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Abstract

This dissertation is a computational and theoretical investigation of the behavior of

defected condensed matter and its evolution over long time scales. The thesis pro-

vides original contributions to the methodology used for simulating the slow evolution

of complex condensed matter, as well as applications to three problems: hydrogen

embrittlement of metals, radiation swelling, and cement setting. The problems are

characterized by an increasing degree of complexity as the microstructure ranges

from a crystalline alloy with few point defects to a highly damaged metal with partial

amorphization to a semi-crystalline colloidal system.
First, we investigate the interactions of hydrogen with point defect clusters (PDC)

in Fe-C alloys via a combination of density functional theory and a statistical me-

chanics model. We cast our PDC concentration results in a novel PDC dominance

diagram representation that can be generalized to any type of alloy and impurities.

We also calculate the migration mechanisms and energy barriers for the most relevant

PDC species in Fe-H. Our results demonstrate the essential role of hydrogen-vacancy

interactions in mediating the formation and migration of PDCs, and the relevance of

these crystalline defects to the problem of hydrogen embrittlement.
Second, we study the effect of self-interstitial atoms (SIA) on radiation swelling

at high dose rates. Using a combination of non-equilibrium molecular dynamics and

two generalizations of the autonomous basin climbing (ABC) method, we characterize

the structure and evolution of the defective species that result from SIA insertion

during irradiation. Consistent with ion beam implantation experiments on surfaces,
we show that, at high dose rates, swelling is a consequence of the nucleation and

growth of disordered phases. This process is governed by a competition between

defect generation and recrystallization, even at long times.
Third, a binary colloidal model incorporating sticky interactions is developed to

simulate chemomechanical hardening, with an application to cement setting. The

model, inspired by a coarse-grained analogy with stress-corrosion cracking, captures

gelation, diffusion, and percolation kinetics. The model is characterized and the

effects of various parameters on setting kinetics are discussed. We find that, as ob-



served experimentally, the induction time is dependent on the relative concentration
and masses of the two colloidal phases. The application of ABC (static and dynamic)
to the study of cement setting under more realistic conditions is also discussed, includ-
ing objective means of calculating the effective elastic moduli of viscoelastic materials
via atomistic simulations.
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Chapter 1

Introduction

1.1 Motivation

One of the main factors limiting the development and improvement of new technolo-

gies is the lack of a truly fundamental understanding of the behavior of complex

condensed matter. Various scientific and engineering challenges, ranging from the

fabrication of superconducting wires for efficient electricity allocations to the devel-

opment of ultralight long lasting batteries to the confinement of plasmas for fusion

applications, are deeply linked to materials issues which remain unresolved.

Condensed matter research has changed dramatically during the past few decades

as a result of the advent of high performance computing. Joining the traditional

paradigm of experimental and theoretical work, modeling and simulation have emerged

as powerful alternatives in understanding the behavior of complex many body sys-

tems such as those present in condensed matter problems [1]. When based on robust

theoretical principles and validated against clean and rigorous experiments, compu-

tational methods drastically extend the reach of the traditional scientific method.

The applications are many. From analyzing the surface chemistry of catalysts [2] to

calculating the heat conduction in fluids [3] to understanding the mechanical behavior

of beams and trusses under stress [4], computational methods in condensed matter

research have the ability to provide deep insights into a broad range of questions [1].

Nevertheless, it is precisely this breadth of systems, mechanisms, and complexity



wnicl results in one oi the most fundamentai challenges of the field: the multiplicity

of scales.

Any complex system can, in a reductionistic approach, be broken down into fun-

damental units which interact given a certain set of predetermined laws. This gives

rise to, at least, two scales of complexity: one emanating from the individual behav-

ior of the units and one, or many scales, arising from their collective interactions. In

the case of condensed matter systems the fundamental units are chosen according to

the desired resolution in the problem but are typically electrons (electron waves) or

atoms. Answering a specific phenomenological question can then be fundamentally

resolved by understanding how individual atoms or electrons interact with each other

and then the statistical mechanics of their collective behavior.

Despite the apparent simplicity of this abstraction, such a straightforward ap-

proach fails in practice due to the changes in scales associated from going from the

fundamental understanding of the units (atoms or electrons) to that of a macro-

scopic phenomenon. For perspective consider that twelve grams of carbon-12 contain

6.022 x 1023 atoms of carbon. The electronic structure of an atom is on the length

scale of a picometer and the time scale at which atoms vibrate is less than 1/10 of a

picosecond. On the other hand, many macroscopic phenomena of interest occur on

length scales of over 1 m and in time scales of days or years. This range, spanning

12-15 orders of magnitude in both time and length is accompanied by an equally wide

range of associated energies. Therefore, despite the power of modern computing and

the highly parallelized architectures available, a "brute force" approach to simulation,

in which a macroscopic number of electrons and atoms are allowed to interact for a

macroscopic time, is impossible. Therein lies the challenge of multiscale modeling in

condensed matter physics: the development of a methodology sufficiently complete

to answer questions which cut across multiple length, time, and energy scales while

remaining rigorous.

The challenge of multiple length scales and immense numbers of constitutive par-

ticles in a macroscopic sample has been addressed in a variety of ways, giving rise to

theoretical breakthroughs such as statistical mechanics (to describe the interactions



of a large number ol particles in a statistical manner), mean-nela theories, and con-

tinuum mechanics. These theories rely on a simple understanding of the underlying

atomic or electronic properties which are then coarse grained to capture only the

essential interactions which then guide the larger scale behavior. Developing rigorous

coarse graining procedures - in which the essential information from the fundamental

scales is preserved at higher scales - is a challenging problem on its own. Never-

theless, progress in the creation of ab initio informed interatomic potentials [5-7]

and approaches such as the quasicontinuum method [8] have greatly contributed to

addressing the length scale challenge, though it still remains an active area of re-

search. In tandem, developments in parallel computing, multiple core architectures,

and various adaptations of the simulation algorithms have also provided partial com-

putational solutions to the length scale question, allowing the division of large systems

into smaller subunits that can be then rigorously simulated.

On the other hand, solutions which address the variation in time and energy scales

remain a lot less developed. In some cases, such as the Bohr-Oppenheimer approxima-

tion [9], the disparity in time scales can be used as a simplifying assumption to treat

a seemingly unified phenomenon as a combination of simpler phenomena occurring

at different time scales. However, in general, time-driven methods such as Molecular

Dynamics (MD), in which Newton's equations of motion determine the system dy-

namics, are dramatically limited by the time scale problem. In these methods, the

magnitudes of the time steps required for accurate numerical integration need to be

on the order of atomic vibrations, i.e., over 12 orders of magnitude away from macro-

scopic scales. The existence of widely different time scales also gives rise to more

fundamental theoretical problems as some of our classical physical concepts become

constrained. In particular, slow evolving systems compromise the most basic notion

of an equilibrium state and necessitate the use of non-equilibrium methods for their

understanding. This conceptualization of a physical system beyond its equilibrium

state gives rise to one of the fundamental themes in this thesis, the idea of an energy

landscape.

At their core, multiple relevant temporal scales emerge when a given phenomenon



consists of different kinetic mechanisms. This is also the case with spatial scales, and

the properties of condensed matter have been proven to change dramatically with size,

especially once the characteristic lengths drop to a few nanometers [10,11]. However,

in the case of time and energy the problem is exacerbated by the fact that the prop-

erties of interest not only require the observation of the system as it evolves through

time with a given mechanism, but the form of that mechanism itself also changes

with time. As with many of the fundamental issues in condensed matter physics,

this rich dynamic behavior has tremendous universality and takes place in seemingly

unrelated systems ranging from steels under environmental attack to molten metals

during casting to the unfolding of proteins. All of these systems share important char-

acteristics: complex and disordered underlying microstructures and processes which

comprise multiple kinetic mechanisms such as chemical and mechanical relaxation.

These far-from-equilibrium complex materials, exhibiting multiple time scales in their

evolution, represent the next frontier in the emerging field of computational condensed

matter physics and multiscale materials modeling and are the primary subject of this

dissertation.

1.2 Problem Statement

This thesis represents an investigation of multiple questions associated with the the-

oretical understanding of complex defected condensed matter systems and their evo-

lution over time. In particular this work addresses the following specific topics:

1. Generalization of a theoretical and computational framework, the Autonomous

Basin Climbing (ABC) method, for the analysis of slow dynamical systems: The ABC

method [12] represents a computational alternative to time-driven and stochastic

simulation methods and allows for the study of condensed matter systems which

evolve over a large range of time scales. In this thesis, the theoretical underpinning

of the method is described within the context of nonequilibrium statistical mechanics

and transition state theory. In addition, the method is generalized from its static,

microcanonical formulation to be consistent with both canonical and constant stress



ensembles as weli as dynamic energy landscapes. Applications of the method in

various contexts are also explored.

2. Calculation of the energetics, concentrations, and kinetics of hydrogen-containing

point defect cluster species in Fe-C alloys and their connection with hydrogen embrit-

tlement: Using a combination of density functional theory (DFT) and a statistical

mechanics model, we study the interactions of hydrogen with point defects in Fe-C

alloys, casting our results for the concentrations into a point defect cluster (PDC)

dominance diagram highlighting the changes in the defect microstructure as a func-

tion of composition, in the spirit of a phase diagram. We find that as a result of

the strong binding effects of vacancies on the stability of the clusters, hydrogen accu-

mulation requires the total hydrogen and vacancy concentrations to be comparable.

Furthermore, because of the interplay between repulsive and attractive binding pro-

cesses, PDC populations in Fe-C-H are shown to effectively decouple into the binary

systems Fe-C and Fe-H. This results in significant vacancy-hydrogen PDC populations

even for low total hydrogen concentrations. We also study the energetics of methane

formation in Fe-C alloys and their potential connection to hydrogen embrittlement.

Additionally, we calculate, using the nudged elastic band (NEB) method coupled with

DFT calculations, the migration mechanisms of the most prevalent PDCs in Fe-C-H.

We then calculate an effective diffusivity as a function of hydrogen concentration in

steels.

3. Analysis of the role of self-interstitial atoms in radiation swelling and the appli-

cation of ABC and ABCD to the study of the evolution of irradiated microstructures:

We analyze the effect of self-interstitial atom (SIA) implantation in Fe on the long

run swelling of the material. Our MD simulations reveal that in this case, swelling is

the result of the nucleation and growth of highly disordered phases. The evolution of

these phases is found to be strongly dependent on the specific disorder topology. In

particular, the dependence of swelling on the irradiation dose rate is non-monotonic

and can be divided into three distinct stages in which the prevalent defected species

changes from small relatively stable dislocation loops to small unstable highly disor-

dered/partially amorphized pockets to larger and more stable pockets of defects. This



behavior is further explorect at longer time scales by usmg the ABC method exten-

sion to isobaric systems post irradiation, as well as the ABCD method to study the

complete evolution of the irradiated material during and after irradiation. The con-

clusions are consistent with those resulting from MD though additional, but minor,

relaxation of the microstructure takes place at longer time scales. The combination

of MD, constant stress ABC, and ABCD for the study of the long term evolution of

irradiated microstructures is presented as a powerful simulation alternative for the

study of cascade aging in irradiated materials.

4. Development of a colloidal model of chemomechanical hardening to simulate

cement setting: We develop a binary colloidal model exhibiting the characteristic sig-

moid, three-regime hardening behavior which characterizes a variety of soft condensed

matter systems, such as cement slurries. The model, inspired by a coarse-grained

analogy with stress corrosion cracking (SCC), gives rise to this behavior by the rapid

formation of a gel phase in which the larger particles diffuse through until they form

a strong percolating network. We present a comparison between experimental and

theoretical methods of estimating effective shear moduli and viscosity of viscoelastic

materials and propose an objective approach for calculating these viscoelastic moduli

from atomistic simulations. We also characterize the effect of various model parame-

ters on the setting behavior, comparing with experimental observations during C-S-H

hydration. Finally, we present results on the evolution of the model using ABC as

well as proposed refinements to more accurately model the energy landscapes and

time evolution of hydrated C-S-H.

The thesis is divided into two parts, Theory and Applications, as follows. The first

part, consisting of Chapter 2, discusses the theory and computational developments

behind the modeling of condensed matter phenomena across multiple time and energy

scales. The chapter starts from basic concepts in equilibrium and nonequilibrium sta-

tistical mechanics which give rise to the notion of an energy landscape (Section 2.1.)

and its interpretation within the context of the time evolution of condensed matter

systems. Section 2.2 gives an overview of the basics of atomistic simulation of mate-

rials and the limitations of the standard methodology in analyzing our problems of



interest. These limitations are addressed by the Autonomous Basin Climbing yABC)

method developed by Kushima and collaborators [12] which is described in Section

2.3. along with two generalizations for use in constant temperature (canonical) and

constant stress simulations. The chapter closes with a description of a dynamic gen-

eralization to ABC, termed ABCD, which further extends the method to changing

energy landscapes. The second part, comprising Chapters 3 through 5, leverages the

methods described in Chapter 2 to study three distinct condensed matter problems

characterized by an increasing degree of microstructural complexity, the combina-

tion of both chemical and mechanical processes, and roughness in their underlying

energy landscapes. Chapter 3 discusses results concerning the problem of hydrogen

embrittlement of metals. Section 3.1. describes results concerning the interactions of

hydrogen with point defects in an iron lattice and the resulting distribution of defect

clusters. Section 3.2 studies the migration and diffusion behavior resulting from those

interactions and Section 3.3 highlights the implications to long run degradation and

embrittlement. Chapter 4 follows with a study of the, more complex, microstructure

of an irradiated metal which includes a large number of point defects and partial loss

of order. Section 4.1. discusses the theories concerning the formation of voids in

metals and how they lead to volumetric swelling. Section 4.2. takes a different em-

phasis and discusses the effects of self interstitial atoms (SIA) in the swelling process,

in particular concerning the formation of highly disordered phases in the material.

Section 4.3. further expands into the problem of swelling by discussing the evolution

of irradiated materials over long time periods using the methods developed to model

slow dynamical systems. Chapter 5 closes our study of rough energy landscapes in

condensed matter by describing and analyzing a colloidal model of chemomechani-

cal hardening with applications to cement setting. In this case, long range order is

completely lost in favor of glass like behavior. Section 5.1. summarizes the basic

experimental knowledge about cement hydration, setting, and hardening. Section

5.2. discusses the atomistic modeling of viscoelasticity in colloidal suspensions, high-

lighting the well known phenomena of shear thinning and thickening. In addition the

section discusses the ways to estimate and measure viscosities and shear moduli in



viscuelastic materials within tue context of the theory oi isothermal linear viscoelas-

ticity and linear response theory. Finally, in Section 5.3, by relying on a new binary

colloidal model, we analyze the phenomenon of colloidal setting and the genesis of

rigidity in soft condensed matter in the context of cement setting and C-S-H hydra-

tion. A summary of the results and their implications is given in Chapter 6, along

with proposals for future work. In addition, a novel algorithm for synchronous par-

allel kinetic Monte Carlo in both continuum and discrete systems, a summary of a

recently developed model of the atomic structure of CSH, and benchmarking of our

ABC generalizations are provided in the appendices.
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Chapter 2

Time Scales in Atomistic

Simulation: Energy Landscape

Approach

2.1 Nonequilibrium Statistical Mechanics

The field of statistical mechanics relies on the basic assumption that as a result of

the large number of degrees of freedom in any macroscopic physical system, the prop-

erties of matter at the macroscale can be determined by averaging specific variables

(or Hermitian operators when dealing with a quantum mechanical formalism) over

an ensemble of microstates corresponding to the same macroscopic realization. This

limit, at which the number of degrees of freedom tends to infinity, is then referred

to as the thermodynamic limit. Each of the microstates is assumed to have an equal

probability of occurring as any other, so long as they correspond to the same equi-

librium macrostate. Macrostates, in turn, are defined by state variables such as the

total energy, number of particles, and volume which characterize the observable state

of the system.

This abstraction, bridging the behavior of individual constitutive particles and

their collective interactions through ensemble averaging, relies on the concept of an



equilibrium in winch the macrostate remains constant while the specihe microstate

can vary.

In nonequilibrium statistical mechanics, on the other hand, we seek to model time

dependent processes beginning with an understanding of the motion and interactions

of individual electrons, atoms, or molecules. Therefore, in addition to the changes

in microstates, which occur even at equilibrium for a given ensemble, the macrostate

itself is also allowed to change with time. In particular, taking the simplest of the

equilibrium statistical mechanical ensembles - the microcanonical ensemble - out of

equilibrium turns the system's potential energy into a dynamic variable. This gives

rise to an essential concept in the study of dynamical systems in this thesis: the

energy landscape.

For the nonequilibrium systems described above, both the micro and macrostates

change with time. Nonetheless, there are direct correspondences between a given

microstate (which can be analyzed with computational tools such as MD) and the

system's total, kinetic, potential, and free energies. Although in real physical systems

or in time driven simulation methods the processes by which the system moves from

one microstate to another (which may or may not correspond to the same macrostate)

take place as a function of time, the correspondence between microstates and energies

is not explicitly time dependent. 1

More precisely, to give a complete description of the state of a three-dimensional

N-particle system at any given time it is necessary to specify the 3N coordinates

and 3N momenta that describe the microstate. Then the equations of motion of

the system result in motion through the 6N dimensional phase space (or I space)

in which all microstates are points. We can then define the correspondence between

a microstate y = (qi, q2, ... , qN, P1, P2, ..., PN) and the total, potential, and kinetic

energies directly. In this case the correspondences are single valued and properly

'An explicit time dependence of the energy will result in a dynamic energy landscape. This
generalization of our formalism is discussed in Section 2.4.



defined funciuons. ,o we can write:

Epotential Epotentia (p1) =Epotential (gi, 7..., qN, P1, ...,i PN) (2-1

Ekinetic Ekinetic(p) = Ekinetic(ql, ... , qNP, .-- , PN) (2.2)

Etotai = Ekinetic + Epotentiai = Etotai(p) = Etota (qi, ... , qN, PI, ... , PN) (2.3)

For most cases of physical interest these relations can be further simplified by as-

suming that for a specific reference frame the potential energy depends exclusively

on the position vectors while the kinetic energy depends on the momenta. Equations

(2.1-2.3) then reduce to:

Epotentiai = Epotentiai(p) = Epotential(qi, ... , qN) (2.4)

Ekinetic = Ekinetic(t) =Ekinetic(Pi, ... , PN) (2.5)

Etotai= Ekinetic - Epotentiai = Etotai(P) =Etotai(q1, ... , qN, P1, --- , PN) (2.6)

Then the vectors given by (Epotentiai, P), (Ekinetic, p), and (Etotai, p) (also denoted

as (<D(p), p), (K(p), p), and (H(p), p) ) are in (3N + 1)-, (3N + 1)-, and (6N +

1)-dimensional spaces respectively, and give rise to hypersurfaces. These complete

hypersurfaces, which characterize the correspondences between the energies and the

microstates as described by Equations (2.4-2.6) are what we term energy landscapes.

In this thesis we focus on potential energy landscapes, to which we will refer to as

energy landscapes without the "potential" qualifier from now on and unless otherwise

noted.

The relation between the microstate and the system's potential energy becomes

particularly powerful when metastable or local equilibrium macrostates occur. In

such cases we can allow the system to relax by changing its microstate (associated to

potentially different macrostates) until a local equilibrium is reached corresponding

to an energy well or local minimum of the energy landscape. As explained in the

following subsection, it is precisely the topology of these wells and of the local energy

landscape that determines the time evolution of the system and the time dependent



properties or transport coetcients.

2.1.1 Transition State Theory

The connection between energy landscapes and the kinetics of physico-chemical pro-

cesses was established in 1935 by Henry Eyring, Meredith Gwynne Evans, and Michael

Polanyi within the context of the rates of chemical reactions [13-16]. While the con-

cept of an energy landscape had been laid by Rene Marcelin, who proposed that the

progress of a chemical reaction could be described as the motion of a point in the

energy landscape, the actual calculation of a real energy landscape did not occur until

Eyring, Evans, and Polanyi's seminal work. In this section we summarize essential

results in transition state theory (TST) [16,17] which are used repeatedly throughout

the thesis.

LU

A

AEba

Microstate Position

Figure 2-1: Schematic of the energy landscape between two microstates A and B. S
denotes the intermediate saddle point and AEb and AEba denote the forward and
backward activation energy barriers respectively.

The basic equation in transition state theory (TST) [16] relates the rate of a



physico-eneical process to its associated energy landscape. in paricular, considering

a physical process (chemical reaction) in which the system begins at a microstate A,

e.g. a microcanonical microstate such as the ones described in the previous section

or a Grand canonical microstate for chemical reactions, and finishes at a microstate

B, gives rise to two associated energies in the landscape: 1D(A) and 1(B) (we assume

without loss of generality that we are referring to microcanonical microstates though

the abstraction can be trivially generalized to other ensembles). Taking a continuous

path between A and B, and if the function in Equation (2.4) is continuous and non-

diverging, then by the intermediate value theorem that there is a microstate S such

that 1(S) is a maximum in the path. Furthermore if A and B are chosen to be local

equilibrium states, i.e., D(A) and 4D(B) are local minima, then S is different from

A and B and is then a saddle point in the landscape associated with energy 1(S)

(see Figure 2.1). We can then define two activation energy barriers for the A -+ B

transition (forward and backward) as:

AEab =(S) - 4D(A) (2.7)

AEba = D(S) - D(B) (2.8)

Now consider the unique hyper-surface E of dimensionality 3N passing through the

saddle point S and perpendicular to the constant energy contours. With this con-

struction, E divides phase space into two separate regions in which A and B lie

respectively (see Figure (2.2)). Calculating the rate of the transition is equivalent

to calculating the rate at which points in the 3N-dimensional phase space cross the

surface from "left" to "right" (i.e., from the region which point A lies to that in which

point B lies) [17], which is given by:

l' = (2.9)
QA

where I is the number of points moving from "left" to "right" per unit time, and

QA is the number of points in the region "left" of E. In the case of our energy
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Figure 2-2: Schematic of the constant energy contours describing the landscape be-
tween two microstates A and B of the dividing hyper-surface E [17].

microstates, we can calculate QA from the canonical distribution as:

QA = Po eTdv (2.10)

where po is a normalizing constant, k denotes Boltzmann's constant, T the system

temperature, <b denotes the potential energy function from Equation (2.4), and the

integration is over all phase space "left" of E. I can be calculated by noticing that

the number of representative points at any given point Y of E per unit volume, with

hyper-velocity V = (1I, j2, -- *, Y3N) within a range dV is given by:

p(Y, V) = po(27rkT e kT e 2-T32 1 ' '. ' r3N (2.11)



Tuen dI is given by:

dI = dE JVp(Y, V)dV (2.12)

where dE = (dE 1, ..., dEN) is an infinitesimal section of E around Y, and the integra-

tion is performed over all V such that dS -V > 0. Therefore from Equations (2.11)

and (2.12), I is given by:

I= dI = po jkT/2r je dS (2.13)

so plugging into Equation (2.9) we find:

£ rkT fseTdS (2.14)
27 = 4 (.42e fkedv

Classical TST then assumes that the integrals can be simplified by taking an average

of an uniform potential energy function. This implies that the rates corresponding to

this process (A to B) and its inverse are given by:

Yab =vabe kT (2.15)

-AEba

Yba Vbae kT (2.16)

where vab and vba are both constants associated with the average frequency of attempts

and associated with natural vibrations of the system. While quantum corrections,

introduced to account for tunneling effects, add a multiplier to Equations (2.9) and

(2.10), these effects are minimal for the problems discussed in this thesis. More

importantly, though, while for many applications the attempt frequencies vab and uba

are phenomenologically chosen to correspond to average vibration frequencies in the

material of interest, they can be rigorously calculated following the seminal work of

Vineyard [17] by invoking a harmonic approximation of the energy landscape, in what

is termed Harmonic Transition State Theory (HTST). We expand <D to second order



arounc point A by letting:

3N

4 = 4(A) + 1 2(27rvj)2qj (2.17)
j=1

where we abuse the notation somewhat by letting qi, .., q3N be the normal coordinates

(scaled by the mass) and v1 , ... , V3N the corresponding normal vibration frequencies

at point A. Similarly around the saddle point S we can expand the potential energy

function in the hyper-surface E as:

3N-1

= O(S) + E (27rv )2q2 (2.18)
j=1

where qj, .., q3N-1 are the corresponding normal coordinates and vI, ... , vN- the cor-

responding normal vibration frequencies at point S. Plugging Equations (2.17) and

(2.18) into (2.14) we find:

3N

= (3 1 ,ec[<(s)-<>(A)]/kT (2.19)
Ij=1 3i

and therefore, from Equation (2.15) (and analogously for Equation (2.16)) we find:

Q3NA
Vab 3 H> 1 1A (2.20)

3N B

v/ba = 3>; j (2.21)
j=1 3

where f denotes the j-th normal frequency around point P.

2.1.2 Microstructural Complexity and Rough Energy Land-

scapes

Slowly evolving systems tend to result from four strongly related causes: naturally

rough energy landscapes due to complex microstructure, the combination of processes



with different kinetic mechanisms such as chemistry and mechanics, external pertur-

bations driving the system far from equilibrium, or the coupling of all three. These

alternative driving forces give rise to two different transport coefficients [18]: exter-

nally driven transport coefficients, arising from an external perturbation, or thermal

transport coefficients, where the rough energy landscape or boundary conditions in

question are the ones giving rise to the transport.

While at each instant in time the specific microstate in the system is constantly

fluctuating, the macrostate (characterized by gross, macroscopic variables such as

total energy or volume) only evolves slowly by jumping from one local minima in

the energy landscape to another. Transport is then defined as this slow migration of

macrostates through the landscape and associated to the underlying microstructural

evolution of the system. Appendix B summarizes the main ideas in the linear response

theory of transport culminating in fluctuation-dissipation theorems for both thermal

and externally driven transport coefficients. These results are used in various sections

in the thesis.

TST and linear response theory link the time evolution of a physico-chemical pro-

cess with the underlying topology of the energy landscape. In particular, and as

highlighted in Chapter 1, the topology of the energy landscapes for systems whose

behavior takes place over a wide range of time scales is highly complex. Condensed

matter systems which exhibit such behavior range from solid to glassy to liquid, from

metals to semiconductors to ceramics, and from mechanically to electrically to chemi-

cally driven. Nonetheless, these system share important similarities in the complexity

of their underlying microstructures, and this gives rise to multiple mechanisms and

time scales.

The complex microstructures which give rise to so-called rough energy landscapes,

characterized by the presence of wells, plateaus, and valleys with very distinct topol-

ogy interspersed with many energy barriers of comparable height and curvature (see

Figure 2.3 for an illustration), tend to share three important characteristics:

e They are far from equilibrium due to external chemical, electrical, or mechanical

stresses.



e Highly defective microstructures.

* Kinetic processes at different scales, such as chemistry and mechanics, occur on

equal footing.

Systems far from equilibrium tend to result from constant external forces that ef-

fectively distort the energy landscape, such as electric fields, chemical fields or ir-

radiation, or from a highly distorted landscape topology in which shallow wells are

interspersed with deep energy wells giving rise to very slowly evolving states.

Figure 2-3: Illustration of a two-dimensional rough energy landscape. At a suit-
able temperature, the two dark blue regions are metastable states in which the
macrostates spend most of the time; yet transitions occur infrequently, mainly via
the light blue/yellow rough valley [19]

High disorder configurations normally produce frustrated or metastable states due

to the large activation energies required for relaxation and as a result, in addition to

their technological applications, highly defected materials represent prime examples

for the study of slow relaxations and rough energy landscapes. The framework for

calculating transport coefficients in these systems is based on linear response the-

ory, transition state theory, and atomistic simulations which will be discussed sub-

..............



sequently. As will Decome apparent in latei sections and chapters, the increase in

complexity in both microstructure and energy landscape topology requires the use

of more powerful and innovative theoretical frameworks and modeling techniques in

order to understand the system. Nonetheless, and despite the increasing ingenuity

and power of the simulation methods, the type of physical conclusions that can be

extracted become less definite as complexity increases.

Such defective systems, ranging from crystalline solids to amorphous or semi-

crystalline colloidal suspensions, are explored in the second part of this thesis, which

is concerned with applications of our theoretical developments. As such, and for com-

pleteness, here we summarize the most essential features of the complex microstruc-

tures in which our methods will be applied.

In the case of crystalline materials these defects, responsible for much of the energy

landscape roughness, and their associated complexity, can be categorized according

to their spatial dimension:

Point defects, those which do not extend in space in any dimension, comprise the

two most fundamental irregularities in a perfect lattice: vacancies and interstitials. In

the case of an impurity, the atom is often incorporated at a regular atomic site in the

crystal structure. This defect, called a substitutional defect, is neither a vacant site

nor is the atom on an interstitial site. The atom is not supposed to be anywhere in

the crystal, and is thus an impurity. Small atoms, such as hydrogen, in some crystals

can occupy interstitial sites without high energy. We study the evolution of such a

system in Chapter 3 within the context of hydrogen embrittlement of metals. The

energy landscape in that case is dependent on the geometry of individual point defect

clusters as well as on the overall concentrations of defect species in the material.

Line defects, which can be described by gauge theories, include dislocations, es-

sential in the study of crystal plasticity, and disinclinations which are observed in

liquid crystals. Although dislocations are of paramount importance in understanding

embrittlement in metals and creep, we only discuss them tangentially in this thesis

while proposing ways to generalize our approaches to their study.

Planar defects, such as grain boundaries, anti-phase boundaries, and stacking



faults, are characterized by their two-dimensional topologies in a three-dimensional

bulk. While present in most materials and important in the slow dynamics of Coble

creep, we also omit them from most of this work. Finally, bulk defects include voids

and precipitates which are agglomerations of point defects.

Topological defects are regions in a crystal where the normal chemical bonding

environment is topologically different from the surroundings. For instance, in a perfect

sheet of graphite (graphene) all atoms are in rings containing six atoms. If the sheet

contains regions where the number of atoms in a ring is different from six, while

the total number of atoms remains the same, a topological defect has formed. An

example is the Stone Wales defect in nanotubes, which consists of two adjacent 5-

membered and two 7-membered atom rings. Also amorphous solids may contain

defects. These are naturally somewhat hard to define, but sometimes their nature

can be quite easily understood. For instance, in ideally bonded amorphous silica all

Si atoms have 4 bonds to 0 atoms and all 0 atoms have 2 bonds to Si atom. Thus

e.g. an 0 atom with only one Si bond (a dangling bond) can be considered a defect

in silica. These type of defected structures, which give rise to very slow relaxation

behavior, are explored in Chapters 4, in which local amorphization occurs as a result

of high irradiation dose rates in Fe, and Chapter 5, in which we study flow, gelation,

and solidification of amorphous colloidal suspensions as a function of time.

2.2 Review: Atomistic Modeling Fundamentals

Two main classes of computational methods are used in the atomistic modeling of con-

densed matter systems, both in and far from equilibrium: time driven and stochastic

methods. For these classes of methods the system goes through different microstates

in either a dynamic fashion, in which the system evolves naturally as a function of

time, or by directly sampling from a distribution of microstates, respectively. The

first class of methods, with a natural time evolution, rely on time averaging to deter-

mine equilibrium properties and an analysis of the time evolution for non-equilibrium

ones. This class is spearheaded by Molecular Dynamics (MD), the oldest and most



basic, yet extremely powerful, atomistue moteimg tool. The second ciass relies on

probabilistic tools. These methods directly sample the microstates corresponding to

a given macrostate, in the case of equilibrium systems, or sample the microstates di-

rectly from the energy landscapes described previously, for non-equilibrium processes.

This class of methods is headlined by the Monte Carlo (MC) and kinetic Monte Carlo

(KMC) algorithms. The equivalence of these two classes of computational tools to

describe the behavior of physical systems relies on the axiom of ergodicity, which

assumes that in the thermodynamic limit the system goes through a sufficient num-

ber of microstates as it evolves in time to ensure that time averages are statistically

equivalent to ensemble averages. For finite simulations the axiom of ergodicity gains

an additional dimension, as time averages are dependent not only on the nature of

the system but also in the time range over which the average is taken. This results

in a lack of ergodicity in practice even for systems that would otherwise be ergodic

for infinite simulations. This is particularly important for the complex condensed

matter systems of interest in this thesis since the roughness of the underlying energy

landscapes limits the applicability of time driven methods such as MD because the

system remains constrained in deep potential energy wells for times which are on the

order of or higher than the allowable simulation time.

2.2.1 Molecular Dynamics

Molecular Dynamics (MD) is the most basic of the time driven methods. In MD we

follow the laws of classical mechanics [20], in particular Newton's second law:

Fj = mia- (2.22)

for each atom i in a system of N atoms. Where a, = d2q' is the acceleration, Fj is the

force resulting from interactions with other atoms, and mi is the mass of the atom.

The many-body problem then reduces to the resolution of the system of coupled

second-order differential equations as a function of time. MD is thus a deterministic

method (within the constraints of finite integration and possibly chaotic behavior) in



which tne initial conctitions uniquely aefine tne full solution to iLne system.

While fully quantum mechanical MD simulations are possible through the Car-

Parrinello method [21], the majority of simulations of atomistic systems with MD are

carried out using the classical equations of motion. This approximation is valid so

long as the de Broglie thermal wavelength, given by:

A 2:42  (2.23)
MkT

satisfies A << a, where M is the atomic mass, k is Boltzmann's constant, and T

is the temperature, and a is the mean nearest neighbor separation. For liquids and

colloidal suspensions, A/a is of the order of 0.1 for light elements, and decreases for

heavier elements such as C and Fe. For very light systems such as hydrogen or helium

molecules the classical approximation is poor and a quantum mechanical treatment

is needed.

MD simulations naturally lead to a time driven evolution of the system. After

possible initial transients (which may be long lasting), the phase space distribution

function characterizing the location of the microstates becomes essentially time inde-

pendent. In this case, the properties of the system relax to fixed average values for

equilibrium systems, as well as for metastable non-equilibrium steady states. For this

system we evaluate any phase variable B by resorting to a time average given by:

(B)t lim -J B(t)dt (2.24)
T ooT to

where to is the time after which the system reaches the (meta)stable state.

While size limitations for MD simulations have been greatly reduced with the im-

plementation of highly efficient parallel algorithms which allow for simulation of up

to a billion atoms [22], simulating slowly evolving systems still remains a major chal-

lenge. A simulation can be considered rigorously accurate in regards to its duration

if the simulation time is much longer than the relaxation time of the quantities of in-

terest [20]. However complex microstructures such as those described in the previous



section and systems close to pl1ase tranitions exhibit very ,iuw ana siuggish behavior

because collective motions, requiring the surmounting of a large energy barrier, are

required for relaxation. Since MD simulations must resolve atomic vibrations the

time step for integrations needs to be on the order of 10-15 s for most materials.

This therefore limits the total simulation times to less than one microsecond which

is insufficient for allowing slow systems to rigorously relax.

The connection between the energy landscape and the system dynamics is very

direct in an MD simulation. If the potential energy function in Equation (2.4) is

translationally and rotationally invariant, as is generally the case, then the forces

in Equation (2.22) are given by the as gradients of the potential with respect to

displacements as:

Fi = -Vqid(qi, ... , qN) (2.25)

In general, though, the potential function is written as the sum of individual, pair,

and local terms, so understanding the instantaneous relationship between the function

and the trajectories is insufficient to calculate the topology of the landscape explicitly.

Nonetheless, this form leads in a straightforward way to the conservation of total

energy in the system and therefore, under ergodic assumptions, standard MD simu-

lations following a Hamiltonian h(p) generate a phase space probability distribution

6(H-(p) -E) (constrained by other conservation laws such as angular momentum [23]),

which is the microcanonical ensemble. Constant temperature MD simulations, cor-

responding to the canonical ensemble, can be achieved by coupling the system to a

thermostat. This can be achieved in variety of ways ranging from velocity rescal-

ing, which does not completely reproduce the statistics of the canonical ensemble, or

more precisely via Langevin-type dynamics such as the Nos6-Hoover thermostat [24].

In this case the microstates sample the probability distribution exp(-#3(p)) where

# = 1/kT. Additionally we can perform constant stress and constant temperature

MD simulations which can be directly compared with experiments by combining

Nos6-Hoover thermostats with Parrinello-Rahman dynamics [25] in which the system



evolves accoruing to the Lagrangian:

L 
N

S= m 'GAi - <D(qi,..., qN) + -WpisonTrh'h - pV - 1/2TrEG (2.26)

where h is the matrix defining the unit cell, si = h-qi are the fractional coordinates,

p is the hydrostatic pressure, V is the volume and:

G = h'h (2.27)

E = ho- 1 (S-p)h' Vo (2.28)

where S is the stress tensor and ho is the initial cell shape. With the system evolving

according to this Lagrangian it changes its shape in response to stresses. In the

particular case of constant pressure, the microstates sample the isobaric-isothermal

ensemble.

2.2.2 Kinetic Monte Carlo

As explained previously, the ergodic hypothesis conjectures that ensemble averages

over the energy landscape are the same as time averages. Hence as a simulation

alternative to the time driven methodologies (such as MD) we can directly sample

the probability distribution of the ensemble and calculate the properties by averaging.

The algorithms used to sample the probability distribution rely on random numbers

and belong to a broad class of, so called, Monte Carlo methods.

The most famous of such methods is the Metropolis algorithm [26] which ele-

gantly samples the equilibrium properties of a given physical ensemble. To study the

dynamic evolution of the system as it moves from microstate to microstate, Monte

Carlo methods can be adapted to evolve dynamically in what has come to be known

as kinetic Monte Carlo (KMC). The scope of applications of KMC is extremely wide,

ranging from population kinetics to radiation damage [27].

The interest on KMC results from MD's inherent limitation in simulating long time

scales. As described previously the need to use time steps short enough to resolve



atomic vibrations ( lu s) limits the maxnunimn AD simulation. iVaC atniempts to

overcome this limitation by exploiting the fact that the long run dynamics typically

consist of diffusive jumps from state to state. Rather than following the full microstate

trajectory, the state-to-state transitions are treated directly. As a result KMC can

reach much longer time scales, above seconds and beyond [27]. The key assumption

in KMC is that the topology of the energy landscape is such that a microstate caught

in a basin stays there for a long time and forgets its history. Then for each possible

escape path we can characterize the jump from basin i to basin j by a rate constant

Lii, which can be calculated from TST as in Section 2.1.1. Thus KMC relies on

a priori knowledge of a given set of transition rates characterizing the simulated

processes, which are assumed to obey Poisson statistics, and lead to a Markov chain.

Based on this approach, if we know the transition rates exactly or alternatively, if

we know the energy landscape topology perfectly, then the time evolution of average

properties in the KMC approach is indistinguishable from that of a MD simulation.

The most widely used variant of the method is the Monte Carlo time residence

algorithm, also known as rejection-free n-fold method, or BKL in reference to its

authors [28]. Assuming the complete set of transition rates is available the algorithm

proceeds as follows:

" Consider a microstate located at an initial basin i with M possible escape

pathways j = 1,2,.., M and known corresponding transition rates Fi.

e Let rtot = Em_1 Lii and q, = E_1 LJ/Ftot .

" Select a random number q between 0 and 1.

" Then if q,-1 < q < q for 1 < n < M the pathway n with corresponding

transition rate F = rin is chosen and the system microstate is changed to that

corresponding to basin n.

" Independently elect another random number ( between 0 and 1.

" We advance total simulation time by r, where r = -- !ln((), and repeat the

process.



Witii Lhis simple algorithm the microstate moves from basin to basin in the energy

landscape while maintaining rigorous Poisson statistics.

Despite its power and breadth of applications, KMC has two major flaws that limit

its applicability. The first issue is associated with the inputs to the KMC algorithm:

the assumption of a priori known transition rates and pathways is a strong one. In

particular, an incorrect choice of potential pathways prevents specific mechanisms

from occurring even if they are possible options physically and would be realized in a

MD simulation. Since KMC requires such rates as inputs an additional technique must

be used for their calculation or estimation. In the literature this can be accomplished

by using energy landscape sampling methods such as NEB [29 in conjunction with

TST, or by fitting experimental coarse grained observations. However, even if the rate

itself can be estimated, the actual possible pathways need to be collectively exhaustive

or important physical mechanisms may be lost. The second issue is related to the

practical implementation of KMC in the case of rough energy landscapes such as

those studied in this thesis. In that case shallow basins or wells are interspersed

with deeper ones and as such the algorithm can jump from shallow basins to shallow

basins continuously without much gain in total simulated time. Furthermore when

very shallow basins - corresponding to more frequent events - are present, the "loss of

memory" assumption is not necessarily valid and the Markov chain formalism can fail

to capture the correct evolution. As will be discussed in the following section both of

these issues are resolved by using an altogether different method termed Autonomous

Basin Climbing (ABC).

Finally, in addition to the two major problems highlighted above, KMC has an-

other important shortcoming. Unlike MD simulations which can take advantage of

highly parallelizable computer architectures with simple algorithms in order to, par-

tially, address the length scale challenge, KMC simulations do not lend themselves

to trivial parallel implementations. The problem lies in the intrinsic time discreticity

underlying event-driven (as opposed to time-driven) simulations, which are sequential

in character. Several parallel algorithms for KMC have been proposed with various

degrees of rigor and efficiency but they have received limited acceptance. Nonethe-



less, Appendix A presents details on a new synenronous parallei KinetiC AIonte Carlo

(PKMC) algorithm for both continuous and discrete/lattice-based systems which ad-

dresses some of these issues.

2.3 Autonomous Basin Climbing

Both the time-driven and stochastic approaches described in the previous section

have obvious limitations in dealing with the slowly evolving systems and rough en-

ergy landscapes that we study in this thesis. The principles of TST described in

Section 2.1. suggest an alternative approach to the time evolution of condensed mat-

ter systems directly relying on the energy landscape that circumvents the need for a

priori inputs that limits the effectiveness of KMC. This is the basic idea behind some

recent acceleration methodologies such as metadynamics [30,31] and the Autonomous

Basin Climbing (ABC) method [12] on which rely for various applications in this the-

sis. In this section we discuss the principles of ABC's microcanonical incarnation as

developed by Kushima et al., and present two new extensions of the method to the

canonical and constant stress ensembles.

The ABC method developed by Kushima et al. [12] generates a set of inherent

structures and activation energy barriers from which the dynamical variables (viscos-

ity of supercooled liquids in its original application) can be determined. The inherent

structures correspond to the local minima in the energy landscape which are found

by quenching a system from configurations generated by constant temperature MD

simulations. Different temperatures allow the system to sample multiple regions of

phase space and thus lead to the underlying structures of the system at a given tem-

perature. More importantly, the ABC method is able to also sample the saddle points

in addition to the local minima (or inherent structures) and hence provides a more

complete topological picture of the energy landscape. The algorithm by which the

ABC method samples the topology is schematically illustrated in Figure 2.4 and is a

modification of that introduced by Laio and Parrinello [30] and which is the basis of

metadynamics methods.
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Figure 2-4: Schematic illustration explaining the Autonomous Basin Climbing (ABC)
method. Dashed and solid lines indicate the original and penalty potential energy
landscapes respectively [12].

We consider an initial microstate that is relaxed to a local minimum in the energy

landscape with spatial configuration Q(1 = (q7"n, ... ,qg") and with corresponding

potential energy given from Equation 2.4: E = <(Q$r). The system is then

driven away from this configuration by imposing an additional penalty function to

the potential energy which results in fictitious forces which move the system out of

the basin. This penalty function is given by a 3N-dimensional Gaussian as:

#i(Q) = Wexp( 2 r2 " ) (2.29)

where the parameters W and o- are prescribed constants which determine the strength

and curvature of the fictitious penalty. The total (penalized) system potential energy

then becomes <b' = <D + #1. The microstate is then relaxed in the new penalized

landscape by standard energy minimization procedures until it reaches a new config-

'0



uration Q§n with corresponding energy E . The process is unen repeated by auding

more penalty functions of the form in Equation (2.29) but centered in the new config-

uration until a new local minimum configuration Q(2 is identified by checking that

both &D/OQ(Q2) = 0 and <(Qin) = 0. The minimization path is backtracked

until the saddle point separating the two minima is identified, corresponding to a

configuration Q() with energy Esd

-20.2
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Figure 2-5: Trajectory generated from Autonomous Basin Climbing (ABC) for the

case of a glassy system at Tg = 0.37. qij is the activation barrier between basins i

and j [12].

By repeating this process we generate a trajectory of minima and saddle points
through the energy landscape F(Emi, Ead) = (E(', E(1 , E(2 , E , .2 .). A sample

min) sad, mnin, sad7 ... ).A s

calculation in the case of supercooled liquids is shown in Figure 2.5. Since the Gaus-

sian penalty functions are preserved even after a new minimum is found frequent

recrossing of small barriers is eliminated so the system proceeds efficiently in rough

landscapes in which methods such as KMC perform poorly. However, the require-

ment of preserving the full penalty function history puts important constraints on

memory and leads to potentially poor scaling of the method with system size (and

correspondingly Gaussian penalty dimensionality). Nonetheless, in systems in which



particles are eilectively confineu to theli local atomic positions (e.g. solid crystals,

glasses, and sluggish colloidal suspensions) the volume of configuration space which

must be samples is much smaller than the full phase space (as shown in Appendix B)

and hence the method scaling with size improves.

By following the system evolution with ABC we can sample the topology of the

landscape which in turn provides kinetic information via TST. Unlike methods such

as nudged elastic band (NEB) [32] or the dimer method [29] no final state or direction

of search for the pathways is necessary, so ABC is not constrained in regards to the

possible kinetic mechanism which it explores. In addition to the energy landscape in-

formation which it generates, ABC also produces the local equilibrium configurations

at the sampled basins so the microstructural evolution of the system can be directly

tracked without the need for an additional method. In this manner the trajecto-

ries generated by ABC can be directly compared to those from time-driven methods

such as MD. The only caveat to this approach is that, by design, ABC simulates a

microcanonical ensemble (in which the variable of interest is the potential energy).

However, and unlike in MD simulations of the microcanonical ensemble, the concept

of time, which is not explicitly present in the relationship between the energy land-

scape and the configurational space (as highlighted in Section 2.1) is absent. Thus,

the system evolves through the energy landscape by jumping from basin to basin in

"metasteps" which, in principle, are artificial. Addressing this problem and extending

ABC to more general systems (constant temperature, constant stress, dynamic energy

landscapes) is the main methodological contribution of this thesis and is discussed in

the next sections.

2.3.1 Canonical Ensemble ABC

The lack of a time coordinate in ABC can be addressed in two possible ways: (1)

by relating "metasteps" to real time via TST, or (2) by coupling ABC with KMC.

Each of these solutions has advantages depending on the problem of interest and are

discussed more extensively subsequently. It is important to note that these methods

effectively switch the ensemble from which the microstate is sampled from the micro-



canomcal (constant Etot) Lo the canonical (constant 1) ensemble since the concept ui

time evolution is inherently linked to the velocities of the evolving particles and hence

to their temperature. While this has no effect on thermodynamic variables (i.e. first-

order derivatives of thermodynamic potentials such as T, P, tij, etc.) as long as the

system size is sufficiently large, it does change the static susceptibilities (i.e. second

order derivatives). Nonetheless, the canonical ensemble is a more accurate represen-

tation of most experimentally realizable physical systems than the microcanonical

one, so this switch is beneficial for the predictive ability of the method.

The first approach is a straightforward application of the principles of TST to

the energy landscape sampled by ABC. It involves adding two extra steps to the

standard ABC methodology after a saddle point is found. As before consider the

initial configuration QMl with corresponding energy E(1) = 4D(Q$,Un) which then

transitions to a different basis with configuration Q(2 and energy E(2) ( )

These two distinct local minima in the energy landscape are then separated by a

saddle point with configuration Q(12) with energy E ,12 ) all of which are given by the

standard ABC approach. Now letting A= QM,, B = Q(2, and S = Q(2 we have

an identical configuration to that illustrated in Figure 2.1. with:

AEab = 4)(Q(1)) - (Q$,) (2.30)

AEba = =(Q(1)) -4)(Q(2) (2.31)

which are analogous to Equations (2.7-2.8). We can then calculate the rate for this

transition from Equation (2.15), where we can either use a phenomenological estimate

for Vab or we can calculate it using HTST by obtaining the normal frequencies around

A and S as described in Section 2.1.1. and summarized in Equation (2.20) We then

obtain the time step r for the transition stochastically by:

AEpab
1 e k

r = ln(() =- Iln(() (2.32)
ab Vab

where ( is a random number between 0 and 1, and T is the system temperature



twicn was a variable absent ilun the ABC simulations except in the generation 01

the inherent structures). The simulation time is then advanced by T, the config-

uration switches from Q(1U to QM and the process is repeated. Equation (2.32)

then relates the length of the "metasteps" to the underlying landscape by assuming

Poisson statistics and TST. In this fashion we can follow the trajectory F(Emin, Esad)

with a corresponding time coordinate associated to a specific temperature T. That

is, our trajectory becomes F(Emin(t), Esad(t)).

The second approach, which we term hybrd ABC-KMC, uses ABC to address the

two flaws that limit the effectiveness of KMC that were described in Section 2.2.2. In

a static case, i.e. to calculate equilibrium properties, the landscape generated by ABC

(Figure 2.5) can be used to generate the canonical probability distribution p(Q) =

exp(-,3(Q)) such that the probability of basin i with corresponding configuration

QW, is given by:

p(i) = exp(-/E(') (2.33)

where 3 = 1/kT. Then sampling over this distribution with a standard Metropo-

lis algorithm produces the necessary configurations and averages. In the dynamical

setting, the need for a priori possible escape pathways and rates is one of the main lim-

iting factors for KMC. However the landscape produced by ABC naturally generates

escape pathways and activation energy barriers for each of the basins. In particular,

each local equilibrium configuration Q(') represents a basin i in the energy landscape.

Furthermore the ABC method naturally orders these minima sequentially as it fills

the landscape, such that configuration Qjl) leads to configuration Qj which in

turn leads to configuration Qjl). These transitions are separated by barriers given

by:

AEj-j = @(Q1 -j)) - (Q;)) (2.34)

A Ej-j+1 = 4((Q j_4+1)-Q) (2.35)

with corresponding rates calculated from TST. These escape pathways from each

basin configuration and their corresponding rates can be coupled dynamically with



a 1.vlt algoriinin. First, a alkarov chain can be formed with nuces at each basi

and edges to only the nearest neighbors with probabilities given by the rates as

described above. This Markov chain can then be sampled using the standard KMC

algorithm. Furthermore, the first nearest neighbor network described above can be

generalized to k nearest neighbors, in which a the appropriate saddle point between

basin i and i + I with 0 < 1 ; k is given by the highest saddle point in the chain

connecting the two as illustrated in Figure 2.5. The parameter k thus controls what is

considered a possible unit step in the KMC simulation. This process can be performed

dynamically by adding an ABC step to the BKL algorithm for KMC in a similar

fashion to adaptive KMC methods [33]. Starting the KMC algorithm from a given

initial configuration, neighboring local minima are sampled on-the-go with ABC (from

various initial quenches to obtain appropriate statistics). Energy barriers and rates

are then computed and the resulting escape pathways are sampled with the standard

BKL algorithm. Unlike adaptive KMC, the post-escape states do not need to be

specified and are explicitly found by ABC. While this hybrid method addresses the

major flaw associated with KMC of a priori knowledge of escape mechanisms and

pathways, on-the-go hybrid ABC-MC is very computationally intensive. Less rigorous

alternatives such as using ABC to create the escape pathway lists for the essential

basins prior to the KMC routine and then using the calculated rates as inputs are

therefore preferred for most applications.

2.3.2 Constant Stress ABC

As is also the case MD simulations, in many instances we are interested in simulating

systems under experimentally realizable conditions such as constant temperature or

pressure. These ensembles (canonical or isobaric) can be sampled via MD by using

the thermostats or barostats described in Section 2.2.1. In addition, the previous

section described two distinct approaches to sample canonical ensembles using ABC.

In this section we provide a new generalization of the method to the constant stress

ensemble, of which the isobaric ensemble is a particular example.



t tully rigorous approach would consider tue uibbs potential energy given by:

9(h, S) = F(h, S) + PV (2.36)

where h and ho are the matrices defining the shapes of the unit cell at the given

minimum and initial configuration respectively, V = det(h) and V = det(ho) are the

corresponding volumes, S = (Si, S2, ., SN) with si = h-1 qi, and F is the Helmoltz

free energy at fixed shape h. We can then use ABC in this higher dimensional Gibbs

energy landscape and follow the evolution of the system through its topology in a

manner analogous to standard ABC. For the kinetics we then need to choose the

"masses" corresponding to the h variables by calibrating in a way similar to that

for the "mass of the piston" or "weight of the wall" in Parrinello-Rahman dynamics

[25]. As is well known, the equilibrium properties of an ensemble are independent

of particle masses, so these masses are irrelevant for determining the equilibria in

the landscape but determine the time scaling of the kinetics. The problem with this

theoretically rigorous approach is that it is very inefficient in practice, because of the

disparities between the contributions of Q and h to the topology of the landscape.

More precisely, the principal curvature of the Gibbs energy landscape corresponding

to the h coordinates is much lower (i.e., the landscape is "flatter" in that direction)

than the principal curvature corresponding to the S coordinates. Therefore the size

of any given basin increases in the h directions and a much larger number of Gaussian

penalty functions is necessary to escape from it. As a result the efficiency of position

relaxation is compromised by the cell shape relaxation.2 Hence, in practice, we use

a step-wise process to perform constant stress ABC simulations. That is, the cell

shape relaxation takes place (almost) independently from that of the atomic positions.

While this rigorously insures the local minima are found (because iterations of the

relaxation in separate coordinates will lead to the local minima of the full Gibbs

potential energy of Equation (2.36), especially if the principal curvatures are very
2We can, in principle, address the inefficiency of the rigorous method in filling the basins, re-

sulting from the h coordinates, by penalizing each dimension with a different o- or by moving away
from Gaussian penalty functions altogether. Optimizing the choice of the function for a particular
landscape geometry remains an open question in the development of ABC.



dinerent), the calculated aetivatlui eneigy barriers separating the basins in the 31 -

dimensional landscape (3N atomic degrees of freedom and 6 cell shape degrees of

freedom) may overestimate the minimum barriers necessary to transfer basins, as

will be discussed below. This step-wise constant stress ABC can be accomplished

in three different ways that are illustrated in Figure 2.6. The choice of the specific

methodology depends on the nature of the system and the computational constraints.

The first method (Figure 2.6.a) consists of the addition of a cell relaxation step

(e.g., through the insertion of Parrinello-Rahman dynamics, described in Section

2.2.1) during the minimization procedure that follows a jump to a new basin. In this

algorithm a fixed shape is chosen and standard ABC (with a constant cell shape h)

is performed until a new minimum (and saddle point) are found. Gaussian penalties

are imposed on fractional, rather than cartesian, coordinates such that:

(hS - hS )2
<5 (S) = W exp(- ""i" ) (2.37)

2(o-(L)1/3)2

After the new local minimum configuration is found, the cell shape is relaxed and

particle positions are allowed to converge to a new minimum. This cell relaxation can

take place at T = 0 as in standard minimization or at a non-zero finite temperature

3. After a local equilibrium cell shape is found and the stress tensor p is sufficiently

averaged, we can once again quench the atomic configuration with a fixed shape,

additional Gaussian penalties are added to the potential energy landscape, and the

evolution is continued. This method is best used when the slow step is the relaxation

of atomic positions at a given volume, but the volume relaxation itself does not

involve a high activation energy barrier. This is the case in highly disordered and

frustrated structures such those that form during high dose rate irradiation swelling

and are explored in Chapter 4. The need to penalize in fractional coordinates and to

maintain the Gaussian penalties even after the cell is relaxed results from the fact that

the energy barriers that must be overcome to change the cell shape are small. This

implies that the system can return to an already visited basin via a slightly different

31f the cell relaxation step takes place at T = 0 a fictitious stress must be introduced to account
for the thermal stresses of the constant T MD simulation.
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cnain of shape enanges i the Gaussians are removed which wuulu greaLy reduce

the efficiency of the algorithm. We adjust the parameters of the penalty function

dynamically since the size of phase space sampled is volume-dependent and each given

basin grows with the cell volume. Appendix D shows some results benchmarking this

method.

The second method (Figure 2.6.b) involves MD equilibration of the atomic po-

sitions for a fixed cell shape h (at constant stress and temperature) until the stress

tensor p is sufficiently averaged. Then the ABC method is applied directly to the

cell shape in a manner analogous to the metadynamics described by Martonaik, Laio,

and Parrinello [34]. In this case, the penalty functions are added to a 6-dimensional

Gibbs potential surface given by fixing the fractional atomic positions in Equation

(2.36):

9(h) = F(h) + PV (2.38)

with derivative:

ag 1
=7 V(((p - P)h),)i- + ((p - P)h))(1 - -&y) (2.39)

Ohij 2

and penalty functions:

=We-h-h|2/2(h)2 (2.40)

where ht' denotes the shape corresponding to the last visited basin, 6h is equivalent

to a in the standard ABC formulation and determines the resolution. Finally the cell

shape evolves according to:
Ft

ht+1 = h + h F (2.41)

where Ft = F + F9 = -- + F, where F9 is the artificial force resulting from the

superposition of Gaussians. After finding a new shape the particle atomic positions

are rescaled to fit in the new box by taking qt+1 = ht+1 st = ht+1ht-qt This method

is most effective when the cell shape relaxation is much slower than the relaxation

of the atomic positions at a given cell shape, e.g. in the case of first-order phase

transitions. This approach has been benchmarked in by Martonaik et al [34] for the



pnase transition of diamond intu graphite.

The third method can be interpreted as a combination of the previous two and

is included for completeness. In this case we combine a constant h step for atomic

relaxations with a "cell" ABC step in the Gibbs potential for the shape relaxation.

As a result this approach is extremely computationally intensive and only necessary

when the barriers that need to be overcome are very high in both steps. We do not

explore this method in this thesis and, to our knowledge, no calculation using this

combined approach has been reported in the literature. A potential application of

interest would be the evolution of irradiated materials in the neighborhood of a phase

transition, such as in the self-organization of ion beam implanted substrates.

An important issue, shared with constant h ABC, is that there is no obvious

connection between the metasteps, in which the systems traverse the energy landscape

in all four of these methods (three step-wise, one theoretically rigorous), and physical

time. For the first method the dynamics of the cell relaxation step at a non-zero

temperature T are physical and have a proper time coordinate associated to them.

We can then use TST to calculate time scales for the transitions in the ABC step, as

described in Section 2.3.1., and provide the whole trajectory with a time coordinate,

i.e. (Smin(t), hmin(t), Ssad(t), hsad(t)). However, the decoupling of the coordinates

implies that the ABC relaxation takes place under a lower number of degrees of

freedom than an equivalent MD simulation with a barostat would, and as a result

the calculated energy barriers would be overestimates of the real barriers (with the

error depending on the relative principal curvatures of the landscape) but a closer

approximation that those from a constant h simulation.

Including the time variable in the other three methods is more difficult. In this

case the barriers in the Gibbs potential energy landscapes of Equations (2.36) and

(2.38) cannot be interpreted within the context of TST in a straightforward matter

because the concept of temperature for shape relaxation is not well defined. However

based on the Parrinello-Rahman Lagrangian of Equation (2.26) we propose a cell

shape temperature Th as:
1

Th --- 9kWistonTrh'h (2.42)



and

2 1 N 1 N 3
Ttt = (- 3)k mi'Gi + -WpistonTrh'h) = T + 3 Th (2.43)

From which we can calculate transition rates from the Gibbs potential energy land-

scapes by:

17 =ye kTh (2.44)

in the case of Equation (2.38) (and methods 2 and 3), and:

S=e kt t (2.45)

for the more general Gibbs surface of Equation (2.36) and of the theoretically rigorous

approach. We conjecture that the parameter W associated with the weight of the

wall can be calibrated against specific well know relaxation times and then used to

calculate the physical time corresponding to the processes, though this has not yet

been benchmarked.

2.4 Autonomous Basin Climbing - Dynamic

The energy landscapes constructed from the ABC method provide a mechanism to

describe the slow dynamics of a variety of systems via TST. In addition, the gen-

eralization to constant temperature and constant stress provide additional ways of

comparing the systems dynamics to those realizable in physical systems beyond those

in the NVE microcanonical ensemble. 4 Nonetheless, despite its power, ABC is, at

its core, a static method. Regardless of the ensemble defining the macrostates, the

(potential) energy surface through which they traverse is fixed in time. As highlighted

in Section 2.1. this lack of an explicit time dependence in the potential allowed us

4 Even the constraint of a fixed number of particles could, in principle, be relaxed to a grand-

canonical formulation by considering the number of particles of each atomic species N = (NA, NB, ... )

macrostate variables, and then sampling a generalized Gibbs free energy given by g(S, h, N) =

F(S, h, N) + PV + E,,,ce, Nkyk for fixed chemical potentials PA, pB, ...



Lo asociate an indivictumi connguration or micros-Late wNin a specific energy in the

landscape regardless of the time coordinate. This allowed us to connect the topology

of the landscape to the time evolution of the system via TST.

However, for many problems of interest the landscape itself is either explicitly

or effectively time dependent. We can write Equation (2.4) (or the equivalent free

energy that defines the landscape) as:

Epotentiai = D(t, p) = D(t, q 1 , ... , qN) (2.46)

This is the case if, for example we have an external time dependent force. This can be

an electric field or a strain rate, or a change in the number of particles in the system

as a function of time in a predefined fashion and not as a result of bringing the system

in contact with an equilibrium particle reservoir as is the case for the grand-canonical

ensemble. Alternatively, the interactions between the particles themselves could be

time dependent leading to an obvious time dependence in the energy landscape. In

this section we introduce the latest generalization of the ABC method to dynamic

energy landscapes.

In order to apply ABC to these systems we need to generalize our static for-

malism to accommodate dynamic energy landscapes. We denote this new method:

Autonomous Basin Climbing - Dynamic or ABCD. There is an important assumption

that we make in ABCD: that the rate of change of the energy landscape due to its

explicit (or effective) time dependence is much slower than the atomic fluctuations

near a local equilibrium. More precisely:

| D | << | |(2.47)at OQ

This assumption, while essential, is not a major constraint in practice, since it only

implies that the atoms need to have time to respond to the changes in the interactions

or external fields which is generally the case for the slowly evolving systems for which

ABCD is used.

We then note that, even though the standard ABC model samples the full land-



,cape, the transition latt out ui a specific basin i, determined only by tie tocat

topology of the energy landscape. Therefore, and from assumption (2.47), we can

approximate (to first order in the changes in the energy landscape) the local energy

landscape that a macrostate traverses through in a short period of time as fixed.

ABCD then consists on performing ABC on the fixed local energy landscape, extract

information on the kinetics of the evolution of the microstate, adjust the landscape

accordingly, and then repeat the process. As such, ABCD can be considered a local

perturbative approach to traversing a dynamic landscape.

The ABCD algorithm proceeds as follows: As in ABC, consider an initial mi-

crostate that is relaxed to a local minima in the energy landscape at time t, with

spatial configuration Q(' with corresponding energy E( . Following the standard

ABC algorithm (Section 2.3) we generate a new local minima with configuration Q(")
with potential energy E and a saddle point configuration QC ' with potential

energy E (t-*t') From this we can calculate an activation energy barrier and associated

transition rate from TST as:

AE = E(t-t) - E(t) (2.48)sad min

Mt (t___) A E(t-t) - E(t)
( exp(- ) = v(Q2 t, ) exp(- Ea Ei" (2.49)VQmin' Qsad P Uk /(Qmin,Q~)x( sada UT(.9

from which we can calculate the corresponding time step as described in Section

(2.3.1):

oR = ln(() (2.50)

where ( is a random number between 0 and 1. We can then move the system to

configuration Q("), and adjust the energy landscape by:

<bt+ 6t(Q) = <D(t + 6t, Q) (2.51)

We then relax the macrostate according to this new landscape until we reach a new

local minimum Q . We then consider the saddle point configuration Q(t+t+t) -

Qsd with saddle point energy E(t't+6t) =<t+6t(Q ). By assumption (2.85) this



relaxation takeb piace much more iapidiy than the rate u cnange u1 tn1e landscape,

so we can consider this new local minimum and saddle points to be the correct local

minimum and saddle point in the new landscape. We then remove the previous

Gaussian penalty functions and repeat the process. Benchmarking for the model is

summarized in Appendix E for the case of a material under ion irradiation.

As is clear from the algorithm, the slower the landscape changes, the more accurate

our approach becomes. In particular, the equality E("d+60 pt+J(g t) has an

error given, to first order, by:

6Et ) t+ = QO (tt')t (2.52)

so the method is accurate as long as:

DVQ |t << Q(t-t') (2.53)
at sadsa

> <f << |Q (t-t') (Qt) (2.54)~ t isad (t sad ))-I(.4

and therefore the slower the rate of change of the landscape the more accurate our

estimate of the saddle point energy with ABCD becomes. In addition, ot is dependent

on the height of the energy barrier found during the ABC step. Therefore, reducing

o in the Gaussian penalties, and thus increasing the resolution of what we consider

two separate local minima results in a larger number of intermediate transition steps

and in turn reduces t, also increasing ABCD's accuracy, at the cost of computational

efficiency. Therefore the parameter o- can be tuned to improve not only the accuracy of

the ABC calculation but also that of the ABCD calculation as a whole. Furthermore,

as the landscape is dynamic the parameters o and W optimally chosen for the initial

sampling may not be appropriate any longer and should be adjusted dynamically to

enhance the performance and accuracy of the algorithm.

The removal of the penalty functions after a transition could reduce the efficiency

of the method, especially if the changes in the landscape are very small in the long

run, and the system continues to return to previously visited configurations, so one
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Figure 2-7: Schematic illustration explaining the effects of maintaining Gaussian
penalties in ABCD. a) A new minimum is found during the ABC step and the energy
landscape changes. b) With the Gaussian penalties removed the system can go to a
newly formed energy minimum nearby the former old configuration, which is correct
physically. c) Without removing the Gaussian penalties the newly formed minima
are not sampled.

can opt to keep the Gaussian penalties. However, dramatic changes in the energy

landscape in the long run could give rise to new basins which were non-existent at

the beginning of the simulation (see Figure 2.8). Therefore maintaining the Gaussian

penalty functions could limit the accuracy of the method.

2.4.1 Time Dependent Number of Particles: N=N(t)

A particular example of a changing energy landscape results from a systematic change

in the number of particles. This in turn modifies the dimensionality of the system as

a function of time, so the local topology is altered. While the changes in the number

of particles are discrete, as long as Equation (2.54) holds, the changes to the local

topology with respect to the "old" atomic positions are small. This is the case if, for



exampie, - t) > _> on\ at all tines aia the parucles are introduced (or removed) very

slowly. It must be noted that a systematic N = N(t) is not the same as taking the

system to a grand-canonical formulation because even though N varies, it is not an

endogenous variable which fluctuates due to a fixed chemical potential I.

In this case, we can proceed as described in the previous section by inserting

or removing particles according to N = N(t) as the system evolves in time. This

dynamic condition is of particular use for the problem of materials irradiated with

ions, in which the number of interacting particles increases after each implantation

(discussed in Chapter 4) or in the growth of materials such as films or tubes by

deposition.

2.4.2 Time Dependent Simulation Cell Shape: h=h(t)

Another case of interest is one where the shape of the simulation cell changes as a

function of time due to an exogenous mechanism, for example due to an imposed

linear or sinusoidal shear strain. This is different from the natural fluctuations that

take place in a constant stress ensemble in which the cell shape is an endogenous

variable so our constant stress ABC formulation is unable to handle it.

In this instance, the simulation shape can be fixed according to h = h(t) and

ABCD can be used to traverse the changing landscape with the simulation cell shape

adjusting in between transitions. For example, in the case of a constant strain rate '

(we can assume that it is in the x-direction without loss of generality), the shape of

the cell can be adjusted after a transition with associated time step ot as follows:

h(t + ot) = h(t) + LiotAx (2.55)

where Ax= (88 g0). This can be generalized to more complex strain rate conditions

or other possible time-dependent changes in the shape of the simulation unit cell as

long as they occur slowly enough.
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Chapter 3

Hydrogen Embrittlement of Metals

This chapter (up to Section 3.1) includes work that has been published in

part in the Physical Review Letters [35].

The effects of hydrogen on the properties of materials have been studied both theoret-

ically and experimentally for many decades. Under hydrogen-rich conditions metal-

lic alloys exhibit a variety of fundamental phenomena. These include large volume

contractions in body-centered cubic (bcc) a-Fe [36,37, enhancement of diffusion at

metal-metal junctions [38], and degradation of the mechanical properties in the form

of hydrogen-induced embrittlement in a variety of metallic alloys.

The problem of hydrogen embrittlement in metals serves as a first application of

the methodology developed in Chapter 2 for the analysis of rough energy landscapes

in defected condensed matter. As detailed below, the embrittling effect of hydrogen

results from complex interactions between hydrogen impurities and the underlying

defective microstructure of the material. Hence, in addition to its technological and

scientific importance, the problem of hydrogen embrittlement in metals introduces

the first level of microstructural complexity in the study of rough energy landscapes:

the presence of multiple interacting defects in an otherwise perfect crystalline lattice.

Moreover, as a consequence of the interactions between point defects (such as

hydrogen impurities and free vacancies) and extended defects (such as dislocations

and grain boundaries) the problem of hydrogen embrittlement is characterized by a



complex couping between structural ani cnemical eriects. This couping resuits in

rich physical phenomena comprising multiple length, energy, and time scales as the

system traverses a rough underlying energy landscape.

The literature focused on the topic of hydrogen embrittlement is vast and en-

compasses large contributions on energy related technology [39], hydrogen in met-

als [40-42], and corrosion [43,44] among others. Of particular industrial importance

is the embrittlement of hardened steels (Fe-C alloys) such as those used for bear-

ings, in which the operating conditions are such that pickup of atomic hydrogen

from the environment or the hydrocarbons used for lubrication is unavoidable. At

least two potential plasticity mechanisms have been proposed to explain the exper-

imental evidence of embrittlement in those steels: the hydrogen enhanced localized

plasticity (HELP) mechanism [45-47] and a mechanism of stress relaxation induced

by hydrogen-enhanced vacancy populations [37,48-52].

Both of these mechanisms, and a large portion of the experimental and theo-

retical literatures suggest that these hydrogen-mediated effects are a consequence of

the strong interaction between hydrogen impurities and other point defects in the

material. Furthermore, the delayed fracture and creep characteristic of hydrogen em-

brittlement are at their root deeply connected with the slow relaxation of the alloy

microstructure under the influence of the hydrogen impurities.

A complete understanding of the embrittlement phenomena therefore requires

a thorough analysis of both the equilibrium distributions of point defect clusters

(PDCs) in the material, which determine the type of species and interactions that

are of concern under different environmental conditions, as well as the kinetics of

diffusion and relaxation of the complex hydrogen-containing microstructure. This

chapter addresses both questions within a multiscale modeling methodology based

on electronic structure density function theory (DFT) calculations coupled with sta-

tistical mechanics and transition state theory tools to describe both equilibrium and

dynamical properties.



. Pomt.1 iieiect Cluster ropmaiaons

This section discusses the first and most fundamental of the issues posed above: the

formation, binding, and concentrations of point defect cluster species in bcc Fe-C

alloys containing hydrogen [35]. Our approach relies on the use of density func-

tional theory calculations for the energetics, coupled with a free- energy functional

to determine the PDC concentrations as a function of total hydrogen and vacancy

concentrations.

The total energy DFT calculations were performed using the VASP code [53]

with Bl6chl's projector augmented method [54]. Calculations were carried out with a

plane-wave energy cutoff of 400 eV in 128-atom super-cells with the theoretical lattice

constant of 2.835 A, using a 2x2x2 k-point mesh for integration over the Brillouin

zone and a Methfessel Paxton Fermi-surface smearing parameter of 0.05 eV [55].

Calculations included spin polarization effects and assumed an initial ferromagnetic

charge density consistent with the bcc ferritic Fe phase. No symmetry constraints

were imposed. The geometric relaxation was terminated with a force cutoff of 5

meV/A. Vibrational frequency calculations were performed in 54-atom super-cells

with the same k-point mesh. All results are reported at a benchmark temperature of

1600C, representative of the tempering temperatures for carbon-rich bcc Fe-C alloys.

The strong interactions between defects in the crystalline microstructure result

in a rough total free energy landscape for individual PDCs, in this case as a func-

tion of their geometrical configuration. Numerous shallow local energy minima exist

near the optimized geometry for any given PDC stoichiometry, and hence the use of

straightforward energy minimization procedures is limited. This results in an error

for the binding energies of approximately 0.1 eV, implying an error in the magni-

tude of the defect cluster concentrations of, at most, 2 orders of magnitude at 160'C.

However, as shown subsequently, conclusions regarding the dominant PDC types as

a function of alloy composition are not modified by this level of uncertainty and the

results presented in this chapter are sufficiently robust for predictions.

Calculations are performed with a constrained grand canonical free-energy func-



tional, siuniar to presenmed 10 the oec Fe-C binary ahou\ [56j, in order to account ior

the variable concentrations of PDC in the system and obtain a unique solution for

the species distributions. Specifically, the formation energy of each PDC in a closed

Fe-C-H system is given by:

Er(T, pre, pH, pc) = ED(T) - E0 (T) - pFe rnge - pcAnc - pHAnH

where ED(T) and E0 (T) are the DFT-calculated free energies (only including vi-

brational entropy) for the PDC-containing and perfect super-cells respectively, pX is

the chemical potential of element X, and Anx is difference in the number of atoms

of element X in the two cells. Vibrational contributions to the free energy are ob-

tained by approximating the atoms as 3D harmonic oscillators with DFT-calculated

frequencies. The binding energy for point defect cluster D comprising nVa vacancies,

nc carbon atoms, and nH hydrogen atoms relative to the elementary defects (free va-

cancies, octahedral carbon, and tetrahedral hydrogen interstitials) is then computed

by:

Ebinding(T) = nVaEfam(T)±+ ncErm(T)+nHE5Hm(T) - ESr(T) (3.1)

where EDrm(T) is defined in (3.1), and here normalized by corresponding chemical

potentials, and E}vform(T), Ecm(T), and E5Hrm(T) are the formation energies for free

vacancies, octahedral carbon and tetrahedral hydrogen interstitials, respectively.

Binding energies at 0 K and 433 K (160 0C) for dominant PDCs are summarized

in Table 3.1. At 0 K, the formation energy for a C octahedral interstitial is 0.86

eV lower than that for a C tetrahedral interstitial, consistent with experimental ob-

servations [57]. In contrast, hydrogen is more stable in a tetrahedral site, with a

calculated formation energy 0.12 eV lower than that for an octahedral hydrogen site;

also consistent with empirical data [58].

Equilibrium PDC concentrations are calculated by minimizing the Helmholtz free



Table 3.1: Binding free energies for different defect stoichiometries at 0 K and 433K
(160 0C). Only the deepest energy minimum for each point defect cluster (PDC) sto-
ichiometry is shown. Experimental values are given in parentheses for comparison,
where available.

PDC Ebnding (eV)

Hoctahedral

Ctetrahedral

Va 2(100)
Va 2(111)

Va 1 H1

Va 2H1 (100)
Va 2H1(111)
Va 2C1 (100)
Va 2Ci(111)

C1Hi
Va1C1
Va1 C2

Va1 C1 H1

Va 1 C2H1

Va 2C1H1 (100)
Va2C1H1 (111)
Va 2C2 H1 (100)
Va2 C2H1 (111)

H2
VaiH2

Va2H2(100)
Va 2H2(111)
Va2C2(100)
Va 2C2(111)

C1H2
Va 1CiH 2

Va 2C1 H2(100)
Va2C1 H2(111)

Va1H3

T=OK
-0.12 (-0.07 [57])

-0.86
0.17
0.14

0.51 (0.46 [59])
0.76
0.70
1.04
0.79

0.02(0.03 [59])
0.52(0.85 [57])

1.44
1.14
1.38
1.37
0.86
1.10
2.38

0.01(0.04 [59])
1.11
1.22
1.29
1.81
1.91

-0.05
0.92
1.77
1.31
1.38

energy of the system:

F(T, #Fe, PH, PC) ~ ~ iEform(T, #Fe, PH, PC) - kBT T In (aN)!)! (3.2)
(oaiN - i!!

T=z433K
-0.18
-0.84
0.17
0.14
0.61
1.05
0.77
1.20
0.86
0.02
0.63
1.65
1.31
1.63
1.65
1.20
1.50
2.76

0.004
1.31
1.65
1.44
2.01
2.12
0.01
1.19
2.16
1.65
0.82



wuieilt the urst term is descritueu in y.i) and the secunG Lerm accounts for the coi-

figurational entropy of the system; kB represents Boltzmann's constant and T the

absolute temperature. Here, ni is the total number of PDCs of type i, N is the total

number of bcc lattice positions, and a is defined such that aiN is the number of

indistinguishable configurations in the lattice for the defect cluster i for large N. For

example, for free vacancies ai = 1, because any bcc lattice site could serve as a possi-

ble Va site, while for a tetrahedral interstitial ai = 6 because there are six tetrahedral

sites for each bcc lattice site. The entropic term in (3.3) counts the number of possible

ways to rearrange the PDC in the crystalline lattice. Using Stirling's approximation

we find that this entropic term is given by:

ln( (aN)! ) = aN In (aiN) - (aiN - ni) In (acN - ni) - ni ln ni (3.3)
(aN - ni)!ni!

and defining the defect concentration of a given PDC with respect to the bcc Fe

lattice by ci = equation (3.3) becomes:

F(T, PFe, PH , PC)
N = ( zfor (,Fe, PH ,PC)

-kBTZ (a ln ai - (ac - ci) In (a, - ci) - ci ln ci) (3.4)

and then minimizing the free energy in (3.5) we find:

ci = Erm (T PIe pPH ,)C (3.5)

The chemical potentials are related to the total concentrations of C, H, and Va by

the following constraints:

Vatot = S x[VaxCyHz] (3.6)
clusters

Ctot = E y[VaxCyHz] (3.7)
clusters

Ht0t= z[VaxCyHz] (3.8)
clusters



w uere ua ,H2] is the concentrauou of a particuiar i DC type calculated from s.4)

that comprises x iron vacancies, y carbon atoms, and z hydrogen atoms.

3.1.1 Point Defect Cluster Dominance Diagram

Figure 3.1 shows these results in a PDC dominance diagram. Boundaries are deter-

mined by changes in the most dominant PDC, dividing the diagram into nine distinct

regions, each characterized by a single prevalent PDC. Statistically relevant, but non-

dominant PDCs (defined in this study as PDCs with concentrations within two orders

of magnitude of the most prevalent one), vary in concentration within a given zone

and thus their precise concentration ranking is not reported. Figure 3.1 thus indicates

which PDCs are of macroscopic importance for a given alloy composition and point

defect concentration, providing a framework to delve into more detailed analysis of

the microstructure. A full dominance representation ordinarily would require a three

dimensional graph indicating the prevalent PDCs as a function of total C, H, and Va

concentrations. However, since our interest lies primarily on the effects of hydrogen,

we focus on the changes as a function of the [Hot,] and [Vatot]. Thus, although our

methodology can generate the full diagram, the total carbon concentration is fixed to

be that reported for high-carbon steels ([Ctot]= 0.01 in Figure 3.1) [56]. 1

Most zones in the diagram, except for H, and C1 , are dominated by Va-containing

PDCs. Thus, the vacancy-mediated interactions are the primary factors that deter-

mine the PDC populations in the alloy, and the full complexity of the PDC spectrum

can only be appreciated in the regime in which [Vatot] is significant. In the C- and

H-regions of the diagram, these Va-containing PDCs exhibit concentrations many

orders of magnitude higher than the free vacancies and di-vacancy clusters. Hence,

consistent with previous studies [60], the presence of hydrogen is observed to stabi-

lize free vacancies in bcc Fe, in the form of vacancy-solute clusters. In addition, for

[H&,t] >> [C0t], and low [Vatot] (HI zone), interstitial atomic hydrogen is prevalent

Since the alloys of interest in this study are not exposed to radiation, the concentrations of Fe
self-interstitials in the material are negligible and therefore ignored. However, our approach can also
be generalized to include such point defects and their interaction with impurities and allow for the
study of PDC formation and concentrations in irradiated alloys as well.



.0-

-2.51.5

-3.0

-3.5
2.8 2.4 20 1.6 1.2

Lo10 (Total Vacancy Concentration) [atonssite]

C, COt,Va2C1, H1  Hi Htet,Va2C1,Cec
C1  Va2C4,Va2C2 ,VaH 1, VaH 2, Var Hil Va. H 2,Va2C4
C111  Va2C2,VareVa2C4,VaH 1, Va1H2  Hil Va1H1 ,Va2C4,Va2C2, Vaee
Va Vare,Va HiV Va2H1,Va2,VaH 1, Va1e
Va% Va 2 ,VaH 1,Va__e_

Figure 3-1: Dominance diagram for PDCs in Fe-C-H alloys with [Cot~] = 0.01 (1.0

at. %).The PDC of highest concentration in each zone is indicated first, and other

statistically relevant PDCs are listed. The A, B, and C boundaries in the high [Het~],

high [Vatet] regime are also indicated. The inset shows a schematic of the defect

population at the marked point. Vacancies (black), hydrogen (white), and carbon

(gray) atoms bind in a background bcc Fe matrix (orange). Va2 clusters are oriented

along the (111) direction.



Table 3.2: Energy changes in binding reactions involving the Va1Ci and Htet PDCs

Reaction AEreaction (eV)
Va1C1 + Htet - Va1 C1 H1  -0.62

VaiCi + Htet - Va 1 H1 + Coct 0.01

over molecular hydrogen (Eb = 0.004eV), in the constrained geometries of the bcc

Fe lattice, and hydrogen accumulation is not thermodynamically favored. Nonethe-

less, once one or multiple vacancies are present, the formation energy for molecular

hydrogen (H 2) is substantially lowered and the formation of localized clusters con-

taining multiple hydrogen atoms (Figure 3.2.c) is facilitated (H11 zone). On the

other hand, the stabilizing effect of H in Va-only PDCs implies that the most signif-

icant defect clusters in the alloy contain H2 only up to a maximum [Vatot], which,

in principle, is amenable to experimental comparison. This maximum is denoted by

boundary A between the HI, and HIr, zones, and is approximately linear on [Ht,

i.e., (2 [H"] )O-9 Above this upper-bound, atomic hydrogen-containing PDCs (Figure

3.2.b) again dominate (as in HI). In this regime ([Htot] >> [Ctot]), as vacancy con-

centrations increase for a fixed [Htot], dominant PDCs first switch from tetrahedral

hydrogen interstitials to Va1 H2 (zone HjI); upon crossing zone boundaries A, B,

and C, stoichiometry of the dominant PDC then changes from Va 1Hi (zone H111) to

Va2H1 (zone HIV) to Va-only PDCs (zone Va11 ) respectively.

Turning now to regions in which all three point defect types (Fe vacancies, H, and

C) interact and carbon-containing PDCs are statistically relevant, the full complex-

ity of the PDC populations is apparent. Interactions between hydrogen and carbon

interstitials are similarly mediated by vacancies. Our energy calculations (Table 2)

show which binding mechanisms are thermodynamically disfavored for H and C in

the presence of Va. We observe that hydrogen does not bind with carbon in the ab-

sence of iron vacancies. This is consistent with observations showing that hydrogen is

repelled from regions of high mass and charge density [61] such as interstitial carbon

atoms within the highly confined geometry of the bcc Fe lattice (Figure 3.2.e). Fur-

thermore, as shown in the second reaction in Table 2, hydrogen is unable to displace



carbon from exisung c'tus and instem1 oinds tu tnose clusters. Ine abburption of

hydrogen into larger PDCs is also thermodynamically favored (Table 3). However, as

the number of solute atoms in the PDC grows, the presence of additional vacancies

is required to promote hydrogen binding. For example, two vacancies are insufficient

for complete binding of one carbon and two hydrogen atoms (especially given the

instability of CH2 in vacuum) so the Va 2C1 H2 PDC lowers its energy by spread-

ing from a symmetric configuration to a loose structure where the C atom is as far

away from the H2 molecule as possible while remaining bound. Appreciable lattice

distortions in the form of extended defects, such as precipitate interfaces [41], can

also provide an analogous effect to that of vacancies in the bulk lattice by facilitating

C-H binding. The combination of the two competing processes of hydrogen-carbon

interactions (repulsion in the absence of vacancies but high affinity when mediated

by vacancies) results in an effective decoupling of the VaH, and Va.Cy PDC pop-

ulations; that is, vacancy-solute (Va-H and Va-C) interactions become the primary

contributors to the binding processes. The remaining interactions which complete the

three-body description of this alloy, i.e., the C-H and Va-C-H interactions, represent a

substantially less significant effect in terms of determining the type and concentration

of PDCs. In particular, for low total vacancy concentrations no dominance zone in

which CyH,, PDCs dominate exists. Furthermore, as can be seen in Figure 1, in the

regime in which [Htot] - 0.1[Cot], the spectrum of the Fe-C-H system shows a rich

variety of statistically relevant PDC types due to the vacancy mediated interactions.

Therefore, the dominance of specific PDCs in this regime is strongly dependent on

[Vatot] in a highly non-trivial manner. Nonetheless, the transition from atomic to

molecular to atomic hydrogen is preserved as [Vatot] increases, though these PDCs

are no longer dominant.

For low [Vatot] (in this regime in which [Htot] - 0.1[Cot~]), carbon interstitials are

the prevalent PDC (C zone) and no binding between H and C is found to occur.

Clusters containing both H and C, such as Va1 C1 H1 (Figure 3.2.d) or Va 2C1 H2

(Figure 3.2.e) PDCs, are never statistically relevant. As [Vatot] increases, Va 2C4

clusters become the dominant PDC (CrI zone), and the concentration of hydrogen-



Table 3.3: Energy changes in binding reactions involving the Va1 C2 and Va 2 C1 (100)
PDCs

Reaction AEreaction(eV)
Va1 C2 + Htet -> Va1 C2H1  0.06

Va1 C2 + Htet - Va1 C1 H 1 + Coct 0.30
Va2 C1 + Htet -+ Va2C1 H1  -0.33

Va 2 C1 + Htet -+ Va 2H1 + Coct 14.6

containing PDCs such as Va 1H 1 and Va 1 H2 also increases. In fact, the addition of

H pushes the system into the high-hydrogen regime of the CrI zone, rendering the

Va 1H 1 and Va2Hi PDCs statistically relevant. Based on experimental observations

of rapid hydrogen diffusion [38] and given the relatively small radius of the hydrogen

atom as compared to bcc Fe vacancies and interstitials, we conjecture that these small

Va.Hz PDCs should be mobile, therefore having important macroscopic consequences

which can be tested experimentally. This conjecture is discussed in Section 3.2 when

we analyze the migration mechanisms of these PDCs. When the total hydrogen

and carbon concentrations become more similar (e.g., (Htot] = (Ctot] = 0.01), the

relative dominance in the diagram changes. Carbon-free defect clusters such as Va 1H1

(lower end of the H111 zone) and Va1 H2 (lower end of the H 1 zone) become the

dominant PDC. However, Va 2 C4 and Va 2 C2 PDCs remain of significant concentration

throughout the [Vatot] range examined. Although never significant, Va 2C2H1 clusters

(di-vacancies oriented in the (111) direction of the bce Fe lattice) approach significant

concentrations when [Vatot] becomes comparable to [Ctot] and [Htot]; however, in this

range, the concentration of several Va.,C, and VaHz clusters also increases such that

the Va 2 C2H1 clusters represent only a minor fraction of the overall PDC spectrum.

Similarly, Va 1 H1 C1 PDCs are never present in significant proportions, underscoring

the effective decoupling of the Fe-C and Fe-H PDC populations.

This decoupling of the PDC types provides a simplifying framework for the study

of hydrogen binding in alloys of more complex composition and/or crystalline defect

types. Moreover, these observations inform macroscopic concerns of hydrogen damage

by indicating conditions under which mechanisms of primary degradation by internal



c) g

$@4

[001] 010]
04[100]

IVIQe

[00 100]

d)

[0011 0

f)

4

[001] [010] 4
X [100]

e) g@

[001 10 "

Figure 3-2: Stable geometric configurations for various PDCs comprising vacancies
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to occur, the local vacancy concentration must be such that molecular hydrogen

formation is favored, such as in the neighborhood of a micro-void or micro-crack [41].

In other words, the point defect composition must be within the HI, dominance zone

in Figure 3.1. Finally, given the high concentration of Va1 Hi and Va 1 H2 PDCs, even

when total hydrogen concentrations are relatively small ([Htot) < 10-2.5 or - 0.3 at.

% at the top of CII and CIII), these PDCs are likely to be responsible for macroscopic

effects which are controlled by the diffusion of Va (and Va-containing PDCs) toward

line and surface defects such as dislocations or grain boundaries.

3.1.2 The Role of Methane

Hydrogen in steels at high temperatures is able to react with carbides present in the

microstructure to form decarburized structures and methane gas which has a low

diffusivity because of its size [63]. Methane bubbles form and eventually grow into

fissures and cracks at grain boundaries. The combined process of decarburization,

which locally reduces the yield strength from the prepared hardened steel, and fissure

production may provide sudden and catastrophic reductions in both strength and

ductility. We apply our methodology to calculate the binding energies of different

Table 3.4: Binding free energies for methane-based PDCs at 0 K. Only the deepest
energy minimum for each PDC stoichiometry is shown. Other PDCs are shown for
comparison.

PDC Eblnding(eV)
C1 H4  -0.09

Va1C1 H4  1.31
Va 2C1 H4  1.15
Va1C1 H1  1.14
Va1 C2H 1.38

C1 H2  -0.05
Va1C1 H2  0.92

Va 2C1H 2(100) 1.77
Va 2CIH 2(111) 1.31

Va1 H3 1.38



geometric colingulations 01 the methane niuiecule conined in a bcc Fe matix as well

as its interactions with vacancies in the material. These calculations, at 0 K, are

summarized in Table 3.4:

The table highlights two important results regarding methane formation in steels

which fall within the general framework described in the previous section. First, and

similarly to other C-H PDCs, methane gas does not form in a bcc Fe lattice in the

absence of vacancies due to the repulsion between the high mass and electron density

regions at solute interstitial sites. On the other hand, binding to a single vacancy

stabilizes the methane molecule. Second, the stability of the methane molecule is

reduced when an additional vacancy binds. This suggests that the ranges at which

methane formation is favored are bound in a similar manner to that for molecular

hydrogen in the PDC diagram.

However, as can be seen from Table 3.4 by comparing their binding energy to those

of other PDCs, methane containing clusters can become a significant PDCs only in

regions with very high carbon and hydrogen concentrations, i.e. far outside of the

boundaries of the PDC dominance diagram of Figure 3.1. While such conditions are

unattainable in the bulk they can occur locally in the neighborhood of grain bound-

aries, consistent with the experimental observation of grain boundary decarburization

and bubble formation [63J. On the other hand, unlike the smaller clusters discussed

in the previous section (which are the only ones that can form in significant quanti-

ties under realistic bulk concentrations of impurities), a methane molecule bound to

a vacancy contains six different elementary point defects and therefore, even though

their formation is thermodynamically allowed in equilibrium, this process may not

occur in practice due to the energy barriers associated with collective binding of the

individual species. Calculating the kinetics of methane formation in steels, by apply-

ing the techniques described in this thesis such as nudged-elastic band (NEB) or the

ABC method is thus a natural next step in understanding embrittlement in steels.
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Interactions between point defects and the resulting PDC dominance diagram of the

previous section are essential in understanding the mechanisms of hydrogen degra-

dation in steels because they provide insight into the possible species that define the

microstructure of the material. However, the phenomenon of embrittlement is, at

its core, a time-dependent phenomenon which manifests itself as delayed hydrogen-

induced cracking (HIC) in high-strength alloys and loss in tensile ductility and ductile

fracture for lower strength stainless steels. As a result we must study the kinetic be-

havior in addition to the equilibrium properties. That is, we must determine the

saddle points in addition to the configurations at the energy basins.

Unlike the roughness characterizing the free energy landscape of each specific clus-

ter, i.e., the free energy as a function of the positions of the species in a given PDC,

the energy landscape characterizing the migration of a cluster through the matrix is

more predictable. This is intuitive since the PDC geometric configuration is highly

dependent on the interactions between specific species in which quantum mechanical

effects play a very important role. On the other hand, since the concentrations of im-

purities is low and the Fe matrix remains crystalline the number of type of transitions

during bulk diffusion are easy to determine from basic symmetry principles. There-

fore we can determine the migration energy barriers using the NEB method without

resorting to ABC. This is particularly advantageous in this case since by using a less

demanding method to study the (simpler) topology of the landscape we can refine the

accuracy of the total energy calculations and include important electronic structure

effects via DFT.

From the PDC dominance diagram of Figure 3.1. we see that the most impor-

tant hydrogen-containing species for high hydrogen containing steels are those which

dominate regions H, through HIV, that is Htet,Va1H1, Va1 H2 and Va2H1 . Given the

small size and high vacancy concentrations required for the system to be in HIV we

choose to only study the migration mechanisms of the first three of these PDCs. For

each defect species we evaluate a small number of potential migration mechanisms



which are cuiosei based on symmetry prnciples. I ne lowest migiation barrier is then

chosen as the most likely candidate mechanism unless multiple ones have activation

barriers of similar height. As before, all the NEB/DFT calculations were performed

using the VASP code [53] with Bldchl's projector augmented method [54]. Calcula-

tions were carried out with a plane-wave energy cutoff of 400 eV in 54-atom, rather

than 128-atom, super-cells with the theoretical lattice constant of 2.835 A, using the

same settings as those for the total energy calculations. Four (4) images are chosen for

the NEB and the RMM-DIIS algorithm is used for geometric relaxation, terminated

with a force cutoff of 5 meV/A.

We first consider the migration of a hydrogen interstitial, Htet in equilibrium,

through the bcc Fe matrix. Our NEB/DFT calculations show that the favored migra-

tion mechanism has a barrier of Em = 0.08 eV which is consistent with experimental

observations [41]. The activation barrier and migration mechanism are illustrated in

Figure 3.3 2. In this case hydrogen, situated at a tetrahedral site, migrates by diffus-

ing in the (011) direction to a neighboring tetrahedral site, with a saddle point near

the trigonal interstitial site. That is, hydrogen diffuses on the atomic planes rather

than in between the planes. Migration in between planes (e.g., in the (101) direction

in our example) has a much higher barrier of 0.9 eV due to the Fe bonds between

planes. Furthermore migration takes place through tetrahedral sites only, without

traversing octahedral sites. Two of these tetrahedral-to-tetrahedral transitions result

in an effective rotation about the (111) direction as highlighted in Figure 3.3.

Figure 3.2.a shows that the presence of a vacancy results on relaxation of the

tetrahedral hydrogen interstitial (Htet) into an octahedral site in a dumbbell-like con-

figuration (e.g., in the (001) direction). Our DFT-NEB calculations, starting from

such an equilibrium geometry and summarized in Figure 3.4, suggest that the favored

migration mechanism for the VaiHi cluster consists of a nearest neighbor migration

of the vacancy away from the hydrogen interstitial, which in turn relaxes to a tetrahe-

dral site almost as if it were free. This process occurs with an activation energy barrier

of 0.71 eV, which is slightly higher than the free vacancy migration energy barrier

2Throughout this thesis we use visualizations rendered using AtomEye [64].
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(the interstital migration barrier of 0.07 eV decreases slightly as the hydrogen atom

approaches a vacancy) from the relaxed tetrahedral site through two tetrahedral sites

until it relaxes to an octahedral next to the vacancy forming a new dumbbell. Hence,

despite its small mass and associated local charge distortions, hydrogen binding de-

creases the mobility of the vacancy. Migration of the vacancy to a nearest neighbor

in the (111) direction towards the hydrogen atom (which in turn moves from its oc-

tahedral site to a new one by migrating in the (010) direction or an equivalent one)

results in a twist of the dumbbell about the (010) direction and has a migration

energy barrier of Em = 1.06 eV. All other alternative migration mechanisms have en-

ergy barriers surpassing 1.2 eV and are thus thermodynamically disfavored. Finally,

the dissociative mechanism has a corresponding migration barrier equal to that of

the individual defect plus the binding energy for the Va1 H1 defect which is equal to

0.51eV at T = 0 as show in Table 3.1. This would result in effective dissociation

migration barriers of Em = 0.51 + 0.08 = 0.59 eV for the dissociated hydrogen atom

and Em = 0.51 + 0.53 = 1.04 eV for the dissociated vacancy.

Finally, and as discussed in the previous section, the presence of one vacancy pro-

motes the binding of two hydrogen atoms into a H2 molecule. At equilibrium the 2

hydrogen atoms form a dumbbell with the vacant site in the center (Figure 3.2.c),

so we investigate the migration mechanisms starting from that initial configuration.

Figure 3.5 shows the favored non-dissociative migration mechanism for the Va1 H2

PDC. The mechanism consists of a rotation of the dumbbell perpendicular to its axis

((010) in Figure 3.5) and a translation of the center of mass/vacancy to a nearest

neighbor (i.e. (111) direction in the figure). This mechanism has an activation en-

ergy of Em = 1.63 eV. Migration of a Va1 Hi dumbbell subcluster to a first nearest

neighbor configuration is stable but has an activation barrier of Em = 1.79 eV and

is thus not favored. Hence even though the configuration with a separated Va1 Hi

cluster and a hydrogen interstitial is only 0.59 eV higher than the Va1 H2 cluster the

activation energy for dissociation into those defects is prohibitively high. In addition,

and as shown in Table 3.1, the binding energy of the Va 1 H2 PDC is 1.11 eV at 0
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migration barrier of, at least, Em = 1.11 + 0.53 = 1.64 eV. All other migration mech-

anisms between stable configurations have barriers of 1.8 eV or above. Due to these

high barriers, the Va 1 H2 PDC is essentially immobile.

We calculate the jump frequencies v by relying on Harmonic Transition State

Theory (Section 2.1.1). In this case we fit the curvature of the local energy landscape

calculated with NEB/DFT near the initial minimum configuration with a quadratic

equation from which we obtain the coefficient corresponding to the normal frequency.

This is equivalent to taking the normal frequency corresponding to the reaction coor-

dinate from the NEB method, which can be shown to be rigorously equivalent to the

expansion of Section 2.1.1. The average distance traveled by the PDC during a jump

is also given directly from the calculations. Table 3.5 summarizes the calculated jump

characteristics for these three defects as well as for the free vacancy and divacancy

clusters.

Table 3.5: DFT calculated migration energy barriers and jump frequencies for Htet,
Va 1 H1 ,Va1 H2, Vajree, and Va 2 in bcc Fe. Experimental values are listed in paren-
thesis (when available). The jumping characteristics for Va2 are obtained from Ref-
erence [65].

PDC Emigration(eV) Jump Distance
frequency traveled (A)

(THz)
Htet 0.08 (0.07 [41]) 14.93 1.01

Va1H1((100) -> (554)) 0.71 3.91 2.35
VaiHi((100) -> (010)) 1.07 2.45 2.43

Va 1H1 (dis.) 1.04 3.34 2.44
Va1 H2  1.63 1.92 2.40

Va 1 H2 (dis.) 1.64 3.34 2.44
Vafree 0.53 (0.55 [57]) 3.34 2.44

Va2((lnn) -> (2nn)) 0.98 27.55 2.87
Va 2 ((1nn) -> (4nn)) 0.81 9.13 2.87

From our understanding of the migration of individual PDCs we can resort to

Einstein's equation to calculate effective diffusion coefficients in the material given
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where ai is the distance traveled by the PDC during an individual transition, ci is the

concentration of the PDC, vi is the jump frequency for the transition, E gration is the

migration energy barrier, fi is the correlation factor of Bardeen and Herring [66] that

corrects Einstein's expression to account for geometric correlations in the random

walk, and the sums are over Va-containing defects for the self-diffusivity and H-

containing defects for the H diffusivity. The correlation factor for single vacancy

diffusion is given by fra 0.72149 for a bcc lattice [67]. In addition, our calculations

in Section 3.1. suggest that we can consider H interstitials to effectively block their

own site as well as all the nearest neighbor interstitial sites in the absence of a vacancy.

We can therefore use the correlation factor for model 1 of Faux and Ross [68] given

by:

= 1.0 - 2 .18 cHte, - 1.56c2H - 7.08c 3 (3.11)

in addition the correlation factor for divacancies is given by [69]:

fra2 = 0.469 - 0.103s - 0.076s 2 - 0.043s 3 + 0.018s4 - 0.0055s5 (3.12)

where:
1

(3.13)S0.33e0.18/kT

in our case, so at T = 450K we have s = 0.029 and fva2 = 0.466. We approximate

the correlation factors for Va 1H 1 and Va 1 H2 by those of a single vacancy. 3

Combining all the data in Table 3.5 with the correlation factors for each of the rel-

evant defects we can calculate diffusion coefficients for the Fe-H alloy from Equation

3For greater accuracy in the correlation factors we can introduce our calculated probabilities in
a KMC algorithm and obtain numerical estimates of f for all the cases, but given the disparities in
activation barriers these level of accuracy is unnecessary



(3.9). These mesults as a function 01 DOu totai vacancy and h drogen concentration

are summarized in Figure 3.6. and 3.7 for the self-diffusivity and hydrogen diffusiv-

ity respectively. Given the effective separation between Fe-H and Fe-C populations

discussed in Section 3.1. and the fact that the Va2 C4 clusters are essentially immo-

bile [65], the total self-diffusivity for the full ternary alloy is determined primarily by

the concentration of free vacancies, divacancy clusters, and H-V PDCs so our figures

can easily be extended to other Fe-C-H alloys.

The migration results for the Va1 H1 and Va 1 H2 clusters show that self-diffusion

by the vacancy mechanism and hydrogen diffusion are hindered by binding. Hydrogen

diffusion, driven primarily by the rapidly moving free hydrogen atoms in tetrahedral

sites, increases monotonically when total hydrogen concentration is increased or to-

tal vacancy concentration is decreased. The hydrogen diffusion coefficient decreases

through two regimes with different slopes (see inset in Figure 3.7). The inflection

points occur as the system moves from region H1 to H11 (and higher vacancy content

areas) in the PDC dominance diagram. As the dominant migrating PDC switches

from Htt to Va1 H1 and Va1 H2 the hydrogen diffusion coefficient decreases accord-

ingly. At high vacancy concentrations, all hydrogen becomes bound in larger immo-

bile Va - H clusters and hydrogen diffusivity becomes negligible. Self diffusivity,

driven primarily by free vacancy migration, decreases monotonically as total hydro-

gen concentration increases and increases as total vacancy concentration increases.

The dependence in total vacancy concentration takes place in three distinct regimes

(see inset in Figure 3.6) as the system switches from H1 to H11 /H 11 1 to Vai/Va11 .

This results in a change in the main self-diffusion migration mechanism from being

essentially negligible to driven by Va1 H1 migration to Vajree and Va 2 migration after

which we see a saturation effect.

The combination of these results and the PDC diagram in Figure 3.1 generates a

more complete picture of the potential degradation mechanisms in Fe-H (and Fe-C-H).

Expanding on the insight of Section 3.1, we propose four distinct types of H-Va behav-

ior depending on the relative concentrations of hydrogen and vacancies. These types

of behavior can be directly linked to proposed embrittlement mechanisms. As seen
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by rapidly diffusing free hydrogen interstitials so the main degradation mechanism is

associated with diffusion of hydrogen, e.g., corrosion cracking at stress concentrators.

Zone HI, is characterized by the prevalence of the Va 1 H2 PDCs which are essentially

immobile, so the primary degradation mechanism is driven by accumulation of hy-

drogen, e.g. formation of hydrogen atmospheres and hydrogen bubbles. Hydrogen

diffusion, though greatly reduced, remains relevant due to the high mobility of the

(few) hydrogen interstitials. Zones HIrr and HjV4 have significant populations of

free vacancies and Va1 H1 PDCs. Therefore self-diffusion by a vacancy mechanism

becomes a relevant kinetic process which could lead to degradation in the form of

creep. Finally, the vacancy-rich regimes of Va1 and Var1 exhibit both self-diffusion

and accumulation of vacancies which could, in principle, lead to void formation and

growth. As discussed in the following section, these insights must be combined with

a more complete analysis of PDC-line defect interactions in order to make definitive

conclusions about embrittlement and long term degradation.

3.3 Hydrogen Effects on Time Dependent Degra-

dation

The results described in the previous sections serve as the basis for larger scale models

of hydrogen embrittlement in metals, particularly in steels in hydrogen-rich environ-

ments. By coarse graining the results and informing the larger length and time scales

with the composition, structure, and diffusion calculations we can incorporate addi-

tional elements that are determinant of the alloys susceptibility to embrittlement. In

particular, the essential element of deformation is missing from our calculations. In

order to develop a predictive model of embrittlement we therefore need to consider the

interactions of our PDCs with dislocations, grain boundaries, and cracks to capture

4 Since we are not including Va 2H1 defects this calculation is not completely accurate for the small
HIv region in the PDC dominance diagram, though the migration mechanisms of the other PDCs
suggest that Va 2Hi defects should not be very mobile in comparison to free vacancies, hydrogen
interstitials, or Va 1 H) 1 .



it plaic and fracture beioi1d1. I is section suminarizes the current expernien-

tal and theoretical knowledge in the area and suggests a multiscale methodology for

connecting our results directly to degradation predictions.

The first to suggest that hydrogen-induced brittle failures were preceded by sig-

nificant local plastic deformation was Beachem in 1971 [70], and evidence from frac-

tographic studies [71, 72] seems to suggest that plastic tearing is indeed a major

predecessor to HIC. Among many potential plasticity mechanisms which have been

proposed to account for this "hydrogen softening" effect, two in particular have gained

recent support in the literature: hydrogen enhanced localized plasticity (HELP) and

a stress relaxation (creep) process induced by an increased vacancy concentration

resulting from the strong interaction between vacancies and hydrogen. The HELP

mechanism is much promoted by the Mechanical Engineering group at University of

Illinois at Urbana-Campaign [45-47]. They have shown that the presence of hydro-

gen in the form of Cottrell atmospheres around the dislocation lines will "shield"

the elastic stress field of dislocations, allowing dislocations of the same sign to closer

approach each other in dislocation pile-ups at various obstacles. This in turn allows

more dislocation glide to occur for a given loading situation, as compared to in the

absence of hydrogen. In addition, studies based on ab initio calculations [73,74] have

found evidence that hydrogen modifies the nature of chemical bonding in aluminum

in ways which seem to lead to HELP. Experiments upon which the HELP mechanism

is based rely on detailed understanding of the fracture mechanics by analyzing at suf-

ficiently high resolution to resolve mechanistic details. High-resolution fractography

of hydrogen embrittled metals, such as Ni and Fe, show extensive plastic deformation

localized along fracture surfaces [43,75]. In addition, experiments using in situ TEM

have also been performed in a variety of hydrogen embrittled systems [76] confirm-

ing that the fundamental character of the fracture processes involved in hydrogen

embrittlement was the same and showing that hydrogen increased the dislocation

mobility under conditions of constant stress. Specimens containing stress concentra-

tors, such as notches and cracks, failed by ductile plastic processes at the front of

the notch when stressed in vacuum. However when stressed under gaseous H2, the
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the fracture surface. In relatively pure specimens the fracture tended to be along slip

planes and the deformation accompanying the fracture was within 1pm of the active

slip planes. In addition, cracks which had stopped propagating in vacuum under a

constant external load could be started and continued to propagate by solely adding

hydrogen gas to the environmental cell. Observations showed that this process was

related to increased dislocation activity at the crack tip where the specimen was ex-

posed to the gas further supporting the HELP mechanism. In 2000, Jagodzinski et

al. [77] aimed at quantifying the HELP mechanism. They referred to a slow strain-

rate test (imposed low strain-rate) of pure iron, tested at low temperature (200 K),

without and in presence of hydrogen (electrolytic charging). Testing in absence of

hydrogen led to a gradual stress build-up with increased strain, while a marked stress

reduction (approximately 40%) occurred during periods when hydrogen was present.

Jagodzinski and co-workers found that the stress relaxation effect observed was too

large to be possible to explain by the HELP mechanism. Instead they concluded that

the softening effect is more likely caused by the strong hydrogen-vacancy interaction

leading to an increased vacancy concentration and hydrogen enhanced dislocation

climb in dipole type dislocation pile-ups. This explains, for a given applied strain,

the observed stress relaxation in the system.

In order to incorporate these effects we need to include extended defects in our

model. One possibility is to develop hydrogen-iron and hydrogen-carbon interatomic

potentials that accurately replicate the energy landscapes obtained from the DFT

calculations given above. These potentials could be used to calculate the binding en-

ergies to larger defects such as dislocation cores, grain boundaries, and crack tips, as

well as the dependence of migration energy barriers on the separation from those ex-

tended defects. These environment-dependent migration rates near extended defects

can be then incorporated into kinetic Monte Carlo simulations of heterogeneous diffu-

sion. By using spatially dependent barriers the model can explicitly include atomistic

resolution of the interaction of PDCs with dislocation cores and could then, in prin-

ciple, be used to model dislocation climb, glide, and macroscopic creep. A similar
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dislocation climb has recently been developed by Kabir and collaborators [78]. Such

a model could be generalized to include hydrogen and other alloying elements and

used to model embrittlement as described. Additionally, the KMC formalism could

be complemented with an ABC-MC hybrid step (Section 2.3.1) or with ABCD to

model the fracture and plastic behavior at more realistic strain rates.



Figure 3-3: Favored migration mechanism for an interstitial hydrogen atom in bcc
iron. The hydrogen atom (filled circle) migrates from its equilibrium tetrahedral site
to a neighboring tetrahedral site with a saddle point at a trigonal site. Two such
jumps are displayed, resulting in a rotation about the (111) direction. The process
has a migration energy barrier of Emigration = 0.08 eV. The distortions to the Fe
lattice are minimal.
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Figure 3-4: Migration mechanisms of Va1 Hi in bcc iron. As shown to the right,
starting from a dumbbell configuration (circled) in the (001) direction, the vacancy

(open square) can migrate to a nearest neighbor configuration away from the hydrogen

atom ((100) -+ (554), Em = 0.71 eV) and is followed by rapid hydrogen (filled circle)

migration, or, as shown to the left, the full dumbbell can translate while twisting

about the (010) direction ((100) -> (010), Em = 1.07 eV).
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Figure 3-5: Migration mechanism of Va1 H2 in bcc iron. Starting from a dumbbell
configuration in the (001) direction, the Va 1 H2 PDC rotates about the (010) direction
while its center of mass/vacancy translates to a first nearest neighbor site. The
mechanism has an activation energy of Em = 1.63 eV. Vacancies are represented by
open squares and hydrogen interstitials by filled circles.
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Figure 3-6: Self diffusion coefficient in Fe-H as a function of hydrogen and vacancy
concentrations. The insets shows an example of the hydrogen diffusion coefficient at
fixed total vacancy and total hydrogen concentrations
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Figure 3-7: Hydrogen diffusion coefficient in Fe-H as a function of hydrogen and
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ficient at fixed total vacancy and total hydrogen concentrations.
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Chapter 4

Radiation Induced Swelling in

Metals

Our exploration of rough energy landscapes in defected condensed matter moves

from the spatially ordered hydrogen-containing alloys of Chapter 3 to the much more

defective and out of equilibrium microstructure observed in irradiated metals. While

the problem of hydrogen embrittlement highlighted the complexity in the energy

landscape resulting from the interactions between multiple point defect species and

the hydrogen chemistry, the topological structure of the system was largely regular

and long-range order was preserved. In particular, the behavior of the PDCs in

Fe-C-H is characterized by a complex free energy landscape when determining the

PDC structures, but a smoother, more predictable one for the migration of the PDCs

themselves. This enabled us to determine the transition pathways during diffusion

based on symmetry principles, and use the NEB method to study the time evolution

of the system. As we will see in this chapter, the drastic increase in microstructural

complexity resulting from radiation damage precludes us from using such methods.

We must resort to a combination of non-equilibrium MD, ABC, and ABCD to analyze

the long run evolution of the system. Nevertheless, increasing the complexity of

the material and the power of our simulation methods comes at a cost. First, our

computational demands increase significantly, so we can no longer model the system

at the electronic structure level and instead rely on interatomic potentials to describe



the interactions. Seconu, even tnough our 1mebuous peimit analysis ana pieuictioni

at long time scales their accuracy is limited by the parameters associated with the

ABC and ABCD methods as well as the inherent size limitations. Despite these two

limitations, the methods prove to be powerful tools in generating new insight into the

problem of radiation damage of materials.

4.1 Void Swelling in Metals and Alloys

Irradiation of metals leads to dramatic changes in the microstructure as a result of

the displacement of lattice atoms and the deposition of energy via electronic and ionic

excitations [79,80]. Of particular importance are dimensional instabilities which can

be perceived at ordinary macroscopic length scales such as creep, growth, shrinkage,

and swelling [79, 81]. Irradiation creep and growth are volume-conserving shape-

modifying processes which occur as a result of applied stresses (creep) or inherent

anisotropies (growth) and are enhanced by the irradiation induced microstructural

changes. Shrinkage and swelling, on the other hand, involve decreases or increases of

volume respectively. Swelling, in particular, can occur by the formation and growth of

voids, the retention of lattice vacancies, or the development of less dense phases [79].

All of these processes can result from the formation and evolution of Frenkel pairs

produced during displacement cascades and their subsequent interactions with the

evolving metallic microstructure.

Irradiated crystalline metals are characterized by supersaturation of both vacan-

cies and self-interstitial atoms (SIA) generated during displacement cascades. Though

a large fraction of the defects generated during the cascade recombine after a few pi-

coseconds, the concentrations of both vacancies and SIAs left is orders of magnitude

higher than those for the unirradiated metal. Various sinks in the microstructure,

such as cavities, surfaces, and grain boundaries trap both vacancies and SIAs in an

unbiased manner and contribute to the recovery of the lattice. On the other hand,

the stress fields of dislocations preferentially attract SIAs over vacancies [82]. As a

result of this bias, approximately 20% more interstitials than vacancies are absorbed



by dislocatios, led\vmng a slight exces, ui vacancies which hiist nucleate aILo and then

grow voids (Figure 4.1). Voids can then be filled with gases such as hydrogen (Section

3.1) or helium and form pressurized bubbles inside the material.

Figure 4-1: TEM comparison of void, dislocation, and precipitate structures in com-
mercial (left) and high purity (right) type 316 stainless steel.

The formation and growth of these voids in many metals after high-dose irradi-

ation at elevated temperatures has been the subject of extensive experimental and

theoretical investigation [83-88]; primarily because of the importance of the resulting

volume expansion in the design of fast reactor cores. Void growth and nucleation is

strongly dependent on many variables including vacancy, precipitate, and dislocation

concentrations, temperature, coherence of precipitated phases, and the crystalline

structure of the material. For example, it is observed, experimentally, that voids



sumeimes grow on piecipitates, notably on o e3 u 6 parLIcles in type oit teels [9],

whereas in other materials, such as PE 16 steel, the precipitates apparently suppress

void growth [90]. Vacancies have also been shown to contribute in the formation and

growth of the precipitates themselves as the irradiated material ages [91]. It has been

determined that void swelling develops in austenitic stainless steels over a range of

temperatures starting at the onset of vacancy migration (about 300"C for austenitic

steels) to regions dominated by self-diffusion (about 650"C). Both macroscopic void

swelling and microscopic void nucleation possess initial incubation delays (Figure 4.2).

For austenitic stainless steels the macroscopic incubation doses range from - 0.1 dpa

to over 10 dpa after which the volume increases at a rate of 1%/dpa [92] which dra-

matically alters the engineering properties of the material. Thus, the incubation time

effectively defines the useful lifetime of a component in a reactor. The complexity

of the phenomenon and the roughness of the underlying energy landscape result on

a strong dependence of the incubation period on the dose rate, i.e. that a lower ir-

radiation dose rate requires a smaller cumulative fluence to complete the incubation

process [92]. This behavior constrains the predictive power of extrapolated experi-

ments at high dose rates as steady-state behavior is confused with the late stages of

the transient period.

Additional open questions in the study of radiation swelling in metals are the

strong relationship between creep and swelling [86], which in principle could be in-

vestigated by a combination of ABC, ABCD, and KMC as suggested for hydrogen

embrittlement in Section 3.3, and the significant disparity between the swelling levels

in ferritic and austenitic steels. Void swelling in ferritic steels is found to be signifi-

cantly lower than in austenitic alloys but the cause of this difference is not yet clearly

understood. Several theories have been proposed but no consensus has been estab-

lished in the pertinent literature. The best accepted conjectures can be summarized

as [93]:

* The point defect bias to dislocations is inherently lower in the bcc ferritic crystal

structure.
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Figure 4-2: Void swelling in solution-annealed 304 stainless steel irradiated in the
reflector and blanket regions of EBR-II. Data are grouped according to the dose rates
indicated in the legend. The onset of irradiation triggers the formation of small
defect clusters but causes very little volumetric expansion. This is followed by an
incubation period consisting of void accumulation and growth and accelerating void
swelling. This eventually reaches a steady-state swelling regime around 1%/dpa for
austenitic steel [92].

" The presences of two competing dislocation Burgers vectors reduces vacancy

accumulation at voids.

" Solute trapping of defects leads to increased recombination.

" The dislocation and void evolution produce populations that are not ideal for

void swelling optimization in ferritic alloys

In addition to the experimental measurements there is a rich literature discussing
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potential models ana neejianms ior void sweiini. The standard theoietieti ap-

proach relies upon a combination of rate theories and atomistic, in particular KMC,

simulations as exemplified by Surh's work [88, 92] and the references therein. Our

calculations in the subsequent sections, although not directly concerned with void

swelling, can inform the type of sinks and the interactions with point defects that are

used as inputs for these models.

4.2 Effects of Self Interstitial Implantation

While the important role of vacancies and voids in the swelling process has been

thoroughly studied, self-interstitial contributions to volumetric expansion are not yet

well understood. At high dose rates, small doses, or low temperatures void nucleation

and growth are unlikely to be responsible for dimensional changes in the material

because the migration barrier for free vacancies is on the order of 0.5 - 0.6 eV and

the concentrations of point defects in the material are low. On the other hand SIAs

are known to migrate rapidly and distort their local microstructure considerably. For

example, amorphization of crystalline materials has been observed under electron and

ion-beam bombardment [94,95] and appropriately described by considering the self-

interstitial driven disorder rather vacancy-mediated effects [96]. This amorphization

phenomenon can in turn lead to low density disordered phases which then result in

swelling enhancement at high irradiation doses. The formation of such disordered

phases in a variety of lattice crystallographies is known to depend strongly on total

irradiation dose and dose rate, with aggressive irradiation conditions necessary for

full destabilization [95, 96]. Furthermore, the strong long-range interaction between

SIAs [94 as well as low energy recoils [95,97] are known to result in a strong driving

force for athermic recrystallization which competes with the formation and growth

of disordered phases, and hence also has important effects on macroscopic volumetric

instabilities. Therefore dismissing the impact of SIAs in the preincubation region is

not necessarily accurate for high dose rate applications.

Non-equilibrium MD simulations were performed in a 10x10x10 bcc Fe super-cell
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.000 atoms) uA penumUe uoundary cunuuouns. \ e use the recet ie intciatulic

potential developed by Ackland et al. [98], which appropriately describes the prop-

erties of both crystalline and highly disordered phases essential in our study. The

choice of a bce, rather than fcc, phase of Fe is intentional, as experimental obser-

vations described in the previous section indicate that void swelling is significantly

lower in ferritic steels, and therefore the effect of SIAs should be more relevant. All

MD simulations are performed at a constant temperature of 400 K and zero external

pressure. Irradiation conditions are simulated by randomly introducing one or more

Fe atoms in octahedral or tetrahedral interstitial sites relative to existing atoms in

the lattice. The atoms are introduced in a tetrahedral or octahedral site with equal

probability after a fixed number of time steps. While this mechanism represents a

significant simplification from the complex recombination dynamics which occur af-

ter a displacement cascade, and increases immediate distortion field of the SIA, it

provides an adequate platform to study the specific effects of self-interstitial atoms

and the resulting dimensional instabilities leading to swelling. Similar simulations of

radiation induced amorphization [99] involving both vacancies and interstitials pro-

duced similar results to those using self-interstitial insertion only, but under higher

total doses and dose rates due to the recombination effect. Each inserted atom is

counted as a lattice displacement and therefore the corresponding dose associated to

each such insertion is given by:

n
dpainsertion(t) = N(t) (4.1)

where N(t) is the number of atoms in the simulation cell at the time t of insertion

and n is the number of atoms inserted. The total dose is then obtained by adding the

doses of all insertions, and the average dose rate is given by dividing the total dose

by the time of irradiation. Irradiation conditions for all the simulation runs are given

in table 4.1 below. The dose rates explored, ranging from 107 to 1010 dpa/s, while

higher than those for any current reactor or ion beam application, provide insight

into the fundamental physics, disorder and defect formation mechanisms associated
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Table 4.1: Irradiation Conditions for MD Simulations of SIA-Induced Swelling in Fe.
Simulation Total Number of Irradiation Total Dose Average Dose

Run Inserted Atoms Time (s) (mdpa) Rate (dpa/s)
1 75 7.60 x 10-10 37.0 4.84 x 107

2 75 4.50 x 10-10 37.0 8.18 x 107

3 75 2.25 x 10-10 37.0 1.64 x 108
4 75 1.12 x 10-10 37.0 3.27 x 108
5 75 2.25 x 1011 37.0 1.64 x 109
6 200 3.00 x 10-11 95.0 3.18 x 109
7 200 1.50 x 101 95.0 6.36 x 109

with SIA-induced damage and swelling.

In addition to the non-equilibrium MD simulations, we probed the evolution of

the system at longer time scales post-irradiation by using the constant stress ABC

method described in Section 2.3.1. In particular, given the nature of the structure, the

cell shape relaxation is assumed to be fast relative to the slow relaxation of the atomic

positions, and thus we use the formulation of Figure 2.6.a. This is confirmed from

the results below. The ABC runs start immediately after irradiation was completed.

Therefore since the number of particles in the simulation cells remained constant a

static ABC formulation (at constant pressure) is sufficient.

For improved statistical accuracy, multiple MD simulations with different initial

configurations for each of the conditions described in Table 4.1 were performed until

the integral properties converged. Unless otherwise noted, the results presented below

represent averages over these simulations. Post-irradiation microstructural evolution

was examined by continuing all the MD simulations up to 2.25 ns.

4.2.1 Macroscopic Effects: Swelling

Figures 4.3 and 4.4 summarize the macroscopic effects of SIA insertion in a bcc Fe

lattice for Runs 1 through 5, all with a total dose of 37 mdpa and varying dose

rates. Since the number of lattice atoms in the system increases during irradiation,

the volume of the material increases to accommodate the increased stresses. Fig-

ure 4.3 quantifies this swelling per atom by showing the normalized inverse density

(u"normalized) obtained from MD simulations up to 2.25 ns. I/normalized is defined as
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iollows"7: 
V(t) V(0)
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N(t)

where V(t) and N(t) are the volume and number of atoms of the lattice at time

t. Hence, Vnormalized represents a measure of swelling per atom as a results of the

irradiation. Figure 4.4 summarizes the swelling behavior for the other runs, and

Table 4.2 summarizes these swelling levels right after irradiation, and in the short

(2.25 ns) and long runs for all the irradiation conditions given in Table 4.1.
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Figure 4-3: Swelling, as measured by the normalized

time for various dose rates (Runs 1-5). In all cases

the total simulated time is 2.25 ns.

inverse density, as a function of

the total dose is 37 mdpa) and
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k iguit 4.3 uemonstrates that in1'adiatioi. under the aggresive constiLtons studieu

in this section, results in an overexpansion of the volume in addition to the relaxation

required to accommodate the increased number of atoms in the lattice. At the end

of our simulations (2.25 ns) this swelling, as measured by 71normalized, varies over a

small range from 0.28% for Run 3 to 0.34% for Run 5 in the range of dose rates

explored (at a total dose of 37 mdpa). This in turn corresponds to a swelling rate

of approximately 7.7-8.7%/dpa, which is a factor of 8 larger than the ~ 1.0%/dpa

observed experimentally in nuclear reactor steels after incubation [92]. On the other

hand, those reactor experiments are conducted under dose rates which are orders

of magnitude lower and for higher doses than those in this study. As discussed in

Section 4.1, in that regime the swelling behavior is believed to be dominated by

vacancy-driven processes such as void nucleation and growth [86,881 and not by SIA-

driven processes, so the evolution mechanism is different. Our calculations at high

dose rates suggest important effects resulting from SIAs in the swelling process which

would be relevant for more aggressive conditions such as ion implantation and in the

pre-incubation period. In fact, experimental studies of focused ion beam implantation

in MgO surfaces [100] are consistent with the features observed in our simulations by

exhibiting both an increasing swelling stage followed by recovery as well as a complex

defective microstructure including partial amorphization [94]. As discussed in section

4.2.2, such swelling behavior is precisely the result of the evolution of that disordered

structure created during irradiation. Our mechanism is then in agreement with the

subsurface defect accumulation suggested by Rota et al. [100].

As Figure 4.3 and Table 4.2 show, the effects of dose rate on the total swelling

are significant in the short run for the range of conditions studied. Immediately after

irradiation the variance is quite large with swelling levels with almost a factor of

2 difference resulting from an order of magnitude increase in the dose rate. This

far-from-equilibrium effects are reduced rapidly as the lattice relaxes, and we see

significant convergence during the first few nanoseconds. Despite the convergence,

the swelling levels exhibit an important trend in which the minimum swelling levels

occur at intermediate dose rates rather than at the maximum or minimum dose rates
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Table 4.2: Short and long-term SIA-induced swelling at various dose and dose rates
in Fe.

Simulation Total Dose Average Swelling Swelling at Long run
Run (mdpa) Dose Rate After t=2.25 ns swelling

(dpa/s) Irradiation (%) (%)
(%)

1 37.0 4.84 x 107 0.37 0.30 0.29
2 37.0 8.18 x 107 0.35 0.29 0.29
3 37.0 1.64 x 108 0.33 0.28 0.28
4 37.0 3.27 x 108 0.38 0.30 0.29
5 37.0 1.64 x 109  0.44 0.34 0.33
6 95.0 3.18 x 109  0.78 0.42 0.40
7 95.0 6.36 x 109  0.80 0.39 0.38

explored, i.e., the dependence of the total swelling (in the nanosecond scale) on dose

rate is non-monotonic.

Figure 4.5 shows that for the irradiation conditions studied in our simulations,

the swelling levels immediately after irradiation are primarily determined by the total

dose. Significant recovery takes place within a few nanoseconds and the swelling at

higher doses decreases sharply (over a 50% recovery of the swelling for the high doses

within picoseconds). This is highly similar to the type of fast recovery observed during

the introduction of displacement cascades, though in that instance the recovery is the

result of recombination of the Frenkel pairs. In this case an alternative mechanism

of recovery takes place as there are no vacancies in the material. This mechanism is

described in detail in Section 4.2.2.

The microstructural evolution at long times, probed with ABC (constant pressure)

simulations, does not show significant changes to the swelling levels. The system

does lower its energy through collective motion and drastic recrystallization after

a sufficient number of Gaussian penalty functions (see Figure 4.4 for an example

corresponding to Run 2). However, this process requires activation barriers which,

for all of the cases explored, surpass 4 eV. At 400 K, our temperature of interest, this

relaxation never occurs in practice.

Therefore, most of the recrystallization of the original damage takes place within

the first few nanoseconds that can be probed accurately with MD simulations. As
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Figure 4-4: Recrystallization of the post-irradiation microstructure in Run 2 as t -
00 (Ebarrier = 5.6 eV). The colors denote local shear strain (top) and coordination
number (bottom).
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resua, tie correction lui iong run swelling (a, ceterminea by the sweliung ievels

in the ABC runs before the large recrystallization step) are minimal. Additional,

intermediate relaxation steps between the high-barrier large recrystallization and the

MD-accessible processes could, in principle, be reached with ABC by decreasing the

size of the penalty functions. This would enable us to probe processes with barriers

lower than 0.5 eV - the size of the penalty functions in this study. The corrections

resulting from such an adjustment would be negligible since processes with barriers

of approximately 0.3 - 0.5 eV encompass the migration of SIAs and SIA clusters

in Fe (see Appendix D). Given the fact that these represent the primary defects

which form during irradiation at the high doses explored in this study, the evolution

corresponding to those time scales would be dominated by their diffusion which has

negligible effects on swelling recovery.

4.2.2 Microscopic Effects: Disordered Phases and Amorphiza-

tion

Unlike the void nucleation and growth mechanisms which are responsible for swelling

at lower dose rates and high doses (Section 4.1), the mechanism responsible for the

swelling observed in Figures 4.3-4.5 is associated with the formation and partial re-

covery of defected or disordered regions in the lattice. The early evolution of the

microstructure during irradiation is dominated by the long-range athermic interac-

tions between SIAs [94], which result in the rapid formation of SIA clusters and

localized disorder areas. Figures 4.6-4.8 show the underlying defect cluster distribu-

tion and radial distribution function (averaged over both original and implanted iron

atoms) for Runs 1 (low dose, low dose rate), 3 (low dose, medium dose rate), and

7 (high dose, high dose rate). A set of atoms if said to comprise a defect cluster if

and only if each atom is nearest neighbor of at least one other atom in the group

(connectedness) and each atom has a coordination number different than that of a

perfect lattice (defectiveness). As can be seen in all three figures, the evolution of

the macroscopic swelling under each of the irradiation conditions directly correlates
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Figure 4-5: Swelling, as measured by the normalized inverse density, as a function of
time for various irradiation conditions (Runs 4-7). The total simulated time is 2.25
ns.

with that of the number of miscoordinated atoms in the lattice and the size of the

largest cluster. The overexpansion is directly related to the amount of disorder in

the lattice; as high disorder regions create excessive local stresses, the lattice relaxes

by expanding. The presence of these lower density defect zones destroys some of the

short and long range order in the lattice (Figure 4.6-4.8b).

Two main driving forces determine the evolution during irradiation: first, as more

atoms are introduced to the lattice the SIA clusters grow in size and complexity. As

the lattice relaxes and the volume increases there is also strong driving force for re-
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lattice planes. The competition between these two forces gives rise to a cycle of disor-

der creation (damage) and recovery which determines the irradiated microstructure

and its evolution. The nature of the damage creation and recrystallization process

can be observed in the changes in the radial distribution function of Figures 4.6-4.8b.

As damage is introduced during the early stages of irradiation (Stage I) the system

loses some of its long range order resulting in the disappearance of some of the higher

order peaks as well as the reduction in height of the short range ones.

Even though the total amount of disorder added to the system is the main driver

of macroscopic swelling (which is not strongly dependent on the dose rate), the re-

covery mechanism is strongly dependant on the precise irradiation and metallurgical

conditions. Differences in the underlying microstructure and their interactions with

the large amounts of SIAs give rise to the differences in the swelling levels described

in the previous section.

In particular, under these high dose rate conditions, three types of distinct mi-

crostructural features characterize the defect populations:

" SIA clusters that relax to the (111) direction as dislocation loops,

" small (5-10 atoms) pockets of disorder that eventually relax into dislocation

loops, and

* larger pockets of amorphous Fe.

Figure 4.9 shows examples of these types of defects as they form during the mi-

crostructural evolution of the lattices in Runs 1, 3, and 7. During Stage I, SIA clusters

coalesce into small pockets of amorphous phases for all of the irradiation conditions ex-

plored. In this early irradiation regime the number and average size of defect clusters

increases with the total dose. While the rate of increase is not directly proportional

to the dose rate (as can be seen from the initial slopes of the curves in Figures 4.3

and 4.6-4.8), the divergence from this trend is small. This implies that, on average,

the microstructure does not relax sufficiently fast during Stage I and therefore the ef-

fect of recovery is minor in comparison to damage creation. After irradiation finishes
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Figure 4-6: Microstructural evolution of SIA-implanted Fe (Run 1): (a) Total amount

of disorder (number of miscoordinated atoms) and the size of the largest defect cluster.

(b) Radial distribution function (averaged over all iron atoms) as a function of time.
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Figure 4-7: Microstructural evolution of SIA-implanted Fe (Run 3): (a) Total amount
of disorder (number of miscoordinated atoms) and the size of the largest defect cluster.
(b) Radial distribution function (averaged over all iron atoms) as a function of time.
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Figure 4-8: Microstructural evolution of SIA-implanted Fe (Run 7): (a) Total amount

of disorder (number of miscoordinated atoms) and the size of the largest defect cluster.
(b) Radial distribution function (averaged over all iron atoms) as a function of time.
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Figure 4-9: Three classes of defects in SIA-implanted Fe at high dose rates: (a)
SIA clusters/prismatic dislocation loops (Run 1), (b) small clusters of disorder (Run
3), (c) large amorphous pockets (Run 7). The atoms are colored according to their
coordination number.

(Stage II), the defect microstructure formed during irradiation commences to relax

and recrystallize. SIA atoms and small clusters quickly coalesce during irradiation

due to their low migration barriers. Furthermore, they rapidly transform into small

prismatic dislocation loops (Figure 4.9a) which glide rapidly along lattice planes and

are highly stable. On the other hand, small disorder pockets (Figure 4.9b) are very

unstable and relax into small SIA clusters or simply recrystallize as the lattice expands

to accommodate them. Finally, sufficiently large amorphous zones (Figure 4.9c) are

also long-lived since they give rise to effective surfaces which need to be eliminated

during recrystallization. However, despite being otherwise metastable, large amor-
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phous regions are prone to recrystallization because SIAs binding to an amorphous

phase (especially during the latter stages of stage I) can act as crystal nucleation sites

inside the amorphous pockets.
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Figure 4-10: Average coordination number of the displaced atoms for Runs 1, 3, and
5 after the first 1 ps. Perfectly coordinated atoms have 14 first and second nearest
neighbors.

Figure 4.10 shows the average coordination number (including first and second

nearest neighbor shells) of the displaced atoms for Runs 1, 3, and 5. We notice that the

intermediate dose rate (Run 3) is characterized by small changes in coordination (from

a perfect coordination of 14 - 8 nearest neighbors and 6 second nearest neighbors - to

~~ 13.5), while at high and dose rates we observe more dramatic changes (a reduction

of the coordination of the defected atoms to ~ 12) which are preserved in time. At

dose rates below 108 dpa/s, newly implanted SIAs can relax to dumbbell positions,
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diffuse, and form clusters. These clusters relax to the equilibrium mobile configuration

in the (111) direction in the form of small prismatic dislocation loops which migrate

through the lattice. As these defects are stable there is little swelling recovery in

the long run relative to that shortly after irradiation so the miscoordination is not

only more drastic (as all of the dislocation loops have a similar low coordination

configuration) but also more persistent.

In contrast, intermediate dose rates are characterized by a combination of SIA

clusters and small pockets of disorder. As discussed earlier these configurations are

highly unstable so they recrystallize quickly during both stage I and stage II and

consequentially the average decrease in coordination is smaller and less persistent.

This leads to a lower level of swelling for the same dose. At higher dose rates, the

size of the disorder pockets grows until some of then become metastable regions of

amorphous material. By reaching a critical size or turning into dislocation loops these

large pockets lower the average coordination of the lattice sufficiently (Figure 4.10)

to avoid complete recrystallization. At higher doses, newly implanted SIAs can act

as nucleating sites inside amorphous regions and foster the recrystallization of the

larger pockets, thus explaining the sharp recovery observed in the high dose case.

In summary, the SIA cluster/dislocation loop is the most stable of the defects

and prevents full recrystallization. Large amorphous pockets come second because

their critical size creates significant interfaces requiring additional energy to recrys-

tallize, so these pockets remain disordered for longer times or transform into SIA

clusters/dislocation loops. Finally, small regions of disorder are characterized by

small changes to the average coordination (Figure 4.10) as opposed to the sharp de-

creases in coordination of the other defects. Hence they are highly unstable and

rapidly recrystallize. Therefore, and as is characteristic of system with rough energy

landscapes, the kinetics of the swelling process are driven by the interactions and

stability of the three types of defects, giving rise to three regimes which depend on

the total dose and dose rate.
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4.3 Slow Dynamics of Radiation Damage

The previous section demonstrated how the introduction of a large number of defects

in a perfect lattice gives rise to kinetic mechanisms that act in different time scales. In

particular, the difference between the energy barriers for the relaxation and migration

of each of the three types of primary defects (SIA clusters/dislocation loops, small

disorder clusters, larger amorphous pockets) manifested itself macroscopically in the

non-monotonic dependency of swelling on the dose rate.

We also noted that the recrystallization dynamics associated with SIA-implantation

and recovery are very similar in both nature and characteristic time scales to the re-

combination dynamics of a displacement cascade. Furthermore, and as shown in

Appendix E, the ABCD method provides a platform for the simulation of systems

which traverse time-dependent rough energy landscapes such as those corresponding

to materials under irradiation (in which the number of particles in the system varies

stochastically and slowly). The combination of these two observation suggests a com-

bined methodology for the simulation of more realistic materials under irradiation,

specifically in the case of displacement cascade aging.

Cascade aging represents one of the major challenges in the modeling of slowly

evolving systems. The physics that determine the primary production of radiation

damage occur when a primary knock-on atom (PKA) produces a displacement cascade

upon impact. The cascade a large number of Frenkel pairs. However, within the first

few picoseconds most of the damage is healed by recombination and only a fraction

of the debris is left. Predicting the evolution of the remaining SIAs and vacancies as

well as that of the microstructure with which they interact over time scales of seconds,

hours, or even years is the main challenge of modeling cascade aging using atomistic

simulations. In practice, these type of simulations are carried out non-rigorously

using ad-hoc parameters introduced in a KMC model in which the majority of the

short-time physics are treated phenomenologically [91,101,102].

As an alternative, we propose a coupled MD/ABCD (constant stress, constant

temperature) approach to modeling such materials as follows:
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" Starting from some initial configuration begin the irradiation (assuming a real-

istic dose of rate of 1011 - 10 5 dpa/s).

" Evolve the system using MD for the first few picoseconds of the cascade to

obtain accurate recombination dynamics.

" Start ABCD (constant stress, constant temperature) after the fast relaxation

has taken place in order to evolve the system over longer time scales 1.

" Once the time horizon has advanced sufficiently introduce more cascades.

" Iterate.

The main limitation of this approach is the size of the system. While very large

MD simulations are possible for a few picoseconds [10], ABC-based methods scale

poorly with size. A parallel implementation of ABCD (which would, in principle,

require a synchronous algorithm such as the one described in Appendix A for KMC)

would be necessary in order to use this approach for sufficiently large systems and

model the formation and growth of microstructural features during aging.

'The efficacy of ABCD is dependent on the size of the system because of averaging effects over
a larger number of atoms. That is, fluctuation effects are, in principle, reduced as the size of the

system grows and we average over various quenched runs. Additionally, the accuracy of ABCD is

dependent the magnitude of the dose rate, because this determines the speed at which the energy

landscape evolves as described in Equation (2.54). These effects are discussed in more detail in
Appendix E.
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Chapter 5

A Model of Chemomechanical

Hardening: Toward Cement

Setting

The last physical systems under consideration in this thesis are colloidal suspensions

of various densities. Unlike the solid state systems analyzed in Chapters 3 and 4,

colloidal suspensions do not have long range crystalline order. Their microstructure

transforms from fluid-like at high temperatures, high driving forces, and low densi-

ties to glass-like at low temperatures, low driving forces, and high densities, in the

neighborhood of the so-called jamming transition. The high level of disorder and

heterogeneity in these materials, representing a drastic increase in microstructural

complexity from the partially amorphous metals of Chapter 4, gives rise to very

rough energy landscapes which in turn result in kinetic behavior which spans a vast

range of time scales.

Colloidal suspensions share many features with granular materials and glass form-

ing liquids. In all of these systems the dynamics slow down dramatically to the point

in which the system becomes rigid when the temperature is lowered, the driving

forces are reduced, or the density of particles is increased. This general phenomenon

is known, when temperature is the main driver, as the glass transition, and, when

density or perturbations are the key variable, as the jamming transition [103,104].
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Systems exhibiting one or both of these types of behavior are usually characterized by

spatially heterogeneous dynamics (SHD) [105] which, on approach to the transition,

include correlations in which the particles assemble into one-dimensional strings [106]

or aggregate into clusters. Due to this microscopic heterogeneity, particles in a dense

colloidal flow have stresses which tend to be unevenly distributed [104], strongly

fluctuating, and ill-defined as bulk properties [107]. In particular it has been found

that jammed and yielded colloidal and granular materials differ on the statistics of

their force networks [108] as do systems under compression and shear forces [109]

demonstrating that the boundary conditions on strongly confined colloidal or granu-

lar matter have direct effects on the SHD and, in turn, on the puzzling macroscopic

properties of the system. Within the context of energy landscapes, a jammed system

is trapped in very deep wells in the energy landscape and requires high energy collec-

tive motions to relax. While the problem of jamming in both colloidal and granular

matter is a very active area of research, and presents many interesting applications to

our generalized ABC methods, we only introduce it because of its inherent connection

with another problem regarding the mechanics of colloidal suspensions: the problem

of setting.

During setting, the microstructure of a colloidal suspension evolves from that of

a low viscosity liquid-like suspension to a rigid structures with dynamics similar to

those of a solid. This hardening occurs by a combination of jamming and chemical

bonding. This chemomechanical hardening process, coupling chemical reactions with

mechanical behavior on equal footing, poses new challenges not yet addressed my

multiscale materials modeling and thus serves as an exacting test of the power and

scope of our methodology.

This process of chemomechanical hardening as a function of time is particularly

relevant in understanding the mechanisms of cement hydration and setting. Cement

slurries represent a unique case study for the understanding of slow dynamics in

soft, non-crystalline matter. First, they have tremendous technological importance

as they constitute the highest volume man-made material on Earth and form the

basis of most modern infrastructure. Second, they possess the type of highly defected
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complex microstructure that is difficult to investigate with standard theoretical and

computational techniques but amenable to those developed in this thesis.

As described in latter sections the basic phenomena underlying the transformation

of liquid cement slurries into solid concrete is a prime example of the interactions

between chemistry and mechanics and captures many of the themes of this thesis:

very rough energy landscapes, complex evolving microstructures, and slow relaxation

times.

5.1 Review: Hydration, Setting, and Hardening of

C3 S and C-S-H

In the context of cement science, hydration is a chemical process which leads to the

formation of hydrates from an anhydrous material through several reactions. This

phenomenon has thermodynamic, kinetic, and structural features which depend on

chemical and physical parameters [110]. Furthermore, this process is deeply connected

with the phenomenon of setting which transforms the cementitious material from a

soft, pourable, and ductile paste to a hard, no longer pourable, and fragile structure.

The true microstructure of Portland cement is composed of several mineral phases,

the most abundant being an impure tricalcium silicate 3CaO -SiO 2 = C3S (alite) and

its dicalcium equivalent 2CaO - SiO2 = C2 S (belite) (See reference [111] for cement

chemistry notation). Hence it is common in the literature to refer to simpler model

systems, e.g. the C3S phase only, to gain insight into the mechanisms that drive the

microstructural evolution.

Hydration proceeds through three successive reactions which become gradually

simultaneous [112]: the dissolution of C3S providing calcium, silicate, and hydroxide

ions in solution; as soon as the supersaturation maximum with respect to C-S-H

(see Appendix C for an atomistic model) is reached, it precipitates from silicate

ions and a fraction of the calcium and hydroxide ions (the C/S ratio is dependent

on the lime concentration in the solution); and as soon as the lime concentration
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reaches its supersaturation maximum with respect to calcium hydroxide (portlandite),

it precipitates.

%of ralon

o 5 10 Is 20 25 30
t|e (h)

Figure 5-1: Evolution with time of the percentage of hydration of C3S when the lime

concentration in solution is kept constant at different values [110].

Of these three reactions, portlandite precipitation does not appear to be a rate

determining process. In fact, the kinetics of hydration are not strongly dependent on

the water to cement ratio, and it is even possible to hydrate C3S completely without

any portlandite precipitation. As shown in Figure 5.1. advancement of hydration of

C3 S when the lime concentration is fixed at different values follows a sigmoidal shape,

which includes an induction period (in which C-S-H presumably nucleates), and a C-

S-H growth period, which can be subdivided into an accelerated period, a decelerated

picture, and a period with a slow and quasi-constant rate. The nucleation period is

very short, lasting only a few minutes at low lime concentrations, and grows longer

as the lime concentration in the solution increases. Experimental observations show
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that the induction/nucleation period depends essentially on the number of nuclei of

C-S-H that are precipitated from the solution in its state of maximum supersaturation

with respect to C-S-H. The lower the lime concentration, the greater is the number

of nuclei, and the shorter the nucleation period [113]. The rates of hydration during

the accelerated and decelerated periods depend little on lime concentration. On the

other hand, the percentages of hydration corresponding to the inflection point and

the end of the decelerated period are strongly dependent on the lime concentration

due to changes in the growing mode of C-S-H on the C3S surface. The rate of the

quasi-content rate period, the longest one, does not appear to depend much on the

lime concentration. The reaction rate in this case is limited by diffusion of reactants

through the C-S-H layers on the surface of clinker globules and the migration of the

C-S-H particles.

The kinetics of hardening are also characterized by a sigmoidal shape in which

three clear regimes are observed (Figure 5.2.). The rheological behavior of the ma-

terial (encompassing both increases in viscosity and shear moduli) comprises two

important mechanical events. The first is a simple gelation of the slurry, due to the

high ionic strength of the aqueous phase [115-117]. It takes place almost immediately

after mixing the cement with water, at almost zero hydration. This coagulated net-

work displays a measurable yield stress for flow, but has a poor mechanical strength

overall. The second event is setting which starts a few hours after coagulation. The

period between coagulation and setting is called the dormant or inductive period.

It is during this stage that the process of C-S-H nucleation and growth by hydra-

tion described in the preceding paragraph occurs. A continuous, diffusion controlled

reinforcement process occurs at contact areas leading to eventual percolation which

increases the shear modulus of the mixture to the GPa range. Further hydration and

long term redistribution of matter and voids leads to further hardening over periods

of weeks, months, or years [114].

The coagulation/gelation stage is due to attractive forces between particles. These

forces may result from interactions of various origins: van der Waals, electrostatic, or

solvation forces, though the exact nature of the mechanism for coagulation is not yet
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Figure 5-2: Setting and hardening: time evolution of the complex shear modulus
of a cement slurry prepared at water/cement=0.80 w/w, without and with addition
(0.18% w/w SP/cement) of acrylic superplasticizer (upper and lower curve, respec-
tively). The horizontal line indicates the minimum significant detection level [114].

well understood. This stage is a clear illustration of the sensitivity of cement slurries

to the non-contact surface forces important for colloids, leading to shear thinning. As

the lime concentration reaches about 10 mmol/l, hardening starts. At this threshold

value the solubility of C-S-H in solution becomes very low and it starts to precipitate

on the surface of anhydrous grains to bridge particles. Theories about the incubation

stage [114,118] suggest that the after C-S-H starts to precipitate the process becomes

transport/diffusion driven giving rise to the slow time scales observed. Finally the

clinker phases percolate and the paste hardens.
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5.2 Viscoelasticity in Lennard-Jones Colloids

The deformation response of a material to stress depends strongly on the microstruc-

ture. The majority of solids exhibit elastic behavior at small stresses and permanent

plastic deformation once the stresses surpass a certain threshold or yield stress. In

the elastic regime, strain responds immediately and reversibly to applied stress. On

the other hand, viscous materials resist shear flow and strain linearly with time (for

low shear rates) when a stress is applied. Viscoelastic materials have elements of both

of these properties and, as such, exhibit time dependent strain. Whereas elasticity

is usually the result of bond stretching along crystallographic planes in an ordered

solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous

material

During a short time, known as the Maxwell relaxation time [119], after the presence

of a shear rate, liquids exhibit solid-like behavior. The system needs this character-

istic time to traverse through the modified energy landscape and relax to a flowing

equilibrium. In colloidal suspensions, as the system approaches the jamming tran-

sition the dynamics of the flow slow down and the Maxwell relaxation time grows,

so the system appears solid (in the direction of the flow) at macroscopic time scales.

Furthermore, prior to full jamming the system exhibits viscoelasticity over measur-

able time scales. In parallel to jamming, interacting colloids can manifest setting

behavior, in which the microstructural evolution of the colloidal suspension results in

a drastic increase of the elastic moduli and (for perfect hardening) the divergence of

the Maxwell relaxation time.

Viscosity and elastic moduli are therefore deeply intertwined, and particularly so

in colloidal materials that exhibit viscoelastic behavior for appreciable times. More

precisely we can formulate Maxwell's insight as follows: basic fluid mechanics shows

that at low frequencies the shear stress of a liquid is generated by the Navier-Stokes

constitutive relation for a Newtonian fluid [120]. In the case of a fluid undergoing

planar Couette flow the flow is defined by a shear strain -y (we assume the colloid

flows in the x-direction). This in turn implies that the stress tensor S must be given
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(p -7n 0
S (r, t) = -Y7 p 0 (5.1)

0 0 0)

where 71 is the shear viscosity and p is the pressure. Therefore we have:

S2,(t) = -7y(t) (5.2)

or in frequency domain:

SzY(w) = -7fylW) (5.3)

where we use the notation:

A(w) = j dte- wtA(t) (5.4)

On the other hand at very high frequencies the material falls within the Maxwell

relaxation time, so we have:

S2(w) = -G- (5.5)
Oy

where G is the infinite frequency shear modulus. However by definition we have:

dV = Vu 
(5.6)

dt

where u is the velocity profile for the flow u(r, t) = (u, ut, uZ) = (-yy, 0, 0). Therefore

from Equation (5.5) we have:

G ii G
52,(W) = - - ~(W) (5.7)

iW Oy is

and combining with Equation (5.3) we find Maxwell's model of viscoelasticity by sum-

ming the low and high frequency expressions for the compliances (a general expression
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in three dimensions is given in Appendix F):

)= - -)5(w) (5.8)
P)= -G +rj XYP

Therefore in viscoelastic materials strain lags stress by a phase in between 0 and 7r/2.

This relationship shows that viscosity and elastic moduli are manifestations of

the same "complex modulus", where G represents the amount of energy stored by

the perturbed system and v the loss dissipated via fluctuations (heat). In that sense

viscoelasticity is an example of the relationship between externally driven and thermal

transport coefficients discussed in Section 2.1.2. In this case the elastic moduli could

be interpreted as the correlation factor associated with a stress field while the viscosity

represents a dissipative effect that obeys Onsager's hypothesis. A more general theory

of linear viscoelasticity in three dimensions is discussed in Appendix F.

5.2.1 Viscosity: Shear Thinning and Thickening

The time-independent relaxation of a viscoelastic material beyond its Maxwell relax-

ation time is determined by its viscosity (shear and bulk). This behavior falls into

three general classes: (1) shear stress is proportional to shear rate (Newtonian fluids),

(2) shear stress decreases with shear rate (shear thinning or pseudoplastic fluids), or

(3) shear stress increases with shear rate (shear thickening or dilatant fluids). For

example, low molecular weight liquids, like water etc. are usually Newtonian. Water

borne latex paints are shear thinning, and as discussed earlier wet concrete (during

the coagulation stage) is an example of a shear thickening fluid.

The discussion in the previous section suggests several ways to determine the

viscosity of these fluids, both through experiments and atomistic simulations. Ex-

perimentally, and for suspensions with little inherent elasticity, i.e. short Maxwell

relaxation times, it is possible to probe the viscosity by resorting to Equation (5.2)

and measuring the velocity profile with a rotating rheometer or another viscometer.

However, for materials with significant viscoelastic behavior which relax in very slow

time scales the use of a vibrating viscometer for dynamic analysis is more effective
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and determines the full complex moduli of Equation (5.8).

The connection between shear relaxation in various regimes and viscosity becomes

more apparent from a computational standpoint. In this case we can consider, at least,

three different ways for calculating viscosity. Though these methods appear distinct,

they are manifestations of the same physical behavior at different time scales.

First, and paralleling the rotating rheometer measurements in Newtonian fluids,

we can simulate a system under a constant strain rate via atomistic simulations by

imposing the appropriate boundary conditions (e.g., by using pinning points that

slide as a function of time - see Section 5.3.1). After reaching a local steady state,

this gives rise to a velocity profile in the fluid as well as a steady state shear stress

level. Then the ratio between that stress and the shear rate gives us the viscosity 7,

which we will denote by nua. This approach is limited by several factors. First,

the magnitude of shear rates that can be imposed with standard MD simulations,

which is essentially the inverse of the maximum total time that can be simulated

imposes a bound on the accessible strain rates higher than - 107s-1. These strain

rates are extreme for most macroscopic applications, and therefore extrapolating the

viscosity from such conditions is only valid if the fluid is almost Newtonian (so that

the viscosity is independent of shear rate). Second, the stress relaxation time needs

to be small enough so that an equilibrium Couette or laminar flow is reached during

the MD simulation. Third, the Maxwell relaxation time must be small enough to

allow probing of the system's viscosity without the elastic contributions.

When the material exhibits significant viscoelastic behavior violating the third

assumption, we can resort to dynamic analysis to estimate the complex modulus of

Equation (5.8) by altering the linear strain (i.e. constant strain rate conditions) and

instead imposing a sinusoidal strain at the boundaries. This can be achieved by

modifying the evolution of the pinning points (described in detail in Section 5.3) to:

Rj (t) = Rj (0) + LE sin(wot)ex (5.9)

where wo is a given frequency, and, without loss of generality, we have chosen a
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sinusoidal wave in the x-direction. By taking the Fourier-Laplace transiorm this

corresponds to a shear strain at the boundary that satisfies:

Ex(W) = dw7(3(W + wo) - 6(w - wo)) (5.10)

We can then consider a fit to the stress response of the system of the form (to first

order in the Fourier expansion):

oXz(t) = -sin(wo(t - to)) (5.11)

or in frequency space:

o~2(W)= -7rie-iwto (6(w + wo) - 6(w - wo)) (5.12)

and therefore:

(w) = ie-i"" (5.13)

so:

(cos (to) + i sin(wto)) (5.14)

which is a generalization of Equation (5.8), therefore at low frequencies we find that

the delayed response, i.e. imaginary part gives rise to a viscosity of

oscillatory = (5.15)

to a first approximation.

While this approach addresses the issue of relevant elastic behavior, at least

methodologically, it is only a refinement of the previous approach. The low fre-

quency limit of Equation (5.15) is analogous to the linear estimate for viscosity. It

does not address the issues of slow relaxation to steady states or the fact that the

rates (in this case, wo) which can be used in MD simulations are limited.

The final approach essentially can be considered as taking the dynamic boundary
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conditions to the limit of infinitesimal frequency that can no longer be simulated in an

MD simulation. In that case the effective strain is given by the thermal fluctuations

rather than by the (infinitely slowly changing) field. Roughly speaking sto ~ kT.

More precisely we can invoke Onsager's hypothesis for the microstructural relaxation.

Then the Green-Kubo fluctuation-dissipation theorem of Equation (2.48), allows us

to compute the viscosity from the correlation in the stress field as:

7GK(T) = 1 I, T ( (t)0(t + T)) (5.16)

This approach to calculating viscosity has proven very powerful when coupled

with activated state dynamic methods such as those described in Chapter 2 [121],

especially for extremely long relaxing systems which for which the other methods are

not applicable. The only issue with the Green-Kubo approach is that it is difficult to

use it to capture changes in the viscosity as a function of shear rate as those emanate

from changes in the microstructure of the material rather than from fluctuations. 1

We use these three approaches to calculate the viscosity of a Lennard-Jones (U)

colloid. This serves as a benchmark for the methods used for probing viscoelastic

behavior in colloids with more complex interactions. Table 5.1. lists the calculated

values for the viscosity for both a simple and binary mixture (c = 0.05, see Section 5.3

for details), with parameters given in Table 5.2 (See Equation (5.18) in the following

section for more details). The viscosity is given in U units of VmAL(AJ )2 .

Additionally the time step is given by dT = 1 0--OAA . As expected the three

methods show good agreement in the prediction of viscosity of the simple LJ fluid

which is very closely Newtonian, but differ greatly in the dense, binary mixture due

to the high strain rates involved in the first two methods and the fact that the binary

colloid, with the chosen interactions, is non-Newtonian. Figure 5.3. emphasizes this

point by showing both shear thinning and thickening behavior in the binary Lennard

Jones colloid, as measured with the linear approach.

iThough not addressed in this thesis, this could,in principle, be examined by combining ABCD
(changing cell shape) with Li et al.'s Green Kubo network formalism [121].
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Table 5.1: Three different calculations of the viscosity of Lennard-Jones colloids
Method Viscosity (Simple) Viscosity (Binary) Notes

Linear 0.13 0.24 = 10-4/d7
Oscillatory 0.11 0.30 wo= 27r x 10- 4 dT

Green-Kubo 0.12 0.29

Table 5.2: Parameters for binary Lennard-Jones colloidal model. The simple model

uses only the (A) parameters. The temperature (T) and volume fraction (#) are also

given.

Parameter X XAA XAB XBA XBB

eLJ 1.0 0.5 0.5 1.0

oLJ 2.0 3.0 3.0 2.8
mA/mB =( LJ )2 m1 = 12 n 2  T=3.0 -=1.0

5.2.2 Shear Modulus

As is the case for viscosity, we can estimate the shear modulus in a variety of ways

from experiments, theory, and atomistic simulations. The experimental techniques are

similar to those used for the measurement of viscosity: static and dynamic mechanical

analysis. Static analysis relies on the engineering definition of stress which is valid at

macroscopic scales and, for practical purposes, for solids only. In this case the elastic

response of the system is estimated by static loading which gives rise to a strain-stress

curve from which we can calculate an effective G as the slope of the elastic regime.

The dynamic approach is identical to that described in the previous section in which

effective elastic moduli appear as the real part of the complex moduli.

When relying on atomistic simulations the approaches to calculate the elastic

moduli in viscoelastic materials, the approaches are similar. Imposing the same con-

stant shear rate boundary conditions discussed above (and explained in more detail

in the following section) we can calculate a stress-strain curve from the inception of

shear. Rather than measuring the stress after a Couette flow profile is reached we

worry precisely about the opposite, that is, the response of the system before the ma-

terial starts flowing. This approach is only valid if Maxwell relaxation times is long

enough and the strain rate low enough that there is an appreciable elastic regime
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Figure 5-3: Shear viscosity as a function of shear rate for a dense binary colloid. We

can observe both shear thinning and thickening behavior.

before viscosity effects dominate. As a result pure viscous fluids are not amenable

for such an approach (just as solids are not amenable to viscosity calculations). Col-

loidal suspensions, on the other hand have measurable Maxwell relaxation times due

to their highly viscoelastic nature and can produce stress-strain curves from which we

measure the shear modulus as the slope Giinear. For aging colloidal suspensions such

as the ones we are concerned with in this chapter, the system's stress response can

"move in the viscoelastic space" by increasing the elastic contributions at the expense

of the viscous dissipative effects. It is precisely this phenomena what we call setting

and hardening. For an aging material we allow the microstructure to evolve without

external stresses. At each time t we take a snapshot of the aged configuration and
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relax until the temperature equilibrates. We then calculate the shear moduli as Gtt)

by repeating the procedure described above - constructing an effective stress/strain

response curve until flow. In this way we generate effective stress/strain curves at

each time t from which we can then calculate effective shear moduli. 2

The second approach to calculating the shear rate is by taking the real part of

Equation (5.14) under the same oscillatory boundary conditions. However in order to

probe the elastic regime we look at the high frequency limit. In practice, this reduces

to observing the response of very small oscillatory shear on the stress. However, if

the frequency is high we can assume that to, i.e. the lag, is small by comparison, so

to first order the infinite shear modulus is simply given by:

G(w oc) u a sin(wo(t - to)) (5.17)
E sin(wot) c

which results in the same linear estimate as that in the stress strain curve if the

Maxwell relaxation time is sufficiently long.

A Green-Kubo approach to calculating shear moduli is not possible since by defini-

tion the elastic moduli correspond to the high frequency modes of the stress response,

while the Green-Kubo fluctuation-dissipation theorem results from Onsager's hypoth-

esis of low frequency modes. A perturbative approach based on the interpretation of

the shear as a rapidly changing, small field, and within the context of the externally

driven transport coefficients of Equation (2.59), is possible since the corresponding

fluctuation-dissipation theorem does not invoke the Onsager assumption. In this

case (taking X = cxy as stress and F = E, as strain, and all the other changes as

negligible), Equation (2.52) becomes:

N = No + HaxyExy (5.18)

2 1t is important to note that there are two characteristic time scales when determining elastic
moduli of aging viscoelastic materials. First, there is an inherent relaxation time associated with
the microstructural evolution as the material ages. In addition, there is the Maxwell relaxation
time which determines the system's characteristic relaxation time as it relaxes under stress by first
behaving elastically and then viscously. Experimental and theoretical approaches to calculating
effective stress relaxation coefficients make the assumption that the aging relaxation time is much
larger than the Maxwell relaxation time to ensure that the measurements are consistent with a local
equilibrium microstructure.
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Under this simple interpretation Equation (2.59) then reduces to:

G oc H. (5.19)

which is simply a reformulation of the very basic fact that the elastic moduli can be

computed from the second derivatives of the Hamiltonian near an equilibrium. In the

infinite frequency limit, this approach is therefore also equivalent to the two previous

formalisms.

For the calculations that follow we use the linear approach to calculating the shear

modulus, i.e. as the linear response of stress to strain before the Maxwell relaxation

time or the slope of the stress-strain curves in which we ensure the microstructure

relaxation is slower than the Maxwell relaxation time so our calculations have a precise

physical interpretations. Under the conditions that we explore in the following section

this approach is consistent with other experimental and theoretical ways of estimating

the shear moduli in aging viscoelastic materials at the infinity frequency limit in

which we can objectively compare the physical meaning of the stress response. While

non-linear effects play an important role in viscoelastic materials, and characterizing

such systems by a single transport coefficient may not be appropriate, at the infinite

frequency limit we can objectively ignore the non-linear aspect of the response and

rely on the approaches described in this and the previous section as well as theory of

linear viscoelasticity discussed in Appendix E.

5.3 Dynamics of Colloidal Setting

Unlike glasses, which are widely considered solids for most applications, the concept

of rigidity is traditionally explored in colloidal systems only in the neighborhood of

the jamming transition and not when the system dynamics remain less frustrated.

Nonetheless, for many colloidal systems (most notably cement slurries) the system

evolution is such that shear moduli can be measured rigorously even when the system

is not in a jammed state [114]. In these cases the colloidal suspension can be modeled
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as a viscoelastic material and the deformation responses to stress can be calculated

using the methods described in the previous section.

In this section we construct an interacting binary colloidal model that exhibits

such chemomechanical hardening and can be probed with atomistic simulations. This

model simulates an aging viscoelastic material which, naturally, evolves slowly. In

order to probe its viscoelastic behavior with MD simulations we increase the temper-

atures to overcome the rate limitations. However, this occurs at the expense of a fully

detailed microstructural picture of the low temperature evolution. At the end of the

section we discuss how we can investigate the model under more realistic conditions

by relying on ABC.

5.3.1 Binary Sticky Colloidal Model

Our model is informed from the experimental observations of Section 5.1 which sug-

gest that three essential kinetic mechanisms must be captured: gelation, transport,

and percolation. With this physical perspective as background we develop a simple

model of the statistical mechanics of setting as follows:

The model consists of a binary mixture with sticky interactions similar to those

proposed by Emanuela Del Gado [122] for network forming colloids. Instead of incor-

porating the full chemical effects associated with the cement grain microstructure we

drastically coarse grain the system by assuming that the systems interact via short

range potential functions 3 given by:

Vo(rij) = Vg'(ri) + Vj7(rij) (5.20)

3The assumption of a short-range potential to model an (at least partially) ionic system such

as cement is a strong one, and could have an important effect in the type of transport phenomena

observed in addition to the strengthening of the chemical bonds between particles at short range.

Our assumption is equivalent to assuming that the dielectric constant of the solvent is extremely

high and screens the long range nature of the interactions. Exploring the effects of this assumption

will be a topic for future studies.
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Table 5.3: Parameters for "sticky" binary colloidal model

Parameter X XAA XAB XBA XBB

CLJ 1.0 0.5 0.5 2.5
o-LJ 2.0 3.2 3.2 2.8
ED 0.0 0.1 0.1 0.5
UD 0.4 0.6 0.6 1.0
d 0.43 0.43 0.43 0.53

n1=18 n2 =10 n3=12 n4=8

where:

VUL J a l - a# u
2 ) (5.21)

a,3Ea ij ri (5.)j

D
VD,(r..) ED (- 2 2 .)n3[Z1-______

ri,,1 + f(ri - rjp)

(E(1 - 1 ) - 11)] (5.22)
1 + f(rj - ri)

with

f(ri - rj,) = (Ir_ d2r,|2.)" 4  (5.23)

where ri is the position of i, rip is the position of the point p corresponding to particle

i which is a vertex of the icosahedron circumscribed in a sphere with center ri and

radius o,3, and the sum over p goes over all twelve vertices of that icosahedron. oz

and 3 denote the type of particle for i and j respectively, i.e. solvent (A) or solute

(B) particles. All the parameters used in the model are given in Table 5.1 below, and

the Lennard-Jones part of the potential is truncated at a radius of 2.5a0- in all cases.

With this construction, if any of the vertices on the icosahedron corresponding to

particle j is within a distance from the center of i small relative to d then VD =0

and the sticky soft sphere repulsion has no contribution. In case the distance is
D

larger, we have V/, 2 (6a n)3 which reduces the attraction from the Lennard-

Jones potential.

Our simulations are performed starting with a random mixture of small A and
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large B particles such that, on average, the composition of the larger particles is equal

to c < 1. That is, the type of each particle is chosen stochastically such that:

NB
E[NA+NB (5.24)

The masses for the particles are chosen such that mA/mB = 2(o7/o) 3 . The

0.1 L OO O 0 O OjO

0.8 L o9 OO O O 0 0o
0.1 L 00

000

00- 0- 0 % &, 00
@0 Qo0

Figure 5-4: Schematic of the boundary conditions for the sheared colloidal flow MD

simulations. B particles (dark) are suspended in a fluid of A particles (light).

system is then equilibrated at low temperature and divided into three regions: two

boundary layers and a bulk region as shown in Figure 5.4. A shear rate is imposed

on the system by using the fluid boundary conditions given by Shiba [1231 attaching

the particles in the boundary layers to chosen pining points via the spring potential,

1
nj (rj - Rj) = IKr - Rj 2

2
(5.25)

where the spring constant is given by K = 0.1Oe6 (oJg)->. The boundary particles

interact with the bulk particles through the potential described previously but expe-
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rience an additional force as a result of the spring potential. The pinning points are

given by:
1

Rj (t) = Rj (0) ± -Lite, (5.26)
2

where the sign depends on whether we are in the top or bottom layer, and Rj(0)

are the positions of the boundary particles after the low temperature equilibration.

With these conditions we effectively drag the atoms in the top layer in the x-direction

with velocity !L and those in the bottom layer with velocity --!L, which imposes

a shear flow of rate y. These type of boundary conditions represent an intermediate

point between a completely rigid boundary (K = oo) and no boundary drag (K = 0).

Other alternatives for the boundary conditions, which provide better accuracy for

very high shear rates, are the DOLLS [124] or SLLOD [125] fluid boundaries in which

fictitious forces are introduced to the equations of motion of the particles producing

either a laminar or Couette flow profile. However, in the regime of shear rates explored

the system remains close to local equilibria and therefore any errors introduced by the

Shiba boundary conditions can be neglected. The particles are attached to a Nose-

Hoover [24] thermostat with relaxation time TNH = 0.02T, where T = o- /mA/e Ais

the characteristic LJ time. The integration time step is given by 0.001r. Hereafter, we

measure all properties in Lennard-Jones units, that is in units of o- for length, T for

time, T-1 for shear rate, EJ for energy, Ec(U-) for shear stress, /mA(LJ o )LJ-2

for viscosity, and 6(-)- 4 for shear modulus.

Our MD simulations are started at a low volume fraction of # = 0.45 and temper-

ature T = 1.5, the volume is then allowed to relax at zero pressure up to a volume

fraction of # - 0.6, after which we continue the simulation at a fixed volume. We

calculate the shear modulus at various stages in the evolution of the system by using

the linear procedure described in the previous section, that is, by fitting the slope of

a stress-strain curve in the elastic regime realized by shearing the system at a rate of

S= 1 with the boundary conditions described above. The simulations are performed

at high temperature to artificially accelerate the kinetics of setting. A more realis-

tic approach, briefly explored in the last section of this chapter, resorts to the ABC
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method to study the slow evolution at lower temperatures.

5.3.2 Colloidal Setting

The results of our setting simulations are summarized in Figure 5.5. Our simple binary

colloidal model is able to replicate the sigmoid, three-regime behavior observed during

cement setting. The evolution at the atomistic scale can be observed in Figure 5.6.

In addition, Figure 5.7 shows the evolution of the connectedness of the B particles

as a function of time (determined using the same definition as for the SIA clusters

in Section 4.2.2) as well as the evolution of the radial distribution function (RDF)

during the first stage.

3x1-5

-- MD Calculated
4th Degree Polynomial Fit

2.5-

2- Tinduction

0 1.5 -

0.5

0
1 2 3 4 5 6 7 8 9 10

log(t)

Figure 5-5: Colloidal setting: shear modulus as a function of time in our binary
colloidal suspension. Tinduction denotes the length of the induction or incubation stage.
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During the initial stage of solidification the A particles, greatly outnumbering the

larger and significantly heavier B particles, rapidly bind into a connected colloidal

suspension or soft gel, defined as a substantially dilute linked system which exhibits

no flow at steady-state, (Figure 5.6.a-b). This is evidenced by the increase in density

of the system due to the attractive AA interactions and the associated increase of

short range order as evidenced by the growth in the first peak of the RDF around

r = 2.0 (Figure 5.7a), which is the characteristic separation of the A particles. The

gelation or coagulation stage results in an initial increase of the shear modulus of the

system. After this stage - dominated by the short range attraction between A particles

- concludes, the system microstructure does not show any appreciable changes, and

enters the so-called incubation or induction stage. The rate limiting process is then

the diffusion of the B particles, which favor clustering together, through the soft gel

formed by the A particles (Figure 5.6c-d and Figure 5.7b). Many parameters control

the length of the induction stage Tinduction (which we define by fitting a fourth-order

polynomial to our setting curve and taking the inflection points as the endpoints

of the induction period) including the concentration and mass of B particles, the

system temperature, and the relative strength of the AB and BB bonds. This stage

of solidification is characterized by a relatively invariant shear modulus as no new

rigid structures form while the B particles diffuse through the A-gel. Finally, after a

sufficient number of B particles cluster together, they percolate as indicated by the

rapid increase in the size of the connected B particle network, a necessary condition,

(Figure 5.7b) and the fact that this B particle network goes from side to side in the

unit cell (Figure 5.6e). The material then hardens rapidly due to formation of the

strong BB bonds.

The transition from a gelation-driven to a transport-driven to a percolation-driven

kinetic mechanism highlights the complexity of the associated energy landscape in the

setting problem. In this case the system transitions from regions with differently sized

barriers which give rise to the separation of time scales. In particular we can interpret

the gelation stage as an initial period of relaxation in an area of shallow energy wells.

After some of the local minima have been sampled and the B particles diffuse the

142



macrostate migrates to rougher areas of the energy landscape until a large barrier for

collective motion, giving rise to percolation, is overcome. In this sense the problem

clearly exhibits the connection between energy landscapes and multiple time scales in

a simple physical system. Furthermore, a single phase system (i.e. only A or only B

particles) gives rise to only the initial gelation stage after which the system reaches

a steady state with a fixed shear modulus rather than the three regime behavior,

highlighting the important effect of the two phases and their interactions.

Based on the microstructural evolution mechanism proposed above we associate,

to a first order approximation, the A solvent particles with the water-ion/nucleating

C-S-H mixture which forms shortly after the dissolution of the cement powder, and

the B particles with the larger C-S-H coated clinker phases which nucleate during

the hydration process, grow, and bind together. This is similar to Jennings' colloidal

models (for the C-S-H clinker phase rather than the full cement paste) in which large

globules of C-S-H (with, perhaps, a metastable layer surrounding them) diffuse in a

solvent of ions and smaller C-S-H particles [126-128]. With this postulate, we can

compare some experimental observation in cement pastes with the predictions of our

coarse grained model.

First, we analyze the effects of the relative concentration of B on the induction

time. Figure 5.8 summarizes our results. We notice a dramatic decrease in the in-

duction time with increasing B concentration. This is intuitive and follows from

our proposed hardening mechanism. Since the rate limiting step during the induc-

tion stage is the diffusion of B particles toward each other, the induction time is

proportional to the average distance between particles. This distance is given by:

(dBB) - )1/3 _ )1/3 -(c(0 )3 + I )(07 3 1/3 (5.27)
NB cN #

Therefore as c increases, dBB decreases, as does the induction time induction. Given

the correspondence between our model and cement slurries, in which the B particles

can be identified as surrogates for C-S-H, these results becomes consistent with exper-

imental observations by Nonat summarized in Section 5.1 [110] and by Alizadeh [129]
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in which the induction time decreases with increased C-S-H concentration in the

slurry.

The mass and size of the B particles affect the induction time in the opposite

direction as their concentration (Figure 5.9). A higher mass (or size, since we keep

the density of the particles constant in the model) results in slower particle diffu-

sivity, because the frequency of jumps in the energy landscape (v in Section 2.1.1)

decreases. This in turn extends the induction time needed for percolation as long as

the average separation between particles is kept constant. This does not hold true if

we increase the size of the B particles but not their mass, making them less dense, in

this case the diffusivity remains unchanged to first order (there are small size effects

associated with neighbor relaxation but they are small at high temperatures), but as

we keep the volume fraction constant it would increase the average separation of the

particles and lengthen the induction stage. This final point is not of major concern

since the assumption of constant volume fraction can be relaxed with no repercussion

to our other conclusions, in which case the increase in size (even without an associ-

ated increase in mass) reduces the diffusivity, the average separation between particle

remains constant, and the induction time increases. In this case the comparison with

experiments is more difficult since our simple model does not account for the forma-

tion of a metastable porous layer around already percolated clusters which hinders

the diffusion of additional agents, but it suggests additional experimental avenues of

research.

5.3.3 Cement Setting and Stress Corrosion Cracking: An

Analogy

The binary sticky model of cement setting described in the previous section gives

rise to the characteristic three-regime behavior from very simple interactions. The

fact that such a simple model with short-range Lennard-Jones interactions enhanced

with a directional sticky term is able to capture the cement setting curve with little

information on chemistry reveals that the basic processes leading to chemomechanical
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hardening require, at least, a two phase heterogeneous mixture.

The precise nature of chemomechanical hardening is certainly dependent on the

specific chemistry and the exact interactions of the particles. In the case of a more

realistic model of cement, these interactions are highly complex and must be derived

from fundamental studies of the electronic and atomistic structure of the slurry such

as Pellenq's model discussed in Appendix C [131]. While our current model does

not capture any such chemistry, a discussion of possible refinements to our model

is given at the end of the next section. Nonetheless, the qualitative behavior of

coagulation/gelation, transport, and percolation is a testament to the universality of

the setting behavior and how the coupling of chemical interactions with mechanics

gives rise to complex behavior even at a very coarse grained scale.

Moreover, we encounter the same three regime behavior in a variety of problems

which are, at least superficially, quite distinct from cement setting, such as polymer-

ization of monomers [132] and the gelation of organic compounds [133]. Another

such instance is the well documented case of stress corrosion cracking (SCC). Figure

5.9 [130] shows an schematic of the velocity of a crack tip during a SCC event in

a glass as a function of applied external stresses. The resemblance with Figure 5.2

in this, seemingly, completely unrelated problem is striking. However, we can use

the framework from our model to aide us in interpreting the three kinetic stages in

the SCC problem. At low stresses, the kinetics of the system are governed by the

interaction of corroding agents with the crack tip which give rise to the initial stage of

propagation. Shortly after the corroding agents are exhausted at the tip as they bind

to the forming surfaces (possibly forming a protective layer for some materials). The

system then enters a transport driven stage in which the corroding agents need time

to diffuse to the tip of the crack from the solution, this process is slightly dependent

on stress as the solid state diffusion is minorly enhanced. Once the stress at the crack

tip reaches a critical level, the mechanical forces dominate the chemical ones and the

crack tip propagates by stress driven bond breaking.

From the perspective of our model we can once again consider the three basic SCC

processes (chemical attack at the tip, diffusion of corroding agents, and stress driven
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bond breaking) from the perspective of interactions between two types of (virtual)

particles: the A particles are the corroding agents in the neighborhood of the crack

tip, and the B particles serve as a coarse-graining of two distinct elements corroding

agents in solution and vacancies in the material bulk '. As before the first stage

is driven by A particles which, in this case, chemically attack the bonds in their

neighborhood. After a sufficient amount of stress is applied, the crack grows and the

A particles (corroding agents) at the tip are exhausted '. The transport stage during

which B particles must diffuse to the crack (either from solution or the bulk) then

begins. The kinetics of propagation are then limited by the rate of diffusion to the

crack tip so increases in stress have little effect. Finally as the stress reaches a critical

value the diffusion of vacancies into the crack tip from the bulk is sufficiently high for

the crack to propagate without any corroding agents.

This analogy between cement setting and SCC has predictive limitations, espe-

cially given the level of coarse-graining used in the interpretation which results in a

non-rigorous concept of a (virtual/surface) vacancy. Nonetheless, the analogy pro-

vides a platform for understanding the kinetics of both of these processes, as well as

those in other physical systems, by abstracting the fundamental statistical mechanics

and allowing the knowledge from one (when sufficiently coarse grained) to be trans-

ferred to the other. More importantly from an atomistic modeling perspective, we

can leverage this analogy to transfer elements and refinements from a model of one

phenomenon to the other one. As an example, the concept of a nucleating layer that

slows down transport during cement setting is a refinement to our binary colloidal

model with a direct physical analog in the SCC case, in particular for metals. In a

4Rigorously speaking the propagation of the crack at high stresses takes place because the added
energy is sufficient to overcome the energy barrier to create a new surface. This surface energy can
also be interpreted as the necessary energy to nucleate a "surface" vacancy or to have a vacancy
from the bulk migrate to the crack tip. The correspondence between a massive particle (or massless
vacancy) and an energy packet can be justified, at a fundamental level, by Einstein's mass/energy
duality. While it would be more precise to say that the B particles account for any of these virtual
particles we use the concept of a (virtual) vacancy in the bulk as a simple abstraction for simplicity
of argument.

51t is interesting to note that the reaction between the corroding agents (A particles) and the
crack tip surfaces could give rise to a layer that limits diffusion and further crack grow. This is,
in principle, analogous to the formation of a metastable C-S-H layer around large C-S-H globules
during hydration.
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sense establishing these connections is the spirit of this thesis: taking distinct prob-

lems and coarse graining their interactions away while focusing on the mechanics of

the associated energy landscapes.

5.3.4 ABC Modeling of Colloidal Setting

As discussed in Section 5.1, cement hydration is a process that takes days, months, and

sometimes, even years to complete. Therefore any realistic model of cement setting

able to capture not only qualitative but quantitative information is not amenable to

analysis using MD simulations.

Even though our model represents a significant coarse graining of the true physics

of setting we resorted to high temperatures (T = 1.5) in order to observe the evolution

shown in Figure 5.5 within the simulation time. This increase in temperature has, at

least, two obvious effects on the microstructural evolution: (1) all the bonds between

particles are effectively weaker, particularly so for the A particles (eJ = 1.0) and

(2) the induction time becomes less sensitive to the local microstructure.

Fortunately this is not a major limitation and we can use the ABC method to

describe the structure under somewhat more realistic conditions. The approach is

straightforward and represents a trivial adaptation of the algorithm of Section 2.3.

We allow our reference colloidal model to relax and then evaluate the shear modulus

after a new minimum in the energy landscape is found. The time coordinate is

chosen according to the approach described in Section 2.3.1, where we assume v = 1

in LJ units for all processes (effectively rescaling the time axis) rather than rigorously

calculating it from the vibrational frequencies around each local minimum. The

setting curve resulting from this simple calculation at a temperature of T = 0.8

is shown in Figure 5.11. The only significant differences from Figure 5.5 are the

lengthening of the induction time as well as the increase of the slope at the end tails.

These effects are intuitive and result from the decrease in temperature as discussed

previously.

Simulating the system at lower temperatures, and consequently at more realistic

time scales, represents the first refinement to our reference colloidal model to approach
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more realistic conditions. In particular, we could have lengthened the induction time

(rinauction) further by increasing the mass of the B particles at the same temperature.

However this example highlights the possibilities of combining the reference model

with the methodology of Chapter 2.

The final objective of this approach is to provide a top-down perspective to cement

setting to complement the bottom-up cement chemistry approach. Ultimately we

must combine elements of the two approaches to develop a predictive model of cement

setting. Additional refinements that will be explored in the future, in addition to the

application of ABC and ABCD to simulate realistic temperatures and shear rates,

include: (1) the incorporation of layers around globules of B particles to simulate the

metastable C-S-H coatings observed experimentally, (2) more accurate interaction

potentials derived from fundamental studies of cement microtexture - including long

range interactions, (3) variable concentrations and nucleation of new species, and (4)

expanding from a binary to a trinary system to account for the effects of lime. These

improvements, while beyond the scope of this thesis, will hopefully lead to a more

complete model of the statistical mechanics of cement setting.
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E)

Figure 5-6: Microstructural evolution of the reference colloidal model (c = 0.2) during
setting: a) The system starts at a low density configuration. b) Rapidly the system
densifies and a gel of A particles (white) form. c) B particles (blue) start migratiig
and clustering together. d)A percolated network of B clusters forms. e) The B
network rigidifies the structure. Some of the A particles have been made invisible in
(e) to facilitate the visualization of the percolated network.
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Figure 5-7: Microstructural evolution of the reference colloidal model (c 0.2) during

setting: a) Radial distribution function evolution during gelation. b)Size of the B
particle connected network. At a critical point the size of the network grows to

encompass a majority of the B atoms which, together with Figure 5.6, demonstrate

percolation.
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Figure 5-8: Induction time as a function of B particle concentration in the reference
colloidal model.
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Figure 5-9: Induction time as a function of B particle mass in the reference colloidal

model.
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Figure 5-10: Stress corrosion cracking: Crack tip propagation speed as a function of
stress concentration [130].
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Figure 5-11: Colloidal setting: shear modulus as a function of time in our binary
colloidal suspension at T = 0.6 as calculated using canonical ABC. Tinduction denotes
the length of the induction or incubation stage.
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Chapter 6

Summary and Outlook

The three problems tackled in this thesis - hydrogen embrittlement of metals, radi-

ation swelling, and cement setting - are of great technological and scientific impor-

tance. This is specially true when focusing on the development of sustainable energy

solutions in which concerns related to hydrogen storage, new generation nuclear tech-

nologies, and low emissions concrete are pivotal. These problems continue to be very

active research areas in materials science and condensed matter physics due to the

complex nature of the interactions, microstructures, and kinetic mechanisms that

govern the macroscopic behavior, which have not yet been elucidated.

Atomistic modeling can provide insight on the physics of these problems at a

fundamental level by showing mechanistic details of particle and defect interaction,

migration, and collective motion. In this thesis, we exploit a powerful complemen-

tary concept outside of this paradigm: the energy landscape. By analyzing how con-

densed matter systems traverse through their associated energy landscapes, we can

unify seemingly distinct phenomena into fundamental questions of activation barriers,

energy basin topology, and microstructural complexity.

There are important challenges associated with the study of complex condensed

matter at the atomistic scale. First, materials with high levels of microstructural

complexity - in the form of disorder or interplay between chemistry and mechanics -

are characterized by behavior which cuts across many length and time scales. Second,

these complex materials systems give rise to rough energy landscapes which in turn
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are associated with multiple kinetic mechanisms. Both of these issues limit the appli-

cability of standard simulation techniques and require the use of innovative strategies.

In dealing with such rough energy landscapes and multiple kinetic mechanisms we

have developed a multiscale framework, rooted on transition state theory and the

ABC method, which shows promise in simulating general complex condensed matter.

Our methodology demonstrated its power in providing specific physical insights into

the problems of hydrogen embrittlement, radiation swelling, and cement setting.

Based on both theoretical and experimental evidence of the importance of point

defects in the problem of hydrogen embrittlement, we focused on their interactions.

Our multiscale approach - combining ab initio calculations, statistical mechanics, and

activated state dynamics in the NEB method - demonstrated the crucial role of vacan-

cies in mediating the binding and migration of the PDCs in the alloy. This resulted in

a tremendous simplifying assumption for the modeling at larger scales as the trinary

alloy Fe-C-H could effectively be decoupled into Fe-C and Fe-H for the purposes of

determining the relevant PDCs. Our calculations also suggested the conditions under

which continuum models of embrittlement, involving hydrogen atmospheres interact-

ing with line defects, could be valid. In particular our results suggest that for high

vacancy concentrations the mechanism of degradation is due to hydrogen accumu-

lation while at low vacancy concentrations diffusion of hydrogen is more important.

This understanding of the migration behavior in Fe-C-H at various concentrations can

directly inform higher-scale models of creep and delayed degradation. The problem of

hydrogen embrittlement also illustrated the tradeoffs involved in modeling complex

condensed matter at the atomistic scale when we handle chemistry and mechanics

on equal footing. Since the nature of hydrogen chemistry is highly affected by quan-

tum phenomena, the complexity associated with the atomic interactions is essential

in explaining macroscopic phenomena. Therefore we required ab initio calculations

to obtain the desired accuracy and this, in turn, limited our simulations not only in

size, as is standard, but also in the level of microstructural complexity. We therefore

only analyzed crystalline systems with a small concentration of PDCs, which exhibit

a finite and small number of possible migration pathways and are thus amenable to
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analysis with NEB.

For the radiation swelling problem, in which the chemistry of the individual atoms

is less important than their collective interactions, we increased the microstructural

complexity by including a large amount of highly distorting SIAs in a perfect Fe

lattice described by an embedded atom method interatomic potential. As a result

of the increase in disorder and complexity the underlying energy landscape for the

problem is rougher and gives rise to various modes of long run relaxation. This led to

our first application of the ABC method under constant stress, as well as the ABCD

generalization to dynamic landscapes. The combination of these methods resulted in

a characterization of the morphology of the defects underlying swelling at high dose

rates. We showed that under such conditions the metal swells due to the nucleation

and growth of disordered phases: dislocation loops and amorphous pockets, paral-

leling the void nucleation and growth mechanisms responsible for swelling at lower

dose rates and high doses. These insights are important for understanding the mi-

crostructural evolution before the incubation period in void swelling, as well as the

lattice distortions occurring during ion beam implantation of surfaces and nanostruc-

tures. Our approach also indicates that the coupling of non-equilibrium MD, ABC,

and ABCD represent a powerful toolbox for the study of irradiated materials at long

time scales and suggest its application for the study of cascade aging.

Lastly, we developed a reference colloidal model of chemomechanical hardening of

cement. Our colloidal model makes use of short-range potential functions describing

the effective interactions among the C-H/nucleating C-S-H solvent (species A) and

the C-S-H coated clinker particles (species B). The A-A, B-B, and A-B interactions

have isotropic (central) repulsive and attractive components characterized by depth

and range. In addition the B-B interactions have a directional component to describe

preferential bonding which is realized by considering the particles as soft spheres with

sticky points on their surfaces. Our results show that the colloidal model is able to

capture qualitatively the three-stage kinetic behavior, with stage I corresponding to

the gel formation of species A, stage II to the diffusion of species B for the nucleation

and growth of B clusters, and stage III to the percolation of B clusters. This coarse

157



grained approach to cement setting indicates that, at least, a two-phase heterogenous

system is required to replicate the three-regime behavior. With the establishment of

the reference colloidal model we have determined that the incubation time decreases

with the concentration of B species as the mean diffusion time before B particles bind

decreases. This is in turn consistent with experimental observations suggesting that

the incubation time is negatively correlated with the C-S-H concentration.

Now, at the end of this thesis focused on the atomistic modeling of rough energy

landscapes, we can speculate on the potential of the methodology and anticipate some

of the future developments in the field. On a broad level, the coupling of phenom-

ena which operate at different scales, such as chemistry and mechanics, represents

a new frontier rich with problems exhibiting the behavior discussed in this work.

Expanding the materials modeler toolbox to include ABC in all of its flavors, and de-

veloping additional adaptations to model the Grand Canonical ensemble and rapidly

changing landscapes, are obvious topics for further research. More specifically, our

observations of important role of point defects in both the hydrogen embrittlement

and radiation swelling problems strongly encourage additional work in understanding

interactions among point- and other topological defects over larger length and time

scales. With appropriate parallelization, ABC and ABCD could be used to simulate

the interaction of PDCs and the type of macroscopic features of relevance for engi-

neering applications. In addition, our PDC dominance diagram representation as well

as our characterization of defective structures should be generalized to other alloys

and environmental conditions. For the problem of cement setting, our binary colloidal

model needs to be refined to introduce the long range ionic interactions emanating

from cement microtexture studies. In addition, extensive simulations of the slow evo-

lution should be carried out using ABC to calculate the viscosity of the more realistic

structure, and the setting kinetics of the refined model. In all cases, the inclusion

of more distorted, dirty microstructures, time-dependent external forces, and strong

chemical interactions represent increases in realism. These highly complex condensed

matter systems represent the next frontier for our methodology.
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Appendix A

Synchronous Parallel Kinetic

Monte Carlo

As explained in Section 2.2.2, Kinetic Monte Carlo (KMC) has proven an efficient and

powerful tool to study non-equilibrium processes, and it is used in fields as different

as population dynamics, irradiation damage, or crystal growth [27,91,134]. KMC is

generally capable of advancing the time scale significantly faster than direct, time-

driven methods, such as MD, but it may suffer from numerical limitations such as

stiffness [135]. In addition, and as highlighted earlier, KMC relies on a priori knowl-

edge of a given set of transition rates characterizing the simulated processes, which

are assumed to obey Poisson statistics. As a result KMC is, by construction, entirely

biased towards those processes which are chosen a priori, and does not necessarily

sample the entirety of the energy landscape. This is especially important for the

types of rough landscapes discussed in this thesis and is the reason why ABC and its

generalizations are favored.

Despite its shortcomings, KMC remains a very useful tool for the study of com-

plex condensed matter systems and their long run evolution, especially when coupled

with other methods such as ABC. Due to this versatility in the modeling of Markov

processes, a number of parallelization schemes for KMC have been proposed. How-

ever, the difficulty of parallelizing KMC lies in the intrinsic time discreticity under-

lying event-driven simulations, which are sequential in character, and do not lend
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themselves to trivial parallel implementations [136]. Various algorithms have been

proposed, including rigorous and semi-rigorous approaches based on asynchronous

kinetics [137-139]. These methods rely on cumbersome roll-back procedures to avoid

causality errors, i.e. event time incompatibilities associated with processor communi-

cations. For this reason, most applications of interest are studied using approximate

schemes (non-rigorous) for computational convenience. In spite of this, asynchronous

parallel KMC has been applied successfully to the field of crystal growth [140].

An alternative algorithm has recently been developed [136,141] based on a syn-

chronous time decomposition of the master equation. This parallel kinetic Monte

Carlo (pKMC) method, eliminates time conflicts by recourse to null events that ad-

vance the internal clock of each processor in a synchronized fashion without altering

the stochastic trajectory of the system. The basic algorithm works as follows. First,

the entire configurational space is partitioned into K subdomains Qk. '

1. A frequency line is constructed for each Qk as the aggregate of the individual

rates, rik, of all the walkers located within each subdomain:

nk

Rk = ( rik (A.1)

where nk and Rk are, respectively, the number of objects and the total rate in each

domain k. Here Rot~ = Ek Rk and N = Ek nk is the total number of objects in the

system.

2. We define a maximum rate Rmax, subject to:

Rmax > max Rk (A.2)
k=1,---,K

this value is then communicated globally to all processors.

3. We assign a null event with rate rOk to each frequency line in each subdomain

'Note that, in principle, the decomposition need not be spatial (although this is the most common
one). Partitions based on another kind of load balancing can be adopted equally well. However,
without loss of generality, we assume that the system is spatially partitioned for our derivations.
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k such that:

rOk = Rmax - Rk (A.3)

where, in general, the rOk will all be different. The condition of maximum efficiency

[136) is that step 2 becomes strictly an equality such that:

-3Q, I' EI1 ... ,I K,|IRc = Rmax ->, roa = 0 (A.4)

where there is no possibility of null events in Q,. However, in principle, each subdo-

main can have arbitrary rok as long as all the frequency lines in each Qk sum to the

same global value. This flexibility furnished by the algorithm may be useful to study

the kinetics of certain systems.

4. In each Qk an event is chosen with probability Pik = rik/Rmax, including null

events chosen with Pok = rok/Rmax. For this step we must ensure that independent

sequences of random numbers be produced for each Qk, using appropriate parallel

pseudo random number generators.

5. As in standard BKL KMC, a time increment is sampled from an exponential

distribution:

& ( - (A.5)
SRwax

where ( is a suitable random number between 0 and 1. As described in Section 2.2.

this guarantees that by virtue of Poisson statistics 6t, becomes the global time step

for all the parallel processes.

6. Communicate boundary events. This may require global or local calls, depend-

ing on the problem at hand.

This algorithm solves the master equation exactly for non-interacting particles

such as in continuous diffusion [136]. When particles are allowed to interact across

domain boundaries, suitable corrections must be implemented to avoid boundary con-

flicts [141]. For lattice based kinetics with short range interaction this can be achieved

by methods based on a chessboard sublattice technique. The minimum number of

sublattices to ensure non-interacting adjacent domains depends on a number of fac-
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tors, most notable dimensionality. 2 In 3D, the chessboard requires a subdivision

into a minimum of eight sublattices. The implementation of the sublattice algorithm

to solve boundary errors replaces Step 4 in the algorithm above by:

4a. A given sublattice is chosen for all subdomains. This choice may be performed

in several ways such as fully random or using some type of permutation that ensures

every sublattice is visited in each KMC cycle. Restricting each processor's sampling to

only one lattice, however, while avoiding boundary conficts, results in a systematically

correlated error [141].

4b. An event is chosen in the selected sublattice with the appropriate probability,

including null events. The global communication of Rmax in step 2 may become a

considerable bottleneck in terms of parallel efficiency. When the rate changes in each

Qk after a KMC cycle are unpredictable, a global communication call is unavoidable.

However this limitation can be circumvented in certain cases (such as Ising systems

for example) by considering the maximum theoretical aggregate rates, e.g. R ax for

an ensemble of Ising spins with:

exp(-AEmax)
Rm = Ank[ ]_ (A.6)1 + exp(-AEmax)

where Emax is the theoretical maximum energy increment due to a single spin change:

AEmax = -2(nbIJI - |H|) (A.7)

where the Ising Hamiltonian is given by:

H() = -J aija - H EU, (A.8)

(ij) i

Alternatively a self-learning process can be performed to optimize R'max. In this case

the upper estimate of Rmax is refined by recording the history of rate changes over

the course of the PKMC simulation. Details on the performance and limitations of

2In 2D, four sublattices are sufficient for any arbitrary partition, as established by the solution
to the 'four color problem'.
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the algorithm can be found in references [136] and [141).
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Appendix B

Linear Response Theory

The first part of these derivations, regarding thermal transport coefficients, follow

from Appendix B of Ju Li's thesis [142 which in turn summarizes previous results

on the linear response theory of transport. The second part, regarding externally

driven transport coefficients represents a consistent adaption of separate perturbative

results [120].

From statistical mechanics we know that the entropy of a system is defined by the

amount of phase space volume gained from an energy change. That is:

dF = eS/k dE (B.1)

The second law of thermodynamics then implies that an isolated system looks to in-

crease its entropy by exploring phase space, i.e. traversing the energy landscape, until

it eventually relaxes to the largest patch of phase volume, the global equilibrium, and

fluctuates. In the case of non-isolated systems the direction of the relaxation can be

equally explained by relying on the Helmholtz or Gibbs free energies rather than the

system's entropy, and the macrostate follows a similar direction in the correspond-

ing (not necessarily potential) energy landscapes toward the global equilibrium. The

motion of this macrostate can be impeded by roughness in the landscape and activa-

tion energy barriers that must be surmounted, which give rise to local equilibria in

which the system can settle and fluctuate temporarily. These local equilibria can be
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characterized by a subset of macroscopic variables which remain effectively constant

for a (potentially) long time.

Consider a microcanonical macrostate traversing a rough energy landscape toward

the global equilibrium and characterized by the variables X, Y, Z,.... Without loss of

generality we can label the global equilibrium by X = Y = Z = ... = 0. When the

macrostate is at this point entropy is maximized, therefore the total phase volume

of the system can be approximated by that of the neighborhood of the global equi-

librium and the equilibrium entropy SE. Alternatively, the system can fluctuate at a

local equilibrium, and then the entropy has additional dependencies on the variables

X, Y, Z, ... as follows:

dF _ dp N dqN = exp( )dE.dX I... (B.2)
hN k gE 9X 9Y

where gE, gx, gy, -.. are the appropriate coarse-graining scales on the order of the

spontaneous fluctuations at the global equilibrium. With this description it can be

shown that:

SE(E, N, V) = S(X = 0, Y = 0, Z = 0,...|E, N, V) (B.3)

Since increasing the entropy in this microcanonical system is the driving force for

traversing the energy landscape, we can calculate the effect on entropy of a pertur-

bation to the state variables as:

OS OS as6S -- 6X +- 6Y + 6Z±+- (B.4)Ox aY az

and we can define the forces driving the evolution of the macrostate as:

as as
Fx Ox-, Fy = , (B.5)

so at the global equilibrium we have:

Fx = Fy = Fz =0 (B.6)
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Now near a local equilibrium the changes in the state properties are small, that is

X, Y, Z, ... « 1 and we can use a linear approximation giving:

X aLxxFx

Y LyxFx

Z LzxFx

Or letting X1 = X, X 2 = Y,

summarize as:

+ LxyFy + LxzFz +. ±-

+ LyyFy + LyzFz+-- -

± LzyFy + LzzFz + ---

(B.7)

(B.8)

(B.9)

be the n non-zero gross state variables we can

j=1

n

i = 3Lzj F7

(B.10)

(B.11)

Now we can calculate the statistical averages of the rates of evolution in response to

a driving force as follows:

n n n

(Xi(t)) = > Lij (F (t)) = - L Sjk(Xk(t))
j=1 j=1 k=1

(B.12)

Now if this is true for t >> TM where rM is the molecular correlation time (e.g.

integration time step for MD simulations, on the order of ps). and we choose t such

that TM << t << I(LS)-'I (which can be done since by Onsager's hypothesis I(LS) 11
is macroscopic) then:

n n

(ki(t))X(0) = -- [ Lig [ Syk(Xk(t))Xi(0)
j=1 k=1

(B.13)

now averaging over the distribution of initial X(0) from the equilibrium ensemble we

find:
n

k=1

(B.14)
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However, since t << |(LS)-Il, then on a macroscopic scale KXk(t)) is very close to

(Xk(O)) Xk(O) since we assume that the correlation time of a slow variable is much

longer than that of its fluctuations. Then:

((Xk(t))X 1 (0))x(o) ~ (Xk(O)Xi(O))x(o) (B.15)

In addition, for any properly defined sub-ensemble we have:

((A(t)B(O))B(0) = (A(t)B(0)) (B.16)

(A(t)B(0)) = (A(pN(t), qN(t) IPN (), qN(0))B(pN(o) qN(O))) (B.17)

Thus Equation (B.14) becomes:

(X(t)X(O)) = - (=
j=1

Li Sjk(X(t)X1(0))
k=1

(B.18)

But from Equation (B.2) we can expand:

n n

S SE -- Z SijXiXg|2
i=1 j=1

(Xk(0)X#()) = Skik

(B.19)

so we have:

(B.20)

Sjk(Xk(t)X(O)) = - Lij E SjkS 1k = -
j=1 k=1

n

( Lijogik = -kLjj
j=1

(B.21)

so from Equation (B.18) we have:

(Xi(t)X(O)) = -kLu
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on the other hand we can write:

(Xi(t )Xi (0)) = ((Xi(0) + dTrXi(T))Xi(0))

= dT(Xi(T)Xi(0)) + (Zki(0)Xi(0)) (B.23)

but in the presence of p -p symmetry we have:

(A(t)B(0)) = (A(0)B(-t)) = (A(0)B(t)) (B.24)

furthermore:

d
0 = -(A(t)B(t))It=o = (A(0)B(0)) + (A(0)b(0)) => (A(0)B(0)) = 0 (B.25)

dt

hence from Equation (B.23) we have:

(ki(t)X, (0)) = dT(Xi(T)X 1(0)) (B.26)

plugging in Equation (B.24) and integrating by parts we arrive at the Green-Kubo

fluctuation dissipation theorem for t/rM -+ oo:

Lg= dr(Zi(-r)I (0)) (B.27)

This result can therefore be used to compute thermal transport coefficients from

equilibrium ensemble properties. As will be demonstrated in the applications, this ap-

proach can be coupled with energy landscape sampling to provide a rigorous estimate

for these type of transport coefficients.

Externally driven transport coefficients can be calculated in a similar fashion. In

this case the forces driving the evolution the macrostate are not the thermal forces

of Equation (2.26) but external forces, such as those from an electric field:

Fx = F, Fy = F,... (B.28)
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If the external force is small we can proceed with a linear perturbative approach

resulting in an expression identical to Equation (B.11).

n

Zi = ELiF (B.29)

j=1

Now the perturbation also modifies the underlying Hamiltonian which describes the

system dynamics from Ho to H. Now the canonical distribution for this new Hamil-

tonian is given by:

W(X, 0) = (B.30)

where Z is the partition function f exp(- -L)(X))dX. That is dI' = W(X, O)dX.

Now, in general, the field couples with each of the gross macroscopic variables and

the perturbation in the Hamiltonian is small, so we can expand linearly to find:

N N

R -O + E HijXF (B.31)
i=1 j=1

so perturbatively we can write Equation (B.30) as:

N N

W(X, 0) = Wo(X)(1 - k E HijX i F) (B.32)
i=1 j=1

where Wo is the non-perturbed canonical distribution. Then, just as in Equation

(B.20) we find that the average is given by:

(Xk(0)Xl(0)) = H 1 kT (B.33)

and in addition, averaging over the ensemble given by W(X, 0) we find:

1 N N

(Xk(t)) = (Xk (0)) - k E3>3Hi(k(t)Xi(0))(F (t)) (B.34)
i=1 j=1

Now the first term in the right hand side obviously vanishes since fluctuations around
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equilibrium at time t = 0 cancel each other. So from Equation (B.29) we have:

n 1 N N

S Lk (F (t)) = - E Hij(Kk(t)Xi(0)) (F (t)) (B.35)
j=1 i=1 j=1

and since this must hold for any external field F this implies:

N

L k = -U H (k(t)Xi(0)) (B.36)

Which from Equation (B.33) implies that:

1 ~t N Q )Lk3 = - dT Hij (ik(r i(0)) (B.37)
U fo i=1

Now letting Jj(t) = 1N Hjj,, be the dissipative flux (scaled by temperature in

this case), i.e. the rate of change of internal energy (in units of temperature) as a

result of the external field, we can rewrite Equation (B.37) as:

1 t
Lk = - dT (Xk(T)J(0)) (B.38)

which is the fluctuation dissipation theorem for externally driven transport coeffi-

cients.

The close similarity between the fluctuation expressions for both types of transport

coefficients is not coincidental. In fact, the non-equilibrium boundary conditions for

a thermal transport can be mathematically transformed into a mechanical field which

performs work on the system, and this work is converted into heat. Therefore the

two representations of the system are congruent [1201.
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Appendix C

Atomistic Description of C-S-H

The model for the atomistic description of C-S-H described in this appendix is the

result of work by Pellenq and his collaborators and is described in detail in reference

[131]. It is summarized here for the benefit of our readers in relation to the binary

colloidal model for cement setting discussed in Section 5.3. It represents the basis for

the development of more realistic microtexture interatomic potentials to refine our

colloidal model.

The most basic models of C-S-H arise from structural comparisons with crys-

talline calcium silicate hydrates, based on H. F. W Taylor's postulate that real C-S-H

was a structurally imperfect layered hybrid of two natural mineral analogs [143]:

tobermorite of 14A interlayer spacing [Ca5Si6 O1(OH)2.7H 20] [144], and jennite

[Caq(SiO 1s)(OH)6 -8H 20] [145]. While this suggestion is plausible in morpholog-

ical terms, this model is incompatible with two basic characteristics of real C-S-H;

specifically the calcium-to-silicon ratio (C/S) and the density. Recently, small-angle

neutron scattering measurements have fixed the C/S ratio at 1.7 and the density

at 2.6 g/cm3 [146], values that clearly cannot be obtained from either tobermorite

(C/S = 0.83, 2.18 g/cm 3 ) or jennite (C/S = 1.5 and 2.27 g/cm 3 ). From the stand-

point of constructing a molecular model of C-S-H, this means that these crystalline

minerals are not strict structural analogs.

With this insight in mind, Pellenq et al. developed an atomistic-level structural

model for C-S-H, developed from a bottom-up perspective and validated against sev-
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Figure C-1: Molecular model of C-S-H. Blue and white spheres are oxygen and hy-
drogen atoms of water molecules, respectively. Green and gray spheres are inter and
intra-layer calcium ions, respectively. Yellow and red sticks are silicon and oxygen
atoms in silica tetrahedra [131].

eral experimental analyses of structure and properties which captures the correct C/S

ratio and density. The model is constructed from a monoclinic periodic computational

cell of dry tobermorite of interlayer spacing of approximately 11A, with 4, 2, and 1

units along axes a, b, and c with a unit cell chemical formula of Ca6 Si6O16 . SiO2

(neutral) groups are removed from silica tetrahedra guided by NMR results that show

Qo 10%, Qi 67%, and Q2 23%. The final configuration has Qo 13%, Q1 67%, and

Q2 20% and a C/S ratio of 1.65. The dry cell is then relaxed to a density of 2.12

g/cm3, and water is added via Grand Canonical Monte Carlo simulations. At equilib-

rium the adsorbed water increases the density to 2.56 g/cm3 , though it decreases by

4% after additional relaxation. The molecular configuration of the C-S-H structure,
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with chemical composition (CaO)1.65 (SiO 2 )(H2 O)1.7,, is shown in Figure C.1. and

details on the parameters are listed in the supplemental information of reference [131].
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Appendix D

Benchmarking of Constant Stress

ABC

In this appendix we benchmark the constant stress ABC generalization to a few simple

problems. For simplicity we consider problems with a constant hydrostatic pressure

rather than a full non-diagonal external stress tensor.

As a first example we consider the calculation of the migration energy barrier

for SIA migration in Fe as a function of external pressure. A Fe atom is inserted

in a tetrahedral site of a 1Ox1Ox1O bcc Fe lattice and allowed to relax to a (110)

dumbbell configuration and migrate, all of this at constant pressure. The relaxation

and subsequent migration are investigated in two ways: by MD simulations with

increasing temperature and by the constant stress (pressure) ABC method.

From the MD calculations we calculate diffusion coefficients at a various temper-

atures and fit to an Arrhenius curve to obtain the effective activation barrier. We

repeat this process at different pressure to estimate the pressure dependence of the

SIA migration barrier. These results are then compared with the barriers calculated

using the first version of ABC at constant stress (Figure 2.6.a). The results are

reported in Figure D.1.

We notice excellent agreement between our ABC constant pressure calculations

and the MD estimates within the errors associated with the fit of the diffusion coef-

ficients as well as the resolution (u) used for the ABC simulations.
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Figure D-1: SIA ((110) dumbbell) migration energy barrier as a function of pressure
in bec Fe as calculated from MD simulations (dashed line) and constant pressure

ABC (solid line).

The second example looks at the relaxation of a 5x5x5 Fe bec lattice with 15

SIAs at constant zero pressure as simulated by isobaric MD and ABC. The results

of this benchmarking are illustrated in Figures D.2 and D.3. The first figure shows

that the agreement in the volumetric expansion is excellent for the ABC at constant

pressure and MD methods. However, the ABC method recovers additional relaxations

at longer time scales no captured by the MD simulation. The second figure shows

qualitative agreement in the strain fields of the microstructure, with the simulated

structure after 3 million MD steps matching that from the constant pressure ABC
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results after 83 Gaussian penalties with W = 0.05 eV and a = 0.05A. Figure D.3.

also shows a more relaxed configuration found by ABC after an additional 15 ABC

metasteps.

10 100 1000 10000 100000 le+06 le+07

Figure D-2: Volumetric expansion of a damaged 5x5x5 bcc Fe lattice with 15 SIAs at
zero pressure. The x-axis denotes the time steps for the MD simulation as well as the
cell relaxation portion of the ABC simulation (the ABC metasteps are not included).
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83 ABC Constant
Pressure Metasteps

3 Million MD
Timesteps /

15 ABC Constant
Pressure Metasteps

Figure D-3: Illustration of the evolution of the microstructure of a damaged 5x5x5 bcc
Fe lattice with 15 SIAs at zero pressure. The colors indicate the local Von Mises shear
strain invariant. Starting from the same initial configuration the MD simulations
(left) lead to a partially relaxed structure. The constant pressure ABC simulation
qualitatively reproduces the behavior and generates a more relaxed configuration.
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Appendix E

Benchmarking of ABCD

In this appendix we benchmark the ABCD method in a problem of a slowly changing

number of particles.

For this problem, analogous in spirit to the one which we discuss in Chapter 4,

we consider a 5x5x5 bcc unit cell of Fe that is irradiated (as described in Section 4.2)

at a rate of 1.33 x 10" SIA insertions/s for 50 ps. The cell starts with one Frenkel

pair (vacancy and SIA) separated far enough that recombination is not immediate.

The initial migration energy barrier for the SIA is on the order of 0.3 eV, so at high

enough temperatures the relaxation of the system is sufficiently fast to ensure that

the assumptions required by ABCD hold, even at such a high dose rate. We analyze

the evolution of the system with both ABCD and MD at 1000 K. The choice of

high temperature is to "slow down" ABCD as well as speed up the MD simulation.

Since ABCD is designed for very slowly varying landscapes the time coordinate moves

forward quite rapidly if the temperature under consideration is low (see Section 2.4).

This is precisely the advantage of the method over MD since it moves the time horizon

forward rapidly, however it makes direct comparisons difficult due to the large gap in

timescales. A choice of high temperature thus reduces the average ABCD time steps

and makes comparison with MD simulations possible.

Snapshots of the microstructural evolution of the clusters are given below in Fig-

ures E.1 (for ABCD) and E.2 (for MD) showing excellent qualitative agreement. The

kinetics, as described by both methods, show that the initial SIA does not migrate
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rapidly enough and therefore the vacancy does not recombine until the first SIA is

inserted, after which the SIAs proceed to cluster, relax into a dislocation loop, and

diffuse. Due to the stochastic nature of the time variable in ABCD as well as the

temperature randomness in MD only partial quantitative agreement can be expected.

For a larger unit cell and slower changes in the landscape (i.e., dose rate in this case)

we expect the statistical averaging to be sufficient to ensure that rigorous quantitative

comparisons are possible. However, even in this case, the qualitative agreement for

this example is on the level of accuracy expected of methods such as KMC.
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a) b)

t=O Ps t=0.23 ps

c) d)

t=0.67 ps t=0.98 ps

e) f

t=30.5 ps t=42.0 ps

Figure E-1: Evolution of an irradiated Fe cell at T 1000 K followed using ABCD.
The atoms are colored according to their coordination number. a) The initial configu-
ration is a separated Frenkel pair, b)the SIA relaxes to a (111) dumbbell, c) the initial

SIA starts migrating, d) another SIA is introduced annihilating the vacancy, e)the

SIA diffuses several times and three more SIAs are introduced, f)the SIAs cluster and

diffuse. The time scale is generated stochastically as described in Section 2.4.
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a) s *b

t=o ps t=o.1 PS

t=0.54 ps t=4.OQ ps

t=30.0 ps t=43.0 ps

Figure E-2: Evolution of an irradiated Fe cell at T 1000 K followed using MD.The
atoms are colored according to their coordination number. a) The initial configuration
is a separated Frenkel pair, b)the SIA relaxes to a (111) dumbbell, c) the initial SIA
starts migrating, d) another SIA is introduced annihilating the vacancy, e)the SIA
diffuses several times and three more SIAs are introduced sequentially, f)the SIAs
cluster and diffuse.
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Appendix F

Isothermal Linear Viscoelasticity

The three dimensional theory of linear viscoelasticity is important in understanding

the nature of the type of experimental measurements and theoretical calculations that

one can perform to determine the stress relaxation of an aging viscoelastic material

such as a cement slurry. Following a review by Golden and Graham [147] here we

present the essential results.

First, for non-aging, deforming materials at constant temperature we can write

the stored potential energy density at a given point as in terms on the local strain

history as:

VMt = dti dt2Kijkl (t - ti, t - t2) eij (ti ) ekl(t2) (F. 1)

where we omit the spatial index for convenience, and assume that the strain vanishes

in the distant past. By symmetry we have that Kiskl(t, t') = Kklij(t, t') and it is also

symmetric under exchanges of i and j, or k and 1. Differentiating Equation (F.1) we

find:

V (t) = si M(t ) dt 2 Kijkl (0,t - t2) Ekl (t2) +

dti j dt2  Kijkl(t - t1 , t - t2)eij(t1)erk(t2) (F.2)

where we use the Einstein summation convention throughout. Now we know that the
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rate of increase of mechanical energy density is given by the sum of terms of the form

aj (t)e i(t), therefore:

ij(t) = dt2Kikl(0,t - t2)ekl (t2)

and the rate of dissipation of mechanical energy into heat is given by:

h(t) = -I f dt1 ft dt 2 -Kikl(t - t 1 , t - t2)6ij (tl)ekl(t2)

(F.3)

(F.4)

we then assume that KijkI(t, t') = Gijkl(t-t') [147] where G is the relaxation function

of the system. Then we find:

cy (t)

D(t)

(F.5)

(F.6)

= dt 1G ij ((t - ti )e- 
( 

(ti)

= dt1 dt2 aG i(t - t1 - t2)eij(t1)eki(t2)

Now by definition we have:

Ecj (r, t) = I( aU
+ U -)+ ) (F.7)

and from a force balance of body and surface forces:

(F.8)= + bi

where p is the density of the material and bi accounts for body forces such as gravity.

Plugging Equations (F.5) and (F.7) into Equation (F.8) we obtain the constitutive

relationship, a generalization of Equation (5.8):

a2 1 t
dt' rijkl(t - t6 (Ul,jk + Uk,,)(r, t')

where the subscripts after the comma represent differentiation with respect to the
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corresponding spatial variables, and:

Tijkl(t) = GijkI(0)6(t) + Gig kI(t)H (t) (F.10)

are the complex moduli. In Fourier space we thus find:

&i (r,w) = i k(w)Ek1(r,w) - pw2 iij(r, w)

1
= rijkl (W)(il,k(r, w) + ik,53 (r, w)) (F.11)

2

The exact constitutive relationships become more complicated for aging materials

such as cement as there are additional associated time scales, but the basic principles

are identical to the non-aging case. We refer the reader to Golden's work [147] and

the references therein for additional information.
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