (There is an identical shift in WL.) If the cavity is designed
so that the linear (Pin -+ 0) frequencies are harmonics, the nonlinearity pushes the system
out of resonance (lower blue line) as the power increases to the critical power for 100%
efficiency. This is corrected by pre-shifting the cavity frequencies (upper green line) so that
the nonlinear frequency shift pushes the modes into resonance at Pcrit.

operating frequency wi, so that self- and cross-phase modulation shifts WL exactly to w1

at the critical input power, as depicted by the green line in Fig. 2-6. Exactly the same

strategy is used for wL, by pre-shifting wjav.

More precisely, to compute the required amount of pre-shifting, we examine the coupled-

mode equations Eqs. (2.12-2.13). First, we solve for the critical power Pcrit assuming a = 0,

as in Ref. [445], and obtain the corresponding critical cavity fields agit:

ai = ( 1T3T2 _r s 1/ (2.29)

ICrit 12 W3137T3 1/2
a3 |I W = 1) 1123 . (2.30)

Then, we substitute these critical fields into the coupled-mode equations for a # 0, and

solve for the new cavity frequencies wcav so as to cancel the a terms and make the acrit

solutions still valid. This yields the following transformation of the cavity frequencies:

cav _W 1 (2.31)
1 -- aia rit|2 - ai13|acit|2

cav W3 (2.32)1 - a1 3 |acrit|2 - a 3 3 |acrit|2



By inspection, when substituted into Eqs. (2.12-2.13) at the critical power, these yield the

same steady-state solution as for a = 0. (There are two other appearances of Wi and W3

in the coupled-mode equations, in the i terms, but we need not change these frequencies

because that is a higher-order effect, and the derivation of the coupled-mode equations

considered only first-order terms in x(3).)

The nonlinear dynamics turn out to depend only on four dimensionless parameters:

T3 /T1 = Q3/3Q1, an1 /#31, a 3 3/3 1 , and a13/01 = a31/1. The overall scale of Q, a, etcetera,

merely determines the absolute scale for the power requirements: it is clear from the equa-

tions that multiplying all a and 13 coefficients by an overall constant K can be compensated

by dividing all a and s amplitudes by v/K [which happens automatically for s at the critical

power by Eq. (2.28)]; the case of scaling T1,3 by an overall constant is more subtle and is

considered below. As mentioned above, for simplicity we take all = a 33 = a13 = a 3 1 = a.

Therefore, in the subsequent sections we will analyze the asymptotic efficiency as a function

of T3/T1 and a/01.

So far, we have found a steady-state solution to the coupled-mode equations, including

self- and cross-phase modulation, that achieves 100% third-harmonic conversion. In the

following sections, we consider under what conditions this solution is stable, what other

stable solutions exist, and for what initial conditions the high-efficiency solution is excited.

To understand the dynamics and stability of the nonlinear coupled-mode equations, we

apply the standard technique of identifying fixed points of the equations and analyzing the

stability of the linearized equations around each fixed point [521].

By a "fixed point," we mean a steady-state solution corresponding to an input frequency

Wi (s1+ ~ eiwlt) and hence ai(t) = Aie&Iwt and a3(t) - A 3 ei3 wlt for some unknown constants

A 1 and A 3 . [An input frequency wi can also generate higher harmonics, such as 9 wi or 5wi,

but these are negligible: both because they are higher-order effects (- [x(3)] 2, and all

such terms were dropped in deriving the coupled-mode equations), and because we assume

there is no resonant mode present at those frequencies.] By substituting this steady-state

form into Eqs. (2.12-2.13), one obtains two coupled polynomial equations whose roots are

the fixed points. We already know one of the fixed points from the previous section, the

100% efficiency solution, but to fully characterize the system one would like to know all of

the fixed points (both stable and unstable). We solved these polynomial equations using

Mathematica, which is able to compute all of the roots, but some transformations were
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Figure 2-7: Phase diagram of the nonlinear dynamics of the doubly-resonant nonlinear
harmonic generation system from Fig. 6-8 as a function of the relative cavity lifetimes
(T3/-1 = 3Q3/Qi) and the relative strength of SPM and XPM vs. harmonic generation

(a/,1) for input power equal to the critical power for 100% efficiency. For -r3 < T1 there is
always one stable 100%-efficiency solution, and for nonzero a the system may have additional
stable solutions. For T3 > T1 the 100%-efficiency solution becomes unstable, but there are
limit cycles and lower-efficiency stable solutions. Various typical points A-G in each region
are labeled for reference in the subsequent figures.

required to put the equations into a solvable form, as explained in more detail in the

appendix.

As mentioned above, the dynamics are independent of the overall scale of r 1,3, and

depend only on the ratio T3/T1. This can be seen from the equations for A 1,3, in which the

Wi,3 oscillation has been removed. In these equations, if we multiply Ti and T3 by an overall

constant factor K, after some algebra it can be shown that the A1,3 equations are invariant

if we rescale A1 -- A 1/ K, A 3 -* A3 /VK, rescale time t -+ Kt, and rescale the input

s1+ --+ si+/K [which happens automatically for the critical power by Eq. (2.28)]. Note

also that the conversion efficiency Is3-/s+12 = (2/T 3)1A3/s1+1 2 is also invariant under this

rescaling by K. That is, the powers and the timescales of the dynamics change if you change

the lifetimes, unsurprisingly, but the steady states, stability, etcetera (as investigated in the

next section) are unaltered.



2.2.6 Stability and Dynamics of XPM and SPM

Given the steady-state solutions (the roots), their stability is determined by linearizing the

original equations around these points to a first-order linear equation of the form dx/dt =

Ax; a stable solution is one for which the eigenvalues of A have negative real parts (leading

to solutions that decay exponentially towards the fixed point) [521].

The results of this fixed-point and stability analysis are shown in Fig. 2-7 as a "phase

diagram" of the system as a function of the relative lifetimes T3/1 = 3Q3/Q1 and the

relative strength of self-phase-modulation vs. four-wave mixing a// 31. Our original 100%-

efficiency solution is always present, but is only stable for T3 < T1 and becomes unstable

for T3 > T1. The transition point, T3 = T1, corresponds to equal energy jai12 = la312 in the

fundamental and harmonic mode at the critical input power. The unstable region corre-

sponds to la3 2 > jai12 (and the down-conversion term is stronger than the up-conversion

term)-intuitively, this solution is unstable because, if any perturbation causes the energy in

the harmonic mode to decrease, there is not enough pumping from up-conversion to bring

it back to the 100%-efficiency solution. Conversely, in the stable 1a312 < jai12 (T3 < Ti)

regime, the higher-energy fundamental mode is being directly pumped by the input and

can recover from perturbations. Furthermore, as a/01 increases, additional lower-efficiency

stable solutions are introduced, resulting in regimes with two (doubly stable) and three

(triply stable) stable fixed points. These different regimes are explored in more detail via

bifurcation diagrams below, and the excitation of the different stable solutions is considered

in the next section.

For -3 > T1, the 100%-efficiency solution is unstable, but there are lower-efficiency

steady-state solutions and also another interesting phenomenon: limit cycles. A limit cycle

is a stable oscillating-efficiency solution, one example of which (corresponding to point D

in Fig. 2-7) is plotted as a function time in Fig. 2-8. (In general, the existence of limit cycles

is difficult to establish analytically [521], but the phenomenon is clear in the numerical

solutions as a periodic oscillation insensitive to the initial conditions). In fact, as we shall

see below, these limit cycles result from a "Hopf bifurcation," which is a transition from

a stable fixed point to an unstable fixed point and a limit cycle [516]. In this example

at point D, the efficiency oscillates between roughly 66% and nearly 100%, with a period

of several thousand optical cycles. As a consequence of the time scaling described in the
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Figure 2-8: An example of a limit-cycle solution, with a periodically oscillating harmonic-
generation efficiency as a function of time, corresponding to point D in Fig. 2-7. Perturba-
tions in the initial conditions produce only phase shifts in the asymptotic cycle. Here, the
limit cycle has a period of around 3 x 104 optical cycles. Inset: Square of Fourier ampli-
tudes (arbitrary units) for each harmonic component of the limit cycle in the Fourier-series
expansion of the A3 .

last paragraph of the previous section, the period of such limit cycles is proportional to

the T'S. If the frequency wi were 1.55 pm, for a Qi of 500 optical cycles, this limit cycle

would have a frequency of around 70 GHz, forming an interesting type of optical "clock"

or oscillator. Furthermore, the oscillation is not sinusoidal and contains several higher

harmonics as shown in the inset of Fig. 2-8; the dominant frequency component in this case

is the fourth harmonic (~ 280 GHz), but different points in the phase diagram yield limit

cycles with different balances of Fourier components.

To better understand the phase diagram of Fig. 2-7, it is useful to plot the efficiencies

of both the stable and unstable solutions as a function of various parameters. Several of

these bifurcation diagrams (in which new fixed points typically appear in stable-unstable

pairs) are shown in Figs. 2-9-2-11. To begin with, Figs. 2-9 and 2-10 correspond to lines

connecting the labeled points ACF, BCD, and ECG, respectively, in Fig. 2-7, showing how

the stability changes as a function of a/01 and T3/T1. Figure 2-9 shows how first one then

two new stable fixed points appear as a/# 1 is increased, one approaching zero efficiency

and the other closer to 50%. Along with these two stable solutions appear two unstable

solutions (dashed lines). (A similar looking plot, albeit inverted, can be found in Ref. [1531

for SPM-coupled closely-spaced resonances.) In particular, the fact that one of the unstable
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Figure 2-9: Bifurcation diagram showing the harmonic-generation efficiency of the stable
(solid red lines) and unstable (dashed blue lines) steady-state solutions as a function of
a/# 1 for a fixed T3/1 = 0.7, corresponding to the line ACF in Fig. 2-7 (see inset). The
input power is the critical power Pcrit, so there is always a 100%-efficiency stable solution,
but as a/#1 increases new stable and unstable solutions appear at lower efficiencies.

solutions approaches the 100%-efficiency stable solution causes the latter to have a smaller

and smaller basin of attraction as a/01 increases, making it harder to excite as described

in the next section. The next two plots, in Fig. 2-10, both show the solutions with respect

to changes in T3/T1 at two different values of a/01. They demonstrate that at Ti = T3, a

Hopf bifurcation occurs where the 100%-efficiency solution becomes unstable for T3 > T1

and limit cycles appear, intuitively seeming to "bounce between" the two nearby unstable

fixed points. (The actual phase space is higher dimensional, however, so the limit cycles

are not constrained to lie strictly between the efficiencies of the two unstable solutions.) It

is worth to note that the remaining nonzero-efficiency stable solution (which appears at a

nonzero T3/1i) becomes less efficient as T3/i increases.

The above analysis and results were for the steady-state-solutions when operating at

the critical input power to obtain a 100%-efficiency solution. However, one can, of course,

operate with a different input power-although no other input power will yield a 100%-

efficient steady-state solution, different input powers may still be useful because (as noted

above and in the next section) the 100%-efficiency solution may be unstable or practically

unattainable. Figure 2-11(left) is the bifurcation diagram with respect to the input power

Pin/Prit at fixed a/01 and fixed T3/T1, corresponding to point C in Fig. 2-7. This power

bifurcation diagram displays a number of interesting features, with the steady-state solutions
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Figure 2-10: Bifurcation diagram showing the harmonic-generation efficiency of the stable

(solid red lines) and unstable (dashed blue lines) steady-state solutions as a function of
-r3/Ti for a fixed a/ 31 = 3 (left) or = 8 (right), corresponding to the lines BCD or EFG,
respectively, in Fig. 2-7 (see insets). The input power is the critical power Pcrit, so there is

always a 100%-efficiency steady-state solution, but it becomes unstable for T3 > T1 (a Hopf
bifurcation leading to limit cycles as in Fig. 2-8).

transitioning several times from stable to unstable and vice versa. As we will see in the

next section, the stability transitions in the uppermost branch are actually supercritical

(reversible) Hopf bifurcations to/from limit cycles. Near the critical power, there is only a

small region of stability of the near-100%-efficiency solution, as shown in the inset of Fig. 2-

11(left). In contrast, the lower-efficiency stable solutions have much larger stable regions of

the curve while still maintaining efficiencies greater than 70% at low powers comparable to

Prit ~ V/Q 2, which suggests that they may be attractive regimes for practical operation

when a/01 is not small. This is further explored in the next section, and also by Fig. 2-

11(right) which shows the bifurcation diagram along the line ACF in Fig. 2-7 [similar

to Fig. 2-9], but at 135% of the critical input power. For this higher power, the system

becomes at most doubly stable as a/#31 is increased, and the higher-efficiency stable solution

becomes surprisingly close to 100% as a/01 -+ 0.

2.2.7 Exciting High-Efficiency Solutions

One remaining concern in any multistable system is how to excite the desired solution-

depending on the initial conditions, the system may fall into different stable solutions, and

simply turning on the source at the critical input power may result in an undesired low-

efficiency solution. If a/0 is small enough, of course, then from Fig. 2-7 the high-efficiency

solution is the only stable solution and the system must inevitably end up in this state
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Figure 2-11: (Left:) Bifurcation diagram showing the harmonic-generation efficiency of the
stable (solid red lines) and unstable (dashed blue lines) steady-state solutions as a function
of input power Pin/Prit at fixed a/0 1 = 3 and T3/T1 = 0.7, corresponding to point C
in Fig. 2-7; the inset shows an enlarged view of the high-efficiency solutions. (Right:)
Bifurcation diagram as a function of a/0 1 for fixed Pin/Pcrit = 1.35 and fixed T3/T1 = 0.7;
in this case, because it is not at the critical power, there are no 100%-efficiency solutions.

no matter how the critical power is turned on. Many interesting physical systems will

correspond to larger values of a/#, however [445], and in this case the excitation problem is

complicated by the existence of other stable solutions. Moreover, the basins of attraction of

each stable solution may be very complicated in the phase space, as illustrated by Fig. 2-12,

where varying the initial cavity amplitudes A 1 ,3 from the 100%-efficiency solution causes

the steady state to oscillate in a complicated way between the three stable solutions (at

point C in Fig. 2-7). We have investigated several solutions to this excitation problem, and

found an "adiabatic" excitation technique that reliably produces the high-efficiency solution

without unreasonable sensitivity to the precise excitation conditions.

First, we considered a simple technique similar to the one described in Ref. [501] for

exciting different solutions of a bistable filter: as shown in Fig. 2-13, we "turn on" the input

power by superimposing a gradual exponential turn-on (asymptoting to P1 = Pcrit) with

a Gaussian pulse of amplitude Po and width 6T. The function of the initial pulse is to

"kick" the system into the desired stable solution. We computed the eventual steady-state

efficiency (after all transient effects have disappeared) as a function of the pulse amplitude PO

at point C in Fig. 2-7, where there are three stable solutions. The results are shown in Fig. 2-

14(left), and indeed we see that all three stable solutions from point C in Fig. 2-9: one at

near-zero efficiency, one at around 47% efficiency, and one at 100% efficiency. Unfortunately,
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Figure 2-12: Asymptotic steady-state efficiency at point C (triply-stable) in the phase

diagram (Fig. 2-7), with the initial conditions perturbed from the 100%-efficiency stable

solution. The initial amplitudes Aio and A30 are perturbed by 8A 10 and 6A 30, respectively,
with 6Aio/A'rit = A30/Acrit. The oscillation of the steady-state efficiency with the pertur-

bation strength is an indication of the complexity of the phase space and the shapes of the

basins of attraction of each fixed point.

the 100% efficiency solution is obviously rather difficult to excite, since it occurs for only

a very narrow range of Po values. One approach to dealing with this challenge is to relax

the requirement of 100% efficiency (which will never be obtained in practice anyway due to

losses), and operate at a power Pi < Pcrit. In particular, Fig. 2-11(left) shows that there

is a much larger stable region for P1  O.8Pcrit with efficiency around 90%, leading one

to suspect that this solution may be easier to excite than the 100%-efficiency solution at

Pi = Pcrit. This is indeed the case, as is shown in Fig. 2-14(right), plotting efficiency vs. Po

at point C with P1 _ 0.8 Pcrit. In this case, there are only two stable solutions, consistent

with Fig. 2-11(left), and there are much wider ranges of Po that attain the high-efficiency

(~ 90%) solution.

There are also many other ways to excite the high-efficiency solution (or whatever steady-

state solution is desired). For example, because the cavity is initially detuned from the input

frequency, as described in Sec. 2.2.5, much of the initial pulse power is actually reflected

during the transient period, and a more efficient solution would vary the pulse frequency in

time to match the cavity frequency as it detunes. One can also, of course, vary the initial

pulse width or shape, and by optimizing the pulse shape one may obtain a more robust

solution.

In particular, one can devise a different (constant-frequency) input pulse shape that
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Figure 2-13: One way of exciting the system into a controlled stable solution: the input
power is the sum of an exponential turn-on (the blue curve, P1) and a Gaussian pulse with
amplitude P and width 6T. The amplitude P is altered to control which stable solution
the system ends up in.

robustly excites the high-efficiency solution, insensitive to small changes in the initial con-

ditions, by examining the power-bifurcation diagram in Fig. 2-11(left) in more detail. First,

we observe that input powers > 1.4 5Pcrit have only one stable solution, meaning that this

stable solution is excited regardless of the initial conditions or the manner in which the input

power is turned on. Then, if we slowly decrease the input power, the solution must "adi-

abatically" follow this stable solution in the bifurcation diagram until a power ~ 0.95Perit

is reached, at which point that stable solution disappears. In fact, by inspection of Fig. 2-

11(left), at that point there are no stable solutions, and solution jumps into a limit cycle.

If the power is further decreased, a high-efficiency stable solution reappears and the sys-

tem must drop into this steady state (being the only stable solution at that point). This

process of gradually decreasing the power is depicted in Fig. 2-15(left), where the instan-

taneous "efficiency" is plotted as a function of input power, as the input power is slowly

decreased. (The efficiency can exceed unity, because we are plotting instantaneous output

vs. input power, and in the limit-cycle self-pulsing solution the output power is concentrated

into pulses whose peak can naturally exceed the average input or output power.) Already,

this is an attractive way to excite a high-efficiency (> 90%) solution, because it is insen-

sitive to the precise manner in which we change the power as long as it is changed slowly

enough-this rate is determined by the lifetime of the cavity, and since this lifetime is likely

to be sub-nanosecond in practice, it is not difficult to change the power "slowly" on that
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Figure 2-14: (Left:) Steady-state efficiency at point C in Fig. 2-7 as a function of the

transient input-pulse power Po from Fig. 2-13, showing how all three stable solutions can

be excited by an appropriate input-pulse amplitude. (Right:) Same, but for an asymptotic

input power Pi ~ 0.8Prit, for which the maximum efficiency is ~ 90% from Fig. 2-11(right),
but is easier to excite.

timescale. However, we can do even better, once we attain this high-efficiency steady state,

by then increasing the power adiabatically. As we increase the power, starting from the

high-efficiency steady-state solution below the critical power, the system first enters limit-

cycle solutions when the power becomes large enough that the stable solution disappears

in Fig. 2-11(left). As we increase the power further, however, we observe that these limit

cycles always converge adiabatically into the 100%-efficiency solution when P -- Prit. This

process is shown in Fig. 2-15(right). What is happening is actually a supercritical Hopf

bifurcation at the two points where the upper branch changes between stable and unstable:

this is a reversible transition between a stable solution and a limit cycle (initially small

oscillations, growing larger and larger away from the transition). This is precisely what we

observe in Fig. 2-15, in which the limit cycle amplitudes become smaller and smaller as the

stable solutions on either side of the upper branch are approached, leading to the observed

reversible transitions between the two. The important fact is that, in this way, by first

decreasing and then increasing the power to Pcrit, one always obtains the 100%-efficiency

solution regardless of the precise details of how the power is varied (as long as it is "slow"

on the timescale of the cavity lifetime).

The discussion thus far has revolved around idealized lossless systems-our main inten-

tion has been to examine the fundamental behaviors (steady-state solution and dynamics)

of these systems rather than any specific experimental realization. However, as explained in
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Figure 2-15: (Left:) Green line with arrows indicates instantaneous "efficiency" (harmonic
output power / input power) as the input power is slowly decreased, starting at a power

.~ 1.7Prit. For comparison, Fig. 2-11(left) is superimposed as solid-red and dashed-blue
lines. The solution "adiabatically" follows a steady state until the steady state becomes
unstable, at which point it enters limit cycles, and then returns to a high-efficiency steady
state, and finally goes drops to a low-efficiency steady-state if the power is further decreased.
(Right:) Similar, but here the power is increased starting at the high-efficiency steady state
solution for P < Pcrit. In this case, it again enters limit cycles, but then it returns to a high-
efficiency steady-state solution as the power is further increased, eventually reaching the
100%-efficiency stable solution. If the power is further increased, it drops discontinuously
to the remaining lower-efficiency steady-state stable solution.

the subsequent section, we have performed preliminary calculations that include both linear

losses (such as radiation or material absorption) and nonlinear two-photon absorption, and

we find that these losses do not qualitatively change the observed phenomena. In fact, one

still obtains multistability, limit cycles, and bifurcations, merely at a reduced peak efficiency

depending on the strength of the losses.

2.2.8 Effect of Losses

In practice, a real device will have some additional losses, such as linear or nonlinear absorp-

tion and radiative scattering. Such losses will lower the peak conversion efficiency below

100%. As we show in this section, their quantitative effect depends on the ratio of the loss

rate to the total loss rate 1/Q. We also solve for the critical input power to achieve maximal

conversion efficiency in the presence of losses.

For a X2 medium with a linear loss rate 1/rk,e, we solve Eqs. (2.10-2.11) for s2-|12

and enforce the condition for maximal conversion efficiency: A(|s2-|12/1 12) = 0. We thus



obtain the following optimal input power and conversion efficiency:

2 4Ts 1
|s1+| = ', (2.33)

1 27132

1 2 
- T=lT2 (2.34)

Sl1+ 12 T,1ITs, 2

It immediately follows that for zero external losses, i.e. Tk = Ts,k, Eq. (2.34) gives 100%

conversion and Eq. (2.33) reduces to Eq. (2.26). For small external losses rs, k< Te,k, the

optimal efficiency is reduced by the ratio of the loss rates, to first order:

182- 2 -Ts,2 Ts,1 (2.35)F31+7 Te, 2 Te,1I

(A similar transmission reduction occurs in coupled-mode theory when any sort of loss is

introduced into a resonant coupling process [203].)

The same analysis for x(3) yields the following critical input power and optimal efficiency:

42 1/2

s [1 = ' 2 (2.36)
Wi 2 12 T1573

IS3 - T7l _3 (2.37)
Is1+ 2  Ts,17T,3

where by comparison with Eq. (2.34), a first-order expansion for low-loss yields an expression

of the same form as Eq. (2.35): the efficiency is reduced by the ratio of the loss rates, with

T2 replaced by T3.

A X(3) medium may also have a nonlinear "two-photon" absorption, corresponding to a

complex-valued X(3), which gives an absorption coefficient proportional to the field intensity.

This enters the coupled-mode equations as a small imaginary part added to a, even if we

have set the real part of a to zero. (The corresponding effect on # is just a phase shift.)

That yields a nonlinear (NL) T e,k of the following form, to lowest order in the loss:

2 2  3  1

a3l 01 1 s1+|12 +sl a733  , 31#3|2 11+|6 (2.39)
W3 Im L 2 8 3 3 2 ±6

These loss rates can then be substituted in the expression for the losses above, in which case



one obtains the following optimal efficiency of third-harmonic generation, to lowest-order,

not including linear losses:

1ss_ Ts,3 Ts,3 [all + 3a13 a13 + 3a33 (2.40)

jsi± /#1| T,1 [ T,3 Ts,1 .

(The linear and nonlinear losses can be combined by simply multiplying Eq. (2.35) and

Eq. (2.40).) Thus, the nonlinear loss is proportional to the ratio Ima/1, which is propor-

tional to Imx( 3)/Ix( 3)1.

2.2.9 Future Work

Future work on harmonic generation will involve designing specific doubly-resonant cavity

geometries and more precise power predictions. Using our expressions for a and 3, opti-

mized cavities for harmonic generation can be designed using standard methods to compute

the linear eigenmodes. In practice, experimentally achieving cavity modes with "exactly"

harmonic frequencies, matched to within the fractional bandwidth 1/Q, is a challenge and

may require some external tuning mechanism. For example, one could use the nonlinearity

itself for tuning, via external illumination of the cavity with an intense "tuning" beam at

some other frequency. Understanding the experimental limitations for achieving frequency

matching is particularly important for the X( 3) case, where pre-correcting the frequency to

compensate the nonlinear frequency shift (self-phase modulation) may require some care to

ensure a stable solution. In particular, to obtain widely-spaced resonant modes W and 3W in

a nanophotonic (wavelength-scale) context (as opposed to macroscopic Fabry-Perot cavities

with mirrors), the most promising route seems to be a ring resonator of some sort [469],

rather than a photonic crystal [241] (since photonic band gaps at widely separated frequen-

cies are difficult to obtain in two or three dimensions). Although such a cavity will naturally

support more than the two wi and W3 modes, only two of the modes will be properly tuned

to achieve the resonance condition for strong nonlinear coupling.

2.3 Difference Frequency Generation

The previous sections were mainly concerned in developing a theoretical framework based on

coupled-mode theory for second- and third-harmonic generation in doubly resonant cavities,

valid in the high-efficiency limit and not restricted to any specific geometry. As noted, this



type of self-consistent treatment is possible in nonlinear mixing where all relevant modes are

resonant (e.g. fundamental and second- harmonic) because the resonant enhancement of the

density of optical modes at each frequency causes the nonlinear interaction of these modes

to be strongly favored over other processes [203,445]. Using CMT, we proved the existence

of a critical power (that depends on the cavity parameters, e.g. frequencies, quality factors

(Q), and mode-overlaps) at which 100% conversion is possible, and beyond which efficiency

decreases. In addition, we showed that in the case of X(3) harmonic generation, the inclusion

of self-phase modulation and cross- phase modulation allow for a rich diversity of dynamics,

including limit cycles and multi-stable solutions.

Nonlinear X(2) difference-frequency generation (DFG), the subject of the next. two sec-

tions, is yet another type of nonlinear frequency-conversion process in which two input

sources, a pump beam at frequency wi and a probe bream at frequency W2 interact via

a X(2) nonlinearity to yield a third frequency WT = W2 - wi [51]. DFG processes have

been considered recently for the generation of coherent radiation in the THz frequency

range [9,17, 42,194,227,367,547]. There has been some prior theoretical work on nonlinear

frequency conversion, and especially DFG, in resonant systems [2,9,16,33,42,126,194,324,

341,393,398,402,445,563]; however, as in the harmonic generation case, these processes are

generally treated in the undepleted pump limit, in which reverse processes are neglected,

and which lead to incorrect results in the limit of high conversion efficiency. In this section,

we extend the framework presented in the previous section [198, 445, 474] to the case of

difference-frequency generation (DFG) caused by a second-order X(2) nonlinear polarization

in a resonant photonic structure. In contrast to previous work on DFG, we consider the

case where both the input pump (highest frequency, wi) and idler waves w2 are resonant,

as well as the generated signal at the difference frequency WT. We show that CW con-

version from pump to signal with quantum-limited efficiency (complete depletion of the

pump) is possible in such a system for any power at the pump frequency, provided there

is a critical input power Pcrit = |Sr|2 at the idler frequency W2. Furthermore, as in the

harmonic-generation case, the steady-state solutions to the coupled wave equations and their

corresponding conversion efficiencies are shown to depend only on universal dimensionless

parameters, indicating that their structure is qualitatively the same in all geometries.

The general framework of the temporal CMT model for DFG is shown in Fig. 2-16. Our

cavity has three resonant modes at frequencies, wi (pump), w2 (idler), and WT (signal) which
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Figure 2-16: Schematic of general scheme for x(2) difference-frequency generation, including
dynamical variables for coupled-mode equations: two input (output) channels (with incom-
ing (outgoing) field amplitudes s±) are coupled to a resonant cavity with three modes at
frequencies wi and W2 and WT = W2 - Wi (with corresponding amplitudes al, a2, and aT).

The two resonant modes are nonlinearly coupled by a Pockels (x(2)) nonlinearity. All three
modes leak energy at a rate determined by their corresponding quality factors Q.

satisfy WT = W1 - W2. As in harmonic generation, energy is coupled in/out of each cavity

mode through a designated input/output port (e.g. waveguide). The propagating modes in

the input/output ports are similarly represented. The relevant incoming and outgoing wave

amplitudes are again represented by the variables sk+(t) and sk (t), respectively, where

ISk±(t) 12 is the power of the propagating mode. By extending the previous formalism to

non-degenerate three-wave mixing, where we assume there is no input at the signal frequency

(ST+ = 0), the coupled-mode equations can be written as:

&i = (iw 1 - 1/1i) ai - iwoljia2aT + s81+ (2.41)

2,

&2 = (iw 2 - 1/T2) a 2 - iW232aia* + 82+ (2.42)

6T = (iwT - 1/-TT) aT - iW2#Taja, (2.43)

where Iak 2 again yields the energy in the cavity, the rk are the corresponding total cavity

lifetimes (where Tk,e are the coupling lifetimes of the modes), and where Isk+( 2 correspond

to the input power for the kth mode.

The resulting coupling coefficients are:

1 f d3x ijk E* (ET,jE2,j + E2,jET,k)
01,2 = - Ej ik1(2.44)

4 fd 3xe|Ei| 2 f d3xEIE 2|2 f d3xe|ET2

fiT - 1,2  (2.45)

(We do not derive these coupling coefficients here, since the derivation is simple and has been

laid out in the previous sections). Equation (2.45) shows that 3 = 01 = #2= # + depends



strongly on the overlap between the various modes: in the limit where x2 is constant,

and ignoring polarization effects, then the relevant quantity of interest is - E*EE 2. From

this expression, it becomes obvious why it is generally difficult to achieve large values of

0. Namely, because E1 and E 2 will tend to oscillate in space much more rapidly than ET,

their contribution to the integral will yield a vanishingly small coefficient.

The DFG efficiency can be assessed again by analyzing the steady state solutions

(dak(t)/dt = dsk±(t)/dt = 0) of Eqs. (2.41-2.43). In contrast with degenerate nonlinear

frequency conversion (e.g. harmonic generation), the non-degenerate case does not allow for

100% conversion of power from wi to WT. This arises because the destruction of a photon

at wi and the creation of a photon at WT is always accompanied by the creation of a second

photon at w2. This fundamental constraint is described by the Manley-Rowe relations [51].

Considering also losses (Tk : rk,e), the quantum limit of conversion efficiency is given by:

ST1 2 <WT 1,eTTe (2.46)
81+ W i T TT

This condition can be derived directly from Eqs. (2.41-2.43) in the steady-state, and is

omitted here. However, the fact that it is possible to derive constraints imposed by quantum-

mechanical selection rules from a purely classical equation of motion is quite extraordinary,

and represents yet another triumph of the coupled-mode theory formalism.

From Eq. (2.46), it is clear that the conversion efficiency is maximized by maximizing

the ratios, T1,e/1 and TT,e/rT. This implies that over-coupling the cavity modes to the

input/output waveguide is essential to achieving high conversion efficiency. In other words,

it is more important that the Q-factors be limited by leakage to the desired output port

than that they have a higher value but lack a well-defined output channel. This is the same

condition for low-loss operation that we obtained in the previous sections on harmonic

generation. However, notice that the loss ratio in the idler, w2 mode, does not appear

in Eq. (2.46), i.e. does not affect the overall efficiency. This is due to the fact that the input

wave at w2 is not down-converted, but rather amplified; therefore, losses can be compensated

for by pumping in more power at this frequency. One can find a critical relationship between

the input powers, 1I1+1 2 and 182+12 that allows for maximum conversion efficiency (complete

depletion of the pump) by imposing either of the following equivalent constraints: si_ = 0



or an equality in Eq. (2.46), yielding:

2

W2 _12Q- l# Q2Qr |s1+|2
W 1 -2 Q Q 1 (2.47)

s2+ 16|fl32QiQ2QT"'

Notice that the power coupled into the cavity at the idler frequency, s2+12, depletes

the signal (PT) when nonlinearly converted (via sum-frequency generation), and produces

power at the pump wi. Therefore, in the case in which the pump is completely depleted

(si- = 0), no net power from the idler frequency is converted and s2-12 = 182+12 +

T1,eT2,e2|S1+ 2 T1T2W1. The conversion of the total input power, ls1+ 2 + 182+12, is thus

maximized in the limit 182+12 -+ 0, Is,.+12 = wL/(4|#I 2 Q1Q2QTT1,e/T1). Note, however, that

Eqs. (2.41-2.43) require a non-zero value (this can be arbitrarily small) of 1s2+12 for non-

zero conversion efficiency. Note also that the power at which total conversion is optimal

decreases with increasing Q-factors and vice-versa. This means that lower Q-factors are

desirable for high power applications. As an example, consider the case where A1 =1pm,

A2 ~ 1.lpm, AT e 10pm, in a cavity composed of a typical III-V semiconductor such as

GaAs. Taking the magnitude of the second-order effective nonlinear susceptibility to be

deff - 274pm/V [494], and assuming a constant field in each cavity with an optimal over-

lap, the critical power for optimal total power conversion (where s2+12 -- 0) would be

reached at Is1+12 = 4.4mW for Qi = Q2 = QT = 104. The actual implementation of a

triply-resonant system characterized by high Q/V ratios for the three frequencies involved

in the nonlinear frequency mixing process and high modal overlap is a challenging problem

and is out of the scope of this thesis.

Equation (2.47) also allows for quantum-limited conversion for an arbitrarily small value

of 1s1+1 2 as 182+12 - W2 /(161I 2Q1Q 2QTT2,e/T2). This is a unique property of the non-

degeneracy of DFG, and could prove useful for low power applications [346, 469]. A sim-

ilar result was found in the quantum limit for doubly resonant DFG, specifically that a

single photon could be converted with high fidelity from wi to WT, given an appropriate

pump power at W2. Note that in both limits the optimal input power is proportional to

1/Q1Q2QT oc 1/Q 3 . A similar result was found in the degenerate case of second-harmonic

generation, where the critical power was shown to scale as 1/QiQ2. A related enhance-

ment factor was also reported earlier in the undepleted-pump limit [309]. In the specific

case of THz generation through DFG of telecom-band modes (w1 2), assuming the two



telecom-band modes have the same mode volume (V1 ~ V2), then under the conditions of

best possible overlap, the overlap would scale as #3 1/V /2. This means that in triply

resonant THz generation, the mode volumes of the telecom-band cavities do not affect the

strength of the nonlinear coupling as long as they match each other (i.e. V ~ V2).

Finally, note that we have not considered the stability of the critical DFG solutions,

which we require in order to verify whether the solution can in fact be excited, as discussed

in the previous sections. However, we defer the reader to Ref. [70], upon which the discussion

in this section is based.

2.3.1 Terahertz Generation

The generation of terahertz (THz) or submillimeter radiation has been a subject of consid-

erable interest in recent decades [28,530]. An important criterion for applications based on

THz radiation is that the THz sources operate at sufficiently high power levels, near room

temperature and using compact turn-key sources [28, 30, 547, 560, 583]. These constraints

have presented a theoretical and experimental challenge that has been difficult to overcome

with conventional approaches [272, 295, 367, 462]. The traditional approach to generate

THz radiation involves some type of electrical pumping, for instance FIR/quantum cas-

cade lasers [418,472,535,550,561], while more recent methods have explored a wider range

of options, including mechanical shocks [433] and nonlinear optical processes [9, 204,341].

Nanophotonics and in particular nonlinear DFG offer a promising route to the realization of

high power, efficient THZ source. Recently, different approaches to resonant enhancement

of difference-frequency nonlinear coupling processes, including those involving a final fre-

quency in the THz regime, have been proposed. However, these previous approaches were

unable to yield conversion efficiencies close to the quantum-limit in a compact device op-

erating at room temperature [9,17,42,227, 367,547]. In this section, we describe a scheme,

described in the work of Ref. [56], that enables enhancement of THz power generation

via second-order nonlinear frequency down-conversion by up to three orders of magnitude

compared to conventional nonresonant approaches. By using a combination of accurate

numerical simulations and the coupled-mode equations in the previous section, we show

how the unique properties of photonic microresonators to conne light in subwavelength

volumes for many optical periods enable the implementation of highly-efficient compact on-

chip continuous-wave THz sources operating at room temperature and pumped by sub-W



pulses, which could contribute to the practical realization of efficient THz sources.
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Figure 2-17: (a) Schematic illustration of triply-resonant monolithic (GaAs) geometry.
P1,i = 1s1+1 2 and P2,in = JS2+1 2 denote the input power of light at pump Wi and idler

W2 frequencies, respectively, while PT = ST- 2 stands for the THz output power. The
transmitted power at the pump and idler frequencies are denoted by P1,tr and P2,tr, respec-
tively. (b) Main panel: electric field profile Ez corresponding o the resonant mode appearing
at 1 THz in the dielectric structure of (a). The value of the geometrical parameters are:
a = 102pm, di = 40.8pm, d2 = 25.1pm, d3 = 18.8pm, and w = 0.8pm. (Inset:) Enlarged

view of the x-polarized electric field profile Ex, corresponding to a whispery-gallery mode
with m = 572 circulating inside the dielectric ring, shown in the main figure. The inter-
nal/external radii of the ring resonator are 30.5pm and 40.1pm, respectively. Shaded/white
areas represent GaAs/air regions.

To date, most resonant THz DFG schemes have been designed and analyzed in the

singly- and doubly-resonant case, with cavities designed at the wi,2 frequencies [9,17, 42,

227, 367, 547]. The motivation for extending this work to include triply-resonant cavities

comes from the additional enhancement factor - QT/VT arising from confinement of the

THz mode. The difficulty with a triply resonant scheme comes from the fact that introduc-

ing a cavity at WT requires a multiscale design for the geometry which can yield a number

of significant experimental difficulties: in particular, DFG THz generation often involves

(b "
C)



input GHz (pm) light being converted to THz (millimeter) light. In addition to posing

experimental challenges, in many cases, these multiscale cavities will often yield low con-

version efficiency due to the relatively small coupling coefficient between the modes, i.e.

there is a tradeoff between the Q/V enhancement obtained for each individual mode due

to confinement, and the coupling coefficient f.

To explore the extent to which one can exploit resonant DFG to solve the current lack

of room-temperature efficient THz sources, we investigate THz generation in a specific

(realistic), shown in the schematic of Fig. 2-17. In this configuration, the THz field is

confined by means of a THz-scale photonic crystal cavity, whereas the pump and idler

fields are resonantly confined using two whispering gallery modes (WGM) supported by

a dielectric ring resonator. More specifically, the power carried by two near-infrared (IR)

beams of wavelengths A, and A2 correspond to the pump and idler beams, respectively, with

corresponding input power P1,in and P2,in, respectively. Both modes are coupled, by means

of an index-guided waveguide, to two high-order WGM, characterized by angular momenta

mi and M 2 , respectively. The ring resonator also acts as a dipole-like defect at AT, when

embedded in an otherwise perfectly periodic THz-wavelength scale PhC formed by a square

lattice of dielectric rods (see the corresponding electric field profile in Fig. 2-17). Thus, the

X nonlinear frequency down-conversion interaction that takes place between the two NIR

WGMs circulating inside the ring resonator yields a current distribution that radiates inside

the PhC cavity at the frequency difference WT = W2W1. In order to extract the THz output

power (PT = |Sr-12), we introduce into the system a PhC waveguide created by reducing

the radius of a row of rods [see Fig. 2-17(a-b)]. In addition, due to the symmetry of the

cavity, we are forced to break the degeneracy of the resulting x- and y-oriented dipole defect

modes: this is achieved by reducing the radius of two of the nearest-neighbor rods of the

ring resonator with respect to the radius of the other PhC rods. The entire configuration

permits a large QT/V factor, along with high-Q resonant confinement for the pump and idler

frequencies. Figure 2-17 shows the structure that results from optimizing the geometrical

parameters of the system for efficient THz generation of light with WT - 1THz, along

with the corresponding electric eld proles, as obtained from repeated finite-difference time-

domain (FDTD) simulations. In these calculations we have assumed pump and idler beams

of wavelength A = 1550nm and A2  1542nm, respectively; the structure is implemented in

Gallium Arsenide (GaAs), for which the relevant component of the nonlinear susceptibility



tensor is d14 = 274pm/V [272]. At these wavelengths, and for this geometry, GaAs yields

a nonlinear coupling coefficient # that is maximized if the structure is designed to support

two WGM with mi = 572 and m 2 = 575 at A1 and A2 respectively [see inbox of Fig. 2-17],

along with a dipole defect mode in the THz-scale PhC. We emphasize that in conventional

phase-matching schemes, the overall efficiency of a difference-frequency generation process

relies entirely on finding a suitable nonlinear material whose dispersion relation allows

one to simultaneously fulfill both frequency-matching and phase-matching (selection rules)

conditions.
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Figure 2-18: Total efficiency (blue) of THz light Isr_. 2 /(|s1+ 2 + 1s2+12) emitted by the
system, for WT = 1 THz. The results also show the depletion efficiency 1s2_1/(Is1+12 I2+ 2 )
of the pump (k = 1, green line) and idler (k = 2, red line) photons. The horizontal
dashed line displays the maximum possible THz (quantum-limited) conversion efficiency,
determined by the Manley-Rowe relations. The dotted line displays the effect of realistic
absorption losses on the conversion efficiency.

We now apply the coupled-mode theory formalism of our previous sections to the sys-

tem of Fig. 2-17. Figure 2-17 summarizes the main results obtained in the CW regime.

These calculations assume equivalent input powers s1+1 2 = 1s2+ 2, and quality factors

Q1 = Q2 = 3.5 x 105, QT = 103. These values of Q are reasonable, and desirable, con-

sidering the absorption coefficient of GaAs at 1 THz (the linear absorption rate of GaAs

corresponds to a Q factor 1.5 x 103) [204] and moreover, have been recently obtained ex-

perimentally in similar geometrical configurations for both the ring resonator and the PhC

cavity [7,382]. As shown in Fig. 2-18, for total input power s1+12 + |S2+ 12 > 70mW, the

conversion efficiency (defined here as the ratio IST-1 2/(IS1+1 2 + s2+12), as opposed to the

quantum-limited efficiency) begins departing from the conversion efficiency predicted by



the undepleted approximation, eventually reaching the maximum value predicted by the

ManleyRowe relations [51]. It is clear from inspection of Fig. 2-18 that the critical power

in this system is reached at Pin = 0.54W, at which point the pump power that is cou-

pled to the ring resonator is completely down-converted to power at the THz and idler

frequencies. This represents a dramatic reduction (about three orders of magnitude) in the

total required input power for THz generation with respect to the most efficient schemes

in nonlinear crystals reported up to date [547, 583]. Furthermore, we emphasize that, in

addition to powerful lasers, current efficient schemes for THz generation require intricate

phase-matching considerations, whereas in the system introduced here the maximum the-

oretically possible efficiency can be achieved in an integrated structure having a total area

~1mm2 using less than 1 W input powers that are readily accessible with compact turn-key

sources. As noted above, since |8 1 12 1/Q1Q2QT, the critical power can be adjusted by

varying the total bandwidth product Q1Q2QT.

2.4 Three-Wave Mixing

Three-wave mixing (TWM) is yet another type of nonlinear process, often studied in X(2)

media, in which input light composed of frequencies wo and wo + A gets converted to light at

frequency wo - A. (The special limit A -> -wo corresponds to degenerate TWM, or second-

harmonic generation.) Previous work on TWM focused primarily in singly-resonant or large-

etalon structures with stringent phase-matching requirements [41, 236,394,496,582,597], as

were most of the other nonlinear processes studied above. In this section, we write down the

basic coupled-mode equations of this three-wave mixing in a triply-resonant cavity system,

and furthermore solve for the corresponding steady-state behavior.

Consider a triply resonant X(3) cavity with resonances at Wi, W2 = wi - A and W3

wi + A. Consider also an up-conversion process in which one is pumping energy into the

cavity at wo (the pump signal) and w2 (the idler signal), to generate light at the higher

frequency w3 4. Following the prescription of Sec. 2.2.1, one obtains the following coupled-

4Note that in order to consider the alternative process, corresponding to a down-conversion process in
which W3 and W2 represent the idler and generated signals, one need not consider a separate set of CMEs.
The down-conversion process can be analyzed simply by setting A -+ -A in Eqs. (2.48-2.50) and Eq. (2.57).



mode equations:

da= i(1 + a1a1| 2 + a2la2| 2 + a 31 |a3| 2) - 1ai + 2iwi*aia2a3 + 21+

(2.48)

da2  (iw2(1 + aZ12al12 + a221a212 + aI32|a3 1) - I)a2
dt ( T2 /

da3  ('w3(1 + a 31a 12 + a 23 Ia21 + a33Ia312) - 1)a 3
di Ts

Furthermore, by following the simple perturbation-theory

one also obtains the corresponding coupling coefficients #i

+iw 2 3aa + S2+
Ts,2

+ i 3/3a2a*.

(2.49)

(2.50)

analysis described in Sec. 2.2.2,

and aij:

)1 = I J d3xE( 3)E*
8N1

/2 = /3 16N3 d )E

N= [Jd3xE E112] [J d3xelE 2 12] 1/2 [J d3xeIE 3 12]1/2

E = (E E)(E* -E*) + 2(E1 . E*)(E1 -E*)

1 fd 3xEX(3) [IEZ E* - 2 + jE -E 12]

8 [/d3xe|EI2] 2

1 J d3 XE(3) [JE -Egj2 + E -Ef 2 + |Ej 1 lE 12 ]
8 = d3xcE J d3xe|Ej12

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

i f j,

which again are seen to satisfy the corresponding energy-conservation constraint,

by w1#o = w 2 32 + W3 /3-

(2.56)

here given

Assuming again, for simplicity, that aig < /, the maximum quantum-limited conver-

sion efficiency '13 = |s 3-12/(1s1+1 2 + |s2+12) can be obtained by setting si,- = 0, and as

in the DFG example of the preceding section, taking the limit s2,+ -+ 0. (Since TWM is

a non-degenerate nonlinear process, the Manley-Rowe relations demand an efficiency cut-

off determined by the possible rate of photon up- and down-conversion.) The resulting



maximum quantum-limited efficiency is given by:

73 = W3 = + - (2.57)
2wi 2 Wi

corresponding to a critical power Pcrit = Isj 12 determined by the solution of the following

quadratic equation:

(1- s = T121IP3IS 1'| 2|s2,+2; (2.58)

Solving this equation (for the limit as s2+ - 0) numerically yields two solutions: a stable

and an unstable solution. For this (desired) stable solution, maximal efficiency is obtained

at a critical power:

Pcrit =2 (2.59)
rT1|#|s/72T3W2W3



Chapter 3

Quantum Nonlinear Nanophotonics

"It is impossible to travel faster than the speed of light, and certainly not desirable, as one's

hat keeps blowing off." Woody Allen

3.1 Overview

In the previous chapter, we explored the possibility of enhancing nonlinear interactions by

tailoring the geometry of various devices (modifying the photon density of states). We

argued that microresonators, such as PhC microcavities, offer unique fundamental ways of

enhancing a variety of nonlinear optical processes, stemming primarily from their unique

ability to confine light over long lifetimes Q and small modal volumes V. This places many

previously known nonlinear optical processes in a new operating regime. For example, this

enhancement improves the performance of nonlinear optical devices to such an extent that

their corresponding operation powers and switching times are suitable for their implemen-

tation in realistic ultrafast integrated optical devices [57]. In this chapter, based on work

performed in collaboration with Peter Bermel described in Ref. [36,37], we explain how one

may combine these geometric-based approaches with novel materials to further enhance

nonlinear interactions, in some cases allowing us to even reach the single-photon (quantum)

operation regime.

The chapter is composed of two major sections. Section 3.2 demonstrates switching

of a single signal photon by a single gating photon of a different frequency, via a type

of cross-phase-modulation (XPM). This XPM effect is mediated by materials exhibiting

electromagnetically induced transparency (EIT), which are embedded in a photonic crystal



cavity coupled to a waveguide. An analytical model based on waveguide-cavity quantum

electrodynamics, a quantized version of the coupled-mode theory of chapter 2, is constructed

for our system: a PhC waveguide and a PhC microcavity containing a four-level EIT atom.

The steady-state behavior of the system is solved exactly and analyzed using experimentally

accessible parameters. Our results confirm that the strong coupling regime is required for

lossless two-photon quantum entanglement.

Section 3.3 presents an approach to enhancing nonlinear interactions that focuses on

strengthening (tailoring) the nonlinear optical susceptibility of typical nonlinear materials

by designing geometries at the scale of the material resonances. In particular, it is shown

that one can exploit the Purcell effect to enhance the Kerr susceptibility of certain materials.

While this is a general physical principle that applies to a wide variety of nonlinearities, we

specifically investigate the Kerr effect arising from the interaction of light with certain ma-

terial systems. This idea is illustrated by explicit FDTD calculations in a system composed

of a discrete system (e.g. atom or a quantum dot) embedded in a PhC cavity, wherein it is

shown that by manipulating the Purcell effect for frequencies close to the atomic resonance

one can substantially influence the resulting Kerr nonlinearity for light of all (even highly

detuned) frequencies. Enhancements of the Kerr coefficient of one or two orders of magni-

tude could be achieved in realistic homogeneous systems (semiconductors). As pointed out

in Sec. 3.4, this last topic lies at the intersection of classical and quantum electromagnetism,

and finds its origins in the fluctuation-induced interactions of the electromagnetic field, the

subject of the remainder of this thesis.

3.2 Single-Photon Switching

Several emerging technologies, such as integrated all-optical signal processing and all-optical

quantum information processing, require strong and rapid interactions between two distinct

optical signals [31,176,314,378]. Achieving this goal is a fundamental challenge because it

requires a unique combination of large nonlinearities and low losses, i.e. strong and rapid

nonlinear photon-photon interactions. The weak nonlinearities found in conventional media

mean that large powers are required for switching. On the classical end, experimental and

theoretical studies demonstrate that bistable switching and many other strong nonlinear

effects can be achieved by placing a Kerr nonlinear material inside a photonic crystal cav-



ity [80,386,502]. Unfortunately, although promising for many classical applications, most

of these approaches are not scalable to the quantum (single-photon) regime, due primar-

ily to high losses and low-power limitations. In this section, we explore the possibility of

exploiting electromagnetically-induced transparency (EIT), previously explored in the con-

text of classical nonlinear nanophotonics [ref], to enable efficient low-power (single-photon)

switching.

Recent work showed that nonlinearities up to 12 orders of magnitude larger than those

observed in common materials [200] with low losses can be achieved using EIT materials [14,

44,200]. One can then envision inducing strong interactions between two very weak signals

of different frequencies by placing a 4-level EIT atom in a high-Q cavity, so that a very

small signal at a specific atomic transition frequency could shift another resonant frequency

of the system by a measurable amount [505]. This approach differs from several optical

switching schemes for small numbers of photons that have previously been discussed in the

literature. One of the pioneering papers in this area used a single three-level atom with a

V-level structure in an optical cavity to induce a cross-phase modulation of 16' between

two photons [534]. EIT offers even further opportunities in terms of larger nonlinearities

and greater tunability, which has directed much subsequent work in this direction. EIT

materials have been predicted to cause a photon blockade effect, where the state of a cavity

can be switched by the self-phase modulation of a single photon [226, 432, 556] or several

photons [174, 187]. This effect has recently been observed experimentally [43]. Ref. [29]

predicts that ensembles of EIT atoms can be modulated to create quantum entangled states

for a small number of photons. An alternative method is discussed in Ref. [242], whereby a

laser beam can control the relative populations of a two-state system embedded in a PhC,

which switches its transmission properties at low power levels.

Ref. [505] semi-classically demonstrates the strong interaction of very low intensity fields

which can be mediated by EIT materials. This work extends that idea to the quantum

regime, by writing down the waveguide-cavity QED Hamiltonian for a system consisting

of one or a few 4-level EIT atoms strongly coupled to a photonic crystal (PhC) cavity

mode, which in turn is coupled to a PhC waveguide, and solving it exactly. Furthermore,

an approach to calculating the relevant parameters from first principles is demonstrated.

It should be experimentally feasible, with EIT having already been demonstrated in a Pr

doped Y2SiO5 crystal [193, 536]. Note that compared to EIT systems such as Na BEC's
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Figure 3-1: Schematic illustration of the system investigated. A waveguide is coupled to a
cavity with an EIT atom at its center. In the upper left-hand corner, an FDTD simulation
that can be used to calculate the model parameters is shown.

displaying narrow bandwidths- (e.g., 2 MHz [200]), switching can occur over much larger

bandwidths even for single photon power levels (e.g., 2 GHz, using the parameters from

Ref. [586]) because the PhC cavity compensates for weaker nonlinearities, as demonstrated

here. Furthermore, this approach utilizes PhC's, which offer confinement of light to high

quality factor microcavities with low modal volumes, which facilitates strong coupling be-

tween light and matter. The emergence of new phenomena associated with the quantization

of the probe and gate fields (e.g., Rabi-splitting) is discussed. Finally, it is shown that

switching behavior can be achieved with single probe and gate photons, and the physical

parameters needed to achieve such operations are calculated.

Consider the following design, illustrated in Fig. 3-1. There is a cavity which supports

two resonant modes, one with a resonant frequency WRES and the other with a control

frequency WCON, enclosing a single four-level EIT atom with coupling strengths gij and

atomic transition frequencies wij, where i and j refer to the initial and final atomic states,

respectively. The EIT dark state is created by adding a classical coupling field to the cavity

with frequency w23 and Rabi frequency 2Qc - all other quantities are treated quantum me-

chanically. In general, any number of coupling schemes between the cavity and one or more

waveguides could be utilized. However, in this work, the WRES cavity mode is side-coupled

to an adjacent single-mode waveguide with a radiative linewidth F" = WRES/ 2Qw = V 2 /v

where Q. is the quality factor of the WRES cavity mode, Vw is the coupling strength and

Vg is the group velocity in the waveguide - its dispersion relation w(k) is assumed to be

approximately linear near the WRES resonance. For relatively strong cavity-waveguide cou-

plings, radiative couplings out of the system are much smaller and may be neglected. Also,

the WCON resonance is designed to have a much smaller decay rate PCON = WCON/ 2 QCON-
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This can be achieved by starting with two dipole modes, one with an even symmetry cou-

pled strongly to the waveguide, and one with an odd symmetry exactly decoupled from

the waveguide. A slight shift in the cavity position can then create a slight coupling that

nonetheless creates a substantial disparity in quality factors, i.e., QCON > Qw (see, e.g.,

Refs. [240,251]). Alternatively, one could use two cavities to create even and odd modes

with substantially different quality factors [519]. In the absence of an atom, these design

produces a Lorentzian lineshape for the reflection (because of the side-coupling), centered

around WRES [201]. A photonic crystal implementation of this is shown in the upper left-

hand corner of Fig. 3-1--a triangular lattice of air holes in silicon with radius 0.48a that has

a complete 2D photonic bandgap. A similar geometry has been used for quantum dots in

photonic crystal microcavities, as in Ref. [586]. That experimental system exhibits a criti-

cal photon number mo = F2/2g 2 - 0.55 and critical atom number No = 21Fw3/9 2 = 4.2.

Ideally both of these numbers would be less than one for quantum information process-

ing [323]; it should be possible to achieve this goal with improvements in Q or modal

volume Vmode, or by placing several atomic or quantum dot systems in the same micro-

cavity. Note that it could also be possible to achieve similar behavior with other physical

systems, such as high-finesse Fabry-Perot optical microcavities [212], or ultrahigh-Q toroidal

microresonators [510].

Combining Ref. [556]'s Hamiltonian for an EIT atom in a cavity and Ref. [486]'s Hamil-

tonian for a waveguide interacting with a cavity yields:

H/h = ZWkatkak + wREsata + WCONb b + 1 Vw (at + ak)(at + a) + W21U22 (3.1)
k k

+ (w 13 - XF3 )~ 33 + (U 14 - i1 4 )C 44 + Qc(o32 + - 2 3 ) cos (w 2 3t)

+ g13(atU13 + aU31) + 924 (bt24 + bU42

where ak are the annihilation operators for waveguide states of wavevector k and frequency

Wk, a and b are the annihilation operators for cavity photon states of frequencies WRES and

WCON, respectively (which are considered here to be singly occupied), ogj are the projection

operators that take the atomic state from j to i, £3 is the nonradiative decay rate of the

third level, F4 is the nonradiative decay rate of the fourth level, AJ 13 = W13 - WRES - iX 3

is the complex detuning of the 1-+3 transition from WRES, and ACD24 = W24 - WCON - iX4 is

the complex detuning of the 2-4 transition from WCON. In this work, the cavity resonance
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is designed to match the 1--3 transition, i.e., WRES = W13 , so that Aw1 3 = iF 3 . Also,

although Aw24 is predominantly real, in general there is an imaginary part corresponding

to absorption losses in the fourth level. However when the detuning greatly exceeds the

decay rate of the upper level, this contribution may be neglected. Losses from the second

atomic level are also neglected, since typically it is a metastable state close to the first

atomic level in energy. Finally, although in general the two cavity modes will have at least

slightly different frequencies, we set WCON = WRES for simplicity.

The Hamiltonian in equation Eq. (3.2) can then be rewritten in real space and separated

into a diagonal part:

H/h = WRES Jdx [at(x)aR(x) + at (x)aL(X) (3.2)

+ WRES (a t a + btb + U33 + '44) + W2 1 (r 22 + 944),

where aL and aR refer to left and right moving waveguide photons, respectively, as well as

an interaction part:

H1h dx [at (X)(-iv09 x - WRES)aR(x) + a (X)(vgax - WRES)aL(X) (3.3)

+ Vw(x)(atR(x)a + aR(x)at + at (x)a + aL(x)at) - Oc(o2 + 032)

+g 13 (a t r13 + a931) - IF3 r3 3 + Aw24 U4 4 + 924 (b( 4 2 + bfO 24 )

via the interaction picture (using the rotating-wave approximation [478]), where the total

system Hamiltonian is given by H = Ho + HI. The eigenstate for the system can be written

as:

kk) { R(x aX(x) + 0+L(x ajx) + ekat (3.4)

+ fk3i + hk921 + Pkc41b |0,0, 1)phc 01)atom

where:

kR(x) -- kx [0(-x) +tO(x)] (3.5)

$ = re-ikxo(-)
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ek is the probability amplitude of the cavity photon at WRES, and fk, hk, and p are the

occupations of the 3 rd, 2 nd, and 4 th atomic levels, respectively. t and r are the waveguide

transmission and reflection amplitudes, respectively. All of these parameters are determined

when the eigenequation is solved below. 10, 0, 1)phc 0 1)atom is an eigenstate consisting of

a direct product of a photonic state (phc) and an atomic state (atom). The photonic state

consists of zero photons in the waveguide, zero photons in the cavity at WRES, and one

photon in the cavity at WCON, respectively. The atomic state consists of a single atom in

its ground state. (In this model, the number of WCON photons can be fixed to be either

zero or one, since the commutator [H, b] vanishes when applied to @k).) Note that 10k)

is written in terms of an annihilation operator b in order .to simplify the notation, which

would otherwise require bt operators in all but one term. In the case of n WCON photons,

the coupling constant 924 - 924 = 924-

Applying the Hamiltonian, equation Eq. (3.4), to the time-independent eigenvalue equa-

tion HI 10) = hek 0)), where Ck = W -WRES, and solving for the reflection coefficient yields

Ir(Ek)12 _ jFw/( _ iPw)I 2, where:

2

ek 913 (3.6)

Ek + 3 ~ -- 9 4 /(Ek-ACD24)

The parameters 913, Vw (or ]Fw), vg, and Qc of equation Eq. (3.4) can be determined

from a numerical solution to Maxwell's equations (e.g., via [522]) as follows. First, the

cavity mode is excited by a source, and the modal volume of the cavity is found from the

field patterns by Vmode = (fmode d3x 1E2) / 1Ema2 . One can then apply the formula

913 = i7re 2 f13/meVmode [11], where e is the elementary electric charge, e is the dielectric

constant of the medium in which the atomic system is embedded, m is the free electron

mass, and f13 is the oscillator strength for the 1) -> 13) transition (1/2 in Na [200]). The

linewidth Fw can be calculated by examining the decay rate of the field in the cavity mode.

The waveguide group velocity is given by vg - dw(k) Finally, the Rabi frequency Qcdk.FialteRbfrqec
W=WRES

can be estimated from quantum mechanics by first determining the vacuum Rabi splitting

for the 2-+3 atomic transition 923, and then multiplying by ./Th, where n is the number of

W23 photons.

First, consider the case of a 2-level atomic system (i.e., QC = 0, 924 = 0), with a

waveguide coupling F, and a non-radiative decay rate F3. For a fixed atom-photon coupling
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Figure 3-2: Waveguide reflection for a lossless 3-level EIT atom for the four labeled values

of the atomic coupling strength g13, in GHz. The radiation rate F, = 21.5 GHz and the

ratio 913/Qc = 2 are fixed. Larger 913 produces larger peak separations (the blue curve

shows Rabi peaks outside of the plot), favorable for switching.

913 and zero non-radiative absorption, the single resonant mode at Ek = 0 experiences a

Rabi splitting into two orthogonal linear superpositions of the cavity and atom modes at

Ek = L913. As long as one remains in the strong coupling regime 913 > P3/2, the absorption

for all frequencies increases nearly linearly with F3.

However, in the opposite regime of weak coupling (913 < 13/2), the normal modes of

the system are mostly photonic (lossless) or mostly atomic (very lossy). This phenomenon

eliminates the Rabi splitting and gives rise to a reflection nearly indistinguishable from a

system without an atom for sufficiently large F3.

Now, consider a 3-level atomic system without losses. Compared to the 2-level system,

a third mode, corresponding to the dark state of the EIT atom, will emerge at Ck = 0

between the previously observed Rabi-split peaks. The dark eigenstate is given by I@dark
[at - (g13/Qc)(- 21] 10, 0, 0)phc 0 1)atom. The width of the central peak is expected to scale

as (Qc/g13)2 for small Qc/913 [29]. If one substitutes the expression given in Ref. [11] for

913, one obtains the classical results found in Refs. [200,505]. Meanwhile, the width of the

side peaks is set by F, and remains roughly constant as one tunes the parameters of the

system.

In Fig. 3-2, 9 13/Qc = 2 while 913 is varied. It is shown that as 913 is decreased, the central

resonance width stays constant, while the distance between the central and Rabi-split peaks

becomes smaller. For use in applications, it therefore seems optimal to have a large Rabi
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Figure 3-3: Waveguide reflection (blue) and absorption (red) in the absence (solid) and
presence (dashed) of an control photon, demonstrating nonlinear single-photon switching
(r,, = 21.5 GHz, 913 = 20.5 GHz, Qc = 2 GHz, F3 = 30 GHz, 924 = 8 GHz, and A0 24 = 30
GHz).

splitting, corresponding to the very strong coupling limit, which can also be viewed as

corresponding to critical photon and atom numbers much less than one. The experimental

values for a system with a single quantum dot emitting a single photon observed in Ref. [586]

correspond to a regime where 913 ~~ - specifically, they find that for operation at

A = 1.182 pm, 913 = 20.5 GHz and F, = 21.5 GHz; note that PhC microcavities are

optimal for simultaneously decreasing Fe and increasing g13.

Now, consider a 4-level system with a control photon present. Two possible effects

can be induced by the control photon. When the control frequency WCON is close to the

electronic transition frequency W24, an Autler-Townes doublet is observed; upon detuned,

an AC-Stark shift will be induced in this system instead [505,556]. The latter effect has

been suggested as a switching mechanism in Refs. [196,475, 505]. This can be shown by

using equation Eq. (3.6) to calculate the poles of the EIT term in the reflection, i.e., set

Ek - 924/(Ek - AC 24 ) = 0, which yields Ek = ±g24 for no detuning, and Ek -- 24 /A0 24 for

a large detuning, matching the semi-classical result found in Ref. [505].

Single-photon switching is obtained when the reflection peak is shifted by an amount

greater than its width, via the presence or absence of one control photon. In order to achieve

this goal, one can take two different approaches. First, in the regime where 913 F, as in

Ref. [586], one can introduce an absorption via F3 # 0, and thus absorb the majority of light

not coupled to the dark state. In Fig. 3-3, the reflection and absorption are plotted for an
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Figure 3-4: Waveguide reflection with (dashed) and without (solid) a control photon, demon-
strating lossless switching. (Left:) A higher quality factor has made the resonant peaks
narrow enough to be shifted by more than their full width at half maximum by a single
photon (]w = 3 GHz, 913 = 20.5 GHz, Qc = 30 GHz, F3 = 0, 924 = 30 GHz and ACD24 = 20
GHz). (Right:) Multiple (49) EIT atoms have been used to push the Rabi-split peaks far-
ther away in the presence of negligible loss (1w = 21.5 GHz, 913 = 143.5 GHz, Qc = 210
GHz, F3 = 0, 924 = 210 GHz and ACD24 = 20 GHz).

optimized value of 173 30 GHz, both before and after switching. As shown, reflections at

the Rabi-split frequencies are decreased substantially (to about 40%), while full reflection

is still observed at the central, EIT-narrowed peak. Furthermore, in the presence of a single

detuned control photon, it is possible to switch the peak reflection frequency by an amount

greater than the EIT-narrowed central peak width. A second, lossless approach, appropriate

if producing a large nonradiative decay 13 or small Qc is difficult in a single-atom device, is

to enhance the ratio 913/w. This goal can be achieved by either decreasing F, or Vmode,

or by increasing the number of atoms from one to N. The first example of switching by

decreasing the waveguide coupling is shown in Fig. 3-4, where the waveguide coupling width

rw is decreased by about a factor of 7 to Fw = 3 GHz. Now the peaks are narrow enough

that a single photon of frequency WCON can shift the peak by more than the full width

at half-maximum. The second example of switching, by increasing the number of atoms is

illustrated in Fig. 3-4(Bottom). In general, it is clear that increasing the number of atoms

collectively oscillating will improve the coupling strength; in the special case where each

atom has equal coupling to the field, the N-atom treatment in Ref. [5711 shows that the

coupling constant 913 - 913 = 913V'N. Furthermore, one can generalize the arguments of

Ref. [571] to a four-level system of N atoms to show that the other coupling constants 924
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and Qc will scale in an identical fashion (i.e., 924 - 924 = 924N, Qc --+ = cvV).

This collective Rabi oscillation separates the Rabi-split peaks much further from the central

peak. Figure 3-4(Bottom) shows switching exploiting this phenomenon based on parameters

from Ref. [586] and using N = 49. The advantage of this lossless switching scheme is that

one obtains a substantially greater tuning range and contrast (the difference between the

peaks and the troughs) than with the lossy (F3 # 0) scheme.

As we have shown, the reflection peak of a waveguide-cavity system can be switched

in and out of resonance by a single gating photon, assuming realistic experimental param-

eters. Thus, one photon can be used to gate another photon of a different frequency, via

a Kerr cross-phase modulation. This approach is distinct from the photon blockade sys-

tem where self-phase modulation is responsible for the switching behavior. Under proper

circumstances, this can give rise to two-photon entangled states. The integration of micro-

cavities and waveguides in the same photonic crystal means that the entanglement could

be preserved, in principle, throughout the system, which could be of use for quantum in-

formation processing [323]. Moreover, since these devices have an extremely small size, one

can imagine creating integrated devices using thousands of these basic building blocks to

process large numbers of qubits. This could have applications in quantum computing or

the construction of quantum networks. If two atoms are used per node, it should even be

possible to achieve quantum error correction [541].

In the following section, we switch gears and begin to probe the topic of fluctuation-

induced interactions, by exploiting the Purcell effect in nanophotonic structures to enhance

the nonlinear susceptibility of certain materials.

3.3 Nonlinear Purcell Enhancement

Optical nonlinearities have fascinated physicists for many decades because of the variety of

intriguing phenomena that they display, such as frequency mixing, supercontinuum genera-

tion, and optical solitons [52,124]. Moreover, they enable numerous important applications

such as higher-harmonic generation and optical signal processing [3,52,378]. On a different

note, the Purcell effect has given rise to an entire field based on studying how complex di-

electric environments can strongly enhance or suppress spontaneous emission from a dipole

source [35,144,267,416,466, 570] [ref]. Below, we demonstrate that the Purcell effect can
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also be used to tailor the effective nonlinear optical susceptibility. While this is a general

physical principle that applies to a wide variety of nonlinearities, we specifically investigate

the Kerr nonlinearity, in which the refractive index is shifted by an amount proportional

to intensity. This effect occurs in most materials, modeled here as originating from the

presence of a collection of two-level systems. We show theoretically that using the Purcell

effect for frequencies close to an atomic resonance can substantially influence the resultant

Kerr nonlinearity for light of all (even highly detuned) frequencies.

Specifically, optical nonlinearities are caused by atomic or molecular resonances: the

closer the frequency w becomes to the resonant frequency Wba , the stronger the atom-photon

coupling becomes and the larger the nonlinear effects. On the other hand, operating too

close to resonance generally leads to large absorption loss, so instead one operates at a

detuned frequency w = Wba + A. Intuitively, modifying the spontaneous-emission rate (SE)

of the resonance changes a property of the resonance which causes nonlinearity, so it should

modify the nonlinear process in some way. The key point is that the atomic resonance and

the optical mode lie at different frequencies: this makes it possible for a photonic crystal

to suppress SE at Wba via a photonic band gap, which increases X(, as shown below,

while simultaneously operating at a probe frequency w outside the gap. In fact, one can

additionally simultaneously engineer optical resonant cavities at W, which further enhance

nonlinear effects by concentrating the elds. Moreover, as we show below, this enhancement

effect displays some unexpected properties. For example, while increasing SE strengthens

the resonance by enhancing the interaction with the optical field, it actually makes the

optical nonlinearity weaker. Furthermore, phase damping (e.g., through elastic scattering

of phonons), which is detrimental to most optical processes, plays an essential role in this

scheme, because in its absence, these effects disappear for large detunings (i.e., the regime

in which low loss switching can take place).

A simple, generic model displaying Kerr nonlinearity is a two-level system. Its suscep-

tibility has been calculated to all orders in both perturbative and steady state limits [52].

However, this derivation is based on a phenomenological model of decay observed in a

homogeneous medium, and does not necessarily apply to systems in which the density of

states is strongly modified, such as a cavity or a photonic crystal bandgap. Following an

approach similar to Ref. [244], the validity of this expression can be established from a more

fundamental point of view. Start by considering a collection of N two-level systems per unit
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volume in a photonic crystal cavity, whose levels are labeled a and b. The corresponding

Hamiltonian is given by the sum of the self-energy and interaction terms (Ho and V(t),

respectively). Using the electric dipole approximation, one obtains:

H = Ho + V(t) = h [Wauaa + WbUbb + Q (t)ab + Q*(t)O ba] , (3.7)

where aiT = c cj is the operator that transforms the fermionic state j to the fermionic

state i, Q(t) = -y -E(t)/h is the Rabi amplitude of the applied field as a function of time,

and the scalar dipole moment p is defined in terms of its projection along the applied field

E(t). In general, if this system is weakly coupled to the environmental degrees of freedom,

then the timescale for the observable dynamics of the system is less than the timescale of

the "memory" of the environment. In this case, information sent into the environment is

irretrievably lost - this is known as the Markovian approximation [414]. The dynamics of

this system can then be modeled by the Lindbladian L, which is a superoperator defined

by L £ [p]. In general, one obtains the following master equation from the Lindbladian:

= -(i/h) [H, p] + (: Ly pL - 1Lt Lp - 1 pLt L1, (3.8)

Using the only two quantum jump operators that are allowed in this system on physical

grounds - Li =ab/v95 and L 2  Ubb -Yphase [414] - one can obtain the following dynamical

equations:
dPb -(iWba + T2 1 )Pba + iQ(t)(pbb - paa) (3.9)
dt

d(pbb - Paa) __ (Pbb - Paa) + 1 - 2i [Q(t)Pab - Q*(t)pbal, (3.10)
dt T1

where Wba = Wb - Wa, T is the rate of population loss of the upper level, and T2

(1/2)T- 1 + Yphase is the rate of polarization loss for the off-diagonal matrix elements. The

prediction of exponential decay via spontaneous emission is known as the Wigner-Weisskopf

approximation [97]. Although it has been shown that the atomic population can display

unusual oscillatory behavior in the immediate vicinity of the photonic band edge [243,282,

theoretical [244] and experimental considerations [26,315] show that this approximation is

fine for resonant frequencies well inside the photonic bandgap. This is assumed to be the

case throughout the rest of the section. Next, one can make the rotating wave approxima-
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tion for Eqs. (3.9-3.10), and then solve for the steady state. If the polarization is defined

by P = Ny(Pba + Pab) = XE, where x is the total susceptibility to all orders, one obtains

the following well-known expression for the susceptibility [52,244]:

= ~ ± Np 2 (w - Wba - i/T 2 )T2/h
1 + (W -- Wb,)2T22 + (4/h2)p2|E|2T1T2'

In general, equation (??) may be expanded in powers of the electric field squared. Of

particular interest is the Kerr susceptibility, also in Ref. [52]:

(3) 4  4T1T2(AT2 - i)3 h3(1 + A2T2) 2 '

where A W - Wba is the detuning of the incoming wave from the electronic resonance

frequency. For large detunings AT 2 > 1, one obtains the approximation that:

Re X(3) ~ _Nyt 3 . (3.13)

Of course, there are many types of materials to which a simple model of noninteracting

two-level systems does not apply. However, it has been shown that some semiconductors

such as InSb (a III-V direct bandgap material) can be treated as a collection of indepen-

dent two-level systems with energies given by the conduction and valence bands, and yield

reasonable agreement with experiment [350]. If the parameter A is defined in terms of the

bandgap energy such that A - WG - W, then one can look at the regime AT 2 > 1 studied

above, and obtain the following equation:

(3) 1 (eP 4 (2m 3/2 TRe 30rh3  E ~m (3.14)307h3( J \ hA T

where P is a matrix element discussed in Ref. [350], WG is the direct bandgap energy of

the system, and mr is the reduced effective mass of the exciton. This equation displays the

same scaling with lifetimes as Eq. (3.13), so the considerations that follow should also apply

for such semiconductors.

Now, consider the effects of changing the spontaneous emission properties for systems

modeled by Eqs. (3.13-3.14). When spontaneous emission is suppressed, as in the photonic

bandgap of a photonic crystal, T1 will become large while T2 remains finite, thus enhancing
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X(3) by up to one or more orders of magnitude (for materials with the correct properties).

For large detunings (where AT2 ,ac >> 1), we expect that X(3) will scale as T1/T 2. The
(3) (3)(3)

enhancement of the real part of X(3) is defined to be ' = Re XIceu / Re X$1
2 , where Xpurceln

is the nonlinear susceptibility in the presence of the Purcell effect, whilexh.t is the non-

linear susceptibility in a homogeneous medium. Since T- 1 = Frad + Inr, the maximum

enhancement is predicted to be roughly:

T1,purcelT2,vac _ 2F r + 7Yphase Frad + nr (3.15)

T1,hom2,purce (nr + Frad) + _Yphase nr

where Frad is the radiative decay rate in vacuum. Since the Purcell effect increases the

amplitude of x(1), one might also expect it to increase the amplitude of X(3); however,

according to Eq. (3.15), the opposite is true. This can be understood by noting that Purcell

enhancement decreases the allowed virtual lifetime, and thus, the likelihood of nonlinear

processes to occur [467]. Moreover, since the Purcell factor [416] is calculated by only

considering the photon modes [466], one would not necessarily expect phase damping effects

to also play a role. However, the results of Eq. (3.15) show the contrary to be true, and can

be explained as follows: when phase damping is large, the polarization will decay quickly,

thus giving rise to a small average polarization. However, as phase damping is lessened,

polarization decay slows down and allows the average polarization to rise. In the limit

that phase damping is controlled exclusively by the spontaneous emission rate, the two

competing effects will cancel, and the nonlinearity will revert to its normal value.

Furthermore, the presence of large phase damping effects makes T2 effectively constant,

which means that suppression of spontaneous emission (caused by the absence of photonic

states at appropriate energies [267]) can enhance Kerr nonlinearities by one or more orders

of magnitude, while enhancement of spontaneous emission via the Purcell effect [144,466]

can suppress these nonlinearities. For the case where Purcell enhancement takes place, T

decreases while T2 may not change as rapidly, due to the constant contribution of phase

damping effects. This applies in the regime where T1 > y- 1se. Otherwise, for sufficiently

small T1, T2 will scale in the same way and x(3) will remain approximately constant for

large detunings, where AT 2 > 1. This opens up the possibility of suppressing nonlinearities

in photonic crystals (to a certain degree). For processes such as four-wave mixing or cross

phase modulation, X(3) will generally involve a detuning term and will differ from Eq. (3.12).
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It is also interesting to note that this enhancement scheme will generally not increase non-

linear losses, which are a very important consideration in all-optical signal processing. If

the nonlinear switching figure of merit ( is defined by ( = Re X(3)/(AImX( 3)) [296], then

(purcei/&Vacuum =T2,purcerl/T2,vacuum > 1 for all cases of suppressed spontaneous emission.

The general principal described thus far should apply for any medium where the local

density of states is substantially modified. In what follows, we show how this effect would

manifest itself in one such exemplary system: a photonic crystal. This example serves as

an illustration as to how strong nonlinearity suppression / enhancement effects could be

achieved in realistic physical systems. It consists of a 2D triangular lattice of air holes in

dielectric (6 = 13), with a two-level system placed in the middle, as in Fig. 3-5.

Note that the vast majority of photonic crystal literature is generally focused on mod-

ification of dispersion relations at the frequency of the light that is sent in as a probe. By

contrast, in the current work, it is only essential to modify the dispersion relation for the

frequencies close to the atomic resonances; the dispersion at the frequency of the light sent

in as a probe can remain quite ordinary.

(0e1ec or (Jelec

Figure 3-5: A 2D triangular lattice of air holes in dielectric (e 13). On top of the

dielectric structure in grey, the Ez field is plotted, with positive values in red, and negative

values in blue. A small region of nonlinear material is placed exactly in the center of the

structure. This material may be, for example, either two-level atoms, quantum wells, or

some semiconductors such as InSb.

First, consider the magnitude of the enhancement or suppression of spontaneous emission

in this system. Clearly, since there are several periods of high contrast dielectric, two

effects are to be expected. First, there will be a substantial but incomplete suppression of

emission inside the bandgap. Second, there will be an enhancement of spontaneous emission

outside the bandgap (since the density of states is shifted to the frequencies surrounding

the bandgap). For an atom polarized in the direction out of the 2-D plane, only the TM

polarization need be considered.
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We numerically obtain the enhancement of spontaneous emission by performing two

time-domain simulations in Meep [151], a finite difference time-domain code which solves

Maxwell's equations exactly with no approximations, apart from discretization (which can

be systematically reduced) [522]. First, we calculate the spontaneous emission of a dipole

placed in the middle of the photonic crystal structure illustrated in Fig. 3-5, then divide

by the spontaneous emission rate observed in vacuum. The resulting values of T and

T2 are calculated numerically, and Eq. (3.12), in conjunction with the definition of the

enhancement factor rq, is used to plot Fig. 3-7. The results are plotted in Fig. 3-6.

o5

Ratio of emission rates for 2D honeycomb lattice
5 periods, e=13

0.4 0.5
frequency o) (2nc/a)

Figure 3-6: Relative enhancement of the TM local density of states for Fig. 3-5, as measured
in the time-domain simulation rate of emission, F, normalized by the emission rate in
vacuum, Io.
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Figure 3-7: Contour plot of Kerr enhancement r/ = Re X cen/ Rexho as a function of
probe (wph) and electronic transition (Weiec) frequencies, for a single quantum well of GaAs-
AlGaAs, (a) at T = 200 K, with 0.17Yphase = l0nr =rad, and (b) at T = 225 K, with
O.IYphase nr rad-

A GaAs-AlGaAs single quantum well can lie in the interesting regime discussed above,
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where the radiative loss rate Frad dominates the non-radiative loss rate rnr as well as the

overall loss rate of the quantum well, for certain temperatures [276]. Equation (3.14) implies

that one can see substantial enhancement of the Kerr coefficient in that regime.

At a temperature of about 200 K, J'nr 
0 .1rrad [276]. Although experimental measure-

ments for Yphase are unavailable to the authors, the presence of a substantial phonon bath

at that temperature leads one to expect a fairly large value, which may be conservatively

estimated by 1orad. These results are displayed in Fig. 3-7(a). Note that enhancement is

primarily observed inside the photonic bandgap (e.g., Fig. 3-6). We observe an enhancement

in the real part of the Kerr coefficient up to a factor of 12, close to the predicted maximum

enhancement factor of 10.48 in the regime of large detunings (AT 2 > 1).

Also, at a temperature of about 225 K, IF,, Frad [276], and again we take Yphase = 10 1rad-

These results are displayed in Fig. 3-7(b). In this case, we observe an enhancement up to a

factor of 2.5, close to the predicted maximum enhancement factor of 1.91 in the regime of

large detunings (AT 2 > 1).

Finally, we note that close to room temperature (285 K), the system in Ref. [276]

displays ]f, l 10rrad, which is predicted to yield a maximum enhancement factor of 1.06.

Since this number is fairly negligible, it illustrates that this approach has little impact when

non-radiative losses dominate the decay of the electronic system.

On the other hand, some recent work has demonstrated that a single quantum dot

can demonstrate predominantly radiative decay in vacuum even at room temperature, e.g.,

single CdSe/ZnS core-shell nanocrystals with a peak emission wavelength of 560 nm, with

Frad a 39rnr [66]. Even bulk samples of similar nanocrystals have been shown to yield a

significant radiative decay component, corresponding to grad a Fnr [525]. Thus, we predict

that with strong suppression of radiative decay, nonlinear enhancement of a factor of two,

or more, could be observed at room temperature.

We now discuss the implications of this effect on previous work describing nonlinearities

in photonic crystals, such as Ref. [503], and the references therein. Most past experiments

should not have observed this effect, because they were designed with photonic bandgaps

at optical frequencies significantly smaller than the frequencies of the electronic resonances

generating the nonlinearities, in order to operate in a low-loss regime. Furthermore, in

most materials, non-radiative decays will dominate radiative decays at room temperature.

Finally, all the previous analyses are still valid as long as one considers the input parameters
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to be effective nonlinear susceptibilities, which come from natural nonlinear susceptibilities

modified in the way described in this section.

In conclusion, we have shown that the Purcell effect can be used to tailor optical non-

linearities. This principle manifests itself in an exemplary two-level system embedded in

a photonic crystal; for realistic physical parameters, enhancement of Kerr nonlinearities

by more than an order of magnitude is predicted. The described phenomena is caused by

modifications of the local density of states near the resonant frequency. Thus, this treat-

ment can easily be applied to analyze the Kerr nonlinearities of two-level systems in almost

any geometrical structure in which the Purcell effect is substantial (e.g., photonic crystal

fibers [310], optical cavities). It also presents a reliable model for a variety of materials,

such as quantum dots, atoms, and certain semiconductors. Future investigations will involve

extending the formalism described here to other material systems.

3.4 Concluding Remarks

The preceding section marks a turning point in our discussion of nonlinear nanophotonics

and is a segway for the subject of the remainder of this thesis: fluctuation-induced in-

teractions. Specifically, it was shown that by modifying the density of states around an

atomic resonance (e.g. increasing Q/V), one could dramatically enhance the SE rate of the

atom and thereby strengthen the atom-photon interaction [96, 119,286,288,348,416,468].

Interestingly, the SE rate of an atom is a direct consequence of quantum electromagnetic

fluctuations, as ordinary (first-quantized) quantum mechanics forbids such spontaneous

transitions from ever occurring [479,585]. In the language of quantum mechanics, the exis-

tence of SE comes from the "mixing" or interaction of the vacuum (ground-state) electro-

magnetic fluctuations with the eigenstates of the atomic system (computed in the absence

of fluctuations) [348,585].

Because the interaction of the vacuum electromagnetic field with polarizable atoms is the

underlying basis of the Purcell effect, one may view the aforementioned effect of Sec. 3.3 as

a consequence of a type of fluctuation-induced interaction. As we shall see in the upcoming

chapters, fluctuation-induced interactions not only play an important role in determining

the properties atoms and their effect on atom-photon interactions, but they can also have

dramatic consequences on the behavior of macroscopic objects.
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Chapter 4

Casimir Forces: A Brief

Introduction

"I am thankful for laughter, except when milk comes out of my nose." Woody Allen

4.1 Introduction

Quantum fluctuations can give rise to a wide variety of important phenomena, such as the

Purcell effect studied in the previous chapter, or even intermolecular forces between neutral

atoms [68,77,352]. One of the most dramatic manifestations of quantum mechanics observed

in the last half-century is the Casimir force: a tiny force on an uncharged, source-free

body due to changes in the zero-point energy associated with quantum vacuum fluctuations

(virtual photons) [22,68,77,78,304,352,370,409]. Aside from being a fascinating application

of quantum electrodynamics, Casimir forces also play a significant role in the physics of

neutral, macroscopic bodies at micrometer separations, such as in new generations of micro-

electromechanical systems (MEMS) [83,86,481]. Casimir forces are also studied in order to

place constraints on non-Newtonian theories of gravity [358, 369,390] and are becoming a

relevant component of hadronic models [355,357]. In this chapter, we give a brief description

of the Casimir effect and emphasize some of the most important developments in the field.

4.1.1 From van der Waals to Casimir-Polder Forces

The theory of fluctuation-induced interactions between atoms originated in the early 1930s

with the works of Ref. [134,318]. It was then recognized that thermodynamic and quantum
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fluctuations between atoms separated by large distances (compared to typical atomic sizes)

contributed significantly to what are now known as van der Waals forces [68, 77, 78, 116,

302,318,352]. As was first shown by Ref. [318], they originate due to induced atomic dipole

moments p = aE arising from atomic charge fluctuations. The interaction of these induced

dipole moments leads to van der Waals [77] and London-dispersion forces [134, 318. In

particular, for atoms separated by a distance d, the potential energy of interaction was

shown to scale ~ 1/d 6 (using simple perturbation theory). For atoms separated by large

distances (compared to the wavelength A of relevant atomic transitions), retardation effects

associated with the finite speed of light become non-negligible and can dramatically change

the behavior of.the long-range interaction. These retardation effects were first calculated

by Casimir and Polder in 1948 [78]. In that seminal work, they demonstrated that long-

range forces decayed more rapidly than their short-range (van der Waals) counterparts. In

particular, the Casimir-Polder potential between two atoms separated by a distance d > A

(shown schematically in Fig. 4-1) can be written in terms of their static polarizabilities a1

and a 2, and yields an attractive interaction between the atoms, given by [78]:

23hc
U = 4 lrd7ala2 (4.1)

Direct measurements of this retarded van der Waals force were made in the 1950s [116,230],

and more recently as well [105, 491, 538]. The passage from the short-range to the long-

range regime was an important achievement in the understanding of fluctuation-induced

forces [230], and paved the way for the study of objects of macroscopic extent, which is the

subject of the remainder of this thesis. For a review of retarded atom-atom Casimir-Polder

interactions, the reader is referred to Ref. [68, 129, 230].

Macroscopic objects are composed of many atomic constituents. These objects are

therefore naturally described in terms of averaged quantities that vary continuously in space

(thus the term continuous media). In particular, charge fluctuations on macroscopic objects

are described by effective macroscopic charge and current densities p(r, t) and J(r, t), or

more commonly via the polarization field P(r, t) ~ J/&t 1. Figure 4-1(Right) illustrates

this idea schematically: two macroscopic objects are interacting via the electromagnetic

'Determining the induced macroscopic polarization from the microscopic properties of materials is a
beautiful subject that is outside the scope of this thesis, although our discussion of the nonlinear Purcell
effect does involve such a procedure. For a more detailed discussion, the reader is encouraged to read Ref. [51].
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Figure 4-1: (Left:) Two atoms separated by a distance d are interacting via fluctuation-
induced dipole moments (polarizabilities a1 and a2). (Right:) Two macroscopic objects
separated by a distance d are interacting via the electromagnetic field produced by the
fluctuation-induced charges on the interior and surface of the bodies, described by macro-
scopic polarizations fields P1 and P 2.

fluctuations produced by fluctuating charges on the interior (and surface) of the bodies,

described by effective polarization fields P1 and P2. It is this macroscopic regime of the

Casimir-Polder interaction that is known as the Casimir effect 2

Although Casimir-Polder forces between macroscopic objects have their origin in the

simple intermolecular forces between neutral atoms, their behavior can be dramatically

different 3. The Casimir effect is more complicated in at least two major ways: First,

the mutual interaction of the many atoms comprising the participating objects leads to

dramatically-different material properties, more complicated than individual atomic polar-

izabilities '4. Second, Casimir forces depend dramatically on the shape of the participating

objects due to the boundary conditions that the electromagnetic field must satisfy at the

object boundaries [2311. For example, the electric field between two perfectly-metallic plates

must satisfy the standard Dirichlet boundary conditions imposed by Maxwell's equations

(if the plates span the x-y plane, then E - = 0 at the plates' surface). Therefore the kinds

of charge or electromagnetic fluctuation that can be excited will vary depending on the sep-

aration between the plates. Consequently, the electromagnetic energy density ~- (E2) and

therefore the force between the plates will depend strongly and non-additively on the separa-

tion. To a large extent, the focus of much research on the Casimir effect is in understanding
2In the dilute limit (of rarefied media), the dielectric permittivity of a collection of atoms of density ni can

be defined in terms of the atomic polarizability as e 1 1+47rna [78]. In this limit, one can arrive at the force
between individual atoms, given by Eq. (4.1), from the macroscopic formula describing the interaction energy
between two dielectric half-spaces, known as the Lifshitz formula, via an appropriate limiting procedure and
the above relationship between e and a.

3 Casimir-Polder atom-atom interactions serve only as a reasonable heuristic for understanding the kinds
of effects that one can expect from macroscopic Casimir forces, as we shall see in chapter 7.

4The validity and accuracy of macroscopic dielectric models in Casimir physics has been a topic of recent
debate in the field [352].
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its dependence on geometry (boundary conditions) and materials. In the following section,

we briefly describe two equivalent ways through which it is possible to relate the geometry

and material properties of macroscopic objects to the equilibrium charge/electromagnetic

fluctuations.

4.1.2 Charge +- Electromagnetic Fluctuations

In thermodynamic equilibrium, the fluctuating charges and photons are both at equilibrium

with each other, so that one can view Casimir forces as resulting from either fluctuating

charges or from fluctuating electromagnetic fields.

In the absence of thermodynamic fluctuations, macroscopic neutral objects have van-

ishing charge and current densities, and consequently do not interact. The presence of

fluctuations however, produces charge and current fluctuations that cancel on average, i.e.,

(p) = (J) = 0. In turn, these give rise to fluctuating electromagnetic fields that also cancel

on average, i.e., (E) = 0, whose interaction with the same fluctuating charges result in

long-range forces between the objects [22,352,400]. (The average force ~ (J - E) does not

vanish because it is a quadratic function of the charge fluctuations, and the correlation of

the fluctuations is non-zero.) This simple picture, based on radiation-reaction [233], offers a

simple explanation for the existence of van der Waals forces, and also forms the basis of the

Casimir effect. If our only goal is to describe the thermodynamic (steady-state) behavior

of the entire system, then all that remains is to consider the resulting thermodynamic dis-

tribution of either the charge or the electromagnetic field (because they are at equilibrium,

then one immediately leads to the other).

One way to describe the equilibrium electromagnetic distribution, independent of the

sources, is to describe the electromagnetic field as a collection of harmonic oscillators.

In particular, the total electromagnetic energy, a quadratic quantity of the electric and

magnetic fields (- (E2 ) + (B2)) integrated over all space (see chapter 5), can be described

as a collection of photons whose distributions as a function of frequency and temperature is

determined by the Bose-Einstein distribution (n),,T = hw/[exp(hw/kT) + 1] [257,287,435].

The average total electromagnetic energy, perhaps the most popularly recognized expression

of the Casimir effect, is given by [352]:

(U) =Zhw (n)WT + . (4.2)
w2
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Again, because the distribution and energy of the photons depends on the allowed elec-

tromagnetic frequencies w, the total energy will also depend on the shape and material

properties of the objects in the geometry. At zero temperature, (n) = 0 and the tempera-

ture fluctuations are of a purely quantum character. These corresponds to the zero-point

oscillations of the electromagnetic field, or the so-called "virtual photons", that arise due to

the Heisenberg uncertainty principle [352]. For perfectly-metallic parallel plates, Eq. (4.2)

yields the well-known plate-plate force per unit area F = (U)/Dd = -hc7r 2 /240d4 .

A large focus of fluctuational electrodynamics concerns the relationship between the

equilibrium correlation functions of the electromagnetic field, (EiE,) and (HiHj), and the

properties of the geometries/materials that produce them. From these quantities, one can

obtain much if not all of the equilibrium physics of the electromagnetic field (at all tem-

peratures). For example, the electromagnetic energy at any point in space depends on the

self-correlations (EiEi) and (HiHi), which can be used to derive the expression in Eq. (4.2).

One way to arrive at the correlation functions of the electromagnetic field is to ex-

ploit a powerful theorem, known as the fluctuation-dissipation theorem (FDT), based on

liner-response theory [131, 288, 465]. The essence of the fluctuation-dissipation theorem

lies in the direct correspondence between fluctuations and dissipation [131, 257,435,465].

Fluctuation-dissipation theorems in electromagnetism relate the fluctuations of dissipative,

polarizable media, represented by the stochastically varying macroscopic electric and mag-

netic polarization fields P and M, to the fluctuations of the electromagnetic field. These

relations come in two flavors, known as fluctuation-dissipation theorems of the first and

second kinds, denoted by FDT(1 ) and FDT(2 ), respectively. The relationship between these

two types of FDTs is described in Ref. [130]. In what follows, we merely write down the

basic results and point out their applications to Casimir physics. For a detailed derivation

of these results, the reader is encouraged to read Ref. [130] and references therein.

The origin of the electromagnetic fluctuations are the electric and magnetic charge

density fluctuations produced by dissipative bodies. Given these external quantities, P and

M, one can immediately describe the resulting electromagnetic field by way of Maxwell's

equations. In the frequency domain, they are written as:

V x E - iw(pH + 47rM), V x H = -iw(eE + 47rP), (4.3)
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where E and p are the dielectric permettivities and permeabilities of the objects in the

geometry, the imaginary parts of which correspond to absorption.

The first FDT allows us to infer the equilibrium correlation functions of the electromag-

netic field in terms of the electromagnetic Green's function (GF), or the response functions

of the Maxwell operator. They are given, in the frequency domain, by [304,465]:

(Ei (r)E (r')) = -hW2 coth (hw/2kT) Im Gij (r, r', w) (4.4)

(Hi(r)Hj (r')) = h coth (hw/2kT) Im(V x)(V'x) jmGim(r, r', w) (4.5)

(Ei (r)H (r')),= hw coth (hw/2kT) [- Re(V'x)j Gil (r, r', w)], (4.6)

where (E) = (H) = 0, and Gij is the standard photon Green's function, determined by the

solution of the equation:

[V x V x -&w2 ] Gj (r, r', w) = 6(r - r')e, (4.7)

Note that the properties of the materials (the sources of radiation, e and At) do not appear

explicitly in Eqs. (4.4-4.6). The presence of dissipation in the system is "hidden" inside

the photon GF, whose imaginary part is zero in the absence of loss 5. (Note also that the

FDT(1) applies only at equilibrium. Thus, the time average of (EiHj) will be identically

zero everywhere in space, i.e. there will be no net flux or heat radiated between the bodies.)

The second FDT involves the correlation functions of the underlying source of the fluctu-

ations (charges and currents). In this case, one applies the FDT to the sources of radiations,

which yields the following relations:

(Pi(r)Pj(r'))= h coth(hw/2kT)6(r - r') Im eij (r, w), (4.8)

(Mi(r)Mj (r'))= hcoth(hw/2kT)6(r - r') Im pij (r, w), (4.9)

where E and p are the linear response functions of the materials (here, they are consid-

ered to be anisotropic for general purposes). By employing Eqs. (4.8-4.9) in conjunction

with Maxwell's equations, one can determine the field correlations, this time expressed as

5 In the previous section, we mentioned that there exist a finite force between perfectly-metallic plates,
which would seem to contradict the underlying basis of the fluctuation-dissipation theorem. For a brief
comment on this apparent contradiction, the reader is referred to the discussion of the Lifshitz formula in
chapter 8.

122



integrals over the sources of radiation:

(Ei(r)Ej (r')) hw4 coth (hw/2kT)

d3r" Im Eig (r", I)Gik (r, r", w)G r (4.10)

(Hi(r)Hj(r'))w = -hW2 coth (hw/2kT)

/ d'r" Im si(r", )(Vx)ilGlk(r,r", w)(V'x)kmGjm(r', r", w) (4.11)

(Ei(r)Hj(r'))= -ihw 3 coth (hw/2kT)

/ d3 r" Im ejj (r", w)Gik(r, r", w)(V'x)kmGjm(r', r", w), (4.12)

FDTM1 ) [Eqs. (4.4-4.10)] and FDT(2) [Eqs. (4.10-4.12)] can be shown to be equivalent

by using a number of the symmetries of the photon GF, in conjunction with the relation:

Im e 6(r - r') = -1/2 w2 i[Gl(r,rw)* -G 1 (r,r')]. In FDT(2), however, the correlations

depend nonlinearly on the photon Gs, and arise from the cumulative contribution of all

of the dissipative sources in the geometry (volume V). The explicit dependence of the field

correlation functions on the dissipative current sources is an advantage of this formulation,

as it directly reveals the origins of the fluctuations. In fact, because one can distinguish the

contributions to the correlations with respect to their origins, FDT(2) can also be employed

in certain non-equilibrium situations [75,130,376]. For example, from these relations, one

can also readily compute the thermal radiation emanating from bodies [75,322,465].

The two fluctuation-dissipation theorems above reduce the problem of computing quan-

tum fluctuations to a classical calculation: they relate the quantum-mechanical excitations

of the electromagnetic field to the classical response of a dissipative medium. Whether one

chooses to employ the first or second FDT is a matter of convenience, since they both offer

equivalent representations of the fluctuations, although again FDT(2) does apply to more

general circumstances. For the remainder of this thesis, we shall only focus on the use of

FDT(M) for Casimir calculations at equilibrium, and leave the problem of computing forces

out of equilibrium for future work.

In the following section, we give a brief review of some of the problems that motivated

the work in this thesis. In particular, we describe some of the previous work on the Casimir

effect, along with a number of the outstanding questions in the field.
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4.2 Experimental and Theoretical Progress

There have been many experimental verifications of the Casimir force reported in recent

decades, by delicate experiments at micron and sub-micron lengthscales [48,67,74,88,110,

269, 283,284,352,358, 365,370,390,409], but always restricted to simple geometries (parallel

plates [59], spheres and plates [59,82,83,87,109,111,195,218,230,283,307,326,365,460,538],

or crossed cylinders [132, 230, 326]). Many of the early Casimir-force experiments were

motivated by the early theoretical predictions of H. Casimir, which applied only to finite

planar geometries [77]. Not surprisingly, the majority of works on the Casimir force have

focused in this particular case, as evidenced by the large number of experiments involving

spheres and plates. (The sphere-plate structure is preferable to the original plate-plate

geometry due to some of the challenges associated with keeping two surfaces parallel to

one another [46].) Unfortunately, the force in these particular geometries is almost always

attractive [260] and monotonically decreasing with separation, leading to "stiction" and

other experimental difficulties [82,83].

Thus, one might ask whether it is possible to obtain more complicated behavior (such as

non-monotonic or repulsive forces) in more complex structures, and more generally whether

complex geometries might give rise to unexpected force phenomena. This question has

begun to be addressed in experiments [84] and by promising new theoretical methods [105,

122, 138, 143, 177, 180, 261, 281, 404, 425, 428, 434, 438, 443]. Theoretical efforts to predict

Casimir forces for geometries very unlike the standard case of parallel plates have begun

to yield fruit, having demonstrated a number of interesting results for strong-curvature

structures [46,141,143,178,359,362,442,452]. For example, recent works have shown that

it is possible to find unusual effects arising from many-body interactions or from systems

exhibiting strongly coupled material and geometric dispersion [13,298,360,442,446,452,590].

Some of these effects are described in chapter 7 and 8. (Only a few months ago, the first

repulsive geometry between vacuum-separated metallic objects, consisting of a spheroidal

particle suspended above a plate with an air hole, was discovered [298].)

The behavior of Casimir forces can also be changed by employing unusual material

systems [54, 74, 162, 217, 219, 229, 259, 485, 491, 557]. As discussed in chapter 8, it is even

possible to suspend objects, create non-touching configurations of compact objects, and

observe strong temperature corrections to the Casimir force in geometries consisting of
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fluid-separated objects [450, 452, 453]. Recent works (performed within the last decade)

have also demonstrated a large number of interesting Casimir-enabled effects of conse-

quence to micro-electromechanical systems and amenable to experiments [46, 67,122, 142,

169, 220, 268, 327, 362, 374, 375, 390]. Overall, there are many aspects of the Casimir prob-

lem that are only recently beginning to be investigated by experiments. These include

various geometry [269, 279, 461] and material effects [364], ski-depth [221, 307] and sur-

face roughness [40, 396] effects, forces between anisotropic dielectrics [401, 457], critical

forces [162], repulsive forces [294] and also Casimir torques [373, 401]. Most of these works

have, nevertheless, been mainly focused in two-dimensional [46, 140, 208, 441] or simple

three-dimensional constant-cross-section geometries. [107,143,442] for which numerical cal-

culations are tractable. Theoretical challenges still remain, more so in geometries involving

multiple bodies and/or multiple lengthscales [443]. For more complicated geometries, how-

ever, calculations become extremely cumbersome and often require drastic approximations,

a limitation that has hampered experimental and theoretical work beyond the standard

geometries.

Until recently, the common approach to predicting the Casimir force had been to con-

sider approximations for small perturbations around known solutions, such as parallel plates

or dilute gases. For parallel plates in d dimensions, separated by a distance a, there is a

well-known attractive force that scales as 1/ad-l, first predicted by Casimir [77] and later

extended to formulas for any planar-multilayer dielectric distribution e(x, w) via the gen-

eralized Lifshitz formula [529]. A direct, intuitive extension of this result is the proximity

force approximation (PFA) [48], which treats the force between two surfaces as a two-body

interaction given by the sum of "parallel plate" contributions. Valid in the limit of small cur-

vature, PFA provides an easy way to conceptualize the Casimir force in complex geometries

as a simple two-body force law, but unfortunately it may also be deceptive: outside its range

of applicability, the Casimir force is not additive [352] and may be qualitatively different

from PFA's predictions [71,135,138,140,168,179,327,442]. Other perturbative approaches

include renormalized Casimir-Polder [480,524] or semi-classical interactions [473], multiple

scattering expansions [21, 280], classical ray optics approximations [234], higher-order PFA

corrections [46,184], and other perturbative techniques [139]. The ray-optics approach is

especially interesting because, although it is only strictly valid in the small-curvature limit,

it captures multiple-body interactions (see Chapter 6) and can therefore sometimes predict
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the qualitative behavior in cases where other approximations fail [62, 234]. Nevertheless,

none of these methods provide any guarantees of accuracy in arbitrary geometries, where

they involve uncontrolled approximations. Therefore, for complex new geometries, where

one might hope to encounter behaviors very different from those in the parallel-plate limit,

a different approach is required.

Toward this end, researchers have sought "exact" numerical methods applicable to ar-

bitrary geometries-that is, methods that converge to the exact result with arbitrary accu-

racy given sufficient computational resources. One such method was proposed by Ref. [72],

based on a path-integral representation for the effective action, which was first applied to

obtain predictions of forces between cylinders and a plates [141], and between corrugated

surfaces [135, 140]. It is based on a surface parametrization of the fields coupled via vac-

uum Green's functions, requiring O(N 2) storage and O(N 3) time for N degrees of freedom,

making scaling to three dimensions problematic. Another exact method is the "world-line

approach" [177], based on Monte-Carlo path-integral calculations. The scaling of the world-

line method involves a statistical analysis, determined by the relative feature sizes in the

geometry, and is discussed below. Until recently, the methods of Ref. [72] and Ref. [177]

had only been demonstrated for perfect-metallic z-invariant structures-in this case, the

vector unknowns can be decomposed into TE (E - i 0) and TM (H - i = 0) scalar fields

with Neumann and Dirichlet boundary conditions, respectively-although generalizations

have been proposed [136,177].

In the last few years, the number of theoretical methods for computing Casimir forces

in arbitrary geometries has grown considerably. Thus far, there are two different, yet

complementary approaches.

Spectral methods often employ a complete geometry-dependent spectral basis to repre-

sent the objects of interest, allowing rapid (exponential) convergence as a function of the

number of basis functions [50,186]. One promising type of spectral method for Casimir-force

calculations are scattering methods, developed by a number of works [21,69,137-139,143,

170,184,186, 207,232, 261, 280,299,360,426], which has been shown to be very efficient for

spherical, cylindrical or nearly-spherical geometries. Spectral methods can offer a great deal

of insight and can be extremely efficiency in certain asymptotic limits (e.g. the multipole

method of [143] converges very rapidly for nearly-spherical objects at large separations).

Using a multi-pole scattering approach, Ref. [427] proved a recent theorem constraining the
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types of stability that may exist between vacuum-separated objects. The disadvantage of

spectral methods is their poor performance in general geometries consisting of complicated

objects (e.g. objects with corners) or involving many objects at close separations. Because

the choice of spectral basis is often dependent on the particular geometry of interest, these

methods may also require new codes for every new geometry. The alternative is to employ

the same spectral basis for every geometry, but this reduces to a brute-force method that

does not generally achieve spectral (i.e. exponential) accuracy. Nevertheless, sometimes

these generic (fixed-basis) spectral methods are convenient (e.g. the electromagnetic solver

MPB is a spectral method, although it is not exponentially accurate except for smooth

periodic epsilon [249]). In the case of integral-equation methods (below), however, most of

the fast-solver algorithms have been designed for localized basis functions (BEM methods),

so a spectral basis may not be the most convenient choice for applying known algorithms.

A different class of numerical method, the focus of this thesis, are methods which em-

ploy localized basis functions that are independent of the particular geometry or materials

of interest. There are three main such kinds of methods, whose efficiency depend on the

type of problem being studied. First, one can employ boundary-element methods [45,91]

or integral-equation methods, which discretize the surfaces of the objects into planar trian-

gle and introduce localized basis functions on these surface elements in order to represent

the electromagnetic unknowns (the scattering coefficients of the scattering methods). Re-

cent implementations of the Casimir-force problem using boundary-element methods were

demonstrated recently by various authors, for very complicated three-dimensional geome-

tries [434,566]. Second, one can employ finite element methods, which discretize the interior

and surface of the objects in the geometry [237, 548]. Finally, the simplest class of meth-

ods are finite-difference methods [93, 150, 278, 515, 523], the subject of this thesis, which

discretize the entire geometry by defining the electromagnetic unknowns on a grid (often

chosen to be uniform for simplicity). An example of this discretization procedure, known as

a Yee grid, is shown in chapter 5. The advantage of these numerical methods is that their

convergence properties can be made independent of the shape and materials of the objects

in the geometry. They also converge rapidly enough for accurate computations involving

large three-dimensional objects, albeit less so than spectral methods in geometries with

a very high degree of symmetry for which spectral methods can be made extremely effi-

cient. Furthermore, modifying the geometry does not require any additional modifications
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or "code". Finally, because these methods have been studied for over four decades, in the

context of classical electromagnetic calculations, they are well understood and require little,

if any, modification.

In the following chapters, we formulate the calculation of Casimir forces by exploiting

well-known techniques in classical electromagnetism, based on the finite-different approach.
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Chapter 5

Casimir Forces in the Imaginary

Frequency Domain

"To love is to suffer. To avoid suffering, one must not love. But then, one suffers from

not loving. Therefore, to love is to suffer; not to love is to suffer; to suffer is to suffer.

To be happy is to love. To be happy, then, is to suffer, but suffering makes one unhappy.

Therefore, to be happy, one must love or love to suffer or suffer from too much happiness."

Woody Allen

5.1 Overview

In this chapter, we explore several ways in which well-established, efficient techniques from

standard computational electromagnetism can be brought to bear on the problem of com-

puting Casimir forces, in order to predict forces for arbitrary geometries and materials with

arbitrary accuracy with no uncontrolled approximations [4431. Starting from the simplest,

most direct approaches, we show that practical considerations naturally lead towards a

particular method involving the integral of the Minkowski stress tensor by repeated eval-

uation of the imaginary-frequency Green's function-a method previously developed for

purely analytical calculations [129, 303, 304]. For our initial volume discretization with N

degrees of freedom and an efficient iterative solver, this requires O(N) storage and at best

O(N2-1/d) time in d dimensions. Furthermore, because evaluation of the Green's function

is such a standard problem in classical computational electromagnetism, it will be possi-

ble to exploit many developments in fast solvers, based on finite-element [91,237,548,596],
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spectral [50, 91], or boundary-element methods [90, 91, 191, 237, 430, 548]. As we argue

below, an implementation using boundary-element methods (BEM) should attain nearly

O(N log N) time. To illustrate the method, however, our initial implementation is based

on the much simpler finite-difference frequency-domain method (FDFD) [93] with either a

conjugate-gradient [18] or direct [25] solver, as described below. However, evaluation of the

Green's function is so standard that many other sophisticated techniques are immediately

applicable, and we discuss what techniques are likely to be optimal for large, complicated

geometries. Our approach is tested for geometries with known solutions, and subsequently

applied to more complicated geometries leading to surprising nonmonotonic effects in chap-

ter 7. This method is also capable of handling dispersive dielectric materials, and was the

first such method to depart from idealized metals. The key advantage of exploiting stan-

dard computational approaches is not merely that existing code, error analyzes, and other

experience can be applied to the Casimir problem, but also that these methods have been

proved to scale to large three-dimensional problems, which previously seemed out of reach

of exact methods for the Casimir force.

In the following sections, we describe the step-by-step conceptual development of our

finite-difference frequency-domain computational method. Our purpose here is to start

back at the beginning, with the earliest theoretical descriptions of the Casimir force, and

analyze these formulations from the point of view of their suitability for purely numerical

calculations. Although the final technique, in terms of the stress tensor integrated over space

and imaginary frequency, can be viewed as a numerical implementation of a textbook result

due to Dzyaloshinski et al. [129, 304, 408], it is illustrative to derive it as the culmination

of a sequence of simpler approaches, in order to show how it circumvents a number of

numerical obstacles that would hinder a more direct method. To begin with, we illustrate

the methods using the well-known case of parallel plates where they can be compared to

analytical expressions, but a more rigorous test is subsequently provided by the situation

of a cylinder and plate, recently solved numerically [141]. We conclude by analyzing the

scaling of the method compared to previous approaches and discussing the application of

more sophisticated finite-element and boundary-element techniques.
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5.2 Mode Summation: A Simple Approach

Perhaps the simplest approach to computing the Casimir force is to think of it as the

derivative of the zero-point energy U expressed as a sum of ground-state photon energies

hw/2. For each photon mode with frequency w, the zero-point energy is hw/2, and thus the

total Casimir energy, at least for non-dissipative systems where W is real [529], is formally

given by the sum over all modes [77,352]:

U =>Z hw (5.1)

This sum is formally infinite, because the classical harmonic modes W have unbounded fre-

quencies. There is some controversy over the physical interpretation of this divergence [358],

but in practice it is removed by regularizing the sum in some fashion, for example multiply-

ing by e-" for s > 0, and taking s -+ 0 only after the sum is differentiated to obtain the

force F = -dU/da between two bodies with separation a [342]. This approach, which was

an early method to analytically compute the force between perfect-metal plates [77], might

seem to provide the most direct computational method as well. After all, the computation

of electromagnetic eigenmodes is routine even in very complicated geometries, and efficient

methods are known [91,237,249,548]. Unfortunately, it turns out not to be practical for this

problem (except in one-dimensional geometries [539]), as explained below, but the reason

why it is impractical points the way to more efficient methods.

To illustrate the difficulty in directly evaluating Eq. (5.1), let us consider the simplest

one-dimensional geometry: two parallel perfect-metal plates, separated by a distance a, in

which case one can predict analytically an attractive force F = rhc/24a2 [358]. Ignoring

this analytical result, let us apply a numerical method that, conceptually, we could apply

to an arbitrary geometry:

1. Discretize space with resolution Ax using a finite-difference approximation, with space

truncated to a finite computational cell (e.g. with periodic boundaries).

2. Solve numerically for the eigenmode frequencies w and sum to obtain U(a).

3. Shift one body (one plate) by one pixel Ax and thus compute U(a + Ax).

4. Obtain the force F ~ -[U(a + Ax) - U(a)]/Ax.
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Note that this method automatically provides its own regularization: the number of modes

w in a discretized computational cell is finite (the frequencies are bounded by the Nyquist

limit), and hence U is finite for Ax > 0. The periodic boundaries will lead to artificial "wrap-

around" forces, but since Casimir forces decay rapidly with distance, the contribution of

these forces can be made negligible for a sufficiently large computational cell.

a Ax

L

Figure 5-1: Schematic of one dimensional geometry, showing two Id metal plates separated

by a distance a, embedded in a computational cell of length L = a + 4a, with periodic

boundary conditions, and resolution Ax.

This method, for the one-dimensional parallel-plate geometry, is illustrated in Fig. 5-1.

Here, we have two plates with separation a and an overall computational cell size L = 5a

(which will contribute an erroneous wrap-around force 1/16 of the physical force). Maxwell's

equations, in one dimension, can be written as the scalar eigenproblem V 2Ez = w2Ez (in

c = 1 units), which is discretized to

En+1 - 2En + En-1 = W 2 (5.2)
Ax 2

in a center-difference approximation for Ez(nAx) = E,. For two metal plates with separa-

tion d and Dirichlet boundary condition Ez = 0, the discrete eigenvalues w can be found

analytically:

wn = sin (,Ax (5.3)
AX 2d

for n = 0, ... ,d/Ax. The energy U is then given by summing w in Eq. (5.1) for d - a and

d = L - a, and the force F by the discrete derivative of U as above.

Applying this procedure numerically for Ax = 0.05a, one obtains the correct force to

within 5% (and to any desired accuracy by increasing L and decreasing Ax), so at first

glance it may seem that the method is successful. However, its impracticality is revealed if

we examine the contribution of each frequency w to the force.

The top panel of Fig. 5-2 shows the contribution hAw/2Ax [Aw = w(a + Ax) - w(a)]

to the force summation, and the bottom panel shows the corresponding partial sum (for
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Figure 5-2: (Left:) Plot of force summand, or spectral density, hAw/2Ax vs. W for 1d
parallel metal plates from Fig. 5-1. (Right:) Plot of force partial sum E' hAw/2Ax vs. w.

frequencies up to w). We see that every frequency (of the regularized/finite-resolution

problem) makes a non-negligible contribution to the force, and the summation is of a wildly-

oscillating quantity that leaves a tiny remainder at the end. The reason for these oscillations

is quite simple: as a is increased, the frequencies on the 4a side of the plates increase slowly,

while the smaller number of frequencies on the a side of the plate decrease more rapidly,

and these lead to the positive and negative contributions in the top panel of Fig. 5-2,

respectively.

These two features, which are an intrinsic feature not limited to this particular dis-

cretized geometry [157], combine to make this method impractical in higher-dimensional

structures. Because every frequency contributes to the force, in a numerical method one

must compute every eigenvalue of the Maxwell eigenproblem. In one dimension, that is not

so bad, but in general if there are N degrees of freedom (N grid points), then computing

every eigenvalue of an N x N matrix requires O(N 2 ) storage and O(N 3 ) time. This is

impractical in three dimensions where N may be in the millions. Furthermore, the wild

oscillations of the summand imply that the eigenvalues must be computed quite accurately,

and may exacerbate numerical difficulties in larger problems.

However, these undesirable features are avoidable, because we have not yet exploited a

key property of Maxwell's equations: causality. If we ignore the causality constraint, then

the oscillatory spectrum would be an observable effect: one would simply employ a material

that is a perfect metal in some frequency range and transparent otherwise, in order to obtain

the force spectrum integrated only in that range. Such a material, however, would violate
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the Kramers-Kronig constraints that follow from causality considerations [231]. Thus, we

are motivated to exploit causality in some fashion to avoid the oscillatory spectrum 1

5.3 Wick Rotation and Energy Density

In order to exploit causality, we will rewrite Eq. (5.1) in terms of the electromagnetic

Green's function via an integral over the density of states. Causality implies that the

Green's function has no poles in the upper-half plane, so one can perform a contour inte-

gration, or Wick rotation, to transform the sum over real frequencies into an integral along

the imaginary-frequency axis. The result of this standard trick turns out to be a well-

known expression: an integral of the mean electromagnetic energy density, evaluated by

the fluctuation-dissipation theorem using the temperature (Matsubara) Green's function.

Again, we focus on the method's suitability as a purely numerical approach, for arbitrary

geometries, and we will find that it still leaves something to be desired.

First, we can express the zero-point energy of Eq. (5.1) as an integral over the local

density of states D(x, w):

U =- j d wD(x, w) d3x. (5.4)

Since we are solving for the eigenstates of Maxwell's equations (V x V x --w 2E)E = 0, the

local density of states D(x, w) can be expressed in terms of the Green's tensor Gjk [286]:

D xww)3 1 dpw2))D1x w)E = - Im(;5|Z; 16k) =_ - Im tr G(w; x - x)Dr dw k (X; klV V -w2eX- + i0+ ) mr dw

where Gjk solves: (V x V x - w2 E)Gk (w; x - x') = 63 (X - x')k, with e denoting the unit

vector in the kth direction. For non-dissipative systems in which Eq. (5.1) is valid, E is real

and we can therefore pull the Im outside of the integral. (The generalization to dissipative

materials is discussed below.)

Furthermore, we know from causality requirements that the Green's function has no

poles in the upper half plane in w-space [231, 352]. This means that one can perform a

'Unfortunately, abandoning the real-frequency formulation of the Casimir problem is not entirely fruitful.
One the one hand, we are avoiding a number of numerical difficulties [339, 340]. On the other hand, this
requires researchers to abandon some of the basic intuition associated with the real-frequency domain, such
as the presence of geometric resonances and other important effects from classical electromagnetism [229].
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contour integration to relate f0 dw to the integral f' dw along the imaginary-frequency

axis w = iw, also known as a Wick rotation. We therefore obtain:

U = - j dw Jw [W(iW)] tr G(iw; x - x) d x, (5.5)
27r 0 dw

where the new problem to be solved is that of finding the solutions to the imaginary-time

Green's function (c = 1 units):

[V x V x +w 2e(iw, x)] Gk(iw; x - x) = 63X- x')&k. (5.6)

As usual, this is formally infinite, because the Green's function is singular at x = x', but

one typically regularizes the problem by subtracting the vacuum Green's function, which

removes the singularity without changing the net force.

Equation (5.5) is not a new result, nor is it limited to non-dissipative materials (un-

like our derivation) [529]. In fact, it is equivalent to the mean energy in the fluctuating

electromagnetic field, derived from the fluctuation-dissipation theorem via the temperature

Green's functions [304]. Our purpose in deriving it this way is to emphasize the connection

to the simplistic approach of Eq. (5.1). In particular, the mean energy in the electromagnetic

fields (for the case of non-magnetic materials y = 1) is given by [231]:

U = dw [d(w) (E2)w + (H2)1 d3X

00d 

w c) (

= dw dw (E 2 )wd 3x, (5.7)

using the fact that f e(E 2)w - f(H 2)w. Here, the key point is that the mean values of

the fluctuating fields are given, via the fluctuation-dissipation theorem, in terms of the

imaginary-frequency Green's function:

(Ej(x)Ek(x')) = hw2 Gjk (iw; x - x'). (5.8)

where the dyadic Green's function Gij solves Eq. (5.6) and obeys the usual boundary con-

ditions on the electric field from classical electromagnetism [231]. Substituting Eq. (5.8)

into Eq. (5.7), one recovers Eq. (5.5).

From a computational perspective, the imaginary-frequency integral of Eq. (5.5) turns
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out to be greatly superior to the real-frequency summation of Eq. (5.1), for two reasons.

First, while every real frequency w contributed to the force -dU/da, the same is not true

for the derivative of the imaginary-frequency integrand. In particular, as discussed below,

the force integrand in imaginary frequencies turns out to be a smooth, non-oscillatory,

strongly peaked function of w, meaning that one can integrate it via a smooth-quadrature

method that evaluates the integrand at only a small number of w values. Second, the

imaginary-frequency Green's function turns out to be quite easy to obtain by relatively

standard methods, including for dissipative systems (where obtaining the eigenmodes is

harder because it involves a non-Hermitian eigenproblem). These two favorable features

are closely related.

Consider Eq. (5.6) for the imaginary-frequency Green's function. Unlike its real-frequency

counterpart, the linear operator on the left-hand side of this equation is real-symmetric and

positive-definite (for w > 0). This is true even for dissipative materials where E(w) is com-

plex, since causality requirements imply that E(iw) is purely real and positive (in the absence

of gain) [231, 352]. For one thing, this implies that the most powerful numerical meth-

ods are applicable to solving the linear system of Eq. (5.6)-many of these methods (e.g.

the conjugate-gradient method) are restricted to Hermitian positive-definite operators [18].

Also, the resulting Green's function is particularly well-behaved: it is exponentially decay-

ing and non-oscillatory. This transforms the highly oscillatory real-w force integrand into a

mostly non-oscillatory integrand, and also makes the force integrand exponentially decay-

ing for large w (for large w, the interactions between bodies become exponentially small).

(In addition, as we will discuss in Sec. 5.8, the exponentially decaying Green's function is

especially favorable for boundary-element numerical methods.)

Again, considering the simplest possible finite-difference scheme, this leads us to the

following numerical algorithm to compute the force:

1. For a given imaginary frequency w:

(a) For every grid point x, solve Eq. (5.6) for each polarization k to obtain Gkk(iw; x-

x).

(b) Sum over x to compute the spatial integral in Eq. (5.5).

(c) Repeat the above for the body shifted by one pixel Ax and subtract to obtain

the force integrand at w.
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Figure 5-3: Plot of Casimir force integrand dU/da between two 1d parallel plates separated

by a distance a = 1 versus imaginary frequency w = Imw, using the method of Sec. 5.3.

2. Employ a smooth quadrature scheme to integrate the above function over w to obtain

the force.

Again, the spatial discretization provides its own regularization (Gkk is finite), and thus no

additional regularization is required (the contribution of the vacuum Green's function to

the net force is zero). Again, one can truncate the computational cell in a number of ways,

for example with periodic boundaries, and the artifacts thereby introduced will decrease

rapidly with cell size. Again, there are also many other ways that one could potentially

solve for Gkk besides a finite-difference approximation, but we will delay discussion of those

techniques until we have formulated the final method in the next section.

The above procedure can again be applied to the one-dimensional problem of the force

between two plates, as in Fig. 5-2, to illustrate its basic features. The result is shown

in Fig. 5-3, plotting the force integrand as a function of imaginary frequency w, and the

difference from Fig. 5-2 is striking. The integrated force is the same (correct) result as before.

Unlike Fig. 5-2, the force integrand has no sign oscillations, is exponentially decaying for

large w, and is strongly peaked around a characteristic w = 27rc/a, corresponding to a

"wavelength" of a (the separation). These features imply that the force can be accurately

integrated by an adaptive Gauss-Kronrod quadrature scheme [407] using at most a few

dozen w points.

Although this method is much more efficient than the one described in the previous

section, and is potentially practical at least in two dimensions, it still has some undesirable

features. Suppose that we have N grid points in our discretized operator (N may be very
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large in 3d). Even if we have an ideal iterative solver for the sparse linear system of Eq. (5.6),

such as an ideal multigrid solver [532, 596], each evaluation of the Green's function takes

at best O(N) time with O(N) storage. However, we must evaluate the Green's function

3N times in order to perform the spatial integration, resulting in O(N 2) complexity. [A

recent implementation of this approach was demonstrated in Ref. [403,404] using a direct

solver [25] to evaluate Eq. (5.6).] As is discussed in the next section, one can do much better

than this by using the stress tensor instead of the energy density. In fact, as is discussed in

Sec. 5.8, it should ultimately be possible to obtain the force with nearly O(N log N) work

using a boundary-element method to compute the stress tensor, in which N is only the

number of degrees of freedom required to represent the interfaces between materials.

5.4 Stress-Tensor Computational Approach

After having analyzed the feasibility of several techniques to solve the Casimir problem

through the lens of numerical electromagnetism, we are ready to appreciate and explore the

most feasible of the methods thus far presented: an approach based on the Maxwell stress

tensor.

As derived by Dzyaloshinskii et al. [129,304,408], the net Casimir force on a body can be

expressed as an integral over any closed surface around the body of the mean electromagnetic

stress tensor (Ti), integrated over all frequencies. Again, using the same arguments as

above, it is computationally convenient to perform a Wick rotation, expressing the net force

as an integral over imaginary frequencies w = iw. (The original derivation used imaginary

frequencies to start with, via the temperature Green's function, but the result is equivalent

to a Wick rotation of the real-frequency expression. A related analytical treatment, but

using purely real w and therefore unsuitable for numerical computation because of the

oscillations discussed above, has also been examined [339,340].) The resulting net force is:

F = j' w fT (T(r, iw)) -dA. (5.9)
surface

In two or one dimensions, one or two of the spatial integrals are omitted, respectively, but

the result still has the units of force; the change in dimensions of dA is balanced by a change

in the dimensions of the delta function in Eq. (5.6). On the other hand, for a 3d structure
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that is z-invariant [a constant 2d cross-section E(x, y)] or yz-invariant [a univariate e(x)],

the integrals over the invariant directions are replaced by integrals over the corresponding

wavevectors, resulting in a net force per unit length or per unit area, respectively. (These

wavevector integrals are discussed in more detail in Sec. 5.6.) The stress tensor is defined

as usual by:

(Tij (r, iw)) = (r, iw) (Hi(r) Hj (r)) - 2 6i E (Hk(r) Hk(r))
I k

+ E(r,i w) (Ei(r) Ei(r)) - I6i E (E(r) E(r))
2 k

where p and e are the relative permeability and permittivity, respectively, although in most

cases we set y = 1 for simplicity (since most materials have negligible magnetic response at

short wavelengths, and in any case the stress tensor is normally evaluated over a surface lying

in vacuum). As before, the connection to quantum mechanics arises from the correlation

functions of the fluctuating fields, given via the fluctuation-dissipation theorem in terms

of the imaginary-w dyadic Green's function. The correlation function for the electric field

(EjEj) is given in Eq. (5.8). In this case, however, we also need the magnetic-field correlation

functions, which can be obtained by differentiating the electric-field Green's function:

(Hi(r)Hj(r')) = -h(Vx)i(V'x)jmGem(iw; r - r') , (5.10)

(Alternatively, the (HiHj) correlation function can be computed from the magnetic Green's

function, which is the magnetic field in response to a given magnetic-dipole current.) The

above expressions are given at zero temperature T; the nonzero-temperature force is found

by changing f dw in Eq. (5.9) into a discrete summation [280,304. Although the Green's

function (and thus T) is formally infinite at r = r', this divergence is conventionally removed

by subtracting the vacuum Green's function; in a numerical method with discretized space,

as below, there is no divergence and no additional regularization is required. (The vacuum

Green's function gives zero net contribution to the dA integral, and therefore need not be

removed as long as the integrand is finite.)

Historically, this stress-tensor expression was used to derive the standard Lifshitz for-

mula for parallel plates, where Gij is known analytically. Its adaptability and suitability

as a purely computational method does not seem to have been recognized, however. As in
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the previous section, the method involves computing the Green's function for many imagi-

nary frequencies w and spatial points x, integrated over w and x. However, a quick glance

at Eq. (5.9) will suggest at least two obvious computational advantages compared to the

method discussed in Sec. 5.3. First, in framing the problem in terms of the stress tensor,

we have reduced the spatial integral over the whole volume (Eq. (5.7)) to a surface integral

around the body of interest. This implies that, for a d-dimensional geometry, the compu-

tational effort due to spatial integration is reduced from O(N 2 ) to O(N 2-l/d). Second, the

force is now given directly in terms of the dyadic Green's function (via the stress tensor),

rather than its derivative, which avoids another layer of computation. Moreover, although

our derivation is only valid when the stress tensor is evaluated at. points within lossless

dielectrics (regardless of whether the bodies themselves are dissipative), one can also ex-

tend it for evaluation in absorbing media [408]. However, the case discussed above (bodies

separated by vacuum) is the most common.

So far, we have presented the step-by-step development of an efficient approach to

computing Casimir forces. In what follows, we illustrate our new approach using a proof-of-

concept finite-difference implementation, and present results that demonstrate its flexibility

and utility.

5.5 The Finite-Difference Method

lijzi

Figure 5-4: Schematic illustration of the finite-difference Yee grid: the vector components
of the electric E and magnetic H fields are spatially staggered about a rectangular unit cell
of a Cartesian computational grid so that each E-field vector component is located midway
between a pair of H-field vector components, and vice versa. The electric field components
form the edges of the cube, and the magnetic field components form the normals to the
faces of the cube.

At this point, all that remains is the numerical computation of the Green's function
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via Eq. (5.6) for an imaginary frequency w = iw. This is simply the inversion of a linear

operator [V x V x +w2 E(r, iw)] that has the convenient properties of being real-symmetric

and positive-definite, as stated above. Almost any technique developed for computational

electromagnetism is applicable here, modified to operate at an imaginary frequency. To

illustrate our approach, we used a very simple, yet extremely general, method: finite-

difference frequency-domain (FDFD) discretization of Eq. (5.6) in a staggered Yee grid [93],

shown schematically in Fig. 5-4, which we then invert by a conjugate-gradient method [18].

Although the Yee grid in principle allows second-order-accurate finite-difference approxi-

mations, unfortunately the whole scheme becomes only first-order-accurate once a discon-

tinuous dielectric function e is included. (There are ways to treat interfaces more accu-

rately [150], but we did not implement them here.) Moreover, a very high resolution is

often required to resolve the stress tensor close to a dielectric boundary due to the Green's

function divergences as a boundary is approached [191]. Despite its shortcomings, however,

we found FDFD to be sufficient to obtain accurate results (to within a few percent in a

reasonable time) for two-dimensional, and three-dimensional z-invariant, geometries. The

key advantage of FDFD is its flexibility: with very little effort, we were able to implement

support for arbitrary geometric shapes and arbitrary materials (both perfect metals and

dispersive/dissipative dielectrics).

Again choosing the simplest possible approach, we apply periodic boundary conditions

at the edges of the computational cell, which are accurate as long as the boundaries are

sufficiently far compared to the separation between the interacting bodies. That is, the

periodicity leads to artificial "wrap-around" forces that decay rapidly with cell size L (at

least as 1/L 3 in 2d); we chose cell sizes large enough to make these contributions negligible

(<1%).

Figure 5-5: Schematic illustration of a possible contour around a body; the force on the

body is given by an integral of the stress tensor around this contour.

The computational process (using a simple finite-difference scheme) goes as follows:
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1. Pick a contour/surface around the body of interest, as in Fig. 5-5 (which will typically

not coincide with the boundary of the body).

2. For a given frequency w:

(a) For every grid point x on the discretized contour/surface, solve Eq. (5.6) for each

polarization k to obtain Gjk(iw; x - x).

(b) Integrate the resulting stress tensor Tjk over the surface, as in Eq. (5.9).

3. Integrate the above function over w to obtain the force; since the integrand is a smooth

function of w, an efficient adaptive quadrature scheme can be employed [407].

Although this scheme does not require any additional regularization (the integrand is

finite for a finite resolution, and the integral of the vacuum stress tensor over the contour

is zero), we have found that numerical convergence can be accelerated by subtracting the

stress-tensor integral over the isolated bodies. For example, in the schematic of Fig. 5-

5, we would first compute the stress-tensor integral for the two bodies as shown, then

subtract the integral of the stress tensor over the same surface with one body removed,

and then subtract again for the stress tensor with the other body removed. Of course,

these subtracted quantities are zero in the limit of infinite spatial resolution-there is no

net force on an isolated body. However, at a finite resolution the discretization error at

the interface between two materials can lead to a finite force that vanishes as resolution is

increased. By subtracting this error term from the force, we find that the numerical error

is typically reduced by an order of magnitude or so. We emphasize, however, that this is

merely an optimization-even without subtraction, the force converges to the correct result,

and merely requires a somewhat higher resolution.

5.6 Translation-Invariant Structures

It is common to solve for the Casimir force between bodies that are translation-invariant in

one or more directions; for example, between a cylinder and a plate [141] that are invariant

in the z direction. More generally, one might consider structures that are periodic in some

direction with a non-zero period A, where A -+ 0 corresponds to translation invariance.

Intuitively, in such cases one need only perform computations in the unit cell of the period-

icity, and the spatial integration in the invariant direction(s) is replaced by integration over
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a wavevector k from Bloch's theorem [71, 239]. Although special cases of this familiar idea

are well known in Casimir computations [71,72], here we provide a review of this approach

for an arbitrary periodicity in the context of stress-tensor computational methods. We also

mention a useful optimization for the common special case of perfect-metallic z-invariant

structures.

Let us consider a single direction of periodicity: suppose that the structure is periodic in

z with period A. In this case, it is natural to choose a surface for our stress-tensor integral

that is also periodic in z. For example, imagine that Fig. 5-5 depicts a two-dimensional

(xy) cross-section of a z-invariant structure, and the dashed line depicts a cross-section of

the corresponding z-invariant stress-tensor surface. Because the total force is infinite, the

quantity of interest is the force per unit z. It is convenient to consider the net force F

from a finite length L = NA with periodic boundaries, and obtain the force per unit length

as limN-+oo F/L. Naively, F/L can be written directly via Eq. (5.9), where we break the

integral over z into a summation over the unit cells:

F 1 J0 dwN-1
F L E T(iw; r - nAz) -dA, (5.11)

1 j d ff T(iw; r) -dA, (5.12)

where the surface integral is over the portion of the surface lying in the unit cell only, and

in the second line we have used the fact that the stress tensor is periodic. This expression

is inconvenient, however, because the direct evaluation of T(iw, r) requires the response to

a single point source in the large-L structure, and a single point source does not produce

a periodic field (requiring a full three-dimensional calculation even for a z-invariant struc-

ture). Rather, one would like to consider the field in response to periodic point sources,

which produce a periodic field that can be treated by a small computational cell with peri-

odic boundary conditions. This is accomplished by Fourier-transforming the expressions in

Eq. (5.11) and taking the N -> o limit, as described in detail in the following subsection.

The resulting force per unit length is:

F 1 'dw f/A dkz T(iw, kz; r) -dA, (5.13)
L Ak irJA 2rJ

where the surface integral is still over the portion of the surface lying in the unit cell.
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Here, T(iw, kz; r) denotes the stress tensor computed from the Green's functions for Bloch-

periodic boundaries-that is, from the fields in response to a periodic set of point-dipole

sources with phase eikzA in the nth unit cell. This stress tensor can be computed using a

computational cell that is only one unit cell in the z direction, e.g. by a two-dimensional

computational cell for a z-invariant structure. [Equivalently, T(iw, kz; r) could instead be

computed from the Green's function for ordinary periodic boundaries, but with V replaced

by V+ikzz [239].] Just as for w, the stress tensor is a smooth function of kz and therefore the

kz integral can be computed by an efficient quadrature scheme (e.g. Gaussian quadrature).

If the structure is periodic (or invariant) in more than one direction, one simply repeats

the above procedure: for each periodic direction, we only consider the portion of the stress-

tensor integral in the unit cell, with Bloch-periodic boundary conditions, and integrate over

the corresponding Bloch wavevector component. Also, by symmetry one only need integrate

over the irreducible Brillouin zone of the structure [239], e.g. in one dimension (where time-

reversal symmetry normally equates kz and -kz) the f'/A dkz integral can be replaced by

2 fT/A dkz.

For the common case of a z-invariant perfect-metal structure (i.e. one has a homogeneous

e surrounded by perfect metal), there are several important simplifications. First, the (kz, w)

Green's function is exactly the same as the (0, k_ + w2) solution [141]. Therefore, we need

only compute the kz = 0 solutions at each w, and weight the dw integrand by a factor of

7rw (the circumference of a semi-circle of radius w) divided by the 27r that would appear

in the dkz integral. (For two directions of translational symmetry, one would weigh the

integral by the area of a hemisphere of radius w, and in general, in d dimensions, by the

area of a radius-w hypersphere.) Furthermore, at kz = 0, the solutions can be divided into

two scalar polarizations, TE (E - i = 0) and TM (H . i= 0) [231].

5.6.1 Periodic Green's Function Calculation

In what follows, we derive the force per unit length in translation-invariant structures in

terms of an integral over the solutions of Bloch-periodic problems. This is not a new idea,

but an explicit general derivation starting from the spatial integral of the stress tensor,

including the case of finite periodicity, seems difficult to find in the literature. As given
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above by Eq. (5.11), the force per unit length can be written as:

F I j0 dwN-1
L LF 1 f ff T(iw; r - nA) -dA, (5.14)

n=0

for a periodic structure in the z-direction with period A, and size L = NA with periodic

boundary conditions (ultimately, we will take the limit as N -+ oc). As in Eq. (5.10),

the stress tensor is expressed via the Green's function, and therefore Eq. (5.14) can be

decomposed into individual terms of the form:

S N-1

L 7 0if G(iw; rn,.rn)dA, (5.15)
n=0

where rn = r - nAi and the Green's function is given as in Eq. (5.6) by the solution of:

Gk (iw; x, x) -0 163 (X - x')ek, (5.16)

in which 0 denotes the linear operatorO = (V x V x +w2 6). In the following, we will

focus on the periodic z direction and leave the x and y coordinates implicit for simplicity.

That is, we will write e.g. 6(z - nA - z') instead of 6(rn - r').

At this point, we can re-express the delta function over the periodic direction z in terms

of the Fourier identity:

N-1 N-1

6(z - z' - nA) = N(z - z' - mA - nA)eNm, (5.17)
=0 m=0

Substituting this into Eq. (5.15), we will move the Em outside the En and consider the

action of -1 on the remaining summation:

N-1
27r 27rim

Jn,m (z -- z' - fA - nA)e N Jome N mn (5.18)

f=0

where we have used the periodic boundary conditions in L to realize that Jn,m is a cyclic

shift of J0,m with a phase factor. Now, we must operate -1 on JO,m2k and evaluate at

z= z - nA. However, this corresponds to finding the field from a Bloch-periodic current
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source, and such a field is also Bloch-periodic. Therefore:

06-1JO,,mek) IZz-A= (0-1JO,mak) e /= ""in, (5.19)

At this point, we have completely eliminated the n-dependence from the evaluation of

the Green's function 0 JO,m1&k, and the phase factors from Eq. (5.18) and Eq. (5.19)

cancel. The remaining summation E. simply yields N, which cancels the 1/N factor from

Eq. (5.17). Equation (5.15) therefore becomes:

1J dw N-1
SJG(iw, m;rn, rn)dA, (5.20)

m=O

where Gk(iw, m) = O-1 Jo,mak, the field from a Bloch-periodic sum of delta-function

sources. Finally, we can now take the limit N -+ oc by turning Em into an integral:

1N-1 1 sir/A
lim - - IA I dkz, (5.21)N-- oo L E~ 27rA _,,/A

where kz is the Bloch wavevector (kz = 27rm/N). We therefore obtain Eq. (5.13).

5.7 Numerical Validation

In the following sections we demonstrate our method's validity by checking it against known

results for perfect metals, and in particular for the case of a cylinder adjacent to a plate.

5.7.1 Parallel Metal Plates

First, for comparison to the one-dimensional parallel-plate integrands plotted in Fig. 5-2

and Fig. 5-3, we plot the corresponding integrand for the stress tensor in Fig. 5-6. Again,

this integrates to the correct force (hc7r/24a2 for each polarization), but we note that the

integrand is not identical to the integrand from the imaginary-frequency energy derivative.

Since the one-dimensional parallel-plate force is commonly derived from the Lifshitz

formula, which in turn is derived from the stress tensor, this cannot be regarded as a

rigorous validation of our method (except in the most basic sense of checks for bugs in our

code).
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Figure 5-6: Plot of Casimir force integrand Qf T-dA between two Id parallel plates separated
by a distance a = 1 versus imaginary frequency w = Imw, using the stress-tensor method
of Sec. 5.4.

5.7.2 Cylinder and Plate

A more complicated geometry, consisting of a perfect metallic cylinder adjacent to a perfect

metallic plate in three dimensions, was solved numerically by Ref. [141], to which our re-

sults are compared in Fig. 5-7. Ref. [141] used a specialized Fourier-Bessel basis specific to

this cylindrical geometry, which should have exponential (spectral) convergence. Our use

of a simple uniform grid was necessarily much less efficient, especially with the first-order

accuracy, but was able to match the Ref. [141] results within ~ 3% using reasonable com-

putational resources. A simple grid has the advantage of being very general, as illustrated

below, but other general bases with much greater efficiency are possible using finite-element

or boundary-element methods; the latter, in particular, could use a spectral Fourier ba-

sis similar to Ref. [141] and exploit a fast-multipole method or similar O(N log N) solver

technique. This is discussed in greater detail by Sec. 5.8.

Also shown, in the inset of Fig. 5-7, is a plot of the interaction stress-tensor component

A(TX) at a typical imaginary frequency w = 27rc/a. By "interaction" stress tensor A(Tig),

we mean the total (Tij) of the full geometry minus the sum of the (Tij)'s computed for

each body in isolation. Here, the stress tensors of the isolated cylinder and plate have

been subtracted, giving us a way to visualize the force due to the interaction. As described

further below, such stress plots reveal the spatial regions in which two bodies most strongly

affect one another, and therefore reveal where a change of the geometry would have the most

impact. (In contrast, Ref. [178] plots an interaction-energy density that does not directly
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Figure 5-7: Casimir force between a 3d radius-R cylinder and a plate (inset), relative to

the proximity-force approximation FPFA, vs. normalized separation a/R. The solid lines

are the Casimir force computed in Ref. [141] for TE (gray) and TM (blue) polarizations,
along with results computed by our method with a simple finite-difference discretization

(gray squares). Error bars were estimated for some data points by using computations

at multiple spatial resolutions. Inset shows interaction stress tensor A(TX.Y) at a typical

imaginary frequency w = 2-rc/a, where red indicates attractive stress.

reveal the force, since the force requires the energy to be differentiated with respect to a.

For example, Ref. [1781's subtracted energy density apparently goes to zero as a metallic

surface is approached, whereas the stress tensor cannot since the stress integration surface

is arbitrary.)

5.8 Beyond Finite-Difference Methods

Above, we implemented the stress-tensor integration using a finite-difference frequency-

domain approach to compute the Green's function. While sufficient for a proof-of-concept

implementation, one would like to use more sophisticated methods in order to explore

complex geometries more quickly, especially in three dimensions. The primary drawbacks of

the finite-difference scheme are threefold. First, the material discontinuities imply that the

error converges only linearly with resolution, although there are techniques to improve this

to quadratic convergence [150]. Second, non-uniform resolution would be desirable to handle

small features, such as the narrow channels in the piston structure for small h. Third, the

stress-tensor integrand is a discretized, non-smooth function of space, meaning that we must

evaluate it at a number of grid points proportional to the resolution (or resolution squared, in

three dimensions); in general, the integrand must therefore be evaluated O(N(d-)/d) times
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for a d- 1 dimensional surface in d dimensions, leading to at best O(N 2-1/d) complexity. To

address these drawbacks, we consider two standard approaches to solving partial differential

equations in a more efficient manner in complex geometries: finite-element and boundary-

element methods.

Finite-element methods can employ a non-uniform volume discretization, via an un-

structured mesh, that can both put more resolution where it is needed and conform to the

material interfaces to obtain higher-order accuracy [91, 237, 548, 596]. However, from the

perspective of Casimir-force calculations, finite-element methods seem to have two potential

drawbacks. First, because space is still discretized, the stress tensor is again not a smooth

function of space and its accurate integration requires that the Green's function be evalu-

ated at many mesh points. Second, there may be a problem with regularization: although

the Green's function does not diverge in discretized space, with a non-uniform resolution

this regularization varies at different points. Unless there is a way to locally regularize the

problem (subtracting a vacuum Green's function computed at the local spatial resolution),

this may lead to unphysical, non-convergent forces.

Boundary-element methods (BEMs) involve a discretization in terms of unknowns only

at the interfaces between different materials-these surface unknowns are coupled to one

another via the (known) Green's functions of the homogeneous regions [90,91,191,237,430,

548]. They are thus ideal for open problems, in which the bodies are surrounded by infinite

volumes of empty space, since those infinite regions are treated analytically. Using the fast-

multipole method (FMM) or other fast integral-equation methods [91,191,237,548], BEMs

can solve for the surface unknowns, and hence the Green's function, in O(N log N) time for

N discretized unknowns, multiplied by a number of iterations (< N) that depends on the

condition number of the matrix and the preconditioning [18]. Furthermore, BEMs have two

unique advantages when applied to the problem of Casimir forces. First, the regularization

can be performed analytically: since BEMs express the Green's function as the sum of

the vacuum Green's function plus a set of contributions from surface currents, the vacuum

Green's function can be trivially subtracted analytically. Second, because space is not

discretized, the stress tensor in a BEM will be a smooth (infinitely differentiable) function of

space-this means that the spatial integral can be performed with exponentially-convergent

smooth quadrature methods. Therefore, the number of times that the Green's function

must be computed is determined only by the convergence of the smooth multidimensional
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quadrature in 2 + 1 dimensions (space + frequency), independent of N.

For these reasons, we believe that BEMs are in fact the most efficient methods to

compute Casimir forces for complicated structures in three dimensions. Moreover, all that

needs to be done is to take an existing BEM Green's function solver and change it to

solve for the imaginary-w Green's function. Because the imaginary-w Green's functions

are exponentially decaying (and approach the familiar Poisson kernel as w -+ 0), such a

fast solver should actually be simpler than the corresponding real-w solver, nor are the

singularities in the Green's function any worse. And, as mentioned previously, the resulting

matrix equation is real-symmetric and positive-definite for imaginary W, unlike the real-w

case, even for dissipative materials. A BEM implementation of the stress tensor method

was developed for perfectly-metallic geometries [565, 566]. A generalization for dielectric

objects is currently being developed by Reid. et. al. A BEM implementation based on

the formalism of Ref. [137,143,426] was recently implemented and used to obtain accurate

predictions of forces between complicated three-dimensional non-spherical dielectric objects

with sharp corners [434]. The method is considerably more efficient than the simple finite-

difference method describe here, allowing calculations of large three-dimensional objects

using a single computer and only tens to hundreds of CPU hours.

5.8.1 Spectral and Monte-Carlo Approaches

In this section, we briefly compare the stress-tensor approach with other known exact nu-

merical methods applicable to arbitrary geometries, focusing mostly on the computational

aspects. In particular, we examine the methods of Emig et al. [136] and Gies et al. [177].

Emig's method, applicable to both separable and non-separable geometries and not lim-

ited to perfect metallic structures (although currently only demonstrated in perfect metallic

separable geometries), involves a surface parametrization of the Green's function. Specifi-

cally, the Casimir energy is given in terms of an integral over imaginary frequencies of the

change in the photon density of states (DOS) op(iw):

IhwU = 2 p(iw)dw, (5.22)

similar to the expression in Eq. (5.4). However, the crucial aspect of this method lies in the
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evaluation of the DOS, given by [136]:

108
6p(iw) = 1 tr ln (M M). (5.23)

Here M is an N x N dense matrix, where N is the number of surface degrees of freedom,

whose entries are in terms of the imaginary-w vacuum Green's function G(iw; x, x') eval-

uated on the surface of each body. Moo is the same matrix for the case where the bodies

are infinitely far apart. Thus, the trace in Eq. (5.23) is analogous to an integration over

the surfaces of all the bodies. Inverting a dense matrix, multiplying two dense matrices,

and taking the log of a dense matrix all require O(N 3 ) time (for practical algorithms) and

O(N 2) storage [185].

We should comment however, that Emig's method is closely related to a boundary-

element method (BEM) as discussed in the previous section. BEMs also involve parametriza-

tion in terms of surface degrees of freedom, which are also coupled in terms of vacuum

Green's functions, leading to a dense matrix which must be inverted to compute the inho-

mogeneous Green's function. By recognizing this relationship, one should be able to exploit

fast-multipole and similar 0(N log N) techniques to accelerate Emig's method. In particu-

lar, computations such as M; 1 M involve the solution of N linear equations, each of which

can employ iterative methods with O(N) storage, and similar iterative methods may also be

available for computing matrix logarithms [185]. At best, this leads to O(N 2 log N) time.

However, this is still much less efficient than the stress-tensor BEM approach discussed in

the previous section, because the latter requires only < N linear equations to be solved

(the number of linear equations to be solved is determined by a smooth spatial quadrature,

independent of N).

A second exact computational method available is that of Ref. [177], based on a "world-

line" approach. In this method, the Casimir energy is represented via a scalar field in

a smooth background potential, and the effective action is obtained via a Feynman path

integral over all proper time worldlines using a Monte-Carlo approximation. The method

has only been formulated for the TM polarization with perfect-metal bodies, although pre-

liminary generalizations have been suggested [180]. Specifically, the method expresses the

Casimir energy between two bodies as the integral of a functional Or over closed paths x(r)
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of length (proper time) T and center of mass y:

U = - 1 J d3Y(OE[x()])x (5.24)

where E [x(T)] is a worldline functional (similar to a step function) defined to be E [x(r)] =

1 if the path x(T) intersects a surface and 0 otherwise [180]. This integration is performed

by generating an ensemble of nL random N-point paths x(r) and evaluating er for each

one. The computational complexity O(nL -N.#y -#T) (where #y and #T are the number

of y and T integrand evaluations, respectively), therefore, depends on quantities such as

the precise statistical rate of convergence of this integral (error - 1/v/nL), which in turn

depends on the geometry and on the manner in which the path ensembles are generated and

integrated. Ref. [177] does not present a general analysis of these quantities, nor will we do

so here. However, in the specific case of the force between a radius-R sphere and a plate

separated by a distance a, Ref. [177] shows that N > a2/R 2 for large a/R, corresponding to

at least a quadratic scaling of the number of degrees of freedom and time with the relevant

feature size a/R, even without the O(nL ' #y -#T) factors. In comparison, a BEM for the

same geometry (exploiting the cylindrical symmetry to reduce it to a 2d problem similar

to Ref. [177]) should require degrees of freedom N that never scale worse than linearly

with the relevant lengthscale, and time that scales with N log N rather than N 2. A general

comparison seems difficult, however, and a detailed statistical study is outside the scope of

this thesis.

5.9 Concluding Remarks

The general considerations involved in designing a purely computational method are often

quite different from those involved in designing an analytical method. For this reason, we

believe it is most fruitful to start back at the earliest possible formulations and proceed using

the new computational perspective, rather than attempting to add more and more correc-

tions to analytical methods for specific geometries. Moreover, since decades of research have

gone into the development of numerical methods for classical electromagnetism, culminating

in methods applicable to complicated inhomogeneous three-dimensional geometries, it is de-

sirable to seek approaches for the Casimir force that exploit these developments. We believe

that the stress-tensor approach, developed for analytical calculations several decades ago,
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provides the ideal formulation for a computational approach exploiting standard numerical

techniques.

The large and growing number of interesting applications of the Casimir effect, as well

as the ongoing experimental work on non-standard geometries [74], provide an environment

in which the generality and strengths of the stress-tensor method could be exploited. In

chapter 7, we employ the stress-tensor approach to study Casimir forces and torques in

more realistic, unusual structures. The extension of this work to study the torque on a

body, instead of the net force, is in fact quite trivial. Classically, given the stress tensor

T, one can compute the torque by integrating r x (T -dA) [285]. This has been exploited

by several authors .to compute classical electromagnetic torques [99, 311, 410]. Similarly,

the Casimir torque can be obtained by using the mean (T) from the fluctuation-dissipation

theorem, just as for the net force [303,452]. Therefore, one can compute torques by almost

the same method as above, via repeated evaluations of the classical Green's function, as

is done in chapter 8. Several authors have computed Casimir torques in parallel-plate

and perfect-metallic wedge geometries [63, 373, 431, 484, 540]; other interesting structures

include the Casimir "pendulum" [471] as well as corrugated surfaces [440], although these

two structures have only been evaluated by methods with uncontrolled approximations.
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Chapter 6

Casimir Forces in the Complex

Time Domain

"Magnetism, as you recall from physics class, is a powerful force that causes certain items

to be attracted to refrigerators." Dave Barry

6.1 Overview

In the previous chapter, we described a frequency-domain method for computing Casimir

forces in arbitrary geometries and materials, based on well-established classical electromag-

netism techniques. Starting from the simplest, most direct approaches, we showed that

practical considerations naturally lead towards a particular method involving the integral

of the Minkowski stress tensor that requires repeated evaluation of the imaginary-frequency

Green's function. In this chapter, we describe two different methods for computing Casimir

forces, both of which abandon the frequency domain altogether in favor of the time domain.

As argued, there are many advantages to the time-domain perspective, most importantly,

the fact that it makes it possible to obtain the entire frequency spectrum by iterating

Maxwell's equations (few time steps) in response to a single dipole source.

The first section reviews a well-known formulation of the Casimir-force problem, in which

the Casimir force is expressed in terms of an integral of the classical Green's function (GF)

via the electromagnetic stress tensor (ST) and the fluctuation-dissipation theorem [304]. Al-

though numerical constraints normally require integration over either the real or imaginary

frequency axes, we abandon both of these standard choices, and instead consider mappings
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Casimir force measurement Antenna measurement

6=i h

vacuum rn fluid c m

Figure 6-1: Schematic illustration of correspondence between two methods of calculat-
ing Casimir forces. (Left): Numerical method requiring evaluation of the force integrand
over the imaginary-frequency axis (or some suitable complex-frequency contour). (Right):
Antenna (S-matrix) measurements of the electromagnetic response at tabletop (e.g. cm)
lengthscales. Here, the effect of a contour deformation is achieved by a material deformation
which corresponds to the presence of a conductive fluid between the objects.

over the general complex-frequency (w) plane.

In Sec. 6.3, we describe a correspondence between the calculation of Casimir forces for

vacuum-separated objects and a similar electromagnetic-force calculation in which the ob-

jects are instead separated by a conducting fluid, as illustrated in Fig. 6-8. The requirement

that the geometry be mapped in this fashion is a practical consideration for any calculation

based on the time domain (real-frequencies). In fact, it is the theoretical equivalent of a

crucial and well-known technique for accurate numerical evaluation of Casimir forces, in

which the force integrand is deformed via contour integration, and commonly evaluated

over the imaginary-frequency axis [304,443]. Our formulation circumvents difficulties with

all previous expressions of Casimir forces in terms of frequency-integrals of classical Green's

functions, which required either formally infinite bandwidth (when evaluated over real fre-

quencies) or exponentially growing fields (when evaluated over imaginary frequencies)-

instead, we exploit the moderate-bandwidth real-frequency response of a physical, dissi-

pative system. This mathematical equivalence between complex contour mappings and

physical dielectric deformations reveals new opportunities for the experimental and theo-

retical study of Casimir interactions. On the theoretical side, this correspondence makes

it easier to understand Casimir systems from the perspective of conventional classical elec-

tromagnetism, based on real-frequency responses, in contrast to the standard point of view

based on Wick rotations (imaginary frequencies). Furthermore, it has already led to a

finite-difference time-domain numerical method for calculation of Casimir forces in arbi-

trary geometries and materials [344,449], discussed in Sec. 6.4.1. A third application of this

correspondence, described in Sec. 6.3.3 is a new technique for calculation of Casimir forces

based on experimental S-matrix (microwave antenna) measurements in centimeter-scale

156



models. An experiment (centimeter-scale model) of this sort is not a Casimir "simulator,"

in that one is not measuring forces, but rather a quantity that is mathematical related to

the Casimir force-in this sense, it is an analog computer.

6.2 Revisiting the Stress Tensor Formulation

The Casimir force can be expressed as an integral over any closed surface S (enclosing a

body) of the mean electromagnetic ST (Ti3 (r, w)) over all frequencies [304]. The mean ST

is determined simply from the classical GF (the fields in response to current sources at a

fixed frequency), a consequence of the fluctuation-dissipation theorem. In particular, the

force in the ith direction is given by:

F = dw (Ti (r, w)) dSj , (6.1)
Sj

The stress tensor is expressed in terms of correlation functions of the field operators (Ei(r, w)Ej (r', w))

and (Hi(r, w)Hj (r', w)):

(Tij (r, w)) = p (r, w) (Hi(r) Hj (r)) - o (Hk(r) Hk (r))j
2 k

+ E(r W) [(Ei(r) E -(r)) -6i (E(r) E(r)) , (6.2)

k

where both the electric and magnetic field correlation functions can be written as derivatives

of a vector potential operator AE(r, w):

Ej(r,w) = -iwAF (r,w) (6.3)

pHi(r,w) (V x)ijAf(r,w) (6.4)

We explicitly place a superscript on the vector potential in order to refer to our choice of

gauge [Eqs. (6.3-6.4)), in which E is obtained as a time-derivative of A. The fluctuation-

dissipation theorem relates the correlation function of AE to the photon Green's function

G r,
h

(AE (r, w)Af (r', w)) = Im G (w, r, r'), (6.5)i i ir
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where GE is the vector potential AE in response to an electric dipole current J along the

8j direction:

11
V Vx- wer,) Gf (w; r, r') = o(r --r')85, (6.6)

Given Gj, one can use Eqs. (6.3-6.4) in conjunction with Eq. (6.5) to express the field

correlation functions at points r and r' in terms of the photon Green's function:

(Ei(r, w)Ej(r', w)) -w 2 Im G E(w; r, r') (6.7)
7r i

(Hi(r, w)Hj(r', w)) = h (V x)il(V'x)jm Im Gfm(r, r', W), (6.8)
ir 1

In order to find the force via Eq. (6.1), we must first compute G9(r, r' = r, w) at every

r on the surface of integration S, and for every w [304. It turns out, however, that this

frequency integral is badly behaved from the perspective of numerical calculations (or exper-

iments, below). In particular, the integral is formally infinite, requiring regularization, and

highly oscillatory. Thus, as it is, Eq. (6.6) is of limited computational utility because it gives

rise to an oscillatory integrand with non-negligible contributions at all frequencies, making

numerical integration difficult [443]. However, the integral over w can be re-expressed as

the imaginary part of a contour integral of an analytic function by commuting the W inte-

gration with the Im operator in Eqs. (6.7-6.8). Physical causality implies that there can

be no poles in the integrand in the upper complex plane. The integral, considered as a

complex contour integral, is then invariant if the contour of integration is deformed above

the real frequency axis and into the first quadrant of the complex frequency plane, via some

mapping w -+ w((), conveniently parametrized by a real parameter (. This allows us to

add a positive imaginary component to the frequency, which causes the force integrand to

decay rapidly with increasing ( [448]. In particular, upon deformation, Eqs. (6.7-6.8) are

mapped to:

(Ei(r, w)Ej(r', w)) = -w 2 G (w;r,r') (6.9)
7r

(Hi(r, w)Hj (r', w)) = h(Vx);i(V' x)jmG E(r, r' w), (6.10)
7r 1
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where the deformed GF is given by:

Vx 1 V x - w2(()e(r, w) Gf'(;r,r') = - r')eg, (6.11)
p-t(r, u) I i( .1

Similarly, the force in the i-th coordinate [Eq. (6.1)] becomes:

F, = Im d dw(() (Ti (r, o(())) dSj . (6.12)
0 < surface ,

(Note that a finite spatial grid (as used in the present approach) requires no further regu-

larization of the integrand, and the finite value of all quantities means there is no difficulty

in commuting the Im operator in Eqs. (6.7-6.8) with the integration.) The standard Wick

rotation corresponds to the particular choice w(() = i( and yields a smooth and rapidly

decaying integrand [443].

Equation (6.11) can be solved in a number of ways, for example analytically in one

dimension [304], or more generally by a finite-difference discretization [443]: this involves

discretizing space and solving the resulting matrix eigenvalue equation using standard nu-

merical linear algebra techniques [25,531]. Of course, the diagonal (r' = r) part of the GF

is formally infinite, but this singularity is not relevant because its surface integral is zero,

and it is typically removed by some regularization (e.g. by the finite discretization or by

a finite antenna size in the proposed experiments below). A crucial step for evaluation of

Eq. (6.12), as mentioned above, is the passage to imaginary frequencies w(() = i(. For real

frequencies w(() = (, the GF is oscillatory, leading to a highly oscillatory ST integrand that

does not decay-even when a regularization (ultraviolet cutoff) is imposed, integrating a

highly oscillatory function over a broad bandwidth is problematic. When evaluated over

imaginary frequencies, on the other hand, the GF is exponentially decaying, due to the

operator in Eq. (6.11) being positive-definite (V x V x + E(2) [443], leading to a decaying

non-oscillatory integrand.

However, the Wick rotation is not the only contour in the complex plane that leads to

a well-behaved decaying integrand. This is illustrated by Fig. 6-2, which shows the force

integrand in the complex plane for the piston-like geometry of Fig. 6-8, recently shown to

exhibit non-monotonic variations in the force as a function of plate-separation h [442,443].

In particular, we calculate the (x-direction) force integrand dFx/dw = fsurf Ej Tx (r, w)dSj
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Figure 6-2: Complex-frequency w plot of the Casimir force integrand (In Re dF,/dwo),
where dF./do is in units of h/d2 , for the geometry of Fig. 6-8. As the real-w axis is
approached, the integrand becomes highly oscillatory, which is only partially revealed here
due to the finite frequency resolution. Various integration contours of interest are labeled
as black and dashed lines. (Inset:) Vacuum e = 1 contour deformations w( ) and their
corresponding (real-frequency) physical realizations ec

on one square, for h = 0.5d and s = d, where d is the separation between the blocks. Here,

we plot In Re dF /dwl, which illustrates the basic features of the integrand dw/d dF /dw

(while Im dF/dw also contributes to the total force, it is qualitatively similar, and therefore

omitted). As described above, this integrand is oscillating along the Re W axis and decaying

along the Imw axis. Moreover, it also decays along any contour where ImW is increasing

(such as the three contours shown, to be considered in more detail below).

6.3 Correspondence: Contour <-> Material Deformations

In this section, we derive an equivalence between the complex-frequency GF (the GF eval-

uated over a complex frequency contour) of a geometry, and the real-frequency (standard)

GF of an identical geometry with a transformed electromagnetic medium ec. As argued

below, this correspondence presents a way to realize this contour-deformation technique in

a real experiment. From this point of view, it becomes clear that only certain contours

in the complex-frequency plane correspond to physically realizable ec, and that neither the

real or imaginary frequency axes are suitable for experiments (the latter due to the fact that

it is equivalent to a gain medium). Instead, we identify a suitable contour whose response is
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equivalent to a physically realizable, conventional conducting medium. Section 6.3.2 demon-

strates that the response of such a medium yields the correct Casimir force by performing

numerical experiments on the geometry shown in Fig. 6-8, and then go on to describe the

properties of the corresponding integrand. Finally, we consider the implications of the

above mapping for practical experiments, including possible materials, lengthscales, and

sources of experimental errors. The key point is that, once the Casimir force is expressed

in terms of the response of a realizable medium over a reasonably narrow bandwidth, the

scale-invariance of Maxwell's equations permits this response to be measured at any desired

lengthscale, e.g. in a tabletop microwave experiment.

6.3.1 Complex-Frequency Green's Functions via Material Deformations

The fact that w and E appear together in Eq. (6.6), as Ew2 , immediately suggests that,

instead of changing w via a complex mapping w(() (again parametrized by real (), we can

instead operate at real ( by transforming E. Specifically, evaluating Eq. (6.6) over a complex

contour w(() is formally equivalent to evaluating Eq. (6.6) over real frequencies W(() =

but for a complex dielectric permittivity given by:

Ec(r, E) e(r, w( )) (6-13)

Thus, given a medium e(r, w) and a complex-frequency contour w() over which we wish to

compute the ST, we can transform to an equivalent problem involving a real-frequency ST

evaluated over a complex dielectric ec(r, (), determined by Eq. (6.13). (Conversely, the GF

of any frequency-dependent material ec(() at a given point in space can be related to the GF

for vacuum (e = 1) at that point by going from the real frequency ( to a complex frequency

w = c(().) Equation (6.13) yields an intuitive explanation for why transforming to

the complex-frequency plane is numerically advantageous: complex frequency deformations

correspond to lossy materials that act to damp out the frequency oscillations. Furthermore,

this equivalence is also of practical value to Casimir-force calculations (beyond being of

pedagogical value): First, it forms an essential ingredient of a numerical finite-difference

time-domain (FDTD) method, formulated in Ref. [449 and demonstrated for various ge-

ometries in Ref. [344]. The other application, discussed below, involves the possibility of

computing the force via real experiments (in contrast to numerical experiments), in the
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spirit of analog computations.

Because the Casimir ST is expressed in terms of the electromagnetic GF, and the GF

of a system at microwave lengthscales is merely a rescaling of the GF of the system at

micron lengthscales 1, one can conceivably measure the GF (electric field in response to

a current source) in an experiment via the S-matrix elements of antennas at centimeter

scales, and in doing so determine the Casimir force via integration of the ST. The passage

to complex frequencies is essential to an experiment, as in numerics, because measuring

the GF in the original geometry e(r, () (real frequency (), as the electromagnetic response

to an oscillating current source ~ eMi, will yield narrow peaks in its spectrum, requiring

integration of a highly oscillatory force integrand over an infinite bandwidth, and thus

imposing significant experimental challenges. Thus, one would like a way to implement

the effect of complex frequency deformations in an experiment, which is the subject of the

remaining text.

There are at least three ways to obtain the complex-frequency GF Gij (r, r', w) of a

geometry E(r, w) in an experiment [the electric field E(r) at a point r in response to a

dipole current source J = 6(r - r')e-iwt, evaluated at complex frequency w = w(()]: First,

one may directly measure the electromagnetic field in response to a current source with

time dependence ~ e"0t (the most straightforward interpretation of complex-frequency

GFs [304]). However, an w( ) in the upper-half complex plane corresponds to both sources

and fields with exponential growth in time, which is difficult for experiments. A second

possibility involves measuring the standard real-frequency GF (the response to an oscillating

source e-it) over a large frequency bandwidth, and then performing a numerical analytic

continuation of the form ( -+ w((). However, it is already known that inferring the Casimir

force from real-w GF measurements is extremely difficult, requiring the GF over a very wide

bandwidth to a high accuracy [443]. A third alternative, and the subject of this section, is

to instead exploit the correspondence above, in order to measure the real-frequency GF (the

response to an oscillating source ~ e-it) of a physical medium with a complex permittivity

given by Eq. (6.13). As noted above, due to the presence of loss [corresponding to the

imaginary part of w(()], the integrand will be both smooth and decaying as a function of

'The invariance of the GF to changes in lengths-scale is a consequence of the scale-invariance of Maxwell's
equations for geometries composed of perfect-metal objects. When either the perfect-metal approximation
breaks down or real materials are involved, changing the lengthscale of the problem also requires an appro-
priate dielectric re-scaling, i.e. materials with the appropriate dielectric response at the relevant lengthscales
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Table 6.1: Vacuum e = 1 contour deformations w(() and their

frenuencv) phvsical realizations Ec(6).

corresponding (real-

-+o(E) C - c( physical realization

Ec(c( ) any physical material

-1 violate K-K

e e+/ 1 as -+ 0
1+I I + iUA| conductor

real-frequency (.

In order for this approach to be experimentally viable, Ec must satisfy two properties:

it should correspond to an w contour where the ST integrand is rapidly decaying, and it

should be physically realizable. For simplicity, we begin by considering complex contours

for a geometry in which the objects are separated by vacuum, so that the ST need only

be evaluated in vacuum (6 = 1). This implies that, at those points where the ST needs to

be evaluated, the real-frequency medium corresponding to a contour deformation W(() is

determined by a dielectric function of the form Ec(() = W(()22

We begin by noting that, in order for Ec(() to correspond to a physical medium, it must

satisfy the complex-conjugate property ec(--) = as well as the Kramers-Kronig (K-

K) relations [231]. It is most important to satisfy these conditions for small (, since the ST

integrand is dominated by long-wavelength contributions. One should also prohibit gain

media, which would lead to the exponentially growing fields we are trying to avoid by not

using sources with complex w. For example, a Wick rotation corresponds to a medium

with dispersion ec(() = -1, and this is only possible at ( = 0 in a gain medium, since in a

dissipative medium, Ec is real and positive along the whole imaginary-w axis (this is implied

by K-K). The generalization to arbitrary rotations in the complex plane E = e21 yields

similar difficulties, since these act both as gain media and also violate e,(-() = ec( )* near

( = 0. Thus, no realizable material can emulate these standard contours even in a narrow

bandwidth around ( = 0, as summarized in Table 6.1 (also shown on the inset of Fig. 6-2).

Although traditional Wick rotations correspond to unphysical materials (as argued in

the preceding paragraph), there are obviously many physical lossy materials to choose from,

each of which corresponds to a contour in the complex plane, and one merely needs to find

such a "physical" contour on which the ST is rapidly decaying so that experiments can

be performed over reasonable bandwidths. A simple and effective lossy material for this

purpose is a conductor with conductivity a. Because the integral will turn out to be

163



partial F, integral d 30cm

-..-- ---- Re----

lmGa

104 104 104 100 10 102 103
, (GHz)

Figure 6-3: (Top:) Partial force integral fo dF2, normalized by F2, as a function of (, for the
various w(()-contours (equivalently, various Ec = w2 g 2 ) shown in Fig. 6-3. The solid green,
red and black lines correspond to conductive media with a = 10, 102 and 103, respectively
(a has units of c/d). The dashed grey and solid blue lines correspond to # = -r/4 and
# = 7r/2 (Wick) rotations. (Bottom:) Illustration of the required frequency bandwidth for
a possible realizations using saline solution at separation d = 30cm. The red lines plot the
xx-component of the photon GF Gxx at a single location on the surface contour (see inset)
as a function of ( (GHz). The black line is the corresponding partial force integrand.

dominated by the contributions near zero frequency, it is sufficient to consider a to be a

constant (the DC conductivity), although of course the full experimental permittivity Ec(()

could also be used. Specifically, we consider the general class of conductors defined by

dispersion relations of the form Ec() - 1 + ia/i, corresponding to vacuum with a complex

contour w,( ) = (Vl + ia/i. As shown in Fig. 6-2, the integrand of this contour is in fact

well behaved, rapidly decaying and exhibits few oscillations. Moreover, because conductive

fluids are ubiquitous, this choice is especially promising for experiments (see the section on

analog computations).

6.3.2 Numerical Experiment

We now consider the Casimir force for the same structure as in Fig. 6-8, still calculated by

the same finite-difference method as in Fig. 6-3, but we now focus on the properties along
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different contour choices for both physical and unphysical media. In particular, Fig. 6-2(top)

plots the partial integral f (dw/d()(dFx/dw)d(, normalized by the total force fj' dFx, as a

function of (. [As it must, the total integral over (, the force F2, is invariant regardless of the

contour w() and agrees with previous results [443]; Specifically, Fx = 0.0335 (hc/d3 ).] We

now comment on two important features of the w, contour that are relevant to experiments.

First, the Jacobian factor for w is given by dw/d = 0.5(2+ia/()/1 + io/i and turns

out to be very important at low (. The ST integrand itself goes to a constant as ( -* 0 (due

to the constant contribution of zero-frequency modes), but the Jacobian factor diverges in

an integrable square-root singularity ~ o/h. Since this singularity is known analytically,

however, separate from the measured or calculated GF, integrating it accurately poses no

challenge. Second, the larger the value of o, the more rapidly the ST integrand decays

with (, and as a consequence the force integral for larger a is dominated by smaller (

contributions. In comparison, previous calculations of Casimir forces along the imaginary-

frequency axis revealed that the relevant ( bandwidth was determined by some characteristic

lengthscale of the geometry such as body separations [443]. Here, we have introduced a

new parameter a- that can squeeze the relevant ( bandwidth into a narrower region. This

"spectral squeezing" effect is potentially useful for experiments, as it partially decouples

the experimental lengthscale of the geometry from the required frequency bandwidth.

6.3.3 A Casimir Analog Computer

The use of tabletop models and analog computers in physics, though previously unex-

plored in the context of quantum vacuum fluctuations, continues to play an important

role in contemporary research areas like quantum evolution [320] and quantum informa-

tion [313]. For example, many analog computers have been developed to simulate fluid flow

problems [384,389], electromagnetic and acoustic wavefields [94], cell electrolysis [338], and

many of the problems governed by Laplace's equations [258]. More recently, advances in the

field of microwave electromagnetics (which offers unprecedented control over sources and

detection of microwaves), have spurred the development of classical electromagnetic analog

computations for studying complex quantum problems, including the calculation of the en-

ergy levels of Bloch electrons in magnetic fields [277] and the dynamics of certain classes

of chaotic quantum systems [320], to name a few. Computing fluctuation-induced effects

like the Casimir force is substantially different from previous analog-computation problems
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in quantum simulation, in that it involves not the evolution of a single quantum state but

rather the combined effect of fluctuations over a broad (formally infinite) bandwidth.

As a consequence of the above results, we can now outline a possible experiment at

centimeter lengthscales that determines the Casimir force at micron lengthscales, a Casimir

analog computer (CAC). Suppose that one wishes to compute the Casimir force between

perfect-metal objects separated by vacuum, such as the geometry in Fig. 6-8. One would

then construct a scale model of this geometry at a tabletop scale (e.g., centimeters) out

of metallic objects (which can be treated as perfect metals at microwave and longer wave-

lengths). To determine the ST integrand along a complex-w0 contour, one would measure

the GF at real frequencies ( for the model immersed in a conducting fluid. The GF is

related to the S-matrix of pairs of antennas, and the diagonal of the GF to the S-matrix

diagonal of a single antenna [noting that the finite size of the antenna automatically regu-

larizes the integrand, as noted after Eq. (6.6)]. It is important for the model structure to

be large enough that the introduction of a small dipole-like antenna does not significantly

alter the electromagnetic response. In general, the ST must be integrated in space over

a closed surface around the object, and correspondingly the antenna's S-matrix spectrum

must be measured at a number of antenna positions (2D quadrature points) around this

surface. (Unless one is interested in computing the force on a single atom, which requires

a single antenna measurement.) The different components of the GF tensor correspond to

different antenna orientations. The magnetic GF can be determined from the photon GF

by Eq. (6.7), or possibly by employing"magnetic dipole" antennas formed by small current

loops.

We now consider a particular CAC (at the cm scale) that employs realistic geometric

and material parameters. Many available fluids exhibit almost exactly the desired material

properties from above. One such example is saline water, which has e(() = e, + iu/(,

where e, ~ 80 and o-u~ 5 S/m for relatively small values of salt concentration [266]. A

calculation using these parameters, based on the geometry of Fig. 6-8, assuming object sizes

and separations at the centimeter to meter scale (we choose d = 0.3 m for the structure in

Fig. 6-8, corresponding to a frequency of 1 GHz), reveals that it is only required to integrate

the stress tensor up to small GHz frequencies (, which is well within the reach of conventional

antennas and electronics. This is illustrated in Fig. 6-3(bottom), which plots the G,,

component of the GF (red lines) as well as the partial force integrand (black line), showing
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the high ( < 1 GHz cancellations that occur once the ST is integrated along a surface (inset).

We note that most salts exhibit additional dispersion for ( > 10 GHz [266, but we do not

need to reach those frequency scales. (Nevertheless, should there be substantial dispersion in

the conducting fluid, one could easily take it into account as a different complex-w contour.)

Some attention to detail is required in applying this correspondence correctly. For

instance, using network analyzers, what is measured in such an experiment is not the photon

GF G, but rather the electric S-matrix SE (the currents in a set of receiver antennas due

to currents in the source antennas) , related to the electric GF (the E-field response to

an electric current J) by a factor depending on the antenna geometry alone (relating J to

E). The electric GF will differ from the photon GF by a factor of the real frequency i.

To summarize, the photon GF will be given in terms of the measured SE by Gi (W) =

(a/i )Sg( ), where a is the antenna-dependent geometric factor (which can be measured

with high accuracy). To obtain the ST from Gij, one multiplies by factors of W(() 2 as in

Eq. (6.7). Fig. 6-3(bottom) illustrates the expected behavior of Sz. ~ G2'2/ in a realistic

system employing a saline solution with d = 30cm.

We believe that such an experiment is feasible and capable of yielding accurate Casimir

forces. In particular, the accuracy of the resulting force would only be limited by the mag-

nitude of any measurement error, as the remaining post-processing steps can be performed

with very high accuracy using well-known techniques [443]. With respect to measure-

ment errors, we believe these to be well within the bounds necessary to obtain forces with

accuracies better than or similar to those of our previous (and current) numerical experi-

ments [344, 442, 443, 446, 449, 452]. Some of these may include: electronic noise, finite-size

effects associated with any measurement device (e.g. antenna width), and surface rough-

ness. It should be possible to make surface roughness negligible at cm scales, and in any

case roughness is present in real Casimir experiments and is known to have a small effect

if the roughness amplitude is small compared to the surface separations [40,327] (although

roughness could be intentionally introduced in the microwave system to study its effect).

Finite-size effects are expected to be small because they are closely analogous to the effect

of discretization in our numerical simulations (which give a finite size to current sources,

among other effects), which do not contribute significantly to the force if the finite-size is

small enough. Specifically, if a is a typical lengthscale in the problem (here, centimeters), for

resolutions = 50 pixels/a, corresponding to a smallest representable lengthscale of 0.02a,,

167



we obtain at least 1% accuracy in the force. For a tabletop experiment with a around 10 cm,

this corresponds to antenna sizes < 2 mm, which is easily achievable. One must also deal

with electronic sources of noise in the microwave regime. These include interference effects

coming from sources in the vicinity of the experiment as well as thermal noise, both of which

become significant at frequencies above 100 MHz [413]. There are, however, many effective

standard ways to reduce interference errors, such as shielding and grounding of the entire

apparatus [368]. Finally, though insignificant in the microwave regime, one may encounter

noise originating in the receiver circuit, e.g. shot and pink noise. These absolute noise floors

scale as the measurement bandwidth and can therefore be reduced if these measurements are

performed over smaller frequency ranges (equivalent to averaging) [413]. Fortunately, both

of these sources of noise are independent of the power at which one operates the antenna

(measurement) device-therefore, since the GF measurement upon which this experiment

is based is independent of the source amplitude (within the limits of the linear response of

the materials), it is possible to increase the source power in order to significantly reduce the

signal-to-noise ratio. For example, typical network analyzers can yield noise in the range

(95,120) dB at these frequencies for powers in the mW range [413], which is negligible even

when accumulated over hundreds of measurements in a random walk. Moreover, numerical

methods have the same sort of noise in the form of accumulated roundoff error, which is

also on the order of 10-9 or larger (proportional to machine precision multiplied by the

condition number of the matrix [531]), and we have not observed any appreciable effect of

such roundoff noise on the accuracy (which is mostly limited by discretization/finite-size

effects).

The calculation of Casimir forces and other fluctuation-induced interactions presents a

challenge for both theory and experiment [169,268,352,358]. Especially for three-dimensional

geometries, tabletop experiments offer an alternative route to rapidly exploring many differ-

ent geometric configurations that are only now starting to become accessible to conventional

numerical calculation (although complex geometries involving many objects remain chal-

lenging). Although many details of such an experiment remain to be developed, we believe

that the basic ingredients are both clear and feasible, at least when restricted to perfect-

metal bodies. The most difficult case to realize seems to be the force between imperfect-

metal or dielectric bodies with a permittivity e(w), as the corresponding tabletop system

requires materials with a specified dispersion relation Ebody( uid(() = c(w(()) relative
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to the conducting fluid. This may be an opportunity for specially designed meta-materials

with the desired frequency response. Analog computations at large lengthscales should also

enable scientists to study Casimir forces in geometries composed of real dielectrics whose

low-frequency response is of interest, such as recent predictions of repulsive forces between

dielectric and magnetic [53, 356, 577] or magnetoelectric [189, 595] bodies which currently

only exist at long wavelengths [164].

The correspondence (developed above) between complex-frequency deformations of the

ST and causal material transformations is an indispensable ingredient for the development

of a CAC. However, this equivalence is useful in at least two other ways: First, it was

used to design new numerical methods for Casimir-force calculations based on the finite-

difference time-domain method [344, 449], explored in the subsequent section; Second, it

offers an alternative perspective on the Casimir effect. Specifically, one of the difficulties

involved in understanding Casimir forces comes from the wide-bandwidth aspect of the

real-frequency domain, which makes it impossible to separate contributions coming from

individual electromagnetic modes, and therefore discourages the use of ideas from standard

classical electromagnetism based on geometric or material resonances. For example, elec-

tromagnetic metamaterials are commonly designed to have effective materials properties

that differ dramatically from their constituent materials, but only over a narrow bandwidth

because they rely on strong resonant effects in subwavelength structures [599]. Physicists

familiar with Casimir theory typically consider the Casimir-force contributions decomposed

along the imaginary frequency axis, where the contributions are exponentially decaying and

are mostly non-oscillatory because they are far removed from the resonant modes (all of

which lie below the real-frequency axis) [68, 352, 443]. However, this viewpoint is foreign

to most researchers from the classical electromagnetism community, which focuses on real

frequencies and is often concerned with ideas based on geometric or material resonances in

narrow bandwidths. The imaginary-frequency viewpoint indicates that resonant effects on

Casimir phenomena are weak and that broad real-w bandwidths are important to Casimir

interactions, but this insight is far removed from the classical photonics way of thinking.

On the other hand, absorption loss is well understood and familiar in classical electromag-

netism, so our theoretical framework may provide a gentler pathway into Casimir physics

from classical electromagnetics research: by realizing that Casimir forces are determined

by a narrow-bandwidth response to a system with artificial dissipation added everywhere,
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it becomes immediately clear even from the classical-photonics viewpoint why strong res-

onance effects are damped out. For example, although metamaterials can be designed to

have effective materials properties that differ dramatically from their constituent materials

over a narrow bandwidth, the fact that these effects mostly disappear at imaginary fre-

quencies [456] can be difficult to convey to traditional metamaterials researchers. At the

same time, it is a familiar fact in the metamaterial community that useful metamaterial

properties are rapidly overwhelmed as strong dissipation is added to the system, and by ex-

pressing Casimir interactions in these terms more familiar classical analytical tools become

applicable.

6.4 Casimir Forces in the Time Domain

In this section, we present a simple and general method to compute Casimir forces in

arbitrary geometries and for arbitrary materials that is based on a finite-difference time-

domain (FDTD) scheme in which Maxwell's equations are evolved in time [344,449,523].

A time-domain approach offers a number of advantages over previous methods. First, and

foremost, it enables researchers to exploit powerful free and commercial FDTD software

with no modification. The generality of many available FDTD solvers provides yet another

means to explore the material and geometry dependence of the force, including calculations

involving anisotropic dielectrics [457] and/or three-dimensional problems. Second, this for-

mulation also offers a fundamentally different viewpoint on Casimir phenomena, and thus

new opportunities for the theoretical and numerical understanding of the force in complex

geometries.

Our time-domain method is again based on the stress tensor formulation of the previous

sections. As noted above, evaluation at imaginary frequencies is unsuitable in the time

domain. We overcome this difficulty by exploiting the equivalence of Sec. 6.3 between the

system for which we wish to compute the Casimir force and a transformed problem in which

all material properties are modified to include dissipation [448]. To illustrate this approach,

we consider a simple choice of contour, corresponding to a conductive medium, that leads to

a simple and efficient time-domain implementation. Finally, using a free, widely-available

FDTD code [150], we compute the force between two vacuum-separated perfectly-metallic

plates, a geometry that is amenable to analytical calculations and which we use to analyze
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various important features of our method. An illustration of the power and flexibility of

this method is provided in Ref. [344], in which we demonstrate computations of the force

in a number of non-trivial (dispersive, three-dimensional) geometries as well as further

refinements to the method.

In what follows, we describe the conceptual development of the FDTD method. The

basic steps involved in computing the force on a body are:

(1) Map the problem exactly onto a new problem with dissipation given by a frequency-

independent conductivity -.

(2) Measure the electric E and magnetic H fields in response to current pulses placed

separately at each point along a surface enclosing the body of interest.

(3) Integrate these fields in space over the enclosing surface and then integrate this result,

multiplied by a known function g(-t), over time t, via Eq. (6.29).

The result of this process is the exact Casimir force (in the limit of sufficient com-

putational resolution), expressed via Eq. (6.29) and requiring only the time-evolution of

Eqs. (6.15-6.16).

In what follows, we describe the mathematical development of our time-domain com-

putational method, starting from Eq. (6.12), in which the Casimir force is expressed as a

contour integral of the frequency-domain stress tensor. We consider the frequency domain

for derivation purposes only, since the final technique outlined above resides entirely in

the time domain. In this framework, computing the Casimir force involves the repeated

evaluation of the photon Green's function Gij over a surface S surrounding the object of

interest. Our goal is then to compute Gij via the FDTD method. The straightforward way

to achieve this involves computing the Fourier transform of the electric field in response to a

short pulse. However, in most methods a crucial step for evaluating the resulting frequency

integral is the passage to imaginary frequencies, corresponding to imaginary time. We show

that, in the FDTD, this gives rise to exponentially growing solutions and is therefore unsuit-

able. Instead, we describe an alternative formulation of the problem that exploits a recently

proposed equivalence in which contour deformations in the complex frequency-domain W(()

correspond to introducing an effective dispersive, dissipative medium at a real "frequency"

(. From this perspective, it becomes simple to modify the FDTD Maxwell's equations for

the purpose of obtaining well-behaved stress tensor frequency integrands. We illustrate our
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approach by considering a contour corresponding to a medium with frequency-independent

conductivity o. This contour has the advantage of being easily implemented in the FDTD,
and in fact is already incorporated in most FDTD solvers. Finally, we show that it is

possible to abandon the frequency domain entirely in favor of evaluating the force integral

directly in the time domain, which offers several conceptual and numerical advantages.

6.4.1 Time Domain Approach

We begin our discussion of time-domain Casimir calculations starting with the frequency-

domain approach discussed in the previous section, in which the force is computed by

repeated evaluation of Eq. (6.11). In evaluating Eq. (6.11), we can choose from a general

class of contours, provided that they satisfy w(0) = 0 and remain above the real ( axis. The

standard contour w(() = if is a Wick rotation, which is known to yield a force integrand

that is smooth and exponentially decaying in ( [304]. In general, the most suitable contour

will depend on the numerical method being employed. A Wick rotation guarantees a strictly

positive-definite and real-symmetric Green's function, making Eq. (6.6) solvable by the most

efficient numerical techniques (e.g. the conjugate-gradient method) [531]. One can also solve

Eq. (6.6) for arbitrary w(() [448], but this will generally involve the use of direct solvers or

more complicated iterative techniques [25]. However, the class of contours amenable to an

efficient time-domain solution is more restricted. For instance, as discussed in Sec. 6.3.1, a

Wick rotation turns out to be unstable in the time domain because it implies the presence

of gain [448].

It is possible to solve Eq. (6.11) in the time domain by evolving Maxwell's equations in

response to a delta-function current impulse J(r, t) = 6(r - r')6(t - t')ej in the direction

of 6e. Gg can then be directly computed from the Fourier transform of the resulting E

field. However, obtaining a smooth and decaying force integrand requires expressing the

mapping w -+ w(() in the time-domain equations of motion. A simple way to exploit to

see the effect of this mapping is to notice that Eq. (6.11) can be viewed as the Green's

function at real "frequency" ( and complex dielectric [448] given by Eq. (6.13), where for

simplicity we have taken y and E to be frequency-independent. We assume this to be

the case for the remainder of the chapter. At this point, it is important to re-emphasize

that the original physical system e at a frequency w is the one in which Casimir forces

and fluctuations appear; the dissipative system Ec at a frequency ( is merely an artificial
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technique introduced to compute the Green's function.

Integrating along a frequency contour w(6) is therefore equivalent to making the medium

dispersive in the form of Eq. (6.13). Consequently, the time domain equations of motion

under this mapping correspond to evolution of the fields in an effective dispersive medium

given by ec(r, ().

To be suitable for FDTD, this medium should have three properties: it must respect

causality, it cannot support gain (which leads to exponential blowup in time-domain), and

it should be easy to implement. A Wick rotation is very easy to implement in the time-

domain: it corresponds to setting Ec = -E. However, a negative epsilon represents gain (the

refractive index is , where one of the signs corresponds to an exponentially growing

solution). We are therefore forced to consider a more general, frequency-dependent E.

Implementing arbitrary dispersion in FDTD generally requires the introduction of auxil-

iary fields or higher order time-derivative terms into Maxwell's equations, and can in general

become computationally expensive [523]. The precise implementation will depend strongly

on the choice of contour w(6). However, almost any dispersion will suit our needs, as long

as it is causal and dissipative (excluding gain). A simple choice is an ec(r, 6) corresponding

to a medium with frequency-independent conductivity o:

r)= e(r) 1 + (6.14)

This has three main advantages: first, it is implemented in many FDTD solvers currently

in use; second, it is numerically stable; and third, it can be efficiently implemented without

an auxiliary differential equation [523]. In this case, the equations of motion in the time

domain are given by:

OpH
a = -V x E (6.15)at

E V x H-oEE-J (6.16)at

Writing the conductivity term as uE is slightly nonstandard, but is convenient here for

numerical reasons. In conjunction with Eqs. (6.3-6.4), and a Fourier transform in (, this
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yields a photon Green's function given by:

V X VX x-2e1(r) 1+ G( r') = o(r - r)e6, (6.17)

This corresponds to picking a frequency contour of the form:

o() (1+ -- , (6.18)

Note that, in the time domain, the frequency of the fields is (, and not w, i.e. their

time dependence is e-t. The only role of the conductivity - here is to introduce an

imaginary component to Eq. (6.17) in correspondence with a complex-frequency mapping.

It also explicitly appears in the final expression for the force, Eq. (6.12), as a multiplicative

(Jacobian) factor.

The standard FDTD method involves a discretized form of Eqs. (6.15-6.16), from which

one obtains E and B, not GE. However, in the frequency domain, the photon Green's

function, being the solution to Eq. (6.6), solves exactly the same equations as those satisfied

by the electric field E, except for a simple multiplicative factor in Eq. (6.3). Specifically,

G- is given in terms of E by:

Gt( , ' iy(r, ), (6.19)

where Ejj (r, () denotes the field in the ith direction due to a dipole current source J(r, t) =

J(t)J(r - r')6j placed at r' with time-dependence J(t), e.g. J(t) = 6(t).

In principle, we can now compute the electric- and magnetic-field correlation functions

by using Eqs. (6.9-6.10), with w(() given by Eq. (6.18), and by setting r = r' in Eq. (6.10).

Since we assume a discrete spatial grid, no singularities arise for r = r', and in fact any

r-independent contribution is canceled upon integration over S. This is straightforward

for Eq. (6.9), since the E-field correlation function only involves a simple multiplication by

w2 ( ). However, the H-field correlation function, Eq. (6.10), involves derivatives in space.

Although it is possible to compute these derivatives numerically as finite differences, it is

conceptually much simpler to pick a different vector potential, analogous to Eqs. (6.3-6.4),

in which H is the time-derivative of a vector potential AH. As discussed in the Appendix,

this choice of vector potential implies a frequency-independent magnetic conductivity, and
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a magnetic, instead of electric, current. The resulting time-domain equations of motion are:

/ H -V x E + -pH -- J (6.20)at
a_ = VxH (6.21)at

In this gauge, the new photon Green's function G - (A(r,()AY (r',()) and the field H

in response to the current source J are related by:

GY((;r,r') = - . (6.22)

where the magnetic-field correlation function:

(Hi(r, ()H( = -r 2 (()Gi(; r, r'), (6.23)
Ir

is now defined as a frequency multiple of G rather than by a spatial derivative of G9.

This approach to computing the magnetic correlation function has the advantage of

treating the electric and magnetic fields on the same footing, and also allows us to exam-

ine only the field response at the location of the current source. The removal of spatial

derivatives also greatly simplifies the incorporation of discretization into our equations (see

Appendix for further discussion). The use of magnetic currents and conductivities, while

unphysical, are easily implemented numerically. Alternatively, one could simply interchange

E and p, E and H, and run the simulation entirely as in Eqs. (6.15-6.16).

The full force integral is then expressed in the symmetric form:

F = Im - d g( ) (P ( ) + rF ()), (6.24)

where

ff()e(r) Ej(r)- oi ZEk,(r) dSj (6.25)

S j 2  k/

> (r) (Hij (r) - -6jE Hk, k(r)) dSj (6.26)

represent the surface-integrated field responses in the frequency domain, with Ejj (r)
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Eg, (r; (). For notational simplicity, we have also defined:

_( W - ( (6.27)
z( () d<

Here, the path of integration has been extended to the entire real i-axis with the use of the

unit-step function 8(() for later convenience.

The product of the fields with g(() naturally decomposes the problem into two parts:

computation of the surface integral of the field correlations F, and of the function g().

The Fj contain all the structural information, and are straightforward to compute as the

output of any available FDTD solver with no modification to the code. This output is then

combined with g(), which is easily computed analytically, and integrated in Eq. (6.24)

to obtain the Casimir force. As discussed in Sec. 6.6.1, the effect of spatial and temporal

discretization enters explicitly only as a slight modification to g(() in Eq. (6.24), leaving

the basic conclusions unchanged.

6.4.2 Evaluation in the Time Domain

It is straightforward to evaluate Eq. (6.24) in the frequency domain via a dipole current

J(t) = 3(t), which yields a constant-amplitude current J(() = 1. Using the frequency-

independent conductivity contour Eq. (6.18), corresponding to Eqs. (6.15-6.16), we find

the following explicit form for g(():

g(-) = -i(1 + - 1 +i (/2E) (6.28)

One important feature of Eq. (6.28) is that g(() -+ fia 3/( becomes singular in the limit

as ( -+ 0. Assuming that FE() and FH(s) are continuous at ( = 0 (in general they will

not be zero), this singularity is integrable. However, it is cumbersome to integrate in the

frequency domain, as it requires careful consideration of the time window for calculation of

the field Fourier transforms to ensure accurate integration over the singularity.

As a simple alternative, we use the convolution theorem to re-express the frequency (()

integral of the product of g() and FE(() arising in Eq. (6.24) as an integral over time t of

their Fourier transforms g(-t) and FE(t). Technically, the Fourier transform of g(() does

not exist because g(() - ( for large (. However, the integral is regularized below using
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the time discretization, just as the Green's function above was regularized by the spatial

discretization. (As a convenient abuse of notation, arguments will always denote functions

in the frequency domain, and t arguments their Fourier transforms in the time domain.)

Taking advantage of the causality conditions (FE(t), FH(t) - 0 for t < 0) yields the

following expression for the force expressed purely in the time domain:

Fi Im dt g(-t) (1fT(t) + F1 (t)) (6.29)
7r 0

The advantage of evaluating the force integral in the time domain is that, due to the

finite conductivity and lack of sources for t > 0, 1F(t) will rapidly decay in time. As will be

shown in the next section, g(-t) also decays with time. Hence, although dissipation was

originally introduced to permit a natural high-frequency cutoff to our computations, it also

allows for a natural time cutoff T. We pick T such that, for times t > T, knowledge of the

fields will not change the force result in Eq. (6.29) beyond a predetermined error threshold.

This approach is very general as it requires no precise knowledge of how the fields decay

with time.

6.4.3 Properties of g(-t)

Given g( ), the desired function g(-t) is a Fourier transform. However, the discretization of

time in FDTD implies that the frequency domain becomes periodic and that g(t) = g(nAt)

are actually Fourier series coefficients, given by:

g(nAt) = d ) 2 gr/At (6.30)

where 9A(() is the discretized form of Eq. (6.27) and is given in the Appendix by Eq. (6.43).

These Fourier series coefficients are computed by a sequence of numeric integrals that can

be evaluated in a variety of ways. It is important to evaluate them accurately in order to

resolve the effect of the ( = 0 singularity. For example, one could use a Clenshaw-Curtis

scheme developed specifically for Fourier integrals [407], or simply a trapezoidal rule with

a large number of points that can be evaluated relatively quickly by an FFT (e.g. for this

particular g((), 107 points is sufficient).

Since it is possible to employ strictly-real current sources in FDTD, giving rise to real 7,

and since we are only interested in analyzing the influence of g(t) on Eq. (6.29), it suffices to
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Figure 6-4: |Im g(t) for various values of o, illustrating the transition from t-1 to t- 1/2

power-law decay as o- increases. Because there are strong oscillations in g(t) at the Nyquist
frequency for intermediate o-, for clarity we plot the positive and negative terms in g(t) as
separate components.

look at Img(-t). Furthermore, g(t) will exhibit rapid oscillations at the Nyquist frequency

due to the delta-function current, and therefore it is more convenient to look at its absolute

value. Figure 6-4, below, plots the envelope of IIm g(-t)| as a function of t, where again,

g(t) is the Fourier transform of Eq. (6.27). As anticipated in the previous section, g(t)

decays in time. Interestingly, it exhibits a transition from - t- 1 decay at a = 0 to ~ t-1/2

decay for large -. The slower decay at long times for larger a arises from a transition in

the behavior of Eq. (6.28) from the singularity at ( = 0.

Computing g(t) straightforwardly, as was done in Fig. 6-4, is possible, provided one

impose a high-frequency Nyquist cutoff. However, as argued in Ref. [344], there are a

number of important simplifications that make it easier to compute both g(t) and F(t).

(The remainder of this subsection is work described in Ref. [344].)

In particular, as noted above, g(() diverges in the high-frequency limit. For large (, g( )

has the form:

g( ) -+ g1() -E () + -6(() as -+ oc (6.31)

Viewing gi () as a function, we can only compute its Fourier transform gi(t) by introducing

a cutoff in the frequency integral at the Nyquist frequency, since the time signal is only

defined up to a finite sampling rate and the integral of a divergent function may appear to

be undefined in the limit of no cutoff. (This was in fact the case in Fig. 6-4.)

Applying this procedure to compute g(-t) yields a time series that has strong oscillations

at the Nyquist frequency. The amplitude of these oscillations can be quite high, increasing
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the time needed to obtain convergence and also making any physical interpretation of the

time series more difficult.

These oscillations are entirely due to the high-frequency behavior of g((), where g()

91( ). However, g(t) and g(() only appear when they are being integrated against smooth,

rapidly decaying field functions F(x, t) or F(x, (). In this case, g can be viewed as a tempered

distribution (such as the 6-function) [463]. Although g(() diverges for large (, this divergence

is only a power law, so it is a tempered distribution and its Fourier transform is well-defined

without any truncation. In particular, the Fourier transform of g1(() is given by:

1(-t) = rt2 + (6.32)

Adding and subtracting the term gi ( ) from g( ), the remaining term decays to zero

for large ( and can be Fourier transformed numerically without the use of a high-frequency

cutoff, allowing g(-t) to be computed as the sum of gi(t) plus the Fourier transform of

a well-behaved function. This results in a much smoother g(-t) which will give the same

final force as the g(-t) used in Ref. [449], but will also have a much more well-behaved

time dependence. In Fig. 6-5 we plot the convergence of the force as a function of time for

the same system using the g(-t) obtained by use of a high-frequency cutoff and for one in

which g1(6) is transformed analytically and the remainder is transformed without a cutoff.

The inset plots Img(-t) obtained without using a cutoff (since the real part is not used in

this work) for o- = 10.

In addition to the treatment of the high-frequency divergence, we find it convenient

to also Fourier transform the low-frequency singularity of g( ) analytically. As discussed

above, the low-frequency limit of g(6) is given by:

/>3/2

y() - 92(1) - N( ) as ( -+ 0 (6.33)

The Fourier transform of 92(6), viewed as a distribution, is:

92(-t) = a (6.34)
45f- ti/2

After removing both the high- and low-frequency divergences of g((), we perform a

numerical Fourier transform on the function 6g(() =g() - gi(6) - 92(6), which is well-
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Figure 6-5: Plot of the force error (force after a finite time integration vs. the force after

a very long run time) for g(t) determined from a numerical transform as in Ref. [449] and

from the analytic transform of the high-frequency components. Inset: Im[g(-t)] obtained

without a cutoff, in which the high-frequency divergence is integrated analytically. Compare

with Fig. 1 of Ref. [449]

behaved in both the high- and low-frequency limits. The imaginary part of g(-t) is thus

given by:

Im[g(-t)] = Im(og(-t)) + 2 + 02 + 4I ti3/2 (6.35)27r \ t2  tJ ~7 t1/2

6.5 The Finite-Difference Time-Domain Method

In this section we discuss the practical implementation of the time-domain algorithm (us-

ing a freely-available time domain solver [150] that required no modification). We analyze

its properties applied to the simplest parallel-plate geometry [Fig. 6-6], which illustrate the

essential features in the simplest possible context. In particular, we analyze important com-

putational properties such as the convergence rate and the impact of different conductivity

choices.

6.5.1 Fields in Real Time

The dissipation due to positive o- implies that the fields, and hence IE(t), will decay ex-

ponentially with time. Below, we use a simple one-dimensional example to understand the

consequences of this dissipation for both the one-dimensional parallel plates and the two-

dimensional piston configuration. The simplicity of the parallel-plate configuration allows

us to examine much of the behavior of the time-domain response analytically. (The under-

standing gained from the one-dimensional geometry can be applied to higher dimensions.)
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Figure 6-6: PF(t) + PF (t) for a set of one-dimensional parallel plates as the separation h is
varied. The inset shows the physical setup.

Furthermore, we confirm that the error in the Casimir force due to truncating the simulation

at finite time decreases exponentially (rather than as t- 1 , as it would for no dissipation).

6.5.2 Parallel Plates

To gain a general understanding of the behavior of the system in the time domain, we

first examine a simple configuration of perfectly metallic parallel plates in one dimension.

The plates are separated by a distance h (in units of an arbitrary distance a) in the x

dimension, as shown by the inset of Fig. 6-6. The figure plots the field response PF(t) +

Pf'(t), in arbitrary units, to a current source J(t) = 6(t) for increasing values of h, with

the conductivity set at o- = 10 (2irc/a).

Figure 6-6 shows the general trend of the field response as a function of separation.

For short times, all fields follow the same power-law envelope, and later rapidly transition

to exponential decay. Also plotted for reference is a t-3 /2 curve, demonstrating that the

envelope is in fact a power law.

We can understand the power law envelope by considering the vacuum Green's function

GE in the case h -+ 00 (analogous conclusions hold for GH). In the case h - 00, one

can easily solve for the vacuum Green's function GE(K r - r') in one dimension for real

frequency (:

GEQ r r) = .rr (6.36)

Z

We then analytically continue this expression to the complex frequency domain via Eq. (6.18)

and compute the Fourier transform f d~ei*GE(w(()). Setting r = r' in the final expression,

one finds that, to leading order, GE~t -3/2 . This explains the behavior of the envelope
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in Fig. 6-6 and the short-time behavior of the Green's functions: it is the field response of

vacuum.

Intuitively, the envelope decays only as a power in t because it receives contributions

from a continuum of modes, all of which are individually decaying exponentially (this is

similar to the case of the decay of correlations in a thermodynamic system near a critical

point [183]). For a finite cavity, the mode spectrum is discrete - the poles in the Green's

function of the non-dissipative physical system are pushed below the real frequency axis in

this dissipative, unphysical system, but they remain discretely spaced.

At short times, the field response of a finite cavity will mirror that of an infinite cav-

ity because the fields have not yet propagated to the cavity walls and back. As t in-

creases, the cavity response will transition to a discrete sum of exponentially decaying

modes. From Eq. (6.18), higher-frequency modes have a greater imaginary-frequency com-

ponent, so at sufficiently long times the response will decay exponentially, the decay being

determined by the lowest-frequency cavity mode. The higher the frequency of that mode,

the faster the dissipation.

This prediction is confirmed in Fig. 6-6: as h decreases, the source "sees" the walls

sooner. From the standpoint of computational efficiency, this method then works best when

objects are in close proximity to one another (although not so close that spatial resolution

becomes an issue), a situation of experimental interest.

6.5.3 Force Convergence in Time

We now examine the force on the parallel plates. From the above discussions of the field

decay and the decay of g(t), we expect the time integral in Eq. (6.29) to eventually converge

exponentially as a function of time. In the interest of quantifying this convergence, we define

the time dependent "partial force" Fi(t) as:

Fi(t) = Im - j dt' g(-t') (Fl(t') + 1F(t')) (6.37)
7F 0

Letting Fi(oo) denote the t -- oc limit of F(t), which is the actual Casimir force, we

define the relative error Ai(t) in the i-th component of the force as:

Fi (t) - F(oo) (6.38)
Fi(oo)

182



0.08

0

Q-0.04

-0.08,
5 10 15 20 25 30 35 40 45

t (a/c)

Figure 6-7: Partial force as defined in Eq. (6.37) for one-dimensional parallel plates as a
function of time t. (Inset): Relative error A(t) as a function of t on a semi log scale.

We plot F (t) in Fig. 6-7 for the one-dimensional parallel-plate structure with different

values of a. The inset plots A(t) for the same configuration. As expected, the asymptotic

value of F(t) is independent of a, and A(t) converges exponentially to zero.

For a near zero, the force is highly oscillatory. In one dimension this gives the most

rapid convergence with time, but it is problematic in higher dimensions. This is because, in

higher-dimensional systems, S consists of many points, each contributing a response term

as in Fig. 6-7. If a is small, every one of these terms will be highly oscillatory, and the

correct force Eq. (6.37) will only be obtained through delicate cancellations at all points on

S. Small a is thus very sensitive to numerical error.

Increasing a smooths out the response functions, as higher frequency modes are damped

out. However, somewhat counter-intuitively, it also has the effect of slowing down the

exponential convergence. One can understand the asymptotic behavior of the force by

considering the equations of motion Eq. (6.17) as a function of a and (. When the response

function exhibits few if any oscillations we are in the regime where a- > . In this limit, the

approximate equations of motion are:

V x V x -- ioe(r) Gj ((; r, r') = 6(r - r')ej (6.39)

In the limit of Eq. (6.39), the eigenfrequency ( of a given spatial mode scales proportional

to -i/o. The lowest-frequency mode therefore has a time-dependence ~ e-Ct/o-, for some

constant C > 0. Since the decay of the force at long times is determined by this mode, we

expect the decay time to scale inversely with a in the limit of very high o-. This is suggested
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in Fig. 6-7 and confirmed by further numerical experiments.

Additionally, from Eq. (6.39) we see that in the case of a homogeneous one-dimensional

cavity, the solutions have a quadratic dispersion ( ~ ik 2, for spatial dependence eikx, and so

the lowest cavity frequency scales as the inverse square of the cavity size. This means that

the rate of exponential convergence of Fig. 6-6 should vary as - h- 2 in the limit of very

large a. This scaling is approximately apparent from Fig. 6-6, and further experiments for

much larger a confirm the scaling. We thus see that in this limit, the effect of increasing a

by some factor is analogous to increasing the wall spacing of the cavity by the square root

of that factor.

The present analysis shows that there are two undesirable extremes.. When a is small,

rapid oscillations in F(t) will lead to large numerical errors in more than one dimension.

When a is large, the resulting frequency shift will cause the cavity mode to decay more

slowly, resulting in a longer run time. The optimal a lies somewhere in between these two

extremes and will generally depend on the system being studied. For the systems considered

in this thesis, with a typical scale ~ a, a - 1 (21rc/a) appears to be a good value for efficient

and stable time-domain computation.

6.6 Implementing the FDTD Method

In this section, we discuss some of the considerations that went into implementing the above

time-domain approach in the FDTD method.

6.6.1 Temporal Discretization

FDTD algorithms approximate both time and space by a discrete uniform mesh. Bearing

aside the standard analysis of stability and convergence [523], this discretization will slightly

modify the analysis in the preceding sections. In particular, the use of a finite temporal grid

(resolution At) implies that all continuous time derivatives are now replaced by a finite-

difference relation, which is in the case of Maxwell's equations is commonly taken to be a

forward difference:
Of fi(r, t + At) - fi(r, t) (d)

-t ~t - f (6.40)
ot At

where f(t) is an arbitrary function of time. The effect of temporal discretization is therefore

to replace the linear operator 0/t with 8,d) The representation of this operator is simple
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to compute in the frequency domain. Letting 8 d) act on a Fourier component of f(t) yields:

O d) = -de~, (6.41)

where

+) sin e 2 (6.42)At 2

The effect of discretization on the system is thus to replace i( by id in the derivatives,

which corresponds to numerical dispersion arising from the ultraviolet (Nyquist) frequency

cutoff 7r/At. This not only affects the solutions to Eqs. (6.15-6.16), but also the complex-

frequency mapping of Eq. (6.18): the mapping -> -() = (1 + io/( becomes -

Wd() = (d 1 + iu/ d. Note that ( is still the frequency parameter governing the time

dependence of the Fourier components of f (t) and (d --+ in the limit of infinite resolution

(At -+ 0). In this limit, our original mapping is restored and FDTD yields the correct

temporal evolution of the fields. In practice, accurate convergence is achieved for reasonable

resolutions, because Casimir forces are dominated by frequency contributions much smaller

than the Nyquist frequency. The dominant frequency contributions to the Casimir force are

bounded from above by a frequency ~ 1/f, where f is determined by a typical lengthscale,

e.g. body sizes and separations.

Because FDTD is convergent [(d = (+O(At 2)], most of the analysis can be performed (as

in this thesis) in the At - 0 limit. However, care must be taken in computing g(t) because

the Fourier transform of g((), Eq. (6.27), does not exist as At -+ 0. We must compute it

in the finite At regime. In particular, the finite resolution requires, via Eq. (6.42), that we

replace g(w) in Eq. (6.27) by:
2 do

gd(()- d - (6.43)
i2dJ(() d(

Note that the Jacobian factor dw/d involves w and (, not wd(() = ( 1 + ior/d and (d,

although of course the latter converge to the former as At -+ 0. The basic principle is that

one must be careful to use the discrete analogues to continuous solutions in cases where

there is a divergence or regularization needed. This is the case for g( ), but not for the

Jacobian.

Similarly, if one wished to subtract the vacuum Green's function from the Green's func-

tion, one needs to subtract the vacuum Green's function as computed in the discretized
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vacuum. Such a subtraction is unnecessary if the stress tensor is integrated over a closed

surface (vacuum'contributions are constants that integrate to zero), but is useful in cases

like the parallel plates considered here. By subtracting the (discretized) vacuum Green's

function, one can evaluate the stress tensor only for a single point between the plates, rather

than for a "closed surface" with another point on the other side of the plates [304].

As was noted before Eq. (6.30), the Nyquist frequency r/At regularizes the frequency

integrations, similar to other ultraviolet regularization schemes employed in Casimir force

calculations [303, 342]. Because the total frequency integrand in Eq. (6.1) goes to zero

for large ( (due to cancellations occurring in the spatial integration and also due to the

dissipation introduced in our approach), the precise nature of this regularization is irrelevant

as long as At is sufficiently small (i.e., at high enough resolution).

6.6.2 The Magnetic Correlation Function

One way to compute the magnetic correlation function is by taking spatial derivatives

of the electric Green's function by Eq. (6.8), but this is inefficient because a numerical

derivative involves evaluating the electric Green's function at multiple points. Instead, we

compute the magnetic Green's function directly, finding the magnetic field in response to a

magnetic current. This formulation, however, necessitates a change in the choice of vector

potentials [Eqs. (6.3-6.4)] as well as a switch from electric to magnetic conductivity, for

reasons explained in this section.

Eqs. (6.3-6.4) express the magnetic field B as the curl of the vector potential AE

enforcing the constraint that B is divergence-free (no magnetic charge). However, this is

no longer true when there is a magnetic current, as can be seen by taking the divergence of

both sides of Faraday's law with a magnetic current J, OB/8t = -V x E - J, since V -J f 0

for a point-dipole current J. Instead, because there need not be any free electric charge in

the absence of an electric current source, one can switch to a new vector potential AH such

that

EE (r, w) = (V x)i A' (r, w) (6.44)

Hi (r, w) = -iWA H (r, w). (6.45)
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The desired correlation function is then given, analogous to Eq. (6.7), by

(Hi(r, w)Hj(r',)) = w2 ImG4 (w; r, r'), (6.46)

where the photon magnetic Green's function GH solves [similar to Eq. (6.6)]

V X () V x - w2 p(r, Lo) Gj H(w; r, r') = 6(r - r')e6. (6.47)

Now, all that remains is to map Eq. (6.47) onto an equivalent real-frequency (() system

that can be evaluated in the time domain, similar to Sec. 6.4.1, for w(() given by Eq. (6.18).

There are at least two ways to accomplish this. One possibility, which we have adopted

here, is to define an effective magnetic permeability pc = pw2 (g)/g 2, corresponding to a

magnetic conductivity, similar to Eq. (6.13). Combined with Eq. (6.18), this directly yields

a magnetic conductivity as in Eq. (6.20).

A second possibility is to divide both sides of Eq. (6.47) by w2/ 2 - 1 + ia/i, and

absorb the 1 + iu/ factor into e via Eq. (6.13). That is, one can compute the magnetic

correlation function via the magnetic field in response to a magnetic current with an electric

conductivity. However, the magnetic current in this case has a frequency response that is

divided by 1+ i-/(, which is simply a rescaling of J(() in Eq. (6.22). There is no particular

computational advantage to this alternative, but for an experimental realization [448], an

electric conductivity is considerably more attractive. [Note that rescaling J(() by 1 + ior/w

will yield a new g(() in Eq. (6.27), corresponding to a new g(t) that exhibits slower decay.]

6.6.3 Material Dispersion

In this section, we extend the time-domain formalism presented above to cases where the

dielectric permittivity of the medium of interest is dispersive. To begin with, note that in

this case the dissipative, complex dielectric ec of Eq. (6.48) is given by:

Ec(r, ) = E(r, w()), (6.48)

where e(r, w(()) denotes the permittivity of the geometry of interest evaluated over the

complex contour w(().

This complex dielectric manifests itself as a convolution in the time-domain equations
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of motion, i.e. in general, D(t) = f dt'Ec(t - t')E(t'). The standard way to implement

this in FDTD is to employ an auxiliary equation of motion for the polarization [588]. For

the particular contour chosen here [Eq. (6.18)], the conductivity term already includes the

prefactor w2/g 2 and therefore one need only add the dispersion due to E(r, w()).

The only other modification to the method comes from the dependence of FE( ) in

Eq. (6.25) on 6. We remind the reader that our definition of F was motivated by our desire

to interpret Eq. (6.24) as the Fourier transform of the convolution of two quantities, and

thus to express the Casimir force directly in terms of the electric and magnetic fields E(t)

and H(t), respectively. A straightforward generalization of Eq. (6.25) to dispersive media

entails setting e(r) -+ E(r,.w). However, in this case, the Fourier transform of Eq. (6.25)

would be given by a convolution of E(() and e(r E S, w( )) in the time domain, making

it impossible to obtain FE(t) directly in terms of E(t). This is not a problem however,

because the stress tensor must be evaluated over a surface S that lies entirely within a

uniform medium (otherwise, S would cross a boundary and interpreting the result as a

force on particular objects inside S would be problematic). The dielectric appearing in

Eq. (6.25) is then at most a function of w((), i.e. e(r E Sw) = e(w), which implies that

we can simply absorb this factor into g(), modifying the numerical integral of Eq. (6.30).

Furthermore, the most common case considered in Casimir-force calculations is one in which

the stress tensor is evaluated in vacuum, i.e. e(r E S, w) = 1, and thus dispersion does not

modify g( ) at all.

6.6.4 Overview of the Algorithm

In what follows, we summarize the time-domain Casimir method presented above, which

leads to the following numerical algorithm to compute the Casimir force on an object:

(1) Pick a contour w(() over which to integrate the Casimir force. (For the class of

contours considered here, Eq. (6.18), this corresponds to choosing a value for o-.)

(2) Pick a surface of integration S around the body of interest, depicted by the black

contour in Fig. 6-8.

(3) Compute g(nAt), given by Eq. (6.30), by numerically integrating gd((), given by

Eq. (6.43). Note that the particular form of gd( ) will depend on W( ), the temporal

discretization At, the dielectric response at the surface of integration E(r E S, w) =
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Figure 6-8: Schematic illustration of a possible contour around a body; the force on the
body as computed by Eq. (6.49), involves an integral of the fields over the contour S.

E(w), and the particular choice of current source--here, we only consider temporal

delta-function current sources, i.e. J(() = 1. (Note that this step of the algorithm

does not depend on geometry or the solution of the field equations. Thus, one can

compute g(nAt) with very high accuracy and also store it for future use.)

(4) For every grid point r E S on the discretized surface S, and for each polarization Bj:

(a) Time-evolve Eqs. (6.15-6.16) and Eqs. (6.20-6.21) in response to a dipole current

source J(r, nAt) = J(nAt)Bj, where J(nAt) = 6o,o/At is the discretized version

of a delta function.

(b) Obtain the electric Ejj = E (r, nAt) and magnetic Hij = Hi(r, nAt) fields at

position r, and at each time step nAt.

(c) Terminate the simulation once the fields have decayed beyond a desired error

threshold (a time T = NAt determined by o-, as discussed in Sec. 6.5.3).

(5) Integrate Ejj and Hij over the contour S to obtain Jj(nAt) and 17'(nAt), as in

Eqs. (6.25-6.26). (Note that the spatial integral over the contour S is in fact a

summation.)

(6) The force in the ith direction is given by a discretized form of Eq. (6.29):

F = Im 7 g(nAt) (F19(nAt) + F (nAt)) (6.49)
n=o
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6.6.5 Spatial Discretization

The FDTD algorithm involves a discretization of both space and time. The former leads to

some subtleties in the implementation of the above algorithm, because the standard spatial

discretization of FDTD is a Yee lattice in which different field components are discretized at

different point in space [523]. For example, the grid for E, is offset by half a pixel from the

grids for Ey and Hz. This "staggered" grid is important to obtain second-order accuracy

in discretizing the spatial derivatives, and also leads to other important properties of the

algorithm [523]. However, it complicates the computation of the Casimir force, because

evaluating the stress tensor requires all components of the electric and magnetic fields to

be evaluated at the same point.

The standard solution, which we use [150] and is also commonly implemented in FDTD

software, is to simply linearly interpolate the different field components to the same point

by averaging fields at adjacent grid points. As long as one interpolates to a point that is

centered with respect to the different grids, such as the center of a pixel/voxel, this inter-

polation is second-order accurate. Accurate centered interpolation is especially important

for Casimir forces because the net force involves delicate cancellations.

When a discontinuous boundary between two materials is discretized, the standard

FDTD method becomes only first-order accurate, although there are schemes to restore

second-order accuracy for both dielectric [120, 150] and perfect-conductor [523, 589] in-

terfaces. There is an additional difficulty for Casimir calculations, however, because they

involve a singular Green's function. The Green's function itself is always singular since

we are evaluating the source and field at the same point, but ordinarily this singularity is

subtracted out (for analytical regularizations) or in any case integrates to zero contribu-

tion to the net force [443]. Near an interface, however, there is an additional singularity

due to reflection, which can be thought of as the singularity in the Green's function of an

image source on the other side of an interface [231]. Analytically, this additional term is

not problematic, since the stress-tensor integral must yield the same result independent of

the integration surface S, even if S is very close to a material interface. Numerically, on

the other hand, we have observed that the additional singularity in the Green's function

exacerbates the spatial discretization error-the solution still converges at the same rate,

O(Ax) or O(AX2) depending on which interface-discretization scheme is used, but the con-
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stant factor becomes larger as S approaches an interface. We dealt with this problem in two

ways: First, we typically choose S to be midway between interfaces in order to maximize

the distance from the interfaces. Second, we implemented the subtraction scheme described

in Ref. [4431, subtracting the stress integral for a second computation involving an isolated

object for which the net force is theoretically zero, and we again observe that this greatly

improves the constant coefficient in the convergence rate.

Finally, we should mention one pitfall to avoid in implementing the magnetic Green's

function. Two approaches to computing the magnetic Green's function were described in

Sec. 6.6.2, but there is also a third approach. Since Maxwell's equations are equivalent under

interchange of E and H and e and P, one could compute the magnetic Green's function by

simply recomputing the electric Green's function with e and y swapped (exchanging any

perfect electric conductors for perfect magnetic conductors). However, because E and y are

discretized slightly differently in a Yee-scheme FDTD implementation (due to the different

grids of E and H), this approach can lead to subtle errors because it could change the

volume of the objects being discretized. Even though the change in volume is of O(Azx),

the contribution from this change of volume need not converge to zero as Ax -- 0, because

of the formally infinite energy density in the vacuum energy (due to the singularity of the

Green's function). Therefore, we recommend computing the magnetic Green's function via

the response to a magnetic current as described earlier.

6.7 Concluding Remarks

An algorithm to compute Casimir forces in FDTD has several practical advantages. FDTD

algorithms that solve Maxwell's equations with frequency-independent conductivity, and

even more complicated dispersions, are plentiful and well-studied. They are stable, conver-

gent, and easily parallelized. Although the current formulation of our method requires the

evaluation of Gij(r) along a surface S, requiring a separate calculation of the fields for each

dipole source in S, all of these sources can be simulated in parallel, with no communication

between different simulations until the very end of the computation. In addition, many

FDTD solvers will allow the computational cell for each source to be parallelized, providing

a powerful method capable of performing large computations.

The calculations of this chapter employed non-dispersive materials in the original (w)
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system. However, the theoretical analysis applies equally well to materials of arbitrary

dispersion. Any materials that can be implemented in an FDTD solver (e.g. a sum of

Lorentzian dielectric resonances [523]) can also be included, and existing algorithms have

demonstrated the ability to model real materials [523, 588]. Existing FDTD implementa-

tions also handle anisotropy in E and p, multiple types of boundary conditions, and other

complications [523].

In principle, the computational scaling of this FDTD method is comparable to finite-

difference frequency-domain (FDFD) methods [443]. In both cases, each solver step (either

a time step for FDTD or an iterative-solver step for FDFD) requires O(N) work for N

grid points. The number of time steps required by an FDTD method is proportional to

the diameter of the computational cell, or Nl/d in d dimensions. With an ideal multigrid

solver, FDFD can in principle be solved by 0(1) solver steps, but a simpler solver like

conjugate gradient requires a number of steps proportional to the diameter as well [443].

In both cases, the number of points to be solver on the surface S is O(N 1- 1/d). Hence, the

overall complexity of the simplest implementations (not multigrid) is O(N 2). We believe

that future boundary-element methods [434, 443] will achieve better efficiency, but such

methods require considerable effort to implement and their implementation is specific to

the homogeneous-medium Green's function, which depends on the boundary conditions,

dimensionality and types of materials considered [430].

In Ref. [344] we illustrate the method in various non-trivial two- and three-dimensional

geometries, including dispersive dielectrics. In addition, we introduce an optimization of

our method (based on a rapidly converging series expansion of the fields) that greatly speeds

up the spatial integral of the stress tensor. We also compute forces in three-dimensional

geometries with cylindrical symmetry, which allows us to take advantage of the cylindri-

cal coordinates support in existing FDTD software [150] and employ a two-dimensional

computational cell.
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Chapter 7

Casimir Forces Between

Vacuum-Separated Metals

"At the moment it's just a notion, but with a bit of backing I think I could turn it into a

concept, and then an idea." Woody Allen

7.1 Overview

The previous chapters described a number of computational methods, based on the finite-

difference method, that directly exploit standard techniques from numerical electromag-

netism, and which allow calculations of Casimir forces in arbitrary geometries and ma-

terials. In this chapter, we demonstrate the flexibility and capabilities of these numerical

methods by presenting results on a number of complicated geometries consisting of vacuum-

separated metallic objects. Section 7.2 describes a geometry composed of four z-invariant

metallic objects, two cylinders adjacent to two metallic walls, exhibiting an interesting

non-monotonic dependence arising purely from the non-additivity of the Casimir force-in

fact, as argued below, the effect is impossible to explain, even qualitatively, using simple

two-body (pairwise-interaction) approximations. The effect is explored for cylinders of dif-

ferent cross-sectional shape (squares, cylinders), and also for metallic and magnetic plates.

Section 7.3 explains this effect using a perturbative Casimir-force computational method

known as ray-optics that captures many-body effects. Finally, Sec. 7.4 presents calculations

demonstrating one-dimensional Casimir stability in a glide-symmetric geometry consisting

of interlocked brackets in which repulsion is obtained via a competition of attractive sur-
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faces that can be explained using simple pairwise approximations. This type of repulsion

may be of relevance to micro-electromechanical system.

7.2 Multi-Body Nonmonotonic Effects

In what follows, we study a pistonlike geometry introduced in Ref. [442] involving two

infinite dielectric or metallic cylinders adjacent to two metallic plates (a distance h away),

in two and three dimensions, and demonstrate nonadditive and nonmonotonic changes in

the force due to these lateral plates. Rahi et. al showed this effect to be a consequence

of the screening (enhancement) of the interactions by the fluctuating charges (currents) on

the two cylinders and their images on the nearby plates, using a simple argument based

on the method-of-images [428]. This work involved circular cylinders, and is described in

Sec. 7.2.2. Finally, using a ray-optics approximation that is exact in the h = 0 limit, we

examine the h > 0 case (not exact due to the fact that ray optics neglects diffraction effects),

and show that ray optics is able to qualitatively reproduce the non-monotonicity identified

in the exact calculation. In this sense, the ray optics is shown to capture the most essential

features of the multi-body interaction, unlike simpler pairwise-interaction approximation,

such as the proximity-force approximation (PFA). Using ray-optics, it becomes possible to

quantify the impact of diffraction on the Casimir force in this geometry.

7.2.1 Generalized Casimir Piston

We consider a complicated geometry in which there are interactions between multiple bodies:

a two-dimensional "piston"-like structure, shown in Fig. 7-1, consisting of two metal s x s

squares separated by a distance a from one another (here, s = a) and separated by a

distance h from infinite metal plates on either side. In particular, we compute the Casimir

force between the two squares, in two dimensions (that is, for z-invariant fields, unlike the

standard Casimir force in which z oscillations are included), as a function of the separation

h. We perform these calculations using a proof-of-concept implementation of the FDFD

method of chapter 5. The result for perfect conductors is shown in Fig. 7-1, plotted for

the TE and TM polarizations and also showing the total force. In the limit of h -> 0, this

structure approaches the "Casimir piston," which has been solved analytically for the 2d

TM polarization [79, 208], and our TM force, linearly extrapolated to h = 0, agrees with
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Figure 7-1: Casimir force between 2d (z-invariant fields) metal squares F/FPFA, vs. distance
from metal plate h (inset), normalized by the total force (TE+TM) obtained using the PFA,
FPFA = hc((3)s/87ra3. The total force is plotted (black squares) along with the TE (red
dots) and TM (blue circles) contributions.

this result to within 4% (although we have computational difficulties for small h due to the

high resolution required to resolve a small feature in FDFD). For h > 0, however, the result

is surprising in at least two ways. First, the total force is non-monotonic in h, due to a

competition between the TE and TM contributions to the forces. Second, the h dependence

of the force is a lateral effect of the parallel plates on the squares, which would be zero by

symmetry in PFA or any other two-body-interaction approximation.

Although lateral forces can still arise qualitatively in various approximations, such as

in ray optics or in PFA restricted to "line-of-sight" interactions, it may not be immediately

clear how these could predict non-monotonicity. We also note that, in the large-h limit, the

force remains different from PFA due to finite-s "edge" effects [178], which are captured by

our method. It turns out that one can qualitatively predict the non-monotonic behavior,

due to the competition between TE and TM forces, using the ray-optics approximation,

although this approximation is not quantitatively accurate except for h = 0; this is described

in Sec. 7.3, based on the work in Ref. [590].

To further explore the source of the h-dependence, we plot the TM interaction-stress

maps A(Tz) and A(Ty) in Fig. 7-2, for the perfect-metal squares at a typical frequency

w = 27rc/a, and for varying distances from the metal plates (h = 0.5, 1.0, 2.0). As shown,

the magnitudes of both the xx (a-c) and xy (d-f) components of the stress tensor change

dramatically as the metal plates are brought closer to the squares. For example, one change

in the force integral comes from TxY, which for isolated squares has an asymmetric pattern
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Figure 7-2: (a-f): TM stress map of the geometry in Fig. 7-1 for various h. The interaction-

stress tensors (Txx) (left) and (Ty) (right) for: (a),(d): h = 0.5a; (b),(e): h = a; and

(c),(f): h = 2a, where blue/white/red = repulsive/zero/attractive.

at the four corners that will contribute to the attractive force, whereas the presence of

the plates induces a more symmetric pattern of stresses at the four corners that will have

nearly zero integral. This results in a decreasing TM force with decreasing h as observed in

Fig. 7-1. Because stress maps indicate where bodies interact and with what signs, it may

be useful in future work to explore whether they can be used to design unusual behaviors

such as non-additive, non-monotonic, or even repulsive forces.

The FDFD method is also capable, without modification, of handling arbitrary dielec-

tric materials. The calculation of general dispersive media can be performed with minor or

no additional computational effort, since the computations at different w are independent.

Unlike most previously published techniques, which do not easily generalize to non-perfect

metals, the stress tensor approach does not distinguish between the two regimes, and compu-

tational methods for inhomogeneous dielectric materials are widely available. Furthermore,

we reiterate that along the imaginary-w axis, e is purely real and positive even for dissipative

materials (which have complex E on the real-w axis), greatly simplifying computations.

The method's ability to handle dielectric structures is demonstrated below, where the

Casimir force between the two squares is shown for two different cases:

First, we compute the force between two squares made of dielectric material with E = 4

(an artificial mathematical choice for illustration purposes), whereas the parallel plates are

still perfect metal. The result is shown on the plot of Fig. 7-3(Left). As might be expected,

the dielectric squares have a weaker interaction than the perfect-metal squares, but are still
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Figure 7-3: Casimir force between 2d (z-invariant fields) dielectric (e = 4, left) or gold
(right) squares F/FPFA, vs. distance from metal plate h (inset), normalized by the total
force (TE+TM) obtained using the PFA (Here, the PEA force is computed for x-infinite
slabs of corresponding dielectric e). The total force is plotted (black squares) along with
the TE (red dots) and TM (blue circles) contributions.

non-monotonic.

Second, as a more interesting example, the squares are made of gold with a Drude

dispersion taken from experiment, again with adjacent perfect metallic plates. In particular,

the following Drude model is used for the material dispersion of gold [61]:

0.1) =r 7 -) (7.1)

with w = 1.37 x 1016 Hz and 2 ., = 5.32 x 1013 Hz, corresponding to wp = 7.2731 and

17, = 0.028243 in our units of 2irc/a, for a = 1 [pm. For w = iw, this is real and positive,

as expected. The resulting force is shown in Fig. 7-3(Right). Not surprisingly, the gold

squares have a weaker interaction than perfect-metal squares, since at large w = Imo the

dielectric constant e goes to 1.

The previous 2d calculations are important in at least two ways: first, they allow us to

check the stress tensor method against previous piston calculations in the h -~ 0 limit, while

exploring an interesting new geometry; second, based on their results, one might predict

a similar behavior for the force per unit length in the analogous 3d z-invariant geometry,

shown in the inset of Fig. 7-4. Indeed, this is the case: the non-monotonic force in three

dimensions is shown in Fig. 7-4. As discussed in chapter 5, the integrand for a z-invariant

perfect-metallic structure differs from the two-dimensional integrand only by a factor of rw,
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and therefore the 3d force is obtained from the 2d calculations with very little additional

computation.

08 z

a total
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Figure 7-4: Casimir force per unit length between z-invariant 3d metal blocks F/FPFA, vs.

distance from metal plate h (inset), normalized by the total force (TE+TM) obtained using

the PFA, FPFA = hcs7r2/480a 4 . The total force is plotted (black squares) along with the

TE (red dots) and TM (blue circles) contributions.

Again, in the h = 0 limit there is a known analytical result for this geometry [208],

based on the ray-optics method. Linearly extrapolating our plot to h = 0, we reproduce

this result to within ~ 2-3%.

7.2.2 Cylinders and Plates

The previous results on non-monotonic plates focused on square cylinders. Here, we replace

the square cylinders with perfect-metal cylinders [141] and also explore what happens when

one removes one of the sidewalls. Our results, based on work performed in collaboration with

Jamal S. Rahi, Mehran Kardar, and Robert Jaffe (MIT) and Thorsten Emig (Univeriste

Paris Sud), show that the non-monotonic effect is not limited to squares (i.e., it does not

arise from sharp corners or parallel flat surfaces), nor does it require two sidewalls. Instead,

the nonmonotonicity stems from a competition between forces from transverse electric (TE)

and transverse magnetic (TM) field polarizations: In the latter case, the interaction between

fluctuating charges on the cylinders is screened by opposing image charges, in the former

case it is enhanced by analogous fluctuating image currents. Furthermore, we show that

a related nonmonotonic variation arises for the force between the cylinders and a sidewall

as a function of separation between the cylinders, a geometry potentially amenable to
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experiment.

Casimir forces are not two-body interactions: quantum fluctuations in one object induce

fluctuations throughout the system which in turn act back on the first object. However,

both the PFA and CPI view Casimir forces as the result of attractive two-body ("pairwise")

interactions between surfaces that decrease rapidly as the surfaces are separated, and are

reasonable approximations only in certain limits (e.g., low curvature for PFA), and can fail

qualitatively as well as quantitatively otherwise, such as in geometries where the multi-

body character of the Casimir force is important. Pairwise estimates fail to account for

two important aspects of the Casimir forces in the geometry we consider [590]. First,

as already mentioned, a monotonic pairwise attractive force clearly cannot give rise to

the nonmonotonic effect of the sidewalls. Second, the application of either method here

would include two contributions to the force on one of the cylinders: attraction to the

other cylinder and attraction to the sidewall(s). If the latter contribution is restricted to

the portion of the sidewall(s) where the other cylinder does not interpose ("line of sight"

pairwise interactions), the cylinder will experience greater attraction to the portion of the

sidewalls away from the other cylinder, thereby reducing the net attractive force between

the two cylinders [590]. In contrast, exact calculations predict a nonmonotonic force that is

larger in the limit of close sidewalls than for no sidewalls. These important failures illustrate

the need for caution when applying uncontrolled approximations to new geometries even

at the qualitative level. (On the other hand, it turns out that a ray-optics approximation,

which can incorporate non-additive many-body effects, at least qualitatively predicts these

features for the two-square/sidewall case [590].)

Figure B-1 is a schematic of the three-dimensional geometries that we consider: two

infinite, parallel, perfect-metal cylinders of radius R separated by a distance a (center-

to-center separation 2R + a) and oriented along the z axis, with one (top panel) or two

(bottom panel) infinite metal sidewall(s) parallel to the cylinders and separated from both

by equal distance h (h + R to the cylinder axes). Because the geometry consists of perfectly

conducting objects (metals) and has continuous z-translational symmetry, the electric (E)

and magnetic (H) fields can be decomposed into TE and TM polarizations, described by

scalar fields V satisfying Neumann (TE, Q = Hz) and Dirichlet (TM, V = Ez) boundary

conditions at the metallic surfaces [100].

To analyze these geometries, we employ two complementary and exact computational
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Figure 7-5: Schematic of cylinder-plate geometry consisting of two z-invariant metallic
cylinders of radius R, separated by a distance a from each other, and by a distance h from
one (top) or two (bottom) metallic sidewall(s)..

methods, based on path integrals (PI) and the mean stress tensor (ST). The methods

are exact in that they involve no uncontrolled approximations and can yield arbitrary

accuracy given sufficient computational resources. They are complementary in the sense

that they have different strengths and weaknesses. The PI method is most informative

at large separations where it leads to analytical asymptotic expressions. The ST method,

while relatively inefficient for large separations or for the specific geometries where PI is

exponentially accurate, is formulated in a generic fashion that allows it to handle arbitrary

complex shapes and materials without modification. The PI method is described in detail

in Ref. [72], while the ST method was described in chapter 5, and so we only summarize

them briefly here. The present geometry provides an arena where both methods can be

applied and compared.

In the PI approach, the Casimir force is calculated via the constrained partition function.

The Dirichlet (Neumann) constraints on the TM (TE) fields are imposed by auxiliary fields

on the metallic surfaces [140] which can be interpreted as fluctuating charges (currents).

The interaction between these charges is related to the free-space Green's functions-the

addition of metallic sidewall(s) merely requires using image charges (currents) to enforce the

appropriate boundary conditions. The calculations are further simplified by using Euclidean

path integrals and the corresponding imaginary-frequency w = iw Green's function. In the

specific case of infinite cylinders, these surface fields can be represented in terms of a spectral

basis: their Fourier series, leading to Bessel functions in the Green's function [46,107,141].

An important property of such a spectral basis is that its errors go to zero exponentially
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Figure 7-6: Casimir force per unit length between two cylinders (black) vs. normalized
cylinder-sidewall separation h/R, at fixed a/R = 2, normalized by the total PFA force per
unit length between two isolated cylinders FPFA c (hcw3/ 1920) R/a 7 [425] for the two
cases shown on the inset. Also shown are the individual TE (red) and TM (blue) forces.
Inset: Schematic of geometry in the case of one (dashed lines) and two (solid lines) sidewalls.

with the number of degrees of freedom.

We also use a method based on integration of the mean ST, evaluated in terms of the

imaginary-frequency Green's function via the fluctuation-dissipation theorem [443]. The

Green's function can be evaluated by a variety of techniques [443], but here we use a simple

finite-difference frequency-domain method (FDFD) [93] that has the advantage of being

very general and simple to implement at the expense of efficiency-it is much less efficient

for this specific geometry than the PI method above. The results from both methods are

shown in Fig. 7-6, with the PI method indicated by solid/dashed lines for two/one sidewalls,

and the ST method indicated by data points. Both results agree to within the numerical

accuracy, as expected, although we have fewer data points (and larger error bars) from the

ST method because it is less efficient for this geometry. In the remaining text, therefore,

we focus on the interpretation of the results rather than on the computational techniques.

To begin with, we compute the force between the two cylinders (with a/R = 2) as a

function of the sidewall separation h/a, for fixed a. The results, for both one sidewall (solid

lines) and two sidewalls (dashed lines) are shown in Fig. 7-6 for the total force (black),

and also the forces for the individual polarizations TE (red) and TM (blue). The lines

and dots indicate the two independent approaches discussed above. The forces are all

normalized relative to the PFA force between two cylinders [425], which is independent of
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Figure 7-7: Casimir force per unit length between two cylinders of fixed radius R vs.
normalized cylinder-sidewall separation h/R (for one plate), normalized by the total PFA
force per unit length between two isolated cylinders FPFA = a(hC' 3 /1920) ft/a 7. The
force is plotted for different cylinder separations a/R = 0.2, 0.6, 1.0, 2.0, 3.0, and 4.0.

h and therefore is merely a constant scaling that does not affect the shape of the curves in

Fig. 7-6. Two interesting observations can be made from this figure. First, the total force

(for both one and two sidewalls) is a nonmonotonic function of h/R: at first decreasing and

then increasing towards the asymptotic limit of the force between two isolated cylinders.

The extremum for the one-sidewall case occurs at h/R 0.27, and for the two-sidewall

case is at h/R ~ 0.46 (similar to the h/R ~~ 0.5 that was observed for squares between

two sidewalls [442]). Second, the total force for the two-sidewall case in the h = 0 limit is

larger than for h --+ oc. As might be expected, the h-dependence for one sidewall is weaker

than for two sidewalls, and the effects of the two sidewalls are not additive: not only is the

difference from h - oc force not doubled for two sidewalls compared to one, but the two

curves actually intersect at one point. When the forces are decomposed into the TE and

TM contributions, it is clear that the nonmonotonicity results from a competition between

them: the TE force is quickly decreasing with h while the TM force is slowly increasing.

Since nonmonotonic sidewall effects appear to occur for a variety of shapes (both for

square [442] and circular cross sections), it is natural to seek a simple generic argument to

explain this phenomenon. As we see in Fig. 7-6, and also in our earlier work [442] (Sec. 7.2),

the nonmonotonicity arises from a competition between the TE and TM force contributions.

Therefore, an underlying question is why the TE force increases as the sidewall comes closer,

while the TM force decreases.
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Figure 7-8: Casimir force per unit length between a plate and two cylinders of fixed radius
R vs. normalized cylinder-cylinder separation a/R, normalized by the total PFA force per
unit length between two isolated cylinders FPFA = (hc73/960)VR/2a 7 [425]. The force is
plotted for different plate separations h/R = 0.28, 0.6, 1.0, and 2.0.

An intuitive perspective of the effects of the metallic sidewall(s) on the TE/TM forces

can be obtained from the "method of images," whereby the boundary conditions at the plate

are enforced by appropriate image sources. The Green's function, the field in response to

a point current source, arises in many formulations of the Casimir force. For example,

in the stress-tensor formulation, the change in the Green's function of the whole geometry

compared to the Green's function of vacuum appears directly as a "pressure" exerted on the

object (cylinder) [425]. The change in the Green's function arises because any current source

induces currents on the surfaces of nearby objects, which in turn affect the total field-the

question becomes, how does the presence of the plate change the effect of these induced

surface currents? By the well-known method of images, the plate boundary conditions are

satisfied by adding "image" currents below the plate. For Dirichlet boundary conditions

(TM), these image currents must be of opposite sign, and therefore they act to "screen" the

surface currents on the cylinders, reducing the force as h is decreased.1 (This is analogous

to a metal plate screening charges near the plate and reducing the classical force between

them.) For Neumann boundary conditions (TE), the image currents must be of the same

sign, and therefore increase the effect of the surface currents, increasing the force as h is

decreased. (An analogous additive effect occurs for the classical force between current loops

'A key fact is that the Green's functions in Casimir forces are naturally evaluated at imaginary frequen-
cies [443], which means that they are decaying and not oscillating. If the Green's function were oscillating,
one could not as easily infer whether opposite-sign image currents add or subtract to the field.
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near a conducting plane.) The effect of the image currents in the TE case is not simply to

double the force, however: on one hand, the image currents are farther away (the distance

from one cylinder to another is a, whereas the distance from a cylinder to the image of the

other is > a for all h); on the other hand, the method of images is not additive in any case

(the image currents induce currents on the original objects, which induce images that must

be solved self-consistently), and indeed Fig. 7-6 shows the TE force more than tripling for

small h.

The method of images thus explains the basic competition between TE and TM that

underlies the nonmonotonic effects observed here and previously, but further considerations

are required to insure that the sum of these two competing forces is nonmonotonic rather

than being dominated by one or the other. As an extreme example, if the two TE and TM

force decay rates with h were equal and opposite, they would cancel and there might be

no h-dependence at all. However, we have recently shown [425] that the TE forces decay

faster than the TM forces. Applied to the force between a cylinder and the image of the

other cylinder, this suggests that the TE force can dominate for small h while the TM force

should dominate for larger h, which is what we observe in Fig. 7-6.

While the method of images explains the competition between TE and TM that underlies

the nonmonotonic effects observed here and previously, further considerations are required

to ensure that the sum of these two competing forces is nonmonotonic. For example, if

the two TE and TM force decay rates with h were equal and opposite, they would cancel

and there might be no h-dependence at all. That this is not the case can be checked by

examining the limit a > h > R. In this limit the forces are dominated by the lowest

spectral (Fourier) mode, s-wave for TM and p-wave for TE [141]. The former is stronger

and leads to an asymptotic form (for one plate):

F 4hc h7
L 7r a7 log 2 (R/h)'

While the logarithmic dependence on R could have been anticipated [141], the h4 scaling is a

remarkable consequence of the multi-body effect. Each cylinder and its mirror image can be

considered as a dipole of size ~ h. The interaction of the two dipoles should hence scale as

the interaction between two cylinders of radius - h with Neumann boundary conditions, i.e.

~ a 3 (h/a)2. We know that for a > h the answer for the latter problem scales as - h4 /a 7 ,
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explaining the above result, up to the log. To analytically establish the nonmonotonic

character, we also need to show that the TE force is dominant in the opposite limit of

h < R. So far, we only have numerical arguments in favor of this [425].

In Fig. 7-7, we show the total force vs. h/R for a variety of different values of the

cylinder separation a in the presence of a single sidewall. The value a/R = 2 corresponds

to our previous results in Fig. 7-6. Figure 7-7 shows two interesting effects. First, if a is

too large or too small, the degree of non-monotonicity (defined as the difference between

the minimum force and the h = 0 force) decreases. (For small a, the force is accurately

described by the PFA force between the tangent cylinder surfaces, while for large a the TM

mode dominates as indicated in Eq. (7.2).) The separation a/R = 2 from Fig. 7-6 seems to

correspond to the largest value of non-monotonicity.

Consider the single-sidewall case from the top panel of Fig. B-1. A nonmonotonic force

F, between the cylinders means that there is a h where dF/dh = 0. The force is the

derivative of the energy, F, = -O8/Oa, so there is a point where a 2E/&ah = 0. These

two derivatives, of course, can be interchanged to obtain (BE/Bh)/9a = 0. But this means

that dFy/da = 0 at the same point, where Fy = -&E/&h is the force between the cylinders

and the sidewall. That is, the force between the cylinders and the sidewall must also be a

nonmonotonic function of the cylinder separation a. Precisely this cylinders-sidewall force

is plotted in Fig. 7-8 as a function of a/R for various values of h/R. (It is not surprising that

the effect of a small cylinder on the force between two bodies is smaller than the effect of an

infinite plate. This is also reflected in the fact that the cylinder-cylinder force is generally

less than the cylinder-plate force [425].)

The advantage of the cylinder-plate force compared to the cylinder-cylinder force is that

it seems closer to the sphere-plate geometries that have been realized experimentally. In

order to measure the cylinder-cylinder force, one would need to suspend two long cylinders

in vacuum nearly parallel to one another. To measure the cylinder-plate force, the cylinders

need not be separated by vacuum-we expect that a similar phenomenon will arise if the

cylinders are separated by a thin dielectric spacer layer. Unfortunately, the nonmonotonic

effect in Fig. 7-8 is rather small (roughly 0.2%), but it may be possible to increase this by

further optimization of the geometry.

In previous research, many authors have sought unusual Casimir force phenomena by

considering parallel plates with exotic materials: for example, repulsive forces have been
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predicted using magnetic conductors [259], combinations of different dielectrics [228], flu-

ids between the plates [375], and even negative-index media with gain [297]. A different

approach is to use ordinary materials with more complicated geometries: as illustrated

in this and previous [442] work, surprising nonmonotonic (attractive) effects can arise by

including only interactions between three objects. A recent work studied the presence of

non-monotonic effects in a variant of the z-invariant geometry considered here. In particu-

lar, Ref. [454] studied the force between two spheres of equal radii adjacent to two metallic

walls (i.e. the same structure studied here but with spheres instead of cylinders). As turns

out, the non-monotonicity persists in the case of spheres even though in that case there is

no TE/TM decomposition.

7.2.3 Magnetic Sidewalls

In this section we consider a variant of the piston-like structure, shown as the inset to Fig. 7-

9, studied using the FDTD method of chapter 6 in Ref. [344]. This system consists of two

cylindrical rods sandwiched between two sidewalls, and is of interest again due to its non-

monotonic dependence on h/a. The case of perfect metallic sidewalls (E(x) = -oo) 2 was

studied in the previous section; here we also treat the case of perfect magnetic conductor

sidewalls (p(x) = -oo) as a simple demonstration of the ability of our approach to handle

magnetic materials. In addition, as explained below, the presence of magnetic boundary

conditions completely removes any non-monotonic dependence.

While three-dimensional in nature, the system is translation-invariant in the z-direction

and involves only perfect metallic or magnetic conductors. As discussed in Ref. [443] this

situation can actually be treated as the two-dimensional problem in the frequency domain.

The same applies to the time domain, except that one must employ a slightly different

form for the temporal Kernel g(-t) discussed in chapter 6 [344]. As shown, our results

agree with the high-precision scattering calculations of Ref. [428] (which uses a specialized

exponentially convergent basis for cylinder/plane geometries).

The force, as a function of the vertical sidewall separation h/a, and for both TE and TM

field components, is shown in Fig. 7-9 and checked against the results from the previous sec-

tion [428]. We also show the force (dashed lines) for the case of perfect magnetic conductor
2Formally, in imaginary frequency, a perfect metal satisfies e(i() = +oo. However, for a finite difference

method either sign will give identical answers, and we find e(i() = -oo more suitable for our computational
purposes.
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Figure 7-9: Force for the double cylinders of [428] as a function of sidewall separation
h/a, normalized by the PFA force FPFA - hc((3)d/87ra3. Red/blue/black squares show the
TE/TM/total force in the presence of metallic sidewalls, as computed by the FDTD method
(squares). The solid lines indicate the results from the scattering calculations of [428],
showing excellent agreement. Dashed lines indicate the same force components, but in the
presence of perfect magnetic-conductor sidewalls (computed via FDTD). Note that the total
force is nonmonotonic for electric sidewalls and monotonic for magnetic sidewalls.

sidewalls. In the case of metallic sidewalls, the force is nonmonotonic in h/a. As explained

in Ref. [428], this is due to the competition between the TM force, which dominates for large

h/a but is suppressed for small h/a, and the TE force, which has the opposite behavior,

explained via the method of images for the conducting walls. Switching to perfect magnetic

conductor sidewalls causes the TM force to be enhanced for small h/a and the TE force to

be suppressed, because the image currents flip sign for magnetic conductors compared to

electric conductors. As shown in Fig. 7-9, this results in a monotonic force for this case.

7.3 Pistons via Ray Optics

As evidenced by the previous results, the ability to predict Casimir forces in arbitrary ge-

ometries can give rise to surprising and new effects. In fact, theoretical efforts to predict

Casimir forces for geometries very unlike the standard case of parallel plates have begun

to yield fruit, with several promising "exact" numerical methods (i.e., which can attain

arbitrary accuracy given sufficient computing power) having been demonstrated for a few

strong-curvature structures [46,141,143,178,427,434,442], in addition to yielding low-order

analytical asymptotic solutions [46,141, 143]. On the other hand, exact numerical methods

are slow and difficult for complex geometries, and it is desirable to form a simple qualitative
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intuition based on simpler methods that are quantitatively accurate only in certain limits.

In this section, we explore the ability of a simple approximate method, the ray-optics tech-

nique [234,471], to bridge the gap between analytical calculations for simple geometries and

brute-force numerics for complex structures. Unlike pairwise-interaction approximations

such as the proximity-force approximation (PFA) [48], ray optics can capture multi-body

interactions and thus has the potential to predict phenomena that simpler techniques can-

not (despite the fact that both methods are quantitatively accurate only in a low-curvature

limit). In particular, we show that the ray-optics approach can qualitatively predict the

non-monotonic effect described in the previous sections [442,443]. For a sidewall separation

h - 0, this is known as a "Casimir piston," and in that case has been solved exactly [79,209].

While the ray optics approach is exact in this structure only for the piston case, its ability

to capture the essential qualitative features for h > 0 suggests a wider utility as a tool to

rapidly evaluate different geometries in order to seek interesting force phenomena. Fur-

thermore, by comparison to the exact brute-force numerical FDFD method [443], we can

evaluate the precise effect of diffraction (which is neglected by ray optics) on the Casimir

force in this geometry.

The ray optics approximation expresses the Casimir force in terms of a sum of con-

tributions from all possible classical ray paths (loops) with the same starting and ending

point [234]. While it is strictly valid only in the limit of low surface curvature, since it

neglects diffraction effects, the rays include multiple-body interactions because there exist

loops that bounce off multiple objects. In contrast, most other low-curvature approxima-

tions, such as PFA [48] or other perturbative expansions [473,480], are essentially pairwise-

interaction laws, and can therefore miss interesting physics that occurs when multiple bodies

are brought together (in addition to the inevitable quantitative errors due to large curva-

ture). One example occurs in the structure depicted in Fig. B-1, where there is a force

s a

Figure 7-10: Schematic of a two-dimensional geometry: two metal squares s x s separated
by a distance a, and separated from two adjacent metal sidewalls by a distance h.
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between two square (s x s) ideal metallic blocks separated by a distance a that is affected

by the presence of two infinite parallel metallic sidewalls, separated from the blocks by a dis-

tance h. For perfect metals in the h = 0 limit, this geometry was solved analytically in both

two dimensions [79] for Dirichlet boundary conditions and in three dimensions [210,334] for

electromagnetic fields. (By "two dimensions," we mean three-dimensional electromagnetism

restricted to z-invariant fields; equivalently, a combination of scalar waves with Dirichlet

and Neumann boundary conditions, corresponding to the two polarizations.) For h > 0,

this geometry was recently solved by an exact computational method (that is, with no

uncontrolled approximations) based on numerical evaluation of the electromagnetic stress

tensor [442,443]. In this case, an unusual effect was observed: as h is increased from 0, the

force between the blocks varies non-monotonically with h. The attractive force between

the squares actually decreases with h down to some minimum and then increases toward

the asymptotic limit of two isolated squares h -> oo. These effects were obtained for both

perfect-metal squares and for more realistic dispersive dielectrics, but here we focus on the

simpler case of perfect metals (neglecting the non-zero skin depths and short-wavelength

cutoffs of real metals). In the numerical solution, this non-monotonic effect arose as a

competition between the TM polarization (electric field in the z direction, with Dirichlet

boundary conditions) and the TE polarization (magnetic field in the z direction, with Neu-

mann boundary conditions), which have opposite dependence on h. As explained below, it

is unclear how this non-monotonic effect could arise in PFA or similar approximations-

even if sidewall effects are included by restricting the pairwise force due to line-of-sight

interactions, it seems that the effect of the sidewall must always decrease monotonically

with h. When we analyze this structure in the ray-optics approximation, however, we find

that a similar competition between the loops with an even and odd number of reflections

again gives rise to a non-monotonic h dependence.

Below, we first give a general outline of the ray-optics approach, explain why pairwise

approximations such as PFA must fail qualitatively in this geometry, and then present our

results for the structure of Fig. B-1 in two dimensions. This is followed by a detailed

description of the ray-optics analysis for this structure, which involves a combination of

analytical results for certain (even-reflection) paths and a numerical summation for other

paths.
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7.3.1 Introduction to Ray Optics

Following the framework of Ref. [234], we express the two-dimensional Casimir energy via

the ray-optics approximation. The ray-optics approach recasts the Casimir energy as the

trace of the (scalar) electromagnetic Green's function G(x, x') = [V2 +w 2 E(x, W)]- 6(xx),

which is in turn expressed as a sum over contributions from classical "optical" paths via

saddle-point integration of the corresponding path-integral (this is also referred to as the

"classical optical approximation"). The optical paths follow straight lines and are labeled

by the number of specular reflections from the surfaces of perfectly conducting objects. In

particular, the Casimir energy between flat surfaces for Dirichlet (r/ = -1) or Neumann

(rq = 1) boundary conditions is given approximately by [234]:

r= hc f d2 X(73)47rI] D, r(x)3  (

Here, the length of a closed geometric path starting and ending at a point x is denoted

by Er(x). Dr is the set of points that contribute to a closed optical path reflecting r times

from the conducting surfaces. The Casimir energy above is thus the integral over the whole

domain of such points. This problem reduces to computing a term-by-term contribution

from each possible closed path, as determined by the specific geometrical features of the

system under consideration. Because the Neumann (TE) and Dirichlet (TM) boundary

conditions are given by the sum and difference of the even and odd paths (paths with

even/odd numbers r of reflections), respectively, it is convenient to compute the contribution

of even and odd paths separately. The Casimir force is then obtained by the derivative of

the energy with respect to the object separation a.

Equation (7.3) is exact for objects with zero curvature (flat surfaces). In the presence

of curved surfaces (or sharp corners, which in general have measure-zero contribution to

the set of ray paths), however, the energy will include additional diffractive effects that

are not taken into account by Eq. (7.3). One can include low-order corrections for small

curvature [471], but this is obviously not applicable to the case of sharp corners. There is

one special exception, the h = 0 "piston": in this case, the sum over optical paths reduces

to the method of images, which is exact for the interior of rectangular structures. These

limitations are to be expected, however, since the optical theorem is a stationary-phase

approximation.
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7.3.2 Pairwise-Interaction Approximations

There are various pairwise-interaction force laws that were derived from various limits, and

have been subsequently employed as approximate methods to compute Casimir forces in

arbitrary geometries. Although they are controlled approximations only in certain limits

(e.g., low curvature), it is tempting to use these methods to build a qualitative intuition in

more general structures, in order to roughly understand Casimir interactions as a simple

attractive force law. The most well-known of these is the proximity-force approximation

(PFA), which treats the force between two bodies as a pairwise sum of "parallel-plate"

contributions [48]. PFA is exact for parallel plates, and may have low-order corrections

for small curvature [46], but is an uncontrolled approximation for strong curvature where

it can sometimes give qualitatively incorrect results [138,140,168,179, 327,442]. Another

pairwise interaction is the Casimir-Polder 1/r 7 potential, valid in the limit of dilute media,

which has recently been proposed as a simple (uncontrolled) approximation for arbitrary

geometries by renormalizing it for the parallel-plate case [78,480]. In this section, we briefly

argue why no such pairwise-interaction approximation can give rise to the non-monotonic

dependence on h that we observe in the structure of Fig. B-1.

Of course, if one considers the pairwise interaction as a true two-body force, for each

pair of bodies in isolation, then the sidewalls in the structure can have no effect whatsoever:

the force from one sidewall on one square will be exactly vertical (and canceled by the force

from the other sidewall). However, a "lateral force" from the sidewalls, or equivalently an

h-dependent change in the attractive force between the two squares, can be obtained by

restricting the pairwise interactions to "line of sight" forces. For example, when considering

the force on one vertical edge of a square from one of the sidewalls, one would include con-

tributions only from the portion of the sidewall that is "visible" from that edge (connected

in a straight line from a point on the edge to the point on the sidewall without passing

through either square) 3. For a fixed h, the line-of-sight force on the left edge of a square

will be different from the force on the right edge, since one edge will have a portion of

the sidewall blocked by the other square, and hence there will be an h-dependence of the

horizontal attractive force.

3Such a restriction is at best ad hoc, since the points within each body are not ignored even though they

are "blocked" by the covering material. Alternatively, one could formulate the two-body interaction as a

force between surface elements exposed to one another, but then there are ambiguities about how to treat

the surface orientation.
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In particular, since the outside edges of the squares "see" (and are attracted to) a

greater portion of the sidewalls than the inside edges, the net force from the sidewalls will

always reduce the attractive force between the squares. Already, this contradicts the exact

numerical calculations, in which both the Neumann force and the total force are greater at

h = 0 than for h -+ o.

Moreover, the effect of the sidewalls in a pairwise approximation must always decrease

with h, again contradicting our results and making non-monotonic effects impossible. As

h increases, two things happen: first, the inner edges of the square "see" a larger portion

of the sidewalls, with area proportional to h; second, the distance from the sidewalls to the

squares increases proportional to h. The latter contribution must always dominate, however,

because any pairwise force must decrease at least as fast as 1/h 3 in two dimensions in order

to reproduce the parallel-plate result. Therefore, the sidewall contribution must decrease

monotonically at least as fast as 1/h 2 in any pairwise-interaction approximation.

Unlike pairwise-interaction approximations, we show below that the ray-optics approx-

imation correctly reproduces both qualitative behaviors: the total force is larger for h = 0

than for h -+ oc, and the total force is non-monotonic in h.

7.3.3 Path Contributions to Nonmonotonic Force

Here, we present the results of our calculations for the general h > 0 structure shown in

Fig. B-1, and compare with the numerical results from the stress-tensor method [442,443].

It turns out that the ray-optics technique indeed captures the non-monotonic dependence

of the force with h, although of course the quantitative predictions differ from the exact

calculations. By definition of ray optics, these quantitative corrections can be attributed

to diffraction from the corners. Because we wish to emphasize the results of the ray-

optics approach, rather than the details of the calculation of the different loop-lengths f, in

Eq. (7.3), we defer those calculational details until Sec. 7.3.4 and here discuss the results.

Figures 7-11 and 7-12 show two different plots of the force vs. distance from the

metal sidewalls h, computed via both Eq. (7.3) (solids) and the numerical stress-tensor

method (dashed). All results are normalized by the PFA force between isolated squares

(see captions), which are independent of h. The bottom panel shows the contributions from

Neumann boundaries (TE polarization) and Dirichlet boundaries (TM polarization), along

with the total Neumann+Dirichlet force. Recall that, in the ray optics approximation, the
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Figure 7-41: Casimir even (red) and odd (blue) forces vs. sidewall separation h normalized
by the PFA force FPFA = -hc((3)s/87ra 3 (dashed black), computed using the ray-optics

(solid) and stress-tensor (dashed) methods. Note that the ray-optics results become exact

as h -- 0.

Neumann/Dirichlet forces are given in terms of the even- and odd-path contributions by

(even t odd)/2, respectively, and thus the total Neumann+Dirichlet force is equal to the

contribution of the even paths alone. Because the even/odd decomposition is more nat-

ural, in the ray optics approximation, than Neumann/Dirichlet, the top panel shows the

even/odd contributions from the same calculations. (Although the stress-tensor calculation

does not decompose naturally into even and odd "reflection" contributions, here we simply

define the even/odd components as (Neumann ± Dirichlet)/2, respectively.)

As h goes to zero, the ray-optics results become exact. The numerical computation of

the stress-tensor force becomes difficult for small h due to our implementation's uniform

grid, but nevertheless the linear extrapolation of the numerical calculations to h = 0 agree

with ray optics to within a few percent. For h > 0, the total force for both the ray-optics

and stress-tensor results displays a minimum in the range h ~ 0.2-0.3. In particular, the

extrema lie at h ~ 0.3 and h ~ 0.25, respectively. Not only is this striking non-monotonic

behavior captured by the ray-optics approximation, but the agreement in the location of

the extremum is also excellent.

Thus far, Figs. 7-11 and 7-12 reveal two significant differences between the ray-optics

and stress-tensor results. First, the forces when h is not small differ quantitatively, by

about 30% as h -* oc. Since the ray-optics approximation is essentially obtained by drop-

ping terms due to diffraction (from curved surfaces and corners), we can attribute this

quantitative difference to the diffractive contribution to the Casimir force from the finite
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Figure 7-12: Casimir force vs. sidewall separation h normalized by the PFA force FPFA
-hc((3)s/87ra 3 , computed using the ray-optics (solid) and stress-tensor (dashed) methods.
The Neumann (green), Dirichlet (orange) and total (black) forces are all normalized by the
total Neumann+Dirichlet PFA force.

size. In the large-h limit, where the sidewalls become irrelevant and the ray-optics result

approaches PFA, the differences compared to the exact solution are sometimes called edge

effects [178,442,443]. Second, although the exact and ray-optics results match in the h = 0

limit as discussed above, the functional forms for small h are quite different, at least for

Dirichlet boundaries. In the ray optics expressions, the odd contributions have a logarith-

mic singularity at h = 0, which lead to corresponding singularities in the Neumann and

Dirichlet forces. However, in the exact stress-tensor calculation, only the Neumann force

seems to display a sharp upturn in slope as h = 0 is approached (although it is impossible

to tell whether it is truly singular); the stress-tensor Dirichlet force seems to be approaching

a constant slope (which is why we were able to linearly extrapolate it to h = 0 with good

accuracy).

Another qualitative difference appears if we look at the even and odd contributions in

Fig. 7-11: whereas ray optics and the stress-tensor method give a similar non-monotonic

shape for the even force, the odd forces are quite different. (The stress-tensor odd force is

monotonic while the ray-optics odd force is not, while the latter goes to zero for large h and

the former does not.) Again, we attribute this to a greater sensitivity to diffraction effects,

this time for the odd forces compared to the even forces. As will be argued in Sec. 7.3.5, the

domain of integration and the length of even ray-optics paths have a weaker dependence

on the corners of the squares than the odd paths, and thus should be less sensitive to

corner-based diffractive effects. Fortunately, the total force depends solely on the even path
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contributions, which helps to explain why ray-optics ultimately does effectively capture the

non-monotonic behavior and the location of the extremum.

Having explored the h-dependence of the force using both ray-optics and numerical

stress-tensor methods, we now turn to Fig. 7-13 to study the behavior of the force as

a function of the square separation a. Figure 7-13 shows the Casimir force vs. square

separation a at constant h/s = 0.25, normalized by the PFA force between isolated squares

(top panel) or by the exact force at h = 0 (bottom panel). Note that in both cases the

normalization is a-dependent, unlike in Figs. 7-11 and 7-12, and any non-monotonicity in

Fig. 7-13 is only an artifact of this normalization. The normalization by the PFA force allows

us to gauge both the sidewall/edge effects (which disappear for a -+ 0) and whether there

is a difference in scaling from PFA's 1/03 dependence. For the bottom panel, we normalize

against the exact h = 0 force, which tells us whether the finite sidewall separation makes a

difference for the large-a scaling. In both cases, we show a few points of the stress-tensor

calculation (which became very expensive for small or large a), to get a sense of the accuracy

of the ray-optics method at different a.

We should expect that as a -* 0, both the PFA and the ray-optics solution should

approach the exact solution, because the sidewall contribution becomes negligible. This

agreement, as compared to the extrapolated numerical stress-tensor results, can be observed

in Fig. 7-13(top). In contrast, for the large-a limit the ray-optics force appears to decay

as 1/a 2 instead of 1/a 3 for PFA, leading to the apparent linear growth in the top panel of

Fig. 7-13. If we compare to the h = 0 dependence in Fig. 7-13(bottom), it appears to be

asymptoting to a constant for large a, indicating that the power laws for h = 0 and h > 0

may be identical. However, even if we had more data it would be difficult to distinguish

the presence of, for example, logarithmic factors in this dependence. For the h = 0 case,

we have analytical results for even- and odd-path forces in Sec. 7.3.7: from the analytical

expressions, the odd-path h = 0 force clearly goes as 1/a 2 , and the even-path h = 0 force

also turns out to have the same 1/a 2 dependence 4. The exact stress-tensor computation

appears to be quite different from both the PFA and the ray-optics force as a function of a,

but we were not able to go to large enough computational cells to estimate the asymptotic

power law. It is striking that h/s as small as 0.25 is already large enough to yield substantial

4The asymptotic behavior of the Epstein Zeta function in the even force (Sec. 7.3.7) seems little studied,

but it is straightforward to show that it goes as 1/a 2 for large a.
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diffraction effects in the force.
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Figure 7-13: Casimir force vs. separation between squares a with constant sidewall separa-
tion h = 0.25, normalized by the FPFA= -hc((3)s/87ra 3 (top) and the corresponding h = 0
force (bottom). The force is computed for both even (red) and odd (blue) contributions,
separately. Inset: schematic of geometry consisting of two isolated squares with adjacent
sidewalls.

7.3.4 Details of the Ray-Optics Computation

In this section, we describe the computation of the ray-optics approximation for the h > 0

squares+sidewalls structure, according to Eq. (7.3). This involves systematically identifying

all of the possible closed ray loops, integrating them for a given number of reflections over

the spatial domain, and then summing over the number of reflections. It turns out that the

contributions of any even reflection order can be integrated analytically as shown below,

although the final summation over reflection order is still numerical. On the other hand,

the integrals from the odd reflection orders become increasingly difficult as the reflection

order is increased, and so we resorted to numerical integration for odd orders r > 5.

7.3.5 Even Paths

Because we are dealing with perfect metals, and because the geometry has reflection-

symmetry about the x and y axes, it is helpful to represent the optical paths using an

infinite periodic lattice, shown in Fig. 7-14, similar to the construction in Ref. [210]. The

reason for this construction is that, because of the equal-angle law for specular reflections

in geometric optics, a reflected ray is equivalent to a linearly extended ray in a mirror-

image structure. This allows us to visualize and count the set of possible closed paths in a
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straightforward fashion. Specifically, a closed path which starts at a point x and ends on

itself is fully determined by the set of lines that start at x and end in the corresponding

set of image points on the extended lattice. The unit cell of this periodic construction is

just two vertical black lines (of length s and separation a) that represent the parallel walls

of the two squares. These are repeated with a horizontal period a and a vertical period

s + 2h. Any path that passes through the gap between one of these lines and the horizontal

sidewalls escapes from between the two squares and therefore is not counted among the

closed loops.

0* 0 1? 0

00 10 10 0
o ... o....o

Figure 7-14: Schematic of general 2d squares+sidewalls lattice. Lines extending from solid
circles unto solid circles represent even reflection paths. Lines extending from open solid
circles unto open circles represent odd reflection paths. (Here, h/a - 0.2 and s/a - 1.) A
possible even (red) and forbidden odd (blue) path is shown.

In order to construct all of the closed loops that originate at a given point x in the unit

cell, we proceed as follows. First, we construct the mirror reflections of this point through

the vertical lines (the boundaries of the squares) and the horizontal lines (the sidewalls),

corresponding to reflections from these metallic walls. This gives us a set of points in the

nearest-neighbor cells. Then, we construct the reflections of the nearest-neighbor points

through their sidewalls, and so on, corresponding to reflections of higher and higher order.

A closed loop is simply a line segment from the original x to one of the reflected points,

as long as it does not escape through one of the gaps between the squares and sidewalls as

explained above. Figure 7-14 was generated from a unit cell with h/a - 0.2 and s/a - 1,

and shows both even-reflection (solid red) and odd-reflection (dashed blue) paths, where in

this case the odd path shown escapes and therefore would not be counted. In the figure,
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the points are labeled according to the number of reflections that generate them from the

original point: solid circles when the numbers of horizontal and vertical reflections are both

even, open squares when the numbers are both odd, and open circles otherwise. It follows

that lines connecting solid circles to solid circles are even paths, and lines connecting solid

to open circles are odd paths; the rays connecting solid circles and squares always escape

and therefore do not contribute..

To compute the Casimir energy from these paths, the key quantity in Eq. (7.3) is the

length f of the path. Let us label each unit cell by (n, m) according to its horizontal (n)

and vertical (m) offset from the cell (0, 0) where the original point x resides. For an even

path, x must be connected to an even-indexed image (2n, 2m), for which the length of the

path is:

fn,m = I(2na)2 + [2m (2h + s)]2  (7.4)

and the angle of the path, determined by m/n, is:

m2h+s
tan hn,m=- (7.5)

n a

The only things left to figure out are the domain of integration of x and the allowed (n, m)

for non-escaping paths. If h = 0, it is obvious that our expression reduces to the expression

of Ref. [210], since both the whole spatial domain within the unit cell and all (n, m) are

allowed. However, when h > 0, each (n, m) will be non-escaping only for x in a subset of

the unit cell. To determine these subsets, the domains of integration, we take advantage

of the closed-loop nature of the paths to cast Eq. (7.3) in a different light. For a given

(n, m), instead of integrating over x and y, it is convenient to change variables to integrate

over y and a coordinate ( = x/ cos 0 n,m measuring displacement along the path (along

the On,m direction). It might seem that one should integrate ( along the whole line from

(0, 0) to (n, m), but this may involve counting the same point x in the unit cell multiple

times. Instead, to avoid over-counting loops that wrap around on themselves, one instead

integrates from (0, 0) to (h, in-) where 5= n/ gcd(n, m) and r'n = m/ gcd(n, m) are reduced

to lowest terms. One then obtains the following equation for the energy:

seven 1dy d cos 0', (7.6)
n,m J(0,0) n,m
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Although not so obvious from looking at Eq. (7.6), the integral in the y direction simply

counts the number of (i, rfn) paths that exist in the unit cell. Because the length and angle

of such paths are independent of y, we can integrate over d( to obtain:

hc f 25a
Seven = 773 .)

4n,m n,m

where we used f d = f, and cos 6a,: = 25a/fae , between which the fj5,i cancels. All

that is left to figure out is the integral in the y direction.

To carry the integral in the y direction, we must determine the limits of integration,

or equivalently, the range over which we can displace the path so that it does not escape.

We go back to Fig. 7-14 for reference. Again, as outlined above, we extend a line from a

solid circle in the (0, 0) cell to another solid circle in the (2n, 2m)-th cell. For the path to

be allowed, it must intercept all of the vertical black line segments that lie between the

two points, i.e. at each horizontal reflection from the squares. Because each interception

(horizontal reflection) occurs at periodic intervals, these end up partitioning the unit cell

in the y direction into 5 sets of length (2h + s)/5. Note that that we divide by 5, rather

than n, because as explained above the topologically distinct paths are uniquely specified

by (n, m) reduced to lowest terms. From this simple argument, we obtain that the vertical

displacement is (2h + s)/5 - 2h, provided that (2h + s)/l - 2h > 0. To help visualize this

result, it is best to think of the problem on a circle. That is, consider a circle of length

2h+s and partition it into 5 sets of length (2h+s)/5, as well as into two regions of length s

and 2h. If the path is to exist, each of the (2h + s)/5 points on the circle must not intercept

the region marked as belonging to 2h (the air gaps between the squares). The result follows

directly by considering the distance that one can displace the points before any of them

intercepts the 2h region.

Thus, the final expression for the even path energies is left as a sum over n and m:

Seven he ( (2h + s - 2h) [2h+ s - 2hl 4ha
4,7r nn . [(2na)2 + (2mr(2h + S))2]3

An extra factor of 2 was included in the numerator since the contributions of the (-n, -m)

paths are identical to those of the (n, m) paths by symmetry. In the limit h = 0, we recover

the even energy expression of Ref. [209], given in Sec. 7.3.7.
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Although we are almost done with the even reflection paths, we are missing a very

important contribution to the energy: the PFA terms, i.e. the (n, 0) and (0, m) paths. The

PFA energy between two parallel finite metal regions is a well-known result, and we include

here only (n, 0) for completeness:

SPFA hsa3
167r (na)

hcs((3) (7.8)
167ra 2

The final expression Eq. (7.3.5) must still be summed numerically over (n, m) up to

some upper cutoff, but this is an simple computation and its convergence with the cutoff is

discussed in Sec. 7.3.8.

7.3.6 Odd Paths

Unlike even reflections, odd reflection paths are quite tedious to compute because have less

symmetry. For one thing, the length of a path depends not only on (n, m) (the offset of

the unit cells being connected), but also on the position x of the starting point. More

importantly, the identification of the domain of x for non-escaping paths depends in a

much more complicated way on (n, m), making it difficult to write down a single expression

that works for all (n, m). Therefore, we analytically solved for the odd-path contributions

only up to five-reflection paths, where each order requires a separate analysis, and treated

higher-order paths by a purely numerical approach. Below, the analytical solution for the

third-order paths is given, both to illustrate the types of computations that are involved

and also to demonstrate the logarithmic singularity in the force as h -+ 0.

The results of Ref. [210] give an upper limit for the number of odd paths r > 3 that

exist in this geometry for h = 0 (# paths - 2(r+3)/2). The same upper limit holds for

h > 0, but in this case the number of paths is actually reduced because some of the h = 0

paths now escape. An analytical solution for any particular order must begin by drawing

all paths for h = 0 and then perturbing them for h > 0 to eliminate any impossible paths.

At least for low-order paths, simple geometrical arguments can then determine the domain

of integration.

The coordinate dependence of odd paths arises from the fact that any path that reflects
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an odd number of times from the planar surfaces will be non-periodic: if we extend the

path beyond its endpoint (= starting point), it will not repeat. This greatly complicates

the analysis. For example, Fig. 7-14 shows one such escaping odd path. It turns out that as

h grows, the domain of integration for odd paths shrinks and becomes harder to visualize.

Moreover, if we vary h, we notice that paths for some (n, m), regardless of their origin

x, always escape. The problem of determining the domain of integration and the allowed

(n, m) seems difficult and does not seem to have a general closed-form solution.

From Fig. 7-14 we verify that there are eight possible three reflection paths, (±2, ±1)

and (±1, ±2) according to the notation of Sec. 7.3.5, shown in Fig. 7-15. The only two

nonequivalent cases are (2, 1) and (1, 2), which have different domains of x integration.

Figure 7-15: Schematic of three-reflection paths. Blue/red represent (1, 2)/(2, 1) paths, and
the lengths ei shown are used the calculation of the energy.

Inspection of Fig. 7-15 and Fig. 7-14 yields the length of these paths f2,1 = 2 a2 + (2h + s - y) 2.

Moreover, we see that f2,1 is invariant along the x-axis. For this particular path, the max-

imum displacement in the vertical direction ymax occurs when f1 sin 0 = f2 sin 0 = h, while

the minimum Xmin and maximum xma horizontal displacements occur when f2 sin 0 = h

and fi sin 0 = h, respectively. Therefore, the range of integration is:

0 y < s (7.9)

ah < <a(h + s - y)< I (7.10)
k2h+s-y - ~ 2h+s-y

giving us the following expression for the energy:

hc sa_ 2h+s)1  1+ 1+(2h2
S2,1 - -a2h log 1 (7.11)

'327a2 2+(h + s)2 2h 1+ 1+ ( 2Ts)2
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In order to compute E1,2, we apply similar geometrical considerations. Once again, from

Fig. 7-14 we obtain the length to be £i,2 = 2 (a - x)+ (2h + s)2. Similarly, we see that

fi,2 is invariant along y-axis, and approaches a minimum when x a. Therefore, the range

of integration is:

h< y h+s (7.12)

0< x <a, (7.13)

giving us the following expression for the energy:

hcas 1
S1, 2 =ca -) (7.14)

327r (2h + s)2 a2 + (2h + s)2

Adding Eq. (7.11) to Eq. (7.14), and multiplying by four to account for the different

sign possibilities in (n, m) yields the total three-reflection contribution to the energy. This

contribution has two types of terms: a polynomial term from Eq. (7.14) and the first term

of Eq. (7.11), and a logarithmic term from the second term of Eq. (7.11). The polynomial

term remains at h = 0. The more intriguing component of this result is the logarithmic

term, which falls as O(h log h) for small h, vanishing completely at h = 0. This (and similar

terms for higher-order reflections) is the source of the logarithmic singularity in slope of the

ray-optics odd-path Casimir force at h = 0 observed in Fig. 7-11.

The analytical solution of the five-reflection contribution is rather complicated and is not

reproduced here. However, it has a few interesting features that we summarize here. First,

just as for the three-reflection paths, the five-reflection contribution has an O(h log h) term

that contributes to the singularity we observe in the ray-optics odd-path Casimir force at

h = 0. Second, one also obtains O(log h) terms, which should seem to unphysically diverge

as h -* 0. It turns out, however, that for a path that gives a (log h) contribution at small

h, there exists another path with a -(log h) contribution, resulting in exact cancellation of

any divergences.

7.3.7 Casimir Piston

The h = 0 limit is the well-known "Casimir piston" geometry. In this limit, all of the

optical paths contribute to the Casimir energy, making it possible to compute Eq. (7.3)
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analytically. Ref. [210] performs this calculation in three-dimensions, and a similar unpub-

lished result was obtained in two-dimensions [209]. The two-dimensional geometry was also

solved analytically for Dirichlet boundaries by another method [79]. Here, we reproduce

this calculation as a check on both the even- [Eq. (7.3.5)] and odd-path [Eqs. (7.14-7.11)]

contributions to the energy, and also because the Neumann result is useful and previously

unpublished.

We begin by computing the h = 0 even-path contributions. The expression for the even

energy Eq. (7.3.5) is much simpler than for h > 0, because the e function disappears and all

that is left is a polynomial function in terms of n, m. The even-path energy, not including

the PFA contribution (terms where n = 0 or m = 0, but not both), is given by:

hc -3/ms 2
Eeven - c S as (na)2 + (ms)2

87
n,m>O

hc
= -- asZ 2(a, s; 3) (7.15)

87r

we have identified the summation above as the second order Epstein Zeta function Z2:

Z2 (a, b; p) = ((na)2 + (mb)2)-p/2  (7.16)
n,m>O

The same simplification occurs in the case of odd paths, the lengths of which can be found,

again, by inspection of the lattice in Fig. 7-14. Again, as described in Sec. 7.3.5, given a

point on the unit cell x, one can determine all possible odd-reflection paths by drawing

straight lines from the solid circles (x) to the open circles in the lattice.

There are two types of open circles, each of which denote two different types of paths:

those that reflect across the x axis and have y-invariant length, as well as those that reflect

across the y axis and have x-invariant length. Whichever coordinate is the invariant one

gives a constant integral over the unit cell, so the double integral is reduced to a single

integral. For example, consider those that reflect across the x axis and have y-invariant

length: for these paths, we need to integrate over x in the unit cell and perform a double

sum over (n, m). However, the double sum can be reduced to a single sum by eliminating

the sum over n in favor of integrating x along the whole real line instead of just the unit

cell. Thus, we are left with a single integral and a single summation. Similarly paths that

reflect across the y axis reduce to a single integral over y and a single sum over n. As a
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result of all this manipulation, the odd integral becomes:

- hcs dx hca dy
32r d0 =3/2 ( 17)
32r _>O [(ins)2 + X23 32r 0 [(na) 2 + y2]3 /2 '

Again, we restrict the sum to n, m > 0, because horizontal and vertical paths are divergent

terms that contribute only to the self-energy of the metallic walls [471]. Carrying out the

above integrals yields the following expression for the odd-path energy:

Eodd hc7 (+ -1- (7.18)48 s a

The odd-path contribution to the force is therefore oc 1/a 2 for large a.

7.3.8 Numerical Evaluation

To evaluate Eq. (7.3) numerically, we used an adaptive two-dimensional quadrature (cuba-

ture) algorithm [171] to perform the x = (x, y) integration for each (n, m). (For each x and

(n, m) it is easy to numerically check whether the path is allowed, and set the integrand to

zero otherwise. Unfortunately, this makes the integrand discontinuous and greatly reduces

the efficiency of high-order quadrature schemes; an adaptive trapezoidal rule might have

worked just as well. For very small h, this requires some care because the energy depends

on a tiny remainder between two diverging terms, as we saw in Sec. ??, but for most h

there was no difficulty.

We repeat this calculation for increasing reflection order r until the total energy Er

converges to the desired accuracy. From general considerations, one expects the error Is -E S

for the energy from a finite r to decrease as O(1/r). In particular, the path lengths f increase

proportional to r (the radius in the extended lattice), and the number of paths with a given

length also increase proportional to r (the circumference in the extended lattice), so the

E 1/f3 for a given r goes as O(1/r 2). The error in the energy is the sum over all paths of

order > r, and this therefore goes as O(1/r). This scaling is verified in Fig. 7-16, which

plots the relative error (Er+1 - 4r)/Sr between the order-r and the order-(r + 1) energy

computations for the particular case of a = s = 1. In general, if the energy converged as

O(1/r') for some power n, one would expect this difference to converge as O(1/rn+1), and

so we expect Fig. 7-16 to asymptotically go as O(1/r 2). This is precisely what is observed,
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Figure 7-16: Convergence error (E+1 - in the even (solid) and odd (dashed) path
contributions vs. reflection order r for values of h = 0 (red), h = 0.01 (blue), and h =
0.1 (black) (here, Sr means the energy computed up to order r). Inset: Absolute error

(eexact - Sr)/Sexact for both even (solid black) and odd (dashed red) contributions for h = 0.

for both even and odd paths, and for both h = 0 and h > 0: all of the curves asymptotically

approach straight lines (on a log-log scale) with slope -2.

An interesting though unfortunate result is that the odd-path energy requires larger r in

order to obtain the same accuracy as the even-path energy. Though this may not be obvious

from looking at the convergence error, it is clear from the inset of Fig. 7-16, where we plot

the absolute error (Eexact - Sr)/Sexact instead (at h = 0). The constant offset observed in the

absolute errors imply that, given a desired accuracy constrain on the even and odd energy

calculations, one would have to compute roughly twice the number of odd paths in order

to obtain equivalent accuracy.

7.3.9 Concluding Remarks

By comparing the ray-optics approximation with the exact brute-force calculation of chapter

6, we have been able to study both the successes and limitations of the ray-optics approxima-

tion. On the positive side, the ray-optics approximation is capable of capturing surprising

behaviors that arise in closed geometries involving multiple bodies, qualitatively matching

phenomena identified in exact brute-force calculations. In particular, the ray-optics approx-

imation captures the non-monotonic sidewall effects observed for metallic squares between

parallel sidewalls, generalized from the Casimir piston geometry. This effect is clearly a

manifestation of the multi-body character of the interaction, since it does not arise in sim-
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ple two-body force laws such as PFA. Ray optics appears to be unique among the current

simple approximations for Casimir force in that it can capture such multi-body effects, even

though it cannot be quantitatively accurate in geometries with strong curvature. On the

negative side, diffractive effects set in rather quickly when h is increased from zero, marking

the agreement between ray-optics and the exact results only qualitative.

This makes the ray optics approximation a promising approach to quickly search for

unusual Casimir phenomena in complicated geometries. However, since it is an uncontrolled

approximation in the presence of strong curvature, nor does it include material dispersion,

any prediction by ray optics in such circumstances must naturally be checked against more

expensive exact calculations. There will undoubtedly be complex structures in the future

where ray optics fails qualitatively as well as quantitatively. For instance, ray optics has

more difficulty with open geometries-e.g., for two squares with only one sidewall, only

PFA paths are present. On the other hand, the reach of the ray optics technique seems in

some sense to be larger than that of simpler approximations such as PFA. Even qualitative

failures of such methods, however, can reveal interesting things about the physics of Casimir

interactions, such as highlighting situations where multi-body interactions or diffraction

effects are central.

7.4 Glide-Symmetric Geometry: Uni-Axial Stability

In this section, we describe a metallic, glide-symmetric, "Casimir zipper" structure (depicted

in Fig. 7-17) in which both repulsive and attractive Casimir forces arise, including a point of

stable equilibrium with respect to perpendicular displacements (a saddle-point equilibrium

in the single direction in which repulsion is achieved). Here, the forces are "repulsive" in the

sense that they act to separate the two structures, but in some sense they are a combination

of attractive interactions as discussed below. We compute the force using the FDFD method,

which is an "exact" computational method (i.e. with no uncontrolled approximations, so

that it yields arbitrary accuracy given sufficient computational resources), and compare

these results to the predictions of an ad hoc attractive interaction based on the proximity-

force approximation (PFA).

One of the major goals of current research on Casimir forces revolves around the in-

teresting question of whether the Casimir force can manifest itself in ways very different
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Figure 7-17: Three-dimensional schematic of the Casimir "zipper" geometry of interlocking
metal brackets (shown in different colors for illustration only), along with a two-dimensional
xy cross-section. The dashed lines extruding from the plates to the squares indicate their
out-of-plane connectivity.

from the usual monotonically decaying attractive force, and especially under what cir-

cumstances the force can become repulsive. It has been proven that the Casimir force is

always attractive in a mirror-symmetric geometry of dielectric materials with e > 1 on

the imaginary-frequency axis [260], but there remains the possibility of repulsive forces

in asymmetric structures and/or with different materials. For example, repulsive forces

arise in exotic asymmetric material systems, such as a combination of theoretical magnetic

and electric materials [54, 259, 485] (with some suggestions of metamaterials as route to

realization [206, 297,458]), fluid-separated dielectric plates [375], and possibly also in meta-

materials with gain [297] or for excited atoms [491] (although this result of Ref. [297] is

problematic because the Lifshitz formula may not be applicable to excited [491] or ampli-

fying [423, 458] media). It has been suggested that vacuum-separated chiral metamaterials

may exhibit repulsive interactions and stable repulsive/attractive transitions [595], although

no specific metamaterial geometries (chiral or otherwise) exhibiting repulsion have yet been

proposed-in any case, the predicted chiral repulsive forces arise only for small separations

where the metamaterial approximation cannot be trusted, and recent exact calculations in-

dicate that they appear to be attractive [343]. Moreover, recent theoretical work has shown

that vacuum-separated objects can never form stable configurations [427].

Another route to unusual Casimir phenomena is to use conventional materials in com-

plex geometries, which have been shown to enable asymmetrical lateral [139] or "ratchet"
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effects [142, 362], in addition to the nonmonotonic dependence on external parameters of

the previous sections [442]. Both of the previous lateral effects [139,142] and the repulsive

interaction described here intuitively arise from competing attractive contributions to the

net force. The basic idea of using geometry to enable unusual Casimir phenomena provides

an interesting supplement to the materials approach and could be useful in the design of

experiments and technology involving the Casimir effect.

Here, we employ the FDFD method to study the geometry depicted schematically in

Fig. 7-17: we have two periodic sequences of metal "brackets" attached to parallel metal

plates, which are brought into close proximity in an interlocking "zipper" fashion. In Fig. 7-

17, we have colored the two plates/brackets red and blue to distinguish them, but they are

made of the same metallic material. This structure is not mirror symmetric (and in fact

is glide-symmetric, although the glide symmetry is not crucial), so it is not required to

have an attractive Casimir force by Ref. [260]. Furthermore, the structure is connected

and the objects can be separated via a rigid motion parallel to the force (a consideration

that excludes interlocking "hooks" and other geometries that trivially give repulsive forces).

This structure is best understood by considering its two-dimensional cross-section, shown

in Fig. 7-17(right) for the middle of the brackets: in this cross-section, each bracket appears

as an s x s square whose connection to the adjacent plate occurs out-of-plane. (Here, the

brackets are repeated in each plate with period A = 2s + 2h and are separated from the

plates by a distance d. The plates are separated by a distance 2d + 5 + a, so that a = 0 is

the point where the brackets are exactly aligned.) The motivation for this geometry is an

intuitive picture of the Casimir force as an attractive interaction between surfaces. When the

plates are far apart and the brackets are not interlocking, the force should be the ordinary

attractive one. As the plates move closer together, the force is initially dominated by the

attractions between adjacent bracket squares, and as these squares move past one another

(a < 0 in Fig. 7-17), one might hope that their attraction leads to a net repulsive force

pushing the plates apart. Finally, as the plates move even closer together, the force should

be dominated by the interactions between the brackets and the opposite plate, causing the

force to switch back to an attractive one. This intuition must be confirmed by an exact

numerical calculation, however, because actual Casimir forces are not two-body attractions,

are not generally additive, and can sometimes exhibit qualitatively different behaviors than

a two-body model might predict [179,259,442,590]. Such a computation of the total force
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Figure 7-18: (Top:) Plot of the Neumann (blue, TE), Dirichlet (red, TM) and total (black,
TE+TM) Casimir pressure (in units of hc/A 4 ) between the objects of Fig. 7-17, as a func-
tion of a/s. The inset illustrates a two-dimensional cross-section. (Bottom:) Schematic
indicating the various qualitatively different Casimir force regimes between the two struc-
tures.

per unit area is shown in Fig. 7-18, and demonstrates precisely the expected sign changes

in the force for the three separation regimes. These results are discussed in greater detail

below.

Previous theoretical studies of Casimir forces in geometries with strong curvature have

considered a variety of objects and shapes. Forces between isolated spheres [143] and isolated

cylinders [428], or between a single sphere [46], or cylinder [46,141] and a metal plate, all

exhibit attractive forces that decrease monotonically with separation. When a pair of

squares [442] or cylinders [428] interacts in the presence of two adjacent metal sidewalls, the

force is still attractive and monotonic in the square/square or cylinder/cylinder separation,

but is a nonmonotonic function of the sidewall separation. When two corrugated surfaces

are brought together in a way that breaks mirror symmetry (i.e., the corrugations are not

aligned between the two surfaces), a lateral force can arise [140,440], and an asymmetric

lateral force from asymmetric corrugations can lead to a "ratchet" effect in which random

forces preferentially displace the plates in one direction [142]. Such a lateral force has also

been observed experimentally [88]. In the geometry of Fig. 7-17, in contrast, there is no
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lateral force (due to a mirror-symmetry plane perpendicular to the plates), and hence we

consider only the normal force between the plates. Because of the strong curvature of the

surfaces relative to their separations, simple parallel-plate approximations are not valid

(although we consider their qualitative accuracy below), and the force must be computed

numerically.

7.4.1 Numerical Results

In order to simplify the calculations, we assume the length of the brackets in the z direction

L to be sufficiently long to make their contributions to the force negligible (we estimate the

minimum length below). We can therefore describe the geometry as both z-invariant and

y-periodic (with period A). This implies that it is only necessary to compute the Green's

function using an xy unit cell, with the periodic/invariant directions handled by integrating

over the corresponding wavevectors [443]. Furthermore, we approximate the bracket/plate

materials by perfect metals, valid in the limit of small lengthscales (which are dominated

by long-wavelength contributions where the skin depth is negligible). In this case, the

contributions to the force can be separated into two polarizations: transverse electric (TE)

with the electric field in the xy plane (a scalar magnetic field with Neumann boundary

conditions); and transverse magnetic (TM) with the magnetic field in the xy plane (a scalar

electric field with Dirichlet boundary conditions) [443], and these two contributions are

shown separately in Fig. 7-18.

The resulting force per unit area between the plates, for the chosen parameters d/s = 2

and h/s = 0.6, is plotted as a function of a/s in Fig. 7-18 (Top); error bars show estimates of

the numerical accuracy due to the finite spatial resolution. A number of unusual features are

readily apparent in this plot. First, the sign of the force changes not only once, but twice.

The corresponding zeros of the force lie at a/s - -0.8 and a/s - -102. The first zero,

a/s a -0.8, is a point of unstable equilibrium, to the left of which the force is attractive and

to the right of which the force is repulsive. The second zero at a/s -10 corresponds to a

point of stable equilibrium, with respect to perpendicular displacements, for which the force

is attractive to the right and repulsive to the left. (This point is still unstable with respect

to lateral displacements, parallel to the plates and perpendicular to the brackets, however:

any such lateral displacement will lead to a lateral force that pulls the red and blue brackets

together.) In between these equilibria, the repulsive force has a local maximum at a/s
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-0.5. Finally, at a/s ~ 0.6 the magnitude of the attractive force reaches a local maximum

(a local minimum in the negative force on the plot), and then decreases asymptotically

to zero as a/s --+ oo. Thus, as the two objects move apart from one another, the force

between them varies in a strongly nonmonotonic fashion (distinct from the nonmonotonic

dependence on an external parameter shown in our previous work [428,442, 590]). These

three different sign regimes are shown schematically in Fig. 7-18 (Bottom), as predicted by

the intuitive picture described above.

7.4.2 Comparison to PFA

Since the qualitative features of the Casimir force in this geometry correspond to the pre-

diction of an intuitive model of pairwise surface attractions, it is reasonable to ask how

such a model compares quantitatively with the numerical results. The most common such

model is the proximity-force approximation (PFA), which treats the force as a summation

of simple "parallel-plate" contributions [46]. (Another pairwise power-law heuristic is the

"Casimir-Polder interaction" approximation, strictly valid only in the limit of dilute me-

dia [524].) Applied to a geometry with strong curvature and/or sharp corners such as this

one, PFA is an uncontrolled approximation and its application is necessarily somewhat ad

hoc (due to an arbitrary choice of which points on the surfaces to treat as "parallel plates"),

but it remains a popular way to quantify the crude intuition of Casimir forces as pairwise

attractions.

Applying the PFA approximation to the two objects in Fig. 7-17, we treat the net force

as a sum of three contributions: the force between the two parallel plates, the force between

each square and the opposite plate, and the force between adjacent red and blue squares.

Namely,

PPFA AL (Fpi_pi + 2 Fsq-pi + 2Fsq-sq) , (7.19)

where the first term is the pressure between two parallel plates (pl-pl), and the two remain-

ing terms correspond to the square-plate (sq-pl) and square-square (sq-sq) interactions.

The factors of A and L are introduced because these expressions are computed per unit

length in the z direction, and per period in the y direction.

The first two PFA contributions are relatively simple to calculate because they are

between parallel metal surfaces, and thus (in the PFA approximation) are the ordinary
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Figure 7-19: Comparison of Casimir pressure (in units of hc/A 4) as a function of a/s
between the stress-tensor (exact) numerical results (black squares) and the proximity-force
approximation (solid green). Also shown are the individual square-square (dashed blue) and
square-plate (dashed orange) contributions to the PFA force. Inset: Schematic illustration
of the chosen PFA "lines of interaction" between squares (dashed black lines).

Casimir force weighted by the respective areas:

hc7r2h 1
PP1I-P1 = - 120A (2d + a + s)4 (7.20)

hc-r2s 1
Psq-pl - 240A (d + a)4  (7.21)

Computing the square-square force is less straightforward, since there is some ambiguity

as to what the PFA approximation even means for two non-parallel surfaces (separate from

the question of its accuracy). In PFA, one adds up "parallel plate" contributions to the

force between two objects by including a force between each point on one surface and a

corresponding point on the other surface, where corresponding points are connected by

parallel "lines of interaction." In this geometry, we take the lines of interaction to lie

parallel to the center-to-center displacement between two squares, as depicted by the inset

in Fig. 7-19, but of course this choice is somewhat arbitrary. (A similar choice was made

by Ref. [106,107] to define the PFA force between two eccentric cylinders.) The PFA force
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between one pair of squares is then:

Psq-sq = - hc7r2 a [ H2a 3 1) + sH 3 (Hh - lal) O(Hh - a)
240AD 5  3 h (

[2Hh sA3 1'1(.2
+ (A3 - 1) + 'A 3 (jal - Hh) j (|al - Hh) (7.22)

13 lal - sI

where D - /a 2 + (h + s)2, H 1+ s/h and A =1- s/Ial. The resulting net force is shown

in Fig. 7-19, along with the contributions due to the isolated square-square and square-

plate PEA forces (a separate line for the plate-plate contributions is not shown because this

contribution is always very small).

For comparison, Fig. 7-19 also shows the exact total force from Fig. 7-18, and it is clear

that, while PFA captures the qualitative behavior of the oscillating force sign, in quantitative

terms it greatly overestimates the magnitude of the repulsive force. Of course, since it is

an uncontrolled approximation in this regime there is no reason to expect quantitative

accuracy, but the magnitude of the error illustrates how different the true Casimir force

is from this simple estimate. The PFA estimate for the square-plate force, however, does

help us to understand one feature of the exact result. If there were no plates, only squares,

then the force would be zero by symmetry exactly at a = 0, and indeed the exact result

including the plates has zero force at a ~ 0; clearly, the contribution to the force from

the plates is negligible for a 0, and this is echoed by the PFA Psq-pi force. Also, using

a PFA approximation, one can attempt to estimate the order of magnitude of the force

contribution from the ends of the bracket, which was neglected in the exact calculation.

This contribution to the total force must decrease as - 1/L for a fixed a, and is estimated

to be less than 1% of the peak repulsive force for L > 60A.

Because the basic explanation for the sign changes in the force for this structure is fun-

damentally geometrical, we expect that the qualitative behavior will be robust in the face

of imperfect metals, surface roughness, and similar deviations from the ideal model here.

The main challenge for an experimental realization (for example, to obtain a mechanical

oscillator around the equilibrium point) would appear to be maintaining a close parallel

separation of the brackets (although it may help that in at least one direction this par-

allelism is a stable equilibrium). Furthermore, although in this section we demonstrated

one realization of a geometry-based repulsive Casimir force, this opens the possibility that

future work will reveal similar phenomena in many other geometries, perhaps ones more
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amenable to experiment.

Since the repulsion between the two objects here appears to be a result of attractive

interactions between surfaces, our result also invites the following unanswered question:

is it possible to design a geometry with a repulsive Casimir interaction, with ordinary

vacuum-separated metallic materials, that cannot be understood as a combination of surface

attractions? More precisely, can one obtain a repulsive Casimir interaction between a

metallic/dielectric object lying in x < 0 and another lying in x > 0, i.e. two objects

with a separating plane in vacuum, so that the distances between the surfaces are strictly

nondecreasing as they are moved apart? The geometry here does not have a separating

plane in the repulsive regime, while Ref. [260] only eliminated the mirror-symmetric case.

It turns out, as mentioned in previous chapters, that the question of whether there exists a

genuine repulsive Casimir force between vacuum-separated metals has been answered in the

affirmative by Levin et. al. via a geometry consisting of an elongated spheroidal metallic

object suspended on top of a metallic plate with an air hole [298].

7.5 Concluding Remarks

In this chapter, we presented a number of interesting results involving Casimir nonmono-

tonic effects and repulsion in complex geometries composed of vacuum-separated metallic

objects. Our results are a consequence of the strong geometry dependence of the Casimir

effect and shed light on some of the Casimir phenomena that can arise in complicated struc-

tures. As we have shown, the numerical methods developed in chapter 5 and 6 are instru-

mental for obtaining accurate predictions in these complicated geometries, especially when

multi-body effects are present, where approximations may fail even qualitatively. There

remain many complicated structures to be explored via these numerical methods: just

recently, Ref. [298] predicted a novel repulsive Casimir force between vacuum-separated

objects in which uniaxial repulsion and stability were found for plane-separated objects

(in contrast to the repulsion in the previous section, which arose from a competition be-

tween attractive forces). The FDTD method of chapter 6 was employed in a number of the

calculations in Ref. [298].

The last chapter of this thesis, chapter 8, examines the possibility of achieving stable

suspension of objects via the Casimir force. The work of Ref. [427] demonstrates that stable
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equilibria (in all directions) between vaccum-separated objects is impossible. However, as

demonstrated in the subsequent chapter, suspension is possible when fluids are involved...
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Chapter 8

Casimir Forces Between

Fluid-Separated Dielectrics

"I don't want to achieve immortality through my work. I want to achieve it through not

dying." Woody Allen

8.1 Overview

The Casimir force between vacuum-separated metallic or dielectric objects is most typi-

cally attractive and decaying as a function of object separation, an undesirable feature for

experiments that may contribute to "stiction" in micro-electromechanical systems [831. A

repulsive interaction would be desirable to combat stiction as well as for frictionless sus-

pension, among other applications. One route to obtaining repulsive forces is to employ

complex geometries, such as the interleaved metallic structure of the previous chapter [446]

or a recently-proposed geometry consisting of a small anisotropic (elongated) object sus-

pended on top of a plate with a hole [298]. In this chapter, we shall focus on a different

scheme, based on fluids.

The possibility of obtaining repulsion between fluid-separated asymmetric plates has

been known for decades [129, 302]. More recently, due to increased interest on the appli-

cation of Casimir forces in MEMS, it was suggested that repulsive Casimir forces between

fluid-separated objects could lead to stable mechanical equilibria, and hence frictionless

static bearings or other useful passive-suspension devices [74,373,374,400]. However, until

recently, calculations and experiments involving fluids only focused on achieving repul-
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sion and were restricted to geometries involving parallel plates or simple approximations

thereof [375] (similar to work on air-separated metals, as reviewed in several recent papers,

e.g. Ref. [48]), leaving a wide range of fluid-based Casimir effects unexplored.

In this chapter, we examine a number of ways in which one can exploit fluids to obtain

novel and interesting Casimir effects: these include stable suspension, aggregation of com-

pact objects, and dramatic Casimir temperature effects. In Sec. 8.2, we briefly review the ba-

sic mechanisms enabling Casimir repulsion in fluids, based on the work of Ref. [77,129,302].

We consider three main kinds of stable-suspension schemes: First, Sec. 8.3 demonstrates

stable suspension of z-invariant eccentric objects-the inner cylinder is confined in-plane by

the repulsive Casimir force exerted by the outer cylinder. We investigate confinement for

both circular and square cross sections, and show that the latter exhibits both a stable ori-

entation and stable position. These calculations are performed using a modified version of

the FDFD method of chapter 4 that allows calculations of Casimir torques for finite objects.

In addition, the stable orientation of the square cylinder is shown to undergo a 45' transi-

tion as the separation lengthscale is varied, which is explained as a consequence of material

dispersion; Second, Sec. 8.4.1 presents calculations of gravity-induced suspension-here, a

sphere is suspended above a hemispherical indentation by a repulsive Casimir force, and

the same repulsion is used to confine the sphere vertically against gravity [344]. Finally,

Sec. 8.4 presents a scheme for obtaining suspension of dielectric nontouching objects-here,

stability is induced by the dispersion properties of real dielectric (monolithic) materials.

The consequence of this effect is the possibility of obtaining stable configurations (clus-

ters) of compact objects, which is illustrated via a molecular two-sphere dicluster geometry

consisting of two spheres levitated above a slab. Our calculations also reveal a strong inter-

play between material and geometric dispersion, and this is exemplified by the qualitatively

different stability behavior observed in planar versus spherical geometries [450].

We believe that fluids are a promising setting to investigate new Casimir physics (of

potential application in microfluidics). Not only do fluids enable suspension and passive

control of compact objects, e.g. spheres, but they also provide new opportunities for ex-

ploring Casimir effects previously out of reach for experiments. For example, measuring

the temperature dependence of the Casimir force has been an outstanding experimental

problem-for typical vacuum-separated geometries, the T dependence of the Casimir force

becomes observable only at micron separations (and above), where Casimir forces are rel-
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atively weak and therefore difficult to observe experimentally. We address this problem

in Sec. 8.5, which describes a method of achieving large temperature T sensitivity in the

Casimir force that involves measuring the stable separation between dielectric objects im-

mersed in a fluid [451]. In particular, we study the Casimir force between slabs and spheres

using realistic material models, and find large > 2 nm/K variations in their stable separa-

tions (most typically in the hundreds of nanometers) near room temperature. In addition,

we analyze the effects of Brownian motion on suspended objects, and show that their av-

erage separation is also sensitive to changes in T. Finally, we show that this approach also

leads to rich qualitative phenomena, such as the existence of irreversible transitions, from

suspension to stiction, as T is varied.

8.2 Repulsive Forces via Fluids

Most of the discussion in this section on repulsive Casimir forces is carefully laid out in [129,

304]; here, we only focus on the most basic and important results relevant to the work on

stable suspension, the subject of this entire chapter.

The possibility of obtaining repulsive Casimir forces in fluids can be readily understood

from the analogous Casimir-Polder force between polarizable atoms [77]. In particular,

as reviewed in [129,304] and in chapter 4, the potential U of two polarizable atoms with

polarizability ai and a2 is proportional to the product of their polarizabilities U oc aia2. A

repulsive CP force arises if this product is negative or equivalently, if the atoms have opposite

polarizability. Physically, this requires that there be an intermediate medium between the

atoms that "screen" the charge on one atom and enhance the charge on the other. In the

rarefied-medium (dilute) approximation, this conclusion can be rigorously extended to the

case of macroscopic half-spaces [129], which we describe below using the Lifshitz formula.

E 3

Ed
Figure 8-1: Schematic of Lifshitz geometry, consisting of two semi-infinite plates (permit-
tivities Ei and E2) separated by a dielectric with permittivity E3.

A generalization of the standard perfectly-metallic vacuum-separated plates geometry,
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first studied by Ref. [302], is the system shown schematically in Fig. 8-1: two semi-infinite

dielectric objects of permittivities ei and E2, separated by a distance d, and embedded in a

medium of dielectric E3. A semi-analytical expression of the force in this case was derived

by Ref. [302] and Ref. [129] in the 1950s by way of the mean stress-tensor formulation,

and also more recently by way of the standard dispersive electromagnetic energy [529],

applicable even in the presence of loss for subtle reasons 1.

The Lifshitz theory provides a semi-analytical expression for the imaginary-frequency

Casimir energy per unit area U of the system in Fig. 8-1 by expanding the Green's function

of the entire system in terms of an exponentially-convergent (Fourier) basis. The result is an

expression for U involving a double integral over imaginary frequencies ( and perpendicular

wave vector k1 , given by [304,426,529]:

hc = d k i log (1 - rq r qke- 2nT1+k//e3 ,(8 .1)

JO JO 2q=s,p

where k1 = |kil, ni = fejl, and where the rq are standard TE/TM (s/p) Fresnel coeffi-

cients [231]:

[i(i) - V3 (i() 1 + (n?/n2 - 1)X2
ri(ik, x) = (8.2)

Pi(i) + #3(i) 1 + (n/n 2 - 1)X2

- E3 (i ) 1 + (n?/ n - 1)X2
ri (i, X) = , (8.3)

ei(i() + E3 (i() 1 + (nr /n - 1)x2

evaluated at imaginary frequencies (ii) and for x = 1 + k_/e 3 (2. Equation (8.1) is often

re-written via a simple change of variables p 1 1+ k_/E3 2 as:

U = (2)2 (n302d< j p dp log I - rir e-2ntp) 1 - rsr'e-2npd) , (8.4)

'The justifications for employing the standard dispersive forms of the energy and Lifshitz stress tensor
expressions in the case of fluctuations are subtle [60, 354, 408]. Criticisms of these expressions have been
raised based on the superficial similarity of the Lifshitz stress tensor to the Minkowski stress tensor, which
is problematic in dissipative media [422, 424]. However, the justification for employing the Lifshitz theory
and the use of the standard dispersive-energy formalism have been clearly laid out in Ref. [64,408], and are
based on equilibrium considerations of fluctuations at all frequencies [304].
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which yields the following force F = -OU/Od between the plates:

hc 00 00 r q r q exp(-2n3 pd)
27r2 Q(3'<f P 1 - rrq exp(-2n3(pd)q=s,p 12

Equation (8.5) is a complicated expression of the dielectric properties of the materials

and d, and therefore does not lend itself to a simple closed-form solution. Nevertheless, the

expression does permit us to extract a great deal of insight 2. In particular, the sign of the

integral of Eq. (8.5) depends on the product of the reflection (Fresnel) coefficients [Eqs. (8.2-

8.3)] of the materials. The integrand is negative (leading to repulsion) at a frequency ( if

the reflection coefficients of the two half-spaces evaluated at ( have opposite sign, analogous

to the requirement that the two atoms (above) have opposite polarizabilities. By inspection

of Eqs. (8.2-8.3) (assuming non-magnetic materials p = 1), the sign of the force integrand

f(() will therefore depend on the ordering of the dielectrics as follows:

sgn(f()) = Ei(i() E3(i() E2(i ) (8.6)
1, otherwise,

where +/- denotes an attractive/repulsive force. Equation (8.6) can only be satisfied if the

intervening medium E3 is a fluid-the alternative is that the medium be a solid, but then it

becomes problematic to even define the force on objects 1 and 2. Because the Casimir force

depends on all frequencies, from ( = 0 up to some frequency - 27rc/a, related to some

lengthscale a (corresponding to a typical geometrical feature, see chapter 6), in order for

the total force to be repulsive, the condition of Eq. (8.6) must be satisfied over a sufficiently

large frequency bandwidth, as we shall demonstrate in the subsequent sections. (In the

dilute-limit (rarefied-medium) approximation, it is possible to simplify Eq. (8.5) to obtain

the original Casimir-Polder force between atoms, leading to the analogous condition for

repulsion noted above [129].)

Repulsive forces in fluids have been measured in various experiments involving spheres

2The familiar expression for the Casimir pressure between two vacuum-separated perfectly- metallic plates

can be arrived at by taking the limit as r1, E2 -* 00, E3 = 1 in Eq. (8.5), to obtain F = hc/2407r2d4 . Note that

Eq. (8.5) yields a non-zero force between lossless materials (e.g. perfect metals). This is not an unphysical

result, nor does it violate the fluctuation-dissipation theorem, since Eq. (8.5) is the result of assuming some

infinitesimal amount of loss in the system. Mathematically, this is equivalent to setting e - e + i6 inside

the integral (for a lossless dielectric, i.e. Ime(() = 0), and then taking the limit as -4 0 outside of the

integral. It is this procedure that allowed Ref. [302] to equate the real and imaginary-frequency integrals

(Wick rotation), by pushing all of the poles of the system below the upper-half complex-s plane.
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and plates, both in the short-range (van der Waals) [152, 292, 293, 349, 351] and long-

range [374] regimes. Fluid experiments on macroscopic objects such as those of Ref. [374]

involve capacitive measurements of a sphere attached to a cantilever and suspended on

top of a slab. While these types of experiments represent a significant step toward the

development of tools and ways in which to manipulate objects via the Casimir effect (with

potential applications in microfluidics and MEMS), they leave something to be desired: a

tantalizing possibility, yet unexplored by experiments and recently suggested by a number

of theoretical calculations [344, 429,450,452] is the possibility of achieving stable (passive)

suspension of objects immersed in fluids, the subject of the remainder of this chapter.

8.3 Eccentric Cylinders: Uniaxial Stable Suspension

We will first focus on a scheme for obtaining uniaxial stable suspension that is based

on the repulsive effect of the previous section (for fluid-separated objects) and that ex-

ploits the strong geometry dependence of the Casimir force. Using recently developed

numerical techniques [443], we present theoretical calculations of Casimir forces/torques be-

tween fluid-separated objects with finite square and circular cross sections (Fig. 8-2 insets)

that rigorously demonstrate stable positional/orientational Casimir equilibria. (Vacuum-

separated perfect-metal circular cylinders were shown to exhibit an unstable positional

equilibrium [107].) In the case of square cross sections, a surprising result is obtained for

the rotational equilibria: the stable orientation changes by 450 depending on the length-

scale, which we show to be a consequence of material dispersion. In particular, for certain

fluid-separated materials, the frequency dependence of the permittivity E (material dis-

persion) causes the Casimir force to switch from repulsive to attractive at some critical

separation [129]; this leads to the orientation transition described here, and also produces

other lengthscale-based qualitative transitions, as shown in the subsequent section. In what

follows, We apply the FDFD method of chapter 5 to compute Casimir torques on finite

objects (in contrast to previous uncontrolled approximations [471] or analytical results for

planar cases [373, 400, 401, 431, 440, 484, 540]); we supplement the accurate results with a

heuristic model based on the proximity force approximation (PFA) that turns out to cap-

ture qualitative behaviors of the orientation transition, and therefore provides some simple

insight.
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Figure 8-2: Casimir force Fx in the x-direction, per unit z-length, on a SiO 2 cylinder
suspended within a perfectly-metallic cylinder (inset), separated by fluid (ethanol), as a
function of the x-displacement from equilibrium (eccentricity) d [in units of a = 0.5(D - s)]
for both circular (solid-line) and square (dashed-line) cylinders. d = 0 is seen to be a stable
equilibrium.

As noted in the previous section, a repulsive Casimir force arises between parallel plates

of e1,2 separated by a fluid of Ef, if ei(i ) < Ef (i) < E2(i) for a sufficiently wide range of

imaginary frequencies ( = Imw [129]. Three such materials are silica (SiO 2) and metal (Au)

separated by ethanol [74], as discussed below. We studied the three-dimensional constant

cross-section geometries shown in the inset of Fig. 8-2: square or circular SiO 2 cylinders

of diameter s surrounded by a metal cylinder of diameter D, separated by ethanol. For

computational ease, we use a perfect metal [e(i() -+ oc] for the outer cylinder, but we use

experimental w-dependent e for the SiO 2 and ethanol. In such cases, with object sizes and

curvatures comparable to their separation, approximations of the Casimir force as a pairwise

attraction between surfaces are not valid and their qualitative predictions (e.g. stability)
may be incorrect [106,179,443].

Figure 8-2 shows the force per unit z-length on the inner cylinder as a function of the

displacement d from equilibrium in units of a, where a 0.5(D - s) = 0.0955 pm so that

d/a = ±1 for touching surfaces, for parameters s/D = 0.25. It demonstrates a stable

equilibrium for both square (solid black) and circular (dashed grey) cross sections. The

computational method is based on integration of the mean electromagnetic stress tensor

(valid even for fluids [408]) evaluated in terms of the imaginary-frequency Green's function

via the fluctuation-dissipation theorem [443]. Additional details are provided below.

Having demonstrated positional stability (Fig. 8-2), we now explore an unusual effect
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Figure 8-3: Casimir torque Tz, per unit z-length, on the inner square rod of eccentric square
cylinders as a function of the angle 0 with respect to the x-axis (see right insets) for two
material choices as shown in the top insets. Error bars are estimates of the effect of finite
grid resolution.

arising from material dispersion. The square-cylinder geometry (Fig. 8-3 inset) must, by

symmetry, exhibit two equilibrium orientations (0 = 0 and 0 = 450). A priori, it is

not clear which of the two configurations is stable. To determine this, Fig. 8-3 plots the

Casimir torque per unit z-length on the inner square, as a function of the rotation angle 0

between the inner and outer squares. In addition to computing the torque for the SiO 2-

ethanol-perfect-metal case, we also analyze the torque for vacuum-separated perfect-metal

cylinders, in which case the forces are purely attractive and there is no stable positional

equilibrium [107].

The resulting torque per unit z-length is shown in Fig. 8-3, for both the repulsive (solid,

filled-square-lines) and attractive (solid, open-square-line) cases, as 0 is varied from -45'

to 45'. The stable orientation for both cases is 0 = 450, a surprising result considering the

difference in the sign of the force. A stable orientation of 45' in the perfect-metal case is not

so surprising, since an attractive force that decreases with separation should intuitively (in

the heuristic picture of pairwise attractions between surfaces) favor an orientation where

the surfaces are as close as possible, pulling the corners of the inner square towards the

outer surfaces. On the other hand, a repulsive force should intuitively push the surfaces

as far apart as possible, which would suggest a 0' stable orientation. The reason for this

apparent contradiction between intuition and the numerical results lies in the effects of

material dispersion-as explained below, ESi - Eeth (and hence the force) switches sign at

some lengthscales (some 1/i). For example, if we neglect the material dispersion of SiO 2
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Figure 8-4: Derivative of the Casimir torque in the z-direction with respect to 9, drz/d9, in
units of hc/a 2, evaluated at 9 ~ 0', -as a function of lengthscale a = 0.5(D - s). The solid
line is a fit to the exact Casimir torque, computed by our numerical method (solid squares),
and the dashed line is the torque as computed by a PFA approximation. Both curves display
a change (dispersion-induced transition) in the stable orientation of the square.

and ethanol, and use only the ( - 0 dielectric constants, the torque as a function of 9

(shown as the dashed black line in Fig. 8-3) indeed exhibits a stable orientation at 00 , as

expected from the pairwise intuition: in this case, the force is repulsive at all lengthscales.

Since 9 = 00 is unstable for the a = 0.0955 pm fluid case and stable for a -> oo

(equivalent to ( -+ 0), there must be a transition at some critical intermediate lengthscale

ac. One way to determine ac is to calculate the derivative of the torque at 9 = 0' as

a function of a (noting that the dimensionless torque ra 2 /hc and its derivative go to a

nonzero value as a -- oo), and to look for a change in the sign. This derivative is plotted

as the solid line in Fig. 8-4 and displays the expected transition from unstable (drz/d9 > 0,

left) to stable (drz/d9 < 0, right) at ac ~ 0.1 pm, a consequence of material dispersion. A

better understanding of this transition can be gained by inspecting a simple heuristic (PFA).

PFA is only an ad hoc model, in which the force on each point of the surface (and hence

the torque) is treated as simply the parallel-plate (Lifshitz) force between fluid-separated

half-spaces (with "lines of interaction" perpendicular to the inner square, as depicted in the

left inset of Fig. 8-4). This simple model turns out to capture some qualitative features of

the orientation transition, as shown by the dashed line in Fig. 8-4, although it is of course

quantitatively incorrect [440].

PFA provides an explanation for why orientational stability need not coincide with

positional stability. Stability, in general, arises from the competing interactions of the inner
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and outer surfaces, e.g. in the 450 orientation for repulsive interactions, the nearest surface

"pushes" the corner away, while the other surface "pushes" the corner back. Which of

these competing forces dominates depends on their sign and power law, but in the torque

r = r x F case, there is an additional effect (from the r x dependence): the force "from"

the nearest surface elements is parallel to the radial direction and does not produce a

torque, whereas it does contribute to the total force. Therefore, the net force and torque

can respond differently to the same material dispersion, because the lengthscales of the

dominant contributing separations differ. More generally, in the exact model where the

force cannot be decomposed into additive contributions, the dominant imaginary-frequency

contribution can differ between torque and force.

There is another interesting feature in Fig. 8-4: for a > ac, the derivative of the torque is

nonmonotonic, decreasing in magnitude towards a -+ oc. This may seem counter-intuitive

because the E contrast is maximum for ( -+ 0 (Fig. 8-5 inset), which would seem to predict

greater forces. However, because the net torque arises from a competition between nearby

and faraway surfaces, the magnitude depends not only on the force but also on the power

law: if the force decreases more rapidly with distance, then faraway surfaces contribute less

and the net torque is larger. This is precisely what is happening here: at intermediate a,

material dispersion acts to increase the power law [129] compared to the a -+ oc case where

dispersion plays no role. Preliminary work shows similar effects in the positional stability.

This also explains the relative torque magnitudes for a -> oo and a = 0.0955 prm in Fig. 8-3.

Since the qualitative behavior of the orientation transition is captured by PFA, it makes

sense to examine a simple one-dimensional model in detail, depicted on the inset of Fig. 8-5:

a SiO 2 slab of thickness s, separated from two metallic half-spaces, a (surface-to-surface)

distance a = 0.5(D - s) from the SiO 2 surface, with ethanol (fluid) in between. This

geometry is analyzed using a generalization of the Lifshitz formula [529]. Figure 8-5 shows

the force per unit area on the inner slab (again using s/D = 0.25), as a function of the

displacement d, for two lengthscales: a = 0.0955pm (red), and a = 0.6,pm (black). There

is a stable equilibrium at d = 0, just as for the two-dimensional case in Fig. 8-2. In

the case of perfect-metal half-spaces, the force changes sign at a critical distance de that

depends on the lengthscale a. However, if we use a realistic metal (Au), shown by the

dashed line for a = 0.0955 pm, this transition disappears and the force is always repulsive.

These features are explained by the inset of Fig. 8-5, which shows E(i() for SiO 2, ethanol,
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and Au. The key point is that the contributions to the Casimir force come primarily

from imaginary "wavelengths" 2r/h larger than some lengthscale set by the separation,

while very short wavelengths (large ) on this scale are exponentially cut off in the force

integral 1303]. Thus, for large lengthscales a, the force is dominated by small- contributions

where siica < kethanol i Emeta, giving a repulsive force and a stable equilibrium. On

the other hand, for small lengthscales and separations, large-a contributions become more

important, for which Esilica > Eethanol (for ( > 2.3 c/pm, marked by the vertical dashed

line in the inset of Fig. 8-5), leading to attractive forces. For the case of perfect-metal

cylinders, these attractive contributions are large enough to flip the sign of the total force

for small separations, whereas for Au the attractive high-( contributions are suppressed by

the diminishing e(i ) of the Au and the force remains repulsive. While the transition is

absent in the SiO 2-ethanol-Au configuration, we have calculated the force between ethanol-

separated lithium-niobate LiNbO 3 and Au plates and found a sign transition at separations

~ 0.05 pm. This is illustrated in Fig. 8-5 (solid blue line); because LiNbO 3's anisotropy

greatly complicates the modeling, we used a PFA approximation based on summing the

Lifshitz forces between semi-infinite Au and LiNbO 3 slabs (neglecting the finite LiNbO 3

thickness). The two principal values of the E tensor of LiNbO 3 [34] are plotted in the
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inset. There are also transitions for ethanol-separated barium-titanate and calcite plates

at separations - 0.01 pm [373]. Since these two cases are much more difficult to compute

(the outer cylinder is not perfect metal and LiNbO 3 is anisotropic), we focused on the

SiO 2-ethanol-metal case here, which has similar qualitative behaviors.

The experimental Es of SiO 2 and ethanol were fit to a standard multiple-oscillator

model [325] accurate from infrared to ultraviolet wavelengths: e(i) = 1+ 1 1 Cn 1 + (&/Wn)2

The parameters we used are [34, 351]: ethanol (N = 2) w = {6.6, 114} x 1014 Hz and

Cn = {23.84, 0.852}; SiO 2 (N = 3) Wn {0.867, 1.508, 203.4} x 1014 Hz and Cn =

{0.829, 0.095, 1.098}. We model the dielectric constant of Au by a Drude model e(i ) =

1 + 2 / ( + -y), where w, = 1.367 x 1014 Hz and y 5.320 x 1013 Hz [34]. The Casimir

force F is computed as an integral F - fo d (fj(T)dA [443], where the mean stress tensor

(T) is computed at each position and frequency from the Green's function as described in

Ref. [443]. The Casimir torque -r, was computed in the same framework, with a minor

modification, -r fc d (f r x ((T)dA), also proposed in our earlier work [443].

We are hopeful that these phenomena will be amenable to experiment. There are some

experimental advantages over planar geometries: the concentric configuration is a stable

equilibrium, static charges on the outer metallic cylinder are screened in the interior, and

the equilibrium is easily distinguished from electrostatic effects (which cannot produce sta-

bility [106]). (If we inverted the geometry, to have the Si0 2 on the outside and the metal on

the inside, then the larger static e of the fluid compared to the SiO 2 would lead to a classical

stable equilibrium for a charged inner cylinder [92,106,353].) We expect that similar stabil-

ity will be obtained for real metals, as in our Au calculation in Fig. 8-5, and there are several

materials that exhibit repulsive-attractive transitions (unlike SiO 2-ethanol-Au) that should

display the orientation transition. We have also uncovered an intriguing question to explore

in future work: in the PFA heuristic, it appears that the critical lengthscale at which the

orientation transition occurs is smaller than the corresponding positional transition length-

scale (changing from stable to unstable suspension), whereas the exact calculations give the

opposite result.

Stable suspension and dispersion-induced transitions are certainly not confined to the

z-invariant structures studied in this section. In fact, subsequent to this work, Ref. [429]

explored a geometry involving eccentric spheres embedded in a fluid that also exhibits a

stable configuration. As opposed to the saddle-point equilibrium described here (stable
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Figure 8-6: Schematic of silica sphere levitated above a gold plate. At the equilibrium point,
the force of gravity counters the Casimir force, while the Casimir force from the walls of
the spherical indentation confine the sphere laterally (x-y plane).

suspension restricted to the x-y plane), the eccentric-sphere structure of Ref. [429] exhibit

an honest-to-god stable equilibrium (suspension in all directions).

8.4 Stable Suspension and Confinement

In this section, we consider two types of fluid-based suspension schemes. First, we con-

sider a scheme explored in Ref. [344] using the FDTD method of chapter 6, and presented

schematically in Fig. 8-6: a dielectric sphere is suspended above a gold plate and confined

laterally (in the x-y plane) by a spherical indentation and vertically (in the z direction) by

a competition between a repulsive Casimir force and gravity. We then describe a method

of obtaining stable suspension of compact objects that is entirely based on material con-

siderations (independent of geometry or external forces) and that suggests an approach for

obtaining non-touching configurations, or diclusters, of compact objects.

8.4.1 Gravity-Induced Stability

This section demonstrates stable confinement via a combination of geometric and material

dispersion coupled with gravity: a dielectric sphere is levitated above a gold plate with

hemispherical indentation, as in Fig. 8-6. The basic geometry considered here, illustrated

in Fig. 8-6 and studied using the FDTD method of chapter 6, was first proposed by Ref. [62]

in the unstable (vacuum) case. With this example, we present a setup similar to that used

previously to measure repulsive Casimir forces [374], with the hope that this system may

be experimentally feasible.
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Figure 8-7: (Left:) Total (Casimir + gravity) vertical (z) force on the silica sphere (depicted

in the inset) as the height h of the sphere's surface above the indentation surface is varied.

The point of vertical equilibrium occurs at he ~ 450 nm. (Right:) Casimir restoring force

on the sphere as a function of lateral displacement Ax, when the vertical position is fixed

at he, the height at which gravity balances the Casimir force.

A silica sphere is suspended above a perfect metal plane with a spherical indentation

in it. The sphere is immersed in bromobenzene. Because the system satisfies esphere <

Efluid < Eplane, the sphere feels a repulsive Casimir force (in the +z direction) [374]. This is

balanced by the downward force of gravity, which confines the sphere vertically. In addition,

the Casimir repulsion from the sides of the spherical indentation confine the sphere in the

lateral (x-y plane) direction. The radius of the sphere is R = 1pm, and the circular

indentation in the metal is formed from a circle of radius 2pum, with a center Ipm above the

plane. For computational simplicity, in this model we neglect dispersion and use the zero-

frequency values for the dielectrics, as the basic effect does not depend upon the dispersion

(the precise values for the equilibrium separations will be changed with dispersive materials).

These are E = 2.02 for silica and E = 4.30. For the gravitational force we use densities of

1.49 g/cm3 for bromobenzene and 1.96 g/cm 3 for silica.

An efficient strategy to determine the stable point is to first calculate the force on the

glass sphere when its axis is aligned with the symmetry axis of the indentation. This config-

uration is cylindrically-symmetric and can be efficiently computed as in the previous section.

Results for a specific configuration, with a sphere radius of 500 nm and an indentation radius

of 1 pm, are shown in Fig. 8-7. The force of gravity is balanced against the Casimir force

at a height of h = 450 nm. To determine the strength of lateral confinement, we perform a

fully three-dimensional computation in which the center of the sphere is displaced laterally

from equilibrium by a distance Ax (the vertical position is held fixed at the equilibrium
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(B) (C)

Figure 8-8: Schematic schemes for stable suspension of fluid-separated objects, involving:
(a) enclosed geometries; (b) gravity countering Casimir repulsion; and (c) material disper-
sion producing repulsive and attractive Casimir forces (here).

value h = 450nm). The results are shown in Fig. 8-7(Right). It is seen that over a fairly

wide range (|Azx < 100 nm) the linear term is a good approximation to the force, whereas

for larger displacements the Casimir force begins to increase more rapidly. Of course, at

these larger separations the vertical force is no longer zero, due to the curvature of the

indentation, and so must be re-computed as well.

8.4.2 Nontouching Plane-Separated Compact Objects

In this section, we demonstrate stable Casimir suspension of realistic dielectric/metallic

objects immersed in a fluid. Unlike suspension in the previous sections (explored in Ref. [344,

452]), this suspension does not involve one object enclosing another or external forces, but

instead occurs between objects on opposite sides of an imaginary separating plane. This

effect is a consequence of material dispersion, and is here validated in various experimentally

accessible geometries consisting of ethanol-separated dielectric spheres and semi-infinite

slabs. Furthermore, we show the possibility of achieving Casimir "molecular" clusters in

which objects can form stable non-touching configurations in space-this is illustrated in a

"diatomic" or "dicluster" geometry involving two dielectric spheres of different radii bound

into a non-touching pair and levitated above a gold slab. Finally, our calculations reveal

interesting effects related to the interplay of geometric and material dispersion, in which

stability responds to finite size in a way that is qualitatively different in planar vs spherical

geometries.

Prior to this work, Casimir stability had only been studied in the following four dif-

ferent contexts: first, in geometries involving mutually enclosed fluid-separated objects, in

which the inner object is repelled by the outer object [452]; second, the slab-sphere ge-

ometry of the previous section, in which fluid-induced repulsion counteracts the force of

gravity [344]; third, interleaved structures like the zipper geometry of the previous chap-
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ter, studied by Ref. [446], in which the surfaces of two complicated objects interleave so

that their mutual attraction acts to separate the objects; and fourth, metamaterial pro-

posals [595] that currently have no clear physical realization. The first two approaches

(involving fluids) are illustrated by the schematics in Fig. 8-8(a-b). While all of these ex-

amples clearly demonstrate the possibility of Casimir stability, they leave something to be

desired: they are limited to enclosed/complex geometries or require that stability lie only

along a single direction (e.g. direction of gravity). A less constrained and previously un-

explored form of stability is one involving compact objects on either side of an imaginary

separating plane, as illustrated in Fig. 8-8(c) for two spheres: in this case (involving fluids),

we will show that the objects form stable configurations that are independent of external

forces, and seem more accessible to experiment, opening up new possibilities for the creation

of multi-body clusters based on the Casimir force.

From our discussion in the previous sections, we know that Casimir force between two

dielectric objects embedded in a fluid can become repulsive if their dielectric permittivi-

ties satisfy Eq. (8.6) over a sufficiently wide range of imaginary frequencies ( [129]. The

possibility of stable separations arises if the force transitions from repulsive at small sepa-

rations (conceptually dominated by large-i contributions) to attractive at large separations

(conceptually dominated by small-i contributions). A criterion for obtaining stability is

therefore that Eq. (8.6) be violated at small (, and satisfied for ( > (c, with the tran-

sition occurring at some &e ~ 27rc/Ac roughly related to the lengthscale Ac at which the

repulsive/attractive transition occurs. This criterion is only heuristic, but helps guide our

intuition. The real system is more complicated, as we shall see, because the sign of the

force also depends on many other factors such as the relative strength of the contributions

of different frequencies (related to the strength of the E contrast) as well as on finite-size

effects.

After considering a number of possibilities, we identified several material combinations

that satisfy Eq. (8.6) for large ( (small separations). Figure 8-9(top) plots the dielectric

permittivity E(i() of various materials (Si, teflon, SiO 2 , and ethanol) satisfying Eq. (8.6)

over some large range of (. In order to establish the existence of stable separations, we

first compute the force between semi-infinite slabs separated by ethanol, using the Lifshitz

formula [304]. Figure 8-9(bottom) plots the Casimir force between semi-infinite slabs for

different material arrangements, normalized by the corresponding force between perfectly-
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Figure 8-9: (Top): Plot of the dielectric permittivity e(i() of various materials evaluated
at imaginary frequency ( (units of c/pm). (Bottom:) Casimir force between a semi-infinite
slab and a sphere (dots) and Casimir pressure between semi-finite slabs (lines), normal-
ized by the corresponding perfect-metal PFA force FPFA = hc7r3 /720d 3 (slab-sphere) and
pressure FPFA = hc7r2/24d 4 (slab-slab). The force/pressure is plotted for various material
configurations, described in the text.

metallic slabs. Our results show that both teflon-Si (yellow) and SiO2-Si exhibit stable

equilibria at de ~ 120nm and d(s) ~ 90nm, respectively. SiO 2-Si exhibits a finite region of

stability coming from the existence of an unstable equilibrium at a smaller dcU) 29nm, a

consequence of its two dielectric crossings () 2.6 27rc/pm and ~(2) 26.4 27rc/pm labeled

in Fig. 8-9(top). As mentioned above, this prescription for obtaining stability is only heuris-

tic: for example, the force between teflon-SiO 2 slabs is always attractive, even though their

permittivities satisfy Eq. (8.6) at large (. In that case, while there is a crossing of the form

of Eq. (8.6) at ( , the repulsive contributions coming from ( > are overwhelmed by

the attractive contributions coming from ( < ( , since SiO 2 and teflon become transparent

at relatively small (. Thus, the repulsive region of the frequency spectrum merely reduces

the attractive force between the objects at small separations.

The existence of stable separations for semi-infinite slabs is promising, especially because

this occurs in the 100nm range where Casimir forces are easily observable, leading us to

investigate whether similar phenomena occur for finite-size objects: finite-thickness slabs,

slab-sphere, and sphere-sphere configurations.

For slab-sphere and sphere-sphere geometries, rapid exact calculations are performed

using the spherical-harmonic scattering formulation of [73,426]. Given the material prop-

erties, the scattering-matrix formulation (derived from a path-integral evaluation of the
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Casimir energy) yields the exact Casimir force, with the only approximation being the nu-

merical truncation of the sum over spherical-harmonic contributions-these contributions

decay exponentially fast, and we only required harmonics up to order f = 20 to obtain bet-

ter than 1% accuracy in the cases studied here. For convenience, we evaluated the force at

zero temperature T; because the room-temperature Matsubara wavelength h/kT ~ 50 pm

is much larger than the < 200 nm separations considered here, the finite-temperature cor-

rections to the equilibrium separations are small [304], e.g. < 1% for the Rs = 100 nm

teflon-Si sphere-sphere case in Fig. 8-11. Intuitively, one might expect the finite size or

thickness of an object to suppress the contributions from small ( (large "wavelengths"), and

therefore to change (or eliminate) the separation at which the repulsive/attractive transi-

tion occurs. Here, where attraction comes from small-i contributions, one might expect the

finite size to decrease the attractive contributions and therefore increase the equilibrium

separation dc.

Figure 8-9(bottom) plots the force between a sphere of radius R = 200nm and a semi-

infinite slab for different material arrangements, normalized by the corresponding perfect-

metal proximity-force approximation (PFA) force. (When referring to a geometry consisting

of a semi-infinite a and finite 0 object, we shall denote the combination by a--0. For exam-

ple, teflon-SiO 2 refers to a semi-infinite teflon slab and finite SiO 2 sphere configuration.)

The results in this slab-sphere geometry look qualitatively similar to those in the slab-slab

structure. In particular, both teflon-Si and SiO 2-Si exhibit stable equilibria at de ~ 105nm

and de ~ 78nm, respectively, roughly 15nm smaller than the de in the slab-slab case.

The fact that de is smaller in the slab-sphere case than for semi-infinite slabs was ini-

tially unexpected since it contradicts the intuition described above. However when we plot

de for the various materials (solid dotted lines) as a function of R E (0, 350)nm in Fig. 8-

10, we indeed observe the expected behavior: as R decreases, de increases, asymptoting

to a constant at R = 0 that corresponds to the Casimir-Polder force between a spherical

nanoparticle and a slab [426]. Similar increases in de as thickness t is decreased are observed

in some of the finite-slab geometries (solid lines) in Fig. 8-10, at least in all of the configura-

tions where the thickness of the silicon is varied. In the t -- oc limit for the slab-slab case,

the semi-infinite result is recovered. For the slab-sphere case with R -* oc, the asymptotic

de occurs for a smaller separation than for semi-infinite slabs: in this limit, where PFA is

valid, the curvature of the spheres yields an average separation that is larger than dc.
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Figure 8-10: Equilibrium separation de vs. sphere-radius (R) or slab-thickness (t) for various
slab-sphere (dots) and slab-slab (lines) configurations. Dashed lines correspond to slab-slab
geometries with materials swapped (semi-infinite silicon slab).

An interesting question is to what extent one may tailor object geometries in order to

change the qualitative features of the force, e.g. its sign. With this question in mind, the

dashed lines in Fig. 8-10 shows de for slab-slab geometries in which the two solid materi-

als have been exchanged so that the finite-thickness slab is no longer silicon. Apparently,

changing which slab is finite qualitatively reverses the dependence on de in some cases: for

Si-Au and Si-SiO 2 slabs, the equilibrium separation de decreases with decreasing thickness

t, corresponding to an increased attractive force despite the fact that the attractive con-

tributions arise from small ( (which are intuitively cut off by the finite thickness). This

reversal, however, does not happen in all cases: it does not occur for the Si-teflon slab-slab

geometry or for any of the slab-sphere geometries (and we do not plot de in these reversed

cases because the results are very similar to the original results). Evidently, the finite lateral

size of the spheres has a dramatic qualitative interaction with the material dispersion. In

future work, we plan to investigate this interesting interplay between material and geomet-

ric dispersion, in addition to the finite-size behavior exhibited by the finite gold [279] and

Si0 2 slabs.

Another feature worth noting in Fig. 8-10 also stems from the anomalous response of the

Si-Si0 2 slab-slab geometry to changes in the Si0 2 thickness t: the stable d,S) and unstable

d equilibria bifurcate at a radius Rc.

In what follows, we illustrate an interesting corollary of this type of stability: the pos-

sibility of obtaining stable noncontact configurations of compact objects at a nonzero sep-
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Figure 8-11: (Top:) Plot of the stable equilibrium center-surface (Lc) and surface-surface
(he) separation between either a teflon (yellow) or silicon (blue) sphere and a semi-infinite
gold slab (depicted schematically on the left inset), as a function of sphere radius R. The
black lines also show the presence of an unstable equilibrium in the silicon-sphere case.
(Bottom:) Plot of the force Fss between two teflon/silicon spheres of radii RS/RT, showing
the existence of a stable equilibrium.

aration. In particular, we calculate the Casimir force in a nanoparticle-dicluster system

consisting of teflon and silicon spheres, of different radii RT and Rs, respectively, immersed

in ethanol. The force Fss between the spheres is plotted in Fig. 8-11(bottom) for different

sets of radii Rs = {99.69, 293.67, 368.39}nm and RT = {262.09, 32.67, 176.64}nm, respec-

tively. This choice of the radii was motivated by one possible experimental configuration, in

which the pair of spheres are also levitated above a planar slab: in this geometry, discussed

below, the sphere radii are chosen so that both spheres are suspended at the same height

above the slab. With this choice of materials, the spheres are again attractive at large sep-

arations and repulsive for small separations, leading to a stable (orientation-independent)

surface-surface separation in the 100-150nm range.

To make such a dicluster pair easier to observe in experiments, one could simultaneously

suspend them at a known distance above a planar substrate, using the interplay between
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the repulsive Casimir force and gravity to create stable levitation. For simplicity, we investi-

gate this possibility within the additive approximation: the slab-sphere and sphere-sphere

interactions are considered independently. Because Casimir forces are not additive, the

presence of the slab will change the stable separation of the spheres (and vice versa for the

stable height of the spheres). However, this approximation forms a useful starting point

for the design of such an experiment and should even be accurate in the limit where the

sphere diameter is much larger than the stable surface-surface separations (here, most of

the diameters are at least twice the stable separations). Figure 8-11(top) shows a plot of the

equilibrium surface-surface (he) and center-surface (Le = hc + R) separations of the teflon

(yellow) and silicon (blue) spheres suspended above a semi-infinite gold slab, as a function

of sphere radius R. As shown by the figure, decreasing R acts to increase Le and decrease

he. The decrease in he occurs much more rapidly than in Fig. 8-10 due to the fact that,

in addition to geometric dispersion, the force of gravity scales as the mass pV of a sphere

(where the density p {2330, 2200, 789}kg/m 3, for {Si, teflon, ethanol}, respectively). The

center-center separation Lc = he + R increases with increasing R because 9hc/&R > -1.

In addition to a stable equilibrium he, Au-Si exhibits an unstable equilibrium at smaller

de due to the transition to an attractive Casimir force for small separations; if the sphere

were ever pushed below the unstable equilibrium point, it would continue downward and

adhere to the slab. This would be a concern for experiments if fluctuations in the sphere

height could push it below the unstable equilibrium, but as seen from Fig. 8-11 the distance

between the stable and unstable equilibria is over 200nm for R < 50nm nanoparticles.

The gray areas in Fig. 8-11(top) depict regions in which the Le or he of the two spheres

can be made equal by an appropriate choice of radii, as shown schematically in Fig. 8-11(top-

left). This determines the stable configuration of the two-sphere dicluster when they are

brought together above the surface; the three dashed horizontal lines in Fig. 8-11(top)

correspond to the radii used for the force calculation in Fig. 8-11(bottom).

8.5 Strong Temperature Dependence

Our discussion of fluctuation-induced interactions throughout the entire thesis has been

focused on the zero-temperature limit of thermodynamic electromagnetic fluctuations (the

T = 0 limit of the Bose-Einstein distribution of the photon fluctuations) [304]. Here, we
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focus in the nonzero temperature T case, where the Casimir force is predicted to change as a

consequence of the changing photon thermal distribution (the presence of "real photons").

Unfortunately, this change is typically negligible near room temperature and submicron

separations [213,358] and is only a few percent for ~ 100 K changes in T at 1-2pm sepa-

rations where Casimir forces are barely observable [47,49,213,284,358]. Therefore, despite

theoretical interest in these T effects [32,358,555,573], it has proved difficult for experiments

to unambiguously observe T corrections to the Casimir force [47,49, 284]. Other attempts

to measure T Casimir corrections have focused on nonequilibrium situations that differ

conceptually from forces due purely to equilibrium fluctuations [388]. A clear experimental

verification of a T Casimir correction would be important in order to further validate the

foundation of Lifshitz theory for Casimir effects [213, 358]. A related experimental diffi-

culty centers around observing small (few percent at micron separations) corrections to the

Casimir force due to different models of material dispersion [61, 358].

In this last section of the thesis, we shift out attention to the T > 0 Casimir effect.

In particular, we propose a method for obtaining strongly temperature-dependent Casimir

effects by exploiting geometries involving fluid-separated dielectric objects (with separations

in the hundreds of nanometers). As described in the previous sections, the Casimir force

between fluid-separated objects can be repulsive [129, 304], and can even lead to stable

suspensions of objects due to force-sign transitions from material dispersion [450, 452] or

gravity [344,450]. We show that, by a proper choice of materials/geometries, this stable

separation d can depend dramatically on T (2 nm/K is easily obtainable), and there can even

be transitions where d jumps discontinuously at some T. Essentially, a stable separation

arises from a delicate cancellation of attractive and repulsive contributions to the force from

fluctuations at different frequencies, and this cancellation is easily altered or upset by the

T corrections. This appears to be the first prediction of a strong T-dependent Casimir

phenomenon at submicron separations where Casimir effects are most easily observed. We

present the phenomenon in simple parallel-plate geometries, but we believe that the basic

idea should extend to many other geometries and materials combinations that have yet to

be explored. Finally, we also point out that the same systems that are strongly T-dependent

can also be very sensitive to the precise details of the material dispersion at low frequencies,

a property that we plan to exploit in the future; for example, for certain choice of materials,

the difference between a Drude and plasma model for gold leads to a 15 nm change in the
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stable separation (and larger sensitivity may be possible in other geometries).

From the discussion in chapter 5 and 6, we know that the Casimir force between two

bodies is a combination of fluctuations at all frequencies W, and at T = 0 can be expressed

as an integral F(0) = fo f(()d( over imaginary frequencies w = i( [304]. The contribu-

tions f(() from each imaginary frequency are a complicated function of the geometry and

materials, and can be computed by way of stress tensors (see chapter 5 and 6) [129] (valid

in fluids for subtle reasons [354,408]) or via the Casimir energy [354]. At a finite T, this

integral is replaced by a sum over "Matsubara frequencies" 2rnkT/h = n T for integers n:

F(T)= h2T 2 0Zf (2hT n). (8.7)

Physically, this arises as a consequence of the coth(hw/2kT) Bose-Einstein distribution of

fluctuations at real frequencies-when one performs a contour integration in the upper-

half complex-o plane, the residues of the coth poles at hw/2kT = nir lead to the sum-

mation [284]. Mathematically, Eq. (8.7) corresponds exactly (including the 1/2 factor for

the zero-frequency contribution) to a trapezoidal-rule approximation to the F(0) integral,

which allows one to use the well-known convergence properties of the trapezoidal rule [50]

to understand the magnitude of the T correction. In particular, the difference between the

trapezoidal rule and the exact integral scales as O(T 2) for smooth f(s) with nonzero deriva-

tive f'(0) [358] (typical for Casimir forces between metals [213]). More specifically, f(() is

exponentially decaying with a decay-length 27rc/a for some characteristic lengthscale a (e.g.

the separation or size of the participating objects), while the discrete sum of Eq. (8.7) corre-

sponds to a lengthscale given by the Matsubara wavelength AT = 21c/T = hc/kT, in which

case one would expect the T correction to scale as O(A/ 2 ). Unfortunately, at T = 300 K,

AT ~ 7.6 pm, which is why the T corrections are typically so small unless a > 1 pm [358].

We cannot change the smoothness of f(w) since it arises from the analyticity of the classical

electromagnetic Green's function in the upper-half complex-W plane [304], so the only way

to obtain a larger T correction is to introduce a longer lengthscale A into the problem that

dominates over other lengthscales such as the separation a. One way of achieving this is to

make the f( ) integrand oscillatory with an oscillation period A( ~ 27rc/A that is much

shorter than the decay length ~ 2rc/a. Intuitively, discretizing an oscillatory integral in-

duces much larger discretization effects than for a non-oscillatory integral, and this intuition
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Figure 8-12: Relative permittivity e(i() of various materials as a function of imaginary

frequency ( (in units of c/pm) or "Matsubara" temperature T - h(/27rkB. Doped silicon

corresponds (bottom to top) to doping density Pd {1, 3, 5, 10, 102} x 1016, modeled via

an empirical Drude model [127], as is gold [34]. Water, polystyrene, ethanol, teflon, and

lithium niobate are all modeled via standard Lorentz-oscillator models [325].

can be formalized by a Fourier analysis of the convergence rate of the trapezoidal rule [50].

The question then becomes: how does one obtain an oscillatory Casimir integral?

One way to obtain oscillatory frequency contributions to the Casimir force is to employ a

system where there are combinations of attractive and repulsive contributions, as described

in Sec. 8.4.2. In particular, it was shown that the sign and magnitude of the total force

at any given separation can be changed by a proper choice of material dispersion, leading

to the possibility of obtaining Casimir equilibria between objects at multiple separations,

explored in the preceding section. [Basically, dispersion can cause the relative ordering of

the dielectric permittivities of the objects to change, leading to a change in the sign of ff( ).]

In this section, for the purpose of achieving a strong T-dependence at short (submicron)

separations, we search for materials or geometries with dielectric crossings occurring at

sufficiently small = 2irc/A ~ (T, close to the room-temperature Matsubara-frequency

scale IT.

To begin with, we compute the Casimir force between semi-infinite slabs, computed via

a generalization of the Lifshitz formula [529] that can handle multi-layer dielectric objects,

with relative permittivities E plotted in Fig. 8-12 as a function of imaginary frequency i(

(bottom axis) or "Matsubara temperature" T = h(/2-rk (top axis). Figure 8-13 shows the

260



-' 2 .2 5
PS! ethanol! L NbO3 dc

2'

C1. 75i

a. 1.25 r
U)Si /LiNbO3 /ethanol /gold

1VP00 50.75-~

:3

~0.25Lio

50 06o 150 200 250 300 350 400
temperature T (K)

Figure 8-13: Equilibrium separation de (in units of pm) as a function of temperature
T (in Kelvin), for a geometry consisting of fluid-separated semi-infinite slabs (no grav-
ity). The various curves correspond to de for various material combinations. Solid/dashed
lines correspond to stable/unstable equilibria, and shaded regions are T where ethanol
is non-liquid at 1 atm [161]. Doped-silicon is plotted for various doping densities Pd =
{1, 10, 100, 500, 103} x 1017.

equilibrium separation de (in units of pm) as a function of temperature T E (0, 400) K

(in Kelvin) for some of the material combinations (solid/dashed lines correspond to sta-

ble/unstable equilibria), and demonstrates various degrees of T sensitivity. The previously

studied [450] material combination of teflon/ethanol/silicon (data not shown) shows very

little T-dependence: de varies < 1% over 400 K. More dramatic behavior is obtained for

lithium niobate (LiNbO3) or doped silicon (doping density Pd = {1, 10, 100, 500, 103} x 1017),
whose low-i E crossings with ethanol lead to the desired oscillatory f( ) in Eq. (8.7): the

stable-equilibrium separation d(s) for both cases decreases by > 2 pm over 400 K, and

d( ~-2 nm/K near T = 300 K (where d(s) 300-700 nm). The sign of Ad!") comes

from the increasing domination of the repulsive small-s (large-separation) contributions to

f () as T increases. Varying the silicon doping density dramatically changes the T de-

pendence because it tunes the low-( silicon/ethanol e crossing in Fig. 8-12. Doped-silicon

exhibits another interesting behavior: de disappears at a critical temperature Tc (deter-

mined by Pd) due to a bifurcation between the stable/unstable equilibria.(Tc is determined

not only by Pd but also by the LiNbO3 layer-thickness, here - 50nm, in the absence of

which Tc ~ 150 K.) Experimentally, such a bifurcation yields an irreversible transition from
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Figure 8-14: Equilibrium position de (in units of pim) of a semi-infinite polystyrene (PS) slab

immersed in ethanol (shaded T = non-liquid) and suspended against gravity by a repulsive

Casimir force exerted by a doped-silicon (Si) slab. The solid/dashed lines correspond to

stable/unstable de, and each color represents a different value of PS slab-thickness h (in

units of ptm). The inset shows the magnitude of the total energy UT(d) (in units of kBT)

as a function of d for h = 150 nm, at various T.

suspension (T < Tc) to stiction (T > Tc). Figure 8-13 also shows a small sample of the

many other material possibilities. The shaded regions in Fig. 8-13 correspond to T above

the boiling point (320 K) or below the freezing point (159 K) of ethanol at 1 atm [161].

The inclusion of gravity/buoyancy introduces another force into the system and leads

to the possibility of additional phenomena, such as additional stable equilibria due to grav-

ity/Casimir competition [450]. For example, Fig. 8-14 shows the equilibrium separations

de of a polystyrene (PS) slab of thickness h in ethanol above a semi-infinite doped-silicon

slab (Pd= 1.1 x 1015), including gravity (mass density pps - Pethanol = 0.264 g/cm 3 461]).

As in Fig. 8-13, de varies dramatically with T: -d 1.2 nm/K near T = 300 K. Gravity

becomes increasingly important as h grows: compared to h = 0 (leftmost line), it cre-

ates an additional stable equilibrium (solid lines) at large de (hundreds of nm) where the

downward gravity dominates. With gravity, there are three stable/unstable bifurcations

instead of two, leading to three critical temperatures where qualitative transitions occur:

T refers to the temperature of the topmost bifurcation, created by gravity, and the other

two temperatures are labeled Ti (~~ 100 K) and T2 (~ 180 K). If T < T1 (h < 40 nm),

there exists an irreversible transition from suspension to stiction as T is decreased below
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Figure 8-15: Average separation (d) (circles) and equilibrium separation de (red line), in
units of pm, vs. temperature T (in Kelvin), for a geometry consisting of a fluid-separated
hollow PS sphere of inner/outer radius r/R = 3.2/5 pm suspended in ethanol against gravity
by a doped-silicon slab and subject to Brownian motion. Shaded region indicates where
sphere is found with 95% probability. The thin black line is the average (d)140 if the Casimir
energy at 140 K is used instead of the true temperature-dependent energy landscape.

Tg. If Ti < T < T2 , there are two irreversible transitions from suspension to suspension

(smaller de) to stiction as T is lowered from T > T to T < Ti starting in the large-de

equilibrium. Finally, when T -- T 2 (h - 300 nm) the two stable equilibria merge and

only the T bifurcation remains. Perhaps most interestingly, when this merge occurs the

slope -de can be made arbitrarily large but finite, corresponding to an arbitrarily large

(but reversible) temperature dependence. For example, Ade a 130 nm for a small change

AT - 5 K around T 2 , for h = 300 nm.

In a real experiment, the situation is further complicated by Brownian motion, which

will cause the separation to fluctuate around stable equilibria and will also lead to random

transitions between equilibria [439]. In the example of Fig. 8-14, the attractive interaction at

small separations means that there is a nonzero probability that the slabs will fluctuate past

the unstable-equilibrium energy barrier AUT into stiction, but the rate of such a transition

decreases proportional to exp(-AUT/kBT) [439]-here, assuming a 50 x 50 pm2 PS slab,

AUT/kBT r 104, so the stiction rate is negligible. The energy landscape UT(d)/kBT is

plotted for several cases in the inset to Fig. 8-14: the general prediction of experimental

observations involves a viscosity-damped Langevin process [439] that is beyond the scope

of this paper to model, but by choosing T one can make the potential barrier between the
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two stable equilibria arbitrarily small and therefore should be able to reach an experimental

regime in which "hopping" is observable.

Alternatively, we consider a simpler example system with only a single stable equilibrium

and a single degree of freedom: a hollow PS sphere (experimentally available at similar

scales [559]), filled with ethanol, of inner/outer radius r/R = 3.2/5 pm suspended in ethanol

above a doped-silicon (Pd = 1.1 x 1015) substrate, shown on the inset of Fig. 8-15. (To

compute the Casimir energy in this system, we employ a simple PFA approximation that

is sufficiently accurate for our purpose. Here, for d ~ 500 nm, the exact energy is ~

85% of the PFA energy.) For this example, in Fig. 8-15 we plot the mean surface-surface

separation (d) - f dz z exp[UT(z)/kBT] (determined only by the energy landscape and the

Boltzmann distribution [439]), corresponding to an experiment averaging d over a long

time, along with a confidence interval (shaded region) indicating the range of d where the

particle is found with 95% probability. The sphere experiences an attractive interaction

at small separations, but again we find that the unstable-equilibrium energy barrier is

sufficiently large (AU/kBT ~ 50) to prevent stiction for T near 300 K. As T varies, two

factors affect (d): the T-dependence of the Casimir energy UT(z), and the explicit kBT

in the Boltzmann factor. To distinguish these two effects, we also plot (thin black line)

(d)140 ~ f dz z exp[Ui4o(z)/kBT] where the T = 140 K (bifurcation point) Casimir energy

is used at all temperatures. Comparing (d) with (d)140, it is evident that most of the

positive-slope T dependence of (d) (~ 0.8 nm/K around 300 K) is due to UT, and therefore

(d) offers a direct measure of the Casimir-energy T dependence.

Experimentally, measuring hundreds of nm changes in separation over tens or hundreds

of Kelvins appears very feasible, perhaps even easier than traditional measurements of

Casimir forces. (In a fluid, static-charge effects can be neutralized by dissolving electrolytes

in the fluid [372], which also have the added benefit of significantly reducing/increasing

the freezing/boiling point of the fluid [161].) Such temperature-dependent suspensions may

even have practical applications in microfluidics. We believe that the examples shown in

this letter only scratch the surface of the possible temperature/dispersion effects that can be

obtained in Casimir-suspension systems. Not only are there many other possible materials

and geometries to explore in the fluid context (along with more detailed calculation of the

Brownian dynamics), and by no means are the effects shown here the maximum possible,

but similar principles should apply in other systems where competing attractive/repulsive
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contributions to Casimir forces can be found, such as the vacuum-separated "zipper" struc-

ture [446] or a recent repulsive metallic geometry [298].
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Appendix A

Disorder-Immune Confinement of

Light in Photonic-Crystal Cavities

A.1 Influence of Disorder on Complete-Gap Modes

In this appendix, we show that a photonic-crystal cavity can confine light with a lifetime

that is not limited by fabrication disorder and is independent of modal volume. A photonic

crystal is a periodic dielectric structure with a photonic band gap, a range of wavelengths

in which light cannot propagate in the crystal; a "point defect" introduced in such a crystal

traps a localized mode. [239] Dielectric cavities can also be made by ring resonators [469] as

well as by point defects in photonic-crystal "slabs" that combine band gaps in one or two

directions with index-guiding; [250] all such cavities, however, suffer from intrinsic radiation

losses whose reduction ultimately requires a tradeoff in modal volume [250, 316, 464, 508]

(except for Ref. [554]), and any disorder should also scatter light and limit the lifetime.

With a complete photonic band gap (i.e., for all directions and, in 3d, all polarizations), the

dimensionless lifetime "Q" of the cavity increases exponentially with the number of crystal

periods surrounding the cavity, independent of its modal volume (which can approach a

half-wavelength diameter). [239] Moreover, it has been shown that the photonic bandgap is

preserved even when a small (bounded) amount of disorder is introduced into the crystal,

[147,160,256,300] leading to the hope that optical confinement is maintained in a disordered

cavity (with some evidence in 2d provided by Ref. [572]). Here, we show that this hope

is justified: by finite-difference time-domain (FDTD) [523] simulations for crystals in both
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Figure A-i: Cavity mode Ez~ (blue/white/red = positive/zero/negative) for a 2d structure
with (a) no disorder, (b) surface disorder, and (c) surface + position disorder, and for a
(horizontal) cross-section of a 3d structure with (A) no disorder and (B) sidewall disorder.

2d and 3d, we demonstrate that the only effect of the disorder is a slight change in the

exponential rate at which Q increases with the number of crystal periods, and also a small

shift in the cavity frequency w that could be compensated by introducing a single external

tuning parameter into the cavity [397,417,562] We obtain a Q of 108 optical periods and a

half-wavelength single-mode diameter in a small (finite) 3d crystal with unphysically large

fabrication disorder.

Thus, with a complete-gap crystal, the only factors limiting the lifetime of a cavity are

the size of the crystal that can be fabricated and also the intrinsic absorption losses of the

materials. For example, Si at A = 1.5 5 ptm has a bulk extinction coefficient k so small it is

difficult to measure, but an extrapolation of the band-edge k tail [528) is ~'- 10-12, giving

a maximum Q > 1012; before this point, however, electronic surface states and similar

effects determined by fabrication details may dominate absorption. The resulting high Q
and small modal volume are important especially for nonlinear devices to minimize the

power requirements. [501] Note that, although 1/Q is a fractional bandwidth, one actually

wants Q much larger than a design bandwidth might suggest, since the Q here is only

that of radiative loss: the ratio of twice the total Q (~'- w/bandwidth) to the loss Q is the
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fractional loss. [202] For comparison, we point out that past dielectric cavities with very

high Q values required a substantial sacrifice in modal volume compared to the theoretical

optimum ~ (A/2n) 3, such as microspheres (Q ~ 1010, modal volume > 104 x optimum) [542]

or photonic-crystal heterostructures (Q ~ 106, modal volume ~ 10 x optimum). [508]

We focus on two structures: in 2d, a square lattice of dielectric rods in air (period

a, radius 0.2a, E = 12 ~ Si), shown in the Fig. A-2 inset, which has a gap (frequencies

0.286-0.421 27rc/a) for the TM polarization (E out of the plane); [239] in 3d, an fcc lattice

(lattice constant a) of air cylinders in dielectric (E = 12) oriented along the 111 direction

[248] (radius 0.293a, height 0.93a), forming an alternating stack of rods-in-air and holes-in-

dielectric layers with a complete gap (frequencies 0.507-0.628 2xc/a), shown in the Fig. A-4

inset. The 3d structure has an e = 12 substrate below and to the sides, and air above with

a hole layer topmost, similar to experiment. [419]

In 2d, a cavity is formed by removing a single rod (as in the Fig. A-2 inset), giving a

single confined mode [239] with w = 0.3779 2irc/a shown in Fig. A-1(a). In 3d, we also

remove a rod from one of the "rods-in-air" layers, giving a mode with W = 0.5689 2irc/a

that resembles the TM mode of the analogous 2d cavity; [412] a horizontal cross-section

of this mode is shown in Fig. A-1(A) and a vertical cross section is given in the inset of

Fig. A-4. Using FDTD with PML absorbing boundaries, [523] we excite the cavity modes

by a Gaussian pulse and extract w and Q from the response by a filter diagonalization

method. [250,331,332] Q is defined [202,469] as the number of optical periods for the energy

to decay by exp(-27r), and modal volume V is computed as f eIE12/ maxeIE12. [415] For

disorder, we compute the mean and standard deviation (std. dev.) for each result over 15

random configurations (except where otherwise specified).

In 2d, with a resolution of 16 pixels/a, we examine four types of random disorder, all with

unrealistically large magnitudes: surface (Fig. A-lb, described below), position (random

rod-center offsets in [-0.15a, 0.15a]), surface+position (Fig. A-1c), and rod E variations

within [-15%, 15%]. For surface disorder, 20 cylinders of random radius in [0, 0.0625a] are

added/removed from the surface of each rod. Fig. A-2 shows the resulting Q vs. number n

of layers around the cavity (e.g. n = 2 in the inset). Neither the exponential increase of Q

(Fig. A-2) nor the localized field pattern (Fig. A-1) is substantially degraded by even such

large disorder. (Indeed, sometimes the disorder happens to improve Q, since the perfect

structure is not optimized for Q.) w was 0.3779 27rc/a for the perfect cavity and had std.
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Figure A-2: Q vs. # layers for a 2d cavity (inset shows 2 layers), for disorder types
(descending by Q): position (red), no disorder (black), e (cyan), surface+position (blue),
and surface (magenta). Error bars show std. dev. over 15 runs.

dev. 1%/2%/3%/ 1% for surface/position/surf. +pos. /& disorder, respectively. The modal

volume (area) in all cases was roughly (0.64A/2) 2 (std.dev. < 6%).

This insensitivity of confinement to disorder derives from the fact that the bandgap

is preserved (only shrunk slightly): disorder introduces states only near the gap edges.

We illustrate this by computing the 2d gap as a function of s disorder strength, plotted

in Fig. A-3 (using a planewave expansion [249] in a 9 x 9 supercell and extracting the

largest gap, averaged over 10 runs). Superimposed is the mean FDTD mode w and its std.

dev. (over 100 runs), corresponding to a well-defined localized mode until the gap shrinks

substantially (requiring over 50% e disorder). Once the bandgap closes entirely, which is

not shown, any observed localized modes have no relation to the original cavity mode, and

may correspond instead to Anderson localization.

In 3d, with a resolution of 25 pixels/a (~ 17.7 pixels per in-plane lattice constant of the

2d cross sections), we examine two types of random disorder: height disorder via variations

in [-5%, 5%] in the height of the air cylinders (or +26%/42% variation in the thickness

of a rod/hole layer, respectively), and sidewall disorder (adding/removing cylinders as in

2d) shown in Fig. A-i1(B). The resulting Q vs. number n of surrounding layers is shown

in Fig. A-4, and the field pattern for sidewall disorder is in Fig. A-1(B). (n is defined so

that the number of nearest-neighbor rods surrountdinig the cavity is n - 1 in-plane and ni

vertically; the field plots show n =3. The total number of vertical periods both above and

below is ~' 2n/3, where a vertical period comprises three layers of holes.) Again, Q is only
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Figure A-3: 2d band gap and cavity mode frequencies vs. strength of e disorder (maximum
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slightly affected by disorder, modal volume is roughly fixed at (0.68A/2) 3, and frequency

w = 0.5689 27rc/a has std. dev. 0.3%/2% for height/sidewall disorder. (The sidewall

disorder, here, also causes a 3.6% systematic w shift, because adding/removing cylinders

does not have a symmetric first-order effect in 3d [253])

We believe that this robust confinement is a general feature of complete-gap systems for

any sufficiently bounded disorder, not limited to the examples here.
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Appendix B

Computing Photonic-Quasicrystal

Spectra via Bloch's Theorem

In this appendix, we describe a computational method to solve for the spectra and eigen-

states of quasicrystalline electromagnetic structures by directly solving a periodic eigen-

problem in a higher-dimensional lattice. Such photonic quasicrystals (PQCs) have a num-

ber of unique properties compared to ordinary periodic structures [1, 85,89, 104,112,154,

159,165, 167, 262, 274,306, 363,385, 399,455, 553, 558,564, 591, 593,600,601], especially in two

or three dimensions where they can have greater rotational symmetry and therefore offer

some hope of complete photonic band gaps with lower index contrast [197, 255, 592, 601]

than the roughly 2:1 contrast currently required for periodic structures [328]. However,

the study of two- and three-dimensional photonic quasicrystals has been hampered by the

computational difficulty of modeling aperiodic structures, which has previously required

large "supercell" calculations that capture only a portion of the infinite aperiodic lattice.

Our method, in contrast, captures the entire infinite aperiodic structure in a single higher-

dimensional unit cell, and we believe that this approach will ultimately be much more com-

putationally tractable for two- and three-dimensional quasicrystals. The idea that many

quasicrystals can be constructed by an irrational slice of a higher-dimensional lattice is

well known [235, 513, 517], and in fact is the most common formulation of quasicrystals

in two and three dimensions [291, 330, 552], but the possibility of direct numerical calcu-

lations within the higher-dimensional space seems to have been little explored outside of

some tight-binding calculations in quantum systems [108,319]. As a proof of concept, we
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demonstrate a first implementation of the technique applied to one-dimensional quasicrys-

tals, such as the well known Fibonacci structure. Not only can we reproduce the spectrum

from transfer-matrix calculations, but we also show that the higher-dimensional picture

provides an interesting way to visualize the eigenmodes and compute defect states in the

infinite aperiodic structure.

There have been several previous numerical approaches to simulating quasicrystal struc-

tures in electromagnetism and quantum mechanics. In one dimension, a typical quasicrys-

tal is an aperiodic sequence of two or more materials, determined either by a slice of a

higher-dimensional lattice [513] or by some "string concatenation" rule [235]. In either

case, efficient 2 x 2 transfer-matrix methods are available that allow one to quickly compute

the transmission spectra and density of states for supercells consisting of many thousands

of layers [181, 215]. Two- and three-dimensional quasicrystals are almost always defined

as an irrational slice (i.e., incommensurate Miller indices) of a higher-dimensional lattice;

for example, the famous Penrose tiling can be viewed as a two-dimensional slice of a five-

dimensional cubic lattice or of a four-dimensional root lattice A 4 [517]. In such cases, super-

cell computations of a finite portion of the infinite aperiodic structure (or a rational approx-

imant thereof [181,513]) require slower numerical methods, most commonly finite-difference

time-domain (FDTD) simulations [165,166,262] or planewave expansions [113,254]. Unfor-

tunately, these methods become very expensive for large supercells, nearly prohibitively so

for three-dimensional quasicrystals-there have been experiments for 3D PQCs [291,330],
but as yet few theoretical predictions [514, 598]. With FDTD methods, for example, the

PQC local density of states is typically integrated in Monte-Carlo fashion via random sources

or initial conditions [1, 363,553], but many simulations are required to sample all possible

modes in a large supercell. Also, the finite domain of a supercell becomes even more sig-

nificant in higher dimensions where a tractable supercell is necessarily smaller, as there

can be localized states [112, 165, 262, 363] whose presence is dependent on the particular

region of the PQC considered. Our method of computing the spectrum directly in the

higher-dimensional unit cell, on the other hand, requires no supercell to capture the infinite

aperiodic structure-it uniformly samples (up to a finite resolution) every possible supercell

of the infinite quasicrystal, rather than any particular subsection. The influence of finite-

resolution on the convergence of the spectrum can be systematically understood: one is not

"missing" any part of the quasicrystal, so much as resolving the entire quasicrystal with
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lower resolution.

The structure of this paper is as follows: in Sec. B.1 we review the "cut-and-project"

method for defining a PQC as a slice of a higher-dimensional lattice, followed in Sec. B.2

by a description of our computational method in the higher-dimensional lattice. There,

we describe the extension of Maxwell's equations to higher dimensions and also describe

its solution in terms of a higher-dimensional Bloch planewave expansion. As a proof of

concept, we present a sequence of one-dimensional examples in Sec. B.3. First, we compare

results for a one-dimensional "Fibonacci sequence" with standard one-dimensional transfer-

matrix techniques. Second, as mentioned above, we demonstrate how one can use the same

technique to study defects in the quasicrystal, as demonstrated in the one-dimensional

"Fibonacci" example. Finally, we demonstrate the ease with which one can construct and

explore different quasicrystals by continuously varying the cut angle.

B.1 Quasicrystals via cut-and-project

Given a periodic lattice, any lower dimensional cross-section of that lattice may be either

periodic or quasi-periodic, depending upon the angle of the cross-section. For example, the

periodic 2D cross-sections of a 3D crystal are the lattice planes, defined in crystallography

by integer Miller indices. If the Miller indices have irrational ratios, on the other hand, the

cross-section is aperiodic but still has long-range order because of the underlying higher-

dimensional periodicity. This is what is known as a "cut-and-project" method of defining

a quasicrystalline structure: as a slice of a periodic structure in a higher-dimensional "su-

perspace" [235, 513]. (For a thorough discussion of quasicrystals via cut-and-project, see

Ref. [235].) Cut-and-project defines a specific class of quasicrystals; equivalently, and more

abstractly, cut-and-project corresponds to structures whose Fourier transform has support

spanned by a finite number of reciprocal basis vectors (the projection of the reciprocal

lattice vectors from higher dimensions) [235, 552]. This class includes most commonly con-

sidered quasicrystals in two or three dimensions, including the Penrose tiling [517] and the

2D Fibonacci quasicrystal [305], as well as many one-dimensional quasicrystals including a

ID Fibonacci structure.

For example, consider the Fibonacci PQC in one dimension formed from two materials

EA = 4.84 and EB = 2.56 in layers of thickness A and B, respectively, similar to a recent
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Figure B-1: Unit cell of the Fibonacci superspace dielectric. The physical dielectric is

obtained by taking a slice at an angle tan # = r. Black/white are the dielectric constants

of the structure factor material and air, chosen to be e = 4.84 and e = 2.56, respectively.

experimental structure [104]. The Fibonacci structure S is then defined by the limit n -

oc of the string-concatenation rule S, = Sn-2Sn-1 with starting strings So = B and

S1 = A [104], generating a sequence BABAABABAABA.--. In the case where B/A is

the golden ratio r = (1 + v/'5)/2, exactly the same structure can be generated by a slice of

a two-dimensional lattice as depicted in Fig. B-1 [235]. The slice is at an angle # with an

irrational slope tan# = 1/T, and the unit cell of the 2D lattice is an A x A square at an

angle # in a square lattice with period (A + B) sin # = a. Because the slope is irrational,

the offset/intercept of the slice is unimportant: any slice at an angle # intercepts the unit

cell at infinitely many points, filling it densely.

For thickness ratios B/A =, T, the Fibonacci structure cannot be constructed by cut-

and-project, and in general string-concatenation rules can produce a different range of

structures (such as the Thue-Morse PQC [103]) than cut-and-project. This is partly a

question of definition-some authors reserve the term "quasicrystal" for cut-and-project

structures [517]. In any case, cut-and-project includes a wide variety of aperiodic structures,

including most of the structures that have been proposed in two or three dimensions (where

they can be designed to have n-fold rotational symmetry for any n), and are the class of

quasicrystals that we consider in this paper.

In general, let d < 3 be the number of physical dimensions of a quasicrystal structure
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generated by a d-dimensional "slice" of an n-dimensional periodic structure (n > d). De-

note this slice by X (the physical space) with coordinates x E Rd, and denote the remaining

n - d coordinates by y E Rn-d in the "unphysical" space Y (so that the total n-dimensional

superspace is Z = X E Y). The primitive lattice vectors Ri E Z define the orientation

of the lattice with respect to the slice (rather than vice versa), with corresponding prim-

itive reciprocal vectors Gi defined by the usual Ri -Gj = 27ro j [235]. (The concept of

an "irrational slice" is commonly used in the quasicrystal literature. However, a general

definition of what is meant by an "irrational slice" seems difficult to find, and less evident

in dimensions d > 2. A more precise definition of "irrational slice" in general dimensions

and a proof that it is dense in the unit cell is given in the last section.)

The physical dielectric function e(x) is then constructed by starting with a periodic

dielectric function E(x, y) in the superspace and evaluating it at a fixed y (forming the

slice). Because an irrational slice is dense in the unit cell of the superspace [235], it doesn't

matter what value of y one chooses, as discussed below. In principle, one could define

the unit cell of e in the superspace to be any arbitrary n-dimensional function, but in

practice it is common to "decorate" the higher-dimension unit cell with extrusions of familiar

d-dimensional objects [235, 517]. More precisely, "cut-and-project" commonly refers to

constructions where a set of lattice points within a finite window of the cut plane are

projected onto the cut plane, and this is equivalent to a simple cut where objects at the

lattice points are extruded in the y direction by the window width [235]. In particular, the

extrusion window is commonly an inverted projection (shadow) of the unit cell onto the y

directions [235], although this is not the case for the Fibonacci construction of Fig. B-1.

(Note that the higher-dimensional lattice need not be hypercubic. For example, the Pen-

rose tiling can be expressed as a two-dimensional slice of either a five-dimensional hypercu-

bic lattice or of a non-orthogonal four-dimensional root lattice A 4 [517]. For computational

purposes, the lower the dimensionality the better.)

B.2 Computations in Higher Dimensions

Although the cut-and-project technique is a standard way to define the quasicrystal struc-

ture, previous computational studies of photonic quasicrystals then proceeded to simulate

the resulting structure only in the projected (d-dimensional) physical space. Instead, it is
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possible to extend Maxwell's equations into the periodic n-dimensional superspace, where

Bloch's theorem applies to simplify the computation. By looking at only the unit cell in n

dimensions one can capture the infinite d-dimensional quasicrystal. Our development of this

technique was inspired by earlier research on analogous electronic quasicrystals that applied

a tight-binding method in two dimensions to compute the spectrum of a one-dimensional

electronic quasicrystal [108,319].

Let us start with Maxwell's equations in the physical space X for the quasicrystal E(X, y)

at some fixed y (that is, y is viewed as a parameter, not a coordinate). Maxwell's equations

can be written as an eigenproblem for the harmonic modes H(x, y)e-"t [239], where again

y appears as a parameter.

1
Vx x V, x H = (w/c)2H, (B.1)

e(x, y)

where Vx x denotes the curl with respect to the x coordinates. Assuming that the structure

is quasicrystalline, i.e. that X is an irrational slice of the periodic superspace Z, then w

should not depend upon y [108]. The reason is that y only determines the offset of the

"initial" slice of the unit cell (for x = 0), but as we reviewed above the slice (considered

in all copies of the unit cell) fills the unit cell densely. Therefore, any change of y can be

undone, to arbitrary accuracy, merely by offsetting x to a different copy of the unit cell. An

offset of x doesn't change the eigenvalues w, although of course it offsets the eigenfunctions

H.

The fact that w is independent of y allows us to re-interpret Eq. (B.1), without actu-

ally changing anything: we can think of y as a coordinate rather than a parameter, and

the operator on the left-hand side as an operator in d-dimensional space. Note that H is

still a three-component vector field, and Vx x is still the ordinary curl operator along the

x directions, so this is not so much a higher-dimensional version of Maxwell's equations

as an extension of the unmodified ordinary Maxwell's equations into a higher-dimensional

parameter space. The y coordinate appears in the operator only through E. Because W is

independent of y, i.e. it is just a number rather than a function of the coordinates, the

equation Eq. (B.1) in higher dimensions is still an eigenproblem, and its spectrum of eigen-

values w is the same as the spectrum of the d-dimensional quasicrystal, since the equations

are identical. The physical solution is obtained by evaluating these higher-dimensional so-
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lutions at a fixed y, say y = 0 (where a different y merely corresponds to an offset in x as

described above).

For a real, positive E, both the physical operator and the extended operator in Eq. (B.1)

are Hermitian and positive semi-definite, leading to many important properties such as real

frequencies w [239].

B.2.1 Bloch's Theorem and Numerics for Quasicrystals

Because the superspace eigenproblem is periodic, Bloch's theorem applies: the eigenfunc-

tions H(x, y) can be written in the Bloch form h(z)eikz, where h is a periodic function

defined by its values in the unit cell, and k is the n-dimensional Bloch wavevector [239].

Here, k determines the phase relationship between H in different unit cells of the su-

perspace, but it does not have a simple interpretation once the solution is projected into

physical space. The reason is that h, viewed as a function of x, is again only quasiperiodic:

translation in x "wraps" the slice into a different portion of the unit cell, so both h and eik'z

change simultaneously and the latter phase cannot be easily distinguished. This prevents

one from defining a useful phase or group velocity of the PQC modes.

The key point is that Bloch's theorem reduces the eigenproblem to a finite domain (the

n-dimensional unit cell), rather than the infinite domain required to describe the quasicrys-

tal solutions in physical space. This means that standard numerical methods to find the

eigenvalues of differential operators are immediately applicable. For example, since the

solution h is periodic, one can apply a planewave expansion method [249] for h:

h(z) =Z GeiG-z, (B.2)
G

where the summation is over all n-dimensional reciprocal lattice vectors G. Because the

curl operations only refer to the x coordinates, Vx x h is replaced by a summation over

gx hG, where gx denotes G projected into X. The resulting eigenproblem for the Fourier

coefficients h (once they are truncated to some wavevector cutoff) can be computed either

by direct dense-matrix methods [185] or, more efficiently, by iterative methods exploiting

fast Fourier transforms [249]. In the present paper, we do the former, which is easy to

implement as a proof of concept, but for higher-dimensional computations an iterative

method will become necessary.
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We should also remind the reader that there is a constraint V, -H = 0 on the eigenfunc-

tions, in order to exclude unphysical solutions with static magnetic charges. In a planewave

method, this leads to a trivial constraint (kx + gx) h 0, again with k and G projected

into X.

B.2.2 The Spectrum of the Quasicrystal

With a familiar eigenproblem arising from Bloch's theorem, such as that of a periodic

physical structure, the eigenvalues form a band structure: discrete bands W(k) that are

continuous functions of k, with a finite number of bands in any given frequency range [23].

For a finite-resolution calculation, one obtains a finite number of these bands w with some

accuracy that increases with resolution, but even at low resolutions the basic structure of

the low-frequency bands is readily apparent. The eigenvalues of the higher-dimensional

quasicrystal operator of Eq. (B.1), on the other hand, are quite different.

The underlying mathematical reason for the discrete band structure of a physical pe-

riodic structure is that the Bloch eigenoperator for a periodic physical lattice, (V + ik) x

1 (V + ik) x, is the inverse of a compact integral operator corresponding to the Green's

function, and hence the spectral theorem applies [182]. Among other things, this implies

that the eigenvalues at any given k for a finite unit cell form a discrete increasing sequence,

with a finite number of eigenvalues below any finite w. The same nice property does not

hold for the operator extended to n dimensions, because along the y directions we have

no derivatives, only a variation of the scalar function e. Intuitively, this means that the

fields can oscillate very fast along the y directions without necessarily increasing W, allowing

one to have infinitely many eigenfunctions in a finite bandwidth. More mathematically, an

identity operator is not compact and does not satisfy the spectral theorem [182], and since

the operator of Eq. (B.1) is locally the identity along the y directions the same conclusion

applies. This means that, when the y direction is included as a coordinate, it is possible to

get an infinite number of bands in a finite bandwidth at a fixed k.

In fact, as we shall see below, this is precisely what happens, and moreover it is what

must happen in order to reproduce the well-known properties of quasicrystal spectra. It has

been shown that quasicrystal spectra can exhibit a fractal structure [235], with infinitely

many gaps (of decreasing size) in a finite bandwidth, and such a structure could not arise

from an ordinary band diagram with a finite number of bands in a given bandwidth. Of
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Figure B-2: (Left:) Frequency spectrum w of the Fibonacci quasicrystal vs. "wave-vector"
k,. The blue lines indicate spurious states which arise due to finite resolution effects (see
text). (Right:) Corresponding density of states p(w) computed using a transfer-matrix
technique with a supercell of 104 layers.

course, once the unit cell is discretized for numerical computation, the number of degrees

of freedom and hence the number of eigenvalues is finite. However, as the resolution is

increased, not only do the maximum frequency and the accuracy increase as for an ordinary

computation, but also the number of bands in a given bandwidth increases. Thus, as the

resolution is increased, more and more of the fractal structure of the spectrum is revealed.

B.3 One-Dimensional Results

As a proof of concept implementation of cut-and-project, we construct a Fibonacci qua-

sicrystal in Sec. B.3.1 using the projection method described above, compute the band

structure as a function of the projected wave-vector kd and compare to a transfer-matrix

calculation of the same quasicrystal structure. We also demonstrate the field visualization

enabled by the projection method, both in the superspace (n dimensions) as well as in the

physical space (d dimensions). In Sec. B.3.2, we demonstrate how this method can ac-

commodate systems with defects. Finally, we explore several one-dimensional quasicrystal

configurations in Sec. B.3.3 by varying the cut angle <.
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Figure B-3: Integrated density of states (DOS) vs. band index (normalized by resolu-

tion), for various resolutions. The dashed red, diamond blue and solid black lines denote
resolutions of 20, 50 and 200, respectively.

B.3.1 Fibonacci Quasicrystal

We solved Eq. (B.1) numerically using a planewave expansion in the unit cell of the 2D

superspace, as described above, for the 1D Fibonacci quasicrystal structure depicted in

Fig. B-1. The resulting band diagram is shown in Fig. B-2(left), along with a side-by-side

comparison of the local density of states in Fig. B-2(right) calculated using a transfer-matrix

approach with a supercell of 104 layers [301]. The two calculations show excellent agreement

in the location of the gaps, except for one or two easily-identified spurious bands inside

some of the gaps, which are discussed in further detail below. The most important feature

of Fig. B-2(left) is the large number of bands even in the finite bandwidth W E [0, 0.4], with

the number of bands increasing proportional to the spatial resolution (planewave cutoff).

This is precisely the feature predicted abstractly above, in Sec. B.2.2: at a low resolution, one

sees only the largest gaps, and at higher resolutions further details of the fractal spectrum

are revealed as more and more bands appear within a given bandwidth, very different from

calculations for periodic physical media. These features are illustrated in Fig. B-3. The

important physical quantity is not so much the band structure, since k has no simple physical

meaning as discussed previously, but rather the density of states formed by projecting the

band structure onto the w axis. In this density of states, the small number of spurious bands

within the gaps, which arise from the discretization as discussed below, plays no significant

role: the density of states is dominated by the huge number of flat bands (going to infinity
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Figure B-4: Plot of the magnetic field amplitude IHz| for a band-edge state taken along
a slice of the two-dimensional superspace (in the # direction). Inset: Two-dimensional
superspace field profile (red/white/blue indicates positive/zero/negative amplitude).

as the resolution is increased), and the addition of one or two spurious bands is negligible.

Computing the eigenmodes in the higher-dimensional superspace immediately suggests

a visualization technique: instead of plotting the quasiperiodic fields as a function of the

physical coordinates x by taking a slice, plot them in the two-dimensional superspace. This

has the advantage of revealing the entire infinite aperiodic field pattern in a single finite

plot [108]. Such plots are also used below, to aid in understanding the spurious modes

localized at staircased interfaces. A typical extended mode profile is shown in Fig. B-4,

plotted both as a function of the physical coordinate x for large supercell and also in the

unit cell of the superspace (inset). In the inset superspace plot, one can clearly see the

predicted field oscillations perpendicular to the slice plane, as well as a slower oscillation

rate (inversely proportional to the frequency) parallel to the slice. In the plot versus x,

one can see the longer-range quasi-periodic structure that arises from how the slice wraps

around the unit cell in the superspace. The factor of three to four long-range variations in

the field amplitude are suggestive of the critically localized states (power-law decay) that

one expects to see in such quasicrystals [104,273,391.

By visualizing the bands in this way, we can demonstrate the origin of the quasicrystal

band gap in an interesting way. In an ordinary photonic crystal, the gap arises because the

lowest band concentrates its electric-field energy in the high-dielectric regions (due to the

variational principle), while the next band (above the gap) is forced to have a nodal plane

in these regions (due to orthogonality) [239]. A very similar phenomenon can be observed
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Figure B-5: Electric field energy distribution of the band edge states of gaps 1 and 2 in

Fig. B-2. Although they have a complex small-scale structure, the large-scale variation is

easily understood in terms of the structure of the superspace.

in the quasicrystal eigenmodes, when plotted in the superspace. In particular, Fig. B-5

displays the electric-field energy distribution of the band-edge states just above and below

gaps 1 and 2 of Fig. B-2. Very similar to an ordinary two-dimensional photonic crystal,

the bands just below the gaps are peaked in the dielectric squares, whereas the upper-edge

bands have a nodal plane in these squares. If the same fields were plotted only in the

physical coordinate space, the position of the peaks and nodes would vary between adjacent

layers and this global pattern (including the relationship between the two gaps) might not

be apparent. In contrast to a two-dimensional photonic crystal, on the other hand, the

quasicrystalline field pattern has fractal oscillations in the superspace.

As the wavevector k varies, most of the bands in the spectrum of Fig. B-2 are flat,

except for certain modes (highlighted in blue) which appear to cross the band gaps relatively

quickly, as shown in Fig. B-6. These are the spurious modes, as explained below.

In fact, a simple argument shows that, in the limit of infinite resolution, the physical

spectrum cannot depend on k, and hence any strongly k-dependent band must be a numer-

ical artifact. First, w cannot depend on the components of k in the unphysical directions

Y, because the Maxwell operator of Eq. (B.1) has no y-derivatives (equivalently, any phase

oscillations in y commute with the operator). Second, w cannot depend on the components

of k in the physical directions X, either. The reason is that, from Bloch's theorem, k and

k + G give the same eigensolutions for any reciprocal lattice vector G, and the projections
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0.78
k, (2/a)

Figure B-6: Enlarged view of the Fibonacci spectrum (Fig. B-2) showing a gap with a
spurious band crossing it. Insets show the magnetic field IHz| for the spurious band at
various kr-the localization of this mode around the X-parallel edges of the dielectric
indicate that this is a discretization artifact.

of the reciprocal lattice vectors are dense in X for a quasicrystal.

These "spurious" bands that appear arise from the discretization of the dielectric in-

terfaces parallel to the slice direction. Because the slice is at an irrational angle, it will

never align precisely with a uniform grid, resulting in inevitable staircasing effects at the

boundary. With ordinary electromagnetic simulations, these staircasing effects can degrade

the accuracy [150], but here the lack of derivatives perpendicular to the slice allows spuri-

ous modes to appear along these staircased edges (there is no frequency penalty to being

localized perpendicular to the slice). Indeed, if one looks at the field patterns for the spu-

rious modes as a function of kd (shown in Fig. B-6), one sees that the field intensity is

peaked along the slice-parallel dielectric interfaces. Because they are localized to these

interfaces and are therefore dominated by the unphysical staircasing, the spurious modes

behave quite differently from the "real" solutions and are easily distinguished qualitatively

and quantitatively (e.g via their k-dependence). Most importantly, as the resolution is in-

creased, the number of spurious modes in a given gap does not increase like all of the other

bands, because the thickness of the staircased interface region decreases proportional to the

resolution. This makes the gaps in the band structure obvious: here, they are the only

frequency ranges for which the number of eigenvalues does not increase with resolution.

Equivalently, as noted above, the contribution of the spurious bands to the density of states

is asymptotically negligible as resolution is increased.
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Figure B-7: Dielectric for the Fibonacci chain with E = 2.56 (light blue), and a defect-an

additional Ed = 8.0 layer, shown in gray.

B.3.2 Defect Modes

Much of the interest in quasicrystal band gaps, similar to the analogous case of band gaps

in periodic structures, centers around the possibility of localized states: by introducing a

defect in the structure, e.g. by changing the thickness of a single layer, one can create

exponentially localized states in the gap [27,89]. In periodic systems, because such defects

break the periodicity, they necessitate a larger computational cell, or supercell, that contains

many unit cells. In quasicrystal systems once the gaps are known, on the other hand, defect

states are arguably easier to compute than the gaps of the infinite structure, because an

exponentially localized defect mode can be computed accurately with a traditional supercell

and the infinite quasicrystal per se need not be included. Nevertheless, the superspace

approach allows one to compute defect modes using the same higher-dimensional unit cell,

which demonstrates the flexibility of this approach and provides an interesting (but not

obviously superior) alternative to traditional supercells for defect states.

Ideally, if one had infinite spatial resolution, a defect in the crystal would be introduced

as a very thin perturbation parallel to the slice direction. As the thickness of this pertur-

bation goes to zero, it intersects the physical slice at greater and greater intervals in the

physical space, corresponding to localized defects that are separated by arbitrarily large

distances. In practice, of course, the thickness of the perturbation is limited by the spatial

resolution, but one can still obtain defects that are very widely separated-since the associ-

ated defect modes are exponentially localized, the coupling between the defects is negligible.
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Figure B-8: Varying the defect epsilon for resolutions 50 (blue) and 100 (red). The thickness
of the defect is fixed to 0.02 lattice constants. The number of spurious modes increases with
the resolution, the true defect state being the lowest of these modes.

In other words, one effectively has a very large supercell calculation, but expressed in only

the unit cell of the higher-dimensional lattice.

As an example, we changed an E = 2.56 layer to e = Ed at one place in the Fibonacci

quasicrystal. The corresponding superspace dielectric function is shown in Fig. B-7, where

the defect is introduced as a thin (0.02a) strip of Ed parallel to the slice direction. We

compute the band structure as a function of the defect dielectric constant Ed, varying it from

the normal dielectric Ed = 2.56 up to Ed = 11. The thickness of the defect in the unphysical

direction was fixed to be ~ 0.02. The reason for this is that the defect layer must be greater

than one pixel thick in the Y directions in order to avoid staircasing effects in the spectrum.

The resulting eigenvalues as a function of Ed are shown in Fig. B-8 for two different spatial

resolutions of 50 (blue) and 100 (red) pixels/a. When the resolution is 50 the defect is

only one pixel thick, the discretization effects might be expected to be large, although the

frequency is within about 2% of the higher-resolution calculation. At the higher resolution,

the frequency of the mode is converging (it is within 0.3% of a resolution-200 calculation,

not shown). However, at the higher resolution there is a second, spurious mode due to the

finite thickness (2 pixels) of the defect layer-this spurious mode is easily identified when

the field is plotted Fig. B-9 (bottom), because it has a sign oscillation perpendicular to the

slice (which would be disallowed if we could make the slice infinitesimally thin).

The defect modes for the resolution 100 are plotted in Fig. B-9 for both the real and

the spurious modes, versus the physical coordinate (x) and also in the superspace unit cell
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Figure B-9: Semi-log plots of the magnetic field magnitude Hz for the lowest (top) and high-

est (bottom) defect state for the configuration shown in Fig. B-7. Insets: Two-dimensional

superspace visualizations of the defect states. Note the additional node in the lower figure

(corresponding to an unphysical oscillation).

(insets). When plotted versus the physical coordinate x on a semilog scale, we see that

the modes are exponentially localized as expected. The defect mode appears at multiple x

values (every ~20a on average) because the defect has a finite thickness--the physical slice

intersects it infinitely many times (quasiperiodically), as discussed above. The spurious

mode (bottom panel) is also exponentially localized; it has a sign oscillation perpendicular

to the slice direction (inset) which causes it to have additional phase differences between

the different defects.

Nevertheless, as emphasized above, we feel that the main advantages of the superspace

approach are for studying the gaps and modes of the infinite, defect-free quasicrystal rather

than for localized defect modes.
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B.3.3 Continuously Varying the Cut Angle
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Figure B-10: Projected band structure vs. cut angle #, showing different one-dimensional
quasicrystal realizations. The vertical red line indicates the spectrum when the slope is the
golden ratio r (the spectra of # and 7r - # are equivalent)

The cut-and-project construction of quasicrystals provides a natural way to parameterize

a family of periodic and quasiperiodic structures, via the cut angle #. It is interesting to

observe how the spectrum and gaps then vary with #.

As # is varied continuously from 0' to 450, the structures vary from period a to quasi-

periodic lattices (for tan # irrational) to long-period structures (tan # rational with a large

denominator) to a period av/Z crystal. As we change #, we rotate the objects in the unit

cell, so that they are always extruded along the y direction with a length equal to the

projection of the unit cell onto y [a(sin # + cos #)], corresponding the usual cut-and-project

construction [235]. In this case, the spectrum varies continuously with 4, where the rational

tan # correspond to "rational approximants" of the nearby irrational tan # [513, 552]. For

a general unit cell with a rational tan #, the physical spectrum might depend on the slice

offset y and hence different from the total superspace spectrum, but this is not the case

for dielectric structures like the one here, which satisfy a "closeness" condition [513] (the

edges of the dielectric rods overlap when projected onto the Y direction). This makes the

structure y-independent even for rational slices [513] The resulting structures are shown in

the bottom panel of Fig. B-10 for three values of #.

The corresponding photonic band gaps are shown in the top panel of Fig. B-10, as a

continuous function of #. Only the largest gaps are shown, of course, since we are unable

to resolve the fractal structure to arbitrary resolution. As might be expected, there are
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isolated large gaps at # = 0' and # = 450 corresponding to the simple ABAB. - - periodic

structures at those angles (with period a and a/v'2, respectively, the latter resulting from

two layers per unit cell). The # 45' gap is at a higher frequency because of its shorter

period, but interestingly it is not continuously connected to the # = 0 gap.

The reason for this is that the two gaps are dominated by different superspace reciprocal

lattice vectors: (1, 0) .27/a for # = 0', and (1, 1) .27r/a for # = 45'. (In fact, it is possible to

calculate, to first order, the locations of the gaps using the dynamic structure factor S(k, w)

obtained from the projection of the superspace lattice [421].) For intermediate angles, a

number of smaller gaps open and then close. If we were able to show the spectrum with

higher resolution, we would expect to see increasing numbers of these smaller gaps opening,

leading to the well-known fractal structure that arises e.g. for the Fibonacci crystal.

B.4 Defining Irrational Slice

In this section, we give an explicit derivation of the fact that an "irrational" slice densely

fills the superspace unit cell, or rather a definition of the necessary conditions to be an

"irrational" slice. These concepts are widely used in the quasicrystal literature, but a

precise definition seems hard to find (one commonly requires that all of the Miller indices

have incommensurate ratios, but this condition is stronger than necessary).

Without loss of generality, we can consider the unit cell in the superspace Z = R' to be

the unit cube (related to any lattice by an affine transformation) with lattice vectors along

the coordinate directions. The physical slice X is d-dimensional, and it will be convenient

to write the coordinates of a vector z as z = (81, ... , sJ, ti,... , tn-d) = (s, t). By taking

every coordinate modulo 1, we can map X to a set X consisting of X's intersection with

each unit cell. We wish to show necessary and sufficient conditions for X to densely fill the

unit cell.

Assuming that the slice is not orthogonal to any of the coordinate axes (as otherwise it

would clearly not densely fill the unit cell), we can parameterize the points z of X so that

the last n - d coordinates (t 1,..., t,-d) are written as a linear function t(si,... s) t(s)

of the first d coordinates.

Consider the set T in R--d formed by the t(s) coordinates of X when the components

of s take on integer values. This is a subset of X, and the corresponding set T formed
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Figure B-11: Schematic showing the superspace slice X (left) and the projected slice mod-

ulo 1 into the unit cell X (right), along with the intersection T of X with the s = 0

hyperplane.

by taking t E T modulo 1 is a subset of X. The key fact is that X is dense in the n-

dimensional unit cell if and only if T is dense in the (n - d)-dimensional unit cell, and this

is the case that we will analyze. This equivalence follows from the fact that X is simply

T translated continuously along the slice directions (every point in X is related to a point

in T by a simple projection). The set T is a lattice in R"-d consisting of all integer linear

combinations of the basis vectors tk = t(si = 6jk), since t(s) is a linear function.

For each basis vector tk, it is a well-known fact [392] that if it consists of m incommen-

surate irrational components, the set of integer multiples £tk modulo 1 will densely fill an

m-dimensional slice of the unit cell. More precisely, write tk =Ej=1...mk Cbi+i- , where

the b and qk have purely rational components and the {aj} are incommensurate irrational

numbers, and mk is therefore the number of incommensurate irrational components of tk.

Then the set of integer multiples of tk modulo 1 densely fills an mk-dimensional slice of

the unit cell of R"-d. The basis vectors of this slice are precisely the vectors bj, which are

rational and therefore commensurate with the basis vectors of R'-d, while the vector qk

is simply a rational shift. This slice therefore cuts the unit cell of R"-d a finite number of

times.

The set T is then obtained as the direct sum of these dense slices for all n - d vectors

tk. This is then dense if and only if the set of vectors {b }jj k spans Rn-d. In other

words, an "irrational slice," which densely fills the unit cell, is one in which there are n - d

independent incommensurate slice components as defined above.
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B.5 Concluding Remarks

We have presented a numerical approach to computing the spectra of photonic quasicrystals

by directly solving Maxwell's equations extended to a periodic unit cell in higher dimensions,

allowing us to exploit Bloch's theorem and other attractive properties of computations for

periodic structures. In doing so, we extended the conceptual approach of cut-and-project

techniques, which were developed as a way to construct quasicrystals, into a way to simulate

quasicrystals. Compared to traditional supercell techniques, this allows us to capture the

entire infinite aperiodic quasicrystal in a single finite computational cell, albeit at only

a finite resolution. In this way, the single convergence parameter of spatial resolution

replaces the combination of resolution and supercell size in traditional calculations, in some

sense uniformly sampling the infinite quasicrystal. The resulting computations, applied

to the test case of a Fibonacci quasicrystal, display the unique features of quasicrystals

in an unusual fashion, in terms of higher-dimensional band structures and visualization

techniques. This technique also allows defects and variation of cut angle (continuously

varying between periodic and aperiodic structures) in a straightforward way.

In future work, we plan to apply this approach to modeling higher-dimensional qua-

sicrystal structures, such as the Penrose [517] and 2D Fibonacci tilings [305], where com-

puting the spectrum is currently more challenging using existing supercell techniques. To

make a higher-dimensional superspace calculation practical, one must use iterative eigen-

solver methods [18,249] rather than the simple dense-matrix techniques employed for our

test case. Iterative techniques are most efficient for computing a few eigenvalues at a

time, and so it will be useful to employ iterative methods designed to compute "inte-

rior" eigenvalues [18,249], allowing one to search directly for large gaps without computing

the lower-lying modes. Alternatively, numerical techniques have been developed, based on

filter-diagonalization methods, to directly extract the spectrum of many eigenvalues without

computing the corresponding eigenvectors [333].
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