
Modeling Users' Powertrain Preferences
MASSACHU ETTS INST ITUTE

by Ct .

Jongu Shin DEC 16 2 0

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHNES

@ Massachusetts

July 2010

Institute of Technology 2010. All rights reserved.

Author
Department of

Electrical Engineering and Computer Science
July 30, 2010

Certified by
Leslie Pack Kaelbling

Professor
Thesis Supervisor

Accepted by I .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

9

Modeling Users' Powertrain Preferences

by

Jongu Shin

Submitted to the Department of
Electrical Engineering and Computer Science
on July 30, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Our goal is to construct a system that can determine a drivers preferences and goals
and perform appropriate actions to aid the driver achieving his goals and improve the
quality of his road behavior. Because the recommendation problem could be achieved
effectively once we know the driver's intention, in this thesis, we are going to solve
the problem to determine the driver's preferences.

A supervised learning approach has already been applied to this problem. How-
ever, because the approach locally classify a small interval at a time and is memory-
less, the supervised learning does not perform well on our goal. Instead, we need to
introduce new approach which has following characteristics. First, it should consider
the entire stream of measurements. Second, it should be tolerant to the environment.
Third, it should be able to distinguish various intentions.

In this thesis, two different approaches, Bayesian hypothesis testing and inverse
reinforcement learning, will be used to classify and estimate the user's preferences.

Bayesian hypothesis testing classifies the driver as one of several driving types.
Assuming that the probability distributions of the features (i.e. average, standard
deviation) for a short period of measurement are different among the driving types,
Bayesian hypothesis testing classifies the driver as one of driving types by maintaining
a belief distribution for each driving type and updating it online as more measure-
ments are available.

On the other hand, inverse reinforcement learning estimates the users' preferences
as a linear combination of driving types. The inverse reinforcement learning approach
assumes that the driver maximizes a reward function while driving, and his reward
function is a linear combination of raw / expert features. Based on the observed tra-
jectories of representative drivers, apprenticeship learning first calculates the reward
function of each driving type with raw features, and these reward functions serve as
expert features. After, with observed trajectories of a new driver, the same algorithm
calculates the reward function of him, not with raw features, but with expert features,
and estimates the preferences of any driver in a space of driving types.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor

4

Acknowledgments

I owe my deepest gratitude to Professor Leslie Pack Kaelbling, my academic, UROP,

and thesis advisor, for her unending support, guidance, and inspiration, which have

enabled me to develop a deep understanding in the field of computer science and

machine learning.

I would also like to thank Professor Tomas Lozano-Perez, for his guidance and

insightful comments that enabled me to grow intellectually and finish the thesis.

Finally, this thesis would not have been possible without the endorsement of Ford

Motor Company and the help of Dr. Dimitar P. Filev and Dr. Kwaku 0. Prakah-

Asante. I offer my regards to all of those who supported me in any respect during

the completion of this project.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

1 Introduction 13

1.1 Motivation and Objective . 13

1.2 A pproaches . 14

1.3 D ataset . 14

2 Supervised Classification of Single Intervals 17

2.1 Features . 17

2.2 C lassifiers . 18

2.3 Perform ance . 19

2.3.1 Single-User Case . 19

2.3.2 Two-User Case . 21

2.4 D iscussion . 22

3 Driver Type Classification 25

3.1 Prelim inaries . 25

3.1.1 Bayesian hypothesis testing 25

3.1.2 Iterative Bayesian hypothesis testing....... 26

3.2 Pilot Experiment....... 26

3.3 Driver Type Classification....... 27

3.3.1 Data models . 27

3.3.2 Transition model...... 29

3.3.3 Filtering . 31

3.3.4 R esults . 31

3.4 Classification with Online Update of Models 37

3.4.1 Learning Parameters Slowly 38

3.4.2 Online Clustering . 38

3.4.3 Expectation Maximization . 39

3.4.4 Simplified Baum Welch . 40

3.4.5 Results .
3.5 Discussion

4 Utility Function Estimation

4.1 Prelim inaries

4.1.1 Markov decision process
4.1.2 Linear Approximation of Reward functi

4.1.3 Inverse Reinforcement Learning and Ap

on

prenticeshi
4.2 Simulation and Dynamics

4.2.1 Car Model : State and Action
4.2.2 Simulation of Driving Environment
4.2.3 Dynamics : Simulation of Nearby Environment

4.3 Features .
4.3.1 Raw Features / basis functions
4.3.2 Expert Features / composite functions

4.4 P olicies .
4.4.1 One-Step-Look-Ahead Policy
4.4.2 Least-Squares Policy Iteration

4.5 Learning Algorithm .
4.5.1 Apprenticeship Learning via Inverse Reinforcement
4.5.2 Q learning .
4.5.3 LSTDQ and LSPI
4.5.4 Estimation with Expert Features

4.6 Simulation Experiment
4.6.1 Setup .
4.6.2 Results of Simple Policy
4.6.3 Results of Least-Squares Policy Iteration

4.7 Realistic Experiment .
4.7.1 Setup .
4.7.2 Results of Simple Policy
4.7.3 Results of Least-Squares Policy Iteration

)Learning.

Learning

4.8 Discussion .

5 Conclusion and Future Work

5.1 Conclusion .
5.2 Future Work .

8

75

75

76

.. 46

47

48

48

48

49

50

50

52

52

57

57

58

58

59

59

60

60

61

61

62

63

63

64

66

68

68

70

72

List of Figures

1-1 Example of Type-2 Dataset .

2-1 Pattern map of gas pedal rate and gas pedal position

2-2 Pattern map of windows .

3-1 Pilot Experiment of Bayesian hypothesis testing

3-2 Probability distributions of three measurements for different driving

types.....

Result of Bayesian hypothesis testing

Result of Bayesian hypothesis testing

Result of Bayesian hypothesis testing when swapped. .

Beliefs on newly observed dataset

Change of probability distributions's parameters during

Log-likelihoods and error rates over iterations

The interaction between an agent and its environment .

State

Simulator.

Factored Dynamics Model

Statistics of the second lane transition model

Flow of algorithm to estimate a driver's preference with

Distance to feature expectation as a function iteration .

Result of Simple Policy with Raw Features

Result of Simple Policy with Expert Features

Result of LSPI with Raw Features

Result of LSPI with Expert Features

EM iterations

expert features

The measured states (green lines) and simulated states (blue lines) .

Distance to feature expectation over iteration

Result of Simple Policy with Raw Features

3-3

3-4

3-5

3-6

3-7

3-8

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15 Result of LSPI with Raw Features . 72

List of Tables

1.1 Available measurements for each type of datasets 16

2.1 Result of SVM of Driver Type . 19

2.2 Result of Decision Tree of Driver Type 20

2.3 Result of SVM for Power Mode . 20

2.4 Result of Decision Tree for Power Mode 20

2.5 Result of Decision Tree of Two-User Case 21

3.1 Possible Models for Measurements . 29

3.2 Models and Calculated Parameters of Measurements.. 30

3.3 Result of Bayesian hypothesis testing... 32

4.1 The coefficients of the dynamics . 69

4.2 Result of Simple Policy with Expert Features 71

4.3 Result of LSPI with Expert Features 73

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

Ultimately, we want to build a system that acts as a "helper" agent to a driver. Such

a helper must solve two problems:

" Determine what the driver's preferences and goals are; and

" Take actions to help the user achieve his or her goals.

Although this problem can be treated monolithically, it may be very computationally

expensive to do so. Thus, we would like to begin by addressing the first part of the

problem in this thesis, as the second part of the problem can only be addressed once

the first part has a good solution.

1.1 Motivation and Objective

Our goal is to construct a system that can determine a driver's preferences and goals

and perform appropriate actions to aid the driver achieving his goals and improve

the quality of his road behavior. To determine a user's intention, we need to build an

inference engine that can take a stream of measurements from the environment and

a user's actions as input, as well as models for a driver and environment, and return

the classification of the user's preference.

One interesting approach has already been applied to this problem. A supervised

learning approach takes a small interval (5, 10, or 30 seconds) from a stream of

measurements and learns to classify each interval according to the type of driver [7].
However, as this method only focuses on a small portion of the data each time and

is thus memoryless, it cannot take any longer term behavior of a driver into account.

Therefore, our objective is to introduce a new approach which has the following

characteristics. First, it should consider the entire stream of measurements. While

looking back to the past input sequence using hidden states or other types of memory,
the algorithm should focus on the driver's recent activities. Second, it should be
sensitive to the environment. Because the criterion depends on the environment, such

as traffic and road type, the algorithm should be adaptive to distinguish between
different intentions appropriately. Third, it should be able to distinguish various

intentions. Other than binary classification, the algorithm should classify multiple
intentions or estimate in a space of driving types.

1.2 Approaches

In this thesis, two different approaches, Bayesian hypothesis testing and inverse rein-
forcement learning, will be used to classify and estimate the user's preferences.

Bayesian hypothesis testing classifies the driver as one of several driving types.
The algorithm can work as binary classification between aggressive and cautious , or
multi class classification among speedy , economical and safe . Assuming that the
probability distributions of the features (i.e. average, standard deviation) for a short

period of measurement are different among the driving types, and the measurements
for each interval are conditionally independently identically distributed of the type,
the algorithm maintains a belief distribution for each driving type and updates it
online as more measurements are available.

On the other hand, inverse reinforcement learning estimates the users' preferences
as a linear combination of driving types. Unlike the Bayesian approach, in which
the algorithm maintains the belief states regarding the driver's type, the inverse
reinforcement learning approach assumes that the driver maximizes a reward function
while driving, and his reward function is a linear combination of driving types' reward
functions. To determine the three different driving types, apprenticeship learning uses
sample trajectories obtained from the representative driver for each driving type.
Likewise, apprenticeship learning is also used to calculate the reward function of any
one driver based on that driver's measured trajectory. By comparing that driver's

reward function to the reward functions of the three driving types, our system can
estimate the preferences of any driver in a space of driving types.

1.3 Dataset

To experiment with our new approaches, we begin our work with synthesized datasets
to confirm that those approaches are valid. Since the simulated datasets vary depend-

ing on the method, they will be explained in relevant chapters. Once the approach

proves its usefulness, we experiment with realistic datasets acquired from Ford: Type-

1 has seven different measurements, whereas Type-2

1.1 explains available measurements for each type of

one trajectory of a Type-2 dataset as an example.

vehicle speed,

40

20

0
100020003000

50

0
200040006000

20 0

10

500 1000 1500

distance to
the closest vehicle

100

50

0-
100040000000

100

50

0
200040006000

100

50

500 1000 1500

acceleration
pedal position

20

10

0
100020003000

20

10,

200040006000
20

10

0
500 1000 1500

has five measurements. Table

dataset, and Figure 1-1 shows

brake .
pedal position steenng angle

40 50

20 0

0 -50
100020003000 100020003000

40 500

20 0

0 -- 500
200040006000 200040006000

20 50

10 0

0 1 1 -50
500 1000 1500 500 1000 1500

Figure 1-1: Three trajectories from one of the Type-2 datasets. The x axis is time,
(50=1sec); the units for the y axis differ for each measurement.

The Type-1 datasets have various measurements, especially regarding the current

status of the car and driving options chosen by a driver. The Type-2 datasets are more

interesting, because they include distance to the vehicle in front, which we conjecture

is particularly useful in diagnosing a driver's aggressiveness.

Each dataset consists of a series of datapoints, and the sampling rates are different

for two datasets. Type-1 has 1000Hz sampling rate, whereas Type-2 has 50Hz sampling

rate. Since the data are sampled at very high frequency, single data points are highly

correlated with one another, and may be noisy. To get a dataset of more manageable

size, with meaningful samples, we often aggregate datapoints in a small interval,
called a window, with length of 5, 10, and 30 seconds, and calculate features of the

interval, such as the sample mean and variance.

Collecting Datasets

In addition, several different schemes for collecting dataset were chosen to suit the

needs to train, test, or update algorithms.

Table 1.1: Available measurements for each type of datasets

(a) Type-1

Measurement Value Unit
Accelerator Pedal Position real 0-100
EDAS Performance Mode 1/2/3 boolean

Engine Speed real 0-5000 rpm
PCM Brake On Switch On/Off boolean

PCM SpdCon EDAS Active/Inactive boolean
Pedal Rel RPS Ena Rqst boolean

Vehicle Speed real 0-100 kph

(b) Type-2

Measurement Value Unit
vehicle speed r/s real 0 - 50

distance to the closest vehicle m real 0 - 100
acceleration pedal position % real 0 - 100

brake pedal position % real 0- 100
steering angle deg real

" Type-1 A : Each dataset was collected from one person who was driving with
one type. Each dataset was labeled with the type and the driver. It was mainly
to train the parameters. 6 datasets were collected.

" Type-1 B : Each dataset was collected from one person who changed his behavior
in the middle. Each dataset was labeled as the two driving types with the time
when the behavior changed and the driver. It was used to test the parameters.
6 datasets were collected.

" Type-2 A : Similar scheme to Type-1 A , but with Type-2 measurements. 8
datasets were collected.

" Type-2 B : Similar scheme to Type-1 B , but with Type-2 measurements. 6
datasets were collected.

* Type-2 C : Each dataset was collected from one person who changed his driving
type several times. It was labeled with the degree of aggressiveness over time
and the driver. It was used to test the EM algorithm, which updates parameters
without knowing labels, and to verify updated parameters. 10 datasets were
collected.

When we handle the real dataset, we choose the the dataset type and the scheme
to best suit the purpose of methods, and they will be specified throughout the thesis.

Chapter

Supervised Classification of Single

Intervals

A previous attempt to classify drivers' performance modes used a supervised learning

approach [7].

2.1 Features

As the probabilistic pattern map of the gas pedal rate and gas pedal position are quite

different between aggressive and cautious drivers (Figure 2-1), one would expect that

the measurements can be successfully classified. However, because these values tend

to be sampled at a high rate (1000Hz for the dataset 1 and 50Hz for the dataset 2), and

because each datapoint is not independently identically distributed, it is meaningless

to classify each data point independently.

Figure 2-1: Pattern map of gas pedal rate and gas pedal position
Source: [12]

Instead, datapoints within a small interval, called a window, with length 5, 10,

......

and 30 seconds from a series of raw measurements, were aggregated and described by

features (average and standard deviation) of each measurement, such as accelerator

pedal position and vehicle speed. After filtering out meaningless windows that have

a speed near zero, they were labeled as belonging to the cautious or aggressive driving

types, and as belonging to a specific performance mode. Figure 2-2 shows the

relationship among calculated features; each dot represents one window, and its color

represents the label. You may notice that the dots are reasonable well separated using

those features.

Mae

* *5 U

lo a a a

as

4a
W

(a) Accelerator standard deviation vs. speed (b) Accelerator standard deviation vs. brake
standard deviation standard deviation

Figure 2-2: Pattern map of windows. Each dot represents one window, and its color
represents the label, where red: aggressive and blue: cautious .

Source: [7]

2.2 Classifiers

Two types of classifiers were employed in this experiment:

" SVM with linear kernel: the SVM'49" implementation

(available from http://symlight.joachims.org/).

More complex kernels did not provide improved performance.

" C4.5 (Release 8) Decision Tree builder

(available from http://www.rulequest.com/Personal/).

2.3 Performance

This approach was tested on the Type-1 datasets 1, using two approaches. In the

single-user case, training and testing data were selected from the same driver. In

the two-user case, data from different drivers was mixed to generate the training and

testing sets.

2.3.1 Single-User Case

The results for classifying between aggressive and cautious driving type for the single-

user (koppa) case are shown in Table 2.1. The linear SVM and the decision tree

algorithm had comparable performance. Note that the 5 and 10 sec windows perform

much better than the 30 sec window.

Method Accuracy
5 10 30 sec window

SVM Linear Kernel (single train/test split) 80% 84% 70%
C4.5 (10-way cross-validation) 83% 82% 77%

Table 2.1: Each number represents one window.
Source: [7]

Support vector machines performs moderately well. Most of time, the algorithm

achieves approximately 20 to 25% of error rate in binary classification between ag-

gressive and cautious driving type, and between power mode 3 and power modes 1 or

2.

On the same data, the decision tree algorithm achieves a slightly lower error rate

of 15%. The resulting decision rule is shown in Table ??. However, the decision tree

heavily on the standard deviation of acceleration pedal position; all windows whose

the standard deviation of acceleration pedal position below 7.79 are classified to a

cautious driving type. This criterion classifies 181 windows correctly, but fails at 38

windows, which exceeds the average error rate. Prom this, we conclude that acceler-

ation pedal position alone does not have enough information to classify all windows

correctly.

'When Lozano-Perez experimented, the Type-2 datasets were not available.

AccSd <= 7.79 -1 (181.0/38.3)
AccSd > 7.79 :

| BrkSd > 0.18 1 (117.0/12.8)
| BrkSd <= 0.18 :
| I RpmAv <= 1633.74 -1 (12.0/5.7)
| | RpmAv > 1633.74 : 1 (23.0/6.0)

Table 2.2: Each number represents one window. +1: aggressive , -1: cautious .
Source: [7]

Classifiers were also constructed to distinguish between window during which

power mode 3 is in use, on the one hand, and those where either power modes 1

or 2 is in use, on the other. The performance results are similar.

Method Accuracy
5 10 30 sec window

SVM Linear Kernel (single train/test split) 79% 81% 71%
C4.5 (10-way cross-validation) 85% 82% 84%

Table 2.3: Each number represents one window.
Source: [7]

The decision tree for this problem (Table ??), shows a similar pattern as well,
note that the top-level branch is nearly the same as in the previous tree.

AccSd <= 7.9 : -1 (185.0/17.0)
AccSd > 7.9
I AccSd > 14.4 : 1 (31.0/3.0)
| AccSd <= 14.4

| | AccAv <= 7.48 : 1 (25.0/3.0)
| | AccAv > 7.48
| | | RpmSd > 454.57 : -1 (18.0/1.0)
| | RpmSd <= 454.57
| | | | BrkAv <= 0.14 : -1 (43.0/13.0)

| | I | BrkAv > 0.14 : 1 (31.0/9.0)

Table 2.4: Each number represents one window. +1: Power Mode 3, -1: Power Mode 1 or
2.

Source: [7]

2.3.2 Two-User Case

In the two-user case, where the data from two users (kopa and finn) are merged,

the C4.5 classifier performs comparably (e.g. 81% for the 10 sec. windows in cau-

tion/aggressive classification). The linear SVM does substantially worse (e.g. 75%

for the 10 sec. windows in caution/aggressive classification), however. This suggests

that the data from these drivers is substantially different. The decision-tree classifier

can readily deal with data that has multiple clusters (e.g. Figure 2.4); the linear

SVM is less able to deal with that. A more powerful SVM kernel, such as radial

basis functions, should be able to deal with the more complex data, but that was not

attempted in this preliminary study.

AccSd <= 7.79 :
| RpmAv <= 1571.21 : -1 (189.0/44.5)
| RpmAv > 1571.21 :
| | AccSd <= 3.63 : -1 (23.0/2.5)
| | AccSd > 3.63 :
| | | AccAv <= 17.63 : 1 (5.0/1.2)

| | | AccAv > 17.63
| | | | AccSd <= 4.72 1 (4.0/2.2)

| | I I AccSd > 4.72 -1 (17.0/3.7)
AccSd > 7.79 :

| BrkSd > 0.18 1 (150.0/21.5)
| BrkSd <= 0.18

I RpmAv > 1637.89 : 1 (44.0/11.5)
| | RpmAv <= 1637.89

I | | SpdAv <= 71.27 -1 (9.0/2.4)

| | | SpdAv > 71.27
| | | | SpdSd <= 2.34 1 (5.0/1.2)

| | | | Spd_Sd > 2.34 -1 (3.0/2.1)

Table 2.5: Data from two users.
+1: aggressive , -1: cautious .

Source: [7]

Because different users have different driving patterns, the aggregated pattern

map is naturally computed by calculating the average of various driving pattern

maps. Such approach will certainly achieve the best performance on entire data. On

the other hands, for an individual whose pattern map is different from the average,

the algorithm fails to classify as much as he is deviated from the average. However,

it is very likely that driving patterns vary between drivers. Therefore, the two-user

case performs worse than the single-user case. Especially, the decision tree algorithm

fails significantly, because it is more susceptible to the inconsistency between training
and test data. Moreover, it is not reasonable to have same criterion for two different
drivers.

2.4 Discussion

Most importantly, the supervised learning approach has a limitation regardless of the

error rate.

First, previous work is limited to binary classification. However, the users' in-

tentions are often significantly diverse, and so binary classification is not effective.

One may broaden the work by multi-class classification through binary classification

as these methods are not limited to binary classification. However, such a dataset,
in which classes are not entirely separable, often performs worse in the multi-class

classification through binary classification. For example, assume that there are three

driving types: aggressive , neutral , and cautious . Even though the criterion between

aggressive and cautious is firm, the criteria between aggressive and neutral , and be-

tween neutral and cautious are subtle to determine and thus unstable. Therefore,
binary classification for neutral often fails, thus failing the entire multi-class classifi-

cation.

Second, the algorithms classify per window based on the immediate window, only

focusing on a small portion of data each time. However, focusing on one window is

not the optimal way to make a decision for time series measurements, such as driving.
To resolve this issue, one way to aggregate all information from the beginning of the
driving episode until the time of an inference is to calculate the ratio of each driving

type so far and choose the higher one. For example, assume that out of 200 windows,
150 windows are classified cautious and 50 windows are aggressive . Then, the ratio

for each driving type is 75% and 25%, respectively, and assuming the process does not

change, the maximum likelihood estimation for the driving type is cautious. However,
the assumption that the process does not change is very strong, and such an approach

often fails to catch a sudden change in driving behavior. For example, if the user has

driven aggressively for 10 minutes and changes his intention, the machine might take

another 10 minutes to detect the change in driving behavior.

Third, the decision rule is susceptible to training data. In some scenarios, two

driving types are naturally hard to distinguish, thus corresponding intervals should

be marked as indistinguishable . A good algorithm should ignore those intervals and

should not be affected by them. However, because the labels are marked per dataset

basis, these intervals are actually marked either aggressive or cautious . In this case,
because supervised learning does binary classification between two labels, and because

supervised learning tries to minimize the empirical risk, the algorithm often over-fits

the training data. Due to this, a subtle variation of the training data may result in

the significant change of the decision rule. One naive approach is to remove indistin-

guishable windows manually before running the algorithm; however, it is infeasible

to check all windows by hand because of the size of datasets.

Therefore, we need to suggest an improved algorithm that solves the previously

discussed limitations on supervised learning. Fortunately, researchers have solved

similar problems in various techniques.

The first problem can be solved by introducing multiple classes, or a space of types.

Instead of multi-class class through binary classification, direct multi-class classifica-

tion may solve the issue of failing binary classification due to one indistinguishable

class. Or, estimating the type in a space of types solves the issue and improves the

performance even further. The second problem suggests that the improved algorithm

must consider not only the immediate measurements, but also the historical mea-

surements and future predictions. For example, an iterative algorithm with memory

or discounted rewards enables such approach. The third problem also hints that the

models or classification criterion should be trained so that the algorithm can generally

perform well, but should be adjusted depending on situation.

In the following chapters, improved algorithms which use parts of these solutions

will be discussed.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3

Driver Type Classification

In this chapter, we discuss an algorithm that uses Bayesian hypothesis testing to

diagnose the type of a driver based on a temporal sequence of the perceptual inputs

(velocity and distance to car in front) and control actions (pedal positions).

Unlike the supervised learning approach which classifies the type of a driver per

observation, our new approach maintains priors of hypotheses and updates as a new

observation comes. By remembering the belief state and updating it online, the

approach can perform much better than the supervised learning approach in our

case.

3.1 Preliminaries

3.1.1 Bayesian hypothesis testing

Bayesian hypothesis testing gives the posteriors of hypotheses from an observation

and the priors of hypotheses, following the exposition in the 6.437 class note [3].
Denote a set of hypotheses as W = {H 1, ..., Hi, ..., Hm} and its size as |7| = m.

Then, the prior of each hypothesis Hi is denoted as pH(Hi). Under each hypothesis

Hi, the likelihood of an observation y is denoted as py|H(y|Hi) and often given before-

hand. Finally, the posterior of an hypothesis Hi under an observation y is (by Bayes'

theorem):

PHy(Hiy) PyH(YH)PH(H) (3.1)
EMp -Py|H(y|Hj)PH(Hj)

Given an observation, the maximum a posteriori hypothesis is the one that has

the highest posterior.

3.1.2 Iterative Bayesian hypothesis testing

Denote the prior of each hypothesis Hi at time t as pH,t(Hi, t). Similarly, denote the

posterior of an hypothesis Hi under an observation yt at time t as pH,tly(Hi, tlyt). For

a time series of observations, because the belief propagates over time, the posterior

at time t becomes a prior at time t + 1. Thus, the following relationship holds:

PH,t(Hi, t + 1) = PH,tly(Hi, tIyt). Using this relationship, we can iteratively estimate

the posteriors of hypotheses give a series of observations.

Similarly, given a series of observations, the maximum a posteriori hypothesis is

the one that has the highest posterior at the end.

3.2 Pilot Experiment

We assumed the driver belonged to one of three basic types:

1. speedy (trying to move as fast as possible)

2. economical (trying to save fuel)

3. safe (trying to maintain safe distance in front)

We then hand-coded potential policies (mappings from perceptual inputs to distribu-

tions over control actions) for each of these driver types.

Next, we built a system to do online diagnosis of the current driver's "type". It

does belief-state estimation, maintaining a current belief distribution (assignment of

probabilities to each of the driver types) and updates it online based on each new

action of the driver. This process is quite efficient. The estimate can be displayed

to the driver as a 'gauge' that shows, implicitly, what their preferences seem to be,
based on their actions. If a driver who would like to save fuel sees that he is not being

characterized as behaving in a fuel-saving mode, he can try to change his behavior as

a result (and in future systems, we would have the computer agent make suggestions

to the driver about how to do that).
We tested this model by using the different policies to generate artificial data, and

making sure that we could recover the type of the particular policy that was used to

generated data. An example trace is shown in Figure 3-1.

A crucial feature of this approach, in contrast to the supervised-learning method

that we applied initially, is that it is online and can deal with dynamically changing

MAiTIM 7.4(R07a

File Edit View insert Tools

Figure 3-1: Belief in different driving types over time, based on ideal policies and simulated
data.

behavior of the driver (who might switch modes on different days or different parts

of a trip).

3.3 Driver Type Classification

Our next step was to build a similar dynamic filter based on real driver data. In

the previous work, we assumed we knew policies for the different driving types in

advance. We can think of a policy as a conditional distribution Pr(als, T) that specifies

a distribution over actions given the current state, for each driver type, T.

Now, we need to first 'train' our models based on some of the given data, and then

use the rest of the data to 'test' (to determine whether we can diagnose what type of

driver is currently driving). To simplify the problem, we trained joint distributional

models, rather than conditionals, meaning that we estimated Pr(a, slr). Finding

appropriate probabilistic models for the real data was surprisingly difficult.

3.3.1 Data models

As it is meaningless to classify each data point independently, like supervised learning

methods, Bayesian hypothesis testing also aggregates information of datapoints in a

small interval into a window by calculating features, such as average and standard

deviation, and assumes that each window is independent given the state.

We start by assuming that the distributions for each attribute are independent.

This assumption is clearly not true, but it greatly simplifies the modeling problem,

and we can re-address it later if our models are not sufficiently discriminative.

-- ---- ----- -------------------- -1 -.-

Based on the assumption, we can find the probability distribution that the features
of each attribute follow. As expected, in general, the sample mean parameter values
follow a Gaussian distribution and the sample standard deviation values follow a

Gamma distribution: 2 ~ Gamma(a, #)
m~ N(p, a2)

Figure 3-2 shows data and fitted parameters for several distributions. In each
figure, the light lines are histograms of the actual data and the dotted lines are
the estimated probability density functions. The top two graphs are for the sample
means, and the bottom two are for sample standard deviations. The blue curves are
for accelerator pedal position; green is engine speed; and red is vehicle speed. The
graphs on the left are for an aggressive driver and the graphs on the right are for a
cautious driver.

aggressive cautious
edasPM kopa agg1. diaribution for pedaPM kopa cau2 distribuition for p

00 0.0
"r M 0tol 4, mn00 max: 61 - , from 0, to:B4m,m 47.1

om: 0,to: 4W. min. 6W, ax: 3.9+030. from: 0,.to 4096, mi8' 613 mao 2.940.03
0.2f;r-1om: 0, to: 128,mt 2.08&-15, mac 96 0 .2 - 3, trm: , o:l 128, 188 2.08e-15, mao 94.5

0.02 0.02

0.005 0.005

0.01 0.01

0 20 40 s0 80 100 1 20 140 160 160 0 20 40 60 80 100 120 140 160 1800 range(00 b(2 between frm and to) 180range (200 bins betwea from and to)

edwaPM kopa agg1, Cdstribut for p edasPM kopa cau2 dntributon for p
01 0+1

- ,it om: 0, to:32, Min0 mo19.8 - 1, frm0,to16, =:o0' ,m 1 8
0.09 2.fm:0,to 1024 248! : 527 0.09 Z from 0to:012, mi o 374

3 , rm :0, to 4, odw 0, ma2.54 -0 , fm:0, to: Zmin:.0, mao1.72

0.08- 0.08

0.07 - 0,07

0.09 0.08

0.05 005

004 0.04

0.03 0.03

0.02 0.02

-1-Q
c 0.01 001

0 20 40 60 80 100 10 140 160 10 0 40 60 80 100 120 140 160 160
range (200 bWne between from and to) range (200 bins between from and to)

Figure 3-2: Probability distributions of three measurements for different driving types.
Clearly those distributions differ between driving types. The left graphs show distributions
for aggressive driving type, whereas the right graphs show for cautious . The colored lines
indicate measured histograms, while the dashed thick line indicate empirical distributions.
The fitted distribution in general mimics the measured histogram. See detailed description
in text.

Many measurements cannot be effectively modeled with a single Gaussian or
Gamma distribution. For example, velocity is 0 a significant proportion of the time,
and so is the variance of the brake pedal. We model these situations with mixture

distributions, which give a value, such as zero, a fixed proportion p of the time, and

otherwise yield a value drawn from a Gaussian distribution. We ultimately use these

families of distributions for modeling the various properties: Table 3.1.

Table 3.1: Possible Models for Measurements

Name Model

Normal (m N(p, o 2))
DeltaNormal (M ~ pm6(m) + (1 - pm)- 6(m))N(p, U2))

m ~N(pu,uo)
NormalGamma ~Gamma(a,)

Delt Nora l~m ma m ~pmo(m) + (1 - pm) (1 -6(m)) N(p, o2)DeltaNormalGamma 2 am(Q3
s ~ Gamma(a,#)

Delta NormalDeltaGamma (P2(m)+(I-prnl-(mN(pU2)
s ~ 2 po(s 2) + (1 - ps)(1 - 6(S2))Gamma (a, #

As shown in Figure 3-2, different driving types have distinct distributions and

therefore must be parameterized by dissimilar parameters. We have found appro-

priate models for measurements of each dataset type, and empirically calculated the

parameters for the model for aggressive and cautious driving types (Table 3.2).

We assume that we have training data classified according to the type of the

driver, and use maximum-likelihood estimation procedures to compute the parameters

for each of these distributions from training data, yielding distributions of the form

Pr(a, sIT) for different driving types T.

3.3.2 Transition model

We will assume that drivers can possibly change their type over time. Our initial

belief, before seeing any data, is uniform over the driver types. If we have n driver

types, then Pr(To = T) = 1/n, initially. The random variable To represent the driver's

type at time 0. Still, if data is available, this initial distribution can be estimated

empirically as well.

The transition model specifies how the driver's type is likely to change over time.

It is specified with a matrix of transition probabilities, indexed by i and j, that specify

Pr(T 1 =Tj Tt = -ri) .

Table 3.2: Models and Calculated Parameters of Measurements. As common knowledge
suggests, the sample mean of Accelerator Pedal Position, Engine Speed, and Vehicle Speed
of Type-1 are larger for aggressive type than cautious type, while cautious uses more brake
than aggressive type.
Type-2 shows similar trends on measurements. Notably, cautious type maintains almost
twice as much distance to the closest vehicle as does aggressive type.

(a) Type-1

Measurement Parameter
Mode aggressive cautious

Accelerator Pedal Position Pm = 0.12 pM = 0.28

DeltaNormalGamma p 15.6, o 11.5 = 14.3, o = 9.1
a = 3.8, #=2.6 a = 2.0, /=2.5

Engine Speed y = 1601, o- 503 y 1476, = 403
NormalGamma a = 1.5, / = 155.3 a 0.70, / = 164.6
PCM Brake On Pm = 0.32 Pm = 0.73
DeltaNormal y = 0.46, a = 0.29 p 0.68, a 0.36
Vehicle Speed y = 60.2, o- = 26.0 y 58.73, a 26.2

NormalGamma a = 0.8, = 2.5 a = 1.5, /3 1.8

(b) Type-2
Measurement Parameter

Mode aggressive cautious
vehicle speed p = 15.9, a = 7.7 y = 14.4, a = 6.6

NormalGamma a 1.3, # = 0.70 a = 1.1, / = 0.58

distance to the closest vehicle pm = 0.17 pM = 0.23

DeltaNormalGamma At = 20.7, or 17.6 y 34.6, a = 23.0
a = 0.50, # = 17.2 a = 0.55, / = 22.2

acceleration pedal position PM = 0.15 Pm = 0.16

Delta Normal DeltaGamma = 13.5, a = 10.2 p= 10.8,a o =6.7
a = 2.6, # = 3.0 a = 1.9, # = 2.0

brake pedal position pm = 0.49 pm = 0.68
DeltaNormal y = 26.3, o = 19.6 t = 30.4, a = 21.4

steering angle 6 = 0.01 6 = 0.02

Delta NormalGamma P = -4.6, a = 29.7 At = -3.4, a = 30.3
a = 0.47,/# = 18.2 a = 0.42, # = 16.2

In our example, we will have two Ts: aggressive and cautious , and set the prob-

ability of staying in the same type as 0.9, and of changing types as 0.1.

3.3.3 Filtering

Now, we can do filtering, in which we are given a stream of data from a new driver, and

have to output, on each step, the current probability distribution over this driver's

type, conditioned on the historical data.

On each step, we compute a new distribution on driver type, Pr(Tt+i), based on

the most recent observed data and on the old driver type distribution Pr(Tt).

Given a window and prior probability, we can calculate the posterior probability

using Bayes rule, where a is aggressive driver type, c is cautious driver type, and d is

the observed data:

Pr(Ti+ = ald) 1 Pr(Tt+1 = a|T = a) Pr(Tt+1 = a|Tt = c) p(d|T = a) Pr(T = a)

Pr(Tt+l = cd) J (Pr(Tt+1 = clTt = a) Pr(Tt+1 = clTt = c) p(dT =c) Pr(T = c)

transition matrix
where z is a normalizing constant.

3.3.4 Results

For each driving type, we divide our datasets into training and testing datasets. The

training dataset is used for parameter estimation, and the testing dataset is used for

filtering.

Figure 3-3(a) shows the results of filtering on each of six separate Type-1 data

sets. Figure 3-3(b) shows basically the same type of results for the Type-2 data

(which has fewer features, but includes distance to the vehicle in front). The model

for aggressive driving was trained on the training half of each of the aggressive data

sets, and the model for cautious driving was trained on the training half of each of

the cautious data sets.

The top row of each graph shows filtering results for aggressive drivers and the

bottom row for cautious drivers. The blue curve is the probability that the driver is

aggressive , conditioned on the testing data seen so far, Pr(T = a), and the green

curve is the probabilty that the driver is cautious , conditioned on the testing data.

We can see that in five of these cases, the filtering algorithm quickly converges to the

appropriate driver type. In one case, with Finn driving aggressively, it is confused

with cautious for part of the time.

We then calculate the error rate of our new approach by choosing the most likely

driving type and comparing it with real labels, as shown in Table 3.3. In general,
Bayesian hypothesis testing performs very well on both Type-1 and Type-2 datasets,
achieving roughly 4% of error rates. Comparing to supervised learning whose error

rates are 15% to 20%, the algorithm has one fourth of error rates.

Table 3.3: Result of Bayesian hypothesis testing. On average, the algorithm achieved
roughly 4% error rates on both types of datasets, which are significantly better than super-
vised learning algorithm's error rates of 20% to 25%. Figure 3-3 shows the detailed belief
changes of each dataset.

(a) Type-1

Driver Label _Error Rate

filev aggressive 0.2143
filev cautious 0
finn aggressive 0
finn cautious 0
kopa aggressive 0
kopa cautious 0

average 0.0357

(b) Type-2

Driver Label Error Rate
driver1 aggressive 0.0167
driver1 cautious 0.0331
driver2 aggressive 0.0442
driver2 cautious 0.0484
driver2 aggressive 0
driver2 cautious 0.0400
driver3 aggressive 0.0172
driver3 cautious 0.1193
average 0.0399

filev finn kopa

0 10 20 30 40 0 0 70 80 0 10 20 30 4 o 5 so(70

(a) Type-1

driver1

.. -

.-

driver2

0.4 .

driver2

.7-

driver3

I, 40 a tt\.

(b) Type-2

Figure 3-3: The training set for each driving type is generated by collecting all drivers'
demonstrations. Then, the algorithm is tested on each dataset. Each subfigure corresponds
to a dataset. The blue line indicates the posterior of aggressive driving type, whereas the
green lines indicates that of cautious driving type.

8 r /~f\ 7'11 0\ I\l

8 - ----- .aggln ag2)(kopa.80 agg 72(opa agg20) -
--- 00 ca 0linca12(kop ca12)lkopocau2:)

4 -

3--

y
- / 1 28.)k o ag1:2)(k. ag22)

-- ca/incau1 2)1(kapa cal1 2)Xkapa ca22

4

3-

2 -

In addition, to test whether the driving-type diagnosis could really track changing

type, we performed a set of experiments in which we switched the data stream from
one type to the other during the filtering process. Figure 3-4 shows the results. The

graphs are similar to the previous ones, but the change from a blue to a green line at

the bottom of the graph indicates the driving type has changed. Due to the strong

belief of one mode before the transition, the filter doesn't instantaneously change

hypotheses, but after seeing a small amount of data of the new type, it fairly reliably

changes hypotheses.

We tried an additional experiment in the Type-2 data, to see if we could dis-

criminate between different individual drivers (as opposed to driving types) with our

method. As Figure 3-5 shows, there is no stable posterior distribution.

filev fin kopa

0

07 72 -880 0730..0

00)

ru 0 10 20 30 00 70 80 70 80 0 0 10 20 30 40 so 0 80 7 so8 0 10 20 00 M0 so W 70 0 8

>) 0 08/ 08. 4 A V009

03- 08. 03)

Ma 0200

05 085 03

0 02 02./ 02/, 07 0

o 0 10 20 0 30 W so0 70 W0 90 0 10 20 0 40 W0 OD 70 so00 10 00 W0 00 so 90 70 so 90

(a) Type-i

drivenl dniver2 driver2 driver3

=- 0, 7 a ~ D.
88 88 8 "Mew

asM~ lAWM2UMMMA3

0-)

bOO

> 0 40 s 0 1 0 0 1 o to I a a Q 6 n to I 0 2 0 so g 0

U) 0.!7 01 008

0W 1
L.- 7 .8

W 8eo =MO 8OI4A W m2

2 (b) Type-
Fiur 3-:Tetann e o ac rvn yei eeaedb olcigaldies

line idcts the poteior 24 of aggressive drvn tye whras the green0is indicates that i

of cautious driving type. The sold blue and green lines at the bottom of each plot indicate
the actual driving type.

... -

driver1 driver2 driver2 driver3

0 0, 50 0.6

0.404 4 0.4

bO

01 f~ II01 0.5

0 2a 40 so so 100 in 0 20 40 00 a0 02 12 20 20 a0 20 120 13 0 20 40 00 as 1.

0.4 to4O

t5 0 0.4 04

0 0

0 M0 a0 20 20 120 In0 0 20 4 20 20 40 I2n W4 0 20 00 20 20 l20 120 140 0 20 40 20 0 50

Figure 3-5: The training set for each driver is generated by collecting each driver's demon-
strations. Then, the algorithm is tested on each dataset. Each subfigure corresponds to

a dataset. The blue, green, and red lines indicate driver 1, driver 2, and driver 3, respec-

tively. Unfortunately, the algorithm cannot determine the driver correctly. However, the

result gives some insight about each driver's behavior. As the beliefs for driver 1 and 3
(blue and red) dominate at the aggressive driving type, whereas those for driver 2 and 3

(green and red) dominate at the cautious driving type, we can claim that the driver 1 is the

most aggressive, and 2 is most cautious, and 3 is in between.

3.4 Classification with Online Update of Models

Using the model and parameters found from the previous chapter, we ran the al-
gorithm with a newly collected data. Unlike the previous data which do not have
transitions, the new data were collected to test whether

1. the algorithm can work for any new driver, and

2. the algorithm can detect a transition between driving types

Specifically, three drivers have driven in their own styles and then changed their
driving styles in the middle of a dataset (Type-2 B). Figure 3-6 shows the beliefs
over time for each driver and each transition.

filev finn kopa

Figure 3-6: Beliefs on newly observed dataset

Even though there is noise, the driving style of Finn (the second column) is well
distinguished. However, Filev's style is more aggressive and the algorithm classifies
his entire driving as aggressive. Similarly, Kopa's cautious driving is not detected
fully.

This problem comes from the fact that the criterion of aggressive versus cau-
tious level is different across people. Even though the training datasets can give a
criterion that works for most people, it might not work well for a specific individual.
Specifically, when a new person drives a car, his driving style is not fully distinguish-
able using the model that was statically trained. That is, although the models derived

............
.

i

from training datasets can serve as a good initialization, we need to adaptively adjust

the model online depending on a new person's style, as more data are available over

time.

There are two important obstacles to such a scheme.

1. How to update the model and classify at the same time?

2. Without labels, how to update the parameters online?

Because we do not know the labels, regardless of the classification of each window,
whether it is aggressive or cautious , we should rely on the unsupervised, or semi

supervised methods. In this chapter, we propose three ways to resolve this issue.

3.4.1 Learning Parameters Slowly

One way is to learn the parameters slowly over time [12]. If the classification for one

driver has remained in one class for a long time, we can update the parameters to fit

the behavior of a specific driver better. For example, when one driver has driven in

very high speed, even faster than the standard aggressive drivers, for a long time, we

should raise the mean of the velocity.

Using this logic, we can adjust the parameters when the classification is saturated.

Formally, when the posterior for one class exceeds a certain threshold, we can slowly

update the parameters. The update of one parameter can be done simply with a

learning rate y by at+= at + (1 - -)Aat, where at is the parameter at t.

The mean of the normal distribution is one of the critical parameters that distin-
guishes various intentions and it can be updated this way. However, other parameters,
such as the standard deviation of the normal distribution, and alpha and betas of the

gamma distribution, are very subtle and hard to update incrementally.

3.4.2 Online Clustering

Another method is to perform unsupervised learning online. For every iteration, a

clustering method, such as k-means clustering, is performed to divide datapoints into

several classes. Based on the result from clustering, training is performed again to fit

parameters for each class, and a new belief is calculated.

However, in this approach, the belief might be very unstable, because clustering

differs significantly over time. Thus, we need to have a better approach, which instead

of statically assigning each datapoint to one class, but makes a soft assignment to

various classes in a way that maximizes the likelihood of the data.

3.4.3 Expectation Maximization

A more sophisticated way to update the parameters is the unsupervised method,

expectation maximization, to update the model.

Unlike our previous method, in which each datapoint is labeled and the pdf for

each class is estimated independently, the EM method maintains beliefs of each data-

point having been generated by each class: bij where i is the index for datapoint and

j is the class number. Note that the sum of beliefs for all classes for one datapoint

must be 1: E "_1 bij = 1.
However, often the new information from recent driving data is more important

than the old information. Thus, we need to add another weight wi to consider how

important each datapoint is. Note that the sum of weights for all datapoints must be

1: Z?_1 w, = 1.
The target likelihood function that we want to maximize is:

L = J7 fi f (xi I)(bi*wi)
2 J

where f3 is the likelihood function of the class j.
As the name implies, the EM algorithm iteratively executes a E step and a M

step, so that the algorithm can updates both the beliefs and the parameters at the

same time.

EM step

In the E step, the beliefs of each datapoint are calculated. Using the current pa-

rameters 0 jter, we can calculate the likelihood of the datapoint being in each class by

f(xzIlOter)(bij) (note that wi is dropped because it does not affect each datapoint).

t~er+l 1 f (i 0zter)(b'ter)

In the M step, the parameters for the pdf are re-calculated based on the beliefs.

That is,

argmax 17 f(Xil)(i

Since we assumed that each datapoint is iid given the class and measurements

are independent each other as well, we can estimate the parameters with maximum

likelihood estimator with considering weights.

1. Normal model:

E~~x~] > i: tber,
b b erW.p ~1 = x]

o- = E[x] - E[xi]2 Z bxter

2. DeltaNormal model:

Pm =P[x = 0] =

Z W0 berW,

E bWerw.

y = same above

o = same above

3. Gamma model: This model does not have a closed form. Thus, we need to
find a numerical solution [8].

The likelihood function is: p(x, wa, /) =]Hi F(xi, w la,/#) = exp(--)f

Taking a log-likelihood function, log p(x, wc, #) = (a-1) E wi log xi- E wi log F (a)-

EK wca log(#) - #-- E wjxj.

By taking the derivative with respect to # and setting to 0, 0 >2 wja/# +

0-2 E wixi. Thus, the maximum can be achieved when r- =w i/a.zwi

Substituting / into the log-likelihood, we get:

logp(x, w~a,/#) (a - 1) Ei mi log zi - Ej wi log F(a) - Ej wia log("xi a) -

E wia.

This equation, unfortunately, cannot be solved analytically. Rather, using New-
ton's method, we can numerically find an a which maximizes the log-likelihood.

Summarizing,

a= argmax (a -

E wi

Sw2 log xi - E w, log F(a) - wia log(E /a)

3.4.4 Simplified Baum Welch

The basic EM algorithm is a nice way to update the parameters online. However,
it does not consider the transition probabilities nor the belief history. However,

-wia

the transition probabilities may differ from person to person, Thus, in addition to

updating the parameters of the pdf, we also need to update the transition probabilities

and and the belief history online.

The target likelihood function that we want to maximize is:

L = 11171 f(Xi Q)(bii wi) ri Wt L Tjl,j2btjIibt+ij 2j
i j t=1 jlj2

where T is the transition matrix. Note that in this approach, not all of the datapoints

are being used to calculate the transition probability; specifically, only the datapoints

that were observed online should be considered.

The solution of this problem is well known as the Baum-Welch algorithm [2]. Nev-

ertheless, by assuming some properties of the transition matrix, such as symmetric,

we can simplify the approach slightly.

3.4.5 Results

Setup

The algorithm initializes the the pdf of each class to be the distribution previously

estimated on pooled data. In addition, as the algorithm requires some pool datapoints

so that the distributions are not too saturated, the algorithm might need to wait until

certain number of datapoints are collected.

As a new data is available (for each estimation), the algorithm adds a new data-

point to the datapoint pools, and re-weights the datapoints so that each of the new

and old data is weighted appropriately. Then, by iteratively running EM until the

saturation point, the algorithm recalculates the beliefs and adjusts pdfs for classes.

During the first run, thanks to the 'nice' initialization, the EM algorithms reaches

the saturation point very quickly and does not modify pdfs much. However, as time

passes and more new datapoints are collected, the parameters should be adaptively

modified to reflect the true distribution of the data.

Expectation Maximization

For this experiment, we use newly collected datasets that were not used in the previous

section. We have 10 Type-2 C datasets with different drivers, each of which has two

behaviors.

Figure 3-7 shows the change of models' parameters during EM iteration. As the
result of EM depends on how the parameters are initialized and how the inputs are
weighted, to show the change more clearly, we gave each initial 'good' parameters from
previous section for all datasets and equal weights on inputs. Note that the initial
parameters serve as a ground for everyone, and the resulting parameters should be a
specific adaptation for a given driver. Therefore, the shape of the graph should look
like multiple lines, originating from the center, spreading outward.

The graphs of parameters of Normal / Gamma distribution of vehicle speed and
Gamma distribution of steering angle show such a shape clearly. If the graph does not
heave that way, we can conclude that the parameters were not initialized properly.
For example, the spread of the parameters of Normal distribution of acceleration pedal
position (the blue line spread upward) indicates that cautious type's initial standard
deviation was set to be lower than all of the individual drivers for whom we have
data.

In addition, the shape of the spread also gives an insight about measurements.

For example, the spread of the parameters of Normal distribution of vehicle speed is
larger vertically (standard deviation) than horizontally (mean). Also, there is a clear
distinction between cautious and aggressive drivers based on mean. That is, there
exists an unanimous among all people about the average speed, but the idea about
the change of speed might differ. Specifically, datasets 3 and 4 show the tendency of
very low change of speed.

Similarly, the shape of the spread of Gamma distribution of steering angle is larger
horizontally (alpha) than vertically (beta), and mostly separable between two types.
Thus, an unanimous also exists for the general shape of the standard deviation's pdf.

However, the graph of brake pedal position only shows blue/red lines that spread
against each other. Note that EM only tries to increase the likelihood of the observed
datapoints. Since the cautious type tends to use the brake more often than does
the aggressive type, the EM algorithm chooses a low mean for aggressive , and a
high mean for cautious as iterations progress. This behavior suggests that the EM

algorithm may suffer serious overfitting problems for high iteration numbers, and
that the models are not necessarily a very good fit for the distribution, which may

contribute to making the algorithm go unstable. Thus, we exclude brake pedal position
from updating parameters during EM, and achieve better performance.

I Parameters of Normal distrib ution Parameters of Gamma distribution

4

3.5

3

2.5

2

.

.U-

42
V

0 5 10
IL

15 20

1.5
100 0.5

Figure 3-7: Change of probability distributions's parameters during EM iterations. Red
lines indicate aggressive type's parameters, whereas blue lines indicate cautious type's pa-
rameters. Colored numbers denote the dataset number. Several lines of same color start
with one origin (the original distribution was statistically initialized), and deviate to ac-
commodate each driver's behavior.

43

8 10 12 14 16 1E

2U

15

10 0

0I

2 3
a

1 1.5
CE

4 5

2 2.5

0.2 0.25 0.3 0.35 0.4
a

I

Figure 3-8(a) shows the change of likelihood rate during EM algorithm. The
likelihood increases gradually until the second iteration, and suddenly jumps from
third iteration. Also, the changes after the third iteration are not consistent among
datasets. Therefore, we can conclude that only one or two EM iterations are valid,
and to avoid overfitting, we should stop EM after 1 or 2 iterations.

Figure 3-8(b) plots the change of the error rate during EM algorithm. Thanks
to the initialization, the algorithm achieves a good result since beginning, and the
performances deteriorates because of overfitting after second iteration. However, only
half of the datasets achieves the lower error rate in the first iteration, whereas second
half unfortunately worsen the performance as a result of EM algorithm.

Nevertheless, note the purpose of the EM algorithm, in which the parameters are
adjusted for each individual. Therefore, to evaluate the performance of the EM algo-
rithm better, we should also adjust the criterion between aggressive and cautious for
testing. Thus, Figure 3-8(c) shows the error rates after adjusting the criterion de-
pending on the driver's behavior. Most of the datasets achieve better results after
one or two iterations of the EM algorithm.

-0.2-

-0.4-

-0.6-

-0.8-

-1-

-1.2

-1.4-

-1.6-

-1.8-

-2-
0

1 2
iteration

(b) uncompensated error

1 2
iteration

(c) compensated error

Figure 3-8: Log-likelihoods and error rates over iterations. Log-likelihoods decrease as
iterations progress, but the significant drop beyond the third iteration is clearly a result of
overfitting, and the error rates deteriorate as well. Note that Type-2 C datasets are labeled
with the degree of aggressiveness over time, and the degree and whether it exceeds some
threshold is used to verify the classification results of EM. The uncompensated error rates
are computed with a fixed threshold, and the compensated error rates are with a variable
threshold depending on the driver.
Note that one dataset (the light green line) decreases the likelihood after the third iteration,
while the EM algorithm should monotonically increase the likelihood, due to the complicate
model which consists of Normal, Gamma, and Delta functions.

x 10,
0 r-

1 2 3 4
iteration

(a) log-likelihood

0.45

0.4

0.35

0.3

2 0.25
0>

0.2

-- _ I~ -_ _& _ - _ . - . _- . - - 'I----

3.5 Discussion

Bayesian hypothesis testing solves some limitations of a supervised learning approach.
Instead of classifying per window based on the immediate window, the testing keeps
the beliefs for each type and updates as new data are available. This method helps
stabilize estimation against the sudden anomaly, but still enables the gradual change
of driving types. In addition, the EM algorithm updates the model as well to adjust
the criterion depending on the driver's behavior. Note, even though the testing is
only done with aggressive and cautious types, the algorithm can be easily extended to
the multi-class classification.

However, still a few limitations exist. First of all, the short interval length may
harm the assumption that each window is drawn from an identical distribution. When
the interval length is long, such as 30 seconds or more, this assumption is reasonable.
However, due to the long interval length, the online algorithm only makes a lagged
inference. By making this interval shorter, we can achieve a higher inference rate;
however, too short an interval length might invalidate the assumption.

Second, the distributions are not exact. Because it is difficult to find a proper
distribution of all measurements, we assume that each measurement and its features
are independently distributed with respect to each other. With the assumption, we
propose several distributions depending on the characteristics of each measurement.
Then, we choose an appropriate distribution for each measurement, and its param-
eters are empirically estimated independently. This approximation significantly re-

duces the complexity of the problem without harming the result. However, this
assumption that each measurement is independent is too strong.

Third, we failed to optimize the transition probabilities online. The simplified
Baum-Welch algorithm saturates the transition probability as iterations progress, and
achieves lower performance than the EM algorithm, in which the transition matrix
is fixed. High number of iterations causes the likelihood of a datapoint given one
driving type to be significantly larger or smaller than that given another driving type,
due to overfitting. Then, the posteriors are saturated as either 1 or 0, regardless of
priors and the transition matrix. That is, the classification solely depends on the
immediate measurements, which is why the previous supervised learning algorithm
did not work. In such situations, only slight changes in the measurements may cause
the the transition between types and thus the learned transition probability becomes
unstable for each iteration. Even the first few iterations before overfitting cause
similar problems as well.

Chapter 4

Utility Function Estimation

In the previous system, we only considered two or three different driver types, and

tried to categorize the driver as belonging to one of them. A richer model is to

introduce a space of types, where, for example, we characterize each driver as trying

to optimize a reward function of the form

Rdriver = a Reconomical + 3 - Rsafe + y - Rspeedy , where ||(a, 1, y)|| < 1

More generally, each driver's reward function Rdriver(S, A) is a linear combination

of features 4(S, A), which the driver is willing to trade off, and therefore written as

Rdriver(S A) = river - #(S, A). Note that w is the character of a driver and describes

his behavior.

Each feature is a function #4(S, A) : S - [0, 1] and measures a preference for a

specific goal. For example, 4istance(S, A) measures whether the distance to the closest

obstacles consistently remains beyond five meters and so calculates the preference to

avoid a collision. If the driver cares about safety, the coefficient will be relatively

higher for the distance feature.

Based on this setup, the question will be, for this particular driver, what values

of a, 1, and -y or generally what w, characterize his utility function. This problem

can be solved by the inverse reinforcement learning [9].

4.1 Preliminaries

4.1.1 Markov decision process

The Markov decision process consists of a tuple (S, A, T, -y, D, R), cite?:

1. a set of states S;
2. a set of actions A;
3. a state transition function T : S x A '-+ Ps(.) which gives a state distribution

when an agent takes an action a in a state s. Or, denote T(s, a, s') = T(s, a)(s')
for the probability of making a transition from a state s to a state s' by an
action a;

4. an initial distribution D such that so ~ D
5. a discount factor y E [0, 1); and
6. a scalar reward function R: S '-* [0, Rmax].

At each time t, an agent observes its state st E S and the set of possible actions

A(st) C A. It chooses an action a E A(st) and receives a new state st+1 - T(st, at)
and a reward rt+1 = R(st+1). Figure 4-1 describes how this interaction happens
between an agent and its environment.

Figure 4-1: The interaction between an agent and its environment
Source: [4]

Note that the agent's preference can be fully specified by the reward function alone.
The other information, MDP\R = (S, A, T, -y, D), describes how the world, not the
individual agent, behaves. The agent does not have control over the world; but, the
information about the world is often directly measured or indirectly estimated from
the result of the agent's actions.

4.1.2 Linear Approximation of Reward function

In the paper Algorithms for Inverse Reinforcement Learning [9], Ng states that even
though infinite-state MDPs can be defined as being like finite-state MDPs, searching

..

E nt

" nvironme,71

the entire state space are often algorithmically infeasible. Rather, Ng approximates

the reward as a linear function in large state spaces and solves Reinforcement Learning

algorithms with liberalized reward. Specifically, let the true reward function be R :

Rn -+ [0, 1], where S = Ri, and assume that there are basic feature vector # : S F-+

[0, 1]'. Then, there is an approximated reward function R*(s) = w* - #(s), where

w* E Rk and ||w*< 1 [1]. Typically, when the true reward function is unknown, the

approximated reward function is also unknown.

Note that the linear approximation of state spaces only applies to a reward func-

tion and does not apply to a policy. The another important purpose of the linear

approximation of state spaces is to emphasize that an agent trades off a reward func-

tion between various basic features. Instead, the state space of a policy is often

discretized so that typical reinforcement algorithms can handle it. In our case, we

also discretize the state space to find the policy; but we use basic features, such as

Delta function, Gaussian function, to represent the components of a reward function.

4.1.3 Inverse Reinforcement Learning and Apprenticeship Learn-

ing

Unlike the reinforcement learning whose goal is to find a policy that maximizes the

long-term reward with the (often full) knowledge of a reward function [4], inverse

reinforcement learning is to determine the reward function given an MDP without a

reward function, MDP\R, and an optimal policy -r* [10].

Apprenticeship learning is a subpart of inverse reinforcement learning. Specifically,

we assume the ability to observe trajectories (state sequences) generated by an expert

(in our case, the driver) starting from so - D and taking actions according to lrE-

From these demonstrations, we calculate the approximated reward function RE

w1J# of the expert [1].

Most of the time, the coefficient w is an intermediate goal; it is used to derive

an optimal policy that mimics the observed behavior of an expert. However, in our

case, w serves a value to describe the preferences of a driver. In other words, as the

coefficients are bounded |wl < 1, the reward function naturally trades off linearly

between basic features, thus indicating his preferences.

4.2 Simulation and Dynamics

In reinforcement learning, at each time or sampling, an agent interacts with the
environment by perceiving states and performing actions. Thus, we need to define
the realistic state and action space for simulation.

4.2.1 Car Model : State and Action

Broadly speaking, the state space consists of two parts; one part about the car itself,
and the other part about the environment. The state about the car includes measure-
ments such as vehicle speed and engine RPM. As the reinforcement learning focuses on
the interaction with the environment, state about nearby environment includes much
more:

1. current lane number

2. left/right lane changeable

3. distances to the front/rear vehicles in nearby lanes

4. speed of the front/rear vehicles in nearby lanes

As the driver does not need to care about all lanes, he should only focus on nearby
(left/current/right) lanes. Thus, the state variables regarding the nearby lanes are
limited to the three immediate lanes.

Unfortunately, not all information is suitable for simulation and easy to collect in
a realistic fashion. Excluding some meaningless and hard-to-measure states, I have to
use the following state variables: vehicle speed, left/right lane changeable, distances
to the front/rear vehicles in nearby lanes, speed of the front/rear vehicles in nearby
lanes.

The action space is much simpler, consisting of accelerator pedal position, brake
pedal position, and lane change. Note that instead of steering angle, I have used lane
change as an action. As it is very hard to realistically follow the procedure of changing
lanes in simulation, I have assumed that the car can change lanes immediately if there
is a room. Two pedal positions ranges from 0 to 100, whereas the lane change is either
LEFT / STAY / RIGHT.

In the right side of Figure 4-3, an example of state and action and its graphics
are shown.

II

%wr

4 . I

I

I1st 2nd 3rd 4th
lane lane lane lane

Figure 4-2: State

S ili!!! ?ill tti e!Wo luis22|||||||||iu u|!!!!!!!|uys!|||ulilillm er sum aissm m llust lli liliullsagisimsislm u s lliillelleilasliilililli'liu m s' m as m pa o w ns ~ un -a~c nce senc nss ann cens n'= enne en= " = ='.'= =.
.

4.2.2 Simulation of Driving Environment

Using the state and action spaces defined above, we can simulate one person's driving.
However, driving alone is meaningless in learning. Thus, we must first simulate the
entire traffic environment, in which multiple cars are realistically and interactively
driving. We chose a highway driving environment, so drivers can fully display their
preferences without interfering externalities, such as traffic signals. For simplicity,
cars do not enter nor exit; they drive on a long circular highway.

During simulation, cars follow a control law explained in Congested traffic states
in empirical observations and microscopic simulations [11]. Each car has different pa-
rameters, including desired velocity vO, safe time headway T, Maximum acceleration
a, Desired deceleration b, Acceleration exponent 6, Jam distance sO, Jam distance
si, and Vehicle length 1, which are initialized at the startup. Typical values for the
parameters are extracted from his JAVA implementation.

Figure 4-3 shows the graphical view of the simulator, in which roughly 100 cars
are added in the highway environment. Four narrow columns in the left plot the
part of the highway so that the entire traffic is viable, whereas middle column gives
a close-up look of the nearby environment. Each column is connected other column
and so all columns compose a long circular highway. The rightmost column shows
the state and action of the target car.

4.2.3 Dynamics : Simulation of Nearby Environment

To solve inverse reinforcement learning problem, we need a world dynamics, in which
an agent observes states and interacts through actions. We might use the simulator
discussed in the previous subsection as a world dynamics. However, as the simulator
models the entire driving environment by simulating all cars, each of which follows
the designated control, it is not suitable for reinforcement learning.

First of all, our observation is local. The driver of a car cannot fully observe the
entire situation; rather, he can only see nearby cars and decide action based on his
limited observations. Thus, the dynamics should only involves nearby cars.

Second, most of the information available in the simulator does not reveal the
preference of a specific driver. While simulating all cars in the environment is very
costly, most of the information is useless for estimating a specific driver's behavior.

Third, the simulator requires large number of iterations until the policy iteration
algorithm converges. Since the simulator consists of the states of all cars, the result
of each iteraion significantly depends on randomnes, and thus the policy iteration

Figure 4-3: Simulator

..

algorithm requires excessive search of all cars until the algorithm finally converges to
a stable result.

Rather, we need to make a dynamics model of one specific car, especially regarding
the relationship between state and action. One straightforward way is to discretize
the entire space and count the number of transitions. However, as the dimension of
entire state space is nearly 10, learning an MDP naively was practically impossible.
Also, there is an inevitable randomness, especially when the car changes its lane, as
the previous state does not have any information about the newly observable lane.
For example, when a car changes lane from 1st to 2nd, the dynamics cannot give
full information about the third lane, as the state does not have any information
regarding 3rd lane.

Furthermore, many state variables are not independent: vehicle speed and distance
are related by nature, and controlled by accelerator pedal position.

Dynamics

To resolve this, based on the assumption that cars in the same lane have similar
behaviors, and that cars in different lanes do not affect each other, we factor the
dynamics into the lane transition models and the car dynamics model, as shown in
Figure 4-4. Then, we can effectively learn the each lane's transition model inde-
pendently from other lanes and from my car's state variables, and thus significantly
reduce the dimension of individual dynamics.

In addition, as modeling the relationship among all measurements is unneces-
sary, only vehicle speed is modeled by Markov model; other state variables, such as
distance and collision, are indirectly calculated from the predicted speed. Stochastic
Optimal Control of Systems with Soft Constraints and Opportunities for Automotive
Applications [5] explains the control based on Markov model.

Each lane's transition works as follows: the speed of the front car is modeled by a
Markov Chain with 20 discrete levels, uniformly distributed between 15 and 35m/s.
The speed of the back car is modeled by another Markov Chain of two inputs: the
speed of front car and the distance to the front vehicle with 20 and 10 discrete levels
uniformly distributed 15 and 35m/s and Om to 100m. The transition probabilities
are learned from multiple simulations, and shown in Figure 4-5.

Once the future speed of front and rear cars in each lane are chosen by Markov
models, other state variables, such as distances and collision, are naturally calculated
indirectly. Note that this approach cannot account for the case that a new car enters
into the lane. Therefore, to simulate a new car entering, the dynamics also consider

Figure 4-4: Factored Dynamics Model. The dynamics is factored into three lane tran-
sition models and my car's transition model. Each lane transition model includes Markov
models for front / rear vehicle speed, and calculates front / rear distances and collision with
the predicted future speeds.

the probability of a new car entering given distance is required, and Figure 4-5(d)
shows the simulated pdf of it.

Finally, the product of transition models of all lanes form the entire dynamics.
Each transition model is used for predicting the next state of each lane, and the results
are collected for the entire next state. Note that due to the independence assumption,
a car's lane change might not be captured fully. For example, if a car disappears in
one lane, it must move to another lane. However, due to the independence of lane
models, this movement might not be captured.

Note that this procedure does not consider the effect of an action. Rather, as the
action only affect the state of the driver's car, its effect can be easily calculated inde-
pendently from other cars. When there is a lane change, the lane's states are shifted
in the opposite direction of lane change. As the dynamics does not have information
about the newly observed lane, state variables for the new lane is generated randomly
based on the statistics about the given lane. For example, suppose that a car was in
the second lane and moved to the third lane. The state variables used to have data
from the first to the third lane. However, after the lane change, the state variables
now have data from the second to the fourth lane. Since dynamics did not have any
data about the fourth lane before, it must be generated randomly.

...............
...........

0.6,

0.4,

Ei- 0.2,

0,

3

0.6

0.4

0.2

0
35q

current speed vt 15 20

(a) Transition
front car

25 au

future speed vt+1

probabilities of the speed of the

35 current spee
15 15

20 25
future speed vt+1

(b) Transition probabilities of the speed of the
rear car given the distance is 10 - 20m

0.6,.

0.4,.

0.2,.

25'

current speed v 15 15 20 25
future speed vt+1

0.7

0.6-

0.5-

0.4

0.3

0.2C

0.1

0 20 40 60
distance

(c) Transition probabilities of the speed of the
rear car given the distance is 70 ~ 80m

(d) the simulated pdf of the entering probability
given the distance

Figure 4-5: Statistics of the second lane transition model. Since the second lane is for

high-speed driving, the front car accelerates until it reaches the average speed of the second

lane, which is roughly 28m/s, and slightly de-accelerates on the very high speed (a). Similar

behaviors are observed for the rear car when the distance is far (c). However, when the

distance is close, the rear car de-accelerates regardless of its current speed (b). In addition,
when the distance is high, a new car is more likely to enter (d).

80 100

0

4.3 Features

Our goal is to find the reward function of one driver as a linear combination of other

experts' reward functions. However, each expert's reward function is also character-

ized by a linear combination of basis functions. Both are essentially the same in the

nature, and same algorithms can be applied to find them. To clarify, we call the basis

functions as raw features, and each expert's reward function as an expert feature.

Raw features are used to capture the characteristics of the driver with respect to

common measures, such as speed, whereas expert features are used to estimate the

relative similarity of driver with respect to a given set of experts. Expert features are

defined in terms of raw features.

4.3.1 Raw Features / basis functions

Among the variables from the state and action, four were selected to estimate the

behavior of a driver: vehicle speed, accelerator pedal position, time to collision, and

collision, where time to collisioin is calculated by distance to the front vehicle / vehicle

speed. Other variables were omitted as they do not reveal driver's preferences.

Any functions of the selected variables can be basis functions. We use radial

basis functions for vehicle speed, accelerator pedal posi tion, and time to collision and

indicator function for collision. Several radial basis functions with different means, but

with the same variance were used for each measurement. Such Gaussian membership

function gives a smooth reward function and thus help to prevent sudden change of

coefficients during policy update iterations and give a stable and better result. Also,

as the reward function is not simply linear to the state variables, expert's preferences

can be a non-linear function of the state variables.

exp(- 11s,2 112
exp(2o,

2a2

exp(- 2
exp(- -a~~il

#(s, a) =

collision

4.3.2 Expert Features / composite functions

In addition to raw features, expert features are used to estimate how one driver's

behavior is similar to the experts'. Unlike the basis functions, in which amy func-
tion can be used, expert features must be composites of basis functions; otherwise,

we cannot use inverse reinforcement learning. The reward functions of different ex-
perts are used as expert features, and concatenated. Since the reward functions are
linear combination of basis functions, we can easily calculate CD by multiplying with

concatenated weights of experts W.

Rspeedy (s, a) Wspeedy - <(s, a)
<b(s, a) = Reconomical (s, a) = Weconomical - #(s, a) = WT - (s, a)

Rsafe (s, a) Wsafe - (s, a)

where

w= (Wspeedy Weconomical Wsafe)

4.4 Policies

Given a dynamics and a reward function, expressed as either raw or expert features,
finding an optimal policy is also an essential part of reinforcement learning. Various

algorithms have been proposed to solve this problem. Among them, we chose two

algorithms, one simple and one complicated, to find the optimal driving policy.

4.4.1 One-Step-Look-Ahead Policy

The simple one-step-look-ahead policy chooses the action that gives the most reward

for the immediate future, and thus cannot take into account the delayed reward. Be-

cause it is easy to implement and test, the policy is useful for validating the algorithm.

However, as it does not consider the future reward, it misses an important aspect of

reinforcement learning.

4.4.2 Least-Squares Policy Iteration

Unlike the simple one-step-look-ahead policy, which only considers the immediate

reward and so does not require value or policy iteration, more sophisticated algorithms

often require explicit iteration over the entire state space. However, due to the high

dimension of the driving state, such an approach is not feasible. Rather, a method

similar to the one we used to simplify the reward functions can be adapted to find the

policy as well. Least-squares policy iteration learns the state-action value function as

a linear combination of basis functions and thus reduces the dimensionality of state

spaces when searching for the optimal policy [6].

The basis functions for policy iteration @ consists of various functions, such as rad-

ical, linear, and quadratic functions, to capture the complexity of a policy, whereas

raw features mostly consist of Gaussian membership functions. Specifically, we con-

catenate raw features, linear action, and quadratic actions:

#(s, a)

(s, a) =

\ w 2

The detailed explanation for LSPI will be discussed on the next section.

4.5 Learning Algorithm

4.5.1 Apprenticeship Learning via Inverse Reinforcement Learn-

ing

The heart of apprenticeship learning is to find a policy, or a w, which satisfies the
following equation through an iterative approach [1] :

E [jt'R(st) 7rE1
.t=0 .

- E YtR(st)|f

t=0
=-~p - wT p ~

SW E - W

< 1.E=E.

PE is called the expert's feature expectation. Since we don't have direct access to
the expert's policy, the feature expectation is often calculated empirically from the1m 00

measured trajectories: pE Et
i=1 t=O

p(7) is called the policy's feature expectation and is calculated from trajectories
simulated by Monte Carlo simulation.

Using the expert's feature expectation and the policy's feature expectation, we
can find a policy that mimics the expert's observed behavior. At first, an arbitrary
initialized policy is proposed, and the corresponding policy's feature expectation is
calculated. Then, find w

The following algorithm 1 iteratively finds such a policy.

Algorithm 1 Apprenticeship Learning

1: initialize 7r0 arbitrarily, compute p() -- p(()), and set i = 1
2: repeat
3: t = max min

W:ilWlJ2<siEJe{,1,...,n-1}
wT(,E - Ap0)), and

let w be the value of w that attains this maximum
4: Using the RL algorithm, compute the optimal policy 7r(')

rewards R = (w(i))T#

for the MDP using

5: Compute (or estimate) p =(i) p

6: until ti < E

Source: Apprenticeship Learning via Inverse Reinforcement Learning [1]

(4.1)

(4.2)

(4.3)

4.5.2 Q learning

In practice, it is very rare that we have full knowledge of the model. In addition, as

the simple case "exploitation vs. exploration" implies, we need to find an optimal

policy by exploring the environment to obtain information and choosing actions [4].

The core of the algorithm is a simple value iteration update. It assumes the

old value and makes a correction based on the new information. First, Q learning

initializes the qualities as fixed values for all (s, a) pairs. Then, every time an agent

performs an action and receives a reward with a new action, the algorithm updates

the quality of the corresponding pair (s, a). The following equation explains how the

new quality is recalculated

expected discounted reward old value

Q (st, at) ~-Q(st, at) + azt(st, at) x [R~st+i) + max Q (st+ 1, a) - Q (st, at)]

old value learning rate reward discount factor m V
max future value

+- Q(st, at)(1 - at(st, at))+ aet(st, at)[R(st+1) + y max Q(st+1, a)].
a

The learning rate determines to what extent the newly acquired information over-

rides the old information. A factor of 0 will make the agent learn nothing, while a

factor of 1 would make the agent consider only the most recent information. The

factor may be the same value for all pairs or may vary.

4.5.3 LSTDQ and LSPI

(this entire section)

Q learning gives a way to weigh delayed rewards while searching for an optimal

policy. However, it does not generalize over large state and action spaces [4]. Michail

G. Lagoudakis and Ronald Parr proposed an algorithm that learns the approximate

state-action value function of a fixed policy (LSTDQ) using least-squares temporal-

difference learning algorithm (LSTD) and iterates LSTDQ until an optimal policy is

found (LSPI) [6].

Given observed samples (s, a, r, s') and basis functions V, LSTDQ learns an ap-

proximated Q-function based on samples (instead of # and w, 0 and v are used to

distinguish them from features and coefficients of a reward function):

k

Q(s, a; v) = 4i(s, a)vi = @b(s, a)Tv

The following Algorithm 2 learns an approximated Q-function:

Algorithm 2 LSTDQ (D, /, y, wr, R)

1: B <-

2: b +- 0

3: for (s, a, s') D do

4: B +- B - Bi(s, a)(0(s, a) - -y@(s', wr(s')))T B
1 + (0(s, a) - -y@(s', r(s')))T B4'(s, a)

5: b +- b + ,(s, a)R(s')

6: end for
7: v <- Bb

8: return v

Source: Least-squares policy iteration [6]

Once the linearized Q-function is found, we can determine the optimal policy that

maximizes the future rewards using:

T(t+1) (s, v) = argmax Q(s, a; v) = argmax0 (s, a)Tv
a a

Note that LSTDQ only provides a method to learn an approximated Q-function of

a fixed policy. Therefore, Least-Squares Policy Iteration, LSPI, iteratively performs

the LSTDQ algorithm until the policy converges: Algorithm 3.

Algorithm 3 LSPI (D, @, y, 7r, R)

1: initialize 70 arbitrarily
2: repeat
3: 7Trt+1 +-- LSTDQ(D,@ V) 7r7', R)
4: until rt ~rt+1

5: return rt+l

Source: Least-squares policy iteration [6]

4.5.4 Estimation with Expert Features

Apprenticeship learning gives the coefficient w of the reward function, describing

the observed behavior as a linear combination of given basic features, which can be

gaussian, for example. Using the observed trajectories for each of the driving types,
and the apprenticeship learning algorithm, we can calculate the reward function of the

driving type as a linear combination of the basic features. For the observed trajectory

of any driver, it is possible to calculate the reward function with basic features.

However, the apprenticeship algorithm is not limited to basic features. Rather, we

can find a reward function as a linear combination of driving types' reward function,
which is also a linear combination of basic features. Then, the weight determines the

preferences for the each driving type. Figure 4-6 shows the basic flow of the whole

algorithm.

Observed
trajectories for
speedy driving

apprenticeship learning wspeedy
6hi(s,a) w raw features

Observed
trajectories for

economical driving

apprenticeship learning weconomical
\hi(s,a) w/ raw feature Obsrve

Observed trajectories for
trajectories for any driver

safe driving \Phirnsa) prenticeship learning Wdriver

rouhlyonetoa fw mnuesas hesampin rat is et fe0.5.tr asabereut

w e c a p p re n tic e s h ip le a rn in g w ea f e x r/ e x p e t a e a
\phi(s,a) w/ rawfeatures

Figure 4-6: Flow of algorithm to estimate a driver's preference with expert features

Alternatively, we can find the reward function from basic features, and calculate

the distance to each driving type.

4.6 Simulation Experiment

4.6.1 Setup

The entire algorithm was implemented in MATLAB, and tested with two policies.

We collected multiple trajectories of three different experts (speedy , economical ,
and safe) using the simulator explained in the previous section, and collected trajec-

tories of a new driver whose preferences we want to estimate using the same simulator.

Typically each trajectory consists of few hundred to one thousand samples, which is

roughly one to a few minutes, as the sampling rate is dt = 0.25. For a stable result,
we collected three trajectories for each expert. The dynamics was learned from the

simulator as well. We generated trajectories of each car, moving autonomously, and

used them to estimate the parameters of the dynamics.

4.6.2 Results of Simple Policy

Since the reward functions are in general very smooth, and steep delayed rewards do

not exist in this domain, the simple policy gives a fairly good result. Figure 4-7

shows the distance of current feature expectations to the expert's. After roughly 10

iterations, the inverse reinforcement learning algorithm finds the coefficient wtype of

each expert. However, due to its simplicity, the one-step-look-ahead policy can only

find a policy where I(7r) - pEI > 10-

60 -
-- -speedy

economical
50--- safe

40 -

30 -

20-

10 -

0
1 2 3 4 5 6 7 8 9 10

iteration

Figure 4-7: Distance to feature expectation as a function iteration. After roughly 5 to 10
iterations, the algorithm succesfully found the reward of each type, but the margin between
p(7r) and pE remained large due to the simple policy searching algorithm.

Figure 4-8(a) gives the raw feature expectations of three experts. Different

behaviors of experts were captured clearly. For example, a speedy driver remains

in faster speed and low time-to-collision a lot, whereas a safe driver maintains high

time-to-collision and low speed.

Figure 4-8(b) shows the calculated weights of each basis functions. As expected,
speedy type prefers high speed, and tolerates low time-to-collision. Also, econom-

ical type shows notably low preferences in accelerating, and safe type prefers high

time-to-collision.

speed accel time collis

(a) feature expectations for three different experts

-0.2 -

-0.4
speed accel time collis

(b) features' weight for three different experts

Figure 4-8: Result of Simple Policy with Raw Features. Each expert's feature expection
and coefficients of its reward function generally agrees with common sense.

.............P "t"

Now, based on the weights of three experts, expert features can be calculated.

and any driver's preferences can be estimated. Before moving forward, for a sanity

check, we need to confirm that the calculated weights are valid. One fact is that each

expert's trajectory must have strong preferences toward its own style. Figure 4-9

verifies the claim. Each driving type achieves highest feature expectation in its own

type, and is classified as its own type.

180- 1

160-

140-
0.5-

120-

100-

0-
80-

60-

40 -0.5
speedy economical safe speedy economical safe

(a) feature expectations for three different (b) features' weight for three different ex-
experts perts

Figure 4-9: Result of Simple Policy with Expert Features. Each expert's own trajectories
must have high feature expectation on its own expert feature, and high coefficient for its
own type, and all experts met this requirement.

4.6.3 Results of Least-Squares Policy Iteration

In general, LSPI gives a similar result to the simple policy, and Figure 4-10(a) shows

the calculated weights of each basis functions. Major characteristics of each expert are

well captured and coefficients are almost alike to the result of the simple policy, except

the coefficients regarding collision are against the common sense: aggressive type least

prefers collision.

However, LSPI could not distinguish economical and safe types in a sanity check,
as shown in Figure 4-11. The feature expectations between two experts' trajectories

are almost identical, and so the algorithm estimates safe type as economical .

speed accel

(a) features' weight for three different drivers

Figure 4-10: Result of LSPI with Raw Features

time collis

sp'eedy economical safe sp.eedy economical safe

(a) feature expectations for three different (b) features' weight for three different ex-
experts perts

Figure 4-11: Result of LSPI with Expert Features

-0.2

-0.4

4.7 Realistic Experiment

For a more realistic experiment, we use Type-2 datasets. Because we assume driving
decisions are made depending on the free space in front, Type-1 datasets cannot be
used in this approach.

4.7.1 Setup

State and Action

Out of the available five measurements, vehicle speed and distance to the closest vehicle
charaterize the state space, whereas acceleration pedal position, brake pedal position,
and steering angle are actions.

Dyncamics

The data is collected by driving car in the real world. Thus, the dynamics should
follow physical laws. However, it is difficult to precisely derive the dynamics, or the
relationship, between states and actions, due to noise and measurement errors. Still,
we can get a rough idea of how they should be related; for example, the distance
should have a linear relation to the speed. Using this knowledge, we can formulate
the dynamics by a simple steady state model:

Vt

at

Vt+1 TEv

2 v B d St + (4.4)
2 Ed

at

b 2

Based on the data, we can empirically calculate the coefficients of the dynamics
by linear regression, as shown in Table 4.1. Once the coefficients are determined, we
can simulate the world and Figure 4-12(a) show the measured states and simulated
states. The simulation for vehicle speed performs well; the two lines have almost the
same shape, with small errors. However, the simulation for distance does not reflect
the reality accurately. In particular, the measured states often contain discontinuities

that the states fall into d = 0, which indicates that no vehicle is detected the radar
sensor within the specification range. This discontinuity can be seen as a reasonable
phenomenon, as the driver can change lanes, but cannot be fully simulated by the
simple linear steady state model. Thus, the dynamics is modified to account for
randomness that considers the discontinuity of distances, using a Markov model for
the probability of a discontinuity given distance, as shown in Figure 4-12(b).

Table 4.1: The

(3v 3d) =

coefficients of

0.9930
0.0000
0.0074
0.0047
0.0000

-0.0000
-0.0002
-0.0000

0.0807

the dynamics.

0.0074
0.9591

-0.0099
-0.0188
-0.0009

0.0002
0.0002

-0.0000
0.7487

(a) without considering discontinuity (vehicle speed and distance)

1000 2000 3000 4000

(b) with considering discontinuity (distance)
6000

Figure 4-12: The measured states (green lines) and simulated states (blue lines).
The x axis is time, (50 = 1sec), and the units for the y axis are m/s and m.

... ,

4.7.2 Results of Simple Policy

Unlike the simulation experiment in which the simple policy performs well, the real

experiment cannot achieve a good result with the simple policy. Figure 4-7 shows

the distance of current feature expectations to the expert's. After roughly 6 iterations,

the inverse reinforcement learning algorithm converges, but can only optimize a policy

where ||p(7r) - pEH 1 100-

900
- speedy

800 - economical
- safe

700

= 600-

500-
L

400-

300-

200-

100 III
1 2 3 4 5 6 7 8 9 10

iteration

Figure 4-13: Distance to feature expectation over iteration

Figure 4-14(a) gives the raw feature expectations of three experts. The distin-

guishable behaviors of the experts are generally captured: speedy type prefers high

speeds more than other types, economical type uses the accelerator the least, and

safe type strongly prefers high time-to-collision. However, the difference in the real-

istic experiment is much more subtle than in the simulation experiment.

Figure 4-14(b) shows the calculated weight of each basis function. Notable facts

are: speedy uses the accelerator and the brake often and tolerates low time-to-collision,

economical type tends not to use the brake and the accelerator, and safe type strongly

prefers low speed and high time-to-collision. In addition, the preferences regarding

speed are similar between speedy and economical , and those regarding accelerators

are similar between economical and safe. This tells us that an economical driver wants

to drive in a similar speed to a speedy driver while not using the accelerator and the

brake.

Table 4.2 shows the expert feature expectations and corresponding estimation

result of Type-2 datasets, as a sanity check. Except for one dataset, all datasets are

classified as their own types.

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1

0

-0.1

-0.2

speed accel brake time

(a) feature expectations for three different drivers

speed accel brake time

(b) features' weight for three different drivers

Figure 4-14: Result of Simple Policy with Raw Features

Table 4.2: Result of Simple Policy with Expert Features. Out of 8 datasets, 7 are success-
fully classified as its own type. speedy and economical types are often confused.

driver type expert feature expectations
speedy economical safe speedy

weights
economical safe

correct

driver economical 278 221 137 0.52 0.54 0.66 X
driver safe 322 268 187 0.53 0.56 0.64 0
driver2 speedy 286 218 109 0.69 0.58 0.42 0
driver2 speedy 289 224 125 0.63 0.57 0.52 0
driver2 speedy 313 239 123 0.70 0.58 0.41 0
driver2 safe 273 215 157 0.43 0.44 0.79 0
driver3 economical 266 209 91 0.66 0.68 0.31 0
driver3 safe 272 212 164 0.41 0.40 0.82 0

7 /8

...

- - -- - * > I I I I

correct rate

4.7.3 Results of Least-Squares Policy Iteration

LSPI performs a decent job on estimating with raw features and Figure 4-10(a)

shows the result. Notable properties of each expert are in general estimated; however,
the coefficients are slightly different from those of the simple policy. Specifically, LSPI

gives much smoother coefficients, while the simple policy gives a steep high coefficient

to the second time feature and and irregular coefficients to the accelerator features.

As the simple policy does not learn the state-action value function, it often chooses

extreme actions, for example, either no acceleration at all or full acceleration, to

receive immediate rewards and thus have steep or irregular coefficients. However,
thanks to the linearized Q-function, LSPI chooses appropriate actions for various

states and achieve smother coefficients.

0.5-

0.4-

0.3-

0.2-

0.1 -

0-

-0.1 -

-0.2-

-0.3-

-0.4-

-0.5 I

speed accel brake time

(a) features' weight for three different drivers

Figure 4-15: Result of LSPI with Raw Features

However, LSPI performs worse in a sanity check, as shown in Table 4.3. It fails

to estimate 3 out of 8 datasets, especially between speedy and safe types. Also, it

fails to estimate driver3's behaviors at all. Note that both driver3's trajectories are

estimated as speedy . However, as LSPI requires intense learning and large number

of datasets, if we add enough new datasets for safe type and driver3, the algorithm

should be able to capture their behaviors eventually as well.

........

Table 4.3: Result of LSPI with Expert Features. Out of 8 datasets, 5 are successfully
classified as their own types. The algorithm often fails to estimate between speedy and
safe types, and driver3 correctly.

driver type expert feature expectations weights correct

speedy economical safe speedy economical safe

driver economical 177 94 110 0.56 0.82 -0.13 0
driver1 safe 198 101 219 0.57 0.44 0.69 0
driver2 speedy 169 76 150 0.70 0.71 0.09 0
driver2 speedy 165 69 157 0.53 0.43 0.73 X
driver2 speedy 203 108 168 0.68 0.60 0.43 0
driver2 safe 162 51 169 0.16 0.38 0.91 0
driver3 economical 128 57 103 0.74 0.54 0.40 X
driver3 safe 190 64 182 0.73 0.42 0.54 X

correct rate 5 / 8

4.8 Discussion

Inverse reinforcement learning solves some limitations of Bayesian hypothesis testing.

Instead of classifying the driving behavior as one of few types, the algorithm can

estimate the behaviors in a space of types, which is more informative and meaningful.

Also, since we do not assume any specific form for the distribution nor the reward,

the algorithm can fully utilize all the information possible from measurements and is

not restricted by strong assumptions that we have to used in previous chapters.

However, still a few limitations exist.

First of all, the approach is limited in the situation in which dynamics is fully

learnable. However, due to the hardness of predicting driving situation, and since the

dynamic often changes for various reasons, such as traffic, road condition, road type,

it is difficult to learn reasonable dynamics. We could make reasonable dynamics for

simulations, with few assumptions, such as independent lanes, highway environment,

but often they are not valid in real life.

Second, the algorithm is very expensive, thus hardly online. All algorithm were

implemented in MATLAB and tested on a fast multicore machine. However, each

run of the algorithm takes more than few minutes. Most of the running time is spent

for updating policies and simulating the dynamics to find the policy that mimics the

expert; however, such procedure is inevitable and so hard to run the algorithm in a

computer with limited capacity.

Third, the sophisticated least-squares policy iteration algorithm only achieves sim-

ilar performance to the simple one-step-look-ahead policy. While LSPI learns the

general state-action value function and thus theoretically able to weigh not only the
immediate rewards but also delayed rewards, its performance is not far different from
the simple policy, which only considers the immediate future. However, LSPI worsens
the learning time significantly, comparing to the simple policy which does not requires
any learning of a state-value function.

Note that as the raw features consist of Gaussian membership functions on various
measurements, they are generally smooth and thus no steep delayed reward exists

(except the collision), and so discounted future rewards are smooth as well. In such
functions, weighing the future rewards becomes less important, or choosing extreme
actions may serve as an alternative to consider the delayed rewards, thus making two
policies perform similarly.

In addition, a real driver does not often think about states of several seconds later
while driving. Rather, he constantly accelerates or de-accelerates until the car reaches
his designated speed, or changes the lane whenever it is allowable. Note that when
a driver intends to change lanes, he should speed up or down to a similar speed to
a designated lane and then change lanes gradually. In this scenario, LSPI may help
to capture this behavior. However, to make the simulation simpler and due to the
limited measurements, changing lane is done immediately in the simulation and the
lane change action is not possible in the realistic experiment; then, such a maneuver
cannot be captured in our experiment. Thus, I believe that a real driver's policy is
actually similar to the simple policy, not the complicated policy.

Apart from these limitations, the algorithm remains as the best option for mod-
eling the preferences.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we investigated three different methods to model drivers' preferences:

supervised learning, Bayesian hypothesis testing, and inverse reinforcement learning.

While the approaches and performances vary, all method were successfully able to

determine driver's preference.

Based on the features of a window, supervised learning can classify each window

into one of two classes. However, since the proposed approaches were limited to the

binary classification, since it only classifies on a per-window basis, the algorithm is

unstable and cannot detect changes of the driving type. In addition, the decision rule

was too sensitive to the training data, and thus cannot capture the general rule for

all drivers.

Rather, Bayesian hypothesis testing maintains the beliefs for each type and update

the beliefs using the new data. By considering both the likelihood of the new data and

the priors, the algorithm classifies the driver's preference with not only the current

behavior but also the history. The models are initialized to capture the general

decision rule, and can be updated using a specific driver's data online. Thus, the

algorithm is more stable and can capture the generic decision rules while possible to

be adjusted to specific rules. However, the algorithm relies on the strong assumptions

that sampling windows are independent given the type and probability distributions

of the measurements are independent each other, which are hardly true.

Inverse reinforcement learning, on the other hand, finds the reward that most ex-

plains the driver's behavior through simulation. By finding the experts' rewards with

raw features (basis functions) and the driver's reward with expert features (compos-

ite functions), the algorithm estimates the driver's preference in a space of driving

types, and gives most meaningful and stable estimation. In addition, as the algo-
rithm performs explicit simulation and intense calculation, it requires understanding
of the dynamics and expensive resources. However, it is difficult to fully simulate all
possible driving situations, and expensive to run the algorithm online.

5.2 Future Work

While the work has been able to apply various machine learning techniques for mod-
eling powertrain preferences, further studies can be taken to further improve them.

Further approach include to choose models with respect to the driving situation.
Currently, both Bayesian hypothesis testing and inverse reinforcement learning share
same model for all driving environments. However, the criterion should be different
for different driving environments (such as highway, traffic, city) and adjust models
accordingly. Note that the EM algorithm was used to adjust models with respect
to the driver's intentions, not the environment. To resolve this, hierarchical models
can be introduced to consider both driving environments and drivers intentions. The
algorithm not only maintain the beliefs for driving types, but also the beliefs for
environment, and thus performs better in various environments.

The work, in general, lacks some theoretical background. Rather than being
based on rigorous theory, most of the ideas came from scrutinizing the dataset and
from applying trial and error methods. For example, we did not justify the type of
probability density function used in Bayesian hypothesis testing. Further, the features
used in inverse reinforcement learning were not chosen for concrete reasons. Therefore,
more clear reasoning of the work is required, and more thorough understanding of
the driving behaviors might help to improve the algorithms.

In addition, the thesis only focuses on estimating the preferences. Once we can
do basic estimation of the driver's preference, we will consider:

" Adding active diagnosis actions, like asking questions. We'd have to include
a model of the cost (in annoyance and decreased safety) of asking questions,
perhaps depending on an additional estimate of the driver's current cognitive
load.

* If, through asking questions, we find that the driver's stated preferences are
at variance with their apparent driving strategy, then the system should make
suggestions about how to improve. This requires solving a decision problem to

decide, given the estimated utility function for the user and the current driving

situation, what actions to recommend.

THIS PAGE INTENTIONALLY LEFT BLANK

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In In Proceedings of the Twenty-first International Conference
on Machine Learning, volume 69. ACM Press, 2004.

[2] Jeff Bilmes. A gentle tutorial of the em algorithm and its application to parameter
estimation for gaussian mixture and hidden markov models. Technical report,
1998.

[3] Polina Golland and Gregory W. Wornell. 6.437 inference and information. 6.437
class notes, 2009.

[4] LP Kaelbling, ML Littman, and AW Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4(237-285):102-138, 1996.

[5] Ilya V Kolmanovsky and Dimitre P Filev. Stochastic optimal control of sys-
tems with soft constraints and opportunities for automotive applications. IEEE
International Conference on Control Applications, pages 1-6, May 2009.

[6] M Lagoudakis and R Parr. Least-squares policy iteration. The Journal of Ma-

chine Learning ... , Jan 2003.

[7] Tomas Lozano-Perez. Interim report to ford motor corporation. 2008.

[8] Thomas P. Minka. Estimating a gamma distribution, 2002.

[9] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learn-
ing. In in Proc. 17th International Conf. on Machine Learning, pages 663-670.
Morgan Kaufmann, 2000.

[10] Stuart Russell. Learning agents for uncertain environments (extended abstract).
In Proceedings of the Eleventh Annual Conference on Computational Learning

Theory, pages 101-103. ACM Press, 1998.

[11] M Treiber, A Hennecke, and D Helbing. Congested traffic states in empirical
observations and microscopic simulations. Physical Review E, Jan 2000. selected
control.

[12] Finn Tseng. Edas proactive performance mode advisory system. 2009.

