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Abstract

The behavior of TRISO fuel used in high temperature gas reactors in order to achieve high fuel
performance is difficult to model using traditional lattice codes due to the double-heterogeneity
effect created by the multi-coated fuel kernels in a graphite matrix. A simple volume-weighted
homogenization does not accurately reduce the problem to one degree of heterogeneity as it does
not properly account for the self shielding of the TRISO particles. The Reactivity-equivalent
transformation (RPT) model, which condenses the TRISO fuel into a smaller fuel zone radius
before homogenization, has been proposed as a possible solution to the problem of double-
heterogeneity. The RPT method has been demonstrated to accurately model the reactivity of
individual pin cells. While small, seven-cell RPT arrays are still highly accurate models of
TRISO behavior, it is unclear if negligible error will extend to even larger arrays, especially in
the presence of a B4C absorber. The validity of RPT array models was assessed by comparing
the reactivity, thermal absorption, thermal utilization, resonance escape probability, fast fission
factor, power, and neutron flux with reference values for an array containing all double-
heterogeneous cells.
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Chapter 1

Introduction

High temperature gas reactors (HTGR) achieve high fuel performance utilizing multicoated

TRISO fuel particles. And as HTGR technology continues to advance, it is essential to develop

accurate, efficient models of TRISO fuel behavior under reactor operating conditions. TRISO

fuel elements typically consist of a U0 2
1 fuel kernel surrounded by a porous carbon buffer

region, an inner pyrolytic carbon coating, a layer silicon carbide, and another outer pyrolytic

carbon coating. These coatings maintain both the integrity of the TRISO particles themselves as

well as contribute to the overall safe operation of the HTGR. The buffer region, composed of

low density pyrolytic carbon, serves two main roles: 1. protecting the inner pyrolytic carbon

layer from radiation damage by capturing fission product recoils from the fuel kernel and 2.

controlling the internal pressure of the fuel particle. The inner and outer pyrolytic carbon

coatings are higher density than the buffer region and prevent both the escape of fission products

as well as the failure of the pressure vessel by maintaining compression on the silicon carbide

region located between them. The silicon carbide coating is responsible for providing structural

support to the TRISO in addition to acting as the particle's primary pressure boundary and

fission product barrier [1]. The fuel region in its entirety is created by dispersing the TRISO

particles within a graphite matrix contained by either a cylindrical compact or spherical pebble.

The volume packing fraction of the fuel elements within the graphite matrix is low and normally

between 29-35% [2-4]. Unfortunately, these TRISO particle and fuel zone design specifications

make modeling TRISO particle behavior in HTGRs difficult using conventional transport lattice

codes.

1While U0 2 is the most common composition of the TRISO fuel kernel, PuO 2 , ThO2, UC2, and UCO are also
possible [1].



1.1 Double-heterogeneity Effect

Double-heterogeneity arises from the distribution of TRISO particles within the graphite matrix

and moderator. The first level of heterogeneity results from the multilayered nature of the

TRISO particles themselves. An additional level of heterogeneity arises from the fuel element's

placement within the graphite matrix and moderator. This so-called double-heterogeneity effect

of TRISO fuel particles in high temperature gas reactors is difficult to model using conventional

transport lattice codes as they cannot accurately represent the complicated geometries created by

randomly dispersed TRISO particles within a graphite matrix. To address this issue, it is

necessary to design a model that homogenizes the TRISO particles and graphite matrix within

the fuel zone, thus eliminating the obstacle of geometric representation, while also accounting

for the effects of double-heterogeneity and resonance self-shielding 2. A volume-weighted

homogenization of the fuel zone is not a solution to this problem as it significantly reduces the

resonance self-shielding, resulting in an underestimation of reactivity at low bum-up and an

overestimation at high bum-up; however a potential resolution to this issue may lie in the

Reactivity-equivalent Physical Transformation (RPT) model.

1.2 Reactivity-equivalent Physical Transformation (RPT) Method

The RPT model creates a single-heterogeneous problem out of double-heterogeneous one. This

is achieved by condensing the TRISO particles within their graphite matrix, resulting in a higher

TRISO packing fraction and reduced surfaces area of the fuel zone. It has been proposed that the

new fuel region, once smeared and homogenized, can accurately model the double-

heterogeneous fuel zone using conventional transport lattice codes. The radius of the new fuel

zone is selected such that the neutron multiplication factor matches the value in the double-

heterogeneous case. Additionally, the reactivity of the fuel has a linear relationship with the

effective fuel radius, making it simple to determine the RPT radius [2].

2 Resonance self-shielding is important to the accurate modeling of TRISO particles due to the many small, scattered
concentrations of the U02 fuel; thus, its effect cannot be ignored in homogenized approximations of the fuel zone.



1.3 Project Summary

The objective of this thesis is to confirm the Reactivity-equivalent Physical Transformation

method of modeling TRISO fuels in High Temperature Gas Reactors and investigate its

applicability to depletion calculations in both individual pin cells and pin cell arrays. To date,

both conventional and diluted fuel kernels have been modeled using the RPT method. These

models have been evaluated using Monte Carlo depletion calculations, DRAGON, and

SCALE [5]. Additional research has also demonstrated that the RPT radius is insensitive to

material temperature fluctuations between 300 and 1500"K [5].

While double-heterogeneity has been previously modeled using both U02 [4] and

PuO2 [6] fuels at packing fractions between 29% and 35% [2-4], this paper will focus on

undiluted U0 2 TRISO particles at a packing fraction of 29%.

In order to assess the applicability of the RPT method, reference depletion calculations

will be conducted using the DOUBLEHET cell capability in SCALE. SCALE accounts for

double-heterogeneity by calculating appropriate flux disadvantage factors, resulting in properly

self-shielded and homogenized cross-sections for fuel element materials.

The first models will be of an individual double-heterogeneous pin cell and a RPT pin

cell. A simple volume-weighted pin cell will also be included in this comparison for reference

and as a means of reaffirming its inaccuracy in estimating in cell reactivity over time.

After an accurate model of a RPT pin cell has been created, investigation will begin into

the cell's behavior when placed in various array configurations. Three different array

configurations of seven pin cells will be discussed in this paper: 1. a reference array consisting

entirely of double-heterogeneous pin cells 2. an array made up of all RPT cells and 3. a hybrid

array that contains a single RPT cell surrounded by double-heterogeneous cells. The purpose of

these array configurations is to observe the behavior of RPT cells as they deplete in the presence

of double-heterogeneous cells as well other RPT cells. Finally, using the basic array

configurations described above, the response of RPT cells will be observed in the presence of

B4C control rod.

In addition to allowing the modeling of double-heterogeneous problems using

conventional lattice codes, a RPT pin cell that precisely accounts for self-shielding in the

presence of other pin cells and neutron absorbers has benefits even for users of programs like



SCALE, which are now capable of modeling double-heterogeneity. Even simple double-

heterogeneity calculations (e.g. a single pin cell model) using SCALE require a considerable

amount of time to complete. RPT models have the potential to significantly decrease the run

time of pin cell calculations, especially for more complicated geometries and lattices.



Chapter 2

Single Pin Cell Model

Currently, two models exist that provide approximations to the double-heterogeneous case. The

first of these models is a simple volume-weighted approximation. The second method is a more

complicated homogenization of the TRISO and graphite matrix, referred to as the Reactivity-

equivalent Physical Transformation (RPT) model. The design specifications for each of these

techniques are discussed below.

2.1 Double-Heterogeneous Pin Cell

The TRISO particles and graphite matrix region constitute the fuel zone of the pin cell.

Surrounding the fuel zone is a helium gap. The helium gap separates the fuel zone form the

graphite moderator. All of the pin cells used in this paper are hexagonal. The basic design

specifications for this and all fuel-loaded cells are based on the specifications used by Yonghee

Kim of the Korea Atomic Energy Research Institute [2]. The double-heterogeneous model will

be used as a reference to which the other approximation methods will be compared.

2.1.1 TRISO Particle Design

The TRISO dimensions used to model the double-heterogeneous pin cell are as follows: a

350ptm diameter U0 2 fuel kernel surrounded by layers of buffer, inner pyrolytic carbon, silicon

carbide, and outer pyrolytic carbon (figure 2-1). The buffer region is a low-density pyrolytic

carbon. The thicknesses of these layers are 100pm, 35ptm, 35pm, and 35ptm, respectively.

10.63 g/cm 3 was selected as the density of the U0 2 fuel kernel (97% of the theoretical density).

The material densities for the coatings of the fuel kernel are (in g/cm3, from innermost to



outermost): 1, 1.87, 3.2, and 1.87. These material densities are valid for temperatures of

approximately 1200 K [1,7,8]. Actual depletion calculations were conducted at 1171K [3].

Buffer

Inner Pyrolytic Carbon

Kel Silicon Carbide

Outer Pyrolytic Carbon

Figure 2-1: Coated TRISO particle

2.1.2 Pin Cell Layout

The hexagonal pin cells have a pitch of 2.2395 cm and consist of the cylindrical fuel zone and

helium gap surrounded by graphite moderator. The graphite matrix, which contains the TRISO

particles and completes the fuel zone has a radius of 0.6225 cm and a density of 1.74 g/cm 3. The

packing fraction of the TRISO particles within the graphite matrix is 29%. Immediately outside

of the fuel region is a 125pm-thick helium gap. The remainder of the pin cell is filled with

graphite moderator. The layout of the double-heterogeneous pin cell, neglecting He cooling

channels, is depicted in figure 2-2.

2.2 Volume-weighted Pin Cell

The volume-weighted pin cell is a simple approximation of the double-heterogeneous case. In

this pin cell model, all of the materials comprising the TRISO particles and matrix of the fuel

zone are homogenized into a single mixture. In order to calculate the volumetric proportions of

each material in the newly homogenized mixture, an arbitrary pin cell height of 10 cm was

selected. The volume-weighted method has been demonstrated to be an inaccurate estimation of

the behavior of the double-heterogeneous pin cell as it provides an underestimation of pin cell



reactivity at low bum-up and an overestimation at high bum-up due to its significant reduction of

the resonance self-shielding within the fuel zone [3].

Fuel

Grpite

HeimGap

Figure 2-2: Layout of single hexagonal double-heterogeneous pin cell. The fuel zone consists of TRISO
particles within a graphite matrix. A helium gap and graphite moderator surround the fuel zone.

2.3 Reactivity-equivalent Physical Transformation Pin Cell

A proposed alternative to the volume-weighted pin cell approximation is the Reactivity-

equivalent Physical Transformation method. The RPT technique creates a new fuel zone by first

concentrating the TRISO particles within a smaller radius. The TRISO particles, now at a

significantly higher packing fraction than in the original double-heterogeneous model, are

homogenized with the graphite matrix contained within the new fuel zone radius as show in

figure 2-3. In terms of composition, the ratio of fuel to matrix in this homogenized region is

substantially increased compared to the mixture created for the simple volume-weighted model.

Also, the general layout of the RPT pin cell is different than the double-heterogeneous cell.

There is now a TRISO-free region of graphite matrix between the fuel zone and helium gap.

2.3.1 Calculation of RPT Radius

The RPT radius was determined such that there was no difference between the reactivity of the

RPT pin cell and double-heterogeneous pin cell during depletion calculations. The RPT radius

for these approximations was calculated to be 0.408842 cm. Figure 2-4 depicts the nearly linear



relationship between changes in the RPT radius and reactivity. This radius corresponds to a new

TRISO packing fraction of 67%.

Graphite Matrix

TR SO Particle Homogenized 
TRISOs and Graphite

Figure 2-3: RPT method offuel zone homogenization. TRISO particles are condensed at a higher
packing fraction in the center of the fuel zone. The graphite and TRISOs in this new region are then

homogenized into a single mixture.

0.4 0.45 0.5
RPT radius (cm)

0.55 0.6 0.65

Figure 2-4: Reactivity as afunction of RPT radius.
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Chapter 3

Pin Cell Arrays

RPT pin cell behavior in arrays is also of interest in order to understand the effect these cell

models have on each other and on non-RPT cells (double-heterogeneous pin cells). These

effects were illustrated by three basic configurations: 1. an array of all double-heterogeneous pin

cells, 2. an array of a single RPT pin cell surrounded by double-heterogeneous cells, and 3. an

array consisting entirely of RPT cells.

3.1 General Array Layout

As shown in figure 3-1, a simple array of seven pin cells was designed to investigate the

interactions of RPT cells with both other RPT cells and double-heterogeneous cells. The regions

of the array not occupied by pin cells have been filled with graphite moderator. White boundary

conditions were selected for the individual cells and the array. Thus, the net angular neutron flux

across all boundaries is zero,

3.2 Specific Array Configurations

An array consisting entirely of double-heterogeneous cells serves as the reference model to

which the other simplified arrays are to be compared. The first of these simplified arrays is made

up entirely of RPT pin cells. The intention of using this array configuration is to observe the

behavior of RPT cells in the presence of other RPT cells during bum-up. Another configuration

surrounds a single RPT cell with double-heterogeneous cells (figure 3-1) in order to test the

effects RPT cells have on double-heterogeneous cells and vice versa.



Figure 3-1: Array of seven pin cells. The center pin cell is a RPT model, while the surrounding six pin
cells are double-heterogeneous cells. The regions not occupied by ] of the seven pin cells are filled with

graphite moderator.



Chapter 4

Control Rod Arrays

Additional tests were performed on the pin cell arrays by replacing one fuel pin in each array

with a B4C absorber pin.

4.1 Control Rod Specifications

The basic design for the annular control rod used in these arrays is based on a design described

by Y. Tachibana of the Japan Atomic Energy Research Institute [9]. However, it is important to

note that for the geometric purposes of these tests the control rod design has been simplified and

scaled down to approximately 1/10 of the original specifications. This was done so that the rod

would occupy the same space as the fuel zone of its neighboring pin cells. In truth, a simple

region of B4C could have been used instead of an accurately designed control rod as the main

interest of this paper is to ascertain the basic reaction of RPT cells in the presence of a neutron

absorber. A suggestion of an HTGR control rod design is suggested in anticipation of future

explorations of the RPT method involving a more complete modeling of an HTGR core.

The inner and outer sleeves of the rod are made of Alloy 800H, a corrosion and

embrittlement resistant nickel-iron-chromium alloy designed for use in temperatures in excess of

1100 K. The inner and outer radii of these sleeves are 0.325 cm and 0.635 cm, respectively. The

thickness of these sleeves is 0.035 cm. The annular B4C absorber has inner and outer radii of

0.375 cm and 0.525 cm, respectively. All other regions of the control rod are filled with helium.

The control rod is placed within a graphite moderator block of the same density used in the fuel-

loaded cells.



4.2 Control Rod Placement

The control rod cell occupies the same geometric space as the fuel-loaded pin cells. It is

positioned such that it replaces one of the fuel-loaded pins in the outer ring of pin cells in each

array. Since the arrays are symmetric about each axis, it does not matter which of these outer

fuel cells is replaced. Figure 4-1 depicts the configuration of the array containing double-

heterogeneous cells, an RPT cell, and a control rod cell. The position of the control rod does not

change within the array in either the all-double-heterogeneous or all-RPT array cases.

Figure 4-1: Control rod placement in pin cell array. The control rod is placed within the outer ring of
double-heterogeneous cells. The center pin cell is a RPT model.



Chapter 5

Results and Discussion

Each of the individual pin cells and arrays discussed above were modeled using SCALE, which

has the capability to handle double-heterogeneous cases. Depletion calculations were based on

18 month refueling cycles, with each pin cell remaining within the core for a total of 54 months.

In order to observe cell behavior at high burnup (-200 MWd/MTU) the depletion calculations

were made at an operating specific power of 120.4 MW/MTHM. In order to asses the validity of

the RPT model, reactivity, thermal absorption, thermal utilization, resonance escape probability,

fast fission factor, power, and neutron flux are considered.

5.1 Individual Pin Cells

A successful approximation of the double-heterogeneous pin cell was created using the RPT

method. Only slight errors, not exceeding 0.13%, in the reactivity measurements occurred at

high burnup in the RPT model. This is a vast improvement over the volume-weighted

approximations, which underestimates the reactivity by nearly 6% at low burnup and

overestimates the reactivity at high burnup by 7%. Figure 5-1 displays the trends of reactivity

vs. burnup for each of the individual pin cell models.

In addition to comparing reactivity trends, examination of the four factors reveals again

that the RPT model is valid for an individual pin cell. As shown in table 5.1, the differences

between each of the four factors are at most a few tenths of a percent when comparing the

double-heterogeneous and RPT cases. This is mostly due to the corrected self-shielding that is

present in the RPT model as a result of decreasing the radius of the fuel zone. The absence of

the self-shielding correction is obvious in the volume-weighted homogenization. While

somewhat accurate estimates of the thermal absorption, thermal utilization, and fast fission factor



in the volume-weighted cell, the error of the resonance escape probability is considerable. At

high burnup, this factor is off from the reference model by 10%. These results are consistent

with the studies conducted by Kim [3] and confirms the ineffectiveness of simple volume-

weighted homogenizations and the suitability of the RPT method for individual pin cells.

80 100 19
Burnup (MWd/MTU)

Figure 5-1: Comparison of double-heterogeneous, RPT, and volume-weighted cell reactivity during
burnup.

Table 5.1: Effect of volume-weighted homogenization and RPT on the four factors.

O days TI f p _

DH 1.95192 0.98092 0.65775 1.13392
VWH 1.95223 0.98107 0.62110 1.13873
Error 0.00016 0.00015 -0.05573 0.00424
RPT 1.95962 0.97709 0.65760 1.13407
Error 0.00394 -0.00391 -0.00022 0.00013

820days 11 f p F_

DH 1.53277 0.98190 0.58289 1.08729
VWH 1.58462 0.98674 0.53119 1.11578
Error 0.03383 0.00493 -0.08869 0.02620
RPT 1.53876 0.97828 0.58283 1.08757
Error 0.00615 -0.00558 -0.00007 0.00030

101 days I f P E

DH 1.78454 0.98365 0.64846 1.13433
VWH 1.78090 0.98451 0.60983 1.14177
Error -0.00204 0.00088 -0.05957 0.00656
RPT 1.79056 0.98037 0.64836 1.13455
Error 0.00337 -0.00334 -0.00016 0.00019

1588 days _ _ f P _ _

DH 1.26147 0.97269 0.57385 1.04806
VWH 1.43830 0.98463 0.51409 1.08616
Error 0.14018 0.01228 -0.10414 0.03635
RPT 1.26924 0.96726 0.57381 1.04838
Error 0.00615 -0.00558 -0.00007 0.00030



5.2 Pin Cell Arrays

Since the volume-weighted homogenization was demonstrated to be a poor approximation for

double-heterogeneity, it will not be treated in any of the subsequent array analysis.

5.2.1 Reactivity Analysis

The reactivity measurements from the depletion calculations of each array are shown in

figure 5-2. The reactivity of the double-heterogeneous/RPT hybrid array matched closely with

the reference calculations performed on the entirely double-heterogeneous array. The greatest

error between the models was 0.012%. The RPT pin cell model also aligned closely with the

reference model. The maximum error between these models was 0.087%. Both of these errors

are less than the reported error in the single pin cell comparison.

Double-heterogeneous
Reactivity-equivalent physical transformation
Hybrid

3-

7-

I iiiIiIi

0 20 40 60 80 100 120 140 160 180 200
Burnup (MWd/MTU)

Figure 5-2: Reactivity during burnup for double-heterogeneous, RPT, and hybrid arrays. The hybrid
array consists of a single RPT cell surrounded by 6 double-heterogeneous cells.

These results indicate that the RPT model accurately approximates the effects of double-

heterogeneity during depletion when placed in arrays. This also demonstrates the RPT model's

insensitivity to outside influences from neighboring cells and the moderator-filled border

regions.



5.2.2 Four Factor Analysis

The values for the four factors in both RPT and hybrid arrays follow similar behavior as with the

individual pin cell models. The error between the experimental arrays and the double-

heterogeneous reference model are negligible in both cases (table 5.2). Maximum error occurs

at high bumup, yet does not exceed 0.86%. The increase in four factor error between the hybrid

and RPT arrays appears to be directly related to the number of RPT cells present in the array.

The RPT array contains seven times the number of RPT pin cells as the hybrid array and the

difference between each of the four factors of these models is approximately a factor of seven.

This suggests that while the differences in the four factors are negligible for small RPT arrays,

adjustments in the RPT radius may be necessary for larger arrays in which the error would

become more significant.

Table 5.2: Four factor comparison of double-heterogeneous, RPT, and hybrid arrays.

Odays q f p 6_

Double-Het 1.95231 0.97584 0.70193 1.10949
RPT 1.96000 0.97200 0.70225 1.10957
Error 0.00394 -0.00393 0.00045 0.00007
Hybrid 1.95340 0.97529 0.70198 1.10950
Error 0.00056 -0.00056 0.00008 0.00001

925 days q f p _

Double-Het 1.42289 0.96804 0.64177 1.05110
RPT 1.42964 0.96289 0.64240 1.05118
Error 0.00474 -0.00533 0.00098 0.00007
Hybrid 1.42384 0.96731 0.64186 1.05112
Error 0.00067 -0.00076 0.00014 0.00002

340days q F p 6

Double-Het 1.68549 0.97781 0.66581 1.09188
All RPT 1.69162 0.97426 0.66633 1.09196
Error 0.00364 -0.00363 0.00078 0.00007
Hybrid 1.68636 0.97730 0.66589 1.09190
Error 0.00051 -0.00052 0.00011 0.00002

1541days q F p &

Double-Het 1.11798 0.94983 0.63923 1.02802
RPT 1.12574 0.94169 0.63994 1.02821
Error 0.00694 -0.00857 0.00111 0.00018
Hybrid 1.11906 0.94867 0.63933 1.02805
Error 0.00097 -0.00122 0.00016 0.00003

5.2.3 Power Analysis

SCALE is capable of providing the power of individual cells during depletion, allowing for

analysis of the interactions among pin cells within an array. Figure 5-3 compares the power of

the center RPT cell of each experimental array during depletion with the center double-

heterogeneous pin of the reference model.



The difference in power between the RPT and double-heterogeneous models is on the

same order of magnitude as the errors in reactivity, with a maximum error of 0.059% at high

burnup. The error of the center RPT cell, while no more than 0.26%, is noticeably greater than

that of the RPT array cell. Also, the behavior of the center pin cell of the hybrid array over time

is quire different than that of the RPT array. The RPT array cell closely follows the trends of the

reference model, while the center cell for the hybrid array does not. The greatest error readings

of the RPT cell within the hybrid array occur at high and low burnup, while the power almost

plateaus at mid-burnup. This suggests that RPT pin cells most closely mimic the behavior of

double-heterogeneous arrays when surrounded by other RPT pin cells.

20 40 60 80 100 120
Burnup (MWd/MTU)

140 160 180

Figure 5-3: Comparison of center pin cell power among double-heterogeneous, RPT, and hybrid arrays.

5.2.4 Thermal and Total Flux Analysis

Examination of the thermal and total flux through the fuel zone reveals only slight inaccuracies

between the experimental and reference arrays. Figures 5-4 and 5-5 compare the thermal and

total fluxes of the center cell of each array. The RPT array never exceeds 0.75% error in thermal

flux readings and stays beneath 0.42% for total flux. The hybrid has a somewhat higher thermal

flux error (-1%) than the RPT array in the low to mid-burnup range, which corresponds to the
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higher degree of error in the power calculations. This error increased, however, is not

perceivable in the total flux, which only differs from the double-heterogeneous reference model

by at most 0.99%.
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Figure 5-4: Thermal flux through the fuel region of center cells of double-heterogeneous, RPT, and
hybrid arrays.
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Figure 5-5: Total flux through the fuel region of center cells of double-heterogeneous, RPT, and hybrid
arrays.



5.3 Pin Cell Arrays with Neutron Absorber

For the next set of calculations, one fuel-loaded cell from the outer ring of each array was

replaced with an annular B4C control rod in order to observe the behavior of RPT cell arrays in

the presence of a neutron absorber. Aside from this change in array configuration, depletion

calculations were conducted at 120.4 MW over a period of 54 months as before.

5.3.1 Reactivity Analysis

The effects of a B4C neutron absorber on the accuracy of either of the experimental

homogenization arrays appears to be slight (figure 5-6). The most significant error occurs at low

burnup and then decreases over time. The maximum reactivity differences between the RPT and

reference arrays is now 0.25% (compared to 0.087% without the neutron absorber). Again, the

maximum reactivity error of the hybrid array is approximately an order of magnitude less at

0.041%. This reaffirms that the error between experimental and reference models is partially

dependent on the number of RPT cells present within the array. Thus, while the error measured

for a small array of seven RPT cells is small, it may not be able to be neglected in larger arrays.
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Figure 5-6: Reactivity during burnup for double-heterogeneous, RPT, and hybrid arrays in the presence
of a B4C control rod.



5.3.2 Four Factor Analysis

The four factor error when a B4C neutron absorber is placed within each experimental array is

minimal (table 5.3). While the error of each of the four factor increases with time there does not

appear to be a clear factor by which the error increases based on the number of RPT within the

array.

Table 5.3: Four factor comparison of double-heterogeneous, RPT, and hybrid arrays in the presence of a
B 4 C control rod.

0 days 1 f P E

Double-Het 1.94895 0.16087 0.19726 2.30942
RPT 1.95676 0.16013 0.19751 2.31347
Error 0.00401 -0.00456 0.00126 0.00175
Hybrid 1.95020 0.16074 0.19730 2.31008
Error 0.00064 -0.00079 0.00023 0.00028

925 days T f P C

Double-Het 1.66227 0.46620 0.16176 1.93092
RPT 1.66356 0.46409 0.16204 1.93461

Error 0.00077 -0.00452 0.00175 0.00191
Hybrid 1.66246 0.46585 0.16179 1.93165
Error 0.00012 -0.00075 0.00018 0.00037

340 days 1 . f p &
Double-Het 1.69994 0.37392 0.17817 1.86266
RPT 1.70204 0.37233 0.17839 1.86668
Error 0.00124 -0.00424 0.00126 0.00216
Hybrid 1.70026 0.37366 0.17819 1.86342
Error 0.00019 -0.00070 0.00012 0.00041

1541 days _ _ f p &

Double-Het 1.62895 0.50057 0.15340 2.00910
RPT 1.62994 0.49826 0.15368 2.01294
Error 0.00061 -0.00461 0.00177 0.00191
Hybrid 1.62909 0.50019 0.15343 2.00987
Error 0.00008 -0.00076 0.00017 0.00038

5.3.3 Power Analysis

The addition of the B4C control rod does not substantially affect the accuracy of the center RPT

fuel cell in either of the experimental arrays (figure 5-7). As was the case in the non-absorber

models, the RPT array maintains a higher degree of accuracy than the hybrid array throughout

burnup, with a maximum error of 0.054%. The hybrid array, while not exceeding a 0.33%

difference from the reference model, becomes a poorer approximation of the center pin power

over time, again indicating that RPT cells perform best when surrounded by other RPT cells.
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Figure 5-7: Comparison of center pin cell power among double-heterogeneous, RPT, and hybrid arrays
in the presence of a B4C control rod.

5.3.4 Thermal and Total Flux Analysis

Examination of the thermal and total flux in the B4C array cases reveal the most significant

discrepancies between the experimental and reference models. Error appears to increase as a

function of time, but does not seem to have a significant dependence on the number of RPT cells

within an array. Due to the similarity in fluxes of the RPT and hybrid arrays, it seems that the

majority of the error in these models can be attributed to the presence of just one RPT cell in an

array that contains a neutron absorber. The magnification of the thermal and total flux error due

to additional RPT cells is minimal. The calculations of thermal and total flux reach maximum

errors of approximately 4% and 1%, respectively at high burnup. The effects of the B4 C on the

thermal and total flux of the center pin of each array is shown in figures 5-8 and 5-9.
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Figure 5-8: Thermalflux through the fuel region of center cells of double-heterogeneous, RPT, and
hybrid arrays in the presence of a B4 C control rod.
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Figure 5-9: Totalflux through the fuel region of center cells of double-heterogeneous, RPT, and hybrid
arrays in the presence of a B4 C control rod.



5.4 Efficiency of the RPT Method

Creating an accurate homogenization model of double-heterogeneous cells not only allows for

the use of conventional lattice codes, but also allows for shorter model runtimes of programs,

like SCALE, that can handle double-heterogeneous models. The amount of time required to run

models becomes particularly important for larger arrays when even a small reduction of in the

total runtime could save hours. In the seven cell arrays discussed above, the all-RPT array

models ran almost 88% faster than the double-heterogeneous models. Even the hybrid arrays,

which replaced just one of the double-heterogeneous cells with an RPT cell ran just under 11%

faster than the reference models. Table 5.4 lists the exact runtimes for each of the array models.

Table 5.4: Comparison of runtimes for double-heterogeneous, hybrid, and RPT arrays.

Runtime
Array type (min.)

Double-Het 591

Hybrid 528

RPT 73



Chapter 6

Conclusion

The Reactivity-equivalent Transformation method of homogenization has been demonstrated to

accurately model the effects of double-heterogeneity caused by U0 2 TRISO particles at 10%

enrichment in a single pin cell. Furthermore, placement of the RPT pin cells within small arrays

of other fuel cells and additional moderator does not appear to diminish its accuracy. However,

the dependence of the reactivity and four factor error on the number of RPT cells present in an

array suggests that the readjustments of the RPT radius may be necessary for large arrays when

the error becomes significant. And the irregular behavior of the center cell power of the hybrid

array indicates that RPT pin cells most closely mimic the behavior of double-heterogeneous

arrays when surrounded by other RPT pin cells.

The presence of neutron absorbing B4C seemed to significantly impact the thermal and

total flux calculations. Yet, the inaccuracies in flux calculations appear to only be slightly

amplified by the number of RPT cells present in the array, implying that the error in flux may not

substantially increase in the case of larger arrays.

These results indicate that the RPT radius determined for individual fuel cells and small

arrays may require readjustment once the fuel cells are placed within larger arrays when the

cumulative error of the RPT cells is no longer negligible. And these fine adjustments become

particularly important for correct thermal and total flux calculations, which appear to be

particularly sensitive to slight inaccuracies in RPT radius when in the presence of a B4C control

rod.

Even as programs like SCALE are now able to properly handle the double-heterogeneity

effects of TRISO particles explicitly, the amount of time required to run even simple arrays is



substantial. Further refinement of the RPT model will allow for more efficient modeling and

analysis of core behavior in developing HTGR technology.
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