
Parameter Search in an Agent-based Model of Pedestrian

Movement in Retail Environments

by

Thananat Jitapunkul

S.B., E.E.C.S. M.I.T., 2010

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

Copyright 2010 Thananat Jitapunkul. All rights reserved.

ARCHIVES
SSACHUSETTS INSr 1 TU

OF TEC,- L'OY

-- BRARIL~3P~flFS~

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole and in part in any

medium now known or hereafter created.

A uthor .. .
Department of Electrical Engineering and Computer Science

August 20, 2010

C ertified by ..
eK. Roy

Asso ate Professor
Thesis Supervisor

A ccepted by
Dr. dhisjopher J. Terman

Chairman, Department Committee on Graduate Theses

Parameter Search in an Agent-based Model of Pedestrian Movement in

Retail Environments

by

Thananat Jitapunkul

Submitted to the
Department of Electrical Engineering and Computer Science

August 20, 2010
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Parameter search in an agent-based model of pedestrian movement in retail environments
is part of a research effort by data-driven architecture in the Cognitive Machine Group at
the MIT Media Lab. The approach pursued in this thesis is agent-based modelling, with
an ultimate goal to use generative behaviors in agents to study effects of architectural and
managerial decisions on retail environments.

In this thesis, I designed and implemented an agent training module as a part of a
software system which simulates and learns patterns of human pedestrian movement in
retail environments. This thesis covers two different components: (1) the implementation
of a hill-climbing training module and (2) a pedestrian path comparison metric. To measure
the module's performance, the system is tested against video sequences collected from the
actual retail environment.

Thesis Supervisor: Deb K. Roy
Title: Associate Professor

4

Acknowledgments

To think that I have reached the end of my study at MIT and am earning an M.Eng. degree,

I must confess that it has been an incredibly reckless adventure that I went through during

the past four full years. While it was fun being a part of the MIT community and learning

many things, both good and bad, along the way, it is the time to say goodbye and move on

to a new start in life.

I might not have made it this far without many supporters to get me through hard times

which, indeed, MIT has given me plenty! Therefore, for many of the people whom I am

indebted to, please take this acknowledgement as my farewell notice.

The first and foremost people whom I would like to thank are my parents and my family,

who have always been my moral and emotional support as well as my role models. Although

I rebelled and became irrational at times, I can assure you that you have all my love and

respects. Noo+ Bam, thank you for being such a unique sister, and I hope that you will

eventually stop calling me Moo+ Uan soon. I definitely miss you all and I will find time to

go home to meet you guys some time in the near future.

The next people whom I would like to thank are my thesis supervisor, Professor Deb

Roy, and Rony Kubat, my thesis mentor. Without your advice and the foundation of the

project that you have been working on, this thesis would not have been possible. It has

been an interesting and inspiring project which I have been tackling for one full year and I

hope that this project will get to its ultimate goal in a very near future! Also, thank you for

not yelling at me when I procrastinated too much. I am also indebted to Deb for his project

on Trisk, the perception-grounding robot, which I have also worked on in my freshman and

sophomore year.

Another person whom I am greatly indebted to is my academic advisor, Professor Patrick

Winston. Thank you for being my advisor and friend for the last three and a half years. I

know that I have been too stubborn and did not take many of your advice that seriously,

(which I confess to have "sometimes" regretted), but, at the very least, I am finally safe

and sound out of MIT! Also, I would like to show my appreciation to you for being my

support (and tolerating my rants) in many distressing situations, especially that particularly

challenging deal with a professor during my junior year. Also, congratulations again for your

daughter's graduation.

As an old saying goes, "All work and no play makes Jack a dull boy". One cannot go

through MIT without any fun. I would like to thank my Thai friends at MIT: undergrads,

graduated undergrads, hope-to-graduate grads and graduated grads for hosting fun stuff for

me to join over the last four years. For my N'N' Thai juniors, thank you for being friends

with your "old man" and making my life not so lonely with your little pranks, games and

dinners. I hope that we will have a chance to play Settlers of Catan again in the future.

For my P'P' Thai seniors, thank you for being good big bros and big sis for me na krub.

As an eldest son in my family, it was quite a unique experience back in my freshman year

to be the youngest child in the TSMIT family. To tell you all the truth, I sometimes felt

that I was being spoiled. Moreover, thank you for all your advice and support that you all

have given me.

My thanks also extends to other people in Cogmac group. Stefie, thank you for being

my first ever UROP mentor at MIT and getting my interest in robots going. I wish I were

more productive during that time, though. Congratulations on your graduation and the

upcoming good news in October! Leo and Soroush, thank you for being my office mates

for my first two years at Cogmac and for constantly coming down to check my progress in

writing this thesis! George, thank you very much for your work in Star Graph. Now, this

thesis is probably your first citation. Also, thanks to Stefie and Matt for proof-reading my

thesis. It was definitely a great help! For other group members, thank you for letting me

be a part of your group and chatting with me whenever I try to procrastinate. The last

forgotten member in the group that I would like to thank is Trisk, the old red robot. Since

it is my inspiration to go to graduate school, I wish Trisk were still up and well and I am

sure I will miss it a lot.

My undergrad friends are also a big part of my life at MIT. Anh, thank you for going

through many hells with me in 6.170 and other classes. It has been indeed a long time since

the time we became friends in Professor K's freshman seminar. Thank you for digging me

out of lab and letting me be your friend. There are many others I would like to mention

but the page number is limited, so I will just give you all a collective thanks for all the fun,

chats, experience and insights that we all shared at MIT, but be assured that you all have

my sincerest gratitude.

Last but not least, I would like to thank MIT for all the technical and life experience you

have given to me over the last four years. The fact that I have learned a lot, get inspired,

and met great people that I have thanked so far in this acknowledgement is an enough

reason to appreciate my time here despite all the chaos and sleeplessness.

I did say that this acknowledgement is a "farewell" note to everyone. However, this is

definitely not a permanent farewell, and I hope very much that I will be able to meet with

you guys again in the future and talk about those "good old days" in "hell."

Thank you!

8

Contents

1 Introduction

1.1 Learning Human Pedestrian Movement

1.2 Analysis of Retail Environment

1.3 Benefits of Human Pedestrian Movement Pattern Research

ronment Analysis .

1.4 Objective of the Study .

1.5 Scope of the Study and Limitation

2 Review of the Literature

2.1 Previous Work in Retail Analysis

2.2 Pedestrian Movement Analysis

2.2.1 Paths as Random Walk

2.2.2 Paths as a Part of Flow

2.2.3 Paths as a Result of Individual Entities' Decision . .

2.3 Implications from the Literature about Analysis of Human P

ment in Retail Environment

3 Methodology of the Research

3.1 Raw D ata .

3.2 Agent Training and Optimization

3.2.1 Specification of Simulated Environment

3.2.2 Overview of Implemented Agent

3.2.3 Details of Agent Behavior

3.2.4 Parameters Used in the Training Procedure

3.2.5 Hill-climbing Optimization

in Retail Envi-

edestrian Move-

33

. 33

. 34

. 34

. 36

. 37

. 44

. 46

3.2.6 Adaptation of Hill-climbing Technique for Optimization of Multiple

Param eters . 50

3.3 Measurement of Correlation Between Raw and Simulation-generated Path

Data 52

3.3.1 Assum ptions . 52

3.3.2 Graph Representation of Collected Paths 53

3.3.3 Interpretation of Pedestrian Paths with Frequency Matrices 55

3.3.4 Comparison M etric . 56

3.4 Software Implementation and Design Decisions 60

3.4.1 Major Modules in the Software System 60

3.4.2 Details of Hill-climbing Implementation in Software Implementation

and Design Decisions . 62

3.4.3 Overall Asymptotic Runtime of the Program 65

3.5 Experimental Setup and Evaluation Criteria 65

3.5.1 Experiment 1: Comparison Metric Verification 66

3.5.2 Experiment 2: Measurement of the Number of Star Graph nodes'

Effects on Optimization Program's Performance 67

3.5.3 Experiment 3: Measurement of the Number of Simulation Time Steps'

Effects on Optimization Program's Performance 68

3.5.4 Experiment 4: Measurement of Optimization Program's Performance

Under Randomized Suboptimal Parameters 70

4 Data Collection and Analysis 73

4.1 Experimental Results . 73

4.1.1 Experiment 1: Comparison Metric Verification 73

4.1.2 Experiment 2: Measurement of the Number of Star Graph nodes'

Effects on Optimization Program's Performance 74

4.1.3 Experiment 3: Measurement of the Number of Simulation Time Steps'

Effects on Optimization Program's Performance 77

4.1.4 Experiment 4: Measurement of Optimization Program's Performance

Under Randomized Suboptimal Parameters 81

4.2 D iscussions . 81

5 Summary 85

5.1 Contributions 85

5.2 Scope for Future Research . 86

A Tables 89

B Figures 97

C Algorithms 101

12

List of Figures

3-1 Screenshot of raw training paths within the simulation environment

A snapshot of simulated bank environment

States in higher and lower levels of agent behavior

Higher-level decision-making in agent

Lower-level decision-making in agent

Hill-climbing technique .

Major issues affecting hill-climbing's performance

A generalized flow chart of the basic hill-climbing with multiple

An example of the use of graph for path discretization

An example of fully-correlated Star Graph

Fully-discretized paths of the one-hour-long raw paths

A diagram of modules in the implemented software system . . .

Flow chart of the agent training program

. 38

. 40

. 45

. 47

. 48

parameters 51

. 54

. 55

. 56

. 61

. 63

4-1 Average mean of performance scores of various time steps of simulation . .

4-2 Performance scores before and after optimization as a function of the number

of Star Graph nodes .

4-3 Runtime per optimizing iteration as a function of the number of simulation

steps used in optimization .

4-4 Performance scores before and after optimization process as a function of

tim e steps .

4-5 Performance scores of 10000 time-step path data generated by optimized

parameters which use various training time steps

4-6 Comparison of performance scores under different initializing values

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

B-1 Screenshot of the simulation using standard parameter initialization at time

step 1500 98

B-2 Screenshot of the simulation using standard parameter initialization at time

step 3500 98

B-3 Screenshot of the simulation using standard parameter initialization at time

step 5500 99

B-4 Screenshot of the simulation using standard parameter initialization at time

step 8500 99

B-5 Screenshot of the simulation using standard parameter initialization at time

step 10500........ 100

List of Tables

A.1 Statistics of Performance Scores Using Standard Initialized Parameters and

200 Star Graph Nodes Under Various Time Steps 89

A.2 Parameter Description and Status . 90

A.3 Variations of Parameters Initialization Values Used in the Experiments . . . 91

A.4 Optimization Result with 1000 to 5000 Time Steps Under Standard Initial

Parameters and 200 Star Graph Nodes . 92

A.5 Optimization Result with 6000 to 10000 Time Steps Under Standard Initial

Parameters and 200 Star Graph Nodes . 93

A.6 The Optimized Parameters of the Randomized Initialization Set 1 over 5000

Feedback Time Steps .. 94

A.7 The Optimized Parameters of the Randomized Initialization Set 2 over 5000

Feedback Time Steps . 95

A.8 The Optimized Parameters of the Randomized Initialization Set 3 over 5000

Feedback Time Steps . 96

16

List of Algorithms

1 Parameter Optimization Algorithm . 102

2 Performance Score Calculating Algorithm 103

3 Kullback-Liebler Divergence . 103

4 Frequency Matrix Algorithm . 104

5 Convergence Checking Algorithm . 104

18

Chapter 1

Introduction

The aim of this thesis is learning pedestrian movement patterns for the purpose of analyzing

retail environments. One might wonder why patterns in pedestrian movements are an

interesting research topic, because moving around and interacting with other people are

such ordinary activities. On the other hand, one cans quickly realize that understanding

and reproducing their general patterns is not an easy task. There have been studies of such

pedestrian movement patterns, both human and animal, in previous research efforts.

Likewise, retail environments such as convenient stores, banks, and supermarkets are

frequent destinations for most people. However, managers and investors are interested in

the environment within their establishment and how their customers interact with and

within it. Such analysis is of interest because it can provide business and managerial

insights to improve customers' experience and sales performance. Nevertheless, an impartial

quantitative approach to the problem is generally not available, forcing the decisions to be

based on case studies and trial-and-error.

It is the aim of this thesis to simultaneously explore both areas by providing a quantita-

tive measurement of the retail environment's business performance based on the pedestrian

movement of its customers. The experimental work in this thesis is based on my contribu-

tion as a part of "Data-driven Architecture Project" in the Cognitive Machine Group at

MIT Media Lab.

1.1 Learning Human Pedestrian Movement

In order for humans to do daily activities, it is almost always required for them to walk or

travel around. However, having a machine generalize pedestrian movement patterns from

a given video sequence is still an unsolved problem.

Ideally, machines should be able to produce and visualize believable, generalized pedes-

trian paths in a given environment with specific data. If successful, this technology would

serve as a useful tool for visualization and analysis of human pedestrian behavior, for ex-

ample, in the gaming industry and social science research projects. Many issues, however,

will have to be addressed before the research problem is solved:

1. How can the "believability" of any given set of paths be measured? In other words,

how can one measure the likelihood that given paths are produced by humans under

a given context? If two sets of paths are compared, what should be the criteria in

determining which is more believable?

2. How should the machines be trained to recognize patterns in given set of paths and

generate paths under the same patterns? What should be the balance between con-

straints and flexibility in the training process?

3. How can goal-directed movements (such as walking to the kitchen to cook dinner) be

included in the developed models?

In short, the major issues include how to convincingly determine if the simulated pat-

terns are believable as human paths and how such believable simulation can be produced.

This thesis will attempt to answer these questions within the context of retail environment

settings, specifically banking premises.

1.2 Analysis of Retail Environment

The stores' environment influences customers' impression and experience which, in turn,

potentially determine the stores' business performance because of the images that the en-

vironment can form in customers' minds [20]. Therefore, in order to optimize customers'

experience and business performance within a retail environment, its planners and opera-

tors might be interested in measuring and improving store performance in several aspects,

for example:

1. Is the current number of cashiers optimal?

2. Do product locations encourage customers to shop around?

3. Are directions in the store clear enough? Is it hard for customers to find their desired

items?

4. Is there too little space in the store? Otherwise, can the use of the store's space be

further optimized?

5. How should sections within the store be rearranged?

6. If there is a plan to open another branch of the store, what architectural specifications

should the new store have?

Although these problems are usually considered by the management team, it is hard to

rigorously argue for one possible option over others without systematic research to support

the results [2]. While previous experience is helpful in giving directions for such decisions,

such evaluation cannot be impartially quantified.

The environmental optimization issues can be categorized into two aspects: architec-

tural and managerial. While it is easy to adjust managerial problems such as problems 1, 2

and 3, designing solutions for problems 4, 5, and 6 is much harder because these problems

might involve altering the architectural setting of the premise. Because reconstruction or

refurbishment is too difficult and costly to attempt trial-and-error approaches, architectural

features of the business premises is usually treated as fixed in the business analysis unless

convincing reasons can be suggested.

1.3 Benefits of Human Pedestrian Movement Pattern Re-

search in Retail Environment Analysis

As described in Section 1.2, managers need credible reasoning or evidence to support costly

decisions such as the alteration of their premises' architecture. It is the vision of this thesis

that the study of human pedestrian movement could fill the role of an impartial advisor

to such decisions. In fact, both research areas complement each other's need. While the

retail environment analysis becomes a powerful quantitative tool, the stores serve as an

observation ground for pedestrian movement and pattern recognition researchers.

1.4 Objective of the Study

As a step towards the final goal of developing a system which can reliably analyze a retail

environment, it is necessary to study and extract patterns from pedestrian paths in real

dataset. While pattern recognition techniques require quantifiable metrics to guide the

training process, it is not obvious how to quantify pedestrian paths nor how to compare

the quality of path data sets. As it will be discussed in Chapter 2, the criteria varies from

one researcher to another and heavily depends on the assumptions of how the paths are

generated.

Therefore, it is the main focus of this thesis to explore such this quantitative metric and

implement them as part of a training program which optimizes the simulation model and

visualizes the improved results. Ideally, the metric will fully reflect what humans consider to

be "believable" and can be flexibly applied to paths of different size, direction and number.

1.5 Scope of the Study and Limitation

Due to time constraints in developing rich interactive behavior between agents, this study

focuses on the agents' movements within the environment, regardless of the specific purposes

behind these trajectories. In other words, only the locations of agents during the simulation

will be analyzed and modelled in this study.

The training will concentrate on pedestrian movement of customers within the retail

environment because they are usually the target group for behavior analysis and also the

group of people who generate the majority of the paths. In addition, because the aspect

of interaction is disregarded, the role of staff members as path generators will be omitted

from the study.

In summary, this thesis describes how customer agents can be trained so that they can

portray patterns of human pedestrian movement in a retail environment context. Chapter

2 reviews previous research on the topics and select the framework of techniques that this

thesis will pursue. Chapter 3 discusses and justifies steps towards development of the

pedestrian movement's simulation training system, as well as experimental details. Chapter

4 discusses results and implications of the experiments. Finally, Chapter 5 summarizes my

contribution in this thesis, and gives suggestions for future research directions.

24

Chapter 2

Review of the Literature

2.1 Previous Work in Retail Analysis

It has been claimed in the literature that the retail environment is important in influenc-

ing the sales performance of the stores. For example, Martineau claims in [20] that the

performance of a retail environment depends on what customers perceive as the store's per-

sonality, and the environment is one of the key factors in impressing the customers. Despite

the vast number of published research papers in the area, it is suggested that management

teams of retail stores do not put much effort into systematic research to guide their business

decisions on refurbishing their stores and training their staff [2].

The retail environment consists of many factors which are potential candidates as inde-

pendent variables in research studies to investigate their effects on consumers' experience

and sales performance. These factors include lighting, music, shelf space, staff, architec-

tural design etc. Researchers have previously attempted to study the effects of some or

all of the factors in various settings. For example, Baker concludes in [2] that the quality

of interaction between customers and staff clearly has positive correlation with customers'

price acceptability. On the other hand, other "ambient" and "design" factors show less

conclusive evidence of their influences on consumers. A more formal model and detailed

factors are studied in her later work [3].

While there have been many areas that have been explored in the field, there are still

many factors within the retail environment that still need further investigation. Examples

of problems suggested by Turley & Milliman in [28] include the effect of exterior appear-

ance and interior design of stores on sales performance, the crowding effect caused by stores'

architectural layout, and customers' activities in environments that require privacy. There-

fore, the study of architectural and layout aspects, which is the focus of this thesis, still has

potential for growth.

While it is shown in [28] that previous research attempts in the retail environment anal-

ysis depend on human subjects to draw conclusions about their hypotheses, these researches

are limited by the huge overhead cost of human-subject experiments. Setting up meetings

with subjects and preparing experimental scenarios that human subjects can interact with

can be very time-consuming. Moreover, Baker admits in [3] that stores cannot afford to

spend much time and manpower to accommodate lengthy, complicated field experiments.

Therefore, researchers like Baker are limited to methodological techniques with low cost and

easy setups like "videotape methodology," in which subjects are simply shown videotapes

of simulated setups [11, 2, 1, 3]. This prevents researchers from pursuing more ambitious

but complicated approaches to the research problem. Moreover, because the main focus of

previous work is analyzing customers' behavior in existing establishments and in simple ex-

perimental setups, it is hard for researchers to discover radically new paradigms or business

models. Lastly, observation of abnormal situations such as emergencies is rare, making it

hard for researchers to make generalizations and analyze these cases critically.

2.2 Pedestrian Movement Analysis

In previous literature about analysis and simulation of pedestrian movement, there have

been many ways to characterize human pedestrian paths. These paths can be generated by

random walks, act as a part of flows of entities in the scene, or be influenced by individual

entities' decisions.

2.2.1 Paths as Random Walk

One of the simplest models of pedestrian paths is that they are generated using random-

ization. Randomization has the advantage that specific understanding about the observed

subjects' goals and behavior is not necessary. An example of such a model is a random

walk.

While Turchin has formulated a mathematically rigorous formula for a random walk in

[24], the derived differential equation is so complicated that it does not have much practical

use. Therefore, a simpler but less sophisticated alternative called a "correlated random

walk" is used by many researchers instead. A correlated random walk assumes that the

observed entities randomly choose their turning angle and the distance they would travel in

that direction at any given time. The probability distribution of the turning angles and the

traveling distance can be arbitrary. However, most of the literature assumes that the these

quantities follow either a normal or uniform distribution for simplicity [8]. This paradigm

has been used to analyze paths of insects and trajectories of particles in diffusion.

The success of the correlated random walk is usually measured as dispersement from the

starting point of observation. In other words, it measures how much the observed entities

have dispersed from the center of a crowd. This can be calculated as either mean-squared

dispersement distance (MSDD) [16, 21] or mean dispersement distance (MDD) [6, 8]. While

the calculation of MSDD is simple and straight-forward, it does not accurately measure the

observed dispersement which is the MDD. As a result, how to calculate MDD was a topic

of discussion in the literature until an acceptable solution was proposed in [8].

The advantage of this paradigm is its simplicity in describing the collective behavior of

the path generators. However, the dispersement distance alone cannot account for many

other basic aspects of pedestrian paths, such as speed and overall direction of the observed

entities. In addition, for human pedestrian paths, the assumption that all entities make

decisions about their movement randomly is invalid. Unlike insects and particles whose

goals and decision-making processes are either unknown or non-existent, human actions are

usually goal-directed. Therefore, it is reasonable to assume that human paths should reflect

human underlying goals (if there are any) and should not look like paths whose turning

angles and distance are totally randomized.

2.2.2 Paths as a Part of Flow

Characterizing paths collectively as flows of entities within the scene is one of the popular

approaches in pedestrian movement analysis. The major assumption of this approach is that

observed entities move according to a specific function of movement flows. This assumption

is valid when the observed scene is so crowded that small aberrations in individual paths no

longer affect the collective characteristics of a flow. At the same time, paths in a flow have

general patterns that can be extracted. Examples include hallway traffic and emergency

evacuation (27, 15, 14]. The analytical results under this approach are usually expressed

as continuous functions and differential equations that describe properties of the observed

paths, such as population density and rate of change in speed etc.

The benefit of this technique is its power to generalize a set of complex paths into a

compact representation. Once continuous functions are found, it is no longer necessary for

the simulation of the studied scenes to focus on small variations in individual paths.

One of the major disadvantages of this approach is that it can over-generalize how paths

should flow in any given location. Even though it can be argued that each area can consist

of multiple flows of entities, it is usually hard to specify the number of flows necessary and

the configuration of each flow to fully characterize a given set of paths. As a result, finding

the right formulae and parameters to characterize these flows can be extremely challenging

in complex pedestrian scenes. This is especially true for environments with large open space

in which pedestrians are free to move around in any direction.

In particular, previous works which use the flow assumption usually have only a few

flows in the scene, and the existence of such flows can be easily justified. For example, it

can be expected that the evacuation scenes like those in [15] have only one direction of path

flow in any given location. In other work such as [17] and [27] which observe and simulate

colliding flows of humans, the number of these flows is limited to two or a small number.

Therefore, while the flow assumption is powerful in its generalization of collective pat-

terns of paths, its solution is not universal. If the pedestrian path analysis only uses this

assumption, the scope of suitable scenarios that can be analyzed is confined to scenes that

have uncomplicated path behaviors. Therefore, some previous work uses other criteria along

with the flow assumption to help refine the performance of the path analyzer. For example,

it is demonstrated in [15] that by using interactions with other entities in the same scene,

the flows can "self-organize" to improve the quality of path simulation when two flows of

people move in an opposite direction.

2.2.3 Paths as a Result of Individual Entities' Decision

The main idea of this assumption is that all paths are goal-directed and entities' movement

are directed by their individual decisions. The "decision-making" and "independent" qual-

ities make this assumption equivalent to that of a modelling technique called "agent-based

modelling.

Agent-based Modelling

Agent-based modelling is a simulation modeling technique which employs autonomous

decision-making entities called "agents" [5]. This field has a wide range of applications

in computer science, social science and business planning. According to Bonabeau in [5],

the major types of applications of agent-based modelling can classified into four areas: flow

management [27, 13, 17], market simulation [19], organization management and simulation

of diffusion of information among agents [12].

According to Bonabeau in [5], there are three major advantages to agent-based mod-

elling. First of all, the technique can generate emergent phenomenon from the "bottom-up".

By allowing agents to interact with one another, there are endless combinations of behavior

that the "system" can exhibit, using only limited, local decision-making in agents.

This leads to the second benefit which is the availability of a complete description of

the system. Because all kinds of agent behavior are the result of the states within agents

or inter-agent interaction, these behaviors can always be explained by using agents' local

information. Lastly, because all decisions of agents are made locally, it is easy to make

changes to the system, such as adding or removing agents from the environment.

At the same time, Bonabeau also points out issues with agent-based modelling. The first

issue is that the agent-based modelling cannot be applied universally because the models

work best when there is the right amount of detail and configuration in the model for

agents to exhibit certain behaviors. The other issue is that some quantities, such as agents'

preferences, are hard to quantify [5].

Because emergent behavior is possible, it is implied that complex behavior can be broken

down into smaller, simpler problems. Therefore, agent-based modeling opens an opportunity

to simplify computational problems. Many decisions are too complex for a single entity to

make, or too difficult for human to preconfigure all the parameters. For instance, the human

path analysis, which is this thesis' focus, is a complex non-homogeneous problem, because

human paths are generated by multiple humans whose goal-directed intentions are different

and hidden from observers. Agent-based modelling has the potential to simplify these

problems because highly complex scenarios can be decomposed into many simple decision-

making processes. Employing multiple independent agents in the simulation environment

opens an opportunity to make many inexpensive, simple decisions based on local information

and parameters, rather than making a costly, intricate global decision.

Agents' behaviors can be influenced by interaction with other agents, which changes their

internal states, and agents' goals are to minimize some "objective cost function," or max-

imizes some "objective score function" [4]. These functions can be a combination of small

factors chosen based on researchers' objectives and assumptions about the implemented

agents. For example, Berrou et al use emotional states like "inconvenience", "frustration"

and "discomfort" in their pedestrian path modelling [4]. Turner and Penn assume Gibson's

ecological theory of perception and Gibson's principle of affordance as factors that motivate

their agents to make pedestrian choices and implement their agents with "vision" capacity.

As a result, agents in Turner and Penn's work choose their paths in order to maximize the

area in the environment that they have viewed [29].

Therefore, the major challenge in agent modelling is choosing the most suitable objective

function for the application and optimizing the parameters to tweak the agents' behavior

(such as Turner & Penn's work in [31]).

Application of Agent-based Modelling in Path Analysis

There has been some previous work in the agent-based modelling for the retail environment

analysis problem. For example, Casti demonstrates that capabilities of agents in showing

customer density in a supermarket environment in [9]. While the purpose of this work

is similar to this thesis's ultimate goal, which is providing tools for business planners to

design retail environments, this thesis's focus is a banking environment, which will be fully

discussed in Chapter 3. In addition, there have been many papers that advocate agent-based

modelling as a tool for path simulators and general architectural analysis.

Earlier related work in path analysis concentrates on developing agent behavior and

decision-making process so that the traversed paths of agents match the existing data's

patterns. For example, Turner and Penn's recreation of pedestrian movements within the

Tate Gallery does not mention using agents to make further generalizations beyond the

gallery's environment [30, 31].

On the contrary, more recent papers have begun to suggest the use of agent-based

modelling for generalized performance prediction. In [7], Burkhard, Bischof and Herzog

suggest that the use of Massive, which is an agent-based simulation software, for analysis of

communication of entities within a building. Likewise, Narahara shows that the emergent

behavior created by agents can be used in evaluation of architecture [23, 22]. Because

the purpose of both authors is to introduce the potentials of agent-based simulation in

observing people's behaviors within certain buildings and then making an evaluation of how

the environment affects the agents, the results of both papers are not rigorously evaluated.

However, this is sufficient to suggest the potential of agent-based modelling in the analysis

of a retail environment in terms of space usage and interactions between people.

In addition to relying on the emergent behavior of agent-based modelling, performance of

pedestrian path generation can be boosted by providing a priori information to the model.

For example, Courty & Corpetti have used flow analysis as noted in subsection 2.2.2 to

boost the quality of their generated paths [10].

2.3 Implications from the Literature about Analysis of Hu-

man Pedestrian Movement in Retail Environment

From the literature review discussion in Sections 2.1 and 2.2, the most important insights

that guided this thesis can be summarized as followed:

1. It is mentioned in Section 2.1 that the current approach in the retail environment

analysis research only allows researchers to propose minor adjustment to the business

practice with quantitative justification because of the cost of human experiments.

2. Agent-based modelling is capable of creating emergent behaviors and has potential as

a technique for making predictions.

3. Agents' decisions can use perceptual input like vision like in Turner's papers [30, 31, 29]

or use emotional states like Berrou's work [4].

4. Agent's parameters can be tweaked and optimized so that the agent exhibits more

accurate behaviors according to certain objective cost/score functions.

Therefore, in order to save cost on pedestrian path analysis in the retail environment,

this thesis will pursue an agent-based modelling approach because of its potential to make

insightful predictions of the retail environment without the huge overhead cost of human

experiments. The agents in the simulation will be given vision capabilities like Turner's

agents in (30] to alllow them to see obstacles and estimate distances.

Lastly, to avoid making too much assumption about agents' behavior, this thesis will

introduce a new objective function formula, to be fully discussed in subsection 3.3.4 that

relies on comparison of pedestrian paths' coordinates to a reference dataset and given path

data. This decision will allow agents to be trained and configured so that their movement

patterns converge to that of entities in the real-life retail environment.

Chapter 3

Methodology of the Research

3.1 Raw Data

The raw data of this thesis consists of video sequences that were collected from a branch

of a bank in South Carolina on July 7, 2009 from 12PM to 1PM. Multiple cameras were

installed to observe activities in the bank's hallway and lobby. Because each camera can

only capture a small portion within the whole bank, most of the pedestrian paths cannot be

entirely captured by only one camera. In each time step of 0.067 seconds (or 15 frames per

second), each camera would capture one image within its field of view. Each image frame

was later analyzed to track people in the image and record their coordinates. Chains of

these coordinates are then encapsulated into paths. For customers' privacy, only visual data

was recorded in the video sequences. There was also no labeling of whether the captured

paths belong to staff members or customers.

To use the fragmented path data, smaller path segments recorded by multiple cameras

had to be merged in order to reconstruct the original pedestrian paths. The process involves

identifying path segments in different cameras as a part of the same longer path. The final

result of the merging process should be paths that would have been observed in a single

camera if the camera were to capture the whole scene at once.

However, because the path merging process is complicated and time-consuming, and is

not a focus of this thesis, only a one-hour sequence whose paths were manually merged was

used in this thesis' experiment. During this time block, there are 32 different tracks that

traverse the banking environment.

Figure 3-1: Screenshot of raw training paths within the simulation environment:
The screenshot captures paths during one-hour tracks within the banking environment,
which are described in detail in Section 3.2.1.

3.2 Agent Training and Optimization

3.2.1 Specification of Simulated Environment

The simulated environment is modelled based on the bank where the video sequences were

recorded. The simulated building is 9456 millimeters wide and 28271 millimeters long,

which is spacious compared to the size of simulated agents (which are simulated as small

rectangular-shaped entities).

The sections in the simulated building which are most relevant to the goal of agents

are an ATM machine on the left side and the teller's counter on the right side of the

environment. Both of these areas have their own queuing location for customer agents to

simulate a real-life queuing procedure. Agents enter and exit from the building through the

two designated entrances. Other components with minor importance to the agents' goals

include three office rooms and the main hallway area, which provide a spacious area for

agents to move in.

More snapshots can be seen in Figures B-1, B-2, B-3, B-4 and B-5. Agents are drawn

__ - --. 1- _1 - = - - - fl g. "MEN" 0 1 WIIIWWW __ "..

00:02:22.375

Office rooms

Figure 3-2: A snapshot of simulated bank environment: The simulated bank model
consists of several major areas including ATM machines, teller's counter, office rooms and
the main lobby/hallway area. Customer agents (shown in the simulation as small, moving
rectangles) enter and leave the building via the two main entrances to the building.

..

in small rectangles. Individual agent's red lines show the agent's field of view at any given

moment. Blue lines portray the paths that agents have traversed in the environment. Once

agents have exited the building, these lines are removed.

3.2.2 Overview of Implemented Agent

The agent used in this thesis is a collaboration with Rony Kubat, a PhD candidate in

the Cognitive Machine Group. My major responsibility in the agent's development was

adapting it so that it could be trained flexibly, as well as making minor adjustments to the

agent's behavior.

The agent acts as "customers" in the simulated environment, which is a bank in this

case. These agents are goal-directed with two variations of goals: making transaction from

the ATM and contacting tellers. Agents are spawned, under uniform distribution, from each

entrance to complete their goals before leaving the building through either of the available

exits. The transaction time of each of the agents is randomly sampled under a normal

distribution and is independent of other agents' choices.

To traverse from one location to another in the scene, such as from an entrance to

an ATM machine, agents generate paths that are directed by a map called a "Navigation

Graph". Nodes in the Navigation Graph are arranged in a triangular grid except for loca-

tions where there are objects or obstacles in the scene. Edges that do not cross into the

obstacles are then added to connect adjacent nodes. By using the Navigation Graph, the

basic customer agents choose their paths using the shortest routes to their destination.

As customers, the agents are assigned to queue for their service if there are no ATM

machines or tellers available. They will seek either the last agent in the queue or the queue-

starting location if they are the first one seeking the queue. If an agent somehow loses its

way during its queuing or after it exits the queue, it returns to the end of the line. After

their tasks are completed, agents randomly choose an exit to leave the environment and

find the shortest path to reach it.

Other than following the Navigation Graph and queuing procedure, agents try to move

and turn to avoid obstacles and other agents. In order to do so, agents use a LIDAR (vision)

sensor to help them perceive their surroundings.

For simplicity, agents are portrayed in the simulation as moving rectangles of size 460

x 240 square millimeters.

In short, implemented agents:

1. Act as customers and choose the shortest unobstructed path to reach their destina-

tions.

2. Are goal-directed. Their goals are randomly chosen between seeking teller assistance

and completing transactions with ATM machines.

3. Form a queue if their goals cannot be immediately completed

4. Exit from the environment after they accomplish their goals

3.2.3 Details of Agent Behavior

This section will discuss the behaviors described in Section 3.2.2 in detail, including agents'

internal states and mathematical formulae which direct agents' behaviors.

The behavior of the implemented agent can be separated into two main layers: a layer

for high-level decision-making and a layer for lower-level navigation. Examples of agents'

actions that the higher-level layer would be responsible for include finding tellers, queuing

for service, transacting and exiting the bank etc. In order to accomplish the goal set by

the higher level, decisions in the lower level direct agents' navigation through speed and

angular velocity. At each level, there are many possible states (as shown in Figure 3-3).

High-level Decision-making Layer

The states in the higher layer can be classified into six main categories. A summary of the

relationships between these states can be found in Figure 3-4.

1. Seeking Teller: This is the first state of an agent after it is initialized. The goal of

an agent in this state is to seek and navigate to the target's location. Therefore, this

state involves a lot of low-level navigation which will be discussed in the "low-level

decision making" section. Once the target is found, the agent will enter "transacting"

state if no other agents are occupying the target. Otherwise, the agent will enter

"seeking queue" state.

2. Seeking Queue: If an agent cannot transact right away, the agent will seek the end

of the queue. The end of the queue is found by inquiring a Queue object for the

-I1
I

Figure 3-3: States in higher and lower levels of agent behavior: Once an agent
makes a higher decision by entering a state in the higher level, the decision will be fulfilled

by the lower-level decision which directly governs the speed and angular velocity of agents.

Like the higher-level decision, there are also different states that lower-level behavior can

be in. Details of decisions within the two layers can be found in Figures 3-4 and 3-5.

..

location of the starting point or the last agent in the line. Once the agent has moved

within the threshold distance from the end of queue, it will enter the "queuing" state.

3. Queuing: In this state, a queuing agent will choose the last agent in the line before

itself as the target that it will follow until it reaches the starting point of a queue.

By "following," the agent will try to align with the target agent while maintaining

a specific interpersonal distance. Once the agent is at the start of the queue and its

ultimate target (like "tellers" or "ATM") is visible and unoccupied, the agent will

enter the "released from queue" state.

4. Released From Queue: This state simply releases an agent from the queue it is in.

Because this state is reached only after the agent has exited its queue and finds that

its ultimate target (tellers or ATM) is unoccupied, it will be declared "lost" if the

ultimate target is not available, visible or obstructed so that the agent cannot reach

the target within a limited amount of time. If it is lost, the agent will reenter the

"seeking queue" state. Otherwise, it will move on to the "transacting" state.

5. Transacting: In this state, the agent will occupy its target for a variable amount of

time. The choice of time is normally distributed between a minimum and a maximum

time allowed. After the time limit expires, the agent will reach the "exiting" state.

6. Exiting: After the agent has reached this state, an exit will be chosen as the agent's

target. The choice of the exit is random regardless of the entrance in which the agent

was originally spawned. The location of these exits are queried from the simulation

environment. Once the agent has reached its intended exit, it will be "absorbed" and

disappear from the environment.

Low-level Decision-making Layer

The aim of the low-level decision-making layer is to help the higher level reach its decision's

goal. For example, an agent must find a way from the entrance to an ATM in order to satisfy

the "seek tellers" state discussed earlier. Low-level decision-making uses information from

sensors such as LIDAR and other information from the simulation environment to decide

on the agent's speed, angular velocity and orientation.

Figure 3-4: Higher-level decision-making in agent: The state chain model shows

all possible higher-level states that an agent can be in under the context of a banking
environment. The states in this level and their transitions are similar to how humans

decide their courses of action.

40

...

For navigation purpose, the simulation maps the environment with nodes arranged in

a triangular grid. The simulation eliminates nodes that overlap with the environment's

obstacles (such as tables, counters etc.). The remaining nodes are then connected to their

nearest neighbors as long as the edges do not cross into obstacles. This results in a graph

called a "Navigation Graph." Nodes in Navigation Graph can be used as immediate targets

that lead navigating agents to their intended destinations. Anyhow, there are three different

states that the low-level decision-making can be in.

1. Wander: This is the first state that an agent enters. It is assumed in this state

that the agent either does not have a target during the current time step or does not

"see" the target. The purpose of this state is to let the agent wander around in hope

that it will encounter its target. The agent's priority in this state is to move towards

the direction with more open space. If the agent's target is visible, the agent's state

switch to a more goal-directed "seek" state.

More specifically, in "wander" state, the agent's torque (r) and force (F) are governed

by the following equations.

F= 1 L do + M Mmin
11|| 0 Mmin

1 Z I - Imin
E do 0 Imin

(3.1)

(3.2)

where F

Ir

do

0

M

Mmin

I

Imin

= the force applied to agents

= the torque applied to agents

= the distance from the LIDAR center to the nearest

obstacle in the direction of 6.

= the angle from the agent's LIDAR sensor

= the agent's mass

= the minimal possible value for agent's mass

= the agent's moment of inertia

= the minimal possible value for agent's moment of inertia

2. Seek: If the target (or immediate targets like nodes in the Navigation Graph) is

spotted in the LIDAR vision field, the agent becomes goal-oriented and move towards

that target. Therefore, the agent's speed and angular velocity will be set so that its

orientation is directed towards the target. The agent switches to "wander" state if it

loses track of the target.

The specific equations for force and torque in "seek" state at any time step are:

r = (1 + TC) x (c x Otarget) (3.3)

If the agent's target at the current time step is the final destination,

F = max(TC x cos(Otarget) X dtarget + (1 - TC)
1

x E do, 0)
101 0

(3.4)

Otherwise,

F = 1 Y do X cos(Otarget) (3.5)

where F

T

do

dtarget

0

Otarget

TC

C

= the force applied to agents

= the torque applied to agents

= the distance from the LIDAR center to the nearest obstacle

in the direction of 0.

= the distance from agent to the current target

= the angle from the agent's LIDAR sensor

= the bearing angle towards the current target

= a fuzzy boolean value which tells how close the agent is

to its target

= some constant

3. Wait: This is a special state that is entered only when the simulation program specif-

ically calls for the agent to "do nothing." In this state, the agent will stop moving and

turning and wait for the time limit set by the method call to expire before switching

back to either of the two regular states.

The quantities of agent's force and torque are governed by the following equations.

F = -v x D x cF ((3.6)

1
T wx D,, + c, x -- E do6

E do 0

where F

T

V

do

D,

D F

c, iCF

- the force applied to agents

- the torque applied to agents

- the speed of agent

- the angular velocity

- the distance from the LIDAR center to the nearest obstacle

in the direction of 0.

- the angle from the agent's LIDAR sensor

- the speed damping

- the angular velocity damping

- some constant values

In addition to the basic behavior of each state, if the need arises for agents to avoid

obstacles in any state, the agent will apply larger-than-normal torque for a rapid turn and

smaller-than-normal force to slow down the agent. Under such situation, the calculated

force and torque are readjusted as followed:

1
Tavoid = cr X doO

1
Favoid = CF X E do

||0 ||

(3.8)

(3.9)

(3.10)

(3.11)

Tfinal = Tavoid X Pavoid + T X (1 - Pavoid)

Ffinal = Favoid X Pavoid + F x (1 - Pavoid)

where Favoid

Tavoid

Ffinal

Tfinal

do d

0

Pavoid

the portion of force applied to agents to avoid obstacles

the portion of torque applied to agents to avoid obstacles

the adjusted force applied on agents

the adjusted torque applied on agents

the distance from the LIDAR center to the nearest obstacle

in the direction of 9.

= the angle from the agent's LIDAR sensor

a Fuzzy-logic boolean deciding whether

(3.7)

obstacle avoidance is necessary; 0 < Pavoid < 1

cr = some constant on avoidance torque such that c, > 1

CF = some constant on avoidance force such that 0 < CF < 1

From the calculated force and torque on agents, the agents' speed and angular velocity

during any given time step i can be calculated with the following equations:

Vi= vi-I + x - x D) (3.12)
M

Wi = Wj- 1 + t x - x D) (3.13)
I

where vi = agent's speed during time step i

Wi = agent's angular velocity during time step i

Fi =force applied on agent during time step i

- = torque applied on agent during time step i

Dv = the speed damping

D = the angular velocity damping

M = the mass of agent

I = the moment of inertia

The relationship between these low-level states based on the above discussion is illus-

trated in Figure 3-5.

3.2.4 Parameters Used in the Training Procedure

According to the agent's specification in Section 3.2.2, numerical parameters that are rele-

vant to the implemented agent are:

" A bound on the distance between an agent and its target such that the agent has

"reached" the target

" Distance between adjacent agents during queuing

" Threshold of the distance between agents to be classified as "near" or "too near"

* Threshold of the distance between an agent and obstacles (objects or other agents)

to be regarded as "too close"

Lower-level navigation states

Do-nothing
method
called

Figure 3-5: Lower-level decision-making in agent:

* Slow-down rate of an agent's velocity before the agent comes to a complete stop as it

joins a queue

" The location of LIDAR/sonar emitter relative to each agent

" Mean and standard deviation of...

- Mass of agents

- Moment of inertia

- Agent's speed damping

- Agent's angular speed damping

- Transaction time with ATM, tellers and other entities

Because there is no clear indication whether and how these parameters can directly

influence the agent's choice of paths (except for delays and minor variations of movement),

all relevant parameters are used in the optimization process. Out of the chosen 31 parame-

ters, 6 parameters are treated as dummy parameters because their intended functionalities

have no influence on pedestrian path choices in the-current agent implementation. These

.

dummy parameters are included as a sanity check. Because these parameters cannot af-

fect the pedestrian movement of agents in any way, it is reasonable to assume that the

training process will never change their values as long as the training module is correctly

implemented.

The randomization rates for spawning customers at both entrances to the simulation

environment are not included in the simulation because the attribute is a property of the

environment, not customers. One possible interpretation is that the spawning rate reflects

the popularity or attractiveness of the bank. Although the agent-spawning rate does not

normally affect agents' pedestrian paths, if the rate gets too high, it can cause overcrowding

in the environment and blocking (as shown in Figure B-5). For simplicity, the spawning

rate is currently ignored in the optimization process.

Full description and justification of the parameters used in this thesis can be found in

Table A.2 in the appendix section.

3.2.5 Hill-climbing Optimization

Hill-climbing is one common optimization technique due to its simplicity. It begins with

some initial value for a parameter. At each iteration, the scores of the current setting

and its neighboring values are computed. If any of the candidates score better than the

current setting, the best one is chosen as the new value of the parameter, and the process

is repeated. If the parameters do not change, the process is halted.

Performance Limitation Caused by Local Optimality

Consider a case where there is only one varying parameter. Figure 3-6 illustrates the

procedure of hill-climbing described earlier in this section. The function in subfigure 3-6(a)

has two local maxima at x =- - and x = 3, which is also the global maximum under the

shown domain. The application of hill-climbing on three different initialized values is shown

in subfigures 3-6(b), 3-6(c) and 3-6(d).

Starting from any initialized values, the solution will converge to the best neighbor of

the current value, before halting at the first local optimal value it reaches. Initialized at

x = -1, the variable in subfigure 3-6(b) finds a solution by following its neighbors on its

right, which produce much better score than those on the left side. The local maximum,

however, is not the global maximum for the given function (which is x = 3). Because

(a) A simple objective function

0 2 - 0

(b) (c) (d)

Figure 3-6: Hill-climbing technique: Starting at any initialized values, variables under
hill-climbing are adjusted towards their immediate neighbors with the best possible score
from the objective function. Hill climbing will halt only when the current values of these
variables are the best choices among the candidates.

hill-climbing is a greedy algorithm, it can only guarantee that its solution will be a locally

optimal value.

As a result, initialized values have great influence on the final outcome of the optimiza-

tion. Although the initialized values of subfigures 3-6(c) and 3-6(d) are relatively close to

each other, their optimized solutions are very different, with only the optimization in sub-

figure 3-6(d) reaching the real global maximum. This inability to transcend local optimality

is one of the main issues that plague the performance of the hill-climbing technique.

Performance Issues Caused by Characteristics of the Objective Function

Other than the local optimality problem, hill-climbing faces potential issues as a result of

irregular properties of the objective function. An example of these problems include:

1. Functions with "ridged" shape or with high frequency

.. -_ --

20 NZ -

10 Y: &B59 Y; 1&45

-10

-20 14.3 -2

-4

_4A.

-0

-408

-70

-1 0 1 2 3 4 0 20 40 60 s0 100 120

(a) Local optimum (b) Ridged function

2--

0

-10--

-21

0 10 20 30 40 50 60 70 00 90

(c) Flat function

Figure 3-7: Major issues affecting hill-climbing's performance: Inability to transcend
local optimality and erratic optimization under irregular objective functions such as ridged
and flat functions are the three major issues affecting hill-climbing's performance. They
prevent the optimization from reaching the global optimum, or even a satisfactory local
optimum.

The problem arises in this type of function because of "undersampling". In other

words, if the resolution used in the search for "neighboring values" is not sufficiently

fine, it is possible to smooth out the ridged function and miss the supposed local

optimum, making the technique yield different optimized results depending on the

choice of resolution despite having the same initialized value. There is no clear solution

to the problem because if the shape of the objective function cannot be determined

before the optimization process, there is no lower bound to ensure that undersampling

will not happen.

2. Functions with "flat" regions

If the optimizing variable reaches any region such that there is no gradient or the

gradient is well below the allowed threshold, hill-climbing will assume that the local

optimum is reached. However, that might not be the case as shown in subfigure

3-7(c). In this subfigure, the region of 20 < x < 60 is relatively flat and has no

perceivable gradient. However, none of the values in the range is a local minimum.

Therefore, if the initialized value is within this flat region, its solution under hill-

climbing procedures will not be optimal.

Other Variations of Hill-climbing Technique

To overcome these limitations, other variations of the hill-climbing have been developed.

Their main purpose is to reduce the risk of encountering bad local optimum and overcoming

undesirable characteristics of the objective function. As discussed by Russell and Norvig in

[251, examples of these variations include:

1. Stochastic hill climbing - The procedure randomly chooses candidates from the

"uphill" side of neighboring values.

2. First-choice hill climbing - The procedure keeps randomizing candidates until it

finds a value whose score is better than the current one.

3. Random-restart hill climbing - Have several runs of hill-climbing with different

initialization during the same time. Halts when one of the runs finds a solution.

Although these inventions have advantages, their benefits are not critical in this thesis'

application. One of the major reasons is that it is computationally expensive to compute

the objective function used in this thesis. As will be fully elaborated in Section 3.3, the

procedure to calculate the objective function requires running full simulations which can

take hours to finish. Therefore, the strategy to randomize until a better solution is found

(as in "first-choice hill climbing") is not feasible.

Likewise, although "stochastic hill climbing" reduces the risk of sticking to a single

bad local optimum and produces satisfactory results in some areas, the performance of

"stochastic hill climbing" heavily depends on the landscape of the objective function. In

particular, it usually converges slower than the normal procedure if the landscape has

steep improvement [25]. Since slow convergence means more calls to calculate the objective

functions, the cost outweighs the benefit of Stochastic hill climbing.

The only technique among the alternatives that could have improved this thesis' op-

timization problem is "random-restart hill climbing". Its main idea opens up possibility

of parallelization to explore multiple initialization at a time. However, it was my decision

to concentrate on proving the feasibility of the basic procedure which is discussed in this

chapter before adopting parallel programming to boost the quality of its solution. Instead,

this thesis will optimize its parameters using the basic procedure.

3.2.6 Adaptation of Hill-climbing Technique for Optimization of Multiple

Parameters

Although the basic principle of the hill-climbing technique as described in Section 3.2.5 is

straightforward, it does not discuss the case with more than one parameter in the optimiza-

tion process.

Naive search through all possible combinations of values for the best neighbor in every

iteration is not feasible with multiple parameters. There are 31 parameters in the optimiza-

tion, and suppose that only 3 candidates are explored per parameter, in order to explore all

combinations in each iteration, one needs to calculate the objective function for at least 331

or approximately 618 trillion times. Therefore, a better solution is to optimize one variable

at a time while holding each other variable constant.

It is known that this technique gives a locally optimal result with just one variable.

However, for multiple-parameter cases, it is, in fact, not necessary to "fully" optimize each

parameter at a time. The reason is that values of any adjusted parameter can be guaranteed

to be optimal only if the values of all other parameters remain unchanged from the time

these parameters are optimized. Although the performance metric will not worsen after a

series of adjustments on other parameters, it is possible that these variables will no longer

be optimal.

More importantly, because it is necessary to run simulations to calculate performance

scores for each candidate parameter value, complete optimization can be extremely expen-

sive, depending on the initial values. In the worst case, the program will not halt if there

is no local optimum. (For example, the function y = x2 has no maximum at all.)

In addition, by optimizing one variable at a time, the order of these variables becomes

significantly important. Sorting parameters differently can lead to different local optima,

and the first few variables used in the optimization are more important in determining the

final outcomes than later variables. Since it is not usually practical to sort all parameters

by their potential outcomes in advance, it is more prudent to avoid such overdependency

.. .. ~ ~ ~ ~ ~ ~ ~ ~ i

Randomly permute
order of

parameters

IwoY e s 0 Y e s -4

No No

Choose the next Restart parameter
parameter List

Select candidate Substitute the current
values for the Ide parameter with the

parameter selected candidates

obspeitie don

As a rsult, he app o that, 0ths ti taket aiz theproraocoeoe

for each parameter sei

Figure 3-8: A generalized flow chart of the basic hill-climbing with multiple pa-
rameters - This flow chart illustrates the general procedure for hill-climbing with multiple
parameters s described in Section 3.2.6. Ideally, the program will loop through a list of

parameter until an optimal solution is found.

by spreading out the risk.

As a result, the approach that this thesis takes to maximize the performance score over

multiple parameters is to slightly improve performance for each parameter in every iteration.

In particular, each variable is increased, or decreased by a small amount, or remains the

same. The value that produces the best score is chosen. Assuming that the performance

metric is deterministic, the best of these scores will be at least as good as the score from

the latest evaluation. The optimal value is reached when either (1) all parameters remain

unchanged from the last iteration, or (2) the rise in performance score is below a certain

threshold. The general idea of the described procedure is illustrated in Figure 3.2.6. For

details of the actual implementation, refer to Section 3.4 and Algorithm 1 in the appendix

section.

The choice of this "small amount" is a trade-off between quality of final results and

computational cost. The optimization will have a better resolution when the change per

iteration is small. However, the algorithm will have to iterate many more times to reach

the desired local optimum.

By doing this, all parameters have approximately equal chance to make an adjustment.

Although it can be argued that the order of parameters is still relevant in this procedure of

gradual optimization, by iterating many times such dependency will become less significant.

This will save computational cost that might have been over-invested on any particular

variable.

3.3 Measurement of Correlation Between Raw and Simulation-

generated Path Data

From the discussion about hill-climbing in Sections 3.2.5 and 3.2.6, the algorithm needs

an objective function to guide its optimization. Because this thesis optimization goal is to

improve the quality of pedestrian paths produced by simulation agents, it is intuitive that

the objective function should be calculated by using paths from the simulation as an input.

The collected pedestrian tracks serve as a benchmark to determine this "quality," which is

too subjective to precisely define. This section will elaborate how simulated paths can be

compared to paths in the dataset and how to quantify them systematically to calculate the

objective function for hill-climbing algorithm.

3.3.1 Assumptions

In order to justify the discussion in this section, the following assumptions must be accepted.

" Assumption 1: The collected pedestrian paths are representative of how

"good-quality" paths should be - In other words, these paths are typicla of paths

generated by humans. Otherwise, there is no benchmark to evaluate the quality of the

simulation parameters even though the simulation results look qualitatively believable

by human observers.

" Assumption 2: Both simulated paths and dataset paths should increasingly

exhibit greater similarity as more data on both sources are collected. -

Even though the exact shape and curvature of human paths can be arbitrary to some

degree, there are usually some areas within the environment which humans use more

often than others. Therefore, by observing for a long time, these patterns should be

detected from a set of paths. Likewise, if the simulation is properly optimized, its

paths should collectively exhibit similar patterns to the data.

Regarding assumption 1, it is possible to argue that the available raw paths shown in

Figure 3-1, which is only one hour long and has only 32 tracks, do not represent general

human paths in the banking environment. However, even during only one hour, the paths

in the figure has already traversed over the majority of the spaces in the environment.

Moreover, the recorded time is from 12PM to 1PM which is a normal bank hour. Therefore,

it is not unreasonable to assume that the observed paths are normal activities of banks

during working hours. Although these paths are not a perfect set of data, assumption 1

should hold for this data and this thesis' experiments.

3.3.2 Graph Representation of Collected Paths

To perfectly reproduce a continuous path, one must specify infinitely many data points of

agents' locations. Even for paths which are collected from a simulation whose time steps

discretize paths into intervals of path segments, there are still many more data points than

what is necessary to represent these paths. Considering memory and computational cost

required for storing and analyzing these coordinates, it is best to simplify the complexity

of human path representation.

A convenient alternative is splitting these paths into a chain of connections between a

small set of fixed nodes in the observed environment. By such discretization, a collection

of pedestrian paths can instead be analyzed as a graph whose edge weight is the number

of times that a path connects any pair of nodes of the graph. Therefore, the amount of

required data points to characterize a path can reduce from infinitely many points to just

a small number of points.

A major decision that comes with the graph representation is how to choose the best

connections to characterize the continuous paths. Developed by George Shaw, a member of

Cognitive Machine Group, "Star Graph" is an implementation of such graph which deals

with the problem [26]. For a given path, Star Graph greedily chooses a new connection

based on (1) the difference in Euclidean distance between the latest connection and its

equivalent raw path segment is minimized, and (2) other smoothing parameters. An example

of correlation of a single path onto a given set of graph nodes is shown in Figure 3-9.

(a) Observed paths (b) Selected nodes for Star Graph

(c) An example of path traversing through (d) The result of correlation of the path in
the environment (c) onto selected nodes

Figure 3-9: An example of the use of graph for path discretization: This figure
shows how paths are correlated with a graph. Given with a set of path (figure (a)), the
paths can be discretize over a set of nodes (figure (b)). More specifically, for any single path
in the environment (figure (c)), the path will be correlated so that the result is connections
between the graph nodes that best represent the whole path (figure (d)).

It has been discussed in assumption 2 in Section 3.3.1 that a collection of paths from

an environment should have certain patterns to characterize the scene. As illustrated in

Figure 3-10, Star Graphs can clearly visualize the pattern of trajectories within the envi-

ronment and is therefore an appropriate representation to characterize paths in this thesis'

experiment. As a result, all paths analyzed in this thesis will be discretized based on the

Star Graph algorithm's decision.

The choices of Star Graph nodes are critical. It is debatable that a standard rectilinear

grid might be a good choice to distribute nodes in order to get consistent correlation pat-

terns. However, this thesis will use a few sets of nodes of arbitrary number and arrangement

to correlate each set of paths. The major reasons for this decision include:

1. Rectilinear grids are actually a special case of flexible node arrangement.

2. Some patterns of nodes can correlate a set of paths better than others. It is better to

spread the risk of encountering bad sets of nodes by having several alternatives.

4

Figure 3-10: An example of fully-correlated Star Graph: The thickness of an edge
in the graph shows the frequency that path segments are mapped as a connection between
both vertices of the edge. Once properly visualized, the graph makes path dynamics within
the environment more visible. (Reproduced under permission of George Shaw)

For this thesis' experiments, nodes that are used for correlation will be randomized over

the simulated banking environment, regardless of whether the nodes lie on non-passage ways

or solid models in the environment. All correlations will use the same set of randomized

nodes for standardization unless it is specified otherwise. The number of randomized nodes

can be 100, 200, 300, 400 and 500 nodes.

3.3.3 Interpretation of Pedestrian Paths with Frequency Matrices

After simplifying the paths into edges of a graph, they can be further analyzed as frequency

matrices whose entries are the number of connections between any pair of nodes made by

the provided set of paths, i.e. the weight of the edges in the Star Graph.

In order to disregard the number of paths in the given data set, entries in frequency

matrices are normalized as the number of connection between a particular pair of nodes out

of the total number of connections made in the graph.

While representing paths as a graph, a frequency matrix omits information about rota-

tion of paths. As a result, it serves as a compact way to describe paths in each data set.

The speed of agents is indirectly encoded in the diagonal elements of the frequency matrix

..z -n - :

Track Correlation Mode
Node numben 200

Figure 3-11: Fully-discretized paths of the one-hour-long raw paths: This figure
shows a discretization of the The one-hour-long raw paths (from Figure 3-1 over 200 preset
nodes. The choice of edges are selected by Star Graph. However, the thickness of edges
does not represent the frequency of transitions between edges.

because if the agent's speed is low, there are going to be a lot of self-looping sequences.

Because of this self-looping, it is necessary to ensure that the frame rate of the simulation

matches the real data's frame rate. Otherwise, the speed in the simulation will be misinter-

preted because of oversampling or undersampling. The frequency-tuning has been neglected

in this thesis' experiments for simplicity. Although the absolute value of the experimental

results will not be accurate, the relative values and relationship between measured data

should still be approximately correct. Because all results, especially speed components, are

measured under the same (but possibly incorrect) sampling rate. Section 3.3.4 will explain

how to use this information to find similarity between two sets of pedestrian paths.

3.3.4 Comparison Metric

As mentioned in Section 3.3.3, pedestrian paths can be represented with transition frequency

matrices. During the training process, it will be required that frequency matrices from the

raw data and the simulated data have a quantifiable way to compare their "similarities."

This section will discuss the comparison metric that will be used in this thesis' experiments.

IA114- -1 , ## - -___ - .1 .

Specification of the Metric

Good metric for comparison of frequency matrices should have the following properties:

1. Similarity as judged by humans and comparison scores are positively cor-

related

Although the correlation between similarity and score should ideally be linear, other

forms of correlation such that the gradient of the comparison score does not signif-

icantly vary from one range of similarity to another is acceptable. The only reason

that the correlation should be positive is because it is easier to form an impression of

being "more similar" if the score is high rather than low.

2. The final score is normalized

Having normalized metric scores is critical because it allows valid and fair comparison

between different simulation settings regardless of the number of nodes used in the

Star Graph or the number of paths simulated throughout the session.

3. The subscores (and final score) are bounded within finite upper and lower

bounds

If either upper and lower bounds of the metric's score is not finite, inclusion of even

one extremely positive or negative subscores can significantly alter the final score.

Therefore, having a small, limited range of possible scores can help alleviate the

problem.

Modification of Kullback-Liebler Divergence into Comparison Metric

The metric that this thesis uses to compare two frequency matrices is inspired by the

Kullback-Liebler divergence formula as shown in equation (3.14). Kullback & Liebler pro-

poses a divergence formula to measure how different (or divergent) any two probability

distributions are, based on the difference in information [18]. This divergence formula in

the discrete domain can be stated as:

P.
DKLorig ' ZPl (3.14)

whereas ln(P) is defined by Kullback & Liebler as the information in entry i to decide

if it is generated by probabilistic distribution P or Q. However, instead of summing all

elements to find divergence, the formula is applied to each pair of corresponding entries

between two frequency matrices to find preliminary distance between the entries, resulting

into only one term in the simplified formula.

P P
DKL = P ln() (3.15)P+Q Q

Then, for the sake of symmetry, a symmetric term is added to the original equation,

resulting into:

P P Q Q
DKL P±Q Q + Q ln(P) (3.16)

Equivalently, it can be written as:

DKL (Q Q In() (3.17)

Suppose that Q < P, then DKL 2 0 because P and Q in the context of this thesis have

been normalized to have values in the range of [0,1] as stated in Section 3.3.3, making them

strictly non-negative. In other words,

P Q P

DKL = (Q -In()
P+Q P+QQ

> 0 (3.18)

As a result,

0 < exp-DKL <1 (3.19)

0<exp,+Q "Q- I" <1 (3.20)

Because the Kullback-Liebler divergence in equation (3.16) is symmetric, the above

argument is also valid for when P < Q. In practice, a constant of insignificant value should

be added to both P and Q to prevent either or both of them to have values of zero and

cause DKL to explode to oc. With this constraint, it can then be stated that:

0 < exp~ P+Q 1Q-0 " <1 (3.21)

As a result, it can be concluded that an exponential of Kullback-Liebler divergence

matches the specification of comparison metric because the resulting comparison score is

bounded and strictly positive. Hence, more similar entries earn better scores than less

similar ones.

The final metric similarity score, S, is the arithmetic mean of the divergence of cor-

responding pairs of entries in frequency matrices. For graphs with m nodes, the distance

between the two frequency matrices is:

_. ,j Qn()- ' n(±i)

S -- Z= 3=2 (3.22)

Dealing with Sparsity of Frequency Matrix

It is theoretically valid for a node in a graph to be connected with any other nodes within

the same graph. However, because nodes in this thesis' application are spread over a two-

dimensional plane and edges are connected only when the connections best represent a

segment of a given path, it is highly unlikely that there are connections between nodes that

are far apart from each other. Therefore, frequency matrices are naturally sparse.

Sparsity becomes an issue in the metric calculation because there are too many entries

whose values are zero in both data and simulation frequency matrices. If these entries

are included in the calculation, then the result will be inaccurate. If they are treated like

normal entries, they would receive full scores. However, because the matrix is sparse, the

final score will always be close to perfect, regardless of the similarity of non-zero entries. If

they otherwise receive scores of zero but are not excluded from the normalization process,

then the final score would be skewed towards zero. As a result, it is a design decision to

completely omit any entries that are zero in both data and simulation frequency matrices

in order to avoid significant bias towards either end of extreme scores.

Considering the discussion about sparsity, the formula should be further modified. If

the metric formula uses m graph nodes, the formula becomes:

- ',j n(Li)- Q',j n(2L)

S= - '(j)Vz j;(i,j)gz expPijQj j i+Qj j (3.23)m2 -IZI

where Z = {(i, j)I(Pj = 0) A (Qi,j = 0)}

3.4 Software Implementation and Design Decisions

From the discussion in Section 3.2 and 3.3, both optimization framework and its objective

function have been elaborated. This section will discuss about how both components are

integrated into the software system used in this thesis' experiments and about other design

decisions that have been made for practical purposes. All modules in this program are

implemented in Java language.

3.4.1 Major Modules in the Software System

This software is a result of collaboration with Rony Kubat and George Shaw. The whole

software system spans from raw data processing to agent simulation. Generally, the soft-

ware implementation for the optimization process can be divided into four major modules,

described in the following sections.

Agent Behavior Module

This module defines the behavior and decision-making criteria of each type of agents. All

parameters used in the optimization are parameters from this module. As a result, agents

are implemented so that their numerical parameters are adjustable. Variables in agents

that have potentials to become adjustable parameters are implemented as a type of Java

object which can configure their values during the initialization.

After the simulation has begun, except for the values of variable parameters, all details

in this module are treated as given for the rest of the optimization process.

Simulator Module

The simulator puts the agents into the simulation environment. During each time step, the

simulator regulates and calls for agents' activities such that their behavior concurs with

the agent-behavior module's specification. After the track is simulated, this module records

and optionally visualizes tracks which agents traverses over during the simulation. The

simulation is atomized into "time steps" which are currently not calibrated to correspond

to any specific real-world time. Nevertheless, within the simulation, the time step duration

has consistent proportion to other units.

Figure 3-12: A diagram of modules in the implemented software system as a
part of Data-driven Architecture project: The software system is a collaboration
with Rony Kubat and George Shaw. My major contribution is contained in the area of
agent optimization. The training procedure starts by providing the software with initial-
ized values for parameters defined in agent implementation. Then, the program will start
to iterate through the process of "simulation", "comparison of result with data" and "pa-
rameter adjustment" until the training program can generate satisfactorily optimized set of
parameters.

Data-Result Comparison Module

As discussed in Section 3.3.4, the comparison metric for this module compares the paths

collected from the simulation in the simulator module with the paths from the real data

set by using a formula in equation (3.23). The output of this module is a similarity score

ranging from 0 to 1, where the score of 1 means that the data and simulated paths are

perfectly the same to each other.

Parameter Adjustment Module

Because agents have been designed so that their parameters can be easily adjusted, the

only responsibility of this module is to determine the values that should be set to agents'

parameters and call agents to change their parameters. By using the hill-climbing technique

in which parameters are adjusted to the best candidates, this module is usually called

only after all of the candidate values of a parameter are simulated and evaluated. Later

simulation runs will be updated to any adjustment made in the module.

3.4.2 Details of Hill-climbing Implementation in Software Implementa-

tion and Design Decisions

Both fundamental concepts of hill-climbing and general organization of this software system

have been presented in Section 3.2.6 and 3.4.1 (and illustrated in Figures 3.2.6 and 3-12

respectively). This section will discuss the implementation details, practical issues and

design decisions of the system.

Figure 3-13 shows a flow chart illustrating the implementation details.

Determining the Rate of Change

The choice of parameter adjustment rates per iteration is critical to the performance of hill-

climbing algorithm. Smaller rate means higher resolution in the search for local optimum.

However, the differences of objective function values of neighbors might get extremely small,

especially for cases with relatively flat objective functions. In addition, this leads to slow

convergence of the algorithm. On the other hand, it becomes easier for larger rate to skip

the local optimum and inadvertently undersample the objective function.

Correlate data Yes
tracks with-
Star Graph

nodes 0es lq

Yes

No

Simulate with Simulate with Simulate with
decreased parameter current parameter increased parameter

Correlate simulated Correlate simulated Correlate sleimulated
tracks with tracks with tracks with

Star Graph nodes, Star Graph nodes Star Graph nodes
and calc score and calc score and calc score

-AdJust paramete
to the bestsorme one

Figure 3-13: Flow chart of the implemented agent training program: The flow chart
shows the procedure of the training program in optimizing simulation agents. Bounded to
a finite number of iterations, each loop follows stages of candidate selection, simulation,

evaluation based on real data tracks and parameter adjustment. Once an optimized solution
is found or the runtime takes too long, the program terminates. Note that parameter values'
candidates are chosen greedily from the current value's neighbors. The algorithmic version
of this flow chart can be found in algorithm 1 in appendix C

The rate of change that have been used in the experiments of this thesis is 1% (both for

the increasing and decreasing changes).

Decisions on Halting the Trraining Program

There ae two types of possible outcome for any run of parameter adjustment program: the

program finds the optimal solution or it pursues the solution for an infinite amount of time.

In the cases where solutions are found, there are two criteria which determine whether the

current set of parameters is optimal or not.

The first one is whether the parameters have changed over the past iteration. If not,

then it can be assumed that no further adjustment will be made because no other candidate

values can outperform the original values and readjust the parameters. The second criteria

is whether the score has improved but at slower rate than a predefined threshold. It is

beneficial for the objective function with relatively flat landscape because the criteria saves

the time that would have been spent to search for a new set of parameters whose score is

....- _ - -_ , : .- - ;.:: - I.. . . . -- - - - 11 . . - -, , . :.::.: I : 11 .1.

marginally better than the current one. If either of the two criteria is satisfied, then the

program will halt and return the current set of parameters as solution.

In the worst case, there is no optimal solution for the objective function. Then the

program will never halt under the first two criteria. To prevent this outcome, the train-

ing program sets the maximum number of iterations that each run of metric calculation is

allowed to iterate. Although this decision might prevent the hill-climbing algorithm from

reaching the local optimum before halting, it is generally better than waiting for an indefi-

nitely long time before the program halts and returns an optimal value. This is especially

true because the landscape of the objective function is not known beforehand.

If users suspect that the current parameters are not optimal and better results are

desired, the final parameters from the previous run can be used as the initialized values.

In this thesis' experiment, the maximum number of iteration is arbitrarily set to 20 times.

Suppose that the rate of change of parameter values is set to 1% per iteration, then during

the simulation run, the parameters can make at most (1.0120 - 1) ~ 22.02% of adjustment

from their initialized values.

Nondeterministic Objective Function

This issue is realized later on in the project that even with the same set of parameters, the

simulation cannot always generate the same (or equivalent) transition frequency matrices.

As a result, the measured similarity score becomes a probabilistic random variable. Even

though the standard deviation is only 0.01 out of the total score of 1, the issue can become

critical in cases where:

1. The objective function's landscape is flat - The variance of the metric becomes

a significant source of noise in this case. This might lead the training program to

eventually choose a non-optimal value as solution.

2. The threshold for a training program's termination is lower than or equal

to the standard deviation - It has been stated earlier that the training program

is designed to halt if the current iteration's score shows too small improvement in ob-

jective function metric from the previous iteration. Metric scores with non-negligible

standard deviation make the it impossible for the training program to justify its halt-

ing decision.

One possible solution is to measure the simulation performance metric several times

and take the average score for any set of parameters. However, huge computational cost of

simulation makes the approach infeasible, making the problem unsolved.

3.4.3 Overall Asymptotic Runtime of the Program

From the proposed model of the optimization system, the runtime of the program can be

estimated as equation 3.24. There are two terms in this asymptotic runtime equation. The

first term is the runtime for simulating the environment and calculating performance score

for every adjustable parameters. The second term is derived the runtime in the path-node

correlation process to generate the frequency matrix.

R(m, n, s, t) = O((m + s2)n + st) (3.24)

where R(m, n, s, t) is a function for the runtime of the program

m is the number of simulation steps

n is the number of adjustable parameters

s is the number of Star Graph correlation nodes

t is the number of tracks that are collected during the simulation

3.5 Experimental Setup and Evaluation Criteria

To make a credible argument for this thesis, it is necessary to answer the following questions

through a verifiable experiment.

1. Does the proposed comparison metric have the desired properties as discussed in

Section 3.3.4?

2. Is it true, as the assumption suggests in Section 3.3.1, that the amount of paths in

simulated track data make the data set more similar to the real track data set?

3. What is the effect of the training program on the correlation between data and sim-

ulated track data set? Is the result satisfactory?

This Section will describe and elaborate how experiments for each of the issues are set up,

as well as the criteria to evaluate their success. The parameter initialization list can be

found in Table A.3 in the appendix Section.

3.5.1 Experiment 1: Comparison Metric Verification

The key of this thesis is the use of comparison metric to evaluate the quality of paths gen-

erated from simulation and to train pedestrian behavior of agents in the retail environment

simulation system. In order to validate all other experiments, it is necessary to also validate

this comparison metric.

According to the second assumption as stated in Section 3.3.1, "Both simulated paths

and dataset paths should increasingly exhibit greater similarity as more data on both sources

are collected." Therefore, if the comparison metric is valid, then as the number of simulation

steps is increased, the comparison scores of these simulations should also strictly increase.

However, because of non-deterministic nature of the path generation, the similarity scores

should be analyzed in terms of mean average and standard deviations.

Setup and Procedure

The experiment is run with the standard parameter values for the 31 optimizing parameters

(including dummy variables.) Since the experiment does not proceed to optimize these

values, they remain constant. The only independent variable in this experiment is the

number of runtime steps. The experimental procedure should proceed as followed:

1. Prepare a one-hour-long path data set as a reference data

2. Randomize three sets of 200 nodes over the environment bound.

3. Use Star Graph to correlate the reference path data and collect a frequency matrix.

4. Simulate a bank scene for 1000 time steps. Collect the tracks of paths that simulated

agents traverse over the environment.

5. Use Star Graph to correlate the simulated path data to get a frequency matrix.

6. Use the comparison metric formula as described in Section 3.3.4 to calculate a simi-

larity score from raw-data frequency matrix and simulated-data frequency matrix.

7. Repeat steps 4 to 6 for 100 times. Record the average score and the standard deviation

of these runs.

8. Repeat steps 4 to 7 with 2000, 3000, ..., and 10,000 time steps.

9. Compare the mean and standard deviation of similarity scores for each length of

simulation time steps.

Evaluation Criteria

The comparison metric is considered to be valid if the mean of similarity scores for each

number of simulation time steps strictly increases along with the simulation length. In ad-

dition, the standard deviation must be within an acceptable range (i.e. 1% of the simulation

score).

3.5.2 Experiment 2: Measurement of the Number of Star Graph nodes'

Effects on Optimization Program's Performance

Because the comparison metric depends on Star Graph correlation to generate the frequency

matrix, the number of Star Graph nodes should have significant effects on how comparison

scores reflect the performance of simulation. On one extreme that there is only one node,

the score should always be perfect because every path segments will be mapped to the node,

generating 1x1 similarity matrix. On the other extreme where there are infinitely many

nodes, the score should converge to zero because every path segments can be mapped to

their own nodes. Having the number of graph nodes on both extremes are therefore useless

to generate credible performance score. However, it is not clear how the middle-ranged

number of node will perform in terms of scores.

Moreover, it should be assumed that the number of paths should slightly affect the

runtime of each optimization iteration because there are more entries in the performance

matrix to calculate into scores. However, given that the majority of time spent on the

optimization process is spent on path-generating simulation, its effect should not be very

significant.

This experiment aims to explore the effects of the number of nodes in middle ranges on

the optimization performance, both in terms of scores and its runtime.

Setup & Procedure

The "middle-ranged" number of graph nodes in this experiment is defined to be a few

hundred nodes, given the size of the simulation environment. The setup will use the standard

initialized parameter values for the 31 optimizing parameters. To fully illustrate the effect

of these nodes, the optimization process will be run for 5000 time steps, with an offset of

500 time steps.

The experimental procedure should proceed as followed:

1. Randomize locations for 100 nodes over the simulation environment

2. Run optimization process and collect the runtime and the performance score of the

result under 5000 time steps.

3. Repeat steps 1 and 2 with 200, 300,...,500 nodes

4. Using the optimized parameters as initialized values, rerun 10 simulations and calcu-

late the average score and standard deviation of the generated paths. Compare the

values with the initial score and the post-training score.

Evaluation Criteria

This experiment will be evaluated based on how the performance improves or degrades

with the increased number of nodes and whether the increased runtime is noticeable or not.

Moreover, the simulation reruns will serve as a sanity check to validate the optimization's

success.

3.5.3 Experiment 3: Measurement of the Number of Simulation Time

Steps' Effects on Optimization Program's Performance

As the simulation runs longer, the hidden patterns of the path becomes easier to observe

until the transition frequency between the correlating graph nodes become stable, i.e. all

patterns are revealed. It can then be implied that paths from longer simulations better rep-

resents the potential performance of the current parameter configurations. As a result, this

experiment seeks to explore the effect of simulation length on the optimization program's

ability to improve the performance scores.

Setup & Procedure

1. With the standard parameter initialization, run optimization with the one-hour-long

raw path data and paths from simulation with 1000, 2000, ..., 10000 time steps, using

200 Star Graph nodes. After the optimization, collect the optimized parameters.

2. For each set of the optimized parameters, run a simulation for 10000 time steps to

generate paths.

3. Measure the quality of each set of paths with the performance metric.

4. For each of the calculated scores, compare the score with:

(a) the average and standard deviation of the base, pre-optimized score of each time

duration (acquired in experiment 1).

(b) the score of paths generated by running optimized parameters of each time-step

case for 10000 time steps.

5. For part 4a, rerun 10 simulations, each of which uses the optimized parameters as

initialized values, and calculate the average score and standard deviation of the gen-

erated paths. Compare the values with the initial score and the post-training score.

Evaluation Criteria

There are two parts of evaluation in this experiment. The first part is about whether

the optimization for each different simulation steps has improved the performance score

from the base level as measured in experiment 1. (The base line level is the average of

performance scores of simulations with the same number of steps.) If the performance has

improved, the optimized scores should be significantly improved from their base lines. The

reruns' average score will serve as a sanity check of the optimization process.

The second part is about how well the optimized parameters from shorter simulation can

generalize to the later part of the simulation. The benchmark of this aspect of experiment is

the performance score of the paths that are generated by a simulation initialized by 10000-

simulation-time-step optimized parameters, running for 10000 time step. If parameters are

optimized under much fewer time steps (such as 3000 time steps), when these parameters

are run for 10000 time steps, the parameters should not generalize to the path pattern of

10000 time steps, and the resulting sets of paths should earn inferior or equal performance

compared to the benchmark.

3.5.4 Experiment 4: Measurement of Optimization Program's Perfor-

mance Under Randomized Suboptimal Parameters

It will later be discussed in the results of experiment 3 in Section 4.1.3 that the optimized

parameters do not show significant improvement from before the optimization. That means

that the landscape of the objective function around the standard initialized parameters is

already at a local maximum. There are two possible explanations. The first explanation is

that parameters of the implemented agent models do not have significant effects on how the

agents choose their paths, implying that the objective function is flat. The other possible

explanation is that the chosen values of the parameters are at some local optimal point of

the objective function landscape.

This experiment's purpose is to prove or disprove the second explanation to provide

clues for future implementation.

Setup & Procedure

1. Randomize values for all 31 parameters (but still within the proper context of each

parameter)

2. Run optimization software to adjust the values using 5000 simulation time steps and

200 Star Graph nodes.

3. Compare the new performance score with the base line scores from experiment l's

result.

4. Repeat steps 1 to 3 under the new randomized parameter values for a few times (such

as three).

5. For each case, rerun 10 simulations, each of which uses the optimized parameters

as initialized values, and calculate the average score and standard deviation of the

generated paths. Compare the values with the initial score and the post-training

score.

Evaluation Criteria

The local-optimum explanation is proved if the objective function scores of any of set of

randomized parameters can be improved after the optimization process. It is disproved

otherwise, and can be concluded that the given parameters are too insignificant to improve

the performance score. Any improvement shown in the experimental result will be justified

by the average scores of the simulation reruns.

72

Chapter 4

Data Collection and Analysis

4.1 Experimental Results

4.1.1 Experiment 1: Comparison Metric Verification

The results of experiment 1 can be shown in Figure 4-1. The trend of the performance score

starts to rise rapidly in the optimization using only a few thousand time steps of simulation

and then shows signs of leveling as the number of simulation steps rises. The result is

expected because while the optimization program adjusts parameter values, it simulates

tracks to receive feedbacks about the choices of new values for these parameters. If the

tracks are simulated using only a few time steps, it is highly unlikely that their paths can

represent the rich patterns in the raw data.

The real significance of this graph is the standard deviation of each measurement which

grows linearly as a function of simulation time steps. This is a clear sign that there is

a large effects of non-determinism on the performance score calculation. However, the

performance metric as introduced in Section 3.3.4 is deterministic and the raw data paths

are always fixed. Therefore, there can be two major sources of non-determinism: the

generated simulation paths or the Star Graph correlation. According to [26], the only

major source of non-determinism in the full Star Graph is the LBG Vector Quantization

algorithm. However, because nodes that are used for correlation are preset, this thesis

does not use the non-deterministic part of Star Graph to choose nodes. Although it is still

possible that there are bugs in Star Graph implementation that causes the non-deterministic

behavior, it is equally likely that the generated simulation paths are non-deterministic. In

other words, even though parameters are identically initialized, agents can generate paths

that are slightly different. The causes of non-determinism in the generated path might have

been bugs in agent and simulation implementation.

Inconsistency between the sampling rate in the real and simulated data (mentioned

in subsection 3.3.3) is most likely unrelated to the non-deterministic problem because the

frequency rates on both cases are fixed. However, the fact that the difference in frame

rates invalidates the diagonal entries of the frequency matrices makes it very likely that

the performance score is incorrect. However, for the rest of the analysis, this fact will be

ignored because as long as the trend of the performance score is the major concern. There

should not be too much effects because the error caused by the frame-rate inconsistency ap-

plies approximately the same for all score calculations, preserving approximate relationship

between these scores.

Because of the insight about rising standard deviations, it shows that the scores of the

generated paths can be increasingly volatile as the number of simulation time steps used

by the optimization process increases. As a result, for later experiments, the simulation

time steps over 10000 steps will not be explored until the non-determinism problem can be

satisfactorily solved.

4.1.2 Experiment 2: Measurement of the Number of Star Graph nodes'

Effects on Optimization Program's Performance

The result in Figure 4-2 indicates that the performance scores are higher in the case where

fewer nodes are used. All cases show improvement in the train processes. However, the av-

erage score from ten reruns using the optimized parameters does not show any improvement

from the initial value. In fact, the average is worse than the initial score on all cases.

This can be explained based on the result of experiment 1. As demonstrated in experi-

ment 1, the performance score is not deterministic, making the score subjective to a small

amount of variance. It is highly likely that the "improvement" in the score is a result of the

score swinging to the extreme value and the hill-climbing procedure records the maximum

score that shows up. As a result, the performance score obtained right after the training

process is exaggerated because the value is the "maximum" score possible rather than the

"average" score.

Average mean of performance score of various time steps of simulation
200 Stargraph nodes and standard parameter initilization

0.18

0.16

0.14

fAx) =0.05 In(x) +0.07
0.12

0.1 .&Mean
Logarthmic

0.08 Regressbn for Mean

0.06
a.

0.04

0.02

0
T 2000 T =4000 T =6000 T =8000 T 10000

T - 1000 T 3000 T =5000 T 7000 T =9000

Time step number

Figure 4-1: Average mean of performance scores of various time steps of sim-
ulation: The graph shows the rising trend of the performance scores as the number of
simulation steps used in the optimization process increases. While the scores increases in
a logarithmic function (as shown in the regression graph line), the standard deviation of
these scores increase linearly. All scores are mean averages of 100 measurement.

....................................

The Performance Scores Before and After Optimization
as a Function of the Number of Star Graph Nodes

Standard parameter initialization, 5000 simulation time steps

N-1W N=200 NO300 N-400

M IniMi simirity score
* Final simihrity score

l Average performance
score after trainhig

N-500

Number of graph nodes

Figure 4-2: Performance scores before and after optimization as a function of
the number of Star Graph nodes: The graph shows that the simulation with lower
number of nodes, the performance score tends to be higher. While the score result from
the hill-climbing process shows a significant improvement, it is shown by the average post-
optimizing scores that such improvement is likely to be exaggerated. Therefore, there seems
to be no clear trend of how the number of Star Graph nodes that are spawned to the scene
have correlation with the score improvement from the optimization. The setting for this
graph uses standard parameter initialization and simulates over 5000 time-step feedback.

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

A "V - 41 - - "I- - - __ - - - __ - - - - - __ _ - - _ w

4.1.3 Experiment 3: Measurement of the Number of Simulation Time

Steps' Effects on Optimization Program's Performance

As stated in the experimental description in subsection 3.5.3, this experiment intends to

observe the effect of the time steps used in the feedback simulation to train parameters

on two aspects of performance: the asymptotic runtime of the system and optimized score

improvement.

Asymptotic runtime as a function of time steps

As demonstrated in the runtime analysis in subsection 3.4.3 of Chapter 3, the runtime

should vary linearly with the number of time steps that the optimization process uses

to run its feedback simulation. This effect is demonstrated in Figure 4-3. Although the

runtime violently rises and falls between 6000 time steps and 10000 time steps, the overall

relationship is still linear.

Improvement of performance scores after optimization as a function of the num-

ber of time steps used in the optimization process

The optimized parameters are trained based on simulation feedback with a certain number

of time steps (i.e. 1000,2000,3000 steps etc.) There are two aspects of the performance that

should be considered. The first is whether the trained parameters can improve performance

scores when they are simulated with the same number of time steps as the one they are

trained in the optimization process. The second one is whether the trained parameters can

still perform well in longer simulations. For example, if a certain set of parameters are

optimized using 5000 time-step simulation feedback, can it perform well when one use the

same set of parameters to run a simulation for 10000 time steps and still get a significant

improvement in performance scores?

The first aspect of the performance can be observed in Figure 4-4. It can be shown

that the performance scores of simulations that are simulated for fewer time steps are much

less than those of longer simulations. The trend of the curve is increasing until there is a

sign of leveling out as the time steps approaches 10000. The performance scores right after

the optimization show significant improvement. However, like the result in experiment

2, the scores calculated from the simulation reruns, which use the optimized parameters

Average runtime per optimization iteration
200 Star Graph nodes and standard parameter initialization

16000

14000

12000

10000

8000

6000

f(x) = 1325.39x - 1245.46

4Average time per
Iteration

\ Linear Regression for
Average time per
teration

4000

2000

0
T - 2000 T = 4000 T = 6000 T - 8000 T = 10000

T - 1000 T = 3000 T - 5000 T - 7000 T - 9000

Simulation time steps

Figure 4-3: Runtime per Optimizing Iteration as a Function of the Number of
Simulation Steps Used in Optimization: This graph shows a linear relationship be-
tween the number of simulation time steps used in the optimization and the resulting
runtime per optimization iteration. This is in accordance with the runtime analysis in
subsection 3.4.3.

Performrance scores before and after optimization process

200 Star Graph nodes, standard parameter kiilanzation
0.25

0.2

1 0.15

M Find per1frmance score
El Av perfomance score

0.1

0.06

0
T 1000 T =2000 T =3000 T 4000 T =000 T 6000 T 7000 T = 0 000 T00 T= 10000

Time s"ep

Figure 4-4: Performance scores before and after optimization process as a func-
tion of time steps: This graph shows how the performance score is improved after opti-
mization, compared to the initial scores. Both initial and final scores are calculated using
simulation with the same number of steps as that used in the optimization process. In other
words, if the optimized parameters' optimization simulates 3000 steps as its feedback, then
the simulation to calculate the final scores also uses 3000 steps.

as initialized values, do not show any signs of improvement from the original parameters.

Despite the fact that the simulation length in this experiment is the same as that of the

feedback simulation in the optimization process, the scores from these reruns are worse-off

than the initial scores.

As a result, it is not unexpected to observe in Figure 4-5 that the performance scores

in the generalized case also do not improve from the original scores which use the standard

parameters as shown in experiment 1 (see Figure 4-1). The mean value of the scores is

barely different from the original score.

1. ... I... I.....

Performance Scores of 10000 time-step Path Data Generated by
Optimized Parameters Which Uses Various Training Time Steps

200 Star Graph nodes, standard parameter inilaflzation
0.2

0.16

034

0.12

0.1

0.08

0.06

0.04

0.02

0
1000

2
2000 3000

M Performance Score
-Inibi Score

4000 5000 000 7000 6000 9000 10000

Training Time Stop

Figure 4-5: Performance scores of 10000 time-step path data generated by op-
timized parameters which use various training time steps: Using the optimized
parameters which used different time steps for optimization, the graph shows how these pa-
rameters would perform when they are run for an equally long time (i.e. 10000 time steps
in this case.) Because each parameter set is run once, the final score fluctuates around the
mean line (shown as the deep blue line). It should be noted that the difference between the
initial score (orange line) and the mean of the final score is negligible.

4.1.4 Experiment 4: Measurement of Optimization Program's Perfor-

mance Under Randomized Suboptimal Parameters

As explained in the experimental description in subsection 3.5.4, this experiment aims to

explore whether the standard initializing parameters are coincidentally located at the local

optimum, or whether the objective function with the provided parameters is actually flat.

Using three randomized initializing parameters as in Table A.3, the experimental result is

shown in Figure 4-6. Despite a significant score right out of training (whose validity is

questioned in experiment 2), it is clear from the average scores from reruns that, regardless

of the values of initialized parameters, the optimized parameters do not perceivably improve

the performance scores compared to the original parameters. In all cases, agents fare much

worse under the optimized parameters than under the original parameters. If there had

been any improvement at all, it is only a small change and has been overshadowed by the

noise of the non-deterministic performance scores. From the experimental result, it is still

inconclusive to determine whether the optimization's objective function under the chosen

set of parameters is flat.

4.2 Discussions

From the above experiments, it can be concluded that the optimizations in the experiments

cannot be properly evaluated due to two major reasons. The first one is the non-determinism

of the performance score calculation as demonstrated in the result of experiment 1 in sub-

section 4.1.1. As a result, even if any of the experiments were to show signs of minor

improvements, the variance of the scores make it infeasible to verify the improvement. This

is especially true as the duration of the feedback simulation in the optimization process

becomes longer because the the variance of the scores grows as a linear function of this

duration. In addition, it is shown in Table A.5 that in T=8000 case, dummy variables

like "queueTeller-transactTimeOtherCore" and "queueTeller-transactTimeOtherVar" (refer

to Table A.2) are adjusted during the optimization. Because dummy variables serve as a

sanity check for validity of the optimization process, it shows that there are problems in the

optimization process. It is likely that variance of the performance score is the cause behind

this incident.

The second reason is that the objective function of the system is suspected to be flat,

Comparison of Performance Score Improvement Under Different Initialization
200 Star Graph nodes, 5000 time steps

0.165

0.160

0.155

0.150 hoii simiarRy SCOre
8 FkW abmrnp score

C Elo Average podermance
0.145 se altr tmW

0.145
0.140

0.130
Standard Random Param I Random Param 2 Random Param 3

Set of values for parameter inilafizaton

Figure 4-6: Comparison of performance scores under different initializing values:
This figure compares performance scores when the parameters are initialized differently. The
alternative sets of parameter values are randomized with uniform probability within +80%
of the standard parameter values. The optimization is trained with 5000-step simulation
feedback, and the performance scores are calculated using the paths after 5000 time steps of
simulation and paths from the one-hour raw data. After the training is complete, simulations
using the optimized parameters are rerun for a sanity check on the significant improvement
of post-training scores. It turns out that the average scores for these reruns are much less
than the post-training scores.

making hill-climbing technique used in the optimization useless. Evidences in the experi-

ments show that the function is supposed to be flat regardless of the number of Star Graph

nodes (from experiment 2), the length of feedback simulation used in the optimization pro-

cess (from experiment 3). However, the effect of the choice of randomized parameters (from

experiment 4) is inconclusive. This suspicion is supported by the number of iterations used

to optimize parameters as stated in the raw data Tables A.4, A.5, A.6, A.7, and A.8. While

it is usual that each optimization in the experiments runs for more than one iteration,

the number of iterations is bound to fewer than four times. This is a rather unexpected

result, unless the initialized values are already very near to its local optimum. However,

since this is also true for other randomized initializing values, it is highly likely that the

objective function itself is flat and that the multiple iterations are triggered by the noise of

the performance score calculation.

The most probable culprit for the flat objective function issue is poor choices of training

parameters. Although the chosen parameters have influences on agents' behavior, they

do not directly influence the agents' path choices. As discussed in subsection 3.2.2, the

most important criterion for agents' path choice is the shortest unobstructed paths. Small

deviation from the paths can then be influenced by other factors such as close interpersonal

distance and open-space preferences. Therefore, the adjustment of these parameters does

not have enough effect on the paths to significantly change the values of the objective

function.

Another less urgent issue shown in the experiments is that the performance score has

signs of being bound to 0.2 which is a relatively low score. The major reasons include

insufficient complexity in agent implementation and insufficient amount of data. According

to Figures B-1, B-2, B-3, B-4 and B-5 in the appendix, the queuing agents begin to clog up

the environment, obstructing many possible paths that can be otherwise traversed through

the environment. Therefore, it is possible that entries for some transitions in the frequency

matrix is lower than what they could have been. This symptom is a sign of insufficient

configurations in the environment.

A more likely reason behind the low-score problem is insufficient amount of data. It

has always been assumed that the raw data represents human movement within a specific

environment if the video sequences are sufficiently long. In addition, it has been justified in

subsection 3.3.1 that the one hour's worth of raw video data should be acceptable. However,

it is possible that the length of the video is still too short to make such assumption.

In fact, as it has been pointed out in subsection 3.3.3, the fact that the frame rates of the

simulated environment and the raw data are not properly tuned up can invalidate all the

above calculated scores, possibly making the scores lower than their real values. However,

as long as the aim of these experiments is to observe the relationship between scores in

different cases, the relationship should still be preserved.

Chapter 5

Summary

5.1 Contributions

In this thesis, I have presented and implemented a new agent-training module for pedestrian

movement modelling in retail environment analysis, specifically in a banking environment.

The module's design is based on the agent-based modelling technique which has been dis-

cussed in subsection 2.2.3. However, in order to simplify the interaction factors from the

path generation, the objective function that guides the agent parameter optimization pro-

cess is based solely on similarity between the patterns of the data and generated paths.

Therefore, my major contribution is the introduction, justification and implementation of

this objective function (which is also referred to in the thesis as the performance score),

and its integration into the agent-modelling procedure.

As described in subsection 3.3, it is assumed that a collection of paths over a long

duration contain all or most of the activity patterns that can happen in the environment,

and in order to complete any activities in the same environment, the actors will have to

traverse similar path transitions. Therefore, the similarity between tracked paths in the

raw data and the simulated result can be calculated by applying the formula in equation

(3.23) to the transition frequency matrices of both path sets. In order to simplify the

definition of transition, all paths are discretized and correlated with the same set of nodes

which are randomly distributed over the space in the environment. The major advantages

of the formula are its simple calculation, bounded results and positive correlation with

the similarity, making it easier and cheap to evaluate any combination of paths. Further

justifications of formula (3.23) as a metric in the optimization objective function have been

discussed in detail in subsection 3.3.4.

In order to demonstrate the effectiveness of the suggested metric as an objective function

in the modelling of pedestrian-path agents (i.e. customer agents in this case), the metric is

integrated with a simplified version of hill-climbing optimization, which has been discussed

in Section 3.2.5. The details of this implementation can be found in subsection 3.4.2.

Although the theoretical contribution shows promises in providing efficient guides to-

wards more believable path-traversing agents, the implementation does not fulfill the expec-

tation according to experimental results in chapter 4. It is concluded in subsection 4.2 that

by using the proposed procedure, there is little evidence to show that agents' parameters

can be optimized so that the agents can express pedestrian behavior patterns that match

the provided raw data. The major issues found in the implementation include the non-

determinism of performance scores, poor choice of optimizing parameters, and inflexible

nature of the basic implemented agent in choosing its pedestrian paths.

Despite the modest result in the experimental part, I hope that my contribution on

mathematical and theoretical justification can inspire future researchers in the field to ex-

plore the presented techniques and to solve the experimental technical problems.

5.2 Scope for Future Research

Possible extensions from the work in this thesis can be categorized into three major prob-

lems:

1. Integrating rich interactive behavior in agents: Because the current analysis

of the retail environment in this thesis is solely focused on the pedestrian paths,

the implemented agents are not programmed to accommodate a lot of inter-agent

interaction. While this decision helps control the complexity of the optimization

problem, it also limits agent-based modeling's potential to produce emergent behavior.

Therefore, it is suggested that more interaction should be integrated into behavior of

agents in the future.

2. Eliminating noise in performance score calculation: The non-determinism in

path generation makes it hard to evaluate the parameter sets because of the noise in

performance scores. Therefore, although the basic idea of objective function score cal-

culation from the frequency matrix of discretized paths is an effective metric in theory

(as justified in subsection 3.3.4), further research should be pursued to eliminate the

noise in performance score. One way is to increase the samples of paths used in the

score calculation and find the average of the scores from these paths. However, the

path-generating simulation process is time-consuming. Therefore, it is a solution that

this thesis chooses to ignore because of time limitation.

3. Making better choices of optimizing parameters: It is suggested in the exper-

iment that the objective function over the selected parameters is flat. It is possible

that the current set of parameters in the optimization process is not very influen-

tial in altering agents' choice of paths. A possible remedy is choosing parameters

which are more explicitly related to the choices of pedestrian path parameters, such

as parameters that control the Navigating Graph.

88

Appendix A

Tables

Table A.1: Statistics of Performance Scores Using Standard Initialized Parameters and 200

Star Graph Nodes Under Various Time Steps

T= 1000 T= 2000 T= 3000
Mean 0.065637426706098 0.0987263832774932 0.115931961150999
S.D. 0.00170925874464745 0.0028392939346693 0.00299971084549036

Max 0.0704458415960401 0.105320225040242 0.121631478777979

Min 0.0611009287810288 0.0882505572363714 0.106130106945505

T = 4000 T = 5000 T = 6000

Mean 0.127478695026242 0.142245401598197 0.15122840296342

S.D. 0.00405316672479552 0.00484382720250297 0.00579232782647909

Max 0.13937536598925 0.157789704126659 0.169963680768869

Min 0.11785941031681 0.128510338872295 0.138728048325397

T = 7000 T = 8000 T = 9000 T 10000

Mean 0.159249154109357 0.162488734560373 0.166366571191929 0.169204992673754
S.D. 0.00730641442213909 0.00893136279624332 0.00991700145532484 0.00941689463064831

Max 0.179944156478344 0.200469692691589 0.195637644401238 0.196772161584025
Min 0.145647604040419 0.146195958421031 0.146087269616482 0.149039612561075

Table A.2: Parameter Description and Status
Parameters Intended Functionality Expected Effect on Pedestrian Movement if Increased Status

1 navMulTargetCLOSE-THRESHOLD threshold for object being "close" to agent (in obstacle avoidance) Agents respond to avoid obstacles at further distance Active
2 navMulTargetDEF.ANGLE..DAMP base value of agent's angular rotation damping Slow down changes in overall agents' angular velocity Active
3 navMulTargetDEFATTARGET-THRES threshold distance for agent to "arrive at" its target Agents stop further away from their intended targets Active
4 navMulTargetDEFINTERPERSON.DIST base value of interpersonal distance between agent Dummy variable Dummy
5 navMulTarget-DEFMASS base value of agent's mass Slow down changes in overall agents' speed Active
6 navMulTarget-DEF.MOMENT base value of agent's moment of inertia Slow down changes in overall angular velocity Active
7 navMulTargetDEF.SPEEDDAMP base value of agent's speed damping Slow down changes in speed over the whole population Active
8 navMulTargetSIGMAANGLEDAMP factor of variation of agent's angular rotation damping Slows down the changes in agents' angular velocity Active
9 navMulTargetSIGMA.MASS factor of variation of agent's mass Slows down the changes in agents' speed Active

10 navMulTargetSIGMA.M OMENT factor of variation of agent's moment of inertia Slows down the changes in agents' angular velocity Active
11 navMulTargetSIGMA.SPEEDDAMP factor of variation of agent's speed damping Slows down the changes in agents' speed Active
12 person-agentRelFollowLocX "eye" location relative the agent in X direction No direct effect & proper values allow good occlusion checking Active
13 person.agentRelFollowLocY "eye" location relative the agent in Y direction No direct effect & proper values allow good occlusion checking Active
14 person-agentRelFollowLocZ "eye" location relative the agent in Z direction No direct effect & proper values allow good occlusion checking Active
15 person-isovistLocRelAvatarX location of isovist sensor relative to agent's location in X direction Dummy variable Dummy
16 person-isovistLocRelAvatarY location of isovist sensor relative to agent's location in Y direction Dummy variable Dummy
17 person-isovistLocRelAvatarZ location of isovist sensor relative to agent's location in Z direction Dummy variable Dummy
18 person.sonarLocRelActorX the center of LIDAR unit relative to the agent in X direction No direct effect & proper values allow good paths into open-space. Active
19 person.sonarLocRelActorY the center of LIDAR unit relative to the agent in Y direction No direct effect & proper values allow good paths into open-space. Active
20 person-sonarLocRelActorZ the center of LIDAR unit relative to the agent in Z direction No direct effect & proper values allow good paths into open-space. Active
21 queueTeller-nearThres threshold between agent and its target to consider "near" Agents stop further from the queue end when seeking for queue Active
22 queueTeller-queueInterpersonDist distance between agents in a queue The arrangement in queue line will become looser Active
23 queueTeller-timeToTarget time allowed before agent is "lost" after exiting a queue to find target More agents wander off intended paths to their target Active
24 queueTeller-transactTimeATMCore base time of agent's transaction at the ATM Longer overall time that agents spend at ATM Active
25 queueTeller-transactTimeATMVar variable time of agent's transaction at the ATM Larger variation of time that agents spend at ATM Active
26 queueTeller..transactTimeOtherCore base time of agent's transaction with other types of bank staff Dummy variable Dummy
27 queueTeller-transactTimeOtherVar variable time of agent's transaction with other types of bank staff Dummy variable Dummy
28 queueTeller-transactTimeTellerCore base time of agent's transaction with tellers Longer overall time that agents have to spend with tellers Active
29 queueTeller-transactTimeTellerVar variable time of agent's transaction with tellers Larger variation of time that agents spend with tellers Active
30 queueTeller.velFactor slow-down factor for agent before reaching a queue Agents slow down faster as the variable gets higher Active
31 queueTeller-veryNearThres threshold between agent and its target to consider "very near" Agents stop further away from their intended targets Active

Table A.3: Variations of Parameters Initialization Values Used in the Experiments
Standard Parameters Random Parameters 1 Random Parameters 2 Random Parameters 3

navMulTargetCLOSETHRESHOLD 500 342.669701891 527.547835427 440.871139793
navMulTargetDEF-ANGLEDAMP 0.8 1.16184659517 0.392206859494 0.848121450044

navMulTarget.DEFATTARGETTHRES 250 121.901578294 208.922458937 323.725251828
navMulTargetDEFINTERPERSONDIST 500 511.91555112 572.149322521 328.817689932

navMulTargetDEF-MASS 5 7.77740179306 4.26137711343 3.12713354039
navMulTargetDEFMOMENT 0.1 0.0958313264063 0.140176064684 0.0621819945328
navMulTargetDEFSPEEDDAMP 3.2 2.15282779671 3.24067047072 3.64556617317

navMulTargetSIGMAANGLEDAMP 0 0.148832236128 0.176212343321 0.0627019675977
navMulTargetSIGMAMASS 0.1 0.393374534053 0.0342197582666 0.192223438694

navMulTarget-SIGMA.MOMENT 0 0.35475585072 0.216529889885 0.181945859417
navMulTargetSIGMASPEED-DAMP 0.1 0.339913927809 0.0718234935795 0.239552732787
person-agentRelFollowLocX 0 0.358907568411 0.0920284351062 0.132699647139
person-agentRelFollowLocY 0 0.221142517169 0.355144163747 0.0295351194864
person-agentRelFollowLocZ 820 534.179574078 564.355327892 1019.99764318

person-isovistLocRelAvatarX 0 0.352204755889 0.146439821016 0.362322723689

person-isovistLocRelAvatarY 0 0.0136723579827 0.20701685156 0.349244038516

person-isovistLocRelAvatarZ -100 -71.4215412709 -139.181635535 -129.723091824
person-sonarLocRelActorX 0 0.372549251551 0.113600484665 0.33786441999

person-sonarLocRelActorY 0 0.347319402585 0.246362486824 0.10064768008
person..sonarLocRelActorZ -100 -71.988144684 -59.9742749862 -79.3447776416
queueTeller-nearThres 2000 1585.48684893 1344.94317219 1546.44135038

queueTeller-queueInterpersonDist 500 624.666696713 382.008636303 353.985767466

queueTeller..timeToTarget 30 38.5835298687 36.9902387764 20.2973157431
queueTeller-transactTimeATMCore 50 63.9890158958 63.3675348153 63.4945226765

queueTeller-transactTimeATMVar 20 21.6822960577 15.7832233271 24.9288581472

queueTeller-transactTimeOtherCore 10 12.6407349092 5.60056396592 7.70354707791
queueTeller-transactTimeOtherVar 20 12.0167712379 17.5581429096 25.683839606

queueTeller-transactTimeTellerCore 120 72.1383262992 142.247377109 155.838323068

queueTeller-transactTimeTellerVar 20 17.1220358955 27.1536901243 26.9110239287

queueTellerVelFactor 0.4 0.200403336626 0.245108548249 0.418294208033

queueTeller-veryNearThres 100 121.32370312 74.310594461 89.9691478968

Table A.4: Optimization Result with 1000 to 5000 Time Steps Under Standard Initial Parameters and 200 Star Graph Nodes

Parameters Original T = 1000 T = 2000 T = 3000 T = 4000 T = 5000
navMulTargetCLOSETHRESHOLD 500 500 500 500 500 500
navMulTargetDEFANGLEDAMP 0.8 0.8 0.8 0.8 0.8 0.8
navMulTarget-DEFAT.TARGETTHRES 250 250 250 250 250 250
navMulTargetDEFINTERPERSON..DIST 500 500 500 500 500 495
navMulTargetDEF-MASS 5 5 5 5 5 5
navMulTarget-DEFMOMENT 0.1 0.1 0.1 0.1 0.1 0.1
navMulTargetDEF-SPEEDDAMP 3.2 3.2 3.2 3.2 3.2 3.2
navMulTargetSIGMAANGLEDAMP 0 0 0 0 0 0
navMulTarget-SIGMA..MASS 0.1 0.1 0.099 0.1 0.1 0.1
navMulTarget.SIGMAMOMENT 0 0 0 0 0 0
navMulTargetSIGMA-SPEEDDAMP 0.1 0.1 0.1 0.1 0.1 0.1
person-agentRelFollowLocX 0 0 0 0 0 0
person-agentRelFollowLocY 0 0 0 0 0 0
person-agentRelFollowLocZ 820 820 820 820 820 820
person-isovistLocRelAvatarX 0 0 0 0 0 0
person-isovistLocRelAvatarY 0 0 0 0 0 0
person-isovistLocRelAvatarZ -100 -100 -100 -100 -100 -100
person-sonarLocRelActorX 0 0 0 0 0 0
person-sonarLocRelActorY 0 0 0 0 0 0
person..sonarLocRelActorZ -100 -100 -100 -100 -100 -100
queueTeller..nearThres 2000 2000 2000 2000 2000 2000
queueTeller-queueInterpersonDist 500 500 500 500 500 500
queueTeller-timeToTarget 30 30 30 30 30 30
queueTeller-transactTimeATMCore 50 50 50 50 50 50
queueTeller-transactTimeATMVar 20 20 20 20 20 20
queueTeller.transactTimeOtherCore 10 10 10 10 10 10
queueTeller.transactTimeOtherVar 20 20 20 20 20 20
queueTeller.transactTimeTellerCore 120 120 120 120 120 120
queueTeller.transactTimeTellerVar 20 20 20 20 20 20
queueTellervelFactor 0.4 0.4 0.4 0.404 0.4 0.4
queueTeller..veryNearThres 100 100 100 100 100 100

Number of iterations - 2 4 3 3 4
Time used to train - 2253.545561313 6348.892802853 10477.020265356 9189.674513252 15413.730268519
Average time per iteration - 1126.7727806565 1587.22320071325 3492.340088452 3063.22483775067 3853.43256712975
Initial performance score - 0.0674719741581682 0.0975707875259275 0.120418310415735 0.129883488206964 0.150926008333448
Final performance score - 0.0708800594586844 0.106850562124662 0.12291235522072 0.143310358355787 0.158386816247695
Number of tracks - 11 16 23 34 42

Table A.5: Optimization Result with 6000 to 10000 Time Steps Under Standard Initial Parameters and 200 Star Graph Nodes

Parameters Original T = 6000 T = 7000 T = 8000 T = 9000 T = 10000

navMulTargetCLOSE.THRESHOLD 500 500 500 500 500 500

navMulTargetDEF-ANGLE..DAMP 0.8 0.8 0.808 0.8 0.8 0.8

navMulTarget.DEF-ATTARGET.THRES 250 250 250 250 250 250

navMulTargetDEFINTERPERSONDIST 500 500 500 500 505 500

navMulTargetDEF..MASS 5 5 5 5 5 5

navMulTargetDEFMOMENT 0.1 0.1 0.1 0.1 0.1 0.1

navMulTargetDEF.SPEEDDAMP 3.2 3.2 3.2 3.2 3.2 3.2

navMulTargetSIGMAANGLEDAMP 0 0 0 0 0 0

navMulTargetSIGMA.MASS 0.1 0.1 0.1 0.1 0.101 0.1

navMulTarget.SIGMA.MOMENT 0 0 0 0 0 0

navMulTargetSIGMASPEEDDAMP 0.1 0.1 0.1 0.1 0.1 0.1

person-agentRelFollowLocX 0 0 0 0 0 0

person-agentRelFollowLocY 0 0 0 0 0 0

person-agentRelFollowLocZ 820 820 820 820 820 828.2

person-isovistLocRelAvatarX 0 0 0 0 0 0

person-isovistLocRelAvatarY 0 0 0 0 0 0

person-isovistLocRelAvatarZ -100 -100 -100 -100 -100 -100

person..sonarLocRelActorX 0 0 0 0 0 0

person..sonarLocRelActorY 0 0 0 0 0 0

person..sonarLocRelActorZ -100 -100 -101 -100 -100 -100

queueTeller-nearThres 2000 2000 2000 2020 2000 2000

queueTeller..queuelnterpersonDist 500 500 500 500 500 500

queueTeller.timeToTarget 30 30 30 30 30 30

queueTellertransactTimeATMCore 50 50 50 50.5 50 49.5

queueTeller-transactTimeATMVar 20 20 20 20 20 20

queueTeller.transactTimeOtherCore 10 10 10 10.1 10 10

queueTellertransactTimeOtherVar 20 20 20 20.2 20 20

queueTellertransactTimeTellerCore 120 120 120 120 120 120

queueTellertransactTimeTellerVar 20 19.8 20 20 20 20

queueTeller.velFactor 0.4 0.4 0.4 0.404 0.4 0.4

queueTeller.veryNearThres 100 100 100 100 101 100

Number of iterations 3 5 3 2 2

Time used to train - 16494.255876159 44960.797866691 22784.845250313 27104.920496398 23361.860545549

Average time per iteration - 5498.085292053 8992.1595733382 7594.948416771 13552.460248199 11680.9302727745

Initial performance score - 0.157983975940682 0.168247028794193 0.166222498758133 0.162966152567443 0.189541708918554

Final performance score - 0.174735511786074 0.187412219592389 0.194371749083499 0.206161579546764 0.199140833532435

Number of tracks - | 51 58 66 71 81

Table A.6: The Optimized Parameters of the
Feedback Time Steps

Randomized Initialization Set 1 over 5000

Parameters Original (Rand1) Optimized with T=5000
navMulTargetCLOSETHRESHOLD 342.669701891 342.669701891
navMulTargetDEFANGLEDAMP 1.16184659517 1.16184659517
navMulTargetDEFATTARGETTHRES 121.901578294 121.901578294
navMulTarget-DEFJNTERPERSONDIST 511.91555112 511.91555112
navMulTargetDEFMASS 7.77740179306 7.77740179306
navMulTargetDEFMOMENT 0.0958313264063 0.0958313264063
navMulTargetDEFSPEED-DAMP 2.15282779671 2.15282779671
navMulTargetSIGMAANGLEDAMP 0.148832236128 0.148832236128
navMulTargetSIGMAMASS 0.393374534053 0.393374534053
navMulTargetSIGMA-MOMENT 0.35475585072 0.35475585072
navMulTargetSIGMASPEEDDAMP 0.339913927809 0.339913927809
person-agentRelFollowLocX 0.358907568411 0.358907568411
person-agentRelFollowLocY 0.221142517169 0.221142517169
person-agentRelFollowLocZ 534.179574078 534.179574078
person-isovistLocRelAvatarX 0.352204755889 0.352204755889
person-isovistLocRelAvatarY 0.0136723579827 0.0136723579827
person-isovistLocRelAvatarZ -71.4215412709 -71.4215412709
person-sonarLocRelActorX 0.372549251551 0.372549251551
person-sonarLocRelActorY 0.347319402585 0.347319402585
person-sonarLocRelActorZ -71.988144684 -71.988144684
queueTeller-nearThres 1585.48684893 1585.48684893
queueTeller-queuelnterpersonDist 624.666696713 624.666696713
queueTeller.timeToTarget 38.5835298687 38.5835298687
queueTellertransactTimeATMCore 63.9890158958 63.349125736842
queueTeller.transactTimeATMVar 21.6822960577 21.6822960577
queueTeller.transactTimeOtherCore 12.6407349092 12.6407349092
queueTeller.transactTimeOtherVar 12.0167712379 12.0167712379
queueTellertransactTimeTellerCore 72.1383262992 72.1383262992
queueTeller.transactTimeTellerVar 17.1220358955 17.1220358955
queueTellerVelFactor 0.200403336626 0.200403336626
queueTeller-veryNearThres 121.32370312 121.32370312

Number of iterations - 2
Time used to train - 7568.649534791
Average time per iteration - 3784.3247673955
Initial similarity score - 0.153744179865683

Final similarity score - 0.155948927418452
Number of tracks - 42

Table A.7: The Optimized Parameters of the Randomized Initialization Set 2 over 5000
Feedback Time Steps

Parameters Original (Rand2) Optimized with T=5000
navMulTargetCLOSE-THRESHOLD 527.547835427 527.547835427
navMulTarget-DEFANGLEDAMP 0.392206859494 0.392206859494
navMulTargetDEFATTARGETTHRES 208.922458937 208.922458937
navMulTargetDEFINTERPERSONDIST 572.149322521 572.149322521
navMulTargetDEFMASS 4.26137711343 4.26137711343
navMulTargetDEFMOMENT 0.140176064684 0.140176064684
navMulTargetDEFSPEEDDAMP 3.24067047072 3.24067047072
navMulTargetSIGMAANGLEDAMP 0.176212343321 0.176212343321
navMulTargetSIGMAJMASS 0.0342197582666 0.0342197582666
navMulTargetSIGMAMOMENT 0.216529889885 0.216529889885
navMulTargetSIGMASPEEDDAMP 0.0718234935795 0.0718234935795
person-agentRelFollowLocX 0.0920284351062 0.0920284351062
person.agentRelFollowLocY 0.355144163747 0.355144163747
person-agentRelFollowLocZ 564.355327892 564.355327892
person-isovistLocRelAvatarX 0.146439821016 0.146439821016
person-isovistLocRelAvatarY 0.20701685156 0.20701685156
person-isovistLocRelAvatarZ -139.181635535 -139.181635535
person-sonarLocRelActorX 0.113600484665 0.113600484665
person-sonarLocRelActorY 0.246362486824 0.24882611169224
person-sonarLocRelActorZ -59.9742749862 -59.9742749862
queueTeller-nearThres 1344.94317219 1344.94317219
queueTeller-queueInterpersonDist 382.008636303 382.008636303
queueTeller-timeToTarget 36.9902387764 36.9902387764
queueTellertransactTimeATMCore 63.3675348153 63.3675348153
queueTeller.transactTimeATMVar 15.7832233271 15.7832233271
queueTellertransactTimeOtherCore 5.60056396592 5.60056396592
queueTellertransactTimeOtherVar 17.5581429096 17.5581429096
queueTellertransactTimeTellerCore 142.247377109 142.247377109
queueTeller.transactTimeTellerVar 27.1536901243 27.1536901243
queueTellerVelFactor 0.245108548249 0.245108548249
queueTeller-veryNearThres 74.310594461 74.310594461

Number of iterations - 1
Time used to train - 3684.186147125
Average time per iteration - 3684.186147125
Initial similarity score - 0.149738522577116
Final similarity score - 0.149738522577116
Number of tracks - 42

Table A.8: The Optimized Parameters of the Randomized Initialization Set 3 over 5000
Feedback Time Steps
Parameters Original (Rand3) Optimized with T=5000
navMulTargetCLOSETHRESHOLD 440.871139793 440.871139793
navMulTargetDEFANGLEDAMP 0.848121450044 0.85660266454444
navMulTargetDEFATTARGET-THRES 323.725251828 323.725251828
navMulTargetDEFINTERPERSONDIST 328.817689932 328.817689932
navMulTargetDEFMASS 3.12713354039 3.12713354039
navMulTargetDEFMOMENT 0.0621819945328 0.0621819945328
navMulTargetDEFSPEED-DAMP 3.64556617317 3.64556617317
navMulTargetSIGMAANGLEDAMP 0.0627019675977 0.0627019675977
navMulTargetSIGMAMASS 0.192223438694 0.192223438694
navMulTargetSIGMAMOMENT 0.181945859417 0.181945859417
navMulTargetSIGMASPEEDDAMP 0.239552732787 0.239552732787
person-agentRelFollowLocX 0.132699647139 0.132699647139
person-agentRelFollowLocY 0.0295351194864 0.0295351194864
person-agentRelFollowLocZ 1019.99764318 1019.99764318
person-isovistLocRelAvatarX 0.362322723689 0.362322723689
person-isovistLocRelAvatarY 0.349244038516 0.35273647890116
person-isovistLocRelAvatarZ -129.723091824 -129.723091824
person-sonarLocRelActorX 0.33786441999 0.33786441999
person-sonarLocRelActorY 0.10064768008 0.10064768008
person-sonarLocRelActorZ -79.3447776416 -79.3447776416
queueTeller-nearThres 1546.44135038 1546.44135038
queueTeller-queuelnterpersonDist 353.985767466 353.985767466
queueTellertimeToTarget 20.2973157431 20.2973157431
queueTellertransactTimeATMCore 63.4945226765 64.129467903265
queueTelleritransactTimeATMVar 24.9288581472 24.9288581472
queueTellertransactTimeOtherCore 7.70354707791 7.70354707791
queueTeller.transactTimeOtherVar 25.683839606 25.683839606
queueTeller.transactTimeTellerCore 155.838323068 155.838323068
queueTellertransactTimeTellerVar 26.9110239287 26.9110239287
queueTellerVelFactor 0.418294208033 0.418294208033
queueTeller-veryNearThres 89.9691478968 89.9691478968

Number of iterations - 2
Time used to train - 7987.24616522
Average time per iteration - 3993.62308261
Initial similarity score - 0.145682295911969
Final similarity score - 0.162538609301026
Number of tracks - 42

Appendix B

Figures

00:0318375

Figure B-1: Screenshot of the simulation using standard parameter initialization at time
step 1500

00:07:23.125

Figure B-2: Screenshot of the simulation using standard parameter initialization at time
step 3500

00:11:22.625

Figure B-3:
step 5500

Screenshot of the simulation using standard parameter initialization at time

00:17:44.000

Figure B-4: Screenshot of the simulation using standard parameter initialization at time
step 8500

00:21:21.000

Figure B-5: Screenshot of the simulation using standard parameter initialization at time
step 10500

100

Appendix C

Algorithms

101

Algorithm 1 Parameter Optimization Algorithm
Require: (maxIter > 1) A (threshold > 0) A (6 > 0) A (nodeNum > 0)

1: maxIter +- The maximum number of optimization iterations
2: paramSet <- A set of simulating parameters
3: threshold +- A convergence threshold
4: 3 +- Amount of adjustment on parameters allowed in each iteration

5: nodeNum <- The number of correlating graph nodes
6: P +- permute(paramSet)
7: prevP +- P

8: for n = 1 to nodeSetNum do
9: nodes[n] +- randomNode(nodeNum)

10: end for

11: bestScore <- calcScore(rawTracks, nodes, P)
12: prevScore <- bestScore

13: for i = 1 to maxIter do
14: for j = 1 to paramNum do
15: curr +- P[j]
16: cand[0] 4- curr

17: cand[1] +- (1 + 6) x curr
18: cand[2] <- (1 - 6) x curr

19: best +- curr

20: for k = 0 to 2 do
21: Q 4- P

22: Q[j] +- cand[k]

23: score - calcScore(rawTracks, nodes, Q)
24: if score > bestScore then
25: best +- cand[k]

26: bestScore <- score
27: end if
28: end for
29: P[j] +- best

30: end for

31: if converged(P, prevP, prevScore, bestScore, threshold) then
32: return P

33: end if
34: prevScore +- bestScore
35: prevP <- P

36: end for

102

Algorithm 2 Performance Score Calculating Algorithm
1: dataTracks -- Raw data tracks

2: paramSet +- A set of simulation parameters

3: nodeSets <- A set of node lists for track correlation
4: tracks +- simulate(paramSet)
5: scoreSum +- 0

6: for i=0 to size(nodeSets)-1 do
7: subscore +-- 0

8: nodes +- nodeSets[i]

9: dataFreq +- freqMatrix(dataTracks, nodes)
10: simFreq 4- freqMatrix(tracks, nodes)
11: for j=O to size(nodes)-1 do
12: for k=0 to size(nodes)-1 do
13: dataEntry <- dataFreq[]{k]
14: simEntry - simFreqj][k]
15: subscore +- subscore + divergence(dataEntrysimEntry)
16: end for

17: end for
18: subscore -- subscore / (size(nodes)) 2

19: score <-- score + subscore

20: end for

21: score +- scoreSum / size(nodeSets)
22: return score

Algorithm 3 Kullback-Liebler Divergence
Require: (0 < entryl < 1) A (0 < entry2 < 1)

1: entryl+- The first value
2: entry2 +- The second value
3: E +- very small constant
4: entryl +- entryl + E

5: entry2 +- entry2 + c
6: firstTerm - entryl/(entryl + entry2)
7: firstTerm - firstTerm x ln(entryl/entry2)

8: secondTerm <- entry2/(entryl + entry2

9: secondTerm <- secondTerm x ln(entry2/entryl)

10: basicDiv 4-- firstTerm + secondTerm
11: divergence +- exp-basicDiv

103

Algorithm 4 Frequency Matrix Algorithm
1: tracks - A list of tracks
2: nodes +- A list of graph nodes for track correlation
3: for i = 0 to (size(nodes)-1) do
4: for j = 0 to (size(nodes)-1) do
5: freq[i]j] +- 0

6: end for

7: end for
8: segCount +- 0

9: for t = 0 to (size(tracks)-1) do
10: corrSegs <- correlateGraph(tracks[t], nodes)
11: for s = 0 to (size(corrSegs)-1) do
12: beginNode +- begin(corrSegs[q])
13: endNode +- begin(corrSegs[q])
14: freq[beginNode][endNode] +- freq[beginNode][endNode] + 1
15: segCount +- segCount + 1
16: end for

17: end for

18: for i = 0 to (size(nodes)-1) do
19: for j = 0 to (size(nodes)-1) do
20: freq[i][j] +- (freq[i][j] / segCount)
21: end for

22: end for

23: return freq

Algorithm 5 Convergence Checking Algorithm
Require: (threshold > 0)

1: currScore +- The score from the current iteration
2: prevScore +- The score from the previous iteration
3: param +-- The set of parameters used in the current iteration
4: prevParam <- The set of parameters used in the previous iteration

5: threshold <- The convergence threshold
6: improveRatio +- (currScore - prevScore) / prevScore

7: converge +- (param == prevParam) V (improveRatio < threshold)

8: return converge

104

Bibliography

[1] Julie Baker, Dhruv Grewal, and A. Parasuraman. The influence of store environment

on quality inferences and store image. Journal of the Academy of Marketing Science,
22(4):328-339, Fall 1994.

[2] Julie Baker, Michael Levy, and Dhruv Grewal. An experimental approach to making

retail store environment decisions. Journal of Retailing, 68(4):445-460, Winter 1992.

[3] Julie Baker, A. Parasuraman, Dhruv Grewal, and Glenn B. Voss. The influence of mul-

tiple store environment cues on perceived merchandise value and patronage intention.

Journal of Marketing, 66(2):120-141, April 2002.

[4] J. Berrou, J. Beechan, P. Quaglia, and A. Gerodimos. Calibration and validation of

the Legion simulation model using empirical data. In Proc. Pedestrian and Evacuation

Dynamics, pages 167-181, Vienna, 2005.

[5] Eric Bonabeau. Agent-based modeling: Methods and techniques for simulating human

systems. PNAS, 2002.

[6] P. Bovet and S. Benhamou. Spatial analysis of animals movements using a correlated

random walk model. Journal of Theoretical Biology, 131:419433, 1988.

[7] Remo Burkhard, Stefan Bischof, and Andres Herzog. The potential of crowd simula-

tions for communication purposes in architecture. In Proc. 12th International Confer-

ence Information Visualization, 2008, pages 403-408, 2008.

[8] John A. Byers. Correlated random walk equations of animal dispersal resolved by
simulation. Ecology, 82(6):1680-1690, 2001.

[9] John Casti. Bizsim: the world of businessin a box. Artificial Life and Robotics, 4:125-

129, 2000. 10.1007/BF02481332.

[10] Nicolas Courty and Thomas Corpetti. Data-driven animation of crowds. In Com-

puter Vision/Computer Graphics Collaboration Techniques, volume 4418/2007 of Lec-

ture Notes in Computer Science, pages 377-388. Springer, Berlin, 2007.

[11] Dhruv Grewal and Julie Baker. Do retail store environmental factors affect consumers'

price acceptability? An empirical examination. International Journal of Research in

Marketing, 11(2):107-115, 1994.

[12] M. Gunther, C. Stummer, L. M. Wakolbinger, and M Wildpaner. An agent-based

simulation approach for the new product diffusion of a novel biomass fuel. Journal of

the operational Research Society, 2010.

105

[13] Dirk Helbing, Illes Farkas, and Tamas Vicsek. Simulating dynamical features of escape
panic. Nature, 407, September 2000.

[14] Dirk Helbing, Illes J. Farkas, Peter Molnar, and Tamas Vicsek. Simulation of pedestrian
crowds in normal and evacuation situations. In M. Schreckenberg and S. D. Sharma,
editors, Pedestrian and Evacuation Dynamics, pages 21-58. Springler, Berlin, 2002.

[15] Dirk Helbing, Peter Molnar, Illes J. Farkas, and Kai Bolay. Self-organizing pedestrian
movement. Environment and Planning B: Planning and Design, 28:361-383, 2001.

[16] P. M. Kareiva and N. Shigesada. Analyzing insect movement as a correlated random
walk. Occologia, 56:234-238, 1983.

[17] Jon Kerridge, Julian Hine, and Marcus Wigan. Agent-based modelling of pedestrian
movements: The questions that need to be asked and answered. Environment and
Planning B: Planning and Design 2001, 28:327-341, 2001.

[18] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22(1):79-86, 1951.

[19] Tei Laine and Jerome Busemeyer. Comparing agent-based learning models of land-
use decision making. Proceedings of Conference of North American Associstion for
Computational Social and Organizational Science, Pittsburgh, PA, June 27-29, 2004.

[20] Pierre Martineau. The personality of the retail store. Harvard Business Review, 36:47-
55, January/February 1958.

[21] C. E. McCulloch and M. L. Cain. Analyzing discrete movement data as a correlated
random walk. Ecology, 70(2):383-388, April 1989.

[22] T. Narahara. Enactment software: Spatial designs using agent-based model. In Proc.
Agent 2007: Conference on Complex Interaction and Social Emergence. Argonne Na-
tional Laboratory and Northwestern University, 2008.

[23] Taro Narahara. The space re-actor: Walking a synthetic man through architecture.
Master's thesis, Massachusetts Institute of Technology, Department of Architecture,
June 2007.

[24] Clifford S. Patlak. Random walk with persistence and external bias. Bulletin of Math-
ematical Biophysics, 15:311-338, 1953.

[25] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

[26] George Shaw and Deb Roy. Star graphs: Discretization, visualization, and analysis of
tracking data. Paper within group, 2009.

[27] Adrien Treuille, Seth Cooper, and Zoran Popovic. Continuum crowds. In Proc. Interna-
tional Conference on Computer Graphics and Interactive Techniques, pages 1160-1168,
New York, NY, USA, 2006. ACM SIGGRAPH, ACM.

[28] L. W. Turley and Ronald E. Milliman. Atmospheric effects on shopping behavior:
A review of the experimental evidence. Journal of Business Research, 49(2):193-211,
2000.

106

[29] Alasdair Turner. Partners in the street ballet: An embodied process of person-space

coupling in the built environment. In Proc. Translating Embodied Mind Approaches

for the Next Decade. The Barnard Interdisciplinary Workshop on Embodiment, July

2010.

[30] Alasdair Turner and Alan Penn. Encoding natural movement as an agent-based system:

an investigation into human pedestrian behavior in the built environment. Environment

and Planning B: Planning and Design, 29:473-490, 2002.

[31] Alasdair Turner and Alan Penn. Evolving direct perception models of human behavior

in building systems. In N. Waldau, P. Gattermann, H. Knoflacher, and M. Schreken-

berg, editors, Pedestrian and Evacuation Dynamics 2005, pages 411-422. Springer,
Berlin, 2007.

107

