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Abstract

We investigate a new approach to origami design using simple universal hinge patterns
where the crease patterns for different shapes are just different subsets of a common
hinge pattern. Several algorithms have previously been developed to design folded
states for particular shapes, but they require a different crease pattern for each shape.
Our motivations include the development of robotic "origami transformers," artistic
tools, and theoretical insights. We show how to compose "cube gadgets" to fold any
N-cube polycube from an O(N) x O(N) rectangle of paper, using only O(N 2 ) time
to compute the parameters of the unambiguous folding sequence. We also describe
extensions of our basic algorithm to larger classes of shapes with improved paper
efficiency. Finally, we demonstrate that an implementation of this technique can
actually be used to partially automate geometric paper folding.
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Chapter 0

Introduction

In this thesis, we describe the first steps toward a theoretical model of universal

origami transformers. An "origami transformer" is a programmable surface made

of flat plates connected by actuated hinges that can fold itself into more than one

different shape. By "universal" we mean that the transformer can fold to match any

shape up to a desired resolution. Finally, "theoretical model" implies that what we

describe is not necessarily practical, but is both mathematically grounded, and useful

for understanding the potential and limitations of universal origami transformers.

0.1 Design Algorithms

This work is in the field of computational origami (a subfield of computational ge-

ometry), and is specifically focused on design algorithms. There is a wide variety of

previous research in this area over the past two decades, and also a strong artistic tra-

dition. Techniques to fold flat appendage-based structures, which can then be shaped

into representational origami such as animals, have been developed by many origami

artists. Robert Lang's Origami Design Secrets [7] is a practical guide to many of

these techniques and the algorithms underlying some of these techniques have been

explored by Lang and various Japanese mathematicians.

Research in the field accelerated in 1995 when Bern and Hayes [1] showed that

folding was "hard" and therefore interesting to computer scientists [8]. One early



Figure 0-1: Origami transformer implementation described in "Programmable matter
by folding" [6]. Select frames are shown from a video of a single actuated hinge pattern
self-folding into a boat (left) and a plane (right). Photos by the Harvard Microrobotics
Lab.

result is that every polyhedral surface can be folded from a large enough square of

paper [2]. This result is broad but does not generate foldings that fulfill any intuitive

notion of stability - they are wrappings of the surface by a long narrow strip. A

more recent algorithm by Tomohiro Tachi attains much more "structural" foldings [5].

However, each polyhedral surface to be folded has a completely different crease pat-

tern. So if we were to design a general "hinge pattern" on a piece of paper, some

subset which is the crease pattern for a particular shape, such an algorithm would

need a new hinge pattern for every shape. We focus here on exploring algorithms

that work with "universal hinge patterns" for which different crease-pattern subsets

fold into some universal class of shapes (up to a desired resolution).

0.2 Motivation

We have three primary motivations: robotics, art, and theory. Our robotics or "trans-

formers" motivation is that we hope to develop "programmable matter" out of a fold-

able sheet [6]. The idea is to statically manufacture a sheet with specific actuated

hinges that can self fold in either direction, and then dynamically program the fold

angle of each hinge in the sheet (Figure 0-1). Thus a single manufactured sheet can

be programmed to fold into anything that the hinge pattern can fold.

Our artistic motivation is that we want to fold geometric, perplexing, and beautiful



Figure 0-2: Folding a bend-shaped polycube with a square base via a CEA. For
simplicity, the mountain-valley pattern in this and other figures does not exactly
show the reflected creases when multiple layers are folded.

shapes out of paper. The folded "bend" in Figure 0-2 developed by our algorithms

satisfies at least some of these criteria as it is obviously geometric, and it is rather

perplexing to some that such a thing could be folded from a single uncut square. Other

designs generated by the algorithms we describe might impress less geometrically

inclined observers, especially with slight modifications for artistic effect.

Finally, we are motivated by a "desire to understand" - by theory. We would

like to know what is possible and what is not possible. We want to know how to

construct anything and how efficient those constructions are, in both the size of the

paper required and the time required for the design computation.

0.3 Results

Our main result is that an O(N) x O(N) square tiling of a simple hinge pattern

can fold into all face-to-face gluings of N unit cubes (polycubes), and we describe a

family of Cube Extrusion Algorithms which produce these foldings. Thus, by setting

the resolution N sufficiently large, we can fold any 3D solid up to a desired accuracy.

At the core of our algorithm is the notion of a cube gadget, which folds a cube in the

middle of a sheet of paper. Such foldings of a single cube have been independently

developed by many origamists over the years; the first documented design we are



Figure 0-3: The mountain-valley pattern (left) and folded state (right) of a polycube
representation of a car.

aware of was created by David A. Huffman in 1978.1 The novelty is the way in which

we compose and modify cube gadgets to form a desired polycube. We present three

different cube gadgets, one of which is the gadget independently created by Huffman,

each with its own advantages and disadvantages when combined to fold a polycube.

(Only a single kind of cube gadget is used in a particular folding, but it is used N

times.)

We first describe the algorithm geometrically in Chapter 1, and then we give a

more detailed description based on data structures in Chapter 2. We generalize and

improve the algorithm in Chapter 3, showing that in some cases we can do with as

little as O(iYN) x O(if) paper (though O(N) x 9(N) is optimal in the worst case).

Finally, in Chapter 4 we describe an implementation of the algorithm which can be

used to automate experimentation and design of geometric origami using a cutting

plotter or laser cutter to score the paper.

Figure 0-3 shows an example of a real origami design computed with our imple-

mentation, which also illustrates the improved efficiencies of the algorithms described

in Chapter 3. This design is the basis for the "Low Resolution Car," part of the

exhibit shown in Figure 4-2.

'Personal communication with the Huffman family, 2010. The author independently developed
this gadget in middle school circa 2000, and published an origami model based off it in 2004.



Throughout this thesis, we focus on construction, not analysis, and on algorithms

with "sufficient" but not optimal foldings, as our model of folding is too simplistic

to capture true optimality or "niceness" of a folded state. However, we do observe

that the family of Cube Extrusion Algorithms are occasionally optimal even with the

constant factors, and we make several conjectures about when this may be true. Our

main contribution is showing how a single relatively simple gadget allows us to fold

any shape, and we then take advantage of opportunities to remove wasted paper while

maintaining the underlying structure of the gadget. The use of additional gadgets

does allow greater flexibility and efficiency, but that is not the focus of this thesis.

Throughout this thesis you will see terms emphasized with bold italics as they

are defined. The page number of each such definition appears in the index at the

end of this thesis (and in the electronic version page numbers in the index hyperlink

to the corresponding page). In addition, the index provides the page number for the

introduction of notation if that notation is used consistently throughout the thesis.
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Chapter 1

Universality

This chapter describes the basic Cube Extrustion Algorithm (CEA-1) and explores

some properties of the folded states it generates. It takes a point-by-point geometric

approach to describing paper and folding as opposed to the data-structure approach

in later chapters.

1.1 Definitions

We start with a few definitions about origami, specified somewhat informally for

brevity. For more formal definitions, see [4, ch. 11].

For our purposes, a piece of paper is a connected collection of flat polygons in

3D joined along shared edges (a polyhedral complex; note that we can have multiple

polygons in the same place but with different connections, and with a specified stack-

ing order). A notable special case is a single m x n rectangle of paper for integers

m and n (but in general, a piece of paper does not have to be flat; for example, a

polyhedron is a piece of paper). We index the unit squares of such a rectangle in the

style of matrices: sj refers to the unit square in the ith row and jth column, and

s1,1 is in the upper-left corner.

A hinge is a line segment drawn on a piece of paper which is capable of being

creased in either direction. A hinge pattern is a collection of hinges drawn on a piece

of paper. The hinge patterns we consider in this paper are all based on subdivisions



of the unit-square grid, adding a finite number of hinges within each unit square.

The unit squares of the hinge pattern correspond to the unit squares of a rectangle

of paper.

An example of a hinge pattern is the box-pleated pattern (known in geometry

as the tetrakis tiling) which is formed from the unit-square grid by subdividing

each square in half vertically, horizontally, and by the two diagonals, forming eight

right isosceles triangles. The upper-left corner of Figure 1-2 shows an example for

four unit-squares.

An angle pattern is a hinge pattern together with an assignment of a real number

in [-1800, +1800] to each hinge, specifying a fold angle (negative for valley, positive

for mountain). We allow a hinge to be assigned an angle of 0, in which case we call

the hinge trivial, though we do not draw trivial hinges in most figures. A hinge with

a nonzero angle is called a crease. The crease pattern is the subgraph of the hinge

pattern consisting of only the creases.

An angle pattern determines a 3D geometry called the folded geometry, which

maps each face of the crease pattern to a 3D polygon via a Euclidean isometry (by

the composition of rotations at creases). More explicitly, a folded geometry is a map

from all points of the piece of paper to R3 that satisfies constraints as specified in [4,

ch. 11]-and there is an obvious mapping from angle patterns to folded geometries.

A folded state consists of such a folded geometry together with an ordering A,

which is a partial function over the touching points in the folded geometry, in our case

describing the stacking relationship among polygons of the crease pattern that touch

in the folded geometry. Define the starting sheet of a folded state to be the original

piece of paper, that is, the domain of the folded geometry.' A folding sequence

is a sequence of folded states F 1, F 2,..., Fk from the same starting sheet. The last

folded state in a folding sequence is called the final folded state.

Define the number of layers at a point q to be the number of noncrease points

in the piece of paper that get mapped to q by the folded geometry. The number of

'Note that "sheet" is not to suggest that the piece of paper needs to be flat; it can be any
polyhedral complex.



layers of a folded state is the maximum number of layers over all points.2

Next we define a notion of "coalescing" which lets us ignore certain details of a

folded state. A coalesce folded state is a folded state augmented with a coalesce

set which is a subset of the starting sheet. If we take the starting sheet and identify

(glue together) all pairs of points in the coalesce set that are collocated by the folded

geometry, then we obtain a metric space called the coalesce result. This coalesce

result is also a piece of paper under our definition and therefore can be the domain

of a new coalesce folded state. A coalesce sequence is a sequence C1 , C2, .. ., Ck of

coalesce folded states, where each Ck is a folding of the coalesce result of Ck_1.

One can generate a folding sequence from a coalesce sequence by letting F1 = C1

and Fk = Fk_1 o Ck, and then composing the geometry and ordering functions in

the obvious way. Note that the starting sheet of each Fk is the starting sheet of C1,

while the starting sheets of the other Ck's can be any shape folded from that starting

sheet. The final folded state of a coalesce sequence is the final folded state of

the generated folding sequence. We say that a folding sequence or coalesce sequence

folds a piece of paper -r into a shape o if the starting sheet of the first folded state is

the piece of paper r and the image of the last folded geometry is the shape o.

In this paper we allow all but the last folded state in a folding sequence or coalesce

sequence to have crossings. By [3], all folded states are reachable from the starting

sheet by the continuous folding motion, so the final folded state is still reachable. We

use folding sequences as a tool to construct the final folded state, not as instructions

for folding.

Now that we can describe how to fold a shape, we define our target shapes. A

polycube P is a union of unit cubes on the unit-cube lattice with a connected dual

graph; the dual graph has a vertex for each unit cube and an edge between two

vertices whose corresponding cubes share a face. The faces of the polycube are the

(square) faces of the individual cubes that are not shared by any other cubes.

A folding of a polycube is a folded state that covers all faces of the polycube,

2This measure is a simple way to bound the effect of paper thickness, but in practical origami

there are other quantities that could be measured.



and nothing outside the polycube. In fact, some of our foldings of polycubes will

also include the internal squares, the faces shared by multiple cubes, and some of our

foldings will not put anything else interior to cubes, but in general we do not require

either property. A face of a folded polycube is seamless if the outermost layer of

paper covering it is an uncreased unit square of paper. Our foldings will generally be

seamless.

1.2 Cube Gadgets

We now introduce the notion of a cube gadget; refer to Figure 1-1. For positive

integers r and c, an [r, c]-cube gadget is a method of extruding a cube from a

rectangular piece of paper at a specified location. The input to the cube gadget is an

m x n rectangle of paper, for integers m > 2r and n > 2c, as well as a unit square

sij on the paper, where r < i < m - r and c < j < n - c. The output of the

cube gadget is a folding of the m x n rectangle into the shape of a cube sitting on a

smaller, (m - 2r) x (n - 2c) rectangle of paper. The cube sits on the square si-r~jc

in the smaller sheet of paper. All six faces of the cube are seamless except for the

bottom face. The top face of the cube is covered by square sij from the original piece

of paper. The boundary of the original m x n rectangle paper is mapped onto the

boundary of the smaller (m - 2r) x (n - 2c) rectangle.

The cube gadgets in this paper achieve the folding by making horizontal pleats in

the r rows above and below row i, and making vertical pleats in the c columns left

and right of column j. The pleats are called half-square pleats because they are

composed of unit squares folded in half. Each pleat adds two layers to the row or

column it is under, so the number of layers of the folded state is at least 1+ 2 max{r, c}

(one for the row or column plus two for each pleat).

Another property of our foldings is that all folding is within the 2r + 1 rows and

2c + 1 columns surrounding square sij. Thus, the quadrant of paper consisting of

rows < i - r and columns < j - c is not folded and is incident to the top-left corner

of the cube, and similarly for the other four quadrants.



Before cube gadget application After cube gadget application

1 + 2r =3 layers 1 + 2c = 5 layers

n 6

Pm1' m -2c3

m 7

Figure 1-1: Abstract effect of applying a [1, 2]-cube gadget at square s4 ,5 of a 6 x 7
rectangle of paper. The two leftmost diagrams are top views before and after folding.
The right diagram is a stylized perspective view of the folded state.

In this paper, we give three different cube gadgets based on three different hinge

patterns, as shown in Figure 1-2. The three cube gadgets are based, respectively,

on the box-pleated pattern, the slit pattern, and the arctan 1 pattern. The

arctan 2 gadget and slit gadget are [1, 1]-cube gadgets, while the box-pleated

gadget is a [1, 2]-cube gadget. The advantage of the box-pleated gadget and slit

gadget is that the hinge pattern is simpler: box pleating has all creases with angles

at integer multiples of 45'. The slit gadget attains higher efficiency than seems

possible with regular box pleating by adding a regular pattern of slits in the paper.

The arctan 4 gadget attains higher efficiency using more hinges some of which are at

angles of arctan 1 . We use the arctan j gadget in all figures for consistency.

Next, we show how a cube gadget can be used to modify an existing folding, which

will be the key construction in our folding of general polycubes. Figure 1-3 provides

some intuition for how existing cubes move as new cubes are folded and Figure 1-4

provides a formal example of the lemma below.

Lemma 1 (Gadget Application) Let C' be a coalesce sequence for a polycube P

from an m x n rectangle of paper. Let f be a face of the polycube P that is seamless in

the final folded state of C". Then there is a coalesce sequence C"' for the polycube P',

................. ..........



Box-Pleat Pattern Arctan(j) Pattern Slit Cube Pattern

Box-Pleat Gadget

A A

1 unit square

Slit Cube Gadget

Mountain
----------- Valley

Slit

Hinge
Unit Square Border
(also Hinge)

Figure 1-2: The hinge patterns (top), mountain-valley patterns (middle), and semi-
transparent folded states (bottom) for the three cube gadgets. The highlighted region
of each mountain-valley pattern has dimensions 2r + 1 x 2c + 1 and is the region used
to actually fold the cube (half-square pleats extend out from those regions).

consisting of P plus a cube extruded from face f , from an (m + 2r) x (n + 2c) rectangle

of paper. The construction is parameterized by a cube gadget.

Proof: Let CP = C, CP,..., C, and let F' be the final folded state (for P). Let

sj be the square in the starting sheet of FP that is mapped to f via F. We use

o to refer to this square in an abstract sense-when we add rows or columns to the

start sheet o will move with the insertions-so the square coordinates referred to by

o may change.

We construct a new coalesce folded state Cp' that we will prepend to C'. Define



Before Folding

During Folding

After Folding

Figure 1-3: Given a piece of paper with a cube already folded on it, this diagram shows
in an abstract manner how the paper moves when a new cube is folded depending
on whether the old cube is on the top face (above), or a side face (below) of the new
cube.

C" to have the same starting sheet as that of FP, except that we insert r rows

above o, r rows below o, c columns left of a, and c columns right of c. So the

starting sheet is a rectangle of paper of size (m + 2r) x (n + 2c) and a refers to the

square si+r,j+c in this enlarged sheet of paper. Define this entire enlarged rectangle

to be the coalesce set of Cf". Now we define the folded state of C' to be the given

cube gadget applied at a. The result looks like a cube sitting on the square sij of

an m x n rectangle of paper. (The paper does have additional layers in some places

from the pleats, but it folds flat except at the cube, and these layers are all coalesced

because the entire sheet is in the coalesce set.)

Now, for each coalesce folded state C, we create a modified coalesce folded state

Ck'+ with o replaced by a cube of paper. Here we use the fact that a never gets folded

throughout the sequence (since it is always the face of a cube), and thus corresponds

to a seamless square of paper in the starting sheet of each coalesce folded state Cf.

Note that we add the five new faces of the cube to the starting sheet, but we do not

add these faces to the coalesce set of C'1; the latter will remain a rectangle. We

also add any polygons of paper internal to the cube that appear in C', in the same

orientation. Because the coalesce result of Cj' is the starting sheet of C' we have

........... ............. VI-M .................... .................... ......... ........ ..--



Figure 1-4: Given a coalesce sequence
generate C"' with an additional cube.
rows and columns are inserted. We use
here onwards for consistency.

CP, shows the application of Lemma 1 to
The purple regions show where additional
the arctan 1 cube gadget in all figures from

thus generated a new coalesce sequence CP' = C"', C',... C', C .'1 2 q 1 q±P-

Note that these added cubes may create intersections in the coalesce folded states

CA/' (as mentioned in Section 1.1). However, the final folded state F of CP' (as well

as C PI itself) is guaranteed not to have intersections. This follows because FP had

no self intersections, the application Cf' of the cube gadget has no self intersections,

and adding the cube of paper to make P into P' cannot create intersections.



Figure 1-5: This sequence of folded states for a particular coalesce sequence shows an
example of self intersection in part of a coalesce folding sequence. The self intersection
occurs at the highlighted cube and is resolved in the final step. The self intersection
can be avoided in this case by making additional simple folds.

1.3 Folding Polycubes

Our Cube Extrusion Algorithm (CEA-1) for folding any polycube is parametrized by

an arbitrary cube gadget, and consists of repeated application of the gadget according

to Lemma 1. We describe the recursive algorithm by way of an inductive proof:

Theorem 2 (Cube Extrusion Algorithm) Any polycube of N cubes can folded

with all faces seamless from a (2rN + 1) x (2cN + 2) rectangle of paper by a sequence

of N applications of an [r, c]-cube gadget plus one additional fold.

Proof: We prove by induction that any polycube P' of N cubes can be folded

seamlessly by a coalesce sequence from a (2rN + 1) x (2cN + 2) rectangle of paper.

Arbitrarily choose a "bottom face" fb of P', and let b be the unique (bottom) cube

having fb as a face. Refer to Figure 1-4.

The base case is N = 1, when P' consists of the single cube b. We can use the

cube gadget directly at square sr+1,c+1 to obtain a folding of the single cube from a

(2r + 1) x (2c + 2) rectangle of paper. The folded state is a cube next to a (pleated)

unit square of paper. Note that the bottom face of the cube corresponds to fb, and

is adjacent to the square of paper. By definition of cube gadgets, all faces of the

cube except the bottom face are seamless. We fold the extra square of paper over to

_- ..... .. .......



seamlessly cover the bottom face, thus making a seamless one-cube polycube. The

resulting folded state forms the first and only step in a coalesce sequence.

It remains to prove the inductive step. Let T be a spanning tree of the dual graph

of P'. Because every tree has at least two leaves, T has a leaf corresponding to a cube

I # b. Let u be the unique cube sharing a face with 1, and let f" be the face shared

by u and 1.

Now consider the polycube P F' \ {1}, with N - 1 cubes. Because 1 # b,

fb remains a face of P. By induction, there is a coalesce sequence CP that folds

a (2r(N - 1) + 1) x (2c(N - 1) + 2) rectangle of paper into P. By Lemma 1, we

extrude from f, to obtain a new coalesce sequence Cp' for P' from a rectangle of size

((2r(N - 1) + 1) + 2r) x ((2c(N - 1) + 2) + 2c) = (2rN + 1) x (2cN + 2).

The final folded state of the inductively obtained coalesce sequence is the desired

folded state from the rectangle of paper into the polycube. El

Without the concern for a seamless bottom face, we can reduce the +2 in the

rectangle bound down to +1.

The algorithm runs in polynomial time. The bottleneck is in converting the co-

alesce sequence into its final folded state. Each of the N cube gadgets causes the

creation of at most O(N) creases, because the piece of paper at that point has size

O(N) x O(N) with 0(1) existing creases per square.

We conjecture that the exact bound of a (2rN +1) x (2cN+ 2) rectangle of paper is

optimal for any sufficiently "zig zaggy" tree polycube (due to the way "wasted paper"

is introduced and how the improvements described later can minimize it).3 One fact

along these lines is that the size bound of an O(N) x O(N) rectangle of paper is tight

up to constant factors for square paper. Specifically, folding a 1 x 1 x N tower of

cubes requires starting from a square of side length N in order to have diameter N,

as folding can only decrease diameter.

3 Part of the difficulty in saying something definite about optimality is that we can "move around
pleats" with additional gadgets to achieve better foldings in many cases.



1.3.1 Hinge Pattern Completeness

Next we show that the Cube Extrusion Algorithm does not create creases that stray

from the given hinge pattern.

For a rectangular piece of paper, the tile ti, of a crease pattern is the set of creases

within the unit square sij. The tile set of a cube gadget is the set of all distinct

tiles that can be generated by the cube gadget. The hinge pattern generated by a

tile is the result of replicating the tile in a unit-square grid.

Proposition 3 Given a cube gadget with a finite tile set and half-square pleats as

the only folded structure outside of the cube, if we add to an empty tile a hinge for

every crease of each tile in the tile set for every 2D orthogonal orientation (rotations

and reflections), then the resulting tile generates the hinge pattern required to fold a

polycube with the Cube Extrusion Algorithm.

This proposition is nontrivial as it is possible that some combination of cube

gadgets would create new tiles that are not present in any single gadget which are

thus not in the tile set.

Proof: We prove that no other hinges are needed beyond those found in the con-

structed generator tile.

There are two types of folded tiles used by cube gadgets to make polycubes as

described in the proposition: inner tiles which make up the non-visible parts inside

the cubes and pleat tiles that make up the non-visible part of the pleats (outside

of the cube). Inner tiles are never folded once they are made part of a cube as our

foldings never modify the inner structure of an existing cube, so they do not require

any additional hinges beyond those in the tile set. Pleat tiles may be folded again -

but they are all half-square pleats, which means that they simply reflect a crease along

the midline of the tile - but each of the reflected halves would already have existed

in reflections of that tile of the cube gadget, so this also does not create additional

hinges. E



1.3.2 Paper Dimensions

We now show the specific bounds on the dimensions of the required rectangle of paper

for each of the three cube gadgets considered in this paper.

Corollary 4 (arctan j Universality Lemma) Any polycube of N cubes can be

folded with all faces seamless from an arctan 1 hinge pattern on a (2N +1) x (2N +2)2

rectangle of paper using the Cube Extrusion Algorithm.

Proof: The arctan 1 gadget has r = 1 and c = 1. Plugging these constants into

Theorem 2 yields a process for folding the polycube from a rectangle of paper of size

(2N + 1) x (2N + 2). D

Corollary 5 (Slit Universality Lemma) Any polycube of N cubes can be folded

with all faces seamless from a slit hinge pattern on a (2N + 1) x (2N + 2) rectangle

of paper using the Cube Extrusion Algorithm.

Proof: Same as Corollary 4. D

The previously discussed gadgets create foldings from a rectangle of paper that

is within an additive constant of being square. As we show now, directly applying

the Cube Extrusion Algorithm with the tetrakis cube gadget generates a folding with

a ratio within a constant of 1 x 2, but a slight modification allows us to use an

approximately square sheet of paper.

Corollary 6 (Box-Pleated Universality Lemma) Any polycube P of N cubes

can be folded with all faces seamless from a box-pleated (tetrakis) hinge pattern on

a (2N + 1) x (4N + 2) rectangle of paper using the Cube Extrusion Algorithm. A

slight modification of the Cube Extrusion Algorithm uses a (3N + 1) x (3N + 2) rect-

angle of paper for even N and a (3N) x (3N + 3) rectangle of paper for odd N.

Proof: The box-pleated gadget has r = 1 and c = 2. Plugging these constants into

Theorem 2 yields a process for folding P from a rectangle of paper of size (2N + 1) x

(4N + 2).



Now we describe the modified approach. Define the transpose of a cube gadget

to be the cube gadget with r and c interchanged, so that now we insert r columns to

the left and right of the column and c rows below and above the specified row. We

alternate the box-pleated gadget and its transpose for a polycube of N cubes such

that the box-pleated gadget is applied [N/2] times and its transpose is applied [N/2]

times. This yields a final folded state FN with a starting sheet of size (2r - [] + 2c-

[j + 1) x (2c - [N] + 2r - [N] + 2) which simplifies slightly to (2- + 4 - +

1) x (4 - [f] + 2- [NJ + 2). For even N, this bound is (3N + 1) x (3N + 2), and for

odd N, it is (3N) x (3N + 3). El

1.3.3 Number of Layers

Proposition 7 For any polycube of N cubes, the Cube Extrusion Algorithm produces

a folding that uses O(N 2) layers.

Proof: The folded state produced by Theorem 2 has a starting sheet of size (2rN +

1) x (2cN + 2), which is clearly 0(N 2) for constants r and c. And because each square

of a hinge pattern contains 0(1) hinges (by definition), there can be at most O(N 2)

layers in the folding (even if we folded the paper up into the smallest unit of area

allowable by the hinge pattern).

Unfortunately, this quadratic bound on the number of layers is tight in the worst

case:

Proposition 8 For any N and any cube gadget G, there exists a polycube of N cubes

for which the Cube Extrusion Algorithm yields a folding requiring Q(N 2 ) layers.

Proof: Without loss of generality, assume that N is odd. The example we use is a

horizontal L-shaped polycube, as shown in Figure 1-6. To construct it, take a single

cube b and two faces which share an edge of the cube. Extrude (N - 1)/2 cubes from

each of the faces. (If N were even, we would extrude (N/2) - 1 cubes from one of the

faces and N/2 cubes from the other face).



Figure 1-6: This horizontal L-shaped polycube uses Q(N 2 ) layers when folded by the

Cube Extrusion Algorithm.

We now show that our folding algorithm would construct a folding having Q(N 2 )

layers. Let the bottom cube of the folding algorithm be b, and take the bottom face

fb to be one of the faces parallel the plane spanned by the legs of the L. Now consider

the face in the resulting folded state opposite to fb: it is seamless, but hidden beneath

it are pleats from prisms of both legs of the L. There are Q(N) pleats from each leg,

and the pleats are orthogonal to each other. This results in Q(N 2 ) layers.

.... ..... ..



Chapter 2

Data Structures

The proof of universality in Chapter 1 provides a high-level sketch of an algorithm for

designing a folding of a desired polycube. Implementation of such an algorithm on a

real computer, or even a typical model of computation, requires substantially more

detail, particularly in the data structures for representing the intermediate structures,

geometries, and foldings. Here we provide these details for a directly implementable

algorithm, which we denote CEA-2.

2.1 Polycube Representation

For the rest of this thesis, we need a more data structural perspective on the notion

of a polycube. Namely, define a polycube to be a geometric graph with vertices

embedded on the three-dimensional cube grid, where the edges are all grid edges.

The vertices represent unit cubes, and the edges correspond to shared faces. There

can be only one edge in each direction from a particular cube, so there is a maximum

of six edges per vertex.1 If an edge is not present we call it a null edge and we call

the corresponding face exposed.

'There can however be multiple cubes in the same location, though this rarely comes up as it
involves self intersection in the represented folded form, or cubes going below the root cube.



2.1.1 Polycube Coordinate System

Let P be a polycube with a root cube ci that has an exposed face fi. We describe

a coordinate system that will be useful for manipulating P. The origin (0, 0, 0) is the

center of the root cube. The inner normal of fi points in the positive z direction. A

perpendicular to a side of fi in the xy-plane is designated as the positive x direction,

and a perpendicular to a neighboring side of fi in the xy-plane is designated as the

positive y direction. We consider the location of a cube to be the coordinates of

its center. Cubes are unit size, so all of the cubes of P will be located on integral

points in this coordinate system. In general, we may refer to +x as east (e), -x as

west (w), +y as north (n), -y as south (s), +z as above (a), and -z as below

(b). This polycube-relative set of directions in the 3D orthogonal coordinate system

is denoted as Dpo (polycube orthogonal directions).

2.1.2 Extrusion Sequence

Consider a spanning tree T of the polycube, rooted at c1. Let the extrusion se-

quence be a sequence of cubes described by a pre-order traversal of T and let Ck be

the kth cube in the sequence. So k from 1 through N is the step number and ck

is the cube that is "extruded" at step k. Let P1...k be the sub-polycube with cubes

from steps 1 through k (in this case c1 , .. . , Ck). Note that P1...k is a valid (connected)

sub-polycube as the pre-order traversal ensures that a cube is not extruded unless its

parent in the spanning tree had previously been extruded. Also note that these step

indices are in the order of extrusion, which is the reverse order of folding (this is the

opposite order of, for example, the coalesce folded states from CEA-1 - while less

elegant for CEA-2 it makes modifications easier to describe).

2.1.3 Cube Orientations

For k > 1, let fk be the face shared by P1...k_1 and cube Ck. (Recall that fi was

previously defined explicitly as the original exposed face.) For all k > 1, we call

fk the bottom face of Ck and the opposite face in Ck to be the top face of Ck.



The remaining faces of Ck are called side faces, and they follow the cycle up face,

right face, down face, left face around the cube in a clockwise direction relative

to the top face. Each cube has an absolute orientation defined by the normal

vectors v,, and vt of the up and top faces respectively (va, vt E Dpo). The top face

of ci is the face opposite fi as described earlier, and we call the corresponding vector

vt the extrusion vector as it intuitively describes the direction that the cube is

extruded. We let the north-facing face of ci be the up face - there is no obvious

intuitive interpretation of this vector as it is just picked arbitrarily once in order to

be consistent throughout. As an example, for the base case ci, vt is above and vu is

north.

2.2 Paper Allocation

Here we determine the size of the required sheet, and which squares of the unfolded

sheet correspond to faces on the polycube.

2.2.1 Face Grid

Define a face grid as a geometric graph with vertices embedded as the centers of

unit squares on the two-dimensional square grid, and edges corresponding to shared

edges between the squares. We require that a face grid be a complete m x n rectangle.

Squares in the face grid can be referred to by their indices e.g. og, but those indices

are not stored and maintained so it takes O(i+ j) time to find a square referenced by

its coordinates. We do however store the grid edges which can be referred to by their

direction: up (u), down (d), left (1) or right (r). This set of square orthogonal

directions is denoted as Dso; they will end up corresponding to the side face names

described above. The origin square si,1 is the most down and left square, and the

square in the opposite corner is Smn.

A face grid represents the unfolded sheet of paper and keeps track of the corre-

spondences and relative orientations of squares in the unfolded sheet and faces in the

polycube. For each step (extrusion) there is a corresponding face grid Sk. Formally,



a face grid Sk must satisfy the face correspondence invariant - there must be

a map between all faces of P1...k (except for fi) and squares in Sk. Also, one useful

operation which can be applied to a face grid is the insertion of rows or columns. In

other words, one can add rows or columns of squares, shifting the existing squares up

or right respectively.

2.2.2 Generating the Face Grid Sequence

A particular folding of a polycube is completely described by a sequence of face

grids S ... SN. Now we inductively describe how to generate these face grids based

on the desired polycube, the extrusion order, the absolute orientations of previously

extruded cubes, and the previous face grid.

The base case is a one-cube polycube. The corresponding Si has m and n being

2r + 1 and 2c + 2 respectively (where r and c are the parameters of the type of cube

gadget to be used to form the cube). The top face of ci corresponds to Sr+1,c+1 in S1.

The up face of ci corresponds to the adjacent square in the up direction of Sr+lc+1 in

Si (Sr+2,c+1). The right face of ci corresponds to the adjacent square right of sr+1,c+1

in Si (sr+1,c+2). This is similarly true for the remaining two side faces. The bottom

face of ci (fi) is an "exception" - it is the only face of the polycube that does not

have a corresponding face in the face grid sequence (as a final folding step, Sr+1,2c+2

will cover it, but for now it is convenient to ignore it).

Next, given face grid Sk corresponding to polycube P1...k, we would like to derive

the face grid Sk+1 corresponding to the polycube P...k+1. Figures 1-3 and 1-4 give

some intuition for how works. Let Stemp be a duplicate of Sk. Face fk+1 already has

a corresponding square a in Stemp as it is a top or side face of an existing cube. In

Stemp insert r rows up and down relative to o- and insert c columns to the left and

right of a. The face of Ck+1 opposite fk+1 now corresponds to the square a (as the

face that o previously corresponded to is now covered by the cube).

We derive the absolute orientation of Ck+1 from the absolute orientation of its

parent cube c,, defined as the cube in P1...k+1 that shares the face fk+1 with the

cube Ck+1- If fk+1 is the top face of c, then the absolute orientation of c, and Ck+1



are the same (i.e., the up face and top face point in the same direction). Otherwise,

fk+1 is a side face of cp, and situation is more complicated.

In that case we take the vectors which describe the absolute orientation of cp,

copy them, and rotate them 90' along the appropriate axis such that the vt vector is

normal to the top face of Ck+1-2 These new vectors describe the absolute orientation

of Ck+1 which determine which side faces are which. This information can then be

used to create the correspondences as described in the base case (i.e., the up face

corresponds to the square in the up direction of o in the face grid).

We now have all the faces of P...k+1 (except fi) in correspondence with the squares

in Stemp, so we rename Stemp to Sk±, adding it to our face grid sequence (as it now

satisfies the face correspondence invariant). We also have absolute orientation for all

the cubes c1 ... ck+1. Having satisfied the inductive statement we can generate the

full face grid sequence from 1 to N.

2.2.3 Cube Gadget Sequences

Now we generate a sequence of symbolic cube gadgets. A symbolic cube gad-

get has the form CubeGadget (type, (m, n), si,j). The idea is that each symbolic cube

gadget injectively maps to a particular folded state with one cube gadget, without

directly giving any details contained in the cube gadget diagram (that detail is added

in the fold pattern). This is the last strictly combinatorial part of the algorithm.

Let Gk be the cube gadget corresponding to face grid Sk. Type refers to the type

of cube gadget (which defines the folded state and [r, c]), m and n come from the

dimensions of Sk, and sij is the square in Sk corresponding top face of Ck. As an

example, the symbolic representation of a cube-gadget sequence for a polycube of two

cubes could be (Cube Gadget(slit, (3,4), S2,2), Cube Gadget(slit, (5, 6), s3,3)).

2 These two cases and the 90' tilt are a result of folding "motion" which can be most clearly seen
in Figure 1-3.



2.3 Folding Representation

Representing a three-dimensional folded state in a combinatorial way that can be

manipulated and coalesced is complex, and we neither describe that here nor have

implemented it (the standard model of paper does not represent the intricacies of

such a structure). We expect to publish a paper after this thesis is complete exploring

this issue in more depth, but for now we make do with a more vague but intuitive

description. Note that, for practical purposes of both origami design and robotics,

the folded state does not have to represented as a combinatorial structure - we

can also represent folding in a human-readable form (origami diagrams), or though

a kinematic simulation. This is why we say that the combinatorial section ends with

cube gadgets sequences, which already completely describe the folding process when

paired with a general cube-gadget diagram.

2.3.1 Fold Pattern Sequences

A fold pattern is an explicit (data structural) representation of a folded state. It is

an angle pattern together with an overlap ordering for all overlapping facets (faces

broken up when necessary to give a unique overlap ordering). A fold pattern is

the unambiguous extension of the idea of a crease pattern. Like a crease pattern it

describes the folded shape without explicitly specifying any coordinates, but unlike

a crease pattern the angle information completely specifies the folded geometry and

the overlap ordering information eliminates the remaining ambiguities.

The details of a fold pattern can be described by a diagram drawn on a piece

of paper with boundary arrows (see Figure 1-2). The arrows at the boundary of

the piece of paper shown can continue until they reach the sides of the paper and

the shaded region delimits the paper used by the actual cube gadget. We refer to

the intuitive process of redrawing a diagram with boundary conditions on a partial

(possibly empty) piece of paper at a specified location as stamping a diagram.

The symbolic cube-gadget sequences generated above can be evaluated to give

a fold-pattern sequence - a list of fold patterns F1, F2 ,... FN corresponding to

the evaluation of cube gadgets G1, G2, ... , GN. Given a cube gadget Gk of the form



CubeGadget(type, {m, n}, si,j), Fk specifies how to fold an m x n rectangle into an

(m - 2c) x (n - 2r + 1) rectangle with a cube on the square si,, -.

2.3.2 Complete Fold Pattern

Here we describe how to generate a complete fold pattern which describes the

folding of the entire polycube from a rectangular starting sheet (via a composition of

fold patterns from the fold-pattern sequence). First, we give an intuitive description

of what humans would do to actually fold the polycubes - this gives the flavor for

what should be done computationally, though it glosses over many details.

We start at the last step FN of the fold-pattern sequence and fold a piece of paper

of the size described according to the fold pattern. After folding a cube gadget at

the specified location, the paper will have the same dimensions as required by FN-1

except it will have a folded cube on it and pleats radiating from the cube. These

modifications to the rectangle do not matter for subsequent folding - pleats are

folded flat so they can be folded through, and cubes are never folded through as

they are made of faces (which must remain seamless by the argument in Lemma 1).

Now we fold following the fold pattern FN-1. This yields a smaller rectangle with

more cubes and pleats. We continue going backwards through fold patterns until we

complete the final fold pattern F1 (as described earlier, the paper may temporarily self

intersect - in order to avoid this, one can simply "squash" cubes down temporarily

if they would intersect and "unsquash" them when it is safe to do so). The final step

is to fold back the extra flap to seamlessly cover fi.

The computational description of generating the complete fold pattern is analo-

gous. Starting with the fold pattern for FN, we iteratively apply the subsequent fold

patterns (FN- 1 . - , F1) to generate the complete fold pattern. We treat the inter-

mediate states of the complete fold pattern as "bumpy paper," meaning that they

can be folded like a simple rectangle of paper. Even though intermediate states will

have bumps (cubes and pleats), we know it is safe to ignore cubes and treat pleats as

a single layer when simulating folding. As described above, the final step is to fold

back the extra flap (originally Sr+1,2c+2) to seamlessly cover fi.



2.4 Performance

As was true of the CEA-1 (Section 1.3), this more detailed implementation folds an

N-cube polycube from a (2rN + 1) x (2cN + 2) rectangle of paper by a sequence of

N applications of an [r, c]-cube gadget. However, with this more explicit description

of the basic algorithm we can give a more nuanced interpretation of the run-time of

the combinatorial section, which is polynomial, or more specifically O(N 2 ).

The first step is finding a spanning tree of the polycube graph, which takes O(N)

time. Next, we generate the face grid sequence, which involves adding a constant

number of rows and columns to a two-dimensional linked list for each of O(N) steps.

This takes O(N 2 ) time in total (there is also some constant-time computation to

determine absolute orientations). Determining the parameters for each cube gadget

in a sequence takes O(N) time. This gives us a total time of O(N 2 ) to generate a

complete sequence for folding a polycube.

We do not describe in detail how the actual fold pattern is constructed so we

cannot give a worst-case bound, but we can conjecture what a lower bound might

be based on some observations about the structure of our fold patterns. We note

that there can be at most 0(mn) angles and 0(mn) facets in a fold pattern of size

m x n even if we use all the hinges in a hinge pattern. So if we represented each hinge

separately and used a linked list to store the stacking order of all facets, the most

complex folding would use only 0(mn) components. In particular, the fold patterns

for a single cube gadget use as few as E(m+n) components (r 2r horizontal and 1 2c

vertical with some constant number at their intersection). To generate the complete

fold pattern, we iterate through all the folds of each fold pattern in a sequence,

sometimes reflecting folds through multiple layers. In total this could take as little

as O(N(m + n)) time.3 Because m and n are both E(N), the total run-time could

remain E(N 2).

3There are some subtleties here as a single fold can be reflected through O(N 2 ) layers, but we
believe that might be dealt with via clever amortized analysis.
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Chapter 3

Extensions

We now extend to folding polygroves, which are one or more polycubes resting at

integral points on a rectangle in the xy-plane (see Figure 3-1). Polygroves are actually

intermediary steps in folding a polycube, but being able to explicitly fold arbitrary

polygroves is not possible with just CEA-2. In addition, modifications to CEA-2

which yield tighter foldings can be more easily described when applied to polygroves.

Much of this chapter is dedicated to describing these improvements (see Figure 3-2

for an outline of the improvements).

Figure 3-1: An example of a polygrove
points on a rectangle in the xy plane.

one or more polycubes resting at integral



CEA 4.2 CEA 4.3
Pleat Sharing Side Sharing

CEA 4.1 Surface Extrusions Surface Extrusions

Naive Surface
Extrusions

Figure 3-2: An example of how the incremental improvements to CEA-2 affect the
mountain-valley pattern, rectangle size, and folded state of a simple two cube poly-
grove.

3.1 Naive Surface Extrusions

CEA-3.1 is an extension of the previous algorithm (CEA-2) that naively folds a

polygrove - formally, a set of subpolycubes on an m* x n* base rectangle. The

subpolycubes each have root cubes with faces that touch (and connect) to specific

squares of the base rectangle.

3.1.1 Polygrove Representation

We represent the polygrove as a single total polycube P, with an m* x n* rectangle of

dummy cubes at coordinates in the grid between (0, 0, -1) and (m* - 1, n* - 1, -1).

The bottom face of each subpolycube is connected to the top face of a dummy cube

and touching dummy cubes are connected to each other. We take a spanning tree T

for the total polycube by treating the base rectangle as a single root (which connects

to the root cubes of the subpolycubes). As before (Section 2.1.2), the extrusion

sequence is the result of pre-order traversal of this spanning tree.



3.1.2 Face Grid Base Case

We generate face grids as before (Section 2.2.2), except our base case is an m* x n*

rectangle instead of an initial cube. We define a correspondence between the top face

of each dummy cube to a square in the face grid, such that the top face of the cube

at (i - 1, j - 1, -1) corresponds to square sij in the face grid. Then we generate

the face grid sequence (Section 2.2.2), cube gadget sequence (Section 2.2.3) and fold

patterns (Section 2.3) as before.

3.2 Pleat-Sharing Surface Extrusions

We can do much better than this naive surface extrusion algorithm (CEA-3.1) in

specific common cases. For example, consider a 4 x 5 base rectangle with a cube on

S3,3 and on s4,3 . The naive algorithm extrudes each cube separately, using 2r rows

and 2c columns for each cube and thus 4r rows and 4c columns in total. However, by

extruding the cubes simultaneously we can have the cubes share pleats, requiring

only 2r rows and 4c columns (see Figure 3-3). Intuitively, this works because the cube

gadget's only effect on the rest of the paper is to make half-square pleats radiating

from the cube. If two cubes radiate pleats into the same row (or column) then

they can use each other's pleats instead of forcing the creation of new pleats. We

now describe a pleat-sharing modification of CEA-3.1 to get this more efficient

algorithm which we call CEA -3.2.

3.2.1 Extrusion Strategy

The key to attaining this increased efficiency is to parallelize - to do simultaneous

extrusions of cubes whose bottom faces share rows or columns in the face grid. Thus,

instead of an extrusion sequence, we use an extrusion set sequence, which is

a sequence of sets of cubes. We call a set of simultaneously extruded cubes an

extrusion set (whether or not they share paper). Each extrusion set corresponds

to a step, and the kth extrusion set is denoted Ek with cubes {c, ct,.. .}. We let



Figure 3-3: The mountain-valley pattern and folded form associated with the pleat-
sharing example described in Section 3.2. Note that the highlighted rows are shared
by two cubes.

P1...k be the subpolygrove containing the base rectangle and extrusion sets E1 ... Ek

(so P1...k is a valid (connected) subpolygrove).

We call the algorithm for determining the step in which we extrude each cube the

extrusion strategy. An extrusion strategy must produce an extrusion set sequence

such that it only extrudes cubes from a face of the already-built polycube. More

formally, each of the cubes in Ek+1 must be connected via a face in P...k+1 with at

least one cube in P1...k. The spanning tree used in Section 2.1.2 had this property,

and a level-by-level breadth-first search is the parallel analogue. The breadth-first

extrusion strategy does a simple breadth-first search of T, adding each level of the

search as a new extrusion set. It is greedy, so it may not always produce the smallest

fold pattern, but it is simple and fast.

3.2.2 Pleat Allocation

After picking and executing our extrusion strategy, we generate face grids. The base

case is the same as above (m* x n* rectangle), but the process of generating nontrivial

grids is more complicated. Given the face grid Sk for step k, we need to determine

how many rows and columns to insert to obtain the face grid Sk+1 for step k + 1

(and where those rows and columns should be inserted). The idea is to keep track

of which pleats are needed, each of which corresponds to a row or column insertion,

and keep only unique pleats (as we remove duplicate pleats we instead have multiple



cubes share the same pleats).

A pleat allocation A a has an orientation o, coordinate a, and depth d. In-

tuitively, a pleat allocation describes where a pleat will need to be. We say a pleat

points in a direction in Dso if that is the direction from the mountain crease of the

pleat to the valley crease of the pleat. The orientation describes whether the pleat

will point up, down, left, or right (in the face grid). The coordinate refers to the

row or column index that the pleat is inserted relative to (in the face grid of step

k). Finally, the depth refers to how many pleats added in this step are "above" that

pleat. For example, A' 1 denotes a pleat insertion directly (at depth 1) "right" of the

third row, and A' 2 denotes pleat insertion to the right of that pleat (depth 2; under

Ari in the folded state). Each step has a pleat-allocation set #k to keep track of which

pleats were already inserted in that step.

As before (Section 2.2.2), given a face grid Sk corresponding to polygrove P1...k,

we would like to derive the face grid Sk+1 corresponding to the polygrove P1...k+1.

Also as before we let Stemp be a duplicate of Sk and manipulate it until it satisfies the

face correspondence invariant. We iterate over cubes ck, c ,... in the extrusion set

Ek. Each cube c' has a bottom face fk' with corresponding square ot in Stemp. For

each bottom face we allocate r pleats up and down relative to it and c pleats left and

right. In particular, for ot at sj in Sk and p rows from 1 to r, we add "up" pleats

AU, A , u... into #k+1 (and similarly for down, left, and right; except for columns

we use the j index instead of i). Because #k+1 is a set, replicated pleats are avoided.

3.2.3 Generating Face Grids

We now make a map from indices 1... m to the first square in each row of Stemp

(and do the corresponding operation for columns). This map ignores changes in the

locations of squares, so we use it to insert all the allocated pleats in the appropriate

places (even though the insertions cause the actual indices of the squares to change).

Next, we map each polygrove square to a face grid face as before (Section 2.2.2). This

causes the face correspondence invariant to be satisfied, so we rename Stemp to Sk+1

and have completed the induction.



3.2.4 Generating Cube-Gadget Steps

Multiple cube gadgets used in a single step are represented by single symbolic state-

ment G* Cube GadgetStep(type, (Mn), sisj,, ... ) with all the at's present

where previously there was only one. For example, (Cube GadgetStep(slit, (3, 7), s 2,2, 82,6),

Cube GadgetStep(slit, (5, 11), s3,1, 83,2 33,3)).

3.2.5 Generating Pleat-Sharing Fold Pattern

The fold pattern is described in the same way as before (Section 2.3), except in this

case we stamp down multiple cube gadget diagrams simultaneously onto the same

piece of paper. We say that the boundary arrows of two stamped diagrams match if

arrows of separately stamped diagrams only intersect head on if they have the same

angle. By inspection, the cube gadget diagrams can tile a plane of 2r+1 x 2c+1 rectan-

gles, or any subset of it, such that the boundary arrows all match up. So we stamp type

cube gadgets on an m x n sheet of paper with cube gadgets centered at si 1j, silh . . .

to create the fold pattern for CubeGadgetStep(type, (in, n), silj, sinl, ...

3.3 Side-Sharing Surface Extrusions

In addition to sharing pleats, it is also possible to share sides. For example, consider

again the 5 x 4 base rectangle with a 2 x 1 x 1 polycube connected to the base rectangle

at s3,3 and S4,5 (see Figure 3-4). The pleat-sharing modification (with a breadth-first

extrusion strategy) extrudes the two cubes of the polycube in a single step, sharing

their row pleats. However, even though the two cubes are connected by their side faces

in the polycube data structure, previous algorithms create unnecessary gaps between

cubes that use up two column pleats of paper. CEA-3.3 eliminates some of that

waste by sharing sides of cubes to form raised rectangles. Note that this also changes

the structure of the folded polycube to be more "connected" than was possible by the

previous algorithms, where each cube in the folding was only physically connected to



Figure 3-4: The mountain-valley pattern and folded form associated with the side-

sharing example described in Section 3.3. Note that the highlighted area denotes
where columns are removed due to sides shared by the two cubes.

a single parent.1

3.3.1 Cube Gadget Wings

We first break down a cube gadget into its component parts so that we can describe

the side-sharing process more clearly. Each of our cube gadgets has a center square,

which is the top face in the folded form, and one wing in each Dso direction, which

is the paper used to make the side faces of the cube (the actual side face in direction 6

is the unit square directly 6 of the center square). Beyond that the boundary arrows

can be extended indefinitely until they hit the end of the paper or other boundary

arrows of the same angle going in the opposite direction.

A cube gadget can be modified to remove its wings and is described by a wing

set w, where w is just some subset of Dso delimiting which wings are not present.

More formally, a cube gadget with a wing set w has one region removed for each

element 6 in the wing set. This is the halfplane extending in the 6 direction from

the line containing the edge of the center square in the 6 direction. All angles on

the border are also removed and the resulting segment endpoints become boundary

arrows. These sub-cube gadgets described by their wing sets are used to avoid

needing to allocate pleats for the shared sides of cubes.

1Note that in order to maximize "connectedness" a more sophisticated extrusion strategy is

needed.



3.3.2 Side-Sharing Strategy

We use an extrusion strategy as before (Section 3.2.1) to generate E1 , .... , Ek, but

the pleat-allocation process (Section 3.2.2) used to generate the face grid is slightly

modified. Instead of simply inserting pleats up, down, left, and right, we first check

to see if we can share some sides (with other cubes that are being extruded at the

same time), and if so, we do not insert pleats in the corresponding directions.

A connected minimal square of a polycube is exactly four cubes such that

they form the smallest simple cycle possible for a polycube graph (as described in

Section 2.1). Formally, a cube c"+1 in Ek+1 and a direction 6 in Dso satisfies the local

side-sharing condition if there exists another cube cf+1 in Ek+1 such that their

parent cubes have the same extrusion vectors and all four cubes form a connected

minimal square (note that the dummy cubes are necessary for this condition).

Cube gadgets with convex corners only allow us to extrude rectangles of shared

sides, so it can be the case that a side that can be shared locally is not able to be

shared given other sides that are shared, if that would extrude a non-rectangle with

shared sides in a single step. The side-sharing strategy determines which sides

are actually shared, from among those which satisfy the local side-sharing condition.

For example, the down-right side-sharing strategy builds rectangles greedily by

starting at the uppermost leftmost face-grid square to be extruded, and marking

rectangles as large as possible by first going down as far as possible and then right

as far as possible, ignoring rectangles it has already marked. This strategy is greedy,

and may not always produce the smallest fold pattern, but is simple and fast.

The side-sharing strategy annotates edges of the face grid with a share mark to

denote that the sides of the cubes extruded from those squares should be shared. For

example, if the cube c" (at si,j) could share its right side with the left side of cube

ct (at si,j+1), with a [1,l]-cube gadget, then the pleats A' and A would not be

needed, so the edge between the corresponding face grid squares f1 and fkt2 would

receive a share mark.



3.3.3 Generating Side-Sharing Cube-Gadget Steps

We create a symbolic representation of the folded form as in 3.2.4, except that we

encode information about side sharing. In particular, we modify our symbolic repre-

sentation from Section 3.2.4 to have a tuple (si,, w) in place of sij, where w is the

wing set described earlier - intuitively, here it is just some subset of Dso delimiting

the directions that a cube gadget is shared. This information is easily extracted from

share marks. For example, Cube GadgetStep(arctan 1, (5, 4), (S3,3, {r}), (S4,3, {l})).

3.3.4 Generating Side-Sharing Fold Pattern

Because we do not allocate enough paper to do so, we can obviously not stamp entire

cube gadgets as we did previously. Instead, we center cube gadgets as before, but only

stamp the unshared sides (as denoted by the Cube GadgetStep). More formally, we only

stamp the sub-cube gadget specified by the given wing set w, with the center square at

the given location sij. Boundary arrows match, because either sides are not shared,

which is the same as before, or sides are shared, in which case the corresponding

wings are removed, so that the edges of center squares touch (which also matches by

inspection).

3.4 Performance

We now examine "paper size performance" of CEA-3.1 through CEA-3.3, and also

the run-time performance for the combinatorial parts of the algorithms.

3.4.1 Paper Size

Here we discuss optimality of paper size informally as vague conjectures that might

provide insight into future research. This thesis is focused on constructions, not

detailed analysis, but we feel it would be helpful to share our intuitions. When we

conjecture that an algorithm produces optimal folded states, we mean that the size



of the rectangular paper used by the folded states is the smallest possible paper size

to fold that polycube given any possible hinge pattern (without slits).

CEA-3.1 folds an N-cube polygrove from a (2rN + m*) x (2cN + n*) rectangle

of paper by a sequence of N applications of an [r, c]-cube gadget, and is optimal

in the same respects as CEA-1 (Section 1.3) and CEA-2 (Section 2.4). In addition,

we conjecture that CEA-3.1 produces optimal folded states when the cubes to be

extruded are sufficiently sparse and "never aligned."

CEA-3.2 is less wasteful and uses only a (2rN + m* - r#) x (2cN + n* - c#)

rectangle of paper for the same folding, where r# and c# are the number of removed

pleats, and are bounded by the total number of pleats that could be used. In a

scenario where many pleats are shared, such as when extruding a VW x N x /N

grid of equally spaced disconnected cubes, we can share N pleats on every row and

column (for integral N). This makes r# = 2r(N - N) and c# = 2c(N - /N),

giving a rectangle of size (2r N+m*) x (2cvNW+ n*), which ignoring m* and n* is a

N -> 'N- savings. We conjecture that CEA-3.2 is optimal when CEA-3.1 is optimal,

and also in many cases when the cubes of the polycube do not have connected sides

or are "slightly misaligned."

CEA-3.3 is even less wasteful and uses only a (2rN + m* - r# - r$) x (2cN + n* -

C# - c$) rectangle of paper for the same folding, where r$ and c$ are the number of

rows and columns of removed sides (wings), and are bounded by the total number of

wings that could be used. In a scenario where many sides are shared, such as when

extruding a YN x IN "supercube" of fully connected cubes, the generated folded

state requires only a 2rVN + m* x 2cVN + n* rectangle of paper, which ignoring

m* and n* is a N --* N savings. We conjecture that CEA-3.3 is optimal when

CEA-3.2 is optimal, and also now in some cases where the cubes of the polycube have

connected sides, especially if there are no concave angles in the desired polycube.

3.4.2 Run-time

The main difference between CEA-2 and CEA-3.1 is that the m* x n* grid needs to be

taken into account. A simplistic direct implementation of CEA-3.1 would therefore



increase in run-time by 0(m* + n*) for each step, which would yield a total run-time

of O(N(N + m*n*)). This could potentially be improved with a slightly more clever

"sparse" data structure.

CEA-3.2 just needs additional time to determine the extrusion strategy (every-

thing else including pleat allocation is with respect to the number of cubes or steps

as before). A simple breadth-first search extrusion strategy takes only O(N) time, so

with such a strategy run-time remains O(N(N + m*n*)) (in fact, it is likely to "feel"

faster than CEA-3.1 as inserting less pleats saves time).

Finally, CEA-3.3 just needs additional time for the side-sharing strategy. The

down-right side-sharing strategy described looks only once at each square of a rectan-

gle of cubes to extrude, and may also look at one square outside a rectangle in order

to determine whether it has gone too far. This takes only a constant amount more

time than the total number of cubes to be extruded each step, so it takes O(N) time

total, still keeping the total run-time O(N(N + m*n*)).
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Chapter 4

Implementation

Here we describe our algorithmic implementations, and how we use those implementa-

tions with other tools to partially automate the folding process. Figure 4-1 overviews

the whole process.

4.1 Ruby Implementation

The combinatorial elements of all the algorithms described earlier were implemented

in Ruby exactly following the descriptions. A programmer can manually describe

the complete polygrove structure by specifying which cubes exist in the cube grid

graph, and where there are edges between touching cubes. Alternatively, a non-

programming user can extrude cubes one extrusion step at a time using a GUI.

Either way the implementation will share pleats and sides when possible within a

Abstract Polycube Ruby Implementation PostScript Cutting Plotter Folded Model
(Graphtec/CraftROBO)

Figure 4-1: The process by which paper origami can be constructed using the de-
scribed algorithms.

--- ---------- :::..:: ................. -- - _ ...... .......



step (using a simple side-sharing strategy).

The output is either a folding sequence that can be followed as described in Sec-

tion 2.3.1, or a simplified composition of the folding sequence which can be

saved to a PostScript file. The simplified composition just shows the original angle

pattern for each square tile on the full sheet of paper (i.e., the angle pattern from the

step when the square was inserted as part of a row or column), and does not take

into account non-orthogonal creases made as a result of later steps.

4.2 Partial Folding Automation

The PostScript file can be sent to a cutting plotter, which can etch the simplified

composition onto a sheet of paper. Alternatively, one can use a laser cutter to score

the paper. Once etched or scored, the step-by-step sequence generated by the imple-

mentation can be "simply" followed until the final folded form is reached, though it

may require a lot of skill to make all the simultaneous and multilayer folds required.

Artistic origami produced by this method has been displayed at various convention

galleries, student galleries, and even an airport gallery (Figure 4-2).



Figure 4-2: A display at the Origami Museum at Narita Airport, Tokyo. Left: "Cube
Evolution," a succession of three simple polycubes from back to front, each with one
additional cube (requires CEA-3.1). Back: "Inverse Cube Ring" which was designed
with a single extrusion step with shared pleats and turned inside out (requires CEA-
3.2). Right: "Low Resolution Car" which was designed with three extrusion steps
with shared sides and pleats (requires CEA-3.3).

............... ........................ . .. . . ..................... -- . ....................... ........ ...... .................... ..........
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