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Abstract
According to the American Cancer Society, approximately 1,479,000 new cases

of cancer were expected to be diagnosed, while 562,340 Americans were expected to die
from cancer in 2009 alone. Even though advances in early diagnosis and therapy over the
past few decades have led to continual decreases in incidence and mortality, cancer
remains the second leading cause of death among all Americans. Consequently, further
technological development in all areas of cancer detection and treatment are still of great
importance not only to the scientific community, but to society itself.

To address the shortcomings in current cancer diagnosis and treatment, a novel,
highly adaptable, targeted nanoparticle system based on alternating amphiphilic
copolymers has been developed having a variety of potential clinical applications. These
polymers consist of an alternating copolymer backbone composed of hydrophilic
polyethylene glycol-900 (PEG900) and dimethyl 5-hydroxyisophthalate (linker)
monomer units. The linker within the backbone polymer has a free hydroxyl group to
which a variety of sidechains can be attached, including hydrophobic groups to impart
amphiphilicity, targeting ligands, as well as contrast agents for imaging applications.
Three major areas of investigation were addressed to develop and evaluate the
performance of the proposed amphiphilic alternating copolymers: (1) backbone polymer
synthesis, (2) attachment of radioiodine, and (3) targeted delivery in vitro and in vivo.

The first step in the production of the alternating amphiphilic copolymers is a
chemo-enzymatic condensation polymerization of polyethylene glycol (PEG) and
dimethyl 5-hydroxyisophthalate (linker) to produce backbone polymer. Because of their
generally low equilibrium constants, condensation polymerizations require effective
removal of the condensation byproduct (in this case, methanol) in order to achieve
significant increases in molecular weight. The increased viscosities at higher molecular
weights not only increase the difficulty of byproduct removal, but may also affect the
mixing characteristics as well as the mass transfer of other species in the reaction.

The enzymatic polymerization was investigated using both predictive modeling
and experiment. The ultimate goal was to increase the molecular weight of the
synthesized polymer to allow for increased substitution of the polymer backbone. Key
experimental variables were tested in glass flasks typically used in organic synthesis. In
these reactions, 4A molecular sieves had the greatest affect on the backbone polymer



molecular weight. In particular, addition of sieves, which can act as sinks for both water
and methanol, led to a twofold increase in weight-average molecular weight above that
observed previously for the enzymatic polymerization. The Protherm, a novel, thin-film
reactor was employed in order to improve methanol mass transfer and mixing within the
polymer melt. Three separate reactions in the Protherm produced the highest Mw
backbone polymer (approximately 20 kDa). A blade speed of 500 rpm with molecular
sieves present was able to achieve this Mw in 48 hr.

Two separate models were proposed to describe the polymerization, including a
homogeneous kinetic model and a Fick's Law mass transfer model. Significant
differences were observed between the experimental results and the predictions of the
homogeneous model. The mass transfer modeling, which estimated the increase in
reactant and methanol surface concentration relative to the concentration in the bulk, was
unable to bridge the gap between experiment and model results. Limited knowledge of
key model parameters, including the equilibrium constant and methanol solubility, was
one proposed explanation for the observed discrepancy.

In order to assess the performance of a nanoparticle delivery system in biological
applications, a label that is detectable under a wide range of conditions and
concentrations must be present within the molecule. Radioiodine was selected because of
its multiple potential applications depending on the selected isotope, including 124I for
positron emission tomography, 131I for radiotherapy, and 125I for inexpensive, quantitative
research applications.

A standard protein-labeling technique was adapted for application to the
copolymers in this work. The successful adaptation of this procedure for use with our
polymers represented the first demonstration in the field of a nanoparticle-forming
polymer that was directly labeled with radioiodine without any additional chemical-
alterations or intermediate reactions. The process was characterized using a variety of
chromatographic techniques and radiometric measurements to confirmed covalent, stable
attachment of iodine in a product with high radiochemical purity.

The alternating amphiphilic copolymers were combined with an engineered
peptide having an extremely high binding affinity for the epidermal growth factor
receptor (EGFR), a biomarker prevalent in a variety of human cancers. This high-affinity
binder, the E13.4.3 peptide, was developed by collaborator Dr. Benjamin Hackel under
the guidance of Professor K. Dane Wittrup. A number of polymer design variables were
considered, including the targeting ligand density, identity of the hydrophobic sidechain,
polymer molecular weight, and length of the spacer connecting the peptide to the
backbone. The ligand density and hydrophobic sidechain identity were chosen for study.

Initial studies demonstrated selective uptake of E13.4.3-conjugated polymers into
a target-bearing, EGFR-positive human cancer cell line relative to untargeted controls.
Preparative gel permeation chromatography (GPC) was used to create high molecular
weight, low polydispersity fractions of backbone polymer. Polymers synthesized from
these fractions achieved the greatest increase in selective uptake in vitro with a four- to



sixfold increase in uptake for E13.4.3-conjugated polymers relative to untargeted
controls. Animal studies measured the biodistribution, blood circulation, and tumoral
accumulation of various polymer formulations. Statistically significant selective tumor
accumulation was observed for two different targeted polymers, each having different
targeting ligand density and different hydrophobic sidechains.

The E13.4.3-polymers have proven a rich platform for study. Their demonstrated
ability to selectively accumulate in targeted tumors combined with their potential use in
diagnostic and/or therapeutic clinical applications makes them an attractive option for
intensified investigation.

Thesis Supervisor: Clark K. Colton
Title: Professor of Chemical Engineering
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1. Introduction

1.1 Cancer

According to data compiled by the American Cancer Society available publicly

on their website, approximately 1,479,000 new cases of cancer were expected to be

diagnosed while 562,340 Americans were expected to die from cancer in 2009 alone.

The lifetime probability of developing cancer is 43.9% for men and 37.4% for women.

Even though advances in early diagnosis and therapy over the past few decades have led

to continual decreases in cancer incidence and mortality, cancer remains the second

leading cause of death among all Americans trailing only heart disease [1]. It is therefore

apparent that further technological development in all areas of cancer detection and

treatment are still of great importance not only to the scientific community, but to society

itself.

In the field of cancer imaging, moderate progress has been achieved in increasing

the speed and resolution of computed tomography (CT) and magnetic resonance (MR)

imaging. The primary shortcoming of these 'traditional' imaging methods is their

inability to detect tumors smaller than 2 mm in width (containing fewer than 500,000

cells). A significant consequence of this detection limit is the resulting underdiagnosis of

metastatic disease, [2] which is significant because occurrence of metastases drastically

reduce patient survival rates. Finally, the response to therapeutic treatment is also

unsatisfactorily monitored by current imaging techniques. To most effectively overcome

these shortcomings, the ability of a tumor to differentially scatter, absorb, or emit

radiation must be maximized using new imaging techniques, novel imaging agents, or a

combination of both.



In the area of cancer treatment, advances in chemotherapy and

radioimmunotherapy, in conjunction with the progress in cancer diagnosis, have led to a

decrease in cancer incidence and mortality rates. However, the in vitro potency of

therapeutics rarely translates directly when administered to patients. A successful

therapeutic must not only be effective in the solid tumor microenvironment, but must also

reach the target in sufficient quantities and with minimal toxicity to normal tissues [3, 4].

Although it would be ideal to build pharmacological features such as solubility, stability,

permeability, and targeting into the bioactive agent itself, it is more reasonable to build

such features into a delivery system that enhances the drug function [5].

1.2 A novel amphiphilic alternating copolymer

The group of Arthur Watterson at the University of Massachusetts Lowell has

developed an alternating amphiphilic chemo-enzymatically synthesized copolymer that

forms micelles with a highly adaptable chemistry with potential application as a carrier of

imaging agents or therapeutics [6]. These micelles, which have been observed to have

hydrodynamic diameters between 10-100 nm, will be referred to as nanoparticles.

The alternating amphiphilic copolymers are produced by a well-developed

synthetic scheme (FIGURE 1. 1A). A trifunctional diester linker molecule (shown

schematically in purple) is copolymerized with the hydrophilic diol, poly(ethylene

glycol) (PEG, in green), in an enzymatically catalyzed condensation reaction to form a

polyester designated the 'backbone polymer.' A hydrophobic sidechain is then attached

to the backbone via the remaining functional group on the linker molecule. Under the

proper aqueous conditions, the resulting alternating amphiphilic polymer chains



spontaneously self-assemble to form nano-sized micelles, or nanoparticles. The organic

chemistry of the required reaction scheme is described in the second chapter: Synthesis.

A B

Figure 1.1. Schematic diagram of the (A) chemo-enzymatic synthesis of the amphiphilic alternating
copolymers, and (B) the resulting nanoparticles modified for targeted delivery applications.

To address the challenges in cancer diagnosis and therapy outlined above,

additional synthetic methods have been developed at UML and at MIT to incorporate

contrast and therapeutic agents, as well as targeting moieties, into the nanoparticles via

either direct chemical conjugation or encapsulation. Examples of these modifications are

shown schematically in FIGURE 1. 1B. Targeting ligands (red triangles) can be attached

to the polymer via hydrophilic PEG spacer groups (green). These ligands are attached to

direct the nanoparticles to target-bearing cells, in vitro and, ultimately, in vivo. Selection

of agents for active targeting of human cancer cell lines is discussed in the subsequent

section.

Contrast agents for enhanced imaging techniques have also been attached directly

to or encapsulated by the nanoparticles. Examples of these applications include the



attachment and encapsulation of perfluorocarbon chains that are responsive in 19F

magnetic resonance imaging applications. Interestingly, the perfluorocarbon chains

attached as sidechains contribute to the final application not only as a potential contrast

agent, but as the hydrophobic sidechain required to impart the amphiphilicity required in

the final polymer for spontaneous self-assembly. The study of perfluorinated polymers

was a significant portion of a previous thesis in the Colton lab completed by Dr. Jin Zhou

Dawson [7].

The alternating amphiphilic copolymers have also been used to encapsulated

chemotherapeutic and therapeutic agents, such as doxorubicin, paclitaxel [8], and aspirin

[9]. This application is shown schematically in FIGURE 1. 1A by the blue circles.

Encapsulation of chemotherapeutics is an attractive application for our polymer system

and others like for two reasons: (1) chemotherapeutics typically have large, hydrophobic

structures that make them poorly soluble in water or the bloodstream and (2) the

hydrophobic interior of polymeric micelle nanoparticles contains a microenvironment in

which chemotherapeutics have significant solubility. Encapsulation of chemotherapeutic

agents can also increase the stability of the micelle, which may also be a desirable

advantage. Previous work in the Colton lab by Dr. Michelle Miller investigated our

polymer system for its potential use in targeted therapeutic applications [8].

The flexibility of the chemical structure used to create the nanoparticles described

above provided even more options beyond those studied in the theses of Drs. Dawson and

Miller. For this work, attachment of radiolabels, specifically radioisotopes of iodine, was

chosen as the focus. The unique chemical structure of the polymer system allowed for

direct attachment of radioiodine using methods originally developed for radiolabeling of



small proteins and antibodies. Radioiodine was also an attractive option due to its use in a

wide array of clinical application depending on the selected isotope. For example, 124I is a

positron emitting isotope that can be used in positron emission tomography (PET), 1251

and 1231 are gamma emitting isotope used in single photon emission computed

tomography (SPECT) and nuclear scintigraphy, while 1311 is a strong gamma emitting

isotope used commonly in clinical radioimmunotherapy. For the purposes of this

research, 125I was chosen as the primary isotope due to its comparatively low cost and

ease of detection using standard gamma counting techniques.

In addition to those previously described, synthetic schemes have also been

developed to attach fluorescent dyes, including Cy5.5 and FITC for near infrared

fluorescence (NIRF) and optical imaging applications, respectively.

1.3 Tumor Targeting by Passive and Active Mechanisms

Targeting is required to increase the delivery of an intended agent to a tumor in

vivo. An effective targeting technique will be highly specific for the targeted tumor in

order to minimize the accumulation in untargeted, normal tissues in the body. By

minimizing non-specific accumulation, the toxic side-effects of chemo- and

radiotherapeutic agents can be significantly reduced while the efficacy of the

administered dose is maintained by effective targeting.

Tumor targeting can be achieved through two distinct mechanisms in cancer

applications: (1) passive or (2) active. These two mechanisms are not necessarily

mutually exclusive and can therefore both be exploited for maximum targeting efficiency.

In passive tumor targeting, macromolecules take advantage of the "leaky vasculature"

commonly observed in tumors in vivo. This increased passive uptake by tumors, which



was originally described by Maeda, is known as the enhance permeability and retention

(EPR) effect [10-12]. According to the EPR effect theory, tumors grow so rapidly that

they are unable to develop fully functional vascularization or effective lymphatic

drainage systems. These vascular and lymphatic defects allow macromolecular particles,

typically between 5 and 200 nm in hydrodynamic diameter [13-16], to preferentially

accumulate in tumors by completely passive, mass transfer-related mechanisms.

Tumor targeting can also be achieved through active mechanisms, specifically the

through targeting of a receptor present on the cell surface of a cancerous cell in a tumor.

This targeting is achieved by attaching a targeting ligand to a circulating delivery system,

such as a nanoparticle, that has a high affinity and specificity to the targeted cell surface

receptor. There is a wide array of targeting pairs under investigation in the literature. The

most common of these is folate used to target the folate receptor [17-21]. Other targeting

pairs include epidermal growth factor (EGF) and the epidermal growth factor receptor

(EGFR) [22], anti-carcinoembryonic antigen (CEA) antibody and CEA [23], and

telomerase inhibitor and telomerase [24].

For this research, the epidermal growth factor receptor (EGFR), the

overexpression of which is associated with reduced survival in 70% in a variety of human

carcinomas [25], was chosen as the target antigen due to the availability of an extremely

high affinity (low dissociation constant) targeting ligand by means of a collaboration with

a colleague in the Department of Chemical Engineering at MIT, Dr. Benjamin Hackel.

The pertinent details for the high affinity binder, which was given the designation E13.4.3

by its inventor, are presented in the introduction to Chapter 5.



1.4 Summary of the Research

The overall goal of this project was the development and biological evaluation of

a novel, highly adaptable, targeted nanoparticle system for potential imaging and

radioimmunotherapeutic applications in the diagnosis and treatment of cancer. The three

major areas of investigation were (1) nanoparticle synthesis, (2) radiolabeling with

isotopes of iodine, and (3) biological evaluation both in vitro and in vivo.

The nanoparticle synthesis involved the investigation and development of a

chemo-enzymatic polymerization reaction to produce significant quantities of high

molecular weight backbone polymer for use as the starting material in the synthesis of the

targeted alternating amphiphilic copolymers. To accomplish this, the polymerization was

studied as it was originally developed - in flasks. These initial studies, together with

theoretical kinetic and mass transfer modeling, were used to develop improvements to the

polymerization. These improvements included both improved reaction conditions and

reactor configurations aimed at reducing mass transfer limitations. A novel, continuous

thin-film evaporator prototype developed by our industrial collaborators at Artisan

Industries (Waltham, MA) was adapted for use as a thin-film batch reactor. These

advances in backbone polymer molecular weight sought to improve the biological

performance of the resulting targeted nanoparticles.

The area of polymer radiolabeling focused on the adaptation and implementation

of a procedure commonly used to radioiodinate proteins for use with our polymer system.

Successful radiolabeling with radioiodine provided two important benefits. In the near

term, labeling with iodine-125 enabled quantitative analysis of the performance of the

labeled polymers in in vitro and in vivo experimentation. In the long term, this developed



method could be used with different isotopes of iodine for a variety of imaging and

therapeutic applications in either research or clinical settings. A number of

characterization tests were performed to validate the successful adaptation of the

iodination method, including measurements of the structure and stability of the labeled

polymer. Additional studies sought to determine the reaction and purification conditions

required to maximize reaction yield and product recovery while minimizing

radiochemical impurities.

Finally, the biological characterization investigated the nanoparticles in in vitro

cellular uptake studies to determine whether the presence of the targeting ligand could

increase uptake relative to that measured for untargeted control polymers. Any increase

in uptake due to targeting would represent selectivity for the targeted antigen on the cell

surface. The nanoparticles tested in vitro would also be tested in in vivo biodistribution

and blood circulation studies to determine their tumor targeting efficacy. These biological

studies were also supported by particle size distribution measurements by dynamic light

scattering.
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2. Chemical Synthesis of Amphiphilic Alternating Copolymers

2.1 Polymer Synthetic Scheme

A number of synthetic schemes have been investigated to produce amphiphilic

alternating copolymers conjugated to a variety of sidegroups, including hydrophobic

chains, hydrophilic (PEG) chains, targeting peptides, fluorescent dyes, and other organic

molecules [1-6]. The majority of this work has been performed, under the guidance of

Professor Arthur C. Watterson (UMass-Lowell), by Rajesh Kumar, Rahul Tyagi, Mukesh

Pandey, Vijayendra Kumar, and Bhavna Gupta, in collaboration with Clark Colton et al.

The different reactants, intermediates, and reaction conditions were studied for their

effect on yield, purity, cross-linking, polymer aggregation, and cytotoxicity. Based on

these studies and the specific requirements of the proposed work, the following synthetic

scheme has been developed, characterized, and implemented to supply the radiochemical,

physico-chemical, in vitro and in vivo experiments described in subsequent chapters.

The first step in the synthesis is the chemo-enzymatic polymerization reaction to

form the alternating copolymer designated as 'backbone polymer.' The chemical

structure for this step is presented in FIGURE 2.1.

0 0 0 0
Novozyme-435 0 H

300 0H 3  0H M-HC HO
+ HO n, 90*C, bulk,

OH vacuum OH

Figure 2.1. Enzymatically catalyzed polymerization to synthesize the alternating copolymer
backbone.

In this reaction, dimethyl 5-hydroxyisophthalate, which will be referred to as the

linker, reacts with PEG (MW = 900 or 1000 Da) to produce the alternating copolymer

backbone and the methanol byproduct. This reaction is catalyzed by Novozym435, a

lipase derived from Candida antarctica immobilized on an acrylic resin, and is typically



performed under bulk, solvent-free conditions. The backbone polymer product contains

free aromatic hydroxyl groups available for reaction to attach the various sidechains

listed above. Before any further attachments occur, activation reactions are performed to

prepare the intended sidechains, including the PEG spacer as well as the hydrocarbon and

perfluorocarbon hydrophobic chains, for reaction with the linker hydroxyls (FIGURE

2.2).

0

Br0

HO 0 O H Br Br OH

n O acetonitrile, reflux n

0

Br 0
HO Br

K2 CO3, acetonitrile, RT

0

F2  Br_ r F2

HO C CF3 Br Br O ' CF 3

6 K2CO3, acetonitrile, RT

Figure 2.2. Intended sidechains are activated through reaction with bromoacetyl bromide.

All three sidechains are reacted with bromoacetyl bromide to produce the

activated form of the sidechain that is terminated with the bromoester. Activation in this

manner provides a strong leaving group that is highly reactive with the linker hydroxyls.

Although a PEG of unspecified length is represented in the scheme, this reaction has been

successfully performed with PEG 900, 1500, and 3400, along with triethylene glycol

(TEG). All three unactivated sidechains are commercially available; however, the

bifunctional high MW PEG molecules are a specialty chemical available from Lysan Bio

(Arab, AL). The bifunctional PEG, with its carboxylate and hydroxyl endgroups can be

used to synthesize PEGs with a single activated site. Use of the bifunctional PEG



therefore mitigates potential cross-linking that would occur for a dually activated PEG

diol.

The activated PEG (or TEG) spacer molecule is attached to the backbone polymer

according to the scheme depicted in FIGURE 2.3. Because of the high reactivity of the

bromoester, the reaction between the activated PEG and backbone polymer goes to

completion. Consequently, the percent substitution of the PEG spacer, X, could be varied

by adjusting the amount of activated PEG added to the reaction. The reaction is

performed in acetonitrile in the presence of the base, potassium carbonate, at room

temperature (RT).

O 0 0 0 0

H3CO O OnO 0 Hx3O+o "n 100-x
OH OH

K2CO3,
acetonitrile, Br-- 0 OH

RT 0'
O

O 0 0 0
H3CO O n O 0 -X

61 x n.100-x
O OH

0

0
0 , OH

nl,
0

0

Figure 2.3. Attachment of the activated PEG spacer to the backbone polymer via the linker hydroxyl.
The activated spacer is added according to the desired percent substitution, X.

The hydrophobic sidechains are added by the same reaction, including the same

reaction conditions, as that for the PEG spacer (FIGURE 2.4). Either hydrocarbon or

perfluorocarbon chains can be attached by this method.
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Figure 2.4. Attachment of the activated hydrophobic sidechain, either hydrocarbon or
perfluorocarbon, to the backbone polymer via the remaining linker hydroxyls.

If the targeting peptide is to be attached, the terminal hydroxyl on the PEG spacer

is activated using N-hydroxysuccinimide (NHS) in the presence of

dicyclohexylcarbodiimide (DCC) in acetonitrile at room temperature. This reaction

(FIGURE 2.5) produces an activated NHS-ester that reacts readily with amino groups,

such as the lysine residues or N-terminal amines present in proteins. The acetonitrile is

allowed to evaporate in a fume hood and the polymer is resuspended in a phosphate

buffered saline (PBS) solution containing the E13.4.3 peptide. The peptide is added

stoichiometrically with respect to the activated ester groups on the PEG spacer. The

product of this reaction is dialyzed for 24 hr using a dialysis bag with a MWCO of 10

kDa (MEI3.4.3 =12.5 kDa). The final result is an amphiphilic alternating copolymer

conjugated to the E13.4.3 targeting peptide.
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Figure 2.5. Activation of the terminal PEG carboxylate to an NHS-ester and subsequent reaction
with E13.4.3 peptide to produce the targeted amphiphilic alternating copolymer.

Product characterization was performed primarily by nuclear magnetic resonance

(NMR) spectroscopy. The synthesis of model compounds was performed as necessary to

simplify the spectra in order to more easily identify the peaks and peak shifts that are

representative of the anticipated reaction. For example, an arginine-glycine-aspartic acid

(RGD) tripeptide was used as a surrogate for the much more complicated E13.4.3 peptide.

Although thorough analysis and characterization of the synthesized polymers were

integral to the successful execution of the research, it is beyond the scope and intent of

this document to faithfully reproduce our collaborator's synthetic chemical analyses.



2.2 Peptide Production

The E13.4.3 peptide is produced by standard bacterial fermentation procedures [7]

using Escherichia coli as the recombinant host cell. Briefly, Rosetta(DE3) cells (EMD

Chemicals, Gibbstown, NJ) are transformed by heat shock in order to insert the

appropriate E13.4.3-expressing, kanamycin-resistant plasmid. A starter colony is grown

on a yeast extract peptone (YEPD) plate in the presence of kanamycin. A large culture is

induced from the starter colony and isopropyl p-D-1-thiogalactopyranoside (ITPG) is

added to stimulate transcription. This culture is incubated in a shake flask until reaching

an optical density of approximately 1.

At this point, cells are centrifuged, separated from supernatant, and lysed with

lysis buffer (50 mM phosphates, pH 8.0, 0.5M NaCl, 5% glycerol, 5 mM CHAPS, 25

mM imidazole). The lysed cells are filtered and subsequently purified using TALON

metal-affinity chromatographic resin according to the manufacturer's protocol. The

TALON resin is designed to selectively bind the six-histidine tag engineered into the N-

terminus of the E13.4.3 peptide. Multiple small-scale (1 L shake flask) peptide production

and purifications were kindly performed by Dr. Benjamin Hackel.

To supply the expanded in vitro and in vivo studies with E13.4.3-conjugated

polymer, large-scale peptide production was implemented in a 5 L bioreactor by

Professor Carl Lawton at UMass-Lowell. The protocol for these productions was

identical to that described for the small-scale with two exceptions. The expanded culture

from a 1 L shake flask was transferred into the 5 L bioreactor and diluted with fresh

media. As before, the cells were lysed upon achieving an optical density of



approximately one. The large-volume cell lysis was performed using a microfluidizer

(Microfluidics Corp., Newton, MA).
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Reaction Engineering of an Enzymatically Catalyzed
Condensation Polymerization'

3.1 Background

3.1.1 Enzymatic polymerization

Recent investigation has demonstrated the utility of employing enzymes to

perform traditional chemical polymerizations in a more efficient and selective manner [1,

2]. In particular, Candida antarctica Lipase B immobilized on acrylic resin beads, which

was developed and is marketed as Novozyme-435 by Novozymes A/S (Copenhagen,

Denmark), overcomes a number of problems traditionally encountered in polyester

chemistry. The high enantio- and regiospecificity of the enzyme in the condensation

reaction of diacids/diesters with diols to form polyesters is desirable since protection and

deprotection steps may be avoided while attaining a high molecular weight linear

polymerization product with very little branching. These benefits are even more

pronounced as the size and complexity of selected monomers increases. Because of the

solubility of many diacids and diesters in diols, condensation polymerizations have often

been performed in solvent-free, bulk conditions. Lipase immobilization maintains the

enzymatic activity across a broad range of temperatures, up to at least 90'C and solvents,

including polymer melts [3]. The polymerization, therefore, is an example of a 'green

chemistry' [4].

Novozyme-435 has been used in various polyesterifications, including the

polymerization of adipic acid and butane-1,4-diol to form a polyester (FIGURE 1). Use

of the immobilized enzyme allows for mild reaction conditions, 40-60 "C, compared to

Major portions of the work presented in this chapter were completed during 10.26 projects sponsored by
the author in 2007 and 2009. Team members included Nathalie Pinkerton, Julie Shi, Drew Cameron, Greg
Johnson, Anisa McCree, and Jose Sepulveda, as well as faculty advisor, William Dalzell.



those used in typical industrial production processes, >150 *C, while still achieving

comparably high molecular weights [5] (FIGURE 3.1). In both cases, strong vacuum

must be applied to remove the condensation byproduct.

0
Novozyme-435

RO OR + HO OH

adipic acid butane-1,4-dioI 4060 0C. bulk, 10-100 mbar
(if R = H) B

A
0

RO + ROH
n

polyester
(AB)n

Figure 3.1. Examples of bulk polyesterification of a diester with diol using Novozyme-435 under mild
reaction conditions, where R = H [61, -CH=CH 2 [5].

A critical factor in achieving a high molecular weight product is the removal of

the condensation byproduct, ROH, such as water or methanol, or in the case of the work

of Chaudhary [5], the tautomerization of the vinyl alcohol byproduct to form

acetaldehyde (CH3CHO). Continual removal of the condensation byproduct shifts the

equilibrium towards the polymer product.

The mechanism for the polymerization by Novozyme-435 has been investigated

by Binns et. al. by performing GPC analysis of the oligomers present during the reaction

using synthesized low molecular weight intermediates for comparison [6]. In the

proposed mechanism (FIGURE 3.2), the enzyme forms an active complex by acylating

the diacid (or diester), A, forming A-Enz. This activated complex then reacts with the

diol, B, to form the single polymer repeat unit, AB. The step is repeated for each

subsequent chain extension, which leads to the eventual formation of the B(AB)n



oligomer presented in FIGURE 1. In the acylation step, the enzyme attaches itself to the

oligomer via a 'pseudo-ester bond' forming a highly reactive intermediate where the

enzyme itself is the leaving group in the subsequent reaction. This step-wise mechanism

was also reported by Okumura during investigation of polyesterification using

Aspergillus niger lipase [7].

0 0

RO OR + R

A Enz

0

A-Enz +0,H RO" + ROH + Enz

B AB
Figure 3.2. Chemical structural representation of the proposed mechanism for lipase-catalyzed
polyesterifications. The reaction of adipic acid (A) with butane-1,4-diol to form a single polymer
repeat unit is presented as an example.

A reaction scheme has been developed by Watterson and colleagues [4, 8-10] that

utilizes Novozyme-435 to synthesize a novel alternating copolymer (FIGURE 3.3).

0 0
H3CO CH3 + HOH Novozyme-435

H 900, bulk,
vacuum

A

OH + CH3OH

(AB)m
Figure 3.3. Enzymatic condensation using Novozyme-435 of a diester and diol to form a polyester.

For this reaction, dimethyl 5-hydroxyisophthalate (A) participates as the diester

while poly(ethylene glycol-900) (B) is the diol. The product is the polyester

poly[poly(oxyethylene-900)-oxy-5-hydroxyisophthaloyl] ((AB)m) The condensation

byproduct, methanol, is removed from the reacting mixture by vacuum applied to the



vapor phase. The condensation product, 3, is henceforth referred to as the 'backbone

polymer.' Application of a suitably low vacuum removing the methanol is necessary to

shift the equilibrium towards the polymer product since the reaction energetics alone are

not favorable enough to achieve sufficiently high molecular weights. In fact, the

equilibrium constant for transesterifications is in the range of 0.1-1 (while that for

polyesterifications is 1-10 and polyamidations 100-1000) [11]. Therefore, all polymer

chain extension is driven by the removal of the transesterification byproduct, either

methanol or water.

The backbone polymer is a precursor in the synthesis of polymers intended for

targeted delivery applications in cancer. As originally developed (FIGURE 3.3) by our

collaborator, Dr. Arthur Watterson, the polymerization was performed at low pressure (<

1 mm Hg) using either magnetic or mechanical stirring. Reactions performed at these

conditions, as well as in similar set-ups constructed at MIT, produced low molecular

weight product having typically < 4 repeat units (Mj = 3 kDa, Mw = 5 kDa) with little or

no progression in molecular weight observed after 48 hours, which suggested that steady-

state had been reached. Moreover, the key variables affecting the backbone

polymerization were poorly understood. Therefore, an experimental and theoretical

reaction engineering study was performed to identify and determine the relative

contribution of these key variables in the synthesis of the backbone polymer.

It was also proposed that increasing molecular weight would improve the

biological performance of the polymer by potentially increasing particle size as well as

the number of targeting ligands that could be linked to a single polymer chain.



3.1.2 Reactor designfor mass transfer limited processes

The first reaction configuration employed a round-bottom flask with a magnetic

stirring bar for mixing. The schematic diagram in FIGURE 3.4 represents a typical

progression of the polymerization reaction as originally developed.

stirred stagnant

" ," " bead viscosity

Figure 3.4. Typical progression of polymerization reaction in round-bottom flasks with magnetic
stirring. Reaction mixture is well-stirred initially, but as the reaction proceeds and higher MW is
achieved, the corresponding increase in viscosity leads to a cessation in stirring and stagnation of the
melt.

Initially, the reaction is well-stirred by the magnetic stirring bar and the catalyst

beads are dispersed throughout the melt. As the reaction proceeds and molecular weight

increases, the viscosity of the melt increases such that the stirring bar becomes decoupled

from the magnetic drive. Soon after, the reaction mixture is stagnant and unmixed and the

catalyst beads settle to the flask bottom by gravity. A stagnant polymer melt is

undesirable, not only for promoting efficient methanol removal, but for increasing the

collision frequency of individual reactants and the enzyme. FIGURE 3.5 presents a

qualitative representation of the various mass transfer limitations that may play a role in

the process, both in the stirred and stagnant cases.
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Figure 3.5. Qualitative representation of the condensation profiles describing the potential mass
transfer limitations in the backbone condensation polymerization. The diagram on the left represents
a well-mixed reaction mixture in the bulk with a mass transfer boundary layer around each bead
through which reactants and products, including methanol, diffuse. The diagram on the right
represents a stagnant reaction mixture in which diffusion of reactants and products occurs
throughout the stagnant layer between the catalyst beads and the vapor-liquid interface.

In the single-bead case, the primary mass transfer limitation is the movement of

reactants and products to and from the catalyst surface across the mass transfer boundary

layer around the bead. The methanol and reactant concentrations are constant throughout

the homogeneous melt. In the stagnant case, the mass transfer of both reactants and

methanol is limited primarily by rates of diffusion from the settled catalyst beads to the

vapor-liquid interface, which results in the linear concentration profiles within the melt.

In both cases, the removal of methanol from the reaction mixture into the evacuated

headspace occurs at the vapor-liquid interface, where the methanol concentration in the

reaction melt is related to its partial pressure in the vapor by an equilibrium partition

coefficient.

The problem of achieving high molecular weight polymers by sequential

condensation reactions is not a new one. Industrial production of nylon 6,6, a polyamide,

combining adipic acid and hexane-1,6-diamine (FIGURE 3.6), requires special reactor

design to achieve high molecular weights. For example, molecular weights of 10 kDa can



be readily achieved in a CSTR [12, 13]. However, the diffusivity of water, the

condensation byproduct for nylon 6,6, is significantly lowered at molecular weights

exceeding 10 kDa due to the high viscosity of the polymer melt. As a result, diffusion of

water to the vapor-liquid interface is extremely slow such that the byproduct can no

longer be removed to shift the equilibrium towards the condensation product [14].

Considering the observations previously described (FIGURE 3.4), it was hypothesized

that the low molecular weights achieved in the first setup were due to mass transfer

limitations similar to those observed industrially for similar reactions.

0
OO

H O 0 H

+ 0 HO N + H20
H m

H2N ., NH2

Figure 3.6. Chemical structure representation the polymerization reaction to produce nylon 6,6, the
most common industrial polyamide.

A number of 'thin film' reactor designs have been employed to address the issue

of poor byproduct mass transfer. These reactors fall into several categories, including

wiped film and falling film reactors [15], representations for which are shown in

FIGURE 3.7. In the wiped film reactor shown in FIGURE 3.7A, the reacting polymer is

deposited along the edges of a tubular reactor by rotating blades [14]. The blades, which

are pitched to move the polymer melt through the continuous reactor (direction of motion

into the page), continually remove and deposit the polymer film repeatedly exposing the

surface to high vacuum (shown in white). In FIGURE 3.7B, a cylinder rotating in the

polymer bulk creates a thin polymer film that is exposed to high vacuum. The bulk

polymer mixture moves through the reactor (into the page) [16], while the effectiveness

of this design depends heavily on minimizing the bulk volume through the introduction



of a large diameter cylinder. In FIGURE 3.7C, a polymer film falls along a heated

corrugated wall allowing for vacuum removal of the byproduct. The film thickness is

determined primarily by the polymer inlet flow rate and the nature of the interactions

between the polymer and the wall.

Po"r 'F Vacuum

Ts db.) c.)

Figure 3.7. Schematic diagrams of different 'thin film' reactors. a.) and b.) Wiped-film reactors [14,
16]. c.) Corrugated falling film reactor.

These designs attempt to maximize the ratio of surface area-to-volume for the

polymer reaction mixture. By maximizing this ratio, the area over which byproduct is

transferred from the bulk is greatly increased while the byproduct diffusion length is

reduced. Continuing the example from above, the 10,000 Da nylon 6,6 polymer produced

in a CSTR is oftentimes transferred to a thin film reactor as a 'finishing stage' where

molecular weights up to 20,000 Da can be achieved. It would not be possible to achieve a

polymer of this molecular weight without using one of these specially designed reactors

[14].

The Protherm reactor (shown schematically in FIGURE 8), which is an example

of a thin-film evaporator, was manufactured by our industrial collaborator, Artisan

Industries (Waltham, MA). The manner in which the Protherm was employed in

experimentation is described in the Methods. The device is a scaled-down prototype of



larger equipment, marketed under the brand name RotothermTM, developed for

continuous processing of liquids. In the Protherm, liquid is spread into a thin-film by

rotating blades having a 1.5 mm clearance between the blade tips and cylinder wall. If

desired, vacuum can be applied to increase the stripping of undesired species within the

thin-film, such as the methanol reaction byproduct. The rotor speed and wall temperature

are controlled by external controllers.

heating jacket inletA vaor out
1.0 mm

3.5 cm rotor motor

1.5 mm

bottoms out + -10 cm -

\15cmdes 3 .c

Figure 3.8. (A) Side view: Operation of the Protherm, as originally designed, in a continuous process

with an inlet at the top right and an outlet toward the bottom left. In this research, the Protherm was

modified to operate in batch mode (see FIGURE XX.X). (B) Front view: The Protherm blades rotate

counter-clockwise to produce fillets on the advancing edge. Fluid flow within the fillets occurs in the

clockwise direction.

The blade rotation in the Protherm, which creates the thin film, also creates a

secondary fluid element that has been observed previously in similar processes [ 17]. This

so-called fillet, which is a buildup of fluid in front of the rotating blade, occurs once

thresholds for fluid viscosity and blade rotational speed are met [ 17]. Theory and



experiment have shown that significant mixing may occur within fillets due to the

rotational motion of fluids with the fillet [17, 18]. Transfer of fluid between the thin film

and rotating fillet due to hydraulic jump may further promote mixing, particularly at

lower viscosities [18]. The intermixing between the film and fillet becomes less

prominent at higher viscosities where hydraulic jump is likely no longer encountered.

The improved mass transfer and mixing characteristics in the Protherm when compared

to round-bottom flasks make the Protherm a potentially powerful tool in the effort to

increase the extent of reaction for the polymerization and, consequently increase the

backbone polymer molecular weight.

Although previous studies have focused on the fillet as the primary location for

mixing in a horizontal thin film reactor, mixing may also occur due to other instabilities

in the thin film. In particular, the repeated formation and destruction of Pearson

instabilities [19], ridges that form when a high viscosity fluid passes through a small gap

while being spread into a thin film, was also considered as another possible source of

mixing.

Researchers have also proposed theoretical models that represent the reaction

kinetics and transport phenomena present in these thin film reactors [14-16, 20]. The

theoretical models generally yield two key dimensionless groups, the Damk6hler number

of the first kind (Da 1), which represents the ratio of characteristic residence and reaction

times, and the Damkihler number of the second kind (Da II), which represents the ratio

of characteristic reaction and diffusion times. The models rely heavily on system-

specific, temperature-dependent parameters including rate and equilibrium constants.

These parameters were determined, with significant effort, for the widely studied nylon



6,6 polymerization. Because no such library of data exists for the backbone

polymerization in this study, system-specific parameters were either measured or

assumed and subsequently tested for their sensitivity.

3.1.3 The Relevance of Backbone Polymer Molecular Weight to Targeted Delivery

The backbone polymer is the precursor to a class of amphiphilic alternating

copolymers used in targeted delivery applications in cancer. In subsequent synthetic steps

developed in the laboratory of Arthur Watterson at UMass Lowell [8, 10, 21], sidechains

are attached for a variety of purposes by means of the free hydroxyl group on the

isophthalate linker within the backbone polymer. Hydrophobic chains can be attached to

impart amphiphilicity such that the polymers self-assemble to form nanoparticle micelles

that exhibit desirable behavior in vivo [22], while targeting ligands attached directly or by

a spacer promote cancer cell-specific targeting [23]. These modifications to the backbone

polymer are shown schematically in FIGURE 3.9.

rn

= targeting lIgand
hydrophobic sid n

Figure 3.9. Chemical structure of backbone polymer substituted with representations of various
sidechains, including targeting ligands and hydrophobic sidechains.

Recently, there has been increasing evidence that polyvalency, which refers to

single molecules or particles that have multiple targeting ligands, is essential for

successful targeting of cell-surface receptors [24, 25]. Theoretical models developed to

described the phenomenon have shown that polyvalency improves the avidity of a



targeted delivery system by increasing the local concentration of targeting ligand once a

receptor-ligand interaction occurs [24, 26]. The potential to improve the performance of

our targeted polymers using polyvalency has been studied in detail by applying the cited

theoretical models [27].

The diagram in FIGURE 3.10 illustrates an important consideration when

increasing the targeting ligand polyvalency along the backbone polymer. A single

backbone polymer chain has a finite number of reactive sites for the addition of

sidechains; consequently, increasing the fractional substitution of targeting ligand reduces

that for hydrophobic sidechains. In order to increase the number of targeting ligands per

chain while maintaining the ability to form micelles, the backbone polymer molecular

weight must be increased. In practice, appropriate physico-chemical characterization

techniques, such as dynamic light scattering or surface tension measurements, must be

used to determine the relative levels of substitution required for micelle formation.

id perW9 m chain 50%aubstno
linkers prK chain

arrrrrr rrrrrr
Figure 3.10. Schematic diagram illustrating the trade-off between the number of targeting ligands
per polymer chain and the ability to form targeted micelles. The impact of increasing ligand
substitution and polymer molecular weight on micelle formation, particle size, and biological
function is uncertain.



Increasing the number of targeting ligands per polymer chain by increasing

backbone polymer weight does not guarantee a greater density of targeting ligands in the

final nanoparticle. This is because the aggregation number as well as the particle size

may be affected by differences in molecular weight. Nonetheless, the ability to increase

molecular weight beyond that previously attained increases the design space for the

targeted polymers. Molecular weight could also potentially be adjusted to control

properties of the targeted polymers both in terms of their physico-chemical properties like

particle size and critical micelle concentration, as well as their biological function in

targeted delivery applications.

3.2 Materials and Methods

3.2.1 Materials

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless

otherwise noted. Glassware was purchased from Chemglass (Vineland, NJ) and Kimble-

Kontes (Vineland, NJ). Heavy wall flasks, adapters, and manifolds were selected to

withstand high vacuum conditions.

3.2.2 Polymerization Procedure in Flasks

The experimental setup for the flask polymerizations is shown in FIGURE 11.

Flasks were immersed in a silicon oil bath that was maintained at 90 *C by an immersion

circulator (Cole-Parmer, Vernon Hills, IL). Vacuum was applied by means of a vacuum

hose connection to a glass adapter (not shown) and any volatilized material was captured

by means of a dry ice cold trap. Polymerizations were stirred mechanically in three-neck

round-bottom flasks using a variable speed Servodyne motorized electronic mixing



system (Cole-Parmer, Vernon Hills, IL). The drive motor rotated a glass stirring blade

that was fitted at the end of a glass shaft (both from Chemglass, Vineland, NJ).

Polymerizations were stirred magnetically in single-neck flat-bottom flasks using one-

inch stirring bars driven by magnetic stirring plates located beneath the silicon oil bath.

For the magnetic apparatus, the flask was placed as close to the stirring plate in order to

maximize the magnetic coupling. Sampling was performed via the sample ports by

depressurizing the system and removing the stopper.

motor

to cold trap

to cold trap sample port and vacuum
and vacuum

stirring bar

silicone oil
bath

immersion circulator stirring plate
Figure 3.11. Schematic diagram of the experimental setup for flask polymerizations using either
mechanical or magnetic stirring. Multiple reactions could be run simultaneously using a large
heating bath and multiple vacuum manifolds.

Polyethylene glycol (PEG) was added to a 250 mL flat-bottom flask and dried for

at least 1 hr at 90"C under high vacuum (10-100 pm Hg) using a rotary vane direct drive

vacuum pump (Labconco, Kansas City, MO); and pressure was measured using a analog

vacuum gage (Chemglass, Vineland, NJ). The flask was removed from vacuum, and the

dried PEG was reweighed before addition of dimethyl 5-hydroxyisophthalate (linker) and



Novozym435 (See also [28], Sigma catalog number L47772). Linker was added in an

equimolar amount to the dried PEG and Novozym435 was added at 10 wt% (w/w) of the

total combined mass of PEG and linker. Care was taken to add the reactants quickly in

order to minimize the readsorption of water into the PEG. A representative starting

mixture for flask reactions presented in the following includes 9 g of dried PEG900, 2.1 g

of linker, and 1.1 g of Novozym435.

The mixture was heated to 90"C, and vacuum was applied after the linker was

dissolved and Novozym435 was dispersed throughout the PEG melt by either magnetic

or mechanical stirring (usually <1 min). Samples (less than 20 mg) were taken at

specified times for subsequent analysis by gel permeation chromatography (GPC) using a

metal spatula. The vacuum was reapplied after sampling, which typically required about

1-2 min to restabilize. At the end of the reaction period 100 mL of deionized water was

added. Novozym435 beads were removed from the resulting slurry by vacuum filtration

using qualitative filter paper (Whatman LTD, Piscataway, NJ). The filtrate was then

frozen (-4"C) and placed on a freeze dryer (VirTis, Gardiner, NY) under 10 pm Hg

vacuum to isolate final polymer product in solid form.

3.2.3 Polymerization Procedure in the Protherm

The Protherm was originally designed to be used as a continuous, flow-through

evaporator (FIGURE 3.12A).In continuous mode, fluid enters through the inlet (top right)

and is immediately spread into a thin film by the rotating blades. Addition of more fluid

2 There are a number of immobilized Candida antarctica lipase B products commercially available. They
vary in activity, original enzyme expression system, support material, and cost. All data presented were
generated using Novozym435 that was manufactured by Novozymes and distributed by Sigma-Aldrich
(Cat# L4777). Our collaborators at UML used Novozym435 received from Novozymes as a gift.
Novozyme435 is Candida antarctica Lipase B expressed in Aspergillus niger, immobilized on a
macroporous acrylic resin (Lewatit VP OC 1600, Bayer) with an activity of >10,000 U/mg.



creates flow through the reactor (right-to-left) and fluid exits the cylinder through the

outlet (bottom left) by gravity. Modifications were made in order to use the Protherm as a

batch reactor. Due to restrictions imposed by our industrial collaborator, the inlet and

bottoms outlet could not be removed to create a sealed reaction zone (shaded region in

FIGURE 3.12B). Instead, only modifications to the Protherm orientation could be made

to prevent leakage of the polymer melt. To minimize loss of the reaction mixture to the

bottoms outlet, the Protherm was rotated 900 axially and elevated 10 above horizontal

(FIGURE 3.12B). Rotating the bottoms outlet (and inlet) to horizontal positions

minimized loss due to gravity, while the slight elevation further reduced the loss through

the bottoms outlet.

Polyethylene glycol drying and subsequent linker and Novozym435 mixing were

performed as described above using the magnetic stirring setup. Once the linker and

Novozym435 were dissolved and dispersed in the dried PEG, the entire reaction mixture

was poured through the opening on the left end of the Protherm ('cap'), which had been

pre-heated by setting the temperature controlled heating jacket to 90 "C. To add the

reaction mixture, the cap was opened and the Protherm was temporarily elevated to 450

above horizontal such that the mixture quickly entered the heated reaction zone to

minimize loss due to solidification.
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Figure 3.12. Schematic representation of the modifications necessary to convert the Protherm from
(A) continuous to (B) batch operation mode. The Protherm is depicted in the transverse (left) and
axial (right) directions. The reaction mixture is poured by opening the cap indicated on the leftmost
side of the schematic. The bottoms out and inlet are labeled for completeness in (B) - they are not
used in batch mode (indicated by italics).

Vacuum was applied via the 'vapor out' port and pressure of approximately 100

im Hg was measured using an inline analog vacuum gage (Chemglass, Vineland, NJ).

Temperature was maintained at 90 0C by means of a temperature controller and a

thermocouple placed between the heating jacket and the wall of the Protherm. The blade

speed was set to 2000 rpm unless otherwise specified. The time of simultaneous

application of vacuum and initiation of blade rotation was designated t=O for the

Protherm reactions.

Samples for subsequent GPC analysis were taken at various time points by

reopening the cap through which the reaction mixture was originally added. A metal

spatula was used to take approximately 20 mg samples at various locations throughout

the reaction zone (FIGURE 3.13).
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Figure 3.13. Schematic diagram of circumferential and axial views showing the various sampling
locations within the Protherm. Samples were taken from the front, middle, and back, including four
circumferential locations at the middle.

The starting reaction mixture for the Protherm was twice as large as that used in

the flask reactions; the total volume of this doubled mixture (18 g PEG900, 4.2 g linker,

2.2 g Novozym435) was approximately 20 mL. At this batch size, only about 1 mL of the

reaction mixture leaked out of the bottoms outlet. There was no benefit to increasing the

batch size further because any additional reaction mixture charged to the Protherm leaked

out the bottoms outlet when blade rotation was initiated.

3.2.4 Flow Visualizations

Flow visualizations were performed to better understand the fluid mechanics

extant in the Protherm. In these experiments, 20 ml of PEG 1000 or PEG 4600 at 90*C

were added to the Protherm, which was then set to rotor speeds of 500, 1200 and 2000

rpm. The flow within the Protherm was observed by removing the end cap and

illuminating the cylinder with a strobe light set to three times the blade rpm. Qualitative

observations of the extent of thin film development and the physical characteristics of the

fillet were recorded and are presented in the Results.

3.2.5 Comminution of Novozym435

Because of the high shear created by the rapidly rotating blades in the Protherm

and the low mechanical strength of the acrylic catalyst beads upon which the enzyme is



immobilized, Novozym435 was ground before use in the Protherm and occasionally

before addition to flask reactions as well. Crushed beads were prepared by grinding the

beads to a powder with a mortar and pestle for approximately 5 min until the originally

0.3-1 mm beads had become a fine powder. Additional details concerning the bead size,

porosity, and enzyme localization have been determined previously by others [28].

3.2.6 Effect of Molecular Sieves on the Polymerization

Certain experiments investigated the effect of molecular sieves, a drying agent

capable of sequestering polar molecules such as methanol or water from fluids, on the

polymerization reaction. Powdered 4A molecular sieves were obtained from Sigma-

Aldrich (P/N 69836, St. Louis, MO) and activated in a vacuum oven (Pabs = 1 mm Hg) at

2500C for at least 8hr. Activated sieves were weighed and added, where indicated, to the

reaction mixture along with the linker and Novozym435. Sieves were added at 10 wt% of

the PEG and linker combined mass. Care was taken to minimize the exposure of the

sieves to ambient conditions in order to maximize their capacity.

3.2.7 Forward Rate Constant Determination

The forward rate constant was measured experimentally for use in the theoretical

kinetic modeling by reacting 1.05 g of linker (A) with 7.5 g of mono-methoxy PEG750

(B') in the magnetic stirring setup. These masses of reactants create a 2:1 stoichiometric

ratio of PEG to linker; however, since the linker is bifunctional and the PEG is

monofunctional, the stoichiometric ratio of hydroxyl and ester groups in the mixture is

1:1. Mono-methoxyPEG750 was used because no PEG900 equivalent was commercially

available. Novozym435 (whole beads) was added at 10 wt% (w/w) of the total combined

mass of PEG and linker. A structural representation of the overall reaction, as well as the



forward and reverse elementary reactions for the two potential reaction steps, is provided

(FIGURE 3.14).

O 0
H3CO OCH3 + 2 H3CO -OrH BAB' + 2 CH30H

n
OH A B

(1) A + B k AB' + CH30H
kri

(2) AB' + Ba B'AB' + CH30H
kr2

Figure 3.14. Scheme presenting the overall reaction of two equivalents of mono-methoxy PEG750
(A') and with one equivalent of dimethyl 5-hydroxyisophthalate linker (B) to form B'A'B. The two
elementary reaction steps are also presented.

Samples were taken as described above. The concentration of the linker in each

sample, which was assumed to be representative of the concentration of linker in the

reaction melt, was determined using the GPC system. Because the linker peak in the GPC

chromatogram was completely resolved from those for PEG750 and any higher

molecular weight species, any decrease in the height of the linker peak corresponded

directly to reaction of linker with PEG.

The GPC refractive index detector response was calibrated for linker

concentration according to the following method. Standard solutions of linker dissolved

in THF at four different concentrations were measured by GPC. The heights of the linker

peak in the resulting chromatograms were used to construct a calibration curve. The

resulting calibration, which was linear over the range of concentrations measured, was

used to determine the concentration of linker present in a particular GPC vial, CLGPC.

CGPC = llHpeak



where i is the refractive index calibration constant, and Hpeak is the height of the linker

peak in the chromatogram.

Again, assuming that the concentration of linker in the reaction sample, CL ample

equal to that in the reaction melt, CLmel, the definitions in EQUATIONS 2 and 3 were

used to convert from CLGPC to CLmelt

sample

VTHF

C melt =sample 
- msample

L L L (a3p)

Vsample

where mLsample is the mass of linker in the sample, VTHF is the volume of THF added to

dissolve the sample, and Vsampie is the volume of the sample taken from the reaction melt.

Combining EQUATIONS 2 and 3 yields:

C = CGPC VTHF (4)
Vsample

Vsampie was determined by:

Vsampme = sample (5)
Pmelt

where msample was the mass of the sample and Pmelt was the density of the reaction melt,

which was determined to be 1.1 g/mL by measuring the weight and volume of the

reaction melt, including the catalyst beads.

Combining EQUATIONS 1, 4, and 5 yields:

Celt = (Hp) VTHFPmeIt (6)
sample



which was used to calculate the concentration of linker in the reaction melt at various

times 3. A second-order kinetic reaction model was developed (see MODEL

FORMULATION section) to estimate the effective forward rate constant for reaction

between linker and PEG.

3.2.8 Residual Water Content after Drying

PEG900 was dried under 100 pm Hg at 90*C in a two-neck round bottom flask

where one neck was used to apply vacuum and the second neck was sealed with a rubber

septum. After designated periods of time, flasks were returned to atmospheric pressure

with ultra high purity nitrogen (Airgas, Salem, NH). Samples were withdrawn using a

syringe equipped with a long needle, transferred to a dried glass scintillation vial, and

dissolved in 100 p.L of anhydrous chloroform (Sigma-Aldrich, St. Louis, MO). Vials

were purged and sealed under ultra high purity nitrogen (Airgas, Salem, NH). Some

samples were withdrawn and exposed to ambient conditions in open vials for recorded

times before being sealed. Samples of the PEG prior to the drying were taken as a

control. The residual water content present in dried PEG was measured using a V30

Compact Volumetric Karl-Fischer titrator manufactured by Mettler Toledo (Columbus,

OH) following the protocol provided along with the equipment. In this method, trace

water reacts with a mixture of chemicals to produce iodine from iodide in a controlled

reaction. This reaction is monitored by potentiometric measurements and the water

content is calculated based on known electrochemical properties of iodine and iodide

[29].

3 This analysis assumes that VTHF and the total volume of the dissolved sample are equal. It also assumes
that the density of the reaction melt is constant throughout the period of sampling.



3.2.9 Molecular Weight Determination by Gel Permeation Chromatography (GPC)

To prepare the samples for GPC analysis, chromatography grade tetrahydrofuran

(THF, Sigma-Aldrich, St. Louis, MO) was added to the collected samples until fully

dissolved. Typically, one milliliter of THF was added to approximately 10-20 mg of

sample. The dissolved samples were then filtered with a 0.45 micron PTFE Acrodisc

syringe filter (Pall Corporation, Port Washington, NY) to remove the catalyst beads and

other particulates that may have been present. The filtered samples were then added to

sample vials and analyzed on a Breeze 2 HPLC system (Waters, Milford, MA) equipped

with an auto-sampler, UV/Vis detector (k = 250 nm), and refractive index detectors. The

column bank consisted of three Styragel@ high resolution GPC columns connected in

series (HR1, HR3, and HR4, Waters, Milford, MA). The mobile phase was THF and the

flow rate was 1 ml/min. The standard method involved a 60-min column preparation

stage to equilibrate the columns and purge the detectors, a 36-min run time for each

sample, and a 15-min elution to restore the columns to their resting state.

Chromatograms obtained from the GPC system were analyzed with the Breeze

software package (Waters, Milford, MA), which was used to calculate the product

number average (Mn) and weight average (Mw ) molecular weight based on a calibration

curve established using a kit of poly(methyl methacrylate) (PMMA) standards (Waters,

Milford, MA). The results of a study of the calculation of molecular weight from the raw

data measured by the detectors are presented in APPENDIX A. The definitions of Mn,

M, , and the polydispersity index (PDI) are presented in EQUATION 12:

-NNM- N 2 M 1 M
Mn = I x X M, = XwxMx = I X 2 PDI= _ W (7)

NX NXMX Mn



where Nx is the number of moles whose weight is Mx and wx is the weight fraction of

molecules who weight is Mx [11].

3.3 Homogeneous Model Formulation

Theoretical models were developed to determine under what conditions the

backbone polymer molecular weight could be increased. The models were also used to

quantify the extent to which molecular weight could be increased by improving the

reaction conditions. An ideal homogeneous reaction model was chosen as the base

system for the evaluation. In this ideal system, the reaction mixture is perfectly mixed

and the methanol concentration in solution is related to the vapor pressure in the vapor

space above the reaction mixture according to Raoult's law. Measured and/or estimated

rate and equilibrium constants were used with the model to predict the ideal molecular

weight progression for the system.

Considering the low backbone polymer molecular weight achieved previously, as

well as the prevalence of literature devoted to byproduct removal in condensation

polymerizations [11, 15, 16, 30], the potential contributions of excess methanol in the

reaction mixture to reduce molecular weight were of primary interest. This potential

mechanism was studied by varying the methanol concentration specified in the model.

Even though methanol partial pressure in the vapor space was kept very low

experimentally, elevated methanol concentrations can exist in the melt because of the

mass transfer limitations described qualitatively in FIGURE 3.5. This is important

because the liquid-phase methanol concentration is the key driving force of the reverse

reaction that inhibits the production of higher molecular weight polymer. The molecular



weight predictions at these elevated methanol concentrations will serve as a basis against

which experimental results will be assessed.

3.3.1 Overall Strategy for Homogeneous Model Simulations

The homogeneous model was used to simulated the theoretical backbone polymer

molecular weight as a function of time given a constant bulk methanol concentration, CM.

Multiple simulations were performed, each having a different specified value of Cm, and

the time-dependent molecular weight progressions were recorded and plotted for

inspection. Cm was varied over eight orders of magnitude to simulate the effect of

severely elevated (or depressed) methanol concentrations. These methanol concentrations

represented the deviations from ideality in a real, non-homogeneous mixture.

The same model was also used to simulate the equilibrium molecular weight as a

function of bulk methanol concentration. To generate these results, the model was solved

for a range of CM and the equilibrium molecular weight was recorded for each simulation.

The simulation time span was set high enough to ensure that the simulated reaction

system had reached equilibrium.

3.3.2 Kinetic Model Overview - System of Reactions

As described in the Introduction, the reaction of interest involves the

transesterification of polyethylene glycol (PEG) and dimethyl 5-hydroxyisophthalate

(linker) to form a chain-extended polyester and methanol byproduct. A second order

kinetic model was used to study this reaction; however, modifications to the classical

application of the second order model were required. Specifically, in the classical

example of A + B -> C, an individual reaction between A and B consumes the two

reactants. Conversely, for the polymerization reaction in question, reaction between



bifunctional monomers does not consume the reactants in the classical sense because the

second ester and hydroxyl present in the bifunctional linker and PEG remain and can

participate in further reaction. To account for the bifunctionality of the linker and PEG

monomers, the reaction model was formulated in terms of reactive endgroups and not in

terms of individual molecules [11].

In the primary chain-extension reaction (FIGURE 3.15a), a linker methyl ester

endgroup, A, reacts with a PEG hydroxyl endgroup, B, to form the chain extending ester

bond, L, and methanol, M. Two side-reactions were also included in the model

description to assess how residual water in the melt might affect molecular weight. In the

hydrolysis reaction (FIGURE 3.15b), a linker methyl ester, A, is hydrolyzed by a water

molecule, W, to form a carboxylic acid, C. This side reaction reduces the concentration

of methyl esters in solution, which, in turn, can affect the stoichiometric balance between

hydroxyl and methyl ester endgroups. Disruption of this balance, which is essential to

maximize extent of polymerization, may reduce the final molecular weight. In the

proposed model, the carboxylic acid hydrolysis product is allowed to react with PEG in a

chain extension reaction (FIGURE 15c) to produce a chain extending ester bond, L, and

methanol, M. Although the chain extension product, L, is represented in FIGURE 3.15 in

a molecule having only one repeat unit, any reaction between A and B or C and B will

lead to a chain extension and a corresponding increase in the average molecular weight of

the mixture. For all three reactions, the reverse reaction was also possible. For example,

methanol, M, could react with L to regenerate the linker methyl ester and PEG hydroxyl.

This reverse reaction would lead to a corresponding decrease in polymer molecular

weight.



O 0 0 0

a.) H3CO OCH3 + HO O H H3CO O O H + CH30H

OH A B OH L M
0 0 0 0

b.) H3CO OCH 3 + H20 H3CO'V OH + CH3OH

OHA W OC M
O 0 0 0

C.) H3CO OH + HO O- H H3CO - 0 ,OrH + H2 0n n
OH C B OH L W

Figure 3.15. Model formulation: Polymerization reaction with side reactions represented by reactive
endgroups, which are labeled in the chemical structure representations of the proposed reactions.

The chemical kinetics and equilibria for these three reactions were modeled

assuming that all forward and reverse reactions were second order with respect the

reactive endgroups. The forward and reverse rate constants are k; for the

transesterification (FIGURE 3.15a), kih for the hydrolysis of the linker ester (3.15b), and

kic for the carboxylic acid-mediated polymer chain extension (3.15c), where the subscript

frefers to the forward reaction and r refers to the reverse reaction.

The system of equations for these reactions, again assuming second order

kinetics, is as follows:

dC
a.) A = -R-R

dt c

dC
b.) B = -R-RH

dt
dC

c.) L = R+Rc
dt 

(8)dC
d.) M = R+Rc

dt

dC
e.) W =R H+R

dt H C

dC
f.) c = RH-Rc

dt

where,



a.) R=kCAC B kr CLCM

b.) RH CBW + C (9)

c.) RC =kCA C + LC W

For this model, kjJ are the effective homogeneous rate constants, which are

lumped representations of system-specific characteristics according to:

k = f enzAcatNcat (10)
Vmelt

where Kf is the intrinsic forward rate constant, aenz is the enzyme surface density, Acat is

the surface area per catalyst bead, Ncat is the number of catalyst beads present, and Vmelt

is the volume of the reaction melt.

The time-dependent initial conditions for A and B are known according to

experimental conditions and are CAO, CB', respectively. These two initial conditions are

equal because the linker and PEG are added stoichiometrically and both monomers are

bifunctional. The initial conditions for L and C, which are not present at the beginning of

the reaction, are all equal to zero.

The initial concentration for water requires additional discussion because the

modeled system is not a closed system, but an open, driven system due to the vacuum

pump. In the experimental system, the initial concentration of water is equal to the

residual water present in the system after drying and subsequent addition of solids. For

the proposed model, it was assumed that the residual water present after drying

represented the minimum amount of water that could be removed from the melt given the

temperature, pressure, and configuration of the experimental system. As a result, the

system was considered closed with respect to water. Karl Fischer titration measurements

were performed to determine the approximate order-of-magnitude of the residual water



present after drying. The initial water concentration was varied during the simulation

study in order to better understand the potential role of water on the polymerization.

While the other system components could be determined or estimated

experimentally, no inline measurement of liquid phase methanol or of the flux of

methanol from the reaction system was available due to instrumentation limitations.

Therefore, the only inline measurement available that related to methanol concentration

was the pressure measured in the vapor space above the melt, peP. The partial pressures

of all other components in the system, including water and linker (dimethyl 5-

hydroxyisophthalate) were assumed to be equal to zero. This assumption is safe for

linker, which exerts very little vapor pressure due to its high molecular weight (210 Da)

and will exert no vapor pressure once it becomes attached to PEG. The assumption is less

straightforward for water, although its pure component vapor pressure is more than four

times lower than that for methanol at 90 "C [31 ]fh. Therefore, the system pressure was

equal to the vapor-phase methanol pressure, pm. The bulk liquid phase methanol

concentration, Cm, was then calculated from the system vapor pressure according to a

vapor-liquid equilibrium relationship, such as Henry's Law:

PMp = KHCM (11)

where KH is the Henry's Law constant and PMexP and CMexP are the experimental partial

pressure and bulk concentration of methanol, respectively.

Because the measured pressure was constant throughout the reaction (after a brief

initial depressurization period of less than 5 min), the liquid phase, bulk methanol

concentration was assumed to be constant for all times in each particular simulation. This

assumption, which was applied even during the initial stages of the polymerization, led to



a physically unrealistic, non-zero value of CM' for the early times in the simulation. This

choice, which greatly facilitated program development, was not expected to have a

significant effect on the results due to the comparatively small concentrations of L and M

at the beginning of the reaction relative to those for A and B, even at the highest

simulated methanol concentrations (< 102 M versus IM, respectively).

3.3.3 From concentration to molecular weight

The system of differential equations and associated initial conditions was

implemented and solved in MATLAB using the ODE solving routine, 'ode 15s.' The

MATLAB code can be found in APPENDIX B. The differential and algebraic equation

solver yields the concentration of each species as a function of time. These concentrations

can be translated into molecular weight using the following definitions and

manipulations. First, let P,, the number average degree of polymerization be defined as

follows:

(t) total initial no. monomer units - N(t = 0) (12)
no. molecules remaining N(t)

where N(t = 0) is the initial number of monomer units present and N(t) is the total

number of molecules remaining at time, t. According to [11], the degree of

polymerization is related to the fractional conversion by the following:

1 +r (13)
(t) = 1 - 2ri(t)+ r

where i is the fractional conversion of either reactive endgroup (A or B) and r is the

stoichiometric ratio, which are defined as:

No - Ni(t)i(t)= IN t (14)
N?



N0
r= B (15)

where N is the number of reactive endgroups of species i present initially. By definition,

the stoichiometric ratio always contains the minority species in the numerator. When the

monomers are added stoichiometrically, as is the case for the polymerization in question,

r is equal to unity and EQUATION 14 reduces to:

- 1
P1(t)= (16)

1- i (t)

While the subscripts A and B can be used interchangeably in EQUATIONS 13,

14, and 16 because any reaction of A must be accompanied by equal reaction of B, this is

not the case for a system in which side reactions can occur. In the proposed model,

conversion of linker methyl esters (A) does not necessarily indicate polymer chain

extension. On the other hand, all fractional conversion of PEG hydroxyls (B) leads to

polymer chain extension (FIGURE 3.15a and c). Therefore, for the proposed system of

reactions, the polymerization number could be calculated according to:

- 1P1(t)= (17)
l- t) B(t)

The output of the MATLAB program, the time-dependent concentrations of the

various components in the reaction system, can be converted to time-dependent fractional

conversions using the following relationship:

1it(t)=1 ) (18)
C?

where Ci(t) is the concentration of species i at a given time and Ci0 is the initial

concentration of species i. In order for this relationship to be valid, it must be assumed



that the volume of the reaction mixture is constant throughout the polymerization. This

assumption is likely valid because (1) the density of PEG is very weakly dependent on

molecular weight [32] and the relative mass of the condensation byproduct (methanol)

that may be removed during the course of the reaction is < 3% (assuming stoichiometric

reactants: 32/(210+900) = 0.03). The solution to the system of differential equations

(EQUATION 9), therefore, provides all of the information required to determine the

degree of polymerization as a function of time according to EQUATIONS 17 and 18.

The final step, then, is to convert degree of polymerization to either a number-

average or weight-average molecular weight. According to [11], the number-average

molecular weight, Mn, is related to the degree of polymerization by the relationship

1rvn = 2 Pn +Meg (19)2

where Mrepeat is the molecular weight of the polymer repeat unit and Meg is the molecular

weight of the monomer endgroups, which becomes negligible as Pn increases. For the

case of the polymerization of PEG900 and linker, a single polymer repeat unit is PEG900

connected to linker by an ester bond (FIGURE 3.16).

O 0
H3 C0 01 -NO0j-

OH Mrepeat
Figure 3.16. The parts of the backbone polymer chemical structure that comprise a single repeat
unit.

The actual value of Mrepeat was calculated:

Mrepeat =:M PEG ± M ier - 2 Mmethanol = 900 +210 -2(32)= 1046 Da (20)



where the Mi are the molecular weight of PEG900, linker, and methanol, respectively.

The two equivalents of methanol are subtracted because one molecule of methanol is not

present in the repeat unit (outside the dotted line in FIGURE 3.16) while a second

molecule of methanol is the condensation byproduct. It follows that the endgroup

molecular weight Meg is 32 Da.

The weight average molecular weight can be calculated from the fractional

conversion of PEG using the following formula [11]:

Mw= rePea B. (21)

Combining EQUATIONS 17 and 21 yields a relationship between the weight-average

molecular weight and degree of polymerization:

- M
M = repeat (2 - 1). (22)

Therefore the number- and weight-average polymer molecular weight can be

modeled for the backbone polymerization MATLAB program using a differential

algebraic equation solver (see APPENDIX B for code) and the preceding definitions and

derivations.

3.3.4 Determination of Model Parameters

In order to solve this system of differential equations, a number of parameters are

necessary, including the six kinetic rate constants and initial concentrations of the

reactive species.

a.) Effective forward rate constant

The experimentally measured linker concentrations were used to estimate the

effective forward rate constant according to the experimental procedure described in the



Methods and the system of reactions presented in FIGURE 3.14. If samples are taken at

early times and CAB' << CA and CB', only the first forward elementary reaction will

occurs (all other reactions will be negligible). The polymerization can be modeled using

the same reactive endgroup strategy exploited during the formulation of the kinetic model

for the complete reaction system. The reaction between linker and mono-

methoxyPEG750 can be described by the second-order rate equation:

dCAkC- ^ =kCA (23)
dt f B

where kf is the effective forward rate constant and CA and CB' are the volumetric

concentration of linker methyl esters and monomethoxy-PEG750 hydroxyls, respectively.

At t = 0, CA is equal to CA0. Because the monofunctional PEG was added in a 2:1 molar

ratio to the bifunctional linker molecule, CA and CB' are equal and EQUATION 23

becomes:

-dCA fA
A cA2 (24)

dt

The analytical solution to EQUATION 24 in linearized form is:

1 1
= kft + (25)

A WA

If the model assumptions are valid (i.e. CAB' CA, CB'), then a plot of the left-hand-side

of EQUATION 25 versus reaction time, t, should yield a straight line, the slope of which

is equal to the effective forward rate constant, kf. However, if the resulting plot is non-

linear, that would likely indicate that the other proposed elementary reactions were

contributing significantly to the time-dependent progression of the linker concentration,

CA. This empirically determined rate constant was assumed to apply for all steps in the



polymerization, an assumption which is commonly made for tractability [11, 30]. The

reverse rate constant was calculated according to the selected value for the equilibrium

constant, Keq, according to:

Keq = k (26)
k,

The exact equilibrium constant for the reaction was unknown and was therefore treated as

a variable during the execution of the simulations. Recall that the equilibrium constant for

transesterification reactions is typically 0.1-1 [11]. Finally, because no data were

available for the remaining two reactions (FIGURE 15b and c), the remaining forward

and reverse rate constants, for hydrolysis (H) and carboxylic acid-mediated chain-

extension (C), were also unknown and were assumed to be equivalent to kf as an

approximation.

b.) Initial Concentrations

The initial concentrations of the various reactive endgroups were determined

experimentally by measuring the volume of a stoichiometric mixture of 9 g of PEG900

and 2.1 g linker. The mixture volume was 10.0 mL. Because the number of moles of each

reactant was known (0.01 mol), the initial concentrations of the monomer species were

0.01 mol/10.0 mL, or IM. However, because there are two reactive endgroups for each

monomer, the initial concentrations of, CA0 and CB0 , were 2.0 M. Detailed results for the

model parameters that were determined experimentally are presented in the subsequent

results section.



3.4 Fickian Diffusion Model Formulation

The homogeneous kinetic model was used to determine the predicted molecular

weight for a variety of bulk methanol concentrations, not just for that which corresponded

to the experimentally measured vapor-phase pressure (according to EQUATION 11).

These Cm values, most of which were greater than that measured experimentally, were

intended to account for mass transfer limitations not addressed by the homogeneous

assumption. The results of the model at these various concentrations represent the

expected molecular weight that might be observed as a result of limitations in mass

transfer from the bulk to the catalytic surface. To supplement the kinetic model, a model

that incorporated Fickian diffusion across a stagnant film of thickness 6 was developed

and applied to several different situations. The goal of this model was to (1)

quantitatively predict the increase in the concentration of methanol participating in the

reverse reaction as a function of position relative to the bulk methanol concentration, and

(2) to use this information to estimate the effect on polymer molecular weight. The model

incorporates the physical properties of the system, including diffusivities, rate constants,

and length scales, for two different limiting cases: (1) a well-stirred solution with a

stagnant boundary layer around each individual bead, and (2) a completely stagnant

system in which the catalyst particles have settled to form a monolayer at the bottom of

the reaction vessel. A cartoon representation of the physical state in the flask reaction was

depicted earlier in FIGURE 3.4. The model framework for these two cases is shown

schematically in FIGURE 3.17. In order to describe the two cases by the same physical

model, curvature effects have been neglected for the boundary layer around the catalyst

bead. The height of the boundary layer, 6, is equal to (1) the radius of the catalyst bead



for the single-bead case (for the worst-case scenario for which the Sherwood number is

equal to 2) and (2) the height of the polymer melt for the stagnant case.

Bulk

y=R y

C(O) ,

B.)'-- A+ B - L+M
L-V Interface

y=8 ---- ------------ --- ------------- C(S)

Boundary Layer
Catalyst Surface c)

Figure 3.17. Schematic representation of the Fickian mass transfer model proposed to describe mass
transfer limitations in the flask polymerization for the (A) single-bead and (B) stagnant cases. The
height of the boundary layer, 8, is equal to (1) the diameter of the catalyst bead for the single-bead
case and (2) the height of the polymer melt for the stagnant case.

In the proposed one-dimensional model the chain-extending chemical reaction

occurs at the catalyst surface at a position of y = 0. Potential reactions with water were

not included in this model formulation to simplify the analysis. The surface reaction is

governed by the effective forward and reverse rate constants, kf' and k,, where i can

represent either the single-bead or the stagnant case. The effective rate constants for the

two cases are related to the intrinsic rate constant by:

k fbead = KfGenz (27)

k stagnant - Kf(Yenz [fAcatNcat]
Aflask (28)

where Aflask is the surface area of the bottom of the flask and f is the efficiency of the

catalyst area, which is required because a portion of the settled beads cannot catalyze the

reaction. The remaining terms are defined as in EQUATION 10.



EQUATION 10 was rearranged to separate the known and unknown system

parameters:

K enz - kfVmet(29)
KfO~e A cat N cat (9

The Fick's Law diffusion model was used to perform individual analyses of the

mass transfer limitation of the methanol byproduct, M, and the reactive endgroups, A and

B. After the initial stages of the polymerization, all of the reactive endgroups are present

as terminal groups on a polymer chain. Because of this, together with the 1:1

stoichiometry of the reaction, it was assumed that the mass transfer behaviors of A and B

were identical. Diffusion from the catalyst surface was assumed to be governed by Fick's

Law. In the single-bead case, diffusion occurs across a boundary layer into the

homogeneous liquid bulk, while in the stagnant case, diffusion occurs through a stagnant

region equal to the height of the entire liquid, which is bounded by the liquid-vapor

interface. Two assumptions were made: (1) the system was assumed to be at quasi-steady

state so that time derivate for Fick's Law is equal to zero. In order for this assumption to

be valid, the Fourier number (Fo), which relates the diffusive time scale to the

characteristic timescale of a system, must be O(1) or greater. (2) When modeling the

mass transfer of a particular species, the concentration of all other species were assumed

to be constant in space. For example, when modeling the methanol mass transfer

limitations, A, B, and L were all held constant with respect to space.

Based on these assumptions, the one-dimensional governing equation for

diffusion of methanol across the boundary layer (EQUATION 30A) and two associated

boundary conditions for the single-bead (EQUATION 30A-C) and stagnant cases

(EQUATION 30D-F) become:



a.) V2 CM = Id 2 y = 0 d.) VCM =d 2  = 0
S2 dy dy dy2

b.) CM y 3 R = Cm(2R) e.) CM = CM(S) (30)

c.) -DM dCM kCAB kcLM(R) f.) -Dm dM kf1CACB kr'cLCM(0)dy y=R dy Y

The first boundary condition states that the concentration of methanol at the edge of the

boundary layer is known. For both cases, this methanol concentration is the bulk

concentration that was used as the input in the homogeneous reaction model. The second

boundary condition equates the rates of diffusion and reaction at the catalyst surface. The

superscript i indicates that different effective rate constants are required for both the

single-bead and stagnant cases. EQUATION 30 can be rewritten for other species, such

as the reactive endgroups, by selecting the corresponding reaction rate equation for the

right-hand-side of the second boundary condition.

The preceding model equations for methanol were non-dimensionalized according

to the following:

OM = " ;11 -- or 11 y (31)
CM () R 6

where the characteristic length was either the radius of the bead, R, or the melt height, 6,

and EQUATION 30 becomes:

1 d 2 dM = d20a.) ;T L d J= 0 d.) M

b.) M 1 e.) 0M  1 (32)

c.) M = Dabead - Dabead f.) dOM =Da - DalOM(0)
w e fM rMM(1) di

where,



Dabead _ kfbeadR CACB ; Da *ead =f beadR(CL)fM DM \ M(R)) DMKeq

D a f " k f f i C A B } D ar = k , ( C L ) ( 3 3 )

f,M DM (C 
Dm Ke

Daf,Ml and Dar,Ml are the respective forward and reverse Damkdhler numbers for the

methanol mass transfer model for the ith case.

Based on the previously described assumptions, as well as the assumption that CA

is equal to CB because of the stoichiometry of the reaction, a similar model was proposed

for the mass transfer of A, the methyl ester reactive endgroup:

=0dd6d2
a.) 1 d 2 dOA d.) A 0

9 d1 di) di 2

b.) OA n=2 1 e.) OA11 = 1 (34)

c.) dOA -Daead A (1) 2 - Da bead f)d - Da film ( 2 - Dafi
d q rM da 1 = fMOA(0) r,M

where the non-dimensionalized concentration and positions were defined as in

EQUATION 31 and,

Da bead =kf bead RCA(R) Da bead _ f bead R CLM
f,A DA rA DAKeq CA(R))

Dahn flm6CA (6) Dahn - kffihn6 LCM
f,A DA rA DAKeq CA(6)

A methanol mass transfer model was also proposed for the Protherm (FIGURE

3.18). In this model, the polymerization reaction is assumed to occur homogeneously

through the polymer thin-film in the Protherm. There is a no-flux boundary condition at

the wall.
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y=0 no flux C(O)
Figure 3.18. Schematic representation of the Fickian mass transfer model proposed to describe mass
transfer limitations in the Protherm. 8 is the thickness of the thin polymer film in which the reaction
occurs homogeneously.

For the Protherm mass transfer model, it was assumed that the time-dependent

term in the Fick's law mass balance was equal to zero. In order for this assumption to be

true, the characteristic relaxation time of the diffusion profile must be shorter than the

characteristic reaction time (i.e. how quickly the reaction affects a change in Cm).

Curvature effects were neglected allowing for the mass transfer model to be written in

rectangular rather than cylindrical coordinates (necessary for an analytical solution).

Under these assumptions, the mass balance becomes:

-DM CM 2 k T  ACB - kr CLCM
dy

CM(6) (36)
dCM =

dy

Applying the same non-dimensionalization strategy as above, where concentration is

normalized by the C(6) and position is normalized by 6, yields:

d2 " = -DaPT + DaPT0

dr1
0(1) =1 (37)

dri
where,



k P~T62( ' DPT kPT 2 (8
I A B ; aT T2 (CL) (38

Da M CM(6) DMKeq

In this case for which reaction occurs homogeneously, the characteristic height is

squared in the two Damk6hler numbers and the effective forward rate constant for the

Protherm mass transfer model, kfI, is:

kfT -- (Yenz AcatNcat (39)
VmeltPT

where Vmelt,PT is the volume of the polymer melt in the Protherm.

Whenever possible, the model parameters were estimated experimentally. In lieu

of experimental values, empirical formulae were used to determine the necessary

parameters, such as the diffusion constant for methanol in PEG, Dm, which was

calculated using the Wilke-Chang correlation:

DM = 1.173x10-16 (gMBP)1/ 2  T0.6 (40)
pBPVM

where Dm is the diffusion coefficient of methanol in backbone polymer (BP) in units of

m2/s, T is the solvent association parameter (assumed to be equal to 1), MBP is the

molecular weight, T is temperature in Kelvin (363 K), paMP is the viscosity in Pa-s, and

VM is the molar volume of methanol in kg/m 3. The methanol partial molar volume was

estimated to be 0.72 g/mL according to a physical property table [33].

The diffusivity of A, DA, was assumed to be equal to the self-diffusivity of PEG

because the methyl ester groups become the terminal groups of the backbone polymer

early in the polymerization. The self-diffusivity and viscosity of PEG, both of which

were assumed to be representative of corresponding properties of the backbone polymer,



were estimated from the literature as a function of molecular weight and are presented in

the Results [31, 34].

3.5 Results

3.5.1 Conversion between Pm and CM

As previously discussed, the bulk methanol concentration was the primary

variable of interest during the simulations performed according to the proposed

theoretical models. Ideally, measurement of bulk methanol concentration during each

experimental polymerization would have been available in order to make direct

comparisons between experiment and theory. Due to limitations in instrumentation, bulk

methanol concentration measurement was not possible in our experimental system. The

only measurement available was the pressure in the vapor-phase headspace above the

reaction mixture. This experimental pressure data can be used to estimate the liquid-

phase methanol concentration by means of a relationship describing the vapor-liquid

equilibrium behavior of methanol solute and the bulk polymer solvent.

This vapor-liquid equilibrium approach has been used previously in mass transfer

modeling of byproduct removal-limited condensation polymerizations to convert from

vapor-phase pressure to bulk concentration [14-16, 35]. In the cited literature, well-

established empirical vapor-liquid equilibrium models were available for the simulated

systems, which included nylon-6,6 and poly(ethylene terephthalate). Unfortunately, for

our system of interest, methanol dissolved in either PEG or backbone polymer oligomers,

which are primarily comprised of PEG, no experimental information was available.



Consequently, the vapor-liquid behavior had to be approximated using simple models

informed by relevant solubility data from the literature.

For simplicity, it was assumed that methanol was the only species in the vapor

phase. As a result, the vapor pressures of all other system components, including water

and linker, were set equal to zero. This assumption is likely valid because the PEG is

dried before addition of linker and enzyme and the fact that the vapor pressure of

methanol is significantly greater than that for water at 90 *C (2000 vs. 500 mm Hg,

respectively). Given this assumption, P,, = p,' where Psys is the experimental pressure

measured in the system and pM is the partial pressure of methanol.

Two classical descriptions of vapor-liquid equilibria were considered: (1)

Raoult's Law and (2) Henry's Law. If the solute and solvent interact ideally, Raoult's

Law can be used to describe the vapor-liquid equilibrium behavior at all solute mole

fractions:

PM =MXM (43)

where, pM' is the pure component vapor pressure of methanol.

If the interactions are non-ideal, the solubility may vary as a function of the solute

mole fraction. For small solute mole fractions, the non-ideal solubility approaches

linearity and is typically described by Henry's Law:

PM =KHCM (44)

where KH is the Henry's Law constant. A qualitative representation of typical ideal and

non-ideal solubility behaviors is shown in FIGURE 3.19.
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Figure 3.19. Qualitative representation of the ideal and non-ideal solubility behaviors of methanol in
polyethylene glycol as a function of methanol mole fraction.

Depending on the nature of the interactions between solute and solvent, the

Henry's Law constant may deviate positively or negatively from the slope of the Raoult's

Law description of vapor-liquid equilibrium. The extent to which the two slopes differ

also depends on the solute-solvent interactions. If the solute and solvent molecule

interactions do not deviate from ideality by a significant amount, then the solubility

calculated according to Raoult's Law can be used as an approximation of the Henry's

Law constant. To estimate the extent of these deviations for our system of interest,

Hildebrand solubility and polymer-liquid interaction (Flory-Huggins x) parameter data

that was available for methanol, PEG, and methanol in PEG in the literature [36, 37] were

examined.

The Hildebrand solubility parameter for individual components in a mixture, 6,

can be used to predict the nature of the interactions between multiple components upon

mixture in solution. In particular, materials with similar Hildebrand solubility parameters

are likely to be miscible. The Hildebrand solubility parameters for several relevant

molecules are presented in TABLE 3.1. The values for methanol and polyethylene

glycols of various molecular weights are 29.7 and approximately 20 MPa1 /2 , respectively



[36]. From these data it was inferred that methanol and polyethylene glycol are

somewhat, but not completely, miscible with one another.

Table 3.1. Hildebrand solubility parameters, 8, for selected molecules, including an approximate
value for polyethylene glycol molecules of various molecular weights [361.

Molecule a
______________ [MPa]'2

PEG (various MW) 20 (approx.)
Methanol 29.7

Ethylene glycol 34.9
Water 48.0

The polymer-liquid interaction (Flory-Huggins X) parameter for methanol in PEG

was also used to determine the miscibility of the two compounds. In particular, X

parameters indicate the extent to which solute-polymer interactions deviate from ideality.

In an ideal solute-polymer mixture the X parameter is equal to zero, while a X parameter

less than 0.5 corresponds to complete miscibility of two compounds [38]. The X

parameter for methanol in poly(ethylene oxide) was measured between 90-110 *C and

determined to be 1.3 MPa 12 [37, 39] after extrapolation to the reference temperature of 25

"C. Because the corresponding X parameter was approximately 1 MPam2, this datum

provided further evidence that methanol and PEG are somewhat miscible and only

interact weakly with one another [38]. Previous studies have suggested that the electron

pairs of the PEG hydroxyl groups and the proton of the methanol hydroxyl form weak

hydrogen bonds [40, 41]. These weak bonds are responsible for the weakly interactive,

somewhat miscible solubility behavior implied by the solubility parameter data.

From the preceding analysis, it was inferred that the solubility of methanol in

PEG900 determined according to Raoult's Law would be a reasonable approximation of

the Henry's Law constant for the same mixture; i.e. the slopes represented schematically



in FIGURE 19 would not differ substantially. A relationship describing the Raoult's Law

solubility, KR, as a function of known system-specific parameters was derived using

EQUATION 43 and the following definition:

xM = CM - CM (44)
C Ctotal

where the denominator is the total molar density of the solution, Ctotai, which includes the

concentration of A, B, C, L, M, and W. A similar strategy has been used by others to

describe vapor-liquid equilibria in similar reaction systems [14, 16, 30].

Removal of methanol throughout the course of the polymerization can lead to a

nearly twofold decrease in Ctotai, assuming the volume of the polymer melt is constant.

The potential error introduced by the decrease in Ctotai was ignored because the accuracy

of the solubility estimate was not considered to be sufficiently high to warrant a

corresponding adjustment. Combining EQUATIONS 43 and 44 yields,

pM = pM M (45)
PM mCtotai 45

Therefore, the Henry's Law constant for methanol in the reaction mixture, which was

approximated by the slope of the Raoult's Law solubility relationship, is described by:

K H R PM 46
S~CKR tota

A physical property table [33] was used to determine that pM" at 90 *C was 2000 mmHg,

while Ctotai, which was assumed to be equal to Ctotai,initial, was 4.0 M. Therefore, KH was

equal to 500 mmHg/M.

As previously described, the bulk methanol concentration, Cm, was treated as a

variable during the kinetic and equilibrium modeling of the homogeneously catalyzed



polymerization. The methanol partial pressures that correspond to methanol

concentrations of interest are summarized in TABLE 3.2. The experimentally measured

headspace vapor pressure is also included. The pressure was maintained at 5x10-2 mmHg

throughout the course of all experimental polymerizations with the exception of initial

depressurization periods that lasted less than 5 min.

Table3. 2. Specific bulk methanol concentrations and their corresponding methanol partial pressures
used during the theoretical modeling. The experimentally measured headspace vapor pressure is
indicated by asterisks.

CM PM
(moYL) (mm Hg)

1x10-8 5x10O

1x10-a 5x10 4

1x10 4 ** 5x10 2

1x10 2  5

1 5x102

3.5.2 Forward Rate Constant Determination

A calibration curve for linker was constructed using the GPC (FIGURE 3.20).

Solutions with known concentrations of linker were dissolved in THF and their

chromatograms were recorded by GPC. The height of the GPC chromatogram peak (RI

response) was directly proportional to the linker concentration in the GPC sample vial.
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Figure 3,20. Calibration curve relating the height of the linker peak in the GPC chromatogram for
various concentrations of linker dissolved in known volumes of THF.

Samples were taken from the reaction between mono-methoxy PEG750 and linker

at various time points. The samples were weighed and the masses were adjusted to

account for the mass of the Novozym435 beads. Samples were dissolved in known

volumes of THF (typically 1 mL) and chromatograms were recorded on the GPC system.

The concentration of linker in each sample, CA, was calculated using the sample weight,

THF volume, and calibration curve presented in FIGURE 3.20 according to EQUATION

6.

The resulting concentration was assumed to be representative of the entire

reaction mixture. The inverse linker concentration was plotted against reaction time

(FIGURE 3.21) and the effective homogeneous forward rate constant, kf, was determined

by regression according to EQUATION 25
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Figure 3.21. Plot of the inverse of the experimentally determined linker concentration, CA, versus
reaction time for the reaction between mono-methoxyPEG750 and linker. The slope of the linear
regression is equal to the forward rate constant for the reaction.

The slope of the linear least-squares fit in FIGURE 3.21 was 9.0x10-3 ± Mmin-1

with a standard error of 0.4x10-3 M-'min-1, which is equal to the effective forward rate

constant for the model reaction. The resulting regression line did not significantly diverge

from the experimental data, implying that the initial rate of reaction was observed

through the final datum at t = 96 min.

The resulting effective forward rate constant, together with EQUATION 29, was

used to calculate the product Kfenz. The system-specific parameters for intact beads were

required for the calculation were determined according to the following. The surface area

of a catalyst bead was calculated assuming a bead diameter of 1 mm for an intact bead

(according to manufacturer specifications). A melt volume of 8.3 mL was measured

experimentally during the rate constant determination experiment. Finally, the number of

catalyst beads was determined as follows. One-hundred intact beads were counted and

weighed to determine the number density of the beads (beads/gram). This measurement

was repeated in triplicate. The measured number density (4300 beads/gram) was used to

determine the number of beads added during the rate constant determination experiment.



Together, these known values were used to calculate the product Of ice,, which was

subsequently used to calculate the effective forward rate constants for the single-bead and

stagnant cases according to EQUATIONS 27 and 28. For the latter, three system-specific

parameters were required: (1) Neat, which was determined from the number density, (2)

Aflk, which was calculated based on a measured flask diameter of 5 mm, and (3) f,

which was assumed to be 0.5.

This product, which was used to calculate the effective forward rate constant for

the other geometries studied throughout this work, was determined to be 1.1x10 10

m4/mol-s (in SI units).

3.5.3 Residual Water after Drying

Karl-Fischer titration experiments were performed to determine the residual water

remaining in the PEG900 after various periods of drying. The amount of water present

after various periods of drying of PEG900 is presented in TABLE 3. The water contents

for the PEG900 samples were not adjusted for the contribution due to water in the

chloroform since it was extremely low. These values were converted into concentrations

for use in the model as C,". The average value for the 1 and 2 hour drying times, 2.4x102

mol H20/mol PEG900, was converted into a molar volumetric concentration. The

resulting value, 1.5 mM, was used as C." in the subsequent simulations, as indicated.

Table 3.3. Water content measured by Karl-Fischer titration. The data are presented as moles of
water per moles of analyzed sample.

sample Drying Time Water Content
I_ _ (hr) (mol HgOfnol sample)

Anhydrous Chloroform NIA 3.3x10 4

None 2.2x100

PEG900 1 2.GxI 0-2
2 2.2x10-2

24 8.8x10-2



The dried PEG900 was also exposed to the atmospheric humidity in the

laboratory to determine the rate of water readsorption (FIGURE 3.22). This exposure

simulated the conditions in a typical reaction preparation during which the dried PEG is

exposed to the laboratory atmosphere while linker and enzyme are added.
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Figure 3.22. The water content measured by Karl-Fischer titration for PEG900 after 24 hr of drying
and subsequent exposure to atmospheric conditions. The rate of water adsorption was approximately
0.028 mol H20/hour.

The rate of water readsorption into the dried PEG900 was 0.028 mol H20/mol

PEG900 per hr. Normalizing this rate to the initial concentration of water in undried PEG

(2.2 mol H20/mol PEG) yields an initial readsorption rate of 1.3% of water removed per

hour. Because the maximum exposure time of PEG to atmospheric conditions was

approximately 30 min, with most exposures occurring for less than 10 min, the change in

the residual water present at the beginning of each polymerization due to water

readsorption was quite small.

3.5.4 Kinetic Modeling: Molecular Weight versus Time

The theoretical model proposed in the Model Formulation Section was

implemented and solved in MATLAB. The weight-average molecular weight, M., was



determined as a function of time (0-20,000 hr) at five different bulk methanol

concentrations from 10-8 to IM (FIGURE 3.23). The equilibrium constant, Keq, was set

equal to 1 for these simulations.
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Figure 3.23. Simulated M, as a function of time at various bulk concentrations of methanol. The
experimentally measured pressure in the reaction system was 5x10 2 mm Hg, which corresponds to a
methanol concentration of 104 M (dotted lines). The results of the entire simulation results are
plotted logarithmically (A) without (Co = 0) and (B) with (Co = 1.5 mM) water present; subsets at
short times are plotted linearly both without (C) and with (D) water present. Reaction times between
0 and 100 hr are similar to those the typically encountered experimentally.

The experimentally measured pressure achieved by the vacuum system with the

glass reaction vessels was 5x10-2 mm Hg, which corresponds to a bulk methanol

concentration of x10-4 M. The results at this concentration are represented by dotted

lines in FIGURE 3.23. In all simulations, the vapor-phase pressure was assumed to be



due entirely to methanol vapor. In simulations with water present, the initial water

concentration, Cw", was set at 1.5 mM, according to the results of the Karl-Fischer

titration measurements.

These results demonstrate the importance of decreasing methanol partial pressure

in order to substantially increase the weight-average molecular weight, particularly

considering the estimated equilibrium constant (Keq= 1) characteristic of similar

polyesterification reactions [11]. The simulated Mw increased as a function of time along

identical reaction trajectories for all values of Cm and departed from the shared trajectory

when the back-reaction (in which methanol reacts with esters within the backbone

polymer to reduce the chain length) became appreciable. At that point, the molecular

weight progression slowly leveled off until eventually reaching the equilibrium value in

all simulated cases except the lowest CM (10~8 M).

At CM = 1x10-4 M, which corresponds to a pM of 5x10-2 mm Hg according to the

Raoult's Law description of the vapor-liquid equilibrium, the weight-average molecular

weight increased linearly until the rate of reaction began to decrease at approximately

200 hr and ultimately reached an equilibrium value of 182 kDa after 1000 hr. At high

degrees of polymerization, the predicted value of Mw approached twice that of Mn, which

was expected according to EQUATIONS 19 and 22. Therefore, the equilibrium Mw can

be converted to Mn by dividing the simulation results by two. At all times, the exact

theoretical relationship between M,, and Mw applies.

The simulated reaction times required to substantially increase molecular weight

and ultimately reach equilibrium, especially at the lower partial pressures, were quite



long. The time required to reach 95% of the equilibrium M., teq, was calculated in the

model system both with and without residual water present (TABLE 3.4).

Table 3.4. Predicted time for the simulated M, to reach 95% of the equilibrium M, in the model
system both with and without residual water present.

CM t , 0 = 0 tq Co= 1.5 pM

(M) (hr) (hr)
10-8 7000 1050

10-0 950 720

10-4 105 95

10-2 27 23
100 3 3

The simulation was also performed with residual water present after drying, CW"=

1.5 mM. As was observed for the water-free case, the results of the simulations (FIGURE

3.23B and 3.23D) follow identical trajectories until finally leveling off to their

equilibrium values at long reaction times. The time to reach equilibrium (TABLE 3.4)

decreases with the inclusion of residual water in the model at all simulated methanol

partial pressures. Therefore, the presence of water not only reduces the final molecular

weight, but also decreases the total reaction time until equilibrium.

The presence of water had the greatest effect on molecular weight at the lowest

methanol partial pressures. At the higher partial pressures, the increasingly prevalent

back reaction overshadowed any effect that the simulated concentration of water may

have had on decreasing molecular weight. For the estimated experimental concentration

(1x104 M), the final weight-average molecular weight was 140 kDa with the residual

water and 147 kDa without, a reduction of about 5%. The time to -reach equilibrium was

95 hr with residual water present and 105 hr without the water. The differences were

much less pronounced at elevated levels of methanol.



The weight-average molecular weight was simulated as a function of time at the

estimated experimental CM at three different equilibrium constants to assess the

sensitivity of the results to the uncertainty in that particular variable. The molecular

weight progressions are identical for all three Keq until Mw begins to level off due to

increases in the reverse reaction. The equilibrium Mw was 48, 147, and 490 kDa for Keq

of 0.1, 1, and 10, respectively.

10 . . . .

10 Keq 10

1
0 5 ------- - -------------------10 0.1

a103.

100 10 102 103 104

Time (hr)
Figure 3.24. Weight-average molecular weight, Mw, as a function of time at three different values of
the equilibrium constant, Kq. Simulations were performed at a bulk methanol concentration of 1x1o
4 M, which corresponds to the experimentally measured pressure of 5x10-2 mm Hg, with no water
present.

3.5.5 Equilibrium Modeling: Molecular Weight as a Function of PM

The equilibrium weight-average molecular weight was simulated as a function of

methanol partial pressure to supplement the results of the time-dependent kinetic model.

The equilibrium weight-average molecular weight was determined as a function of

methanol partial pressure, PM, at various Keq (0.1, 1, and 10), both with and without

residual water present after drying, C,"= 0 or 1.5 mM (FIGURE 3.25). The secondary x-

axis represents the methanol partial pressure, pM, that corresponds to each bulk methanol

concentration, CM, using the Raoult's Law vapor-liquid equilibrium description.
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Figure 3.25. Equilibrium weight-average molecular weight as a function of PM' at various Keq with
(solid lines) and without (dashed lines) the presence of residual water after drying. The experimental
pressure was measured as 5x10 2 mm Hg.

The equilibrium simulation results demonstrated the significance of both CM and

Keq on the equilibrium weight-average molecular weight. For the water-free case, the

equilibrium Mw increased logarithmically over the entire range of simulated methanol

concentrations. The simulation was sensitive to the selected Keq; increasing Keq by a

factor of 10 resulted in an increase in the theoretical equilibrium Mw by a factor of

approximately 3.2 for simulations without water present - the results were almost exactly

parallel when plotted logarithmically.

The effect of water was greatest at the lowest Cm and highest Keq. Interestingly, if

Cm is set equal to zero, the equilibrium Mw at the three simulated Keq converged to 692

kDa for 1.5 mM water. This suggested that a point could be reached experimentally

where methanol removal would provide little benefit due to the limit imposed by the

minimum in the residual water under the driest possible conditions. The resulting



disruption of the endgroup stoichiometry by the side-reaction, even in a small amount,

reduced the maximum achievable molecular weight.

The Karl-Fischer titration experiments demonstrated that exposed PEG readsorbs

water. To investigate the role of water in reducing equilibrium molecular weight,

additional values of Cw" (3, 7.5 and 15 mM) were examined over a range of Keq values,

0.1, 1, and 10 (FIGURE 3.26). As before, the secondary x-axis for pM was calculated

assuming Raoult's Law. In these simulations, increasing C,* had the greatest effect on

equilibrium Mw for Keq = 10 (FIGURE 3.26A) and little to no effect, except at very the

lowest simulated methanol partial pressures, for Keq= 0.1 (FIGURE 3.26C).

The increased Cw" had little effect on equilibrium Mw at high CM at all simulated

Keq. This implied that the presence of residual water at the simulated levels would have

no effect on equilibrium Mw until a CM of approximately 10 mM can be achieved. It was

evident from the presented results that maximal reduction in both CM and COw both

contributed to maximizing equilibrium molecular weight.
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Figure 3.26. Equilibrium M, as a function of Pm at various C," and three different K, values, (A) 10,
(B) 1, and (C) 0.1. Dotted lines correspond to various C,* in units of mM, while solid lines correspond
to a water-free system. The secondary x-axis, pm, was calculated assuming Raoult's Law.
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3.5.6 Methanol Mass Transfer Modeling: Analytical Solutions

A Fickian diffusion model was developed to determine the extent to which mass

transfer limitations could affect the results of the homogenous kinetic model. The quasi-

steady state, one-dimensional model was used to analyze the concentration of either

methanol or reactive endgroups as a function of the distance from the catalyst surface.

The model was solved for three cases: (1) a well-stirred bulk for which diffusion was

modeled in the boundary layer surrounding the catalyst bead, (2) a stagnant bulk where

catalyst beads have settled to the bottom of the flask, and (3) the thin film in the Protherm

in which the catalyst beads were homogeneously dispersed.

For the well-stirred bulk and the stagnant film cases, the polymerization reaction

is heterogeneous, and the solutions to the non-dimensionalized differential equation and

associated boundary conditions (EQUATION 32) for mass transfer of methanol in the

single-bead and stagnant cases are:

M(l) = [Da ed - Da *adoM(1) - + 1 (47A)

6.(n) = ' [Dan - Dn6(0)] (1 - 11) +alh 1aim (47B)

The effective forward rate constants for the single-bead and stagnant cases are described

by EQUATIONS 27 and 28, respectively. Solving EQUATIONS 47A and B for O(l)

and OM(O), respectively, yields:

2+Dabead

M( 2 + Da bead (48A)
r,M



S1+Dan

M 1 Daim (48B)
r,M

Both EQUATIONS 48A and B provide the ratio of the methanol concentration at the

surface to that in the bulk. It represents the increase in the effective methanol

concentration at the catalyst surface due to mass transfer limitations.

For the Protherm case with homogeneous reaction, for which the effective

forward rate constant was defined in EQUATION 39, the solution is:

PTDaT cosh( Da DaP T

M Da J cosh (6 Dar) Da 49)

The solution to EQUATION 49 for OM(O) is:

Da -
T

Da DaP
O(O) = cosh(S Da)T Da (50)

An analytical solution was also determined for the mass transfer model for the

linker methyl ester reactive endgroup (EQUATION 34):

0A(r) = [Da *ad - Da AA (1)2]1 - J+ 1 (51)

OA (9) = Da" - Da (02A 2 -1) + 1 (52)

For r = 1 (single-bead) and r = 0 (stagnant), the term within the parentheses in

EQUATIONS 51 and 52 becomes (-1/2) and (-1), respectively. The (-2/3) factor was

approximated as (-1) and the quadratic equation was used to solve for OA(l) and OA(O).



1+ 1-4DaA + 4DaA DaA
OA (1) or OA(O) - DaA (53)

2Da f,

where i is 'bead' for OA(1) and 'film' for OA(O). The quadratic formula solution presented

in EQUATION 53 leads to two difficulties - multiple roots and a square root term. With

respect to the former, there is no way to a priori choose the correct root unless the

negative root provides a physically unrealistic, negative result. Similarly, because

imaginary solutions are unrealistic, as well, any results for which the determinant is

negative will be ignored.

3.5.7 Mass Transfer Modeling: Model Results

The solutions to the various mass transfer models were studied across a broad

range of molecular weights, up to 106 Da. The forward and reverse Damk6hler numbers

and the value of O1, the ratio of concentration of species i at the surface to either that in

the bulk or at the liquid-vapor interface, were calculated as a function of backbone

polymer molecular weight for each case. Some terms in these relationships varied with

molecular weight, while others were constant and specific to the geometry for the

respective case. The concentrations of the non-methanol species (A, B, and L) were

determined as a function of backbone polymer molecular weight according to

EQUATIONS 17, 18 and 19. For the methanol mass transfer modeling, these species

were assumed to be constant in space. For the endgroup modeling, the concentration of A

and B, as a function of molecular weight, was set as the bulk/liquid-vapor interface

concentration. The geometry-specific terms for each case are summarized in TABLE 3.5.

The bulk methanol concentration was set according to the experimentally measured

partial pressure assuming Raoult's law.



Table3. 5. Summary of estimates for various inputs into the Fickian methanol mass transfer model
for the stirred and stagnant cases. Parameters were tabulated using SI units for consistency.

Well-
.ed Stagnant PT UnitsStirred

6 or R 5.0x104 1x10.2  1X10-3  i

Nb.ad 3800 7600 beads

Aflask 2.6x10-3 M2

Aboad 3.1x10- 3.1xlO n2

f 0.5 dimensionless

VP- l.5x10-5 M3

K enz 1.x 10-10 Ime(mol-s)
CM( 6) 1 x0l7 (exp) mol/m

Keq 1 dimensionless

Finally, the diffusion coefficient of methanol in PEG was calculated using the

Wilke-Chang correlation (EQUATION 40) at 90*C. This calculation required the solvent

viscosity as a function of molecular weight, which was estimated according to the

literature [31] as follows. It is well-established [34] that the viscosity of low molecular

weight polymers is directly proportional to molecular weight. Once the molecular weight

is increased such that the polymers become entangled upon reaching the so-called critical

chain length, viscosity is approximately proportional to molecular weight raised to the 3.4

power. According to the tabulated data in the literature [31], which include entries for

PEG with M, of 500, 1000, 3350, and 8000 Da, the critical chain length for PEG is

between 3350 and 8000 Da. The PEG viscosity was modeled in three segments: (1) M" <

3350: a linear regression of the data for which viscosity a M, 1, (2) 3350 < Mn < 8000: a

straight line between the data points at either limit, and (3) Mn > 8000: an extrapolation

from the datum at.Mn = 8000 Da following the 3.4 power rule. The resulting PEG



viscosity as a function of molecular weight (FIGURE 3.27) was used to calculate the

methanol diffusivity (FIGURE 3.28).

A sample calculation of the forward and reverse Damk6hler numbers for the

single bead, methanol mass transfer case are presented in APPENDIX C. These

calculations are representative of those performed for the other species and other

geometric cases according to thee relevant equations detailed above (Equations 47-53).

106

10
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1003 104 1010

M, (Da)

Figure 3.27. Viscosity of PEG presented as a function of weight-average molecular weight. The
viscosity was modeled according to literature data and polymer entanglement theory.

The self-diffusivity of PEG, which was assumed to be representative of the

diffusivity of the reactive endgroups, was modeled according to literature data [34].

According to the authors, the self-diffusivity of entangled polymers follows a minus-2

power law rule (D a M-2). The literature data were extrapolated according to this rule to

estimate the PEG self-diffusivity as a function of molecular weight (FIGURE 3.28).
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Figure 3.28. Diffusivity of methanol in PEG and the self-diffusivity of PEG presented as a function of
weight-average molecular weight. The diffusivities were modeled according to the Wilke-Chang
correlation, literature data, and appropriate power law rules for entangled polymers.

The geometric parameters in TABLE 3.5, the diffusivities in FIGURE 3.28, and

the corresponding equations from the Model Formulation section were used to calculate

the forward and reverse Damkdhler numbers for the methanol and reactive endgroup

mass transfer models (FIGURE 3.29). In all cases the Damk6hler number represents the

ratio of the rate of reaction to the rate of diffusion; for Damk6hler numbers much greater

than one, the rate of reaction is much greater than the rate of diffusion and the modeled

process is diffusion-limited. Conversely, when the Damk6hler number is much less than

one, diffusion occurs more rapidly than reaction and the process in question is reaction-

limited.

For the methanol models, Da was the highest for the stagnant film and the lowest

for the bead within the well-stirred bulk. This result was a direct consequence of

differences in the diffusion length and the effective forward rate constant for these two

cases. The results for DaiPT were at an intermediate level. The forward Damk6hler

numbers all followed the same trend, decreasing initially at lower molecular weights

before reaching a minimum at approximately 10 kDa. The initial decrease was due to a



decrease in the reaction rate associated with consumption of reactants, while the ensuing

increase was caused by the decreasing diffusivity of methanol, which decreased at a

faster rate than did the forward reaction rate. The minimum occurs soon after the critical

entanglement molecular weight (i.e. when viscosity shifts from the Mal rule to the M"3.4

rule).
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Figure 3.29. Forward and reverse Damkohler numbers for the methanol (A and B) and reactive
endgroup (C and D) mass transfer models estimated for the three different cases: a stagnant film, a
well-stirred bulk surround a catalyst bead, and the Protherm.

The reverse Damk6hler numbers were monotonically increasing across all of the

simulated molecular weights for all three cases. The magnitude of Dar is initially quite

small because there are minimal linker groups available to participate in the reverse

reaction. As before, the inflection point near 10 kDa coincides with the shift to an



entangled polymer model for the PEG viscosity. The reverse Damk6hler number

increases at a greater rate than the forward Damk6hler number because the reverse

reaction is relatively more significant than the forward at the increased molecular

weights. The fact that both the forward and reverse Damk6hler numbers are, with a few

exceptions, less than one, suggested that, although the predicted rate of diffusion may

have been slow due to the increased polymer viscosity, the rate of reaction was even

slower for the most part.

The ratio of the methanol concentration at the catalyst surface to that at the bulk

(bead) or liquid-vapor interface (film and PT) was calculated according to EQUATIONS

48A, 48B, and 50 (FIGURE 3.30A). For the film model, the methanol ratio begins at

approximately 2 at low molecular weights, reaches a local minimum at 10 kDa and a

local maximum of approximately 1.5 at 80 kDa before eventually decreasing below one.

The brief increase in the methanol ratio between 10 and 80 kDa suggested some, albeit

relatively small, accumulation of methanol at the catalyst surface because of mass

transfer limitations. A methanol ratio O(<1) is not physically realistic because it implies

that methanol is somehow being added to the system at the interface. In fact, the

methanol ratio for the film model is equal to one at a Mw of 147 kDa, which is exactly

equal to the equilibrium molecular weight predicted in the homogeneous modeling.

The methanol ratios for the bead and Protherm cases were approximately unity for

nearly all of the simulated molecular weights. This suggested that there would be no

methanol accumulation at the catalyst surface (bead) or reactor wall (PT) due to methanol

mass transfer limitations.



Because one of the goals of the mass transfer modeling was to determine whether

methanol accumulation occurred at the catalyst surface, it is instructive to determine

under which conditions significant methanol accumulation would occur by inspection of

the analytical solution. To increase the methanol ratio two conditions must be satisfied:

the forward Damk6hler number must be greater than (1) one and (2) the reverse

Damk6hler number. Because terms in the forward and reverse Damk6hler numbers are

both shared (Dm, effective kf) and interrelated (Ci), there are limited conditions for which

these requirements are satisfied. Specifically, the following ratio must be large:

CACB (54)
CLCM(R or 6)

Again, because the concentrations of A, B, and L are related to one another by

stoichiometry, this ratio can be large in only two situations: (1) early in the reaction when

CL is comparatively small or (2) when the bulk methanol concentration is further reduced.

The first case makes sense because there are few linkage groups available early in the

reaction to react with methanol in the reverse reaction. Overall, this analysis suggested

that methanol mass transfer limitations were not significant at the bulk methanol

concentration estimated for the experimental set-up.
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Figure 3.30. Ratios of concentration at the surface to that at the bulk or liquid-vapor interface for the
single-bead and stagnant cases, respectively. The concentration ratio, Oi, was determined for the (A)
methanol and (B) reactive endgroup models.

The forward and reverse Damk6hler numbers for the reactive endgroup mass

transfer model were also calculated (FIGURE 3.29C and D). Unlike the results for Daf,M,

the Daf,A were monotonically increasing. This was due to two factors: the reactive

endgroups (1) could only exist at the end of the same polymer chain and (2) were added

stoichiometrically. Therefore, the boundary condition at the catalyst surface contained a

squared variable term, which led to a different formula for the Damkihler numbers.

These factors also caused the Dai,A results to cover a much broader range of orders-of-

magnitude than were observed for Daf,M.

The endgroup concentration ratios were calculated according to EQUATION 53

(FIGURE 3.30B). The presented results omit any solutions for which the determinant in

the quadratic formula was negative, which was the case for the film model for molecular

weights between 30 and 100 kDa, as well as any negative values for the concentration

ratio, OA. Unfortunately, there was no way to distinguish between the positive and

negative roots that gave physically realizable results.



The concentration ratio at low molecular weight was less than 0(1), which means

that the surface concentration of the reactive endgroups was less than that at the interface.

This implied that limitations in the transfer of reactive endgroups to the catalyst may

inhibit the reaction rate at low molecular weights. At higher molecular weights, the ratio

increased to a value greater than 0(1) possibly suggesting regeneration of reactive

endgroups due to significant back reaction, which is an unlikely scenario in a real system.

3.5.8 Evaluating Polymer Molecular Weight by Gel Permeation Chromatography

Gel permeation chromatography (GPC), a type of size exclusion chromatography

(SEC) was used to evaluate the molecular weight of unknown polymer samples. GPC can

be used to make qualitative molecular weight comparisons between samples based on

their respective elution volumes. In SEC, higher molecular weight species elute at shorter

elution times than do lower molecular weight species because low molecular weight

polymers can enter the porous media thereby increasing their effective path length within

the column bank.

The GPC column bank was calibrated using a kit of narrow PMMA standards of

known molecular weights. Because retention time is related not only to polymer

molecular weight but to differences in hydrodynamic radius and non-specific interactions

with the packing media, as well, it was necessary to convert from PMMA molecular

weight to that of the backbone polymer. This conversion was performed using an

empirical relationship proposed by Mori [42, 43]:

(Mbackbone)i = s(PMlM)t (54)



where (M)i is the molecular weight of speciesj eluting at an elution volume, i, and s and t

are regressed empirical parameters. Application of this methodology to the GPC system

and PMMA standards is represented in FIGURE 3.31.
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Figure 3.31. Elution volumes for PMMA standards (9) were fit to a fifth order polynomial (solid
line). Elution volumes for known backbone polymer samples (m) and the and empirical relationship
of Mori [42, 43] were used to calibrate the GPC system for backbone polymer molecular weight.

The first step in the calibration was to determine the elution volumes for low

polydispersity PMMA standards of known molecular weights as represented by the

circles in FIGURE 3.31. A PMMA calibration curve was constructed by fitting the

individual PMMA data to a fifth-order polynomial (represented by the solid line).

The number of backbone polymer samples was limited because backbone

polymer standards could not be synthesized and were not commercially available4 .

Consequently, the elution volumes for PEG900 and short backbone polymer oligomers

were estimated from experimental data (FIGURE 3.32). The elution volume of PEG900

was determined for a sample containing only PEG900 dissolved in THF. A sample from

4 Monodisperse standards are usually synthesized by ionic or free-radical polymerization. Backbone
polymer can only be produced by condensation reaction. Moreover, although PEG standards were
available, their limited solubility in THF prohibited their use in the calibration.



an early time point in the polymerization (t = 30 min) is shown in FIGURE 3.32. The

three discernible peaks observed in the chromatogram were attributed to a mixture of

PEG900 and PEG900-linker (BA), BAB, and (BA)2B. The BAB and (BA)2B peaks likely

contain a mixture of BAB + BABA and (BA)2B + (BA)3, respectively. Unfortunately,

the column bank was unable to resolve higher molecular weight backbone polymer into

individual peaks. The solid squares in FIGURE 3.31 were determined according to the

elution volumes of the peaks and corresponding molecular weights in FIGURE 3.32.
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Figure 3.32. Chromatograms used to determine the elution volume for PEG900 and backbone
polymer oligomers of known molecular weights.

A least-squares regression was performed using the PMMA calibration and the

backbone polymer data according to the empirical relationship in EQUATON 54 (the

corresponding MATLAB code is included in APPENDIX B). The empirical parameters,

s and t, were determined to be 0.5 and 0.96, respectively. The dotted line in FIGURE 3.31

represents the backbone polymer calibration curve that results by transforming the

PMMA calibration according to the regressed parameters. The relationship of this dotted

line to the backbone polymer individual data points also represents the fit of the least-

squares regression used to determine s and t.



Samples were taken from the polymerization throughout the experimental study

of the backbone polymerization and analyzed by GPC. These measurements yielded a

chromatogram representing the molecular weight profile of the sample. Because it is not

possible to present and compare chromatograms for all time points in all of the completed

reactions, the information in a given chromatogram was reduced to representative values,

including Mn, M., and the polydispersity index, in order to compare results across a large

number of samples (see APPENDIX A for more information on these calculations). The

weight-averaged molecular weight, M., was chosen for the analysis because it best

represented the differences in the chromatograms observed throughout the study. Entire

chromatograms for specific samples will be presented and compared, as necessary.

3.5.9 Experimental Evaluation of Key Variables in Flasks

Backbone polymerizations were performed according to the procedure described

in Methods. All initial experiments were performed in glass flasks under a variety of

experimental conditions. Sixteen different reactions or sets of reactions were performed

during the polymerization studies. The conditions for these reactions were tabulated and

numbered for reference during the presentation of the results.
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Table 3.6. Summary of reaction conditions investigated during the polymerization studies. The
reactor, stirring, and presences of molecular sieves are listed for each reaction. The comment column
indicates other deviations from the standard reaction conditions, including those for reactions
investigating the effect of vapor-phase pressure, solvent weight percentage and the length of PEG
drying.

Reacton Reactor Srnng Sieves Comment

I Flask Magnebe No n=5

2 Flask Magnbc No P=360mmHg,n=2

3 Flask Mechanical No
4 Flask Mecharical No LML

5 Flask None No

6 Flask Mecharical No 25 vt% solvent

7 Flask Mecharcal No 50 Vt% solvent
8 Flask Mecharical Yes

9 Flask Mecharical Yes 10 min dpng

10 Rask Mecharical Yes No dring

11 Prooern 2000 rpm Yes

12 Proiherm 2000 rpm No
13 Proherm 2000 rpm No 25 vd% solinrt
14 Prolherm 2000 rpm Yes Doetle catdyst

15 Prolhemn 50 rpm Yes 1IrM

16 Prolherm 500 rpm Yes Repeat of 15

The effect of vapor-phase pressure above the reaction melt was assessed in flasks

with magnetic stirring of the reaction mixture (FIGURE 3.33). The vapor-phase pressure,

which was assumed to be directly related to methanol concentration in solution, was

varied using two different vacuum pumps. A diaphragm pump was used to maintain the

vapor-phase pressure above the reaction melt at 380 mm Hg. Under this condition, the

reaction was only modest with Mw = 3 kDa achieved after more than 50 hr. On the other

hand, a significant increase in Mw was observed when an oil-driven pump was used to

maintain a vapor-phase pressure of 0.05 mm Hg. The results for these high vacuum

polymerizations were quite variable, particularly at 48 hr; however, these results were

produced by a variety of experimentalists (including two 10.26 projects) over a range of

more than 3 years. Unfortunately, no further refinement in the polymerization behavior as
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a function of vapor-phase pressure was obtainable due to the inability to regulate the

system to intermediate pressure levels.

1 0 , , , , , , , , , , , ,
Vapor Pressure

(mm Hcg)
8 0 0.05 (n =5)

U 360 (n =2)

0

2

0 - - . ' . . ' . . .. . . . . .
0 10 20 30 40 50 60

Time (hr)
Figure 3.33. Backbone polymer M, versus time at two different vapor-phase pressures above the
reaction mixture. Flasks were magnetically stirred and total vapor pressure was controlled by an oil-
driven or diaphragm pump at low and high pressures, respectively. (Reactions 1 and 2)

The magnetic stirring bar stopped at reaction times corresponding to an

approximate M, of 4-5 kDa in the five reactions at 0.05 mm Hg presented in FIGURE

3.33. With the exception of one reaction in which Mw continued to increase to 11 kDa at

48 hr, the rate of Mw increase was drastically reduced once the stirring bar stopped. This

exception was the primary cause in the variability at 48 hr.

The effect of different methods of stirring the reaction mixture was investigated,

both at MIT and by our collaborators at UMass Lowell (FIGURE 3.34).
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Figure 3.34. Backbone polymer M, versus time under various stirring conditions. A stationary
magnetic stirring bar was placed in the reaction melt for the 'no stirring' case. Mechanical stirring
reactions were performed by different researchers at both MIT and UML. (Reactions 1, 3-5)

Two different stirring set-ups, magnetic and mechanical, were investigated at MIT

for polymerizations in flasks. The progression of the backbone polymer Mw in these two

different set-ups was nearly identical. Moreover, reactions in an identical mechanically

stirred flask set-up at UMass Lowell produced backbone polymer product very similar in

Mw (only final product was available for analysis - no intermediate time points were

sampled). The negligible differences between the two stirring methods was unexpected

because the mechanically driven blades were able to rotate for the duration of the

polymerization while the magnetic stirring bar typically stopped at a Mw of

approximately 4-5 kDa. The intact or crushed Novozym435 beads acted as tracers in the

mixture for visualizations of the mechanically stirred reactions. At early reaction times (t

< 12 hr), the reaction mixture was thrown up the sides of the flask with each rotation of

the mechanically driven blades. Under these conditions, mixing was achieved through the

combination of rotational and radial motion, the latter of which was caused by the

spreading and falling of the polymer melt along the flask wall. At longer reaction times (t

> 18 hr), the more viscous polymer melt accumulated in front of the blades to a height of
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approximately 2-3 cm. The rotating blades pushed the accumulated polymer in a circle.

The accumulated polymer did not appear to rotate or chum, remaining stationary relative

to the frame of reference of the rotating blade.

A blade 
melt

Figure 3.35. Schematic representation of the mechanically stirred polymerization in the flask. At
early times (A), the reaction is well-stirred, with the polymer melt spread repeatedly along the sides
of the flasks with each blade rotation. At late times (B), the polymer melt accumulates in front of the
blade and pushed around the flask with minimal mixing.

The reaction with no stirring used the magnetic set-up with a stationary stirring

bar. In this reaction, there was very little increase in Mw. In fact, even though a low

system pressure was maintained (0.05 mm Hg) for this experiment, the Mw for this

unstirred reaction was less than that for the stirred reaction at 360 mm Hg. This result

suggested that effective stirring was more important than methanol removal at the initial

stages in the reaction.

Polyethylene glycol-250 dimethyl ether, a non-reactive, negligible vapor pressure

solvent, was investigated to determine whether addition of a solvent could extend the

time that mechanical stirring could mix the polymer melt. The solvent was added at

varying weight percentages to reactions performed in the mechanical stirring set-up

(FIGURE 3.36).
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Figure 3.36. Backbone polymer M, versus time at various solvent weight percentages. PEG250
dimethyl ether was chosen as the solvent due to its non-reactivity and negligible vapor pressure.
(Reactions 1, 3, 4, 6, 7)

The M, for both polymerizations with solvent added (25 and 50 wt%) were lower

than that for the bulk polymerizations. Although the addition of solvent likely improved

the mixing conditions in the reaction, any related benefits were offset by the reductions in

reactive endgroup concentrations. These concentration considerations were one of the

key motivations behind performing polymerizations in bulk. The solvent addition also

has competing effects with respect to the methanol removal. While the solvent may

reduce diffusion limitations by decreasing the viscosity of the reaction mixture, it also

increases the methanol diffusion length due to the increased volume.

3.5.10 Polymerization with the Addition of 44 Molecular Sieves

Activated powdered 4A molecular sieves were added to the reaction mixture as a

potential scavenger of small polar molecules. Although sieves are traditionally used as a

drying agent, 4A sieves have the capacity, in theory, to trap both residual or reabsorbed

water and the methanol byproduct. The sieves were added at 10 wt% of the total mixture.
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Figure 3.37. Backbone polymer M, versus time in the presence of 4A molecular sieves compared to
reactions (A) with no sieves present and (B) under varying lengths of PEG drying. The typical drying
period was 2 hr. The data without sieves were reproduced from FIGURE 34.

The polymerization with molecular sieves added was compared to

polymerizations without sieves added (FIGURE 3.37A). Mechanical stirring was used for

the reaction with sieves. The results presented previously in FIGURE 3.34 were

reproduced for the reactions without sieves. Addition of molecular sieves led to a

significant increase in molecular weight compared to reactions without sieves added. The

increased molecular weight was observed at all times measured, which suggested that the

sieves increased both the initial rate of reaction as well as the maximum achievable

steady-state molecular weight. The molecular weight observed with the molecular sieves

added was the highest ever achieved for the backbone polymer. The molecular weight

also continued to increase even though poor mixing like that described in FIGURE 3.35

was observed after for time points greater than approximately 12 hr. Considering that
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they are designed to trap polar molecules smaller than 4A, it is possible that the sieves

were scavenging the methanol byproduct, essentially acting as small localized vacuums

within the melt.

Experiments were also performed with molecular sieves where the drying

conditions were varied (FIGURE 3.37B). In these experiments, the drying time was

either decreased to 10 min or completely omitted. The molecular weight still increased

substantially, reaching weight-average values of 10.5 kDa for both limited drying cases.

These molecular weights were also higher than that achieved in any previous experiments

without molecular sieves added, despite the fact that either no or minimal water was

removed from the hygroscopic PEG. The primary difference between the experiment

with complete drying (open squares) and those with incomplete drying (open circles and

triangles) was a slight delay in the molecular weight progression. Because the PEG was

not dry at the beginning of the reaction, the first part of the polymerization period may

have been devoted to PEG drying instead of chain extension. During this period, water

was likely removed both in the vapor headspace and by the molecular sieves.

During the course of the study, a number of polymerizations failed to achieve any

significant increase in molecular weight and were deemed failures, often for unknown

reasons. The cumulative failure rates for all reactions in both the flasks and Protherm,

either with or without molecular sieves present, were compiled (TABLE 3.7). A reaction

was designated as failed if the weight-average molecular weight was less than 4 kDa after

48 hours. Reactions without stirring or at high pressure were not included in this analysis.
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Table 3.7. Effect of 4A molecular sieves on the historical failure rate of backbone polymerization in
flasks and the Protherm.

Sieves? no. rxns Failure Rate

No 32 38%
Yes 12 0%

During the course of the study and particularly before the introduction of

molecular sieves, a significant number of reactions (38%) failed for unknown reasons.

However, not a single reaction out of the 12 in which molecular sieves were added failed.

This observation, together with the molecular weight increases achieved in the

polymerization (FIGURE 3.37), demonstrate the absolute necessity of adding molecular

sieves to improve the performance and reliability of the backbone polymerization.

3.5.11 Backbone Polymerization in the Protherm

The results of the polymerization study in the flask set-up were used to guide

experimental condition selection for reactions in the Protherm. The reaction conditions

investigated included the original reaction mixture ('no additives'), as well as reaction

with molecular sieves, 25 wt% PEG250 dimethyl ether solvent, or double catalyst loading

(FIGURE 3.38). The reaction times for the Protherm polymerizations were longer than

those for the flask reactions.
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Figure 3.38. Backbone polymer M, versus time in the Protherm under various experimental
conditions, including sieves, solvent, and double catalyst loading. The blade speed was 2000 rpm.
Samples were taken from the middle of the reaction zone. (Reactions 11-14)

In contrast to the flask polymerization study, a smaller total number of reactions

were performed because only a single reactor was available. The blade speed was set to

2000 rpm for all the polymerization data in FIGURE 3.38. This blade speed, which was

the maximum achievable by the Protherm drive motor, was chosen because it was

hypothesized that increasing the rotational speed would improve the mixing in the

system. Reaction in the Protherm produced significantly higher molecular weight product

in all cases compared to that observed in the flasks. Most importantly, the Mw for the 'no

additives' reaction at 196 hr represented the highest backbone polymer Mw ever achieved.

The Protherm produced higher Mw backbone polymer for the reaction with PEG250

dimethyl ether solvent (25% w/w), even though addition of the solvent significantly

reduced Mw in the flask set-up (FIGURE 3.36).

With the exception of the reaction with double catalyst (20 wt%), all Mw profiles

were concave upwards at early reaction times. This behavior is inconsistent with the
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concave downward reaction profile typically observed for condensation polymerizations,

The typical concave downward trend was restored by the addition of double catalyst,

which significantly increased the initial reaction rate. The Mw for the double catalyst

reaction converged with that for the other reaction conditions, which suggested that the

kinetic limitations may have been superseded by mass transfer limitations.

Based on the interesting concavity trends observed during the initial Protherm

reactions, a study was performed to better understand the fluid dynamics in the reactor,

specifically focusing on the characteristics of the thin film and fillet (TABLE 3.8). In

these studies, two different PEG molecules were used to simulate lower and higher

viscosities. The blade speeds were varied from 500 to 2000 rpm to simulate different

possible fluid mechanical regimes.

Table 3.8. Flow visualizations of the fillet and thin film in the Protherm for different PEG molecules
at three different blade speeds. Blade rotation is in the counter-clockwise direction.

PEG M, Speed
(Do) Opm) Observutions
1000 500 Observable fillet kom bottom to rihhL thinner st top. and not

4600

noticeable on left
Film thinner at top than at bottom, sirificant pooling.

1200 Fillet observed at lower rit with small fillet elsewhere,
Thin film i. still noticeably thinner on the top with some
pooling.

2000 Fills largest on right side and nearly disappears at the top
Thin filn appears to be approximately the same over stire
circunfernce.

500 Film appears competely uniform.
Fillet the same size at all circumferential positioru.

1200 Uniform thin film.
Fillet nearly uniform but signifcurtly smaller than seen St
500 rpm (about 1mm size).

2000 Uniform thin film.
Fillet is uniform and about the same size as at 1200 rpm.
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Significant differences in the extent of fillet development and fillet thickness were

observed during the Protherm fluid visualizations. At the lowest blade speeds and melt

viscosities, the fillet did not formed over the entire circumference of the reactor.

Consequently, the thin film was thinner at the top of the reactor and significant pooling

was observed at the bottom of the reactor. Under these conditions, the fluid viscosity and

blade speed were unable to overcome the force of gravity. For the low viscosity PEG at

the highest blade speed, 2000 rpm, which is close to the conditions in the reactor for the

polymerization results in FIGURE 3.38, the fillet exists throughout the circumference of

the reactor, albeit to a small extent at the top of the Protherm.

For the higher molecular weight PEG (Mn = 4600 Da), a uniform thin film and

complete fillet were observed over the entire reactor circumference at both 1200 and

2000 rpm. This result suggested that complete thin-film and fillet development likely

occurred between PEG molecular weights of 1000 and 4600 Da. The result for PEG

should be a reasonable proxy for the backbone polymer, which is composed primarily of

PEG900 monomer units.

During the Protherm reaction with molecular sieves added, samples were taken

from six locations throughout the reaction zone (FIGURE 3.39), including the front,

back, and four equidistant circumferential positions in the middle as detailed in the

Methods. There were no differences among circumferential samples taken at the middle

of the reaction zone. However, at the front and back of the reactor the backbone polymer

Mw did not increase beyond 5-6 kDa.
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Figure 3.39. Backbone polymer M, versus time at various positions within the Protherm reaction
zone. The reaction included 10 wt% molecular sieves. (Reaction 11)

The blades were set at 2000 rpm, the maximum attainable speed for the prototype

drive motor, in all of the Protherm results presented thus far. Two polymerizations, both

with 10 wt% molecular sieves, were performed at 500 rpm to assess Protherm

performance at a lower rotational speed. The Mw as a function of time for these

polymerizations are plotted along with the average Mw data for the 2000 rpm

polymerizations (FIGURE 3.40).
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Figure 3.40. Backbone polymer M, versus time for two different Protherm blade speeds. Two
polymerizations were performed at 500 rpm, both with 10 wt% molecular sieves. The data from
FIGURE 38 (Reactions 11-14) were averaged to produce the 2000 rpm curve for comparison.

In both of the experiments at the decreased blade speed of 500 rpm, the backbone

polymer M, was 17 and 19 kDa after only 48 hr. This M, was comparable in magnitude

to the highest previously attained Mw in approximately only one-fourth of the reaction

time. In both reactions, more than 75% of the mass of the initial reactants charged to the

reactor was observed to have been transferred from the walls to the blades, becoming

completely solidified on the unheated blade surfaces as a result. In both reactions, this

transfer occurred after the 48 hr time point and before the next sampling time. This

transfer of the melt out of the heated reaction zone and onto the blades likely prohibited

any further increases in Mw.

3.5.12 Comparison of Results in the Flask and the Protherm

Results for polymerizations in both the flasks and Protherm were selected for

comparison (FIGURE 41). Some reactions were omitted to avoid further complicating the

resulting plot.
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Figure 3.41. Comparison of backbone polymerizations performed in different experimental set-ups
and reaction conditions.

This direct comparison demonstrated that the combination of the Protherm thin-

film reactor at 500 rpm and the methanol and water scavenging capability of the

molecular sieves produced backbone polymer with the highest Mw. The Protherm

reactions at 2000 rpm proceeded more slowly than even the magnetically stirred flask

reactions without sieves added. However, all of the 2000 rpm Protherm reactions,

regardless of the addition of solvent, sieves, or double catalyst, ultimately reached or

were on a trajectory to reach Mw comparable to the Mw for the best recorded flask

reaction (magnetic stirring and molecular sieves, #8).

Three chromatograms were selected for closer analysis: (1) the flask reaction with

magnetic stirring at 48 hr (one of the five runs from which the average for reaction

condition 1 was determined), (2) the 144 hr time point from the 2000 rpm Protherm

reaction with sieves added (reaction condition 11), and (3) the 48 hr sample from the 500

rpm Protherm reaction with sieves added (reaction condition 15). The chromatograms

were processed to represent the absolute mass of species measured at the various

molecular weights by the procedure described in Appendix A, multiplying the relative
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mass by the total initial mass charged to the system in the form of PEG and linker (mass

losses due to methanol removal were ignored). This normalization technique accounted

for differences in the sample mass, allowing for direct comparison of the mass of

backbone polymer at each molecular weight.

- Magnetic - 48 hr (Rxn 1)
60 - PT 2000 + Sieves - 144hr (11)

- -PT 500 + Sieves - 48 hr (15)

E40

20 -

0 20 40 60 80 100

Molecular Weight (kDa)
Figure 3.42. Chromatograms for specific time points from select polymerizations. Data are presented
as the relative mass of backbone polymer at particular molecular weights

In addition to producing polymer with the highest M., the 500 rpm Protherm

reaction with sieves was the only chromatogram to produce any polymer species having

molecular weight greater than 40 kDa. Inspection of the shape of the chromatograms

provided additional insight. In particular, the sharp edge at 40 kDa for the 2000 rpm

Protherm reaction may have indicated that transesterification reactions were rearranging

any polymer chains greater than 40 kDa in length. This behavior is a characteristic trait in

condensation polymerizations as they approach or reach quasi-steady state [11]. There

was some moderate increase in molecular weight observed for this reaction beyond the
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144 hr time point (FIGURE 38, squares); however, the shape of the chromatogram was

unlikely to have been artifact. Moreover, transesterifications do not necessarily preclude

further increases in molecular weight - recall that the molecular weights are calculated as

averages of a distribution. Conversely, this phenomenon was not observed for the 500

rpm Protherm 48 hr time point. In this chromatogram, the diffuse right shoulder

suggested that the reaction had not yet reached quasi-steady state, providing further

evidence that the cessation of the molecular weight progression was caused by transfer of

the reaction mixture onto the unheated blades.

3.5.13 Comparison of Experimental Results and Model Predictions

Different models have been proposed and investigated to different extents. The

results of the homogeneous kinetic model were compared to experimental results for four

selected polymerizations (FIGURE 3.45). The experimental bulk methanol concentration

was estimated to be 1x10-4 M according to the Raoult's Law assumption. The model

predictions for this concentration (the steep solid line) were higher than the

experimentally measured weight-average molecular weights at all reaction times. The

experimental results were actually most comparable to the homogeneous model

predictions for a bulk methanol concentration of 1x10 2 M. This was particular true for

the 500 rpm Protherm reaction and mechanically stirred flask reactions, both with

molecular sieves added. The difference between the experimental results and the

predictions for the estimated experimental bulk methanol concentration (lx10-4 M)

suggested that the homogeneous kinetic model over-predicted the concentration of

methanol present in the reaction mixture by 2 orders-of magnitude or more. This
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discrepant prediction could be caused by insufficiencies in the homogeneous description

of the reaction mixture as well as uncertainties in the various model parameters.
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Figure 3.43. Comparison of various experimental polymerizations with kinetic modeling results. The
experimental bulk methanol concentration was 1x1O4 M.

Although Keq for similar reactions are typically 0(1) [11], the inability to

experimentally determine the Keq for the backbone polymerization created additional

parameter uncertainty. To address this uncertainty, the homogeneous model predictions at

equilibrium were also compared with selected experimental results (FIGURE 3.46). The

experimental data did not intersect the model predictions at any of the simulated Keq
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(between 0.1 and 10) in either a water-free or dried PEG system (Cw" = 0 and 1.5 mM,

respectively).
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Figure 3.44. Comparison of three experimental polymerizations with equilibrium modeling
predictions.

To try and identify the source(s) of the differences between the model predictions

and experimental results, two possible strategies could be invoked to explain the

aforementioned discrepancies: (1) decrease the equilibrium molecular weight predicted

by the model (i.e. shift the solid and/or dashed lines down) or (2) increase the methanol

118

101

0i

1 01



concentration corresponding to the experimental data (i.e. shift the open symbols to the

right).

The mass transfer modeling was completed, in part, to estimate the actual

concentration of methanol participating in the reverse polymerization reaction. The

proposed diffusion limitations would increase the concentration of methanol beyond that

designated in the bulk by the vapor-liquid equilibrium. Although the results of the mass

transfer modeling did predict some increase in methanol concentration due to these mass

transfer limitations (FIGURE 3.30), the predicted increase was uniformly less than a

factor of two. This predicted factor of two (or less) would not be sufficient to shift the

experimental data enough to align with the experimental results.

Inaccuracies in model parameters could also account for the observed differences.

In particular, if the initial water concentration in the system was much higher than that

measured by Karl-Fischer titration, then the resulting stoichiometric imbalance could

significantly reduce the predicted equilibrium molecular weight. Because there is no

experimental data for the equilibrium constant, it is also possible that the lowest

equilibrium constant simulated was not low enough. Both of these inaccuracies could

shift the model predictions downward and therefore closer to the experimental results.
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3.6 Discussion

Overall, the solubility data in the literature, in the form of Hildebrand solubility

and Flory-Huggins chi parameters, suggested that the Raoult's Law description was a

reasonable estimate of the vapor-liquid equilibrium behavior of methanol in PEG (or the

backbone polymer). Although some hydrogen bonding is clearly possible, particularly

between the free hydroxyl groups at the terminus of the PEG and the methanol in

solution, the other groups within the PEG, both the CH 2 and weak electron pairs of the

ether oxygen, would be minimally interactive with molecules the methanol.

Application of the Raoult's Law assumption also required that any effect of the

increase in moles in the polymer melt over the course of the reaction were essentially

ignored. That is, the Raoult's Law solubility was calculated at the very beginning of the

reaction and assumed to be equivalent to the Henry's Law constant, which is applied

independently of the number of moles in a particular solvent. If this assumption was

invalid, the estimated bulk methanol concentration could be considerably underpredicted.

However, Henry's Law should be the most appropriate description of the vapor-liquid

equilibrium in the system considering the high pure component vapor pressure of

methanol at 90 0C and the low level of vapor-phase pressure maintained in the reaction

system.

The importance of minimizing the bulk methanol concentration was emphasized

by the predictions for the homogeneous kinetic model. The model results also provided

an upper bound for the molecular weight that could be achieved under ideal experimental

conditions at the bulk methanol estimated according to the Raoult's Law solubility. This

upper bound of approximately 150 kDa was fifty times higher than any weight-average
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molecular weights achieved experimentally before initiation of the research described

herein.

The effect of residual water after drying was also investigated with the kinetic

homogeneous model. Using the amount of residual water measured by Karl-Fischer

titration experiments, as well as initial water concentrations up to 10 times higher,

molecular weight predictions were affected minimally at high Cm and moderately at low

CM. There is opportunity to adjust the system of reactions to include a stronger effect of

water on the stoichiometric ratio, r, and, therefore, a stronger influence in reducing the

predicted molecular weight. In the current model, the forward and reverse rate constants

for the hydrolysis reaction were set equal to those for the chain-extension reaction. One

could propose a system of reactions where the reverse rate constant for the hydrolysis

reaction was set equal to zero.

Interestingly, some researchers have observed deleterious effects on the catalytic

ability of immobilized lipases due to reduced water content in reaction mixtures [3].

These researchers proposed that some level of water was required to hydrate the enzyme

to promote binding and catalysis of the esterification reaction.

The model non-dimensionalization and resulting analytical solutions provided

insight into the mass transfer dynamics within the polymer melt in multiple geometries.

Damk~hler numbers, which relate the rate of reaction to the rate of diffusion, were the

result of the non-dimensionalization for all models studied. In addition to determining the

length of the mass transfer boundary layer, the system geometry was responsible for two

contributions to the model through (1) the calculation of the effective rate forward

constant according to the distribution and availability of enzyme sites in the polymer melt
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and (2) the coordinates applied when solving Fick's Law. For the single-bead model,

spherical coordinates led to a 2 instead of a 1 (for rectangular coordinates) as part of the

sum in both the numerator and denominator of the solution (see Equation 48A).

The analytical solution for the reactive endgroup species led to imaginary results

for some of the backbone polymer molecular weights evaluated. These imaginary results

(negative determinants) indicate a physically unrealizable state in the reaction mixture for

molecular weights between 20 and 90 kDa. This is due to a combination of two effects:

(1) the second order consumption of the reactive endgroups and (2) diffusion limitations

that reduce mass transport of the reactive endgroups to the catalyst surface. Although the

model continues to predict a reactive endgroup concentration ratio (OA) beyond 90 kDa,

this point cannot be reached in a real experimental system due to the imaginary solutions

beginning at approximately 20 kDa. The analytical solution for the reactive endgroups for

the well-stirred bead also required application of the quadratic equation; however, the

determinant for this case was never less than zero and, therefore, no imaginary solutions

were encountered. The determinant was only very narrowly positive and it is possible that

an imaginary solution was within the uncertainty of the model parameters.

The inability of the mass transfer modeling to account for the difference between

the homogeneous model predictions and the experimentally observed results was

surprising, particularly with respect to methanol mass transfer limitations, considering the

breadth of experience in both the literature and industry with byproduct removal-limited

polycondensation reactions. The primary difference between the system studied in this

work and those studied in the literature, most notably the polyamidation reaction for the

production of nylon 6,6, was the enzyme catalysis. It is well known that enzymatically
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catalyzed reactions oftentimes do not follow elementary kinetics such as the second order

kinetic rate equation assumed for the mass transfer analysis. Models, such as Michaelis-

Menten, have much more complicated dependences on the reactant concentration.

Although an analytical solution would likely not exist for the mass transfer cases studied,

a more complex rate equation may have yielded different results.

A second difference between the backbone polymerization system and nylon 6,6

was the relatively large size of the monomer units, particularly PEG900. The primary

effect of this difference is that backbone polymer viscosity increases much more

significantly with polymerization number than does that for nylon 6,6. This means that,

holding all else equal, for a given molecular weight and associated viscosity and diffusion

coefficient, the concentrations for the reactive endgroups will be lower for a polymer

having higher molecular weight monomer subunits. According to the analytical solutions

(Equations 48A and B), this could contribute to a corresponding decrease in the result for

OM(O), which suggests that some correction or adjustment to the model development may

be necessary to account for the large molecular weight of the PEG and linker monomers.

A wide range of variables were studied during the polymerization experiments.

Decreasing the vapor-phase pressure by nearly four orders-of-magnitude (from 360 to

0.05 mm Hg) only led to a modest, fivefold increase in polymer molecular weight. This

was in contrast to the homogeneous model, which would have predicted an

approximately two order-of-magnitude increase in molecular weight with such a drastic

change in vapor-phase pressure (and the corresponding decrease in bulk methanol

concentration). This first result was an early indication that significant non-idealities, in

particular, deviations from homogeneity, were present in the reaction system. The results
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for the stirring experiment (FIGURE 3.34) demonstrated that some fluid motion was

necessary to promote the reaction, which was likely related to the need for a multi-body

collision or sequence of collisions required to generate a chain extending ester bond. The

stirring would be necessary not only to homogenize the bulk but to increase the collision

frequency of reactants, as well.

The addition of molecular sieves was the key improvement to the experimental

conditions during the studies in flasks. The 4A molecular sieves were able to act as

scavengers for either water or methanol (or both). The addition of sieves improved the

absolute molecular weights achieved in the flasks and the reliability of the flask reactions.

In the experiments where either minimal or no PEG drying was performed, Mw greater

than those previously measured without sieves were still realized even though significant

water was present in the system upon initiation of the polymerization. The fact that the

molecular weight progressions were delayed in these incompletely dried experiments was

tangible evidence of water inhibiting the polymer chain extension most likely via its side

reaction with linker. The fact that the high molecular weight was still achieved suggested

that any hydrolysis reaction that had occurred was reversible to a certain extent.

The significant improvements in backbone polymer molecular weight achieved by

addition of sieves were surpassed by adapting the Protherm thin-film evaporator for use

as a batch thin-film reactor. With the exception of the reaction with double catalyst

loading, the initial reaction rate in the Protherm at 2000 rpm was slower than that

observed in the flasks. Flow visualizations were performed to try and develop an

explanation for this observed trend. For PEG1000 at 2000 rpm, a thin film was

completely developed, but fillet formation was incomplete. Conversely, a rapid increase
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in molecular weight was observed for the same reaction conditions with a blade speed of

500 rpm. Flow visualizations of PEG 1000 at 500 rpm showed significant pooling and

minimal fillet formation. It is unclear, a priori, whether the observed fluid dynamics were

causative or correlative.

Fluid dynamic modeling in the literature provides relevant information [17]. In his

work, Komori models the fluid dynamics in a falling thin-film evaporator. Although the

model results predict significant rotational fluid velocity within a fillet, very little mixing

is predicted either within the fillet or between the fillet and thin film. This would be even

more pronounced for fluids having viscosities greater than water. Because the reaction

mixture is more readily distributed into fillets and a thin film at the higher blade speed

and because minimal mixing occurs within fillets, limited mixing may cause the

decreased initial reaction rate at 2000 rpm. At 500 rpm, the centripetal forces are unable

to overcome gravity and the reaction mixture remains predominantly in a pool at the

bottom of the cylinder. In this situation, one could liken the mixing of the polymer melt

by the rotating Protherm blades to the motion in a conventional front-loading washing

machine. The minimal mixing predicted in the fillet does raise some concern for the later

stages of reaction, even for the 500 rpm case, where the fillets and thin films are well-

developed. However, given the correspondingly higher viscosities at the later stages in

the reaction5, it is unlikely that significant mixing, in either the laminar or turbulent

sense, could be achieved by any means, mechanical or otherwise.

For the 500 rpm Protherm reaction, further increases in molecular weight were

not realized because the polymer was transferred to the unheated blades from the reaction

5 Viscometry measurements were performed for three PEG MWs at various added solvent wt%, with and
without catalyst beads present. This study, which was performed by Nathalie Pinkerton as part of the
UROP program, is presented in detail in APPENDIX D.
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zone. This could be potentially avoided by heating the blades, which was not possible in

the prototype model used in these studies. It is possible that even higher Mw could be

achieved if such an improvement was implemented in the Protherm. Beyond the heated

blades, additional experiments at other blade speeds to determine a potential optimum are

recommended, as well. Further study of the polymerization in a scaled-up thin-film

reactor (larger bore cylinders are commonly manufactured by our industrial collaborator,

Artisan Industries) would also be interesting to investigate the scalability of the process.

The results from modeling and experiment were compared to assess the validity

of the various model assumptions and the accuracy of the model inputs. The methanol

mass transfer modeling, which only predicted a very minimal increase in the surface

methanol concentration due to mass transfer limitations, was unable to account for the

observed differences. The mass transfer modeling for the reactive endgroups did suggest

a possible explanation for the lower molecular weights achieved; however, the fact that

molecular weight increases were observed when molecular sieves were added strongly

suggested that the presence of either water or methanol played some role in inhibiting

molecular weight progression.
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3.7 Conclusion

The enzymatic polymerization of PEG and dimethyl 5-hydroxyisophthalate

(linker) to produce backbone polymer was investigated using both predictive modeling

and experiment. The production of high molecular weight backbone polymer was

desirable both as a reaction engineering problem as well as for the intended application

for the resulting backbone polymer. As described in Chapter 5, the production of high

weight polymer increased the design space over which the final synthetic product, the

targeted nanoparticle micelles, could be investigated.

Key experimental variables were tested, including vapor-phase pressure, stirring,

and PEG water content. Once suitable vacuum was applied, addition of molecular sieves,

which could participate by scavenging either residual water or methanol byproduct, was

the greatest factor in increasing Mw (12 kDa at 70 hr) in reactions performed in flasks.

The Protherm, which was modified to operate as a batch thin-film reactor, was employed

in order to improve methanol mass transfer and mixing within the polymer melt. Three

separate reactions in the Protherm produced the highest Mw backbone polymer

(approximately 20 kDa). A blade speed of 500 rpm with molecular sieves present was

able to achieve this Mw in 48 hr.
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Radioiodination Method Development for
Quantitative Analysis in vitro and in vivo

4.1 Introduction

In order to assess the performance of a nanoparticle delivery system in biological

applications, a label that is detectable under a wide range of conditions and

concentrations must be present within the molecule. Spectrophotometric measurements of

aromatic groups within a structure, such as tyrosine residues within a peptide, are a

straightforward example. In fact, one of the primary benefits of magnetic nanoparticles,

such as cross-linked iron oxide [1], or quantum dot based nanoparticles [2] is their

inherent measurability. However, for organic delivery system, such as polymeric

micelles, dendrimers, and liposomes, straightforward measurement techniques prove

insufficient as the introduction of cellular or even tissue components from biological

systems significantly increase the complexity of experimental conditions; consequently,

some exogenous label must be introduced to facilitate detection of the delivery system.

An ideal label will have the following properties: (1) high sensitivity to allow for

quantitative measurement across a broad concentration range, (2) negligible effect on

particle properties due to minimal interactivity and/or size, (3) straightforward chemical

reaction for simple introduction into the chemical structure, and (4) broad applicability in

a variety of analytical techniques.

Various fluorescent and radioactive labels have been developed that meet some,

but not all, of the above requirements. In particular, fluorescent dyes can be conjugated to

structures with well-established synthetic techniques. Unfortunately, commonly

employed dyes like those of the Cy or Alexa fluor@ families, though unquestionably

effective for a variety of microscopy studies [3], are large, hydrophobic structures. As a
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result, fluorescent dyes fail to meet the second criterion of minimal size and interactivity

with the particulate delivery vehicle. For the case of the polymeric micelles studied in our

research, the addition of highly hydrophobic moieties can disrupt the micellization

putting any subsequent analysis into question. A second major drawback of fluorescent

techniques is the short penetration depth of light within the body (typically < 50 mm),

which limits the use of fluorescent dyes in imaging of near-surface phenomena [4].

Radioactive isotopes are particularly attractive because they can be quantifiably

detected across a broad range of concentrations, are small, and broadly applicable. There

are some potential drawbacks, which include the occupational and waste disposal hazards

inherent to work with radioactivity, limited commercial availability and corresponding

high costs of certain isotopes, and comparatively difficult synthetic steps for conjugation.

Researchers, including those studying circulating delivery systems [5, 6], have

frequently used the P-emitting isotope tritium [3H]. Due to the weakness of the P decay,

sample activity is determined indirectly by measurement of ionizing radiation-induced

phosphorescence using a liquid scintillation cocktail. Accurate quantification requires

careful calibration as well as additional preparation steps to remove any photoactivity that

might obscure spectrophotometric measurements by the scintillation counter. The fact

that p emissions cannot penetrate the skin eliminates tritium as an option in live animal

imaging applications.

In response to the demands of the field, many researchers have conjugated high

energy-emitting isotopes, such as y and positron emitters, to their structures. Examples

used in the field include 64Cu [7], 67Ga [8], 99mTc [9], "'In [10], 125I [11], and 131I [12].

Radiolabels and relevant experimental procedures for use in nanoparticle research have
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been reviewed [13]. Due to their high penetration length and ease of detection via gamma

counting, these strong-emitting isotopes all satisfy the first criterion for an effective label

- straightforward quantification across a broad range of concentration - and, in terms of

research application, are excellent labels for in vitro and ex vivo biodistribution studies

[14]. Moreover, when compared to the large, hydrophobic structures of fluorescent dyes,

strong-emitting radioisotopes are small and should, in general, have minimal effect on

physical properties upon conjugation. This is also the case, but most likely less so, for

metallic isotopes, such as 64Cu, which are conjugated via small macrocyclic chelators like

DOTA.

In imaging, gamma emitting isotopes found early use in nuclear imaging

applications using planar gamma cameras. This technology has been surpassed by

subsequent nuclear imaging techniques, including single photon emission computed

tomography (SPECT) and positron emission tomography (PET), which provide increased

resolution and richer spatial information [4, 14].

There are many isotopes from which to choose to meet the four requirements for

an ideal label, and both the particular delivery system and intended application will

influence this choice. However, with respect to the fourth criterion, the various isotopes

of iodine provide many potential applications for an iodine-conjugated particle.

Specifically, 1241 is a positron emitter for use in PET [15], 123I and "'I can both be used in

SPECT [4], and 125, as previously described, can be used in research applications and

gamma imaging. Beyond the previously described imaging applications, an isotope of

iodine, 1311 has been used clinically for radioimmunotherapy of various cancers since

1943 [16].
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Although stability must be considered for all radiolabeled compounds and is of

particular concern for metal chelators such as those used for 64Cu [17], the relative

lability of the carbon-iodine bond, particularly when exposed to a class of enzymes in the

body known broadly as 'deiodinases,' must be considered when using radioiodine for in

vivo applications. Previous research suggests that deiodination occurs to a much greater

extent for iodine bound directly to proteins than for iodine bound to non-proteinaceous

compounds [18, 19]. Therefore, stability can be improved by incorporating non-protein

based carbon-iodine bonds into a delivery system.

There are a number of methods by which iodine is chemically conjugated to

organic molecules [20], including isotopic exchange, electrophilic substitution,

nucleophilic substitution, or replacement of an activated group, such as a trialkyl

stannane [21]. Electrophilic substitution of a hydrogen atom on an activated aromatic ring

is the most common method. This is accomplished by adding an oxidizing agent, such as

chloramine-T (FIGURE 4. lA) [20] to a solution of sodium iodide to generate oxidative

reactive iodine species. After addition of the material to be labeled, the reactive species

replaces a hydrogen atom in the position ortho (immediately adjacent) to an electron-

withdrawing group to produce the radiolabeled product (see structures in FIGURE 4.2,

[20]). The presence of this electron-withdrawing group at the ortho position creates a

partial positive charge that makes the carbon-hydrogen bond more susceptible to

oxidative substitution by the activated iodine species. Increasingly strong electron-

withdrawing neighbors impart greater reactivity. The electron-withdrawing group

typically does not affect carbon-hydrogen bonds at the meta or para positions, which are

further removed than ortho.
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Products, such as Pierce Chemical's Pierce lodination beads (formerly

IODObeads) and lodogen (FIGURE 4. 1B and 1C, respectively), have been developed to

reduce sample damage caused by excessively oxidative conditions as well as to facilitate

the separation of oxidizing material from the labeled sample [22]. Pierce lodination beads

are chloramine-T immobilized on a neutral bead, whereas Iodogen, which has very

minimal solubility in water, is used by coating glass reaction tubes with the chemical.
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Figure 4.1. Chemical structure representations of chloramine-T (A), Pierce iodination beads (B), and
the lodogen reagent (C).

The previously described techniques, though well-characterized and in common

use for decades, require the presence of an activated aromatic group, that is, an aromatic

substituted with some strongly electron-withdrawing group. lodination of proteins and

antibodies has been the most common application of the technique due to the phenol

group within tyrosine moieties (FIGURE 4.2C). In fact, Iodogen has been used to label

proteins in a microfluidic device [23].

However, activated aromatic groups are not nearly as common in the circulating

delivery field as in protein biology. The straightforward conjugation of radioiodine using

materials like Pierce Iodination Beads has inspired researchers to modify their chemical

structures to introduce tyrosine-like groups. In particular, tyramine [24] (FIGURE 4.2D),

tyrosinamide [25, 26], or other tyrosine-like groups [27] have been incorporated into

block copolymer structures in small quantities to allow for iodination. The Bolton and

135



Hunter reagent (FIGURE 4.2E), which can be used to attach a tyrosine-like residue to

primary amines, has also been used to modify structures of a delivery system for easy

iodination [28].

H3CO 0 n H H3CO 0O n O

OH 0
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0 0

HNH2  NH2 O

H0 Hf C01' HOX I 0~
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C D E
Figure 4.2. Chemical structures of various molecules designed for iodination by the reagents in
FIGURE 1, including (A) our alternating copolymer backbone polymer, (B) the backbone polymer
substituted with 100% hydrocarbon sidechains via an ester linkage (polymer 027), (C) tyrosine, (D)
tyramine, and (E) the Bolton and Hunter reagent. Asterisks indicate sites for iodination, which are at
the position ortho to aromatic electron-withdrawing groups.

Although these techniques are straightforward, the modifications introduce

additional synthetic steps and potentially obfuscate results by altering the system of

interest. Though instances of circulating delivery systems iodinated without modification

are few, two specific examples were identified: directly-labeled iron oxide magnetic

particles [12] and single-wall carbon nanotubes [29]. While these two examples are

interesting, they are separate from the polymeric micelle family of delivery systems. The

unique structure of our alternating copolymer [30-32] (FIGURE 4.2A), the

hydroxyisophthalate linker in particular, provides an intrinsic iodination target within the

structural design. Substituting the polymer backbone with hydrophobic groups to produce

an amphiphilic molecule transforms the aromatic hydroxyls into ethers or esters

(FIGURE 4.2B). The carbon hydrogen bonds in positions ortho to aromatic ethers and

esters, which are comparatively weaker electron-withdrawing groups, will likely have a
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lower reactivity relative to that for aromatic hydroxyls. However, in contrast to proteins,

which may only have a few surface-exposed tyrosine residues available for labeling,

every repeat unit in our polymer contains two potential iodination sites.

Polymer 027 (FIGURE 4.2B), which is the backbone polymer fully substituted

with hydrocarbon sidechains via an ester linkage, was the primary polymer formulation

studied, (1) because it was synthesized in sufficient quantity to supply the breadth of the

desired studies; and, (2) like many of the polymers investigated in this work, polymer 027

contains a tyrosine-like group with an activated aromatic group that is sufficiently

chemically different from tyrosine such that successful labeling was not assured. In fact,

the ester sidechain linkage was the weakest electron-withdrawing group present in any of

the linkages studied (The electron-withdrawing capacity of the linkage groups studied

were: hydroxyl < ether < ester).

Though much research has carefully characterized iodination of small aromatic

compounds with a variety of techniques [33-35], we are aware of no investigation into

the direct iodination of macromolecules similar to our copolymer system. In this work,

we demonstrate successful attachment of radioiodine to our copolymer system by

adapting a standard method used to label tyrosine residues in proteins. This method was

adapted and directly applied to our novel alternating amphiphilic copolymer without any

additional modifications to the chemical structure of the target molecule because of the

tyrosine-like groups present within its repeating backbone structure. This adapted

procedure produced highly pure, stably radiolabeled polymer with high overall product

recovery. Radiolabeling yield was sufficient to supply radiolabeled product for use in a

variety of research applications, including quantitative cellular uptake and biodistribution
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studies using iodine-125, as well as positron emission tomographic imaging (PET) of

both mice and rats with iodine-124.

4.2 Materials and Methods

4.2.1 Materials

All polymers were synthesized by collaborators in the lab of Professor Arthur

Watterson at the University of Massachusetts at Lowell (UML) as described in Chapter 2.

Unless otherwise indicated, the backbone polymer starting material for all samples in this

study had a number average molecular weight (Mn) of 3 kDa with a polydispersity of

about 1.75 using measurement and data analysis techniques described in Section 3.2. The

molecular weight of the final polymer differed depending on the nature of the attached

sidechains. Aqueous solutions of known concentrations were created by weighing and

dissolving the solid polymer as received. The E13.4.3 targeting peptide was produced via

bacterial fermentation of Rosetta (DE3) cells (P/N 70954, Novagen, Madison, WI) in a

20 L bioreactor by Professor Carl Lawton at UML as previously described [36, 37]. All

other materials and reagents were obtained from commercial sources. Polyethylene

glycol (PEG-1000), dimethyl 5-hydroxyisophthalate, sodium metabisulfite (Na2 S205),

bovine serum albumin (BSA), tetrahydrofuran (THF) Trizma HCL, Trizma base, sodium

iodide, potassium iodide (KI), sodium azide, hydrochloric acid, and sodium hydroxide

were purchased from Sigma-Aldrich (St. Louis, MO). Phosphate buffered saline (PBS,

1 Ox) was purchased from VWR International (West Chester, PA) and diluted in

deionized water. Pierce Iodination Beads (formerly IODObeads) were purchased from

Thermo Fisher Scientific (Rockford, IL). Various Sephadex media, including G10, G15,

G25 ('Medium' particle size), and DEAE (diethylaminoethyl) Sephadex, were purchased
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from both Sigma-Aldrich and GE Healthcare (Piscataway, NJ). PD-10 desalting columns,

which are pre-packed with Sephadex G25, were purchased from GE Healthcare.

Disposaflex disposable columns were purchased from Kimble Chase (Vineland, NJ).

Finally, carrier-free sodium [1251]iodide (specific activity: 17 Ci (629 GBq)/mg,

radioactive concentration: 100 mCi/mL in 10-5 M NaOH, concentration: 5.88 pg/mL) was

purchased from PerkinElmer (Waltham, MA).

Preparation of Radioiodinated Product

A standard protocol was used for iodine attachment. Experimental conditions

were varied from this standard procedure depending on the requirements of the particular

experiment. For example, reaction time was varied to determine conditions for optimal

yield or concentrations were increased to provide sufficient material for certain assays.

All reaction conditions were as described in this standard protocol unless otherwise

specified.

4.2.2 Iodine Attachment

One iodination bead was washed with 1 mL of PBS, dried, and transferred to a 2-

mL conical-bottom microcentrifuge tube (Sarstedt, Newton, NC) before addition of 100

ptL Tris buffer. Sodium ['251]iodide solution (1 mCi total activity, 10 pL/mCi) was added

to the tube and allowed to activate for 5 min with occasional mixing by tapping the tube.

A 100-pL volume of sample solution (1 mg/mL) was added to the activated [125 1]iodide

and reaction was allowed to proceed for 5 min with occasional mixing. After reaction, the

product solution was removed from the iodination bead with a pipette. For procedures

labeling only protein (i.e. samples without polymer), the remaining bead was washed
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twice with 60 ptL of BSA chase solution (5 mg/mL BSA, 1 mM KI) to promote protein

desorption. For procedures with the polymer, BSA was deemed unnecessary due to the

low non-specific adsorption of the highly PEGylated polymer, and BSA chase solution

was replaced by an identical volume of PBS. Residual oxidizing species were inactivated

by addition of 60 [tL sodium metabisulfite solution (12 mg/mL in PBS). The bead and

inactivation washes were combined with the product solution.

4.2.3 Separation of Labeled Product and Free Iodine

Unreacted, free 1251 was separated from the labeled sample using Sephadex

separation media with either manually-packed Disposaflex columns (Kimble-Chase,

Vineland, NJ) or pre-packed PD-10 columns (with Sephadex G25, GE Healthcare,

Piscataway, NJ). The dimensions of the Disposaflex columns and PD-10 columns are

summarized in TABLE 4.1. For the manually-prepared columns, Sephadex media,

including G10, G15, G25, DEAE-Sephadex (diethyl aminoethyl), were swelled in PBS

(with 0.02% w/v sodium azide) for at least 1 day at room temperature.

All operations in both the Disposaflex and PD- 10 columns, including packing

(where relevant), equilibration, and separation, were performed by gravity flow.

Sufficient buffer was maintained in the reservoirs above each media at all times to ensure

that air did not contact the resin bed. The approximate flow rate was 0.4 mL/min for all

operations. Columns were packed by adding the Sephadex slurry to the Disposaflex

columns and allowing the resin to settle. PBS was added as necessary during the settling

period to maintain the flow rate and avoid airing out the resin. After the Disposaflex

column was filled with approximately 1 column volume (10 mL) of media, the Sephadex

was then washed and equilibrated by flowing approximately 3 column volumes (30 mL)
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of PBS through the settled resin bed. For purifications of labeled protein, 1-2 mL of BSA

chase solution was added in between the second and third column volumes of PBS in

order to reduce non-specific protein adsorption on the Sephadex. Columns were washed

with an additional 5 mL of PBS, again by gravity flow, and stored overnight at 4 "C.

On the day of the iodination, manually-packed columns were washed by flowing

1 additional column volume of PBS through the resin bed. The product solution (210

gL), which was combined with the bead and inactivation washes (180 gL) to yield a total

volume of 380 pL, was gently added directly to the top of the column by a P 1000 pipette

to avoid disturbing the resin. After the entirety of this solution entered the resin, PBS was

gently poured and replenished as necessary into the cone feeding the column inlet to

maintain flow and to avoid drying of the packed resin. At least 4-5 mL was maintained in

the reservoir at all times. A volume of PBS equal to that collected at the column outlet

was added over the course of the separation. The total amount varied depending on the

total elution time investigated for a particular experiment.

Fractions were collected in 2 mL microcentrifuge tubes, typically at 1-2 minute

intervals, and assayed for radioactivity using a QC2000 'table top' gamma counter

(Bioscan, Washington, DC). The total volume in each fraction was typically 150-300 tL.

The QC2000, which provided a crude measure of sample activity in less than 10 s, was

used to quickly screen the collected fractions in the iodination room to determine the

highest-activity fractions. The rapid screening of the fractions was necessary because of

the hazards associated with the labeling procedure, specifically, the volatility of free

radioiodine. The highest-activity fractions, which corresponded to labeled sample, were

pooled as the product (see FIGURE 3). For purifications of labeled proteins, 300 pL BSA
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chase solution was added to the column immediately before and after the product solution

to minimize non-specific adsorption. As before, BSA chase solution was replaced with

PBS for polymer purifications due to the heavy PEGylation of the polymer. For

separation using the PD-10 columns, the manufacturer 'gravity protocol' was followed'.

The only significant difference between the Disposaflex and PD- 10 procedures was the

total volumes for each step, which depended on the relative column volumes (see TABLE

1).

4.2.4 Characterization of Labeled Materials - Analytical Tools

Activity Measurement

For activity measurements of the gamma-emitting isotope, iodine-125, the final

pooled product was measured on a Cobra II Auto Gamma counter (Perkin-

Elmer/Packard, Waltham, MA). Five microliter samples were added to

radioimmunoassay (RIA) tubes (VWR Scientific, Philadelphia, PA) tubes in triplicate

and counting was performed for 5 min such that at least 1000 total events were counted.

Total counts were often significantly (>100x) higher. The Cobra II, which was

significantly more accurate than the QC2000 gamma counter, was used for all activity

measurement unless otherwise specified.

Activity was also determined for polymer samples labeled with tritium, 3H, by

scintillation counting. Samples were combined with 3.5 mL of scintillation cocktail

(Ultima Gold XR), vortexed, and measured on a Beckman Coulter LS6500 Multipurpose

Scintillation Counter (Brea, CA). The measurement period was 5 min for each sample.

Refer to 52-1308-00 BB 'PD-10 Desalting Columns, GE Healthcare
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Mass Concentration Determination

Mass concentration of polymer samples was determined by absorbance

measurements on a Hitachi Model U-3010 UV/vis spectrophotometer at a wavelength of

250 nm. Calibration curves were constructed for backbone polymer and polymer 027

(FIGURE 4.2A and B) by determining the absorbance of solutions of known

concentrations of each polymer.

Mass concentration of free peptide was measured using the BCA (bicinchoninic

acid) Protein Assay (Thermo Fisher) using a SpectraMax M2 microplate reader

(Molecular Devices, Sunnydale, CA) according to the manufacturer protocol. The total

product activity and mass concentration were used to calculate the specific activity of

labeled polymer or labeled peptide samples.

Molecular Weight Measurement

Polymer molecular weight was measured using a Waters (Milford, MA) gel

permeation chromatography (GPC) system, equipped with both UV/vis and refractive

index detectors, with a bank of three Styragel@ high resolution columns (HR1, HR3,

HR4) and THF as the mobile phase. GPC methods were described in detail in the

Polymerization Chapter. For material generated for GPC measurement, stable sodium

iodide, Na I, was used as a substitute for radioiodine due to contamination and cost

considerations. For GPC analysis, samples, all of which were aqueous, were freeze-dried

because the mobile phase for the GPC system was THF. For the freeze drying procedure,

samples were frozen (-80 *C) and water was removed using a freeze dryer (VirTis,

Gardiner, NY) maintained at an absolute pressure of 10 pm Hg for at least 24 hr. The
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samples were then dissolved in THF and the amount of THF added was recorded in each

instance, varying from 1-5 mL.

Radio-High Performance Liquid Chromatography

Measurements were also performed using a radio-high performance liquid

chromatography (radio-HPLC) system (Agilent, Santa Clara, CA) equipped with a

UV/vis spectrophotometer and gamma detector. The column was a BioSep S2000 size

exclusion column having the following dimensions: 75x7.5 mm (L x D, Phenomenex,

Torrance, CA). The mobile phase was sodium chloride 0.9 wt % (w/v), 10 mM Tris

buffer and the flow rate was 1.0 mL/min. At this method flow rate, there was one minute

of elution time difference due to the length of tubing between the UV/vis and gamma

detectors.

Evaluation of the Standard Reaction Protocol

A number of variations on the standard protocol, in combination with various

analytical techniques, were used to evaluate the primary components of the standard

protocol - the reaction and the purification. These experiments were designed to

demonstrate that (1) radioiodine was covalently attached to the polymer and (2) that the

labeled polymer product was effectively separated from unreacted, free iodine. The

product was analyzed by a gamma counter, GPC, or radio-HPLC in different

combinations depending on the desired goal of each experiment.
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4.2.5 Confirmation of Covalent Attachment Using Sephadex

The components added to the standard reaction protocol were varied to determine

whether iodine was covalently attached to the target polymer molecule. The elution

profile of the product purification by G 15 Sephadex was the primary result used to

evaluate the different experimental conditions.

The first combination of components studied was (1) according to the complete

standard protocol: Iodination bead, iodine-125 and polymer 027 (FIGURE 4.2B). The

results for the Sephadex purification of the resulting reaction mixture were analyzed in

the context of an ideal size exclusion activity elution profile (FIGURE 4.3). In group

selection chromatography, a type of size exclusion chromatography, the media has a

relatively uniform pore size. Material with a hydrodynamic diameter larger than the

nominal pore size, such as our polymer molecules, travel in the voids between the resin

beads eluting at a volume approximately equal to the void volume, while material much

smaller than the exclusion limit, including unreacted iodide, completely enters the pores

eluting at a volume equal to the total column volume.

labeled
Activity isample lodide

Elution Volume
vold volume column volume

Figure 4.3. Schematic representation of an ideal size exclusion activity profile. The labeled sample,
which is excluded from the pores of the size exclusion media, elutes at approximately the void
volume.

The void volume and total column volume for both the Disposaflex and PD- 10

columns packed with Sephadex size exclusion media are presented in TABLE 1. The
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void volume was calculated assuming a void fraction in the packed bed of 0.30 according

to specifications for the Sephadex media provided by the manufacturer (GE). Per the

manufacturer recommendations for non-rigid gels, this void fraction was assumed for all

Sephadex media used in this study. The total column volume was calculated according to

the column dimensions. The Sephadex GXX resins are size exclusion media with

molecular size exclusion limits designated as 1000 Da for Sephadex G10, 1500 Da for

Sephadex G15, and so on. DEAE-Sephadex is an anion exchange media that can remove

anionic species, such as iodide, from a sample by electrostatic interactions.

Table 4.1. Void and total column volumes for the Disposaflex and PD-10 columns packed with
Sephadex size exclusion resins.

column Inner Diameter Length Void Volume Total Volume
(cm) (cm) (mL) (mL)

Disposaflex 0.8 20 3.0 10.1

PD-10 1.45 5.0 2.5 8.3

If the elution profile for the reaction with all three components resembled the

ideal elution profile (FIGURE 4.3), it would indicate that the iodine was successfully

attached during the reaction. However, it is also possible that the elution peak observed at

the void volume would be due to either iodine associated with the polymer through non-

covalent interactions such as adsorption or encapsulation or to free, unbound iodine. To

address these possibilities, two additional combinations of components were studied: (2)

iodine-125 and polymer 027 and (3) iodine-125 only. If no activity was observed in the

void volume for the corresponding purifications, then that would indicate that a void

volume elution peak observed for the standard protocol mixture of components would be

due to covalently bound iodine-125.
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4.2.6 Confirmation of Covalent Attachment Using Radio-High Performance Liquid

Chromatography (HPLC)

Radio-HPLC was used as a second method to confirm covalent attachment of

radioiodine to the polymer. All of these experiments were performed either by or under

the supervision of Dr. Mikhail Papisov, Professor of Radiology, at the Harvard Medical

School/Massachusetts General Hospital (HMS/MGH). The backbone polymer was

investigated in this study.

o 0
H3C0H

OH
Figure 3.4. Structure of the polymer investigated by radio-HPLC. Backbone polymer was labeled
and purified according to the standard protocol using iodine-124 and a PD-10 column.

The polymer was labeled and purified according to the standard protocol with the

two following exceptions: (1) iodine-124 was used instead of iodine-125 and (2)

purification was performed using a Phenomenex BioSep S-2000-equipped radio-HPLC

system instead of Sephadex G25 or PD-10 columns. Fractions were pooled according to

the results of the radio-HPLC, which simultaneously analyzed and purified the unpurified

reaction product. In total, samples at three stages in the procedure were analyzed by

radio-HPLC: (1) initial backbone polymer solution, (2) labeled, unpurified sample, and

(3) purified product.

4.2.7 Effect of the Iodination on Chemical Structure

Studies were performed to determine if the labeling procedure adversely affected

the chemical structure of the original polymer sample. Oxidative conditions are required

to generate the reactive iodine species necessary to iodinate the target. Ethers and esters,
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which are oxygen-containing functional groups present throughout the backbone polymer

(FIGURE 4.2A), are susceptible to oxidative breakdown under particularly harsh

conditions. Ethers and esters may also be present as linker groups between the backbone

polymer and attached sidechains as was the case for polymer 027 (FIGURE 4.2B). The

backbone polymer was chosen for this study to investigate the potential effect of

oxidative conditions on the polymer since any decrease in molecular weight, as

determined by GPC, would have to be due to degradation of the ether or ester bonds (or

both) within the polymer chain.

The standard protocol was performed, substituting 1251 with stable 127I to avoid

equipment contamination with radioactivity. It was assumed that there would be no

difference in the iodination behavior between the two isotopes. In order to obtain

sufficient signal for GPC measurement, the initial polymer concentration in the reaction

was increased to 10 mg/mL. The iodine concentration was increased proportionately to

58.8 ptg/mL. (Note: only one iodination bead was used because this condition was still

well within the oxidative capacity of a single bead [38]). Elution volumes from 0 to 8 mL

(i.e. the entire elution) were collected and freeze-dried before being dissolved in 5 mL

tetrahydrofuran (THF) for GPC analysis. The GPC chromatogram for the reaction

product was compared to those for raw polymer dissolved in THF.

An additional experiment was designed to measure backbone polymer

degradation at elevated oxidative conditions. To accomplish this, the concentration of

iodine was increased from 5.88 pg/mL to 5.88 mg/mL, while the standard initial polymer

concentration (1 mg/mL) was used. This significantly increased the number of oxidative

species in solution relative to the oxidative targets within the polymer. 1251 was
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substituted with 127 and the entire elution (0 to 8 mL) was collected, freeze-dried, and

dissolved in THF.

Evaluation of the Standard Protocol for Purification

4.2.8 GPC Analysis of Void Volume Fraction

The standard protocol for purification was followed (Disposaflex columns packed

with Sephadex media) to generate fractions of material. The fraction collected near the

void volume was analyzed by GPC to determine (1) if the polymer eluted near the void

volume and (2) if the entire range of polymer molecular weights was present in the

collected fraction surrounding the void volume. To accomplish this, 100 ptL of polymer

solution (1 mg/mL in PBS) was added to a Sephadex G15 column and a 2 mL fraction

corresponding to elution volumes between 2 and 4 mL was collected. This fraction was

selected based on the estimated void volume in the Disposaflex columns packed with

Sephadex - 3 mL. The collected fraction was freeze dried, resuspended in THF, and

analyzed by gel permeation chromatography.

4.2.9 Elution Profile of Free Iodine-125

Minimizing elution of free iodine during elution volumes over which labeled

polymer is typically collected (i.e. elution volumes near the void volume) is one of the

primary contributions to maximizing the purity of the radiolabeled polymer product.

Therefore, it is desirable to choose a purification media that significantly delays the

elution of free, unbound iodine. Elution profiles for five different purifications, Sephadex

G10, G15, and G25, DEAE Sephadex, and PD-10 columns, were recorded to evaluate the
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suitability of each purification media. With the exception of the PD- 10 columns, the

purifications were performed in Disposaflex columns.

In these experiments, the standard protocol for purification was followed;

however, the reaction mixture was replaced by the following mixture: 10 pL of stock

sodium [ 12I]iodide solution, 100 p.L Tris buffer, and 280 piL PBS. The volume of PBS

was in place of the 100 pL of polymer solution, 120 pL of PBS wash, and 60 pL of

sodium metabisulfite inactivation solution. Fractions were collected and analyzed using

the QC2000 gamma counter. As before, this less accurate gamma counter was used due

to safety considerations associated with handling of free radioiodine.

4.2.10 Elution Profile of Post-Reaction Mixtures Generated by the Standard Protocol

While it is important for a separation media to reduce the amount of residual free

12sI, it must do so without significantly affecting recovery of the labeled material. Three

purification techniques were selected based on the results from the experiments

measuring the elution profile of free iodine-125: G25 Sephadex, PD-10 columns, and

DEAE-Sephadex. These media were investigated further by measuring elution profiles

for unpurified post-reaction mixtures generated by the standard protocol. The results of

these measurements were compared with the elution profiles for free iodine- 125.

4.2.11 Fractional Recovery for the Purification Step with and without BSA

Bovine serum albumin (BSA) was often added to reduce non-specific adsorption

of the target molecule and the corresponding loss in product recovery. Although the non-

specific adsorption of PEGylated polymers is typically quite low, an experiment was

performed to determine whether BSA was required to maximize product recovery.
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To study fractional recovery, a 100-pL volume of polymer solution (1 mg/mL)

was added to Disposaflex columns packed with Sephadex G25. Two different

experimental conditions were examined: the standard protocol for column packing and

purification was followed either with or without BSA chase solution. For experiments

without BSA chase solution, equal volumes of PBS were used as a substitute. Elution

volumes between 0 and approximately 5 mL were collected in a single fraction. For the

experiments without BSA chase solution, concentrations were determined directly using

the spectrophotometer calibration curve. For experiments with BSA solution, eluate was

collected from a control column in which 100 gL of PBS was added as a blank in

between addition of BSA chase solution as described by the standard protocol. The eluate

absorbance measured for this blank column was used to adjust for absorbance due to

BSA according to:

Ap,cor =AP -ABSA (1)

where Ap,cor is the corrected absorbance, which is the absorbance due to the presence of

polymer, Ap is the absorbance measured experimentally for the columns with BSA added,

which is due to both polymer and BSA, and ABSA is the absorbance measured in the

control experiment, which is due to BSA only. This calculation relies on the assumption

that the absorbances measured in the polymer-BSA mixture are additive.

The fractional recovery of polymer across the column, R, was calculated by:

R = Cf Vf (2)Civi

where Ci and Cf are the initial and final polymer concentration, respectively, and Vi and

Vf are the load and collected fraction volume, respectively.
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The fractional recovery across the column was also measured radiometrically by

adding a solution of tritiated polymer at the top of the column. One milliliter fractions

were collected for elution volumes from 0 to 5 mL (the fraction size was decreased to

facilitate scintillation counting). In this radiometric experiment, the fractional recovery

across the column, R, was calculated by:

La.
R = j (3)

a

where aj is the activity of the jth fraction and ai is the total initial activity added to the

column (note: activity has units of cpm - counts per minute).

4.2.12 Labeling Yield

Reaction conditions, including reaction time and both polymer and radioiodine

concentrations, were varied to measure their effect on overall fractional labeling yield,

which is the fraction of the total initial 121 added, ai, that was covalently attached to the

final product. The fractional labeling yield, Y, was calculated by:

Y= af (4)
a.

where af is the final activity of the labeled and purified product.

4.2.13 Radiolabel Stability

The stability of the covalent bond between iodine and the polymer was

investigated using PD-10 columns. Labeled polymer samples were stored for different

lengths of time and added, in their entirety, to the top of PD- 10 columns. Elution

fractions were collected and assayed for radioactivity according to the standard protocol

for purification. The resulting elution profile was used to assess the stability of the iodine

label. If the only activity detected during the elution was within fractions near the column
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void volume, then all of the activity in the sample remained as iodine covalently bound to

(or otherwise associated with) the polymer sample. Conversely, any activity that eluted

near the total column volume would correspond to iodine that had become dissociated

from the polymer over the storage period.

4.3 Results

Evaluation of the Standard Reaction Protocol

4.3.1 Confirmation of Covalent Attachment Using Sephadex

The polymer designated 027 (FIGURE 4.5) was used in the initial covalent

attachment confirmation study. Sephadex G15 media was used for all experiments in this

study.

0 0

HWO 0 O H

0

Figure 4.5. Chemical structure of polymer 027, which studied during the attempt to demonstrate
covalent attachment of iodine.

The standard protocol was completed and the elution profile during the

purification step was recorded (FIGURE 4.6). The reaction mixture for the standard

protocol contains all of the standard components: the Iodination bead, 1251, and polymer

solution. The elution profile had a sharp, high-activity peak that occurred very shortly

after the void volume, which was 3.0 mL for the Disposaflex column. High-activity

elution immediately after the void volume is often accepted as sufficient proof of
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covalent iodine attachment for peptide labeling applications. The second peak in

(FIGURE 4.6) corresponds to the elution of free iodine that was not attached to the

polymer during the reaction step. This peak was measured at an elution volume close to

that of the total column volume (10 mL).

During a typical iodination, the elution profile is used to determine which

fractions to pool to produce the purified labeled product. For the iodination of polymer

027 (FIGURE 4.6), the three fractions that were chosen for pooling are indicated by

asterisks. Over the course of the iodinations performed for this work, the fractions pooled

were the 2-3 highest activity fractions that eluted near the void volume. The small

number of fractions is collected to minimize both dilution and contamination from

unbound iodine. In the rare cases where no peak was observed in this range, no iodination

product was retrieved and the procedure was repeated with fresh reagents.

E m Bead + 1251 + Polymer

(Standard Protocol)

C

0CI)

*
0

0.
column vol.

void vol.

( 0
: 0 2 4 6 8 10 12

Elution Volume (mL, Sephadex)
Figure 4.6. Elution profile for the labeling of polymer 027 according to the standard protocol. The
void and total column volumes for this experiment, 3 and 10 mL, respectively, are indicated.
Asterisks indicate fractions that were collected and pooled as the final labeled, purified product.

As described in the Methods, two more combinations of components were

investigated in addition to that for the standard protocol. These additional reaction
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mixtures were uncatalyzed, having no Iodination bead added, and consisted of 125I and

polymer 027, and 1251 only. The results for these reaction mixtures were compared to that

for the standard protocol on semi-logarithmic coordinates to help determine whether or

not the standard reaction protocol covalently attached radioiodine to our polymer.

(FIGURE 4.7).
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- mBead + 12s1 + Polymer
M10 012s1 + Polymer

(1) -2o 10~
0

0 2 4 6 8 10 12

Elution Volume (mL, Sephadex)
Figure 4.7. Elution profiles for the three different reaction mixtures studied: lodination bead + 1251+
polymer 027, 12s1 + polymer 027, and 125I only. The results for the former, which represent the
standard protocol, were reproduced from FIGURE 6. Asterisks indicate fractions that were collected
and pooled as the final labeled, purified product.

The elution profiles for the two uncatalyzed reaction mixtures had much lower

radioactivity concentrations than that for the standard protocol. In fact, at the elution

volumes for the fractions that were pooled as the labeled polymer product (2.5-3.5 mL),

the radioactivity concentration was 3-4 orders-of-magnitude higher for the standard

protocol than for either of the uncatalyzed reaction mixtures. The significant difference in

radioactivity concentration was a strong indication that the sharp, first high-activity

elution peak for the standard protocol reaction was due to the covalent attachment of

radioiodine to polymer 027 catalyzed by the lodination bead.
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The elution profiles for the uncatalyzed mixtures were quite similar over all

elution volumes studied. Therefore, the two uncatalyzed mixtures, both with and without

polymer 027 present, behaved similarly during purification, which implied that polymer

027 did not strongly adsorb or encapsulate 125. The elution profiles for the uncatalyzed

reaction mixtures plateaued soon after 3 mL. The activity in this initial plateau remained

at a constant and relatively low level until the majority of the activity eluted near the total

column volume. Recall that, for the uncatalyzed reaction mixtures, the activity was added

in the form of 125 and should have been able to fully enter the pores of the resin.

The semi-logarithmic plot of the results for the standard protocol revealed that the

radioactivity concentration did not return to the baseline after elution of the labeled

product as might have been anticipated for an ideal purification (FIGURE 3).

4.3.2 Confirmation of Covalent Attachment Using Radio-High Performance Liquid

Chromatography (HPLC)

Radio-HPLC was used as an additional tool to confirm the direct, covalent

attachment of radioiodine to our polymer. These experiments were generously completed

by Dr. Mikhail Papisov, Assistant Professor of Radiology at the Massachusetts General

Hospital. Due to machine time limitations, only a few measurements were possible.

Unfortunately, due to a hard drive failure of the computer devoted to the radio-

HPLC system, only scanned images of chromatogram printouts were available for data

presentation (FIGURE 4.8). According to the manufacturer, the void volume in the

Phenomenex BioSep S-2000 column was approximately 2.9 mL, which corresponds to a

void time of 2.9 min. It is important to note that this relatively short and narrow size
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exclusion column was primarily intended for preparative and not analytical applications,

which may limit the interpretability of smaller chromatographic details.

The UV chromatogram for the initial sample provided a basis for comparison for

the reaction and product samples. The backbone polymer eluted approximately thirty

seconds after the void time (or volume) was reached. The wavelets in the absorbance

profile were due to the effects of pressure fluctuations on the optical detection. Such

fluctuations are common for low flow rates such as that used in this method.

A

C

JB 
c

Elution Time (min)
Figure 4.8. Radioactivity and absorbance (abs) detector response as a function of elution time
measured by size-exclusion radio-HPLC with a 7.5x75 mm BioSep S-2000 column. (A) The initial
solution, before labeling, was measured. (B) The backbone polymer was labeled with 1241 and
analyzed. This radio-HPLC analysis was used to determine which fractions to collect and pool
(indicated by the dashed lines). (C) The final, purified product was analyzed.

The activity profile for the labeled, unpurified product (FIGURE 4.8B) had two

distinct peak. The first peak corresponded to labeled polymer while the second peak

corresponded to unreacted, free iodine-124. In the purified product (8C), the labeled

polymer peak persisted, while the free iodine peak was no longer present. As described in

157



the methods, there was a one minute delay for the activity measurements relative to the

absorbance measurements due to the lines in between the detectors.

The absorbance profile for the labeled, unpurified product (8B) was similar in

shape to the chromatogram measured for the unlabeled starting material. There were,

however, two minor differences: (1) a slight shoulder on the leading edge of the

absorbance elution peak and (2) a small, amorphous peak at an elution time of

approximately 3 min. The should is most likely a peak abnormality related to the

relatively low separation efficiency of the preparative size exclusion column, while the

peak at 3 min may correspond to a small amount of impurities in the unpurified sample.

This peak was more prominent in the final, purified sample (8C), suggesting that it was

not an artifact of the original measurement. However, there was no radioactivity

associated with this early elution time peak, which was encouraging. Finally, the elution

peak at 1.5 min in the purified product was an artifact because it occurred before the void

volume had been reached.

The absorbance profile for the purified product was much broader than the other

two profiles recorded. This was most likely a result of the comparatively lower

concentration of the polymer sample analyzed by the radio-HPLC. This peak broadening

for low concentration samples is a commonly observed phenomenon in chromatography

caused by diffusion within the lines comprising the post-column hold-up volume. The

main peak absorbance and activity profiles for the labeled, purified product were similar

in shape. This result suggested that the breadth of polymer molecular weights in the

initial backbone polymer sample received radioiodine labels.
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4.3.3 Effect of Iodination on Chemical Structure

Studies were performed to confirm that the labeling procedure did not adversely

affect the chemical structure of the original polymer sample. The starting material for

these studies was cold iodine-127 (in place of iodine-125) and backbone polymer

dissolved in PBS. The molecular weight profile of the backbone polymer after

undergoing the iodination procedure was the primary result. Therefore, the backbone

polymer starting material was subjected to two different chromatography techniques: (1)

the aqueous Sephadex column during the standard protocol and (2) the organic GPC

system for molecular weight analysis.

In the first experiment, the initial polymer concentration in the reaction was

increased to 10 mg/mL and the iodine concentration was increased proportionately to

58.8 pg/mL in order to obtain sufficient signal for GPC measurement. The reaction

product was freeze-dried, resuspended in THF and the resulting GPC chromatogram for

the reaction product was compared to that for raw polymer dissolved in THF (FIGURE

4.9). The raw polymer sample used for comparison was dissolved directly in THF from

the solid form and was never dissolved in water or subjected to freeze-drying. Refer to

APPENDIX D for greater detail concerning the calculation of fractional recovery and the

manipulation of the chromatograms presented in this section.
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Figure 4.9. GPC chromatograms to determine the effect of the iodination on backbone polymer
molecular weight. Data for backbone polymer labeled with cold iodine-127 (10 mg/mL polymer, 58.8
pg/mL iodine) compared to raw backbone polymer. The x-axis for these elution profiles refers to
elution volume in the analytical GPC system (and not in Sephadex).

The chromatograms were qualitatively similar, which implied that the bulk

molecular weight distribution of the recovered backbone polymer was largely unaffected

by the standard protocol. There were, however, two noticeable differences in the shape of

the chromatograms. There was an elevated refractive index response at GPC elution

volumes greater than 23 mL for the iodination curve relative to the raw polymer curves.

This was most likely a consequence of the freeze-drying procedure (see FIGURE 4.10).

The major difference, however, was the slight shift of the peak to the right (i.e. lower

molecular weights) and the slightly extended shoulder beginning at a GPC elution

volume of 20 mL. The shift and shoulder were probably not caused by freeze drying and

therefore may be considered to have been caused by the conditions of the standard

protocol. The fractional recovery of the reaction product was estimated to be 0.88 (see

APPENDIX for calculation details and associated discussion). Recovery at this level was

deemed acceptable (see also Section 4.3.8: Fractional Recovery).
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The weight-average molecular weights for the chromatograms presented in

FIGURE 4.9 were calculated according to the empirical calibration described in detail

during the Polymerization Chapter. The Mw for the 'reaction' polymer and the raw

polymer were 5.1 and 5.3 kDa, respectively. Although differences were observed

between the chromatograms, the bulk molecular weight properties of the polymer were

minimally affected during the augmented reaction protocol in this experiment.

Experience with another sample, polymer 027, provided the basis for the

interpretation of the elevated response at elution volumes greater than 23 mL.

Specifically, beginning from the solid state, polymer 027 was dissolved in water,

subjected to the freeze-drying procedure, resuspended in THF and analyzed by GPC. The

resulting chromatogram was compared to that for polymer 027 dissolved directly into

THF (FIGURE 4.10).

4
- Raw Polymer 027
----- Freeze-Dried 027
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Figure 4.10. Comparison of two chromatograms for polymer 027. In one instance, the polymer was
dissolved in water, freeze-dried and resuspended in THF. In the other, the polymer was dissolved
directly in THF. The x-axis for these elution profiles refers to elution volume in the analytical GPC
system (and not in Sephadex).

An additional experiment was performed to measure backbone polymer

degradation at elevated oxidative conditions (FIGURE 4.11). This was accomplished by
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increasing the initial amount of iodine-127 added to the reaction by 1000-fold while

holding the concentration of backbone polymer constant at 1 mg/mL. As before, the raw

polymer sample used for comparison was dissolved directly in THF from the solid form

and was never dissolved in water or subjected to freeze-drying.
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Absorbance response was chosen for these low concentration samples because of

the comparatively lower sensitivity of the refractive index detector2. Comparing the

reaction and raw polymer chromatograms, the major peak for the reaction polymer was

shifted significantly to higher elution volumes. This increase in elution volume indicated

a reduction in molecular weight caused by polymer degradation by the oxidative reaction

conditions. As before, the presence of small peaks at GPC elution volumes greater than

25 mL may have been produced during freeze-drying. The estimated fractional recovery

in this experiment was 0.36, considerably lower than that for the previous experiment

(0.88). The low recovery was likely caused by the lower initial polymer mass and the

2 Note: Refractive index response was preferred because PEG has very minimal absorbance at 250 nm.
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disproportionate loss of material due to process recovery limitations or, more likely,

losses within the phosphate buffer salts that were insoluble in THF.

The weight-average molecular weight was also calculated according to the

calibration for these two chromatograms. The M, for the 'reaction' polymer and the raw

polymer were 3.2 and 5.3 kDa, respectively. Although the thousand-fold increase in

iodine affected the molecular weight profile of the recovered polymer, the significant

increase in reactive (oxidative) iodine species did not completely degrade the polymer.

4.3.4 Effect of the Iodination on Older Polymer Samples

While the backbone polymer used for the previously described experiments was

synthesized and used within less than 6 mo (all but one experiment was conducted within

2 mo of synthesis), the preceding experiments were also completed using a backbone

polymer sample that had been stored in the solid form under ambient conditions for more

than one year after its synthesis ('old polymer'). A portion of this stored sample was

dissolved in PBS and subjected to the augmented standard protocol (10 mg/mL polymer,

58.8 pg/mL Na 127I) and subsequently analyzed on the GPC system. Another portion of

the stored sample was also dissolved directly in THF and the resulting chromatogram was

measured as a basis for comparison (FIGURE 4.11).
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Figure 4.12. GPC chromatograms to determine the effect of iodination (augmented standard
protocol) on old polymer molecular weight. The old backbone polymer was stored at ambient
conditions for over one year. The x-axis for these elution profiles refers to elution volume in the GPC
system (and not in Sephadex).

No discernible response was measured in the GPC analysis of the 'old polymer'

that was subjected to the standard reaction protocol, freeze dried, and resuspended in

THF. This result was repeated (n > 5) to confirm that experimental errors did not

contribute to the observed phenomenon. The elevated chromatogram at GPC elution

volumes greater than 23-24 mL implied that some lower molecular weight material was

present in the sample. The iodination may have also produced material that was insoluble

in THF or fragmented such that its elution would be indistinguishable from that of very

low molecular weight contaminants, which include dissolved gases. These low molecular

weight contaminants create an extremely noisy response, at GPC elution volumes greater

than 30 mL that varies greatly between runs. For this reason, only elution volumes less

than 27 mL were included in this and other GPC chromatograms.
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Evaluation of the Standard Purification Protocol

4.3.5 GPC Analysis of Void Volume Fractions

The standard protocol for purification was followed with Sephadex G15 and

polymer 027 and fraction collected near the void volume was analyzed by GPC to

determine (1) if the polymer eluted near the void volume and (2) if the entire range of

polymer molecular weights was present in the collected fraction surrounding the void

volume. Therefore, for this experiment, the fraction collected from elution volumes

between 2 and 4 mL from the Sephadex G15 column was analyzed using the analytical

GPC system. The resulting elution profile (chromatogram) is the detector response as a

function of elution volume in the GPC system (FIGURE 4.13).

-2-4 mL Sephadex Fraction
4 ----- Raw Polymer 027

0 - - -

0

16 18 20 22 24 26
Elution Volume (mL, GPC)

Figure 4.13. GPC chromatograms to confirm that the polymer co-elutes with the high activity elution
peak. A fraction was collected from a Sephadex G15 column at elution volumes (EV) between 2-4
mL, freeze dried, and measured by GPC. The normalized absorbance (to adjust for differences in
GPC sample sizes) was plotted as a function of GPC elution volume.

The chromatograms for the Sephadex 2-4 mL elution volumes and for the raw,

unprocessed polymer 027 were compared. There was excellent agreement between the

two chromatograms across the entire range of GPC elution volumes. Small peaks were

observed at GPC elution volumes greater than 25 mL for the sample collected from the
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Sephadex column. These peaks, which were not present in the raw polymer sample that

was dissolved directly in THF, are indicative of small molecular weight species and were

likely generated during freeze drying. It is highly unlikely that these peaks were caused

by interactions with the inert Sephadex media.

4.3.6 Elution Profile of Free Iodine-] 25

Various Sephadex media were assessed for their ability to separate the labeled

polymer product from the free, unlabeled radioiodide present in the post-reaction

mixture. The relevant measurements, including the void and total column volumes, for

both Disposaflex and PD- 10 columns were summarized in TABLE 4.1.

The elution profiles for free iodide (1251) were measured for the following

Sephadex media: Sephadex G10, G15, and G25, DEAE Sephadex, and PD-10 columns

(pre-packed with Sephadex G25). The radioactivity concentration in each fraction was

plotted as a function of elution volume (FIGURE 14A). The cumulative fraction of the

initial activity added was also plotted for each elution volume according to the following:

k

Lai
.- j= 1

k,cum a. (4)

where fkcum is the cumulative fraction of the initial activity added in the kth fraction

collected and ai is the initial activity of 125I added. The plots also include dashed lines

indicating the void and total column volumes for the Sephadex-packed Disposaflex

columns, 3 and 10 mL, respectively (the void volume for the PD-10 column was 2.5 mL).
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Figure 4.14. Elution profiles for free 1251 (1 mCi in pL PBS). Data are presented (A) radioactivity
concentrations and (B) as the cumulative fraction of the initial activity added to each column. The
approximate void and total column volumes for the Sephadex packed in Disposaflex columns (all but
PD-10) are indicated by the dashed lines. The results for DEAE were not plotted in (B due to the
extremely low activity in the collected fractions.

Elution volumes near the void volume comprised the region of greatest interest

because they corresponded to fractions typically pooled as the labeled, purified polymer

product. Consequently, the elution volumes from 2-4 mL were chosen as the focus for

analysis of these results. The radioactivity concentration was the highest in the G10 and

G15 Sephadex-packed columns, both of which reached a plateau before 3 mL at a

radioactivity concentration of approximately 1xi06 cpm/mL. The two columns packed

with G25 Sephadex were the next highest in activity; however, the radioactivity

concentration measured in the 2-4 mL range was 2-4 orders-of-magnitude less than that

for the G10 and G15 resins. The increased activity at early elution volumes (2-5 mL) in

the G10 and G15 resin experiments would lead to an increased co-elution of free iodide

together with labeled product in an actual separation, which would lead to decreased

purity of the pooled fractions collected for these media. The radioactivity concentration

for the size exclusion resins sharply increased as the elution volume approached the total

column volume.
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The radioactivity concentration for DEAE-Sephadex was extremely low for the

elution volumes near the void volume. This nearly complete reduction in activity was

caused by the ionic interactions between the positively charged DEAE functional groups

and the negatively charged iodide ions. The gradual increase in activity as the elution

volume approached the total column volume corresponded to flowthrough of iodide ions

not trapped by the charged groups of the resin.

The elution profiles for free 125I in various resins were also analyzed

quantitatively by adding the activity collected during elution volumes from 2-4 mL

(TABLE 4.2). The 125I only results were presented along with that for the purification of

the reaction mixture (lodination bead, 1251, and polymer 027, FIGURE 4.6). The results

for the two sets of material added to the column were presented together to provide a

rough order-of-magnitude comparison. The free iodide collected between 2-4 mL during

the G10 and G15 purifications was between 2 and 3 orders-of-magnitude less than that

collected for the post-reaction mixture for the labeling of polymer 027. The difference

was even greater for the PD-10 and G25 purifications - 4 and 5 orders-of-magnitude,

respectively. Although the difference was greatest for the DEAE media, it may not be an

appropriate comparison since the polymer 027 reaction mixture was purified using a size

exclusion media and not an ion exchange media (see next section for further detail).
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Table 4.2. Comparison of activities collected between 2 and 4 mL elution volume from various
Sephadex purifications. The results for the 1251 only experiments were determined from FIGURE 14,
while those for the reaction mixture were calculated from FIGURE 6.

Activty in 2-4 mL
Material Added to Column Resin cpm

(epm)
Post-Reaction Mbre G1 7.1x10C

(95l-027 and Unreacthd 1) 015 7.1x0
Gi0 9.0x10 5

016 1.6x106

'2I only G25 1.4x103

PD-10 (G25) i.3x104

DEAE 2.1x101

4.3.7 Elution Profile of Post-Reaction Mixtures Generated by the Standard Protocol

Three methods were chosen based on the results for the free iodine elution profile

experiments for further examination: G25 Sephadex, PD- 10 columns (pre-packed with

G25), and DEAE-Sephadex. These methods were investigated by measuring and

comparing the elution profiles for unpurified post-reaction mixtures, which contain both

labeled sample and unreacted 125, to those measured in the previous section for solutions

of free 1251 only (FIGURE 4.15). The chemical structures of the polymer starting material

used in the study are also included. Polymer with 100% of sidechains substituted with

PEG3400 (067) was used for both the Sephadex G25 and DEAE-Sephadex experiments,

while polymer substituted with 10% PEG3400 (068) was used for the PD-10 experiment.

The fractions that were pooled to form the labeled polymer product were labeled

by asterisks. These fractions can be compared to the radioactivity concentrations in the

free 125j only elution profiles to estimate the amount of activity in the pooled fractions

that was due to unbound radioiodine. Because the total amount of activity added to each

column, 1 mCi, existed in both the bound and unbound forms, this type of analysis
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provides an upper bound for the level of free iodine impurity. For the G25 Sephadex

purifications, the radioactivity concentration in the pooled fractions of the reaction

mixture was five orders-of-magnitude greater than that in the corresponding elution

volumes for the 125I only experiment. This implied that the pooled, labeled polymer

product was 99.999% pure. This same difference for the experiments using PD-10

columns (pre-packed with Sephadex 25) was only approximately three orders-of-

magnitude, which implied a product that was 99.9% pure.

For the DEAE-Sephadex column experiments, the difference in radioactivity

concentration between the reaction mixture and iodine-125 only elution profiles at

approximately 3 mL was the greatest observed - nearly six orders-of-magnitude.

However, as indicated by the lack of asterisks in FIGURE 4.15C, no fractions were

pooled due to the extremely low activity. The absolute magnitude of the activity for the

DEAE-Sephadex purification of the reaction mixture was 10-50x less than that for the

size exclusion purifications in FIGURE 4.15A and B. This was indicative of the polymer

having become bound to the functional groups of the DEAE-Sephadex. If fractions were

to have been pooled, the resulting labeled product would have represented an overall

radioactive yield of less than 1%.
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Figure 4.15. Elution profiles for (A) Sephadex G25, (B) PD-10 columns, and (C) DEAE-Sephadex for reaction mixtures and free 125 only. Data are
plotted semi-logarithmically as the radioactivity concentration as a function of elution volume. Polymer 067 was used in the G25 and DEAE-Sephadex
experiments, while polymer 068 was used for PD-10. Asterisks indicate fractions that were pooled as the labeled polymer product (no pool was created
for DEAE experiment due to low activity).
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4.3.8 Fractional Recovery for the Purification Step with and without BSA

0 0

H3CO O H H3CO O
n nm m

OH
backbone polymer

o 027

O 0 -0 0

H3CO 0 -

o 0
6H2  071OO= I

PEG 4oo-folate
Figure 4.16. Structures of polymers investigated in percent recovery studies. Backbone polymer and
Polymer 027 were measured spectrophotometrically, while Polymer 071, which contained a tritium
label on substituted as approximately 2% of the side groups, was studied radiometrically.

The fractional recovery for the purification step was measured to determine

whether the BSA chase solution was necessary in order to apply the standard protocol to

our heavily PEGylated polymers. The fraction recovery was measured

spectrophotometrically for Sephadex G 15 and radiometrically for Sephadex G25

(TABLE 4.3) for three different polymers (FIGURE 4.16), both with and without BSA

chase solution added as described in the Methods.

Table 4.3. Summary of results for percent recovery by mass experiments. Backbone polymer and 027
were run on Sephadex G15 and measured by UV/vis, while 071 was run on Sephadex G25 and
measured by scintillation counting.

Polymer BSA R

Backbone Y 0.94
N 0.93

Y 0.93
027

N 0.97

071 N 0.92
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Under all measured conditions, the fractional recovery by mass of polymer, R,

was greater than 90%. There was no difference in recovery between backbone polymer

and polymer 027, which could form micelles. In previous work in our group, the critical

micelle concentration (CMC) of polymer 027 was determined to be 0.07 mg/mL by

surface tension measurements [39]. There was also no difference between experiments

with and without the BSA chase solution added at the appropriate steps. Finally, the

fractional recoveries determined according to the spectrophotometer and scintillation

counting were similar.

4.3.9 Labeling Yield

The fractional labeling yield, as defined in EQUATION 4, was measured as a

function of various experimental conditions, including reaction time, radioiodine

concentration, and polymer concentration (TABLE 4.4). For these studies, polymer 027

was the starting material and Sephadex G 15 was used throughout.

Table 4.4. Fractional labeling yield as a function of (A) reaction time, (B) polymer concentration, and
(C) initial radioiodine activity. Experiments were performed using polymer 027. Data in italicized or
underlined typeface indicate independent replicates of the same respective experimental conditions.

Polymer Conc InIt ActMty Rxn Time Y

(mg/mL) (mCi) (min)

7.5 0.06

A 1 1 15 0.20

30 0.30

0.01 0.007
0.1 0.02

B 1 15 0.23

5 0.51

0.1 0.43
0.25 0.45

1 0.59

2 0.58
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The greatest measured fractional yield, nearly 0.6, was for 5 mg/mL polymer

labeled with either 1 or 2 mCi of initial radioiodine for 15 minutes. Variations in polymer

concentration and reaction time had the greatest effect on reaction yield, while initial

iodine activity, which is directly related to initial iodine concentration, had comparatively

little effect on reaction yield for the measured conditions.

The fraction of linkers having radioiodine labels was calculated for the highest

observed labeling yield, 0.59. Assuming a polymer with 5 repeat units and 1 mCi of

initial iodine activity, it was estimated that only 1 in approximately 10,000 linker

molecules have an iodine label. However, even at this low substitution, more than

sufficient activity was present in the labeled product to support copious uptake

measurements.

Kinetic modeling was performed to determine whether certain elementary

reactions were applicable to the iodination system given the measured experimental

yields. Theoretical yield relationships were derived for zeroth, first, and second order

elementary reactions. The reaction was modeled as A + B -> P, where A represented 1251

B represented reactive sites, and P represented a labeled site within the polymer. The

initial conditions were CA(O) = CAo and Cp(0) = 0. The model formulations for the three

different reaction orders studied were solved to determine the corresponding analytical

solution for theoretical yield, Y (FIGURE 4.17). The theoretical yield, Y, was determined

for various reaction orders in iodine by deriving Cp as a function of time and dividing by

CAo. The time-dependent concentration, CA(t), was derived where necessary.
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Order -C d Y
dt dt

Qth 0 kCB kCBt
CA

1St kC.ACB. kCBCAe kCIot 1-e ekCBot

2nd kCA2CB, kCB kC +1 B 1- kC 1t + 1

Figure 4.17. Model formulation and results for theoretical yield derivations based on zeroth, first,
and second order elementary reactions proposed as potential representations of the iodination. In the
model, A, B, and P corresponded to iodide, reactive sites on the polymer, and labeled sites,
respectively. The initial conditions were CA() = CAO and C(O) = 0, while CB was assumed to be
constant and equal to CB0 throughout.

As depicted in FIGURE 4.2, there are two reactive sites in each repeat unit of the

backbone polymer at the position ortho to the aromatic hydroxyl. In all of the derivations

the concentration of reactive sites, CB, was assumed to be constant, CBo, because, with the

exception of the 0.01 mg/mL polymer reaction, the number of reactive sites exceeded the

total number of 121 molecules in solution by seven times or greater for the experimental

conditions studied. For example, assuming a backbone polymer molecular weight of 3

kDa, with 3 repeat units and 2 reaction sites per repeat unit, there would be 33 mmol of

reactive sites in 100 ptL of 1 mg/mL polymer solution. For comparison, there were 0.47

mmol of iodide molecules in 1 mCi of the radioiodine stock solution. Therefore, for 1

mCi iodine and 1 mg/mL polymer, there were 70 times more reactive sites than iodide

molecules in solution. This ratio can be calculated proportionately for any of the other

reaction conditions.
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For the model that was first order with respect to A, no dependence on initial

iodine concentration was predicted according to the derived result for the theoretical

yield. This was reminiscent to the experimental results, which showed initial iodine

concentration had a very weak influence on experimental yield. The theoretical yield for

the second order model with respect to A predicted that initial iodine and reactive site

concentration would have equal influence on the experimental yield. Such behavior was

not observed in the experimental results. Finally, the 0 th order model with respect to A

predicted a theoretical yield that decreased as the initial amount of iodide added was

increased. This also was not observed experimentally. The theoretical yield for the 0th

order model was also increased monotonically and linearly in time, which would

eventually lead to a physically unrealistic yield (Y > 1). This was a consequence of the

assumption that the concentration of B remained constant.

The experimental data were used to estimate a rate constant for the iodination

reaction based on the theoretical yield for the first order model in A, Y1 :

Y1 =1 - ekCBot (5)

EQUATION 5 was rearranged to:

I .. Y-- e-kCBot (6)

and, according to EQUATION 6, the experimental yield data were plotted semi-

logarithmically with CBot on the abscissa and (l-Y) on the logarithmic ordinate (FIGURE

4.18). The product CBOt must be used because experimental yields were measured for

different reaction times as well as different initial polymer concentrations. According to

EQUATION 6, the slope of the data set plotted accordingly is equal to the opposite of the
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effective forward rate constant for the iodination. The rate constant that resulted from the

least-squares regression was 4.6x10-3 mL/(mg-min) with an R-squared value of 0.93.
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Figure 4.18. Experimental yield data plotted according to the theoretical yield derived for the first
order model. The slope of the regression line for the semi-logarithmic plot is equal to the opposite of
the iodination rate constant.

4.3.10 Labeling Yieldfor Ornamented Polymers

The yields reported to this point were the maximum observed. Many alterations

were made to the basic structure of polymer 027 to include sidechains with targeting

moieties such as peptides or the small molecule folate attached to the backbone by means

of polyethylene glycol spacers of varying lengths. Based on the results of the labeling

yield study for polymer 027, labeling of ornamented polymer formulations for the uptake

and biodistribution studies described in Chapter 5 was performed using an initial polymer

concentration of 5 mg/mL. During these labeling procedures, yields were typically

observed between 0.05-0.50.

177



4.3.11 Radiolabel Stability

The radiolabel stability was investigated by applying labeled polymer 027 that

was stored in PBS at 4"C for 6 mo to a PD- 10 column (FIGURE 4.19). Equal volume,

one milliliter fractions were collected and the activity in each fraction was normalized by

the total pre-column activity added to the PD- 10 column. In this experiment, any activity

measured near the total column volume would indicate that radioiodine had dissociated

from the polymer, most likely through cleavage of the carbon-iodine covalent bond. The

PD- 10 column, which was able to separate free, unbound iodine from labeled polymer in

previous experiments (FIGURE 4.15), was chosen for convenience.
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O 0.3
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Figure 4.19. Elution profile of radiolabeled polymer 027 in PBS after storage for 6 months at 40C.
Data for each collected fraction are plotted as the fraction of the total activity initially added to the
PD-10 column. The void and total column volumes for the PD-10 column are indicated by the dashed
lines.

The majority of the activity eluted shortly after the elution volume reached the

void volume (2.5 mL for the PD-10 column). There was a small tail from approximately

4.5 to 6.5 mL of elution. No activity peak was observed at the total column volume (8.5
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mL for the PD-10). Together, these results demonstrated that iodine remained bound to

the polymer 027 for the duration of the 6 mo storage period.

4.3.12 Considerations for Radiolabeling High Molecular Weight Backbone

Backbone polymer starting material with a number-average molecular weight of 3

kDa and polydispersity of 1.75 was used throughout the preceding studies. Although the

basic chemical structure of the repeat unit does not vary as a function of molecular

weight, decreased polymer solubility at increased molecular weight is a commonly

observed phenomenon in polymer science (see also Polymerization Chapter).

Consequently, the analyses performed for the lower molecular weight polymer, including

those for labeling yield, stability, and purity would not necessarily be reproduced for

higher molecular weight backbone polymer.

Labeling of higher molecular weight polymer was studied during the

radioiodinations performed in support of the uptake and biodistribution studies described

in Chapter 5. For these studies, polymers were synthesized using low polydispersity, high

molecular weight backbone polymer (Mn = 12 kDa, PDI = 1.15) as the starting material

(FIGURE 4.20).
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R
Figure 4.20. General structure of polymers synthesized using high molecular weight backbone
polymer starting material (12 kDa, PDI = 1.15). Formulations varied X and R. Polymers without
E13.4.3 targeting peptide attached were also synthesized.

Polymers were labeled using the increased polymer concentration (5 mg/mL) and

purified using either Sephadex G25 or PD-10 columns. Although labeling was performed

identically to the successful iodinations completed for lower molecular weight polymer,

the purity of the radioiodinated purified high molecular weight polymers was uncertain

due to irregularities observed during in vivo measurements with the labeled high

molecular weight material. In particular, significantly higher levels of activity were

measured in the stomach during biodistribution studies with polymer synthesized from

high molecular weight backbone polymer relative to that for lower molecular weight

polymers. Increased activity in the stomach is a strong indicator of the presence free

iodine in vivo (See Targeted Delivery Chapter for greater detail).

Labeled polymer solutions were tested for purity using PD- 10 columns at

different lengths of storage time after the original labeling and purification procedure.

PD- 10 columns were used for this study due to the large number of columns required in a

short period of time. Activities of the collected elution fractions were measured and
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analyzed according to the same method used for polymer 027 stored for 6 mo and data

were plotted as the fraction of the total initial activity added to the PD- 10 column

(FIGURE 4.21).

Polymer substituted with 25% PEG3400-EI3.4.3 peptide and 75%

perfluorocarbon (PFC) sidechains (see FIGURE 4.20 for structure) was labeled and

purified and tested for purity 4 hr after the initial procedure (FIGURE 4.2 1a). The

secondary peak at an elution volume of 9.5 mL, which was approximately equal to the

total column volume, indicated the presence of free iodide in the labeled material. This

finding confirmed the suspicion raised during the biodistribution studies concerning the

purity of the labeled high molecular weight material.
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Figure 4.21. High molecular weight polymer substituted with 25% PEG3400-EI3.4.3 peptide and
75% PFC sidechains analyzed by a PD-10 column (A) 4hr, (B) 5 hr, and (C) 28 hr after initial
labeling and purification (t=0O). Asterisks indicate fractions that were pooled and either remeasured
(A, B) or used in biological studies (C). The void and total column volumes for are indicated by
dashed lines.

In addition to providing information about the purity, the PD- 10 column also

purified the sample. The high-activity fractions (indicated by asterisks) were collected

and analyzed using a fresh PD- 10 column one hour later, which was also 5 hr after

completion of the initial procedure (FIGURE 4.20B). For this measurement, the

secondary elution peak was significantly lower, but still present. The high-activity

fractions, again indicated by asterisks, were collected and analyzed using a fresh PD- 10

column 23 hr later, which was 28 hr after the initial procedure (FIGURE 4.20C). The
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resulting elution profile had no significant late elution volume peak, which indicated that

the sample added to the PD- 10 column was radiochemically pure. To confirm this, the

resulting sample was measured 3 days later and a similarly pure elution profile was

observed (data not shown).

4.4 Discussion

Evaluation of the Standard Reaction Protocol

4.4.1 Confirmation of Covalent Attachment Using Sephadex

Polymer 027 was labeled and purified according to the standard protocol. Two

distinct peaks were observed in the corresponding elution profile (FIGURE 6) near the

void and total column volumes. The sharp elution peak for the labeled polymer indicated

that the polymer was completely excluded from the pores of the resin. The peak

corresponding to the free, unbound iodine which are small enough to enter the entirety of

the porous resin, was comparatively diffuse. This is most likely due to dispersive effects

that are commonly observed for materials traveling through porous media.

Heterogeneities in the pore size could have also contributed to the observed diffuseness

of the free iodine peak.

When plotted semi-logarithmically (FIGURE 4.7), it was apparent that the

radioactivity did not return to the baseline after the primary elution peak of the labeled

polymer 027 product. This tailing of the elution peak can be attributed to mixing

occurring within the resin bed, which is usually a sign of loose packing. Loose packing

may be a consequence of the gravity flow method used to pack the Disposaflex columns.

Although it represents a deviation from the ideal profile presented qualitatively in
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FIGURE 4.3, the observed tailing was relatively small when compared to the height of

the elution peak.

For the uncatalyzed reaction mixtures in which no lodination bead was added, a

step change and subsequent plateau in radioactivity concentration was observed. This

behavior may indicate a small degree of channeling or bypassing of the Sephadex G15

resin bed. The small proportion of activity bypassing the media remained constant until

the major activity peak, which corresponded to free iodine, began eluting as the elution

volume approached the total column volume. The consequence of this channeling or

bypassing would be unbound iodine impurities in the pooled labeled polymer (indicated

by asterisks).

Even though some channeling and tailing was observed, the disposable Sephadex

G 15 column packed and operated solely by the force of gravity yielded purified product.

In fact, the observed 3-4 order-of-magnitude difference (FIGURE 4.7) was an initial

indication that the purified labeled polymer had a radiochemical purity of at least 99%, if

not higher. Subsequent experiments were performed to further improve the purification

step.

4.4.2 Confirmation of Covalent Attachment Using Radio-High Performance Liquid

Chromatography (HPLC)

The radio-HPLC experiments provided (FIGURE 4.8) additional evidence that

radioiodine was covalently attached to the polymer, as well as evidence that the

iodination reaction did not affect the bulk molecular weight characteristics of the polymer

starting material. The fact that the radioiodine was spread throughout all polymer chain

lengths in the starting mixture was important. This ensured that any activity measured for
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a given sample would have equal contributions from all molecules in a given polymer

sample. This result was achieved because the backbone was an alternating copolymer,

with linker groups and their potential iodination sites in every repeat unit.

4.4.3 Effect of Iodination on Chemical Structure

Analytical GPC measurements of the backbone polymer molecular weight were

performed to determine whether the iodination reaction had an effect on the chemical

structure of the polymer (FIGURE 4.9). Any change in the molecular weight profile,

whether gross or subtle, would be a direct result of the destruction of ester or ether bonds

within the backbone of the polymer. Both of these oxygen-containing functional groups

were considered the most likely targets of the oxidative conditions produced by the

Iodination bead.

The standard reaction protocol, for initial concentrations of iodine and polymer

elevated by a factor of ten, was shown to have a small, but measurable effect on the

molecular weight profile of the backbone polymer. The slight shift toward longer elution

volumes suggested a small decrease in the bulk molecular weight of the backbone

polymer likely due to the conditions in the reaction. However, the shift was

comparatively small and this fact, together with the sharp elution peak observed near the

total column volume activity (FIGURE 4.6), provided strong evidence that the iodination

reaction not only attached radioiodine to the polymer, but that it attached the radioiodine

to intact polymer chains.

Unfortunately, these measurements were complicated by the requirement to

freeze-dry the experimental samples for analysis in the organic mobile phase used in the

available GPC system. This complication was evident by comparing the chromatograms
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of freeze-dried polymer and raw polymer dissolved in THF (FIGURE 4.10). This

experiment demonstrated that one of the liquid manipulation steps required for sample

analysis produced the effect, albeit to a lesser extent, that was a potential outcome of the

experiment. The effect of freeze-drying on the molecular weight profile did appear to be

confined to the production of low molecular weight fragments at elution volumes greater

than 23 mL.

In a second experiment, the oxidative conditions during the reaction were

significantly elevated to determine whether conditions in the reaction could affect a

significant change in the backbone polymer molecular weight (FIGURE 4.11). A one-

thousand fold relative increase in oxidative species was achieved by increasing the

concentration of cold iodine added to the reaction mixture with the backbone polymer

and lodination bead. A significant shift in the molecular weight profile was observed,

which corresponded to a 60% reduction in weight-average molecular weight. This

reduction in molecular weight could have been caused by degradation of the polymer

backbone. However, it is also possible that the high concentration of iodine added to the

polymer backbone may have affected the polymer retention by the GPC columns by

changing the way in which the polymer interacted with the media.

4.4.4 Effect of the Jodination on Older Polymer Samples

Similar experiments were performed to assess the effect of the iodination on the

chemical structure of older polymer samples (FIGURE 4.12). The resulting GPC

measurements revealed complete degradation of the old backbone polymer upon

exposure to the standard protocol with a tenfold increase in both polymer and iodine

concentrations. These results suggested a potential mechanism for polymer breakdown. It
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is well established that PEG oxidation occurs in humidified environments [40]. It is likely

that the backbone polymer, which was stored for extended periods under ambient (i.e.

humid) conditions, contained partially oxidized PEG subunits prior to use in this

experiment (FIGURE 4.22). This partial oxidation could have made the backbone

polymer more susceptible to the strong oxidative conditions of the iodination. Because

the extent of this partial oxidation due to storage is related to the length, temperature, and

moisture content of the exposure, polymer stability during iodination can be improved by

storing polymer in a refrigerator and in the presence of a desiccant.

peroxide HO O OH

H O O~ O aut1otiH o -0 Obreakdown

HO [ H

Figure 4.22. Chemical structure representation of the proposed mechanism for the degradation of the
backbone polymer under oxidative conditions.

This proposed mechanism can be extended to the iodination reaction, wherein

oxidative conditions enhance the degradation process, either by increasing the rate of

peroxide formation or subsequent peroxide breakdown. Recall that each repeat unit in the

backbone polymer is composed of the isophthalate linker and PEG900, the latter of which

contains approximately 34 repeat units of ethylene oxide. The oxidative breakdown of

just one of these many ether groups within the backbone will fracture the polymer chain.

Evaluation of the Standard Purification Protocol

4.4.5 GPC Analysis of Void Volume Fractions

The complete molecular weight profile of polymer 027 was recovered within

elution volumes between 2-4 mL (FIGURE 4.13). This result implied that all lengths of

backbone polymer in the sample added to the top of the column were excluded from the
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pores of the Sephadex G15 media. The exclusion limit for this media was 1.5 kDa. As

was observed for previous samples, small molecular weight fractions in the recovered,

freeze-dried, and resuspended sample were likely generated during the freeze drying step.

This experiment demonstrated that the activity measured in the standard protocol

experiment (FIGURE 4.6) co-eluted with the breadth of the molecular weight profile

measured for polymer 027. This fact was an additional piece of evidence indicating the

successful attachment of radioiodine to the polymer.

4.4.6 Elution Profile of Free Iodine-125

The elution profile for free iodine-125 was measured in five different purification

experiments, which covered 4 different media and 2 different colunm configurations

(FIGURE 4.14). The results were used to evaluate the ability of each media to delay the

elution of free, unbound iodine, which directly contributes to the radiochemical purity of

the pooled labeled product. The significantly lower radioactivity concentration measured

in the range between 2-4 mL made the Sephadex G25 (PD-10 and Disposaflex) and

DEAE Sephadex columns most attractive for continued investigation. The promising

results for the Sephadex G25 media experiments are consistent with the widespread use

of PD- 10 columns for purification of radioiodinated proteins found throughout the

literature [1, 12, 13, 41, 42].

The sharp increase followed by a plateau in radioactivity concentration for the

G 10 and G 15 experiments are an indication of some channeling or bypassing of the resin

bed similar to that observed previously (FIGURE 4.7). The G1O and G15 exclusion

limits (1 and 1.5 kDa, respectively) were the lowest (i.e. smaller pore sizes) of the media

investigated. Although it does not seem likely that the lower exclusion limits themselves
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can explain the observed bypassing behavior. One potential explanation may be

incomplete swelling of the resin leading to small heterogeneities in the packed bed. While

bypassing was observed to varying extents for all four experiments involving size

exclusion media, the activity measured for the DEAE Sephadex was nearly at

background levels until at least 6 mL of elution volume. This observation suggested that

the charged groups of the DEAE media were able to compensate for any channeling or

bypassing fluid dynamics through strong ionic interactions.

4.4.7 Elution Profile of Post-Reaction Mixtures Generated by the Standard Protocol

While a successful purification must delay the elution of free, unbound iodine-

125, it must also allow for the recovery of the labeled product. The elution profiles for the

post-reaction mixtures provided the information necessary to address this second

requirement (FIGURE 4.15). For the G25 Sephadex, the five order-of-magnitude

difference between the post-reaction mixture and free iodine elution profiles over the

fractions pooled to yield the purified labeled sample (indicated by asterisks) were almost

exclusively representative of iodine associated with the polymer and not unreacted,

unpurified iodine. The PD-10, for which the labeled material was approximately three

orders of magnitude greater than the free 1251, also produced a product of >99.9% purity.

Depending on the sensitivity of the end-use technique to free iodine impurities, this level

of purity may be sufficient, which would make the PD- 10 columns an attractive option

because they arrive pre-packed with Sephadex G25 media.

Although DEAE-Sephadex yielded the labeled polymer with the greatest purity,

the column conditions led to significant product loss during purification. Specifically, the

buffer pH was not adjusted to (or beneath) the isoelectric point of the polymer. If the
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polymer were to have been charge neutral or positively charged, the DEAE-Sephadex

could have been operated in flow-through mode in which the labeled product would elute

while the free, negatively charge iodide would bind to the DEAE. Because the iodination

procedure is intended for a wide range of polymer formulations, one would likely have to

determine the isoelectric point of each polymer formulation, of which there are many,

and carefully control pH in order to maximize recovery of labeled material. There may

also be stability issues at lower pH due to potential acid hydrolysis reactions of esters

throughout the polymer.

Because the process was intended for use across a range of polymer formulations

and it would be time-consuming to determine the pKa and appropriate buffer

characteristics for each polymer formulation, it was determined that the Sephadex G25 in

Disposaflex should be used as the universal media for the purification step due to its

strong purity profile and general applicability. There may be opportunity to revisit the

DEAE Sephadex either for applications that demand higher purity or once a small

number of candidate polymer formulations are selected for intensive study.

4.4.8 Fractional Recovery

Although BSA is occasionally used in Sephadex purifications, particularly for

high-adsorbing proteins, it did not appear to have any effect for our polymer system

(TABLE 4.3). This result was not surprising due to the large amount of PEG in all of our

polymer formulations. Finally, since the labeled polymer product solutions were

frequently mixed with higher concentration, cold polymer solutions to produce the final

labeled polymer for use in uptake or biodistribution studies, fractional recoveries greater

than 0.90 were more than sufficient.
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4.4.9 Labeling Yield

The results for the labeling yield experiments demonstrated that the initial

polymer concentration added to the reaction mixture was the most significant factor in

increasing yield (TABLE 4.4). There are some practical limitations associated with

increasing the polymer concentration, including (1) limited solubility of heavily

PEGylated polymers, especially those having higher molecular weights, (2) limitations in

the availability of synthesized material, and (3) volume requirements in order to

adequately submerge the Iodination bead in solution. These three limitations set the

practical limit on initial polymer concentration at approximately 5-10 mg/mL.

The experimental labeling yield was also a function of total reaction time,

although the effect appeared to be more asymptotic than that for polymer concentration.

There were also practical limitations when considering an increase in reaction time,

particularly with respect to degradation of the polymer by the oxidative conditions in the

reaction. The longer reaction time increases the exposure of both the targeted sites on the

aromatic ring and the functional groups susceptible to oxidative degradation to oxidizing

species generated by the lodination bead. In order to determine the proper reaction time,

one would have to solve an optimization problem balancing yield and degradation

requirements.

The insensitivity of yield to initial iodine activity was the primary reason that the

particular kinetic model (first order in A, second order overall) was chosen as the

appropriate description of the process yield (FIGURE 4.17). The R-squared value

determined from the least-squared regression of the data, 0.93, indicated strong
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agreement between the data and the theoretical model (FIGURE 4.18), which was

particularly promising considering the relative simplicity of the model. Finally, the length

of the activation period (currently 5 min in the standard protocol) is an additional variable

that was not investigated.

4.4.10 Labeling Yieldfor Ornamented Polymers

The fractional labeling yield for ornamented polymers varied widely between

0.05-0.50. These were results compiled from production runs for a wide variety of

polymer formulations. The data were examined to try and determine trends in the yield

that corresponded to aspects of the chemical structure of the labeled polymers; other

contributing factors complicated the picture. The most common issue was partial

inactivation of the Iodination bead activity, which could only be determined after an

iodination was completed. In all cases, the yield was more than sufficient to supply a

breadth of in vitro update and in vivo biodistribution studies.

Although the optimum conditions may vary depending on the particular

formulation, determining individually optimized conditions was infeasible due to the

shear number of polymers investigated during the biological studies. A similar study

would be advised before initiating any large-scale animal studies with a small number of

lead candidate formulations.

4.4.11 Radiolabel Stability

The elution profile for polymer 027 stored for 6 mo at 4"C (FIGURE 4.19)

demonstrated that the label on the polymer was stable over the duration of the storage

period. Although one would probably not plan to store labeled material for extended time
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periods due to activity losses associated with radioactive decay, this result provided

information concerning the time-dependent reliability of the labeled polymer.

4.4.12 Considerations for Radiolabeling High Molecular Weight Backbone

The same radiolabel stability experimental procedure was performed on freshly

labeled, high-molecular weight, ornamented polymer (FIGURE 4.20) that was

synthesized for uptake and biodistribution studies. These measurements revealed that

free, unbound iodine impurities were present in the sample 4 hr after the original reaction

and purification. This could have been caused by experimental errors during purification

of the original labeled product. This seems unlikely because this free iodine peak at t=4hr

was observed for all of the polymer formulations in this high molecular weight series.

From this it must be inferred that the effect is phenomenological and not procedural. To

produce the effect, it is possible that some iodine had formed an association with the

polymer that was strong enough to endure the purification but not strong enough to

persist after 4 hr of storage.

The relatively higher molecular weight of the backbone polymer starting material

(12 kDa vs. 3 kDa) was the primary difference in this sample in comparison to polymer

027, which did not exhibit this behavior. Recall that solubility decreases as molecular

weight increases. Based on this, it was proposed that the strong association described in

the previous explanation was somehow mitigated by local insolubilities in the higher

molecular weight polymer.

For the second post-protocol purification (FIGURE 4.2 1B), the fact that the

secondary peak was not observed at the total column volume, but slightly earlier, may

suggest that the late elution volume activity was not caused by free iodine, but by
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broadening or tailing of the labeled polymer peak. This would certainly be the case if the

datum at elution volume of 6.5 mL was a low outlier that created a 'false positive' peak

due to the discrete nature of the collected fractions.

Although the mechanistic explanation for the observed phenomenon was

incomplete, the additional purifications of the high molecular weight polymer were

ultimately able to produce radiochemically pure polymer to supply in vitro and in vivo

studies. The additional purification steps reduced the overall process yield, the overall

fractional labeling yields for the various high molecular weight polymers were

approximately 0.05-0.10.

4.5 Conclusion

The preceding results represent the first demonstration that a nanoparticle-

forming polymer that can be directly labeled with radioiodine using a standard protein-

labeling technique without any additional chemical-alterations or intermediate reactions.

The process has been characterized using a variety of chromatographic techniques,

spectrophotometry, and radiometric measurements. These measurements have confirmed

covalent, stable attachment of iodine isotopes, including 1251 124 , and 127, to various

polymer formulation.

A variety of purification media were investigated to assess their ability to retard

the elution of free iodine while providing sufficient recovery of the labeled product for

use in subsequent biological studies. Both G25 Sephadex and PD-10 columns provided

excellent separation of labeled material from unreacted 125I. The fact that PD- 10 columns

require comparatively little preparation makes them attractive for future use, particularly

in non-research applications, such as in the clinic.
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Reaction yields above 90% have been reported for many proteins [14] and small

molecules [34] using various radioiodination methods. In this study, the tyrosine-like

groups within polymer 027 are esterified, and further optimization is likely possible.

Moreover, the specific activity of the labeled material, which is the key metric for

diagnostic. imaging applications such as PET or SPECT, can be increased as desired by

increasing the initial activity of radioiodine added. Although this is not the most cost-

effective method to achieve this aim, particularly considering the limited availability of

isotopes like 1241, the procedure as developed should provide radiochemical yields within

an acceptable range.

The free iodine impurities observed in labeled and purified samples synthesized

from high molecular weight backbone polymer was of concern. These results suggested

that some molecular weight-related phenomenon created a subset of polymer-iodine

associations that withstood the initial post-labeling purification only to dissociate less

than four hours after the initial procedure. The exact mechanism for this behavior is

unclear. Possibilities include high molecular weight-related adsorption of iodine by the

polymer or increasing bond lability due to local insolubilities of the higher molecular

weight polymer.

Overall, a broadly applicable process was developed to radiolabel a range of

polymer formulations for use in biological studies, including in vitro cellular uptake, in

vivo biodistribution, and live animal imaging by positron emission tomography (PET).

Further polymer-specific improvements or condition adjustments may be necessary

before cost-effectively translating the process to large-scale research or pre-clinical trials

to improve product yield and related cost-effectiveness.
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Physico-chemical and Biological Evaluation of E13.4.3-Conjugated Polymers

5.1 Introduction

A number of circulating delivery systems have been developed in response to the

need for efficient and selective drug transport to primary tumors and their metastases.

Circulating delivery systems fall into three categories - liposomes, polymeric micelles,

and dendrimers. These system are able to effectively circulate in the bloodstream by the

addition of poly(ethylene glycol) (PEG) either by adsorption or chemical attachment.

Addition of PEG to a delivery vehicle creates a dense 'conformational cloud' on the

exterior conferring a level of stealth to the particle [1]. It is proposed that both the

hydrophilic nature and the chain flexibility of PEG are necessary to avoid opsonization

by plasma proteins and subsequent macrophage attack [2]. Interestingly, the PEG often

serves a dual purpose in polymeric micelles, providing the hydrophilic 'head-group'

necessary for micellization.

Liposomes are composed of phospholipids that form closed bilayer structures

when in aqueous solution [3]. They are desirable as drug carriers due to their

biocompatibility since they are typically constructed either using biological materials like

phospholipids or made stealth via conjugation to PEG [4]. Moreover, liposomes can carry

both hydrophobic and hydrophilic materials and be varied in size and surface properties

by careful preparation. Liposomes are occasionally limited by issues of size; macrophage

recognition and subsequent clearance occurs for particles above ~200 nm. Conjugation to

PEG can slow macrophage detection, however this retarding effect decreases as liposome

size increases [5]. Other issues include low stability, non-sterility, and poor encapsulation
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efficiency [6]. Most recently, liposomes have found application in delivery of

oligonucleotides for various therapeutic applications, including treatment of cancer [7].

Dendrimers are highly branched macromolecules synthesized by either divergent

or convergent methods [8] yielding particles with a high number of surface units per area

as well as an adaptable internal environment. An additional desirable property of

dendrimers is their monodispersity [9]. Although dendrimeric drug delivery systems have

achieved successes in in vitro studies [10], the synthesis is time-consuming, expensive,

and poorly scalable. In spite of these constraints, the group of James Baker has published

promising in vivo results using a PAMAM dendrimeric system targeted to the folic acid

receptor overexpressed in the KB human cancer cell line. In this work, the

chemotherapeutic methotrexate was delivered to mice bearing KB tumor xenografts. The

dendrimers were covalently attached to both FITC and tritium for post-experiment

histological assays. Their delivery system reduced methotrexate toxicity ten-fold and

nearly doubled survival time in the methotrexate-treated group in comparison to controls.

In their most recent work, the group of James Baker has begun using a new targeting

ligand for the KB cell line, riboflavin [11, 12]. It is unclear why they have moved away

from folic acid as a targeting ligand.

Additionally, current work in the Hammond lab in this department has focused on

linear dendritic block copolymer micelles as targeted delivery systems. In this system, the

linear block can be chosen to improve encapsulation, while the dendritic exterior

provides many surface groups for addition of targeting capability. In recently published

work and a current manuscript in preparation, dendritic block copolymers using folate as

a targeted ligand and paclitaxel as the therapeutic agent have shown a significant increase
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in efficacy relative to untargeted controls [13]. The synthesized particles were

approximately 80 nm in diameter.

In addition to the circulating systems described above, a number of novel contrast

agents have been developed, including superparamagnetic nanoparticles and quantum

dots. Cross-linked iron oxide (CLIO) particles, which are powerful MRI contrast agents,

are an example within the field of superparamagnetic nanoparticles for imaging [14]. The

group of Anna Moore has used CLIO particles coated with dextran and targeted them to

tumor cells demonstrating the utility of underglycosylated MUC 1 as a target. They have

also attached the fluorescent dye, Cy5.5, to CLIO particles to produce a multimodal

system with capability for both MR and near infrared fluorescence imaging [15, 16].

Although these CLIO particles are not best suited for carrying therapeutic agents to

tumors, a few methodologies converting iron oxide particles into simultaneous drug

delivery and imaging vehicles have been reported [14]. Quantum dots are fluorescent

nanocrystals that absorb a broad range of light while having a narrow and intense

emission spectra tunable by altering the crystal size [17].

5.1.1 Polymeric micelles

Polymeric micelles [18-21] are amphiphilic colloids that spontaneously form

aggregates composed of several amphiphilic molecules at concentrations and

temperatures conducive for doing so. The critical micelle concentration (CMC) is the

concentration above which micelle formation begins. Below the CMC, the amphiphilic

sub-units remain solubilized. The resulting particles are typically of the order 5-100 nm

in diameter and are usually spherical in morphology.
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Polymeric micelles are composed of two major components. The interior,

hydrophobic core is a hospitable environment for hydrophobic molecules, such as many

contrast and therapeutic agents. The solubilization properties of this internal environment

may be tailored to encapsulate these poorly soluble molecules. This encapsulation

shelters the molecule from biological degradation while protecting healthy cells from the

potentially cytotoxic agent. The second major component is the hydrophilic corona that

surrounds the hydrophobic core. As previously described, this corona is often PEG, a

molecule that gives a 'stealth' property to a circulating particle [19].

According to Torchilin, the ideal polymeric micelle system would have a diameter

between 5 and 100 nm, demonstrate stability both in vitro and in vivo (low CMC and

stability until reaching the desired destination), disintegrate into biocompatible materials

after delivery, and encapsulate the desired agent in sufficient quantities [18]. The upper

limit of the size recommendation is necessary in order to avoid clearance by the

macrophages of the reticuloendothelial system (RES). The lower limit ensures that the

delivery vehicle avoids rapid clearance by renal exclusion and that it takes advantage of

the enhanced permeability and retention (EPR) effect where passive targeting is possible

due to the 'leaky' vasculature often encountered in tumors [22-25]. It has been shown

that non-targeted particles greater than 5-10 nm preferentially accumulate in primary

tumors based on their size alone because of the EPR effect [23]. Acknowledging the

tremendous advantages in size, stability, biocompatibility, and adaptability attributed to

polymeric micelles, the next step is to then endeavor to construct delivery systems with

the most ideal biodistribution and pharmacokinetic characteristics. Significant thought
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has been devoted to the design of polymeric micelles since the seminal paper, including

significant contributions from Omid Farokhzad [26] and Torchilin himself [27].

There has been a great deal of activity in the field of polymeric micelle drug

delivery systems, particularly within the last 15-20 years. The following portrayal will

both highlight the achievement thus far and introduce the breadth of investigation in this

area of research.

The most extensive achievement in polymeric micelle delivery has been by the

group of Kataoka in Japan. Their work began with poly(ethylene glycol)-poly(aspartic

acid) block copolymers [PEG-PAsp] [28] and has since expanded to include other block

copolymers (including PEG-poly(D,L-lactide) [PEG-PLA]), as well as polyion complex

(PIC) micelles [20]. Most, if not all, of Kataoka's initial work does not include any

targeting, instead relying on passive uptake via the EPR effect. The original PEG-PAsp

system was chemically conjugated to the chemotherapeutic agent, doxorubicin, and this

system is currently in clinical trials in Japan [29].

Work using paclitaxel-loaded poly(DL-lactide-co-glycolide) [PLGA] block

copolymer nanoparticles targeted to the wheat germ agglutinin receptor have successfully

increased tumor doubling time from 11 days in control animals to greater than 25 days

for treated animals [30]. Poly(ethylene oxide)-block-poly(caprolactone) polymeric

micelles have been used as siRNA delivery vehicles to successfully increase cellular

susceptibility to the chemotherapeutic, doxorubicin [31]. Others have used polyester-

based polymeric micelles to achieve increased cell death by increasing the cellular

penetration of paclitaxel [32].
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Most recently, Farokhzad and Langer have developed PLGA-b-PEG block

copolymer nanoparticles encapsulating docetaxel [33] bioconjugated to an aptamer

targeted to the prostate-specific membrane antigen. Aptamers are oligonucleotides that

fold into conformations that bind to targets with high affinity and specificity [34]. In this

study, the treatment group receiving the targeted, drug-loaded nanoparticles had 100%

survival with 5/7 animals having complete tumor regression, whereas only 20% or less of

control group mice survived during the 109 day experiment.

A number of shell cross-linked polymer micelle systems (SCKs) have been

developed [35] in an attempt to improve micelle stability in the dilute conditions

encountered upon injection in vivo. These SCKs are typically block copolymer micelles

include polyion metal complex cores that may be chemically induced to form cross-links

[36]. Moreover, these SCK systems have been used to try to alter the delivery

pharmacokinetics. The group of Wooley has developed an extensive library of SCK

micelles that may be used for controlled release via thermolytic cleavage of the cross-

linking bonds [37-39]. Wooley and Wickline have collaborated to develop amphiphilic

fluoropolymer SCKs for fluorine magnetic resonance imaging applications.

5.1.2 Targeted Delivery with the Alternating Amphiphilic Copolymer System

The initial work developing the in vitro methodologies to test the alternating

amphiphilic copolymer system in targeted delivery applications was performed as part of

the thesis of Dr. Michelle Miller in the Colton lab [40]. The thesis also investigated two

different targeting pairs, both of which were discussed in the previous section: (1)

EPPT/underglycosylated MUC- 1, which was used in the work of Anna Moore, and (2)

folate/folate receptor (FR).
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Initial results with EPPT as targeting ligand showed an approximately two-fold

increase in selective uptake of EPPT-containing polymer over polymer without EPPT in a

receptor positive cell line. Focus shifted away from EPPT targeting ligand due to its

exceedingly high cost of production. Folate was chosen a model system for its cost,

affinity for its targeted receptor, and prevalence in the literature of the field. A library of

polymers containing folate was synthesized by collaborators at UMass Lowell. A wide

range of tests with these polymers were unable to show any increase in uptake due to the

presence of folic acid targeting ligand. From these experiments, it was concluded that the

measured uptake was due entirely to non-specific uptake. Dynamic light scattering

measurements were performed to investigate the lack of specific uptake. The

measurements revealed that the polymers, even those without hydrocarbon sidechains,

were forming large aggregates of at least 200 nm (previous DLS measurements showed

diameters -10 nm). This aggregate formation was attributed to self-association of folate

molecules, the consequence of which was a significant reduction in the exposed the

targeting ligand. For these reasons, folate was abandoned as a targeting ligand.

5.1.3 The E13.4.3 Peptide Targeting Ligand

After the disappointing results with folate as the targeting ligand, a new targeting

ligand option was determined through collaboration with Dr. Benjamin Hackel from the

laboratory of Professor K. Dane Wittrup in the Department of Chemical Engineering at

MIT. In his thesis [41], Dr. Hackel developed protein engineering techniques to produce

super-binding peptides for various targets. The tenth type III domain of the human

fibronectin protein, which is a small, stable, single-domain, cysteine-free protein, was

used as the scaffold for engineering.
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The E13.4.3 peptide was chosen from a library of super-binding peptide raised

against the epidermal growth factor receptor (EGFR). The E13.4.3 peptide was chosen

from the available options due to its extremely low dissociation constant, KD = 250 pM

[42, 43], and its comparatively low number of tyrosine moieties in the binding domain,

one.

5.2 Design of Targeted Polymers

In order to successfully design a polymer to maximize the uptake of targeted

polymers into target-bearing tumors in vivo, it is imperative to understand how varying

polymer components and resultant properties, including size, micellization, stability, and

targeting ligand density, affects performance in four biological areas: (1) receptor

binding, (2) access to the receptor, (3) time in circulation, and (4) the enhanced

permeability and retention (EPR) effect.

One might propose an experimental design investigating targeted delivery building

'from the bottom-up.' The in vivo behavior of free E13.4.3 peptide would be of primary

interest after which the behavior of the peptide attached to a single PEG-linker repeat unit

of the polymer would be studied. The next conceivable step in this bottom-up approach

would be to synthesize a polymer that can form micelles, that is, a polymer having more

than one repeat unit such that hydrophobic sidechains can be attached in addition to the

peptide.

As the number of repeat units increase, the design choices, which include the polymer

molecular weight, proportional substitution of the backbone with targeting and

hydrophobic groups, the nature of the hydrophobic groups themselves, and the length of

the spacer molecule connecting the peptide to the backbone, increase substantially and
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the bottom-up design approach becomes less useful. Therefore, a systematic, conceptual

evaluation of the various design parameters is needed in order to design a study that

effectively assesses the performance of the targeted polymers.

5.2.1 Targeting Density and Molecular Weight

The density of targeting peptides within the polymer is unquestionably a variable

of interest when designing a targeted delivery system. There are three interdependent

variables that must be considered: (1) the number of linkers per chain (or the backbone

polymer MW), (2) the number of peptides per chain, and (3) the percent of sidechains

substituted with peptides. The interrelatedness of these three variables is illustrated in

(FIGURE 5.1):

I pentds cer chain 60% mubdlutLon
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Figure 5.1. Schematic diagram depicting the interrelatedness of the three key variables that
determine the targeting density: the number of linkers per chain, peptides per chain, and percent
substitution. The linkers (circles) can only be substituted with so many peptides (squares) before the
number of hydrophobic sidechains is reduced to the point where micelles can no longer form.

Holding the number of peptides per chain constant and increasing the linkers per

chain (MW) decreases the percent substitution. Micelle formation creates an additional

complicating factor because the number of peptides per micelle depends on the
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aggregation number. If the aggregation number did not change, then the conversion

would be straightforward. However, the micellization behavior could be a function of the

polymer MW or the percent substitution of peptides, or both.

Changing the percent substitution of peptides also affects the

hydrophobicity:hydrophilicity ratio of the polymer since greater percent peptide

substitution means fewer sidechains can be hydrophobic. This may also have an affect on

micellization behavior and therefore makes this ratio an additional potential variable

since there is the capability of adding PEG groups of various lengths as sidechains,

without targeting peptides. However, considering the already relatively low amount of

hydrophobicity in the amphiphilic polymers as they are currently designed (as seen

readily in the schematics above), one might instead consider varying the length of the

hydrocarbon (or perfluorocarbon) sidechains to increase the relative hydrophobicity of

the amphiphilic polymers.

There are many possible levels for the three dependent variables beyond what is

depicted in the preceding figure. TABLE 5.1 provides the various options in a useful

layout for experimental design. The highlighting and dotted lines on the table identify

potential series for investigation. An investigation focusing on the effect of the backbone

polymer MW would follow one (or more) of the vertical series. A study investigating the

effect of the number of peptides per chain would follow one (or more) of the horizontal

series. Finally, if the polymers within the selected horizontal and vertical series are

chosen properly, the data from these experiments can be used to evaluate the effect of the

third dependent variable, the percent of sidechains substituted as peptides.
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The circled values within the table represent a potential large study to

comprehensively investigate the affect of polymer MW, peptides per chain, and percent

substitution of peptide groups. In total, there are fourteen experimental levels circled.

There is also the option to synthesize identical polymers without the targeting peptide

attached as negative controls, which would immediately double the proposed polymer

library to twenty-eight. Considering the fact that study of other potential variables,

including sidechain identity and spacer length, are not included in reaching this value, it

is clear that, although experiments studying the performance of polymers compassing all

the circled levels would be ideal, significant reduction in scope is necessary. The other

variables will also be considered in detail before doing so.

5.2.2 Hydrophobic Sidechain Identity

There are also a number of options for the identity of the sidechains on the

remaining, unreacted linker hydroxyl groups. Hydrocarbon or perfluorocarbon chains can

be added to impart amphiphilicity and the ability to form micelles. The linker hydroxyls

can also remain unreacted (termed 'no sidechains'). Therefore, the identity of the

remaining sidechains determines the physico-chemical properties of the synthesized

polymer. Previous experiments by Jin Zhou Dawson revealed some trends. In particular,

perfluorocarbon particles had critical micelle concentrations (CMC) about one order-of-

magnitude lower than hydrocarbon particles. Additionally, particles with hydrocarbon

sidechains were slightly larger than those with perfluorocarbons.
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5.2.3 Spacer Length

The length of the PEG segment connecting the targeting peptide to the backbone

polymer is another variable for consideration. Geometric modeling completed by

Michelle Miller revealed the potential importance of spacer length, particularly for

targeted particles. To summarize, the amount of area sampled by a targeted delivery

system, for example one probing the cell surface for the targeted epitope, is directly

related to both the particle size and spacer length. Using geometric arguments, it can be

shown that for a given particle size, the number of targeting moieties available to

participate in targeting events increases drastically with spacer length until a threshold is

reached and strongly diminishing marginal returns persist.

5.2.4 Experimental Strategy

Before any of the previously described variables could be investigated, the first

step was to test the E13.4.3 peptide/EGFR targeting pair with our polymer system.

Therefore, initial experiments were designed to determine whether the presence of the

targeting ligand increased the uptake of our polymers in vitro relative to untargeted

controls. Having achieved this, the ligand density and hydrophobic sidechain identity

were selected as the variables of primary interest. PEG3400 was chosen as the spacer

length since it was deemed suitably long to avoid any spacer length-related limitations.

In order to vary the ligand density (number of peptides per chain) over a wide

range while still having sufficient linker hydroxyls available for substitution with

hydrophobic groups, the molecular weight of the backbone polymer had to be increased.

Using the backbone polymer produced in the Protherm (see Polymerization chapter), a

high throughput, preparative gel permeation chromatography fractionation process was
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developed to supply high molecular weight, low polydispersity backbone polymer for the

E13.4.3-conjugated polymer synthesis.

A library of E13.4.3 polymers, together with their untargeted control polymer

counterparts, was synthesized. These polymers were tested in a range of experiments,

including dynamic light scattering to determine particle size distributions, in vitro uptake,

and in vivo biodistribution and blood circulation studies.

5.3 Materials and Methods

5.3.1 Materials

All study polymers were synthesized as described in Chapter 2: Chemical

Synthesis of Alternating Amphiphilic Copolymers. With the exception of backbone

polymer synthesis, which was completed by the author, all chemical synthetic steps were

performed in the laboratory of our collaborator, Dr. Arthur Watterson at the University of

Massachusetts - Lowell. Unless otherwise noted, all polymers were weighed before

dissolution in phosphate buffered saline (PBS, Mediatech, Inc.) to create concentrated

stock solutions of 3-5 mg/mL. When the amount of polymer to be weighed was small,

particularly for quantities less than 20 mg, a vial was weighed and deionized water was

added. The polymer (typically about 10 mg) was dissolved into solution by pipetting up

and down and removed from the vial. Any remaining solution not removed from the vial

(typically a very small amount) was allowed to evaporate. The vial was weighed again

and the difference between the initial and final weights was equal to the amount of

polymer that had been dissolved in solution. Free peptide concentration was determined

using the bicinchoninic acid (BCA) assay (Pierce Chemical) as described by the
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manufacturer. Polymer radiolabeling was performed according to the protocol described

in the Radioiodination chapter.

5.3.2 Backbone Polymer Fractionation by Preparative Size Exclusion Chromatography

High molecular weight backbone polymer was produced and isolated from

reaction in the Protherm (500 rpm, molecular sieves) as described in the Polymerization

chapter. The deionized water used as the chromatography mobile phase was also filtered

using 0.2 pm IL polyester sulfone (PES) filter units (Coming, Lowell, MA). The filtered

water was degassed by applying vacuum while mixing and agitating with a magnetic

stirring bar.

Polymer fractionation was performed using an AKTA Explorer preparative liquid

chromatography system (GE Lifesciences, Piscataway, NJ) equipped with a high-prep

Superdex 75 26/60 size exclusion column (also GE). These GPC/size exclusion

experiments were performed on a different chromatography system with a different

column than the GPC system used to analyze the backbone polymer molecular weight.

The column and system pumps were much larger to increase throughput. This column is

an off-the-shelf product pre-packed with Superdex size exclusion media. The 26/60

designation refers to a column having a 26 mm diameter and 60 cm bed height. These

dimensions correspond to a total bed volume of 318.6 mL. The flow rate for all column

operations was 1 mL/min. The AKTA Explorer system was monitored with a UV/vis

detector (X = 250 nm) and equipped with an automated fraction collector. The Superdex

column was equilibrated with 3 column volumes (CV) of filtered, deionized water at the

beginning of each run.
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5.3.3 Evaluation of Preparative GPCfor Backbone Polymer Fractionation

The Hi-prep Superdex column was studied for its potential use in fractionating the

backbone polymer. The elution profile for backbone polymer was measured to evaluate

the performance of this system. Because the preparative size exclusion column was

packed with resin having variable pore sizes, polymer chains of different lengths would

have different path lengths through the column. The goal, therefore, was to determine to

what extent the Superdex column was able to spread the range of polymer molecular

weights across a breadth of elution volumes.

In this experiment, high molecular weight backbone polymer produced in the

Protherm (10 mg/mL in deionized water) was filtered using a 0.2 pm Acrodisc Supor*

syringe filter units (Pall Corporation, Port Washington, NY). A total of one milliliter of

this filtered sample was injected onto an equilibrated Superdex column via the injection

valve on the AKTA Explorer. Fractions of varying elution volumes were collected, freeze

dried, resuspended in tetrahydrofuran (THF), and analyzed using the Waters analytical

GPC system described in the Polymerization chapter. Therefore, the analytical GPC was

used to determine the molecular weight distribution of the fractions collected from the

preparative GPC.

5.3.4 Development of a High-Throughput Fractionation Process

The fractionation process should also be capable of processing a large quantity of

raw material into discrete fractions. To this end, the largest available column was

purchased to maximize capacity and the flow rate was set to the highest value possible

that also avoided the pressure limit for the column (1 mL/min). The remaining variables

available for increased throughput were the concentration and total volume of the load

214



material and the scheduling of successive injections. The elution profile for the

preparative GPC measured according to the previous section, together with the AKTA

Unicorn method editor, was used to develop a method that minimized downtime between

success injections. Also, for these experiments, the high molecular weight backbone

polymer product was dissolved in deionized water at a concentration of 100 mg/mL and

filtered using 0.2 pm Acrodisc Supor* syringe filter units. The developed method was

used to perform a series of injections of high molecular weight Protherm-produced

backbone polymer (3 mL/injection, 100 mg/mL). As was the case for the flow rate, the

injection volume was set to the maximum possible without exceeding the pressure limit

for the column. Each subsequent elution was fractionated by the fraction collector.

5.3.5 Dynamic Light Scattering

The particle size distributions of the various polymers studied were measured by

dynamic light scattering (DLS). Stock polymer solutions were diluted to 0.5 mg/mL in

phosphate buffered saline and filtered with 0.2 im Acrodisc Supor* filters. The filtered

solution was immediately transferred to BRAND disposable UV cuvettes (BrandTech,

Essex, CT) and placed in a ZetaPALS (phase analysis light scattering) system

(Brookhaven, Holtsville, NY). Samples were interrogated for one minute with at least 10

replicates for each polymer. Measurements were repeated, as many as 30 total times, until

a steady response was achieved. Aside from the number and length of the measurement

periods, the ZetaPALS system required only two additional parameters. (1) The system

was instructed that the sample was aqueous, from which the appropriate fluid properties,

including viscosity and refractive index, were determined from a database within the

software. (2) The dust filter was turned off, which was possible because samples were
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filtered directly into a clean cuvette immediately before measurement. Measurements

performed with and without the dust filter showed no difference in particle size

distribution, which confirmed the cleanness of the samples.

The accuracy of the ZetaPALS equipment was confirmed using dextran standards

with known particle sizes of 20, 50, and 100 nm (Corpuscular, Cold Springs, NY).

5.3.6 Cell Culture, Lines and Media

All reagents were purchased from commercial sources. Dulbecco's minimum

essential media (DMEM), fetal bovine serum (FBS), penicillin-streptomycin solution

(pen-strep, 10,000 IU/mL), trypsin EDTA (1X, 0.25% trypsin/0.53 mM EDTA in HBSS),

phosphate buffered saline (PBS, IX), Hank's buffered salt solution (HBSS), and distilled

deionized sterile water were purchased from Mediatech, Inc (Manassas, VA). Eagle's

minimum essential media (EMEM) was purchased from American Type Culture

Collection (ATCC, Manassas, VA). Guava Viacount assay kit was purchased from Guava

Technologies/Millipore (Billerica, MA).

A43 1NS cells (epidermoid carcinoma, EGFR-positive) and MCF7 (breast

adenocarcinoma, EGFR-negative) cells were purchased from ATCC and cultured in

DMEM and EMEM, respectively. All cell growth media were supplemented with 10%

(v/v) FBS and 1% (v/v) pen-strep. Cells were grown at 37 "C in a humidified atmosphere

containing 5% CO2 .

5.3.7 Cellular Uptake Measurement with [I251]-polymer

This procedure was originally developed and described in the thesis of Michelle

Miller [40]. Cells were grown in their respective supplemented media, harvested with

trypsin EDTA (lX, 0.25% trypsin/0.53 mM EDTA in HBSS) one day prior to
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experimentation, and seeded in 96 well plates (1x10 6 cells/mL, 100 ptL/well). All passage

numbers were less than 20. Plating at this cell density resulted in wells that had just

reached confluency upon initiation of each cellular uptake experiment.

Cells were incubated with either polymer (0.5 mg/mL) or various concentrations

of free E13.4.3 peptide (5-500 nM) that had been labeled with radioiodine[12 51] at 37 0C in

a humidified atmosphere with 5% CO2. Samples were taken after different lengths of

incubation. The polymer or peptide was dissolved in the proper cell media for each

respective cell line as required. Experiments were performed in triplicate wells whenever

possible; however, material limitations for a small number of polymers required that only

duplicate wells were used in these rare cases.

At designated times, the solution was removed by pipette and cells were washed

three times with 100 gL PBS. Cells were harvested by adding 100 gL of trypsin EDTA

(1X, 0.25% trypsin/0.53 mM EDTA in HBSS) to each well. After incubation at 37 *C for

at least 15 min, the entire well volume was transferred to radioimmunoassay (RIA) tubes

(VWR Scientific, Philadelphia, PA) and assayed for radioactivity on a Cobra II Auto

Gamma counter (Perkin-Elmer/Packard, Waltham, MA). Samples were measured for 5

min each. The activity of each sample was measured in cpm and converted to mass using

the individual polymer specific activity.

Polymers or free E13.4.3 peptide were labeled according to the standard protocol

as described in the lodination chapter. In the iodinations performed to supply this study,

the initial concentration of the polymer was 5 mg/mL while that for free E13.4.3 peptide

was 1 mg/mL. Between one and two millicuries of activity were added at the beginning

of each labeling procedure. The remaining steps in the procedure were identical to those

217



described for the standard protocol. The specific activity of each labeled material was

known (typically 0.1-1 mCi/mg).

Wells containing cells, but with no polymer added, were maintained to control for

cell growth during the course of the experiment. At the designated times, these wells

were also washed with PBS (3x), harvested with trypsin EDTA as above, and counted

using the Guava Viacount method. For experiments with 4 hr durations, the amount of

cell growth measured was very small, typically less than 2-3%. For the few experiments

with 24 hr durations, the longest time frame investigated in this study, the total cells

measured in the control wells increased by approximately 40%

The calculated polymer masses and cell count measurements were combined to

determine the mass of polymer per cell. The procedure was identical for the E13.4.3

peptide studies.

5.3.8 Cell Counting

Trypsinized cells were stained using Guava Viacount assay solution. Data were

acquired on a Guava Personal Cell Analysis (PCA) flow cytometer. Each sample was run

in triplicate and 1000 events were acquired using the Guava Viacount software. The

dilution factor and initial volumes of each sample were used to calculate the total number

of cells.

5.3.9 Biodistribution and Blood Circulation in a Mouse Model of Human Cancer

Female immunodeficient mice (nu/nu, <42 days) were purchased from Charles

River Laboratories (Wilmington, MA). Mice received subcutaneous injections of

A43 1NS tumor cells in their rear flank (1x10 6 cells/inj, 50 pL HBSS/injection). Once

tumors grew to approximately 0.5 cm in diameter (estimated by eye), typically after 10-
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14 days, mice were injected intravenously via the tail vein with 1251-labeled polymer (2

mg/mL, 100 pL PBS/injection, specific activity: 0.1-1 mCi/mg) and sacrificed at

designated time points. In addition to the excised tumor, the following organs were

harvested and weighed immediately after sacrifice: liver, spleen, kidneys, stomach, colon,

heart, lung, brain, and tail. Blood samples were taken from the thoracic cavity using a

graduated, heparinized capillary tube (VWR Scientific, Philadelphia, PA).

The harvested samples were assayed for radioactivity on the COBRA II Auto-

Gamma counter. Measurements of labeled polymer solutions of known concentration

were also performed to control for sample-to-sample variations in specific activity. Based

on these measurements, the percent injected dose in organ (%ID) and percent injected

dose per gram of tissue (%IDPG) were calculated as follows:

a
%ID = -(100%) (1)

tot

%IDPG= %ID (2)
m

where i is the mass of the organ or tissue, a is the activity measured in an organ and ao,* is

the corrected total injected activity, which can be expressed as:

*

atot =atot -a tail (3)

where atot is the total activity in the syringe and atail is the activity measured in the tail. By

subtracting the tail activity, the total initial injected activity in the circulation was

corrected for dose remaining in the tissue interstitia of the tail. Blood circulation data

were calculated only as %ID.

All animal experiments were performed in accordance with protocols approved by

the Committee on Animal Care in the Department of Comparative Medicine at the
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Massachusetts Institute of Technology. Additional animal studies were also performed in

collaboration with former Colton group member, Dr. Michelle Miller. The results of

these studies, which focused on other polymers and, in particular, other biomarker

targets, were presented in Dr. Miller's thesis [40].

5.3.10 Comparison of in vivo Results to Semi-Empirical Model Predictions

Due to the complexity of the biological system, it is difficult to predict the

behavior of a targeted circulating delivery agent a priori. To address this difficulty,

Schmidt and Wittrup have developed a tumor targeting compartmental model [44]. In the

model, which predicts the tumoral accumulation as a function of time post-injection in

mice, only two physical characteristics of the targeted agent are required: the

hydrodynamic radius and the binding affinity (KD). This model was used as one tool to

evaluate the in vivo biodistribution results for the alternating amphiphilic copolymer

micelles relative to those found in the literature or estimated by current theoretical

descriptions of tumor targeting.

The binding affinity contributes to the model by describing the active targeting

contribution to tumoral uptake. The hydrodynamic radius is used to calculate a variety of

mass transport parameters, including the permeability across the tumor capillary wall,

diffusivity within the tumor, available volume fraction within the tumor for mass

transport, and the plasma clearance rate [44]. Interestingly, while a small molecule may

benefit from increased rates of mass transfer into and within the tumor, it also suffers

from increased rate of clearance from the plasma by the renal system. Conversely, larger

molecules or particles will have an increased circulation half-life due to a lower clearance

220



rate, but will also have a decreased rate of tumoral penetration because of their large

effective diameter.

In their work, Schmidt and Wittrup used structural and empirical models to

estimate the mass transfer parameters as a function of hydrodynamic radius. A two-pore

representation of the tumor interstitial space was used to estimate the interstitial

diffusivity, fluid volume fraction, and vascular permeability [45]. An empirical model

was used to estimate the renal and non-renal clearance rates of circulating particles. The

theoretical predictions according to the structural model were very comparable to

experimental data compiled from the literature for multiple classes of molecules and

particles (small peptides, PEG chains, and liposomes) covering a range of effective

molecular weights (1-80 nm). The plots presented in Figure 1 of the cited paper were

used to estimate the four mass transfer parameters for three different cases: (1) free

E13.4.3 peptide (MW = 12.5 kDa), and particles having hydrodynamic radii of (2) 5 nm

and (3) 10 nm (TABLE 5.1).

Table 5.1. Size-dependent mass transfer parameters estimated according to the structural and
empirical models of Schmidt and Wittrup. The pore diffusivity, Dpore, accessible void fraction, E,
capillary permeability, Pp.re, and plasma clearance rate constant, kiear, were estimated for three
cases: free E13.4.3 peptide and particles having hydrodynamic radii of 5 and 10 nm.

Case D PPM kw
(cm2/s) (cm/s) (1/hr)

Free Peptide 7x10- 0.34 9.27x10-7  5.1

R = 5 nm 2.4x10- 0.23 3.74x10-7  0.20

R= 10nm 3x10-8  0.075 2.Ox1O- 0.05

In addition to the size-dependent mass transfer parameters, experiment-related

information is required to generate model predictions for direct comparison. These

experimental parameters include the dose in pg, the surface concentration of the targeted

antigen (EGFR in this case), the binding affinity of the circulating agent for the antigen,
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the cellular internalization half-time, and the radiolabel catabolism and efflux half-time

for 125I. These figures, which were determined either according to experimental

procedure or from cited literature, are summarized in TABLE 5.2.

Table 5.2. Size-independent parameters required by the tumor targeting compartmental model. The
binding affinity was varied to higher values of KD to account for potential steric effects or binding
site occupation by 1251.

Parameter Value or Range Source

Dose 200 pg Exp.

Antigen Conc. 2.5x10 6 receptors/cell [46]

Affinity 250 pM, 250 pM, 250 mM [41]

Cellular Internalization Half-Time 1 hr [41]

1251 Catabolism and Efflux Half-Time 2 hr [47]

The parameters summarized in TABLES 5.1 and 2 were used as inputs in the

tumor targeting compartment model. Schmidt and Wittrup have generously provided an

online applet for the calculation of the model prediction (http://tumormodel.org/). This

applet was used to generate model predictions for three different agent classes (free

peptide, 5 nm radius, and 10 nm radius) and three different binding affinities (250 pM,

250 pM, 250 mM). The three cases were studied to account for some of the possible

configurations present in our biodistribution studies, while the three binding affinities

were studied to account for potential disruptions in binding due to steric effects or

attachment of 125I to the tyrosine in the binding domain.
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5.4 Results

5.4.1 Polymer Naming Convention

A naming convention was developed to identify the polymers investigated in the

targeted delivery studies. In general, the chemical structure of the polymers studied

consisted of free hydroxyls on the backbone polymer linker group substituted with either

a hydrophilic or hydrophobic sidechain to varying levels (FIGURE 5.2). The hydrophilic

sidechain consisted of a hydrophilic spacer group (either PEG3400 or triethylene glycol,

TEG) and, for targeting polymers, an E13.4.3 at the chain terminus. The percentage of

linker hydroxyls substituted with hydrophilic groups was defined as X%. The balance of

the linker hydroxyls, (100-X)%, were substituted with either hydrocarbon or

perfluorocarbon hydrophobic sidechains (R).

E13.4.3 Peptide HC

PEG 3400 (or TEG) R= F FIF 2  F2  F2o C C C1CF3 PFC
0= F2  F2  F

0
O O

H3CO O H
on m p

O O x .(100-X)%

X -100 0
m+ p

R
Figure 5.1. General chemical structure of the polymers investigated in the targeted delivery studies.
The polymers were substituted X% with hydrophilic spacer groups (either PEG3400 or triethylene
glycol, TEG). The remaining substituted groups are hydrophobic sidechains, R, in the form of
hydrocarbons (HC) or perfluorocarbons (PFC).

The naming convention for E13.4.3-conjugated polymers follows the form: X+, R,

where X is the percent of sidechains substituted with hydrophilic spacer groups and R is

the identity of the hydrophobic groups attached to the remaining (100-X)% linker
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hydroxyls. The plus sign indicates that the polymer contains the E13.4.3 peptide. For

untargeted polymers, the plus sign is replaced with a minus sign ('-'). Finally, because all

but two of the polymers studied contained PEG3400 as the hydrophilic spacer group, the

identity of the spacer was not included in the polymer name. The two polymers with the

triethylene glycol spacer (TEG) will be indicated as such. Therefore, a polymer

designated X=10+, PFC would consist of 10% sidechains with E13.4.3-conjugated

PEG3400 spacers and 90% sidechains as perfluorocarbon chains.

5.4.2 In vitro Targeting with EI3.4.3-conjugated Polymers - Initial Study

As described in the Introduction to this chapter, the E13.4.3/EGFR targeting pair

was an attractive candidate for targeted delivery applications, particularly due to the very

high binding affinity (low KD) of the engineered targeting ligand. To evaluate whether

this targeting pair would be viable for use with our polymer system, a small set of four

polymers were synthesized and tested in in vitro uptake studies. If the targeted, E13.4.3-

containing polymers in this initial study showed increased, selective uptake relative to

untargeted controls, then significant further study with this targeting pair would be

justified.

Four polymers were synthesized with 10% of available sidechains substituted as

PEG3400 or TEG spacers, either with or without E13.4.3 peptide attached. The remaining

linker hydroxyls (90%) in all four polymers were substituted with hydrocarbon

sidechains, which imparted amphiphilicity to the molecules. The backbone polymer

starting material, which was produced before the molecular weight increases were

realized in the Protherm, was produced in a mechanically stirred flask with molecular

sieves present and had the following molecular weight characteristics: Mn = 5.2, Mw =

224



7.2, PDI = 1.34. A summary of the polymers investigated in this initial study, including

the molecular weight attributes, peptides per polymer chain, and hydrodynamic diameters

as measured by dynamic light scattering, is presented in TABLE 3. Similar tables will be

presented for subsequent sets of polymers studied. The polymer chain number-average

molecular weights include the backbone, sidechains (PEG spacer and hydrophobic

groups) and peptide, if present.

Table 4.3. Four polymers investigated during the initial study of the E13.4.3/EGFR targeting pair
with our polymer system. The polymer chain number average molecular weight, M., was calculated
based on the components in the chemical structure. The number of peptides per chain was estimated
assuming approximately five repeat units per backbone polymer chain based on a backbone polymer
molecular weight of 5.2 kDa. The hydrodynamic diameter was determined by dynamic light
scattering (see FIGURE 3).

Hydrodynamic
Polymer Spacer Polymer Chain M. Peptides per Diamr

(kDa) Chain Dim)
(nm)

X=10+, HC 15.0 0.5 4.5
PEGS400

X=10-, HC 8.7 0 4.5

X=10+, HC 11.7 0.5 5.0
TEG

X=1%. HC 5.5 0 10.0

The particle size distribution for the X = 10+, HC polymer with PEG3400 spacer

at a concentration of 0.5 mg/mL in PBS was measured by dynamic light scattering (DLS)

is presented in both bar graph (FIGURE 2A) and linear (2B) representations. The linear

graph is a direct reproduction of the bar graph data in a different format, which allows for

direct comparison of more than one particle size distribution at once. The particle size

distributions for the polymers with PEG3400 (FIGURE 5.3A) and TEG (3B) spacers

were also measured by DLS.
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Figure 5.2. Particle size distribution of the X=10+, HC (PEG3400 spacer) polymer measured by
dynamic light scattering. Data are presented in the (A) bar graph and (B) linear representations.

The hydrodynamic diameters for the X=10, HC polymers with PEG3400 spacers,

both with and without E13.4.3 peptide attached, were approximately 4-5 nm. Although

there were approximately 0.5 E13.4.3 peptides (12.5 kDa/peptide) per chain for the

X= 10+, HC polymers, the ultimate particle size distribution was nearly identical to that

for the X=10-, HC polymer. Replacing the PEG3400 spacer with the shorter TEG spacer,

the hydrodynamic diameters were determined to be 8.5 and 10 nm for polymers with and

without E13.4.3 attached, respectively. The size distributions for all four polymers were

quite low in polydispersity.
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Figure 5.3. Particle size distributions measured by DLS for the X=10, HC polymers with either (A)
PEG3400 or (B) triethylene glycol (TEG) hydrophilic spacers.

The four polymers were labeled with iodine-125 and purified according to the

procedure described in the Cellular Uptake Measurement with [I251]-polymer section of

the Methods. The uptake of these four labeled polymers was measured in the EGFR-

positive A43 INS human cancer cell line (FIGURE 5.5). The uptake was calculated as the

mass of polymer per cell. The mass of polymer was selected, as opposed to the number of

polymer chains, because the individual chains self-assembled into nanoparticles. The

uptake was normalized per cell to account for experiment-to-experiment and timpoint-to-

timepoint variations in the number of cells in each well.

For both sets of polymers, those with PEG3400 and TEG spacers, the uptake was

approximately 2-2.5x higher for polymers with E13.4.3 peptide attached than for those

without the targeting peptide present. The highest overall uptake measured was for the

X=10+, HC polymer with the long, PEG3400 spacer. In both cases, the greatest

selectivity, which was defined as the ratio of the uptake of the targeted polymers to that

for the untargeted equivalents, was observed at the four hour time point.

The hydrodynamic diameter for this polymer was approximately half that of

X=10+, HC polymer with the TEG spacer (FIGURE 5.3). The uptake of the untargeted
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polymers (FIGURE 5.5, open circles) was quite similar for both the PEG3400 and TEG

spacer polymers. This uptake corresponded to the non-specific uptake by the cells, likely

due to pinocytosis of the highly PEGylated polymers.

PEG3400 TEG
0 X=10+,HC 0 X=10+ HC
0 X=10-.HC 6 X=10-,HC

.i

0

1.-

CL.

0 1 2 3 4 5 0 1 2 3 4 5
Time (hr) Time (hr)

Figure 5.4. Uptake of 12s I-labeled polymer in the EGFR-positive human cancer cell line, A431NS.
Polymers contained 10% substitution as PEG3400 or TEG spacer, either with or without EI3.4.3
peptide attached. The remaining sidechains were hydrocarbons.

5.4.3 Evaluation of Preparative GPC for Backbone Polymer Fractionation

The selectivity observed in the initial studies with the EI3.4.3 peptide and our

polymer system demonstrated that further study of the EI3.4.3/EGFR targeting pair was

warranted. As described during the Introduction, there were a number of variables that

could be studied to improve the performance of the targeted polymer system, including

the number of peptides per chain (polyvalency) and the backbone polymer molecular

weight. To allow for full investigation of the former, the backbone polymer molecular

weight had to be increased to increase the number of linker hydroxyls that could be

substituted with targeting sidechains. Although the Protherm was able to substantially

increase the weight-average molecular weight of the backbone polymer, one consequence

of the increases realized for the condensation polymerization is increased polydispersity.

Polymer fractionation by preparative GPC was used to reduce the polydispersity of the
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backbone polymer in order to provide a clean, less polydisperse starting material for

subsequent synthetic steps during which targeting and hydrophobic sidechains would be

attached.

In order to determine whether the column was able to yield nearly monodisperse

fractions of backbone polymer from the high molecular weight, high polydispersity

Protherm product, one milliliter of raw backbone polymer (10 mg/mL) was injected and

the elution profile for the Superdex 75 preparative gel permeation chromatography

column was interpreted (FIGURE 5.6). Significant absorbance was measured over a 100

mL range in elution volume, even though the initial volume of the injected raw polymer

sample was relatively small. The preparative GPC Superdex 75 column appeared to have

effectively spread out the raw backbone polymer as desired.

6

5

4

0

0 100 200 300

Elution Volume (mL, prep. GPC)
Figure 5.5. Preparative GPC chromatogram for a single injection of high molecular weight backbone
polymer (10 mg/mL, 1 mL/injection) produced in the Protherm. The elution volumes for the x-axis
are specific to the preparative and not the analytical GPC. Eight, 15 mL fractions were collected
between elution volumes of 95 and 110 mL for subsequent analysis by analytical GPC.
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Eight fifteen milliliter fractions were collected from the elution (indicated by

vertical dashed lines), freeze dried and analyzed by GPC to determine the molecular

weight characteristics of each collected fraction. These data would determine what

fractions the preparative GPC had created by spreading the backbone polymer across the

100 mL elution volume. The results of these measurements, along with that for the

unprocessed backbone polymer, are presented in TABLE 5.4.

Table 5.4. Summary of analytical GPC measurements, including M., M,, and PDI, for the eight
fractions collected from the preparative GPC (FIGURE 5). Results are compared to those for the
raw Protherm (PT) backbone polymer for comparison. The elution volumes listed under the
'Sample' heading are specific to the preparative GPC elution volumes.

Sample ( a (kw) PDl
_____________________ (k0a) (ka)

Raw PT Backbone Polymer 8.7 20.6 2.36
1 95-110 mL 14 17 1.15
2 110-125 12 14 1.17
3 125-140 9.0 10 1.16
4 140-155 6.6 7.2 1.11
5 155-170 4.5 5.3 1.15
6 170-185 3.3 3.7 1.13
7 185-200 2.3 2.6 1.14
8 200-215 1.7 1.9 1.12

The analytical GPC chromatograms were processed as described in APPENDIX

A: Molecular Calculation by Breeze Software and Chromatogram Manipulation, to

determine the relative number of polymer molecules at each respective molecular weight

(FIGURE 5.7). The chromatograms for the second, third, and fourth polymer fractions

(see TABLE 5.4) collected from the preparative GPC were compared to that for the raw

backbone polymer.
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Figure 5.6. Relative number of backbone polymer molecules at each molecular weight for the second,
third, and fourth fractions collected from the preparative GPC as analyzed by the analytical GPC.
The chromatogram for the raw backbone polymer produced in the Protherm is also included.

The number-average molecular weight of the 8 fractions collected from the

preparative GPC ranged from 1.7 to 14 kDa, while the polydispersity of each collected

fraction was less than 1.17. This result demonstrated that the preparative GPC was able to

create low polydispersity, comparatively high molecular weight fractions of backbone

polymer. This is particularly true in comparison to the backbone polymer starting

material used in the initial study of the E13.4.3 peptide/EGFR targeting pair, which was

produced by mechanical stirring in a flask with sieves added (but without fractionation)

and had a number-average molecular weight and polydispersity of 5.2 kDa and 1.34,

respectively.

The analytical GPC chromatograms in FIGURE 5.7, as well as the molecular

weight data in TABLE 5.4, revealed that the entire range of polymer molecular weights

present in the original raw backbone polymer sample was not recovered at the end of the

preparative GPC column. Specifically, no backbone polymer oligomers with molecular
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weights greater than 20-25 kDa were measured in the recovered fractions by analytical

GPC, while oligomers as large as 40-50 kDa were measured in the unprocessed, raw

backbone polymer produced in the Protherm.

Although each 15 mL fraction was low in polydispersity, the analytical GPC

chromatograms for consecutive fractions (FIGURE 5.7) overlap one another to a

significant extent. Because of dispersive effects commonly observed for processes in

porous media, such as gel permeation chromatography, there is an inherent distribution of

residence times even for a purely monodisperse starting material. This distribution was

the primary contribution to the overlap between fractions 2 and 3, fractions 3 and 4, and

so on. Variability in the porosity of the chromatography resin may also have contributed

to the overlapping chromatograms observed by analytical GPC.

5.4.4 Development of a High-Throughput Fractionation Process

The preceding experiments demonstrated that, although the entire initial

molecular weight range was not recovered, the preparative GPC was still able to create

low polydispersity, high molecular weight fractions from the raw backbone polymer

produced in the Protherm. In order to generate enough fractionated backbone polymer to

supply the synthesis of polymers for the targeted delivery studies, the throughput of the

fractionation process had to be increased significantly. The initial concentration of the

backbone polymer load solution was increased from 10 to 100 mg/mL, while the total

injection volume was increased from 1 to 3 mL.

Successive injections were scheduled every 300 mL of accumulated elution

volume. This injection schedule ensured that material from consecutive injections did not

overlap with one another in the column. This injection schedule also decreased the
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downtime between successive injections while still maintaining a safety factor to avoid

injection-to-injection overlap. Recall that the total column volume of the Superdex 75

preparative GPC column was 318 mL. The method that was developed and coded using

the GE Unicorn software is included in APPENDIX E. Fractions were collected at the

same post-injection preparative GPC elution volumes as those presented in TABLE 5.4,

while the elution profile for a typical production run is presented in FIGURE 5.8.

1200
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0 500 1000 1500 2000 2500
Elution Volume (mL, prep. GPC)

Figure 5.7. Chromatogram for an eight injection preparative GPC run to process and fractionate
high molecular weight backbone polymer. Polymer was detected by an inline UV spectrophotometer
(k = 250 nm) and each elution was collected into eight 15 mL fractions for elution volumes between
95 and 215 mL post-injection.

The production run consisted of eight injections of the Protherm-produced

backbone polymer. Each elution peak was fractionated into eight 15 mL fractions for

elution volumes between 95 and 215 mL post each injection (dashed vertical lines not

shown). Each successive elution peak was nearly identical with the only notable

exception being the slight decrease in the peak maxima over the course of the eight

injections and elutions. This decrease was likely due to fouling of the column pores.

There was also an abrupt spike in the absorbance at the end of each elution peak. This

spike corresponded directly to each 3 mL injection and was related to the significant
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increase in pressure associated with the injection of the highly concentrated, highly

viscous 100 mg/mL polymer solution.

The fractional recovery of backbone polymer was determined by weighing the

polymer in each collected fraction and assuming that the initial mass added was 300 mg

(3 mL of a 100 mg/mL solution). The calculated fractional recovery for each of the eight

injections varied between 0.60 and 0.65, with the lowest recoveries occurring for the later

injections. The pressure measured at the pump head in the AKTA Explorer system also

increased steadily throughout the series of eight injections and elutions. While the

pressure only increased from 0.20 to 0.25 MPa for the single injection and elution, a

pressure increase from 0.20 to 0.50 MPa over the duration of the eight injection

production run (FIGURE 5.8).

After each production run the column was cleaned with three column volumes of

a 0.5 M sodium hydroxide solution (0.5 mL/min) and re-equilibrated with three column

volumes of deionized water. After these two steps, the system pressure was restored to

the original baseline of 0.20 MPa.

5.4.5 Size Measurements of EI3.4.3-Conjugated Polymer Synthesizedfrom High

Molecular Weight Backbone Polymer

High molecular weight backbone polymer was fractionated by FPLC and the 110-

125 mL FPLC fraction (Mn = 12 kDa, PDI = 1.17, see TABLE 4) was used in the

synthesis of various polymer candidates. Physico-chemical and biological assays were

performed to evaluate their performance with different fractions of sidechain substitution,

X, and with different identities of the hydrophobic sidechain (HC, PFC, or no added
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sidechain). All polymers in the studies with the high molecular weight backbone polymer

had PEG3400 spacers. The molecular weight attributes, peptides per polymer chain, and

hydrodynamic diameters as measured by dynamic light scattering of two separately

synthesized polymer batches are summarized in TABLE 5.5.

Table 5.5. Summary of the (A) first and (B) second batch of polymers synthesized for the
investigation of the E13.4.3/EGFR targeting pair with high molecular weight backbone polymer. The
polymer chain M. was calculated based on the components in the chemical structure. The number of
peptides per chain was estimated assuming approximately ten repeat units per backbone polymer
chain based on a backbone polymer molecular weight of 12 kDa. The hydrodynamic diameter was
determined by dynamic light scattering (see FIGURES 8 and 9).

Polymer Polymer Chain M" Peptidee Per Chain Hydrodynamlo
(kDa) Diameter(s) (nm)

10+ PFC 30B 1 7.17
26+, PFC 542 2.6 10,1620

2&, PFC 22.9 0 10,21
A 10+, HC 29.7 1 8

26+, HC 62.A 2.6 17
2&o HC 21.1 0 1, 22 27
60+, HC 02.0 6 23, 43, 81
0+, NHS 91.5 5 30, 62 72, 7

26+, PFC 542 2.5 1, 22, 2
25., PFC 22. 0 14,1

50+, PFC 93.1 6 219
50- PFC 30B 0 2, 28, 36, 43

76+, PFC 132.1 7.6 10,19, 40,100
76-, PFC 38.3 0 17, 24, 29, 1

504, HC 92.0 5 11,24

Ma HC 29A 0 13,33

76+, HC 1315 7.6 Z 7, 17, 34, 44

76, HC 37A 13.16, 25, 39,62 73

The molecular weight of each polymer formulation by adding the molecular

weights of the individual components present in the polymer. Each backbone polymer

chain was 12 kDa. The PEG spacer was 3400 Da and the E13.4.3 peptide was 12.5 kDa.

Due to the comparatively large size of the E13.4.3 peptide (12.5 kDa) relative to the

molecular weight of the backbone polymer starting material (12 kDa), the number of
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peptides per chain most significantly affected the polymer chain molecular weight. The

polymer molecular weight varied from approximately 20-130 kDa for the 18 synthesized

polymers. Similarly substituted polymers either with or without the peptide attached

varied in molecular weight by factors ranging from approximately two to four.

The particle size distributions for both batches synthesized from the low

polydispersity, high molecular weight backbone polymer were measured by DLS

(FIGURES 5.9 and 10). For the first batch, the X=10+, HC polymer had a hydrodynamic

radius of 6 nm (FIGURE 9A). This result was quite similar to the size distribution

measured for the X=10+, HC polymer synthesized from the lower molecular weight

backbone (FIGURE 5.3). The size distribution for the X=10+, PFC polymer included two

peaks, at diameters of 7 and 17 nm (9B). The X=25 polymers (9C and D) had

hydrodynamic diameters between approximately 10 and 30 nm. The X=25+, HC

distribution was essentially monodisperse at 17 nm, while the X=25-, HC distribution

was broader and centered around 22 nm. The distributions for the X=25, PFC polymers

were quite similar both with and without the E13.4.3 peptide attached, with distinct peaks

at diameters of approximately 10 and 20 nm.

From this first batch, the two X=50 were the primary outliers, having three

distinct narrow particle size distributions that collectively ranged from 20 to 80 nm.

Interestingly, particles were observed for the X=50+, no hydrophobic sidechains (NHS)

polymer, even though there were no hydrophobic sidechains present on the 50%

remaining free hydroxyls within the backbone polymer (9F).

For the second batch of polymers synthesized from the low polydispersity, high

molecular weight backbone polymer, the hydrodynamic diameters for the X=25, PFC
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polymers were between 10 and 25 nm (FIGURE 10A). This result was quite similar to

the size distribution measured for the X=25, PFC polymers synthesized in the first batch

(FIGURE 9D). The X=50+, HC polymer had two distinct peaks in the size distribution at

diameters of 11 and 24 nm (1 OB). This result was different from the size distribution

observed for the X=50+, HC polymer synthesized in the first batch (9E), which was

broad and ranged from 20 to 60 nm.

Particles with hydrodynamic diameters of 2 nm were observed for a number of

the more highly PEGylated polymers synthesized in the second batch, including the

X=50, PFC and X=75, HC polymers. It is likely that the particles measured at this small

size correspond to individual polymer chains or associations of a small number of chains.

Overall, the particle size distributions with the lowest polydispersity were those

for the X=10 and the X=25 polymers. The diameters measured for these distributions

were generally observed over a narrower range than for the other measured polymers.

These polymers had a larger proportion of the sidechains devoted to hydrophobic

sidechains, either in the form of hydrocarbons or perfluorocarbons. Conversely, the

particle size distributions for the X=50 and X=75 polymers were generally more

polydisperse, with less well-defined sizes. The notable exception to this generalization

was the X=50, HC polymers from the second synthesis batch. Finally, the presence of the

E13.4.3 peptide targeting had varying effects on the ultimate particle size distribution.
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Figure 5.8. Particle size distributions of the first batch of polymers synthesized from high molecular weight backbone as measured by DLS. Solid lines
indicate polymers with E13.4.3 attached, while dotted lines indicate polymers without E13.4.3. Note: The scale of the X-axis for the X=50 (E and F)
polymers is twice that for the other data presented (A-D).
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Figure 5.9. Particle size distributions as measured by DLS for the second batch of polymers synthesized from high molecular weight backbone. Solid
lines indicate polymers with E13.4.3 attached, while dotted lines indicate polymers without E13.4.3. Note: The scale of the X-axis for the X=50 (D and E)
polymers is twice that for the other data presented (A-C).The X=75, HC polymers were not studied further due to labor limitations and their relative
similarity to the X=75, PFC polymers in composition.
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5.4.6 In vitro Uptake of Free EI3.4.3 Peptide

The E13.4.3 peptide was labeled with iodine-125 and the uptake of the labeled

free peptide was measured at three different initial concentrations, 5, 50, and 500 nM

(FIGURE 5.11). The uptake measurements were performed using the EGFR-positive cell

line, A43 INS.
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Figure 5.10. Uptake of free E13.4.3 peptide by EGFR-positive A431NS cells at three different initial
concentrations (in molar and mass units). The y-axes are scaled proportionately for the respective
initial peptide concentrations.

At the highest concentration measured, 500 nM, the free E13.4.3 peptide uptake

leveled off at 1 hr (or earlier), while the uptake still appeared to be increasing at 4 hr for

the 5 and 50 nM experiments. In addition, the amount of uptake was proportionately

lower at the increased concentrations. This observation was aided by the proportionate

scaling of the y-axes in FIGURE 5.11.
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5.4.7 In vitro Uptake of EI3.4.3-Conjugated Polymer Synthesized from High Molecular

Weight Backbone Polymer

The two batches of polymers synthesized from the low polydispersity, high

molecular weight backbone polymer (TABLE 5.5) were labeled with 125I and their uptake

was measured in EGFR-positive A43 INS cells at an initial polymer concentration of 0.5

mg/mL. Because the mass concentration was held constant for each polymer, the molar

concentration differed from sample to sample, primarily as a function of percent

PEG3400 substitution and presence of the peptide, according to the polymer chain

molecular weights in TABLE 5.5. The results for the first and second synthesized batch

are presented in FIGURES 5.12 AND 13, respectively. Due to material limitations, the

uptake of the second batch of polymers was only measured in duplicate wells.

The most relevant basis for presentation of the uptake results was not clear, a

priori, due to many complicating factors. Specifically, for polymers with and without the

peptide attached, such as the X=25+, PFC and X=25-, PFC pair, the molecular weight of

the individual polymer chains differs drastically depending on the presence of the

comparatively high molecular weight E13.4.3 peptide. This difference becomes more

pronounced as the targeting ligand substitution increases. Differences in the specific

activity of each polymer sample could also complicate analysis, particularly with respect

to the distribution of labels to tyrosine groups on the E13.4.3 peptide or the linker groups

within the polymer backbone.

For succinctness, the mass of polymer per cell was chosen as the method of

uptake data representation. Alternative strategies for representing the data were also
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explored, including the number of polymer chains per cell and the fraction of initial

activity per cell, and are presented in Appendix G.

For the first batch synthesized from high molecular weight backbone polymer, the

highest uptake observed was for the X-25+, PFC polymer (12A). The mass of polymer

per cell for this sample was two and four times higher than that its untargeted control

polymer, X=25-, PFC, at the 0.75 and 4 hr time points, respectively. This fourfold

increase in uptake relative to untargeted control was the greatest selectivity observed with

our polymer system thus far. (Recall that a twofold increase was observed for the X=10+,

HC polymer synthesized from the lower molecular weight backbone). Because the

particle size distributions for the two X=25, PFC polymers were nearly identical (9D), the

increase in uptake for the targeted polymer was attributable to the presence of the E13.4.3

peptide. Also, while the uptake for the X=25-, PFC polymer appeared to be leveling off,

that for the X=25+, PFC polymer had not leveled off by 4 hr, which suggested that

further selectivity was achievable at longer incubation times. Finally, the uptake of the

X=25+, PFC polymer was slightly higher than the uptake for the untargeted X=10-, PFC

polymer.

The next highest uptake was observed for the X=50+, HC and the X=50+, NHS

polymers (12B). For this batch, no control polymer counterparts without the E13.4.3

peptide attached were synthesized for these two targeted polymers. This made it difficult

to determine the selective uptake since there was no basis for comparison. If the uptake

for the X=25-, HC polymer is used as a basis for comparison, the selectivity for the

X=50+ polymers was a factor of approximately 4-6. The increased uptake of the X=50+

polymers occurred even though the particle sizes measured for these polymers were
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generally much greater than those measured for the other polymers synthesized in this

batch (9E and F).

The scale of the y-axis was decreased to facilitate further analysis of the results

(12C). For the X=25, HC polymers, the uptake of the targeted polymer was

approximately 50% higher at the 4 hr time point than that for the untargeted polymer.

Although this increase was modest, the trend was still in the direction indicating selective

uptake mitigated by the presence of the E13.4.3 peptide. Overall, the variability in the

data was significant, but not too large to obfuscate the data analysis. Using a two-tailed

Student t-test, the p-values for all of the previous comparisons were less than 0.05.
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Figure 5.11. Uptake in EGFR-positive A431NS cells for the first batch of polymers synthesized from high molecular weight backbone polymer. The
initial concentration was 0.5 mg/mL. Polymers were substituted with X% PEG3400 terminated either with or without E13.4.3 peptide. The balance of
the hydroxyl groups were substituted with perfluorocarbons, hydrocarbons, or no hydrophobic sidechains. The hydrocarbon sidechain data (B) were
reproduced with a smaller y-axis (C).
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Figure 5.12. Uptake in EGFR-positive A431NS cells for the second batch of polymers synthesized
from high molecular weight backbone polymer. The initial concentration was 0.5 mg/mL. Polymers
were substituted with X% PEG3400 terminated either with or without EI3.4.3 peptide. The balance
of the hydroxyl groups were substituted with perfluorocarbons or hydrocarbons. Note: The scale of
the y-axes for these plots is 30 % of those in FIGURE 11.

For the second batch of polymers synthesized from the high molecular weight

backbone polymer, the highest overall uptake was observed for the X=50+, HC polymer

(5.13B). The uptake for this polymer was approximately four times greater than that for

the untargeted control polymer, X=50-, HC. This batch included the second synthesis of

the X=25, PFC polymers. The results for the X=25, PFC polymers (12A) showed only a

25% increase in uptake due to the presence of the EI3.4.3 peptide, while a fourfold

increase was observed for the uptake measurements of the first synthesis of this pair.
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There was a significant difference in the absolute magnitude of the uptake results

between the two batches. The highest uptake observed in the second batch of polymers

(13B) was approximately 30% that observed for the first batch (12A). Aside from the

fact that the polymers were synthesized in separate batches, including different

productions of backbone polymer and E13.4.3 peptide, the uptake experiments were also

performed separately. This difference occurred despite the fact that the procedure was

carefully reproduced, including labeling and purification, plating density, and time

between plating and initiation of the experiment. Two different vials of A43 iNS that had

been frozen from the same initial expansion were used for each experiment, having

passage numbers of either 4 or 5.

There was, however, a difference in the total numbers of cells counted in the

control wells for the two uptake experiments. For the first batch, there were

approximately 1.5x1 05 cells in each well at the start of the experiment, while for the

second experiment, there were approximately 3.Ox 1 05 cells in each well. It is possible

that an error in cell counting or plating led to the increased cells for the second batch.

Increased uptake with the E13.4.3 peptide attached (selectivity) was observed for

all four pairs of polymers and was most pronounced at the longer, 4 hr time point. There

was also minimal variability in the data, although it should be noted that the second batch

polymers were only measured in duplicate.

5.4.8 Uptake Measurements in EGFR-positive and negative Cell Lines

Uptake was measured in the EGFR-negative MFC-7 human cancer line in

addition to the EGFR-positive A43 INS cells for the second synthesis batch. A difficulty

arose in trying to compare the results between the two cell lines. Although the identical
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number of cells was originally plated, the cell counts for the A43 1NS cell were four times

higher than those for MCF-7 at the 1 and 4 time points. (As described in the methods, the

uptake experiment was initiated on the day after cells were plated on 96 well plates. The

time between plating and initiation of the experiment was approximately 18 hr.)

Visualization of the two cell populations under the microscope confirmed that, although

wells in both cases were confluent, there were many more A43 1NS cells per well due to

their small size and extremely close packing.

To compare between the cell lines, the total mass of cell-associated polymer

measured in each well was normalized by the cross-sectional area of a well. This choice

was dependent on the anticipated basis for cellular internalization. Consider a limiting

case in which a hypothetical negative control cell line was so large, that only 10 cells fit

into a well at confluency. If the polymer uptake was mediated by the number of cells,

then it would be appropriate to normalize the data by the cell number. However, it

seemed likely that uptake would be mediated by some other mechanism, such as the total

cell surface area available, particularly for untargeted internalization into the EGFR-

negative cell line. For this reason, the uptake results in both the A43 INS and MCF-7 cell

lines were normalized by the area of a well in a 96-well plate (FIGURE 5.14). A plot of

the total cell-associated mass in each experiment would have been an equivalent

representation.

For these results, there were two variables studied, the presence of targeting

ligand on the polymer and the presence of the target on the cell surface. Each of these

variables had two levels, which led to four cases of interest. For three of the cases, the

untargeted polymer and EGFR-positive cell line and both of the EGFR-negative cell line
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cases, any cell-associated polymer measured should be due to non-specific uptake.

Ideally, the uptake results for these three cases should be identical. This non-specific

uptake can essentially be subtracted from the uptake observed for the targeted polymer

and EGFR-positive cell line to yield the uptake that occurred due to the presence of the

E13.4.3 peptide, the specific uptake.
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Figure 5.13. Uptake of batch 2 polymers in both EGFR-positive (A431NS, solid lines) and EGFR-
negative (MCF-7, dashed lines) human cancer cell lines. Polymers both with (closed symbols) and
without (open symbols) E13.4.3 peptide attached were measured. Data were normalized by the cross-
sectional area of a well in a 96-well plate. The, X=50, HC time points were purposefully offset to
clarify the error bars.

The greatest difference between selective and non-specific uptake was observed

for the X=50, HC polymers (14B). The uptake of the targeted polymer in the EGFR-
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positive cell line was 2-3 times greater than that for the other three cases that represent

non-specific uptake. The data for the three non-specific cases were essentially

indistinguishable from one another. Interestingly, there was no observed difference in

uptake for any of the four cases for the X=50, PFC polymer (14C). These two sets of

X=50 polymers differed only in the nature of the hydrophobic sidechain. There was also

minimal difference between the X=25+, PFC polymer and the three non-specific cases

(14A). The 4 hr time point for the X=25-, PFC polymer in the EGFR-positive case was

somewhat higher than the results for the EGFR-negative cell line. This may suggest that

the X=25+, PFC, EGFR-positive results were an outlier or that some other, unknown

effect contributed to the increased uptake.

There was also a significant difference in the uptake of the X=75+, PFC polymer

in the EGFR-positive cell line relative to the three non-specific cases at 4 hr (14D).

Overall, the results for the three non-specific uptake cases were not only similar to one

another within each set of polymers, but also across all four pairs of polymers studied in

two different human cancer cell lines.

5.4.9 Analysis of Uptake Normalized by Initial E13.4.3 Peptide Concentration

The preceding data analysis focused on normalization of the uptake data by either

the number of cells in or the surface area of an individual well. Because one of the

primary variables evaluated was the number of targeting peptides per polymer chain, the

initial E13.4.3 peptide concentration at the beginning of each experiment was also used to

normalize the uptake results. This normalization provided information about the targeting

efficiency of the E13.4.3-conjugated polymers, essentially the amount of material

entering the cells per peptide attached.
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To normalize the data, the initial concentration of E13.4.3 peptide in solution was

determined for the two synthesis batches and free E13.4.3 peptide (FIGURES 5.11-13).

For each E13.4.3-conjugated polymer, the initial polymer concentration (0.5 mg/mL) was

multiplied by the weight fraction of E13.4.3 peptide in the particular polymer

formulation. For example, according to the number of peptides per chain, the molecular

weight of an individual chain and the molecular weight of the peptide (TABLE 5.5), the

weight fraction of peptide in the X=10+, HC polymer was 0.41 (12.5 kDa/30.8 kDa) and

the initial E13.4.3 peptide concentration was 0.2 mg/mL. The initial peptide concentration

for the free E13.4.3 peptide data was straightforward. The experimental results

normalized by initial peptide concentration are presented in FIGURE 5.15.

For the first batch of polymers, the greatest E13.4.3-normalized uptake was

observed for the X=25+, PFC polymer, while the second highest was for the X=10+, PFC

polymer. Although the absolute uptake was considerable for the two X=50+ polymers in

the first batch (12B), the efficiency of the uptake relative to the number of peptides in

solution initially was minimal when the E13.4.3-peptide normalization was applied. The

E13.4.3-normliazed uptake for the X=25+, PFC polymer was similar to that for the lowest

free peptide concentration. The initial peptide concentrations for the X=25+, PFC and 5

nM experiments differed by four orders-of-magnitude (0.26 and 6.25x10 5 mg/mL,

respectively). Although the free peptide uptake flattened out drastically with increased

concentration (FIGURE 5.11), conjugation of the peptide to our polymer allowed for

continued uptake beyond that predicted solely by the initial peptide concentration.
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Figure 5.14. Uptake of E13.4.3-conjugated polymer and free E13.4.3 peptide normalized by the initial
concentration of peptide in solution at t = 0. The asterisks indicate that the (A) batch 1 and (B)
peptide experiments were performed in the same 96-well plates. The scale of the y-axis for the batch
2 (C) results is one-fourth that of the others. The original uptake results used to calculate the values
in this figure were presented in FIGURES 5.11, 5.10, and 5.12, respectively.

The E13.4.3-normlized uptake for the second batch was significantly lower than

that for the first batch; this was due to the low absolute magnitude of the original uptake

results. For this batch, the E13.4.3-normalized uptake for the X=50+, HC polymer was

equal to or greater than that for the X=25+, PFC polymer. This was the opposite of the

trend observed in the first batch., which further emphasized the low uptake observed for

the X=25+, PFC polymer in the second batch. The normalized uptake was much greater

for the X=50+, HC polymer than the X=50+, PFC polymer because the weight fraction of

peptide in the two polymers were very similar.
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5.4.10 Biodistribution and Blood Circulation in a Mouse Model of Human Cancer

Candidates from both synthesis batches were investigated in in vivo

biodistribution and blood circulation studies. For the first synthesis batch, polymers were

selected according to which sample was synthesized in sufficient quantity to supply the

experiment. For the second synthesis batch, all polymers were available in sufficient

quantity. Together, this provided the opportunity to investigate a wide range of polymers

in in vivo biodistribution experiments to (1) evaluate their performance in targeting the

subcutaneous tumor and (2) to determine whether there was any correlation between in

vitro selectivity and increased tumoral accumulation in vivo. In order to screen a wide

range of polymers in in vivo studies, the time points studied and the number animals in

each experimental group had to be reduced. The total number of animals for

experimentation was somewhat restricted due to both labor and funding limitations.

Animals were sacrificed at specified times and organs were harvested, weighed, and

assayed for radioactivity to determine the accumulation.

The biodistribution for the first batch of polymers synthesized from the high

molecular weight backbone polymer was measured at 1 and 6 hr (FIGURE 5.16). The

uptake of the free E13.4.3 peptide was also measured at these two time points. The

highest tumoral accumulation was measured for the X=25+, PFC polymer at 1 hr, with a

%IDPG of nearly 3%. This result was higher than that for the X=25-, PFC polymer, with

a p value equal to 0.08. A p-value at this level, although not quite below 0.05, was

encouraging considering the limited number of test animals in the group. There was also

no difference in biodistribution between the two X=25, PFC polymers in all of the organs

harvested or in the blood. This fact, together with the similar particle size distributions of
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the two samples (9D), suggested that the increased accumulation in the tumor was due to

the conjugation of the EI3.4.3 peptide. Additionally, the tumoral %IDPG for the X=25+,

PFC polymer was 50% higher than that for the free E13.4.3 peptide, but the difference

was not statistically significant.
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Figure 5.15. Biodistribution and blood circulation results for batch 1 polymers and free E13.4.3
peptide (open bars). The number of animals, n, for each polymer at the 1 and 6 hr time points is
tabulated.
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Although there was significant in vitro uptake measured for the X=50+, NHS

polymer (12B) with hydrodynamic diameters recorded between 20 and 80 nm (9F), the

tumoral accumulation for this polymer was the lowest of all measured.

The highest overall %IDPGs were measured in the kidneys. Accumulation in the

kidney would typically be observed before excretion in the urine. For the X=50+, NHS

polymer, the low %IDPG in the kidney together with the low %ID in the blood indicate

that the majority of the injected dose had been excreted before the 1 hr time point. The

%ID for the X=50+, NHS was lower than that for the free peptide even though the

polymer contained approximately 5 E13.4.3 peptides attached to the high molecular

weight polymer backbone by PEG3400 spacers. It is also possible that the E13.4.3

peptides were associating with one another to lead to particle or aggregate formation and,

in doing so, became inaccessible to EGFR.

Overall, there was accumulation measured in the other clearance organs, the liver

and spleen, as well as some accumulation in the heart and, in particular, the lungs. It is

possible that bleeding in the thoracic cavity during organ harvest contributed to the

elevated activities measured in the lungs. Finally, there was no activity measured in the

brain for any of the samples, which indicated that the injected material was unable to

cross the blood-brain barrier. Based on this observation, the brain was not harvested in

subsequent biodistribution measurements.

For the second synthesis batch, the stomach was also collected because the

stomach as well as the thyroid, which was not recovered, can act as sinks for cleaved 1251

due to their iodide-specific ion channels [48]. For this second batch, the greatest tumoral

%IDPG measured was for the X=50+, HC polymer (17B). This polymer also had the
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greatest absolute uptake in vitro from this batch (13B). This %IDPG was over two times

greater than that for the untargeted X=50-, HC polymer. The p-value for these two sets of

data was 0.15.
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p 0.15
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Figure 5.16. Biodistribution and blood circulation results for the second batch of polymers. All mice
were sacrificed 1 hr post-injection. Blood data are presented as %ID (right axis), while the remaining
data for the harvested organs are presented as %IDPG (left axis). There were three animals in each
experimental group.

There was also significant selective tumor accumulation observed for the X=25,

PFC polymer pair (17A). For this pair, the %IDPG for the targeted polymer was four

times that of its untargeted counterpart. The accumulation for the X=25+, PFC was also
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higher than that for X=25-, PFC in many of the organs harvested, most notably the

kidney and the stomach. Although the %IDPG values were significantly higher in these

organs, there was no statistical difference between the two X=25, PFC polymers for the

%ID in the blood (p = 0.64). The selective accumulation of the E13.4.3-conjugated

polymer relative to the untargeted control was observed despite the fact that minimal

selectivity was observed for this polymer in vitro (14A). The selective accumulation did,

however, reproduce the biodistribution results for this same polymer formulation when it

was synthesized in the first batch (16A). The %ID measured in the blood for the X=25,

PFC polymers was also comparable between the two batches.

Finally, no selective accumulation was observed in the tumor for the X=50, PFC

or X=75, PFC polymers.

5.4.11 Tumor Targeting Compartmental Model Predictions

The tumor targeting compartmental model of Schmidt and Wittrup was used to

simulate the tumoral accumulation of three different targeted delivery agents: (1) the free

E13.4.3 peptide (12.5 kDa) and particles with hydrodynamic diameters of (2) 10 nm and

(3) 20 nm. Larger particle sizes were not investigated because they would be out of range

for the developed model. Each particle size was also simulated at three different

dissociation constants: 250 pM, 250 RM, and 250 mM (FIGURE 5.18). The range of

dissociation constants was selected because, although the native E13.4.3 peptide had a KD

of 250 pM, steric effects or iodine-125 molecules in the binding site could reduce the

effective binding constant of either the free peptide or peptide-conjugated particles.
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Figure 5.17. Simulation results using the tumor targeting compartmental model for three particle
sizes (free 12.5 kDa E13.4.3 peptide, and 10 and 20 nm diameter particles) at three binding
dissociation constants (KD). The results are presented as theoretical %IDPG in the tumor as a
function of time. All y-axes are scaled identically with the exception of (K).

The general trend predicted by the model is an increase in accumulation in the

tumor followed by a gradual decrease. The most rapid increase in %IDPG was predicted

for the free peptide with a KD of 250 pM (18A). This peptide would bind strongly to the

receptors on the tumor while having comparatively minimal size-related mass transfer

limitations. For the particles with a 10 nm diameter, the greatest predicted accumulation

was actually for the particle having a KD of 250 mM (18G). Because the renal clearance

rate was identical for all of these equally sized particles, the decrease in predicted tumoral

%IDPG would be entirely due to label catabolism and efflux.
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The predicted %IDPG for the larger, 20 nm diameter particles increased more

gradually than the smaller, 10 nm particles. This relatively slower increase was

attributable to size-related limitations in the particle mass transfer. For the d = 20 nm, KD

= 250 mM simulation (18K), the predicted %IDPG increased monotonically over the

entire simulated timeframe. This result suggested that the particle circulated freely with

minimal renal clearance, but that it also bound and penetrated the tumor at a slow rate.

This slow tumor penetration would also lead to a low rate of label catabolism and influx.

It is also possible that the combination of these parameters led to a case that was outside

the intended range of the model.

The model predictions were also compared to the experimental results. For the

free E13.4.3 peptide, the %IDPG was approximately 2 and 0.75% at 1 and 6 hr,

respectively. These results compare favorably to the model predictions for the free

peptide with a KD of 250 pM, which were 2.4 and 0.6% for 1 and 6 hr, respectively. For

the particles, the model predicted much lower accumulation in the tumor at 1 hr, between

0.5 and 1% IDPG depending on the simulated particle size and dissociation constant.
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5.5 Discussion

5.5.1 In vitro Targeting with E13.4.3-conjugated Polymers - Initial Study

The E13.4.3 peptide was identified as a targeting ligand of interest due to its

extremely high affinity for its target (KD = 250 pM for EGFR), and its relatively

straightforward and economical recombinant production in bacteria. The particle sizes for

the four polymers synthesized for this initial study were consistent with polymers studied

previously in our lab by Dr. Jin Zhou Dawson [49].

Both targeted polymers, with either the PEG3400 or TEG spacer, demonstrated an

approximately twofold increase in selective uptake in vitro relative to untargeted controls

after 4 hr. This difference was statistically significant with a p-value < 0.01. Interestingly,

there was no selectivity at the 1 hr time point. This suggested that the binding and

internalization required more than one hour to yield selective uptake. The demonstrated

selectivity of the E13.4.3-conjugated polymers in vitro, together with the economic

advantages of E13.4.3 production, strongly indicated the potential of the E13.4.3-EGFR

targeting pair for further study.

5.5.2 Evaluation of Preparative GPCfor Backbone Polymer Fractionation

There was strong evidence in the literature [50-52], as well in previous work in

our group [40], that polyvalency - increasing the multiplicity of targeting ligands on a

particle or polymer chain - would be a key design variable for effective receptor

targeting. Low molecular weight backbone polymer provided little opportunity to

increase polyvalency due to the direct tradeoff between targeting and hydrophobic

sidechains; increasing targeting inhibits particle formation.
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Additionally, although the polymers synthesized from the lower molecular weight

backbone polymer formed particles with diameters of 5-10 nm, particles of this size did

not quite meet one of the key design constraints for circulating delivery vehicles.

Glomerular clearance in the kidney leads to nearly complete first-pass clearance of

particles with diameters less than 5 nm [2, 44, 53]. Blood circulation of particles with

diameters between 5-10 nm may also be affected by kidney filtration. Consequently, the

potential to form larger particles was a second benefit of increasing polymer molecular

weight.

The preparative GPC was used effectively to produce monodisperse fractions of

the backbone polymer with polydispersities between 1.12 and 1.17. These low PDIs were

particularly encouraging considering the polydispersity of the backbone polymer sample

loaded onto the preparative GPC column, 2.30. There is opportunity to create even more

monodisperse fractions by decreasing the volume of the collected fraction; however, this

leads to a tradeoff in the amount of mass in the particular fraction.

The highest molecular weight chains in the initial backbone polymer sample were

not collected in any of the fractions. It is possible that these high molecular weight chains

were not loaded onto the column in the first place, having been removed from the sample

during syringe filtration performed to remove any particulates that may clog the lines.

Removal during this initial filtration is possible considering the fact that high molecular

weight PEGs have limited solubility in water. These insoluble or, more likely, poorly

soluble high molecular weight backbone polymer chains could have been removed during

the filtration. Other possible points of loss include the preparative GPC process and the

freeze-drying of the recovered fractions. The increased system pressure during the course
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of single- or multiple-injection preparative GPC runs may have been a result of high

molecular weight chains exiting the solution and clogging the pores of the column;

however, the pressure increase in the system would have been much more substantial had

30% of the loaded mass become effectively stuck in the column. Finally, although some

polymer degradation was observed as a result of freeze drying, no degradation was

observed that could account for the large loss of the highest molecular weight material.

The overall goal of the preparative GPC experiments was to develop a tool to

isolate high molecular weight fractions from a raw, high molecular weight, polydisperse

backbone polymer starting material. This meant that some questions that arose during

these initial experiments were left unanswered. There is room for further improvement,

particularly with respect to the recovery of the highest molecular weight fractions. To this

end, different mobile phases for which the backbone polymer solubility is maximized

would need to be investigated. Fortunately, the Superdex 75 column has a broad range of

chemical compatibility.

Despite the unanswered questions, the developed high-through process was able

to supply the starting material for the synthesis of the targeted and control polymers used

in the biological studies.

5.5.3 In vitro Uptake of EI3.4.3-Conjugated Polymer Synthesized from High Molecular

Weight Backbone Polymer

Having identified the E13.4.3 and EGFR as a promising targeting pair, two

primary variables of interest were studied: (1) the targeting ligand density, which is

directly related to the percent of sidechains substituted with PEG3400 spacers, and (2) the

identity of the hydrophobic sidechain (hydrocarbon, perfluorocarbon, or no added
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sidechain). The polymer molecular weight was omitted as a variable to make the library

more tractable and to minimize the number of synthetic steps. Results were separated by

batch number to emphasize that each polymer was usually synthesized only once or, at

most, twice.

The fourfold increase for the X=25+, PFC polymer was the greatest increase in

selective uptake observed to this date with our polymer system. Unfortunately, it is

difficult to draw comparisons of this result to the literature. The in vitro data in the

literature typically relates to cell death caused by the delivery of a therapeutic agent or

the silencing of some gene by delivery of siRNA, for example. This makes direct

quantitative comparison tenuous. The fourfold difference in selectivity, however, is

within the range observed for other polymeric micelle [31, 54] and dendrimeric [11]

systems. It was also interesting that only minimal selective uptake was observed for the

X=25+, HC polymer, which was identical to the X=25+, PFC with the exception of the

hydrophobic sidechain. This result emphasized the importance of the sidechain identity as

a key variable, as well.

The uptake for the X=50+, HC and X=50+, no other SC also appeared to be

increased due to selectivity, but it was difficult to firmly conclude this because no

negative control polymers were synthesized for either of these two formulations. Because

of this, all polymers for the second batch were synthesized both with and without the

E13.4.3 peptide attached.

There was a significant difference in the absolute magnitudes of the polymer

masses per cell between the two sets of data. This discrepancy was partially attributed to

the total cell counts measured for the two uptake experiments, which differed by a factor
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of two. However, the cell count variations did not account for the entire difference. There

may have also been some unknown, systematic experimental error during the second

batch uptake experiment. As previously discussed, the ability to perform repetitions was

limited by both material limitations and the screening-oriented nature of the overall

experimental plan.

5.5.4 Uptake Measurements in EGFR-positive and negative Cell Lines

It was quite difficult to select an EGFR-negative cancer cell line to try and

measure passive, untargeted uptake. The MCF-7 cell line constitutively expresses EGFR

at a low level, especially relative to A43 INS cells (3x10 3 receptors per cell [46] versus

more than 2x10 6 [55]). The uptake data for A43 INS and MCF-7 cells were compared

after controlling for the significant difference in individual cell surface area. This

adjustment relies on the assumption that both passive and active (i.e. targeted) cellular

uptake were cell-surface area dependent processes. The results of this normalization by

the area of a single well (i.e. the cell surface area in a confluent well) validated the choice

to normalize by surface-area. The fact that the uptake per area for the untargeted polymer

in the EGFR-positive cell line was nearly identical to that for the polymers in the EGFR-

negative cell line confirmed that the MCF-7 cell line was a suitable choice as a receptor-

negative cell line.

Although significant emphasis has been focused on increasing selectivity by

increasing the uptake of the targeted polymers, selectivity can also be increased by

decreasing the non-specific uptake. The fact that the uptake for the three non-specific

cases is not only non-zero but the same order-of-magnitude as the specific uptake further

emphasized this point. Strategies to reduce non-specific uptake exist in the literature,
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most notably through the addition of negative charge to the particle surface. Such

modifications would require additional synthetic development, but may prove extremely

beneficial to increasing in vitro selectivity.

5.5.5 Analysis of Uptake Normalized by Initial E13.4.3 Peptide Concentration

The uptake data were also processed to determine targeting efficiency as a

function of peptide substitution. This analysis, which was independent of any size

measurements, was performed to determine a potentially optimal level of substitution that

maximizes targeting efficiency. In both batches, the X=25, PFC polymers exhibited

highly efficient targeting relative to the other studied polymers, while the X=50, HC

polymer was also highly efficient among the second batch polymers. Based on the results

of this analysis, additional peptide substitution levels should be investigated between

X=10 and X=50 to establish a greater continuum of substitutions.

5.5.6 Biodistribution and Blood Circulation in a Mouse Model of Human Cancer

Overall, the polymer accumulation in non-target organs, including the liver,

spleen, and kidney, was relatively low. Significant accumulation in these organs usually

indicates potential issues in toxicity studies. Comparing the %IDPG to comparable

delivery systems in the literature ([54, 56], among others), which report %IDPG for liver

and kidney greater than 10-20%, the general biodistribution profile for our system was

encouraging. There was very little measurable signal in the brain, which implied that the

polymers and free peptide were unable to cross the blood-brain barrier.

The greatest tumoral accumulation was observed for the X=25+, PFC polymer at

2.8% and the X=50+, HC polymer at 4.1%. This level of tumor accumulation compared

quite favorably with the literature, in which %IDPG in the tumor typically ranged
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between 1-4% [54, 56]. In their recent work, Poon and Hammond have successfully

achieved %IDPG of greater than 10% in the tumor using their dendritic block

copolymers. This result significantly outperforms other reports in the literature, including

those in this work.

At this absolute magnitude of accumulation (2.8%) and selectivity relative to the

untargeted control (twofold), the X=25+, PFC polymer labeled similarly with iodine-124,

a positron emitting isotope, would be able to be visualized by positron emission

tomography [57].

With respect to particle size and glomerular filtration, it is important to remember

that the polymeric micelles experience significant dilution both upon injection and as

particles are removed from the circulatory system. The rate of particle breakdown in the

bloodstream depends on the stability of the micelle and the local concentration of the

polymer. If rapid clearance was observed for a given polymer/particle, as was the case for

the X=50+, NHS polymer, this would be an indication that the particles were rapidly

dissociating in the bloodstream. There is also some evidence in the literature of PEG-

mediated specific accumulation in the kidney [58], which may account for the

substantially greater rate of clearance for the X=50+, NHS polymer relative to that for the

free E13.4.3 peptide. Overall, the increased circulation time, as evidenced by the

measured %ID values, suggests that the majority of the particles were stable in the

bloodstream at least to a certain extent.

For the second batch, biodistribution measurements were performed for four pairs

of targeted and untargeted polymer having different particle size distributions as well as
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various performances in vitro. The brain was not recovered during this study since there

was no evidence in earlier studies that the polymer crossed the blood-brain barrier.

The second biodistribution experiment was able to repeat the selective

accumulation of the X=25+, PFC polymer observed in the first study, with a %IDPG that

was four times higher than that for the untargeted control, X=25-, PFC. It was also

interesting that this selective accumulation was observed despite the fact that only

minimal selectivity was observed in vitro for the second synthesis of the X=25, PFC

polymer pair.

The elevated %IDPG values for the kidney and stomach were likely indicative of

deiodination, an oxidase-mediated process that occurs upon internalization into cells [44,

47, 48, 59]. While the kidney accumulation was a function of its normal blood filtration,

the stomach as well as the thyroid, which was not recovered, act as sinks for cleaved 125

due to their iodide-specific ion channels [48]. Because tumors do not actively accumulate

iodide, the measured tumoral activity was representative of radioiodine bound to either

polymer or peptide. The elevated %IDPG in the stomach and kidney, especially

compared to the untargeted control, may actually have been a 'symptom' of tumoral

accumulation because increased cellular internalization of the X=25+, PFC polymer

would lead to increased deiodination. (This label catabolism process was described while

presenting the tumor compartmental model of Schmidt and Wittrup.)

The targeted X=50, HC polymer achieved the highest tumoral accumulation

among the second batch with a %IDPG greater than 4. The experimental error was high

enough that there was relatively poor statistical significance between the targeted and

control polymers (p = 0.18). Selective accumulation of targeted polymer occurred even
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though the blood concentration of untargeted polymer was statistically higher (p<0.05, p

=0.0495) than the E13.4.3-conjugated polymer.

The lack of selectivity observed for the remaining polymers in the second batch

may be attributable to their inability to form well-behaved micelles. Their comparatively

broad and disjointed particle size distributions suggested that the highly substituted

polymers may have formed aggregates as opposed to micelles due to the high degree of

PEGylation. Past work has suggested the aggregation phenomenon for highly PEGylated

polymer is unstable and varies greatly with time [40].

It is also important to note that the experimental group sizes were small. Ideally,

group sizes would have been preferably 5 or more animals. Nonetheless, there was

moderate to high statistical significance observed for three different sets of polymers

studied: the X=25+, PFC polymer in both batches and the X=50+, HC polymer in the

second batch. Together, these were the first in vivo demonstrations of selectivity for our

polymers.

5.5.7 Comparison to Theoretical Model Predictions

The tumor targeting compartmental model of Schmidt and Wittrup [44], which

expanded upon the work of Thurber and Wittrup [60, 61], was solved for three different

particle sizes and three different binding affinities.

Since the in vivo studies were designed to screen for the most promising

formulation, the investigation of a multitude of time points was impractical; however the

model predictions suggest that time course data would be valuable in evaluating the in

vivo performance of a targeted polymer. For example, the time course data could be

compared to the nine plots generated by the tumor compartmental model to estimate the
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particle size and dissociation constant in vivo. Conclusions about the physical state of the

particle (i.e. micelle versus individual chain) should be apparent from these comparisons.

Schmidt and Wittrup also compared their model predictions to data from the

literature to assess the precision of their model. They found excellent agreement between

the model and experiment for small peptides and antibody fragments and less precision

for nanoparticles. Considering this, the differences between the model predictions and the

experimental results described herein were reasonable.

5.6 Conclusion

A novel construct combining the high affinity binder, E13.4.3, with amphiphilic

alternating copolymers was investigated. Backbone polymer produced by the Protherm

reactor was successfully fractionated into low polydispersity, high molecular weight

starting material for use in subsequent synthetic steps. These high molecular weight

fractions allowed for increased substitution of targeting sidechains while still allowing for

attachment of the hydrophobic sidechains required to impart amphiphilicity to the

molecule.

Initial studies demonstrated selective uptake of E13.4.3-conjugated polymers into

a target-bearing, EGFR-positive human cancer cell line relative to untargeted controls.

Polymers synthesized from the fractionated backbone polymer achieved the greatest

increase in selective uptake observed for this system (approximately 4-6X). Animal

studies were performed to assess the biodistribution, blood circulation, and tumoral

accumulation behavior of various polymer formulations. Selective tumor accretion was

observed for two different targeted polymers, X=25, PFC and X=50, HC, including for
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two separate syntheses of the former. A number of potential correlative relationships

were considered, including the effect of particle size on blood circulation and the ability

of in vitro experiments to predict selectivity in vivo.

The E13.4.3-polymers have proven a rich platform for study. Their demonstrated

ability to selectively accumulate in targeted tumors combined with their potential use in

diagnostic and/or therapeutic clinical applications makes them an attractive option for

intensified investigation.
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Appendix A: Molecular Weight Calculation by Analytical GPC Breeze Software
and Chromatogram Manipulation

The molecular weight was calculated using the Breeze software associated with

the Waters GPC system. The PMMA calibration data (molecular weights and associated

elution volumes) were entered into the software. To calculate the molecular weight for a

given a chromatogram, a baseline was drawn and the 'Quantitate' button was pressed in

the software to generate the number- and weight-average molecular weight,

polydispersity index, and a number of other parameters according to the PMMA

calibration.

In the screenshot (FIGURE A. 1) as well as all other analyzed chromatograms, the

baseline was drawn to include elution volumes between 15 and 27 mL. Any signal at

elution volumes greater than the total volume of the column banks, 27 mL, was excluded

from the analysis because any species eluting after this point, such as linker or water,

could not be resolved from one another since they can fully enter the pores within the

resin. The noisy signal at elution volumes greater than 29 mL is due to mobile phase

impurities and small amounts of air dissolved in the sample.
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The accuracy of the Breeze molecular weight calculation algorithm was analyzed

using a number of sample chromatograms. The chromatogram in FIGURE A.2, which

relates refractive index (RI) response at various elution volumes, was chosen as a

representative data set. As was the case in FIGURE A. 1, only elution volumes between

15 and 27 mL were included in the analysis
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Figure A.2. Raw data output from the Breeze software. The polydisperse polymer sample exiting the
column at various elution volumes is measured by a refractive index detector.

The instantaneous refractive index is recorded at equally spaced elution volume

increments of 0.0166 mL. The frequency at which the data are recorded makes it

appropriate to plot the chromatogram as a continuous line, as in FIGURE A.2. As

described in the Polymerization Results, a standard kit containing samples of nearly

monodisperse poly(methyl methacrylate) (PMMA) was used to calibrate the Styragel

HR1, 3, and 4 column bank. The empirical relationship of Mori was used to convert the

molecular weight according to PMMA into backbone polymer molecular weight. Using

the calibration and empirical relationship, the x-axis can be transformed from elution

volume to backbone polymer molecular weight (FIGURE A.3).
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Figure A.3. Raw data refractive index response as a function of backbone polymer molecular weight
on (A) rectangular and (B) semilogarithmic coordinates.

According to calculations performed within the Breeze software, this

chromatogram had a number average molecular weight, M, of approximately 5.5 kDa.

Upon inspection of the figure above, it may or may not be readily apparent whether or

not this calculation is correct because the y-axis is the RI response for the species having

various molecular weights and not the number of molecules at each molecular weight.

Manipulations were performed to convert the y axis from RI response to number in order

to better visualize the molecular weight distribution.

To convert RI response into number one must first understand the behavior of

refractive index. Like other light-based phenomena, for example absorbance, which is

governed by Beer's law, refractive index is proportional to the mass concentration of a

species in solution. Therefore, a polymer having n repeat units will affect the refractive

index of a solvent exactly the same way as n monomers in solution. Measurements of

various molecules at various concentrations using the Waters RI detector have confirmed

this (data not shown). The relationship between refractive index response, RI, and the

mass concentration, C, can be written as follows:
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RI= aC (1)

where a is a constant. The measurements shown in the preceding chromatograms are

instantaneous representations of the refractive index made at regular intervals. Since the

chamber through which the detector measures the RI never changes, the volume of eluent

measured for each reading is identical. This allows the refractive index for the ith

measurement, RI;, to be directly related to the mass of material, mi, associated with that

reading:

RlI - Il )Mi (2)

where Vceen is the volume of the cell in the RI detector. The mass present in the ith slice is

related to the molecular weight of the ith slice, M. Therefore, the following relationship

holds

N.
m = ' Mi (3)

NAv

where N is the number of molecules in the ith slice and NAv is Avogadro's number.

Combining EQUATIONS 2 and 3, yields an expression relating the number of molecules,

Ni, having molecular weight, Mi, to the refractive index response:

N VNAvRI (4)
pMi

Using EQUATION 4, the y-axis from the chromatograms above (FIGURE A.3) can be

converted from RI response to number by dividing by Mi. Since the pre-term is unknown,

it was not included in the conversion and the y-axis becomes the relative number of

molecules at a given molecular weight (FIGURE A.4). Knowledge of this pre-term is not

required because it will be canceled out in subsequent steps in the derivation.
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Figure A.4. Relative number of molecules at each backbone polymer MW for the sample
chromatogram.

The number-average molecular weight can be calculated directly from the

histogram in FIGURE 4 according to:

-- NiMi
- = (5)

" Nj

If it had been carried through, the unknown pre-factor in EQUATION 4 would cancel in

EQUATION 5 and, consequently, does not need to be determined for this analysis. The

number average molecular weight, M, calculated from FIGURE A.4 and EQUATION 5

is 5.5 kDa, which is identical to that determined by the Breeze software.
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Appendix B: MATLAB Code for Kinetic and Mass transfer Modeling

The following program was used to simulate the weight-average molecular weight
as a function of time for the homogeneous kinetic model. The program was also used to
simulate the equilibrium molecular weight by setting 'tf equal to 2x10 10.

function [tmat,Mn] = polymsimwaterPn testOct2OlO()

MA = 900;
MB = 210;

MM = 32;
M_0 = (MA +

M eg = MM;

% g/mol

MB - 2*MM)/2;

ti = 0; % hour

tf = 20000; % hour
tspan = [ti tf];

CAO = 2;

CBO = 2;

%mol/

CLO = 0;
CCO = 0;
% CWO = 1.5e-3;

CWO = 0;

r= 1;

from KF drying experiments

CO = [CAO CBO CLO CWO CCO];

kf = 9.0e-3*60;

Keq = 10;

kr = kf/Keq;

kfh =
krh =
kfc =
krc =

% L/mol-hr

all othe r ate constants equa .o k for starters
kf;
kf;
kf;
kf;

create a vector of methanol partial pressures and convert to
%. concenitrati.on
PM = logspace(-4, 2, 4); % mrIg
% = [50e-3,50e-3,50e-3,5e-3

v ave = 0.8; %Lmoli

PMO = 1900; % mmHg

for f=1llength(PM)
CM(f) = PM(f)/(v ave*PMO); %#o0k.<AGROW>

end

Clength = length(CM);
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tamt = 150;
tmat = zeros(tamt,Clength);
Mn = zeros(tamt,Clength);

for Ci=1:Clength

[t,C] = odel5s(@fun, tspan, CO, [],kf,kr,CM(Ci),kfh,krh,kfc,krc);

tlength(Ci) = length(t); %#ok<AGROW>

for count=1:tlength(Ci)
tmat(count,Ci) = t(count);

end

fA = 1 - C(:,1)/CAO;

fB = 1 - C(:,2)/CBO;
% fractional conversion of mor-nomer A

% calculate the degiree of polymerization based on hasic t herv

for time=1:tlength(Ci)

% call the function that caiculates Pn
Pn(time,Ci) = Pn calc(fA(time),fB(time),r);

% convert Pn to MW
Mn(time,Ci) = Pn(time,Ci)*M_0 + MIeg;
Mw(time,Ci) = M 0*(2*Pn(time,Ci)-1);

%#ok<AGROW>

%#ok<AGROW>

% Cl ean up plot by maki.g all indices that were left as zero equalt
the

% maximumn
for Cj = 1:Clength

tmax = tf;

Mnmax = max(Mn(:,Cj));
Mwmax = max(Mw(:,Cj));

for Tj = (tlength(Cj)+1):tamt

tmat(Tj,Cj) = tmax;
Mn(Tj,Cj) = Mnmax;
Mw(Tj,Cj) = Mwmax; %#ok<AGROW>

end
end

loglog(tmat(:,1),Mw(:,1),'r',tmat(:,2),Mw(:,2), 'b',tmat(:,3),Mw(:,3),'g

tmat(:,4),Mw(:,4), ':m');

xlabel (' time (hr) ') ; ylabel ('Mw (Da) ')
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xlswrite('poly :tmat exp', tmat);
xlswrite('poly_Mmat exp', Mn);

xlswrite('poly_Mwmat._exp', Mw);

end

% System of differential equations describing the reaction kinetics

function dC = fun(t,C,kf,kr,CM,kfh,krh,kfc,krc) %#ok<INUSL>

R = kf*C(1)*C(2) - kr*C(3)*CM;

Rh = kfh*C(2)*C(4) - krh*C(5)*CM;

Rc = kfc*C(1)*C(5) - krc*C(3)*C(4);

dC = zeros(5,1);

dC(1) = -R - Rc;

dC(2) = -R - Rh;

dC(3) = R + Rc;
dC(4) = -Rh + Rc;
dC(5) = Rh - Rc;

end

% Thi Sfntion calcuila tes the dectree of pl. ymeri zation based on

equati.orIs derived
% in both Odian and Prof Hammvond' s Polymer Synthesis course

function Pn = Pn calc(fA,fB,r)

if r>=1
f = fA;

else
f = fB;

end

Pn = (1+r)/(1 - 2*f*r + r);

end
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The following program was used to estimate the forward and reverse Damk6hler
numbers as well as the ratio of the bulk methanol concentration to that at the catalyst
surface (0m). Similar programs were used to perform the calculations for the other
proposed geometries or reactive species, substituting the relevant lines of code with the
appropriate equations as specified in the main body of this text.

function Da f = Da calc bead()

KS = 1.05e-10; m4/mol-s
CM = le-11; % moIl/./m3
Keq = 1;
del-bead = lOe-4; % m
CAO = 2e-3; % l

r = 1;

CA = linspace(O,CAO,5000);
CB = CA;

for i = 1:length(CA)
CL(i) = CAO - CA(i); %#ok<AGROW>
fA(i) = 1 - CA(i)/CAO; %#ok<AGROVW>
fB(i) = 1 - CB(i)/CAO; %#ok<AGROW>

Pn(i) = Pn calc(fA(i),fB(i),r); %#ck<AGROW>
Mn(i) = Mn calc(Pn(i)) %#o-k<AGROW>
Mw(i) = Mw calc(Pn(i)); %#ok<AGROW>

muM(i) = visc calc(Mn(i)); %#ok<AGROW>
Dm(i) = Dm calc(Mn(i)) %# kAGROW>

end

for k = 1:length(CA)

Da_f(k) = (KS*delbead) * (CA(k) *CB (k) /CM) /Dm(k); %#okAGROW>
Dar(k) = (KS*delbead)*(CL(k))/(Dm(k)*Keq); %#ok<AGROW>
C_ratio(k) = (3 + Daf(k))/(3 + Dar(k)); %#ok<AGROW>

end
figure;
semilogy(Mn,Da f)
figure;
semilogy(Mn,Da r)
figure;
semilogy(Mn,C ratio)

xlswrite('Da calc_beadle-11', [Mn',Mw',Da f',Da r',C ratio']);
xlswrite('muM', [Mn',Mw',muM'])
xlswrite('C mat',[Mn',CA',CL']);

end
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% Diffusivity calculation fuction according to Wilke-Chani

function Dm Dmncalc(MW)

VA = 0.416; % /kgmol
Mb = MW; % kgkgml
phi = 1;

T = 363; % K

mu = visc calc(MW);

Dm = 1.173e-16*sqrt(phi*Mb)*T/(mu*(VA^0.6));

end

SViscositv calculation function

function mu = visccalc(MW)

ro = 1100; % kg/m3

if MW < 1000

v cSt = 0.0166*MW + 0.7149;

elseif MW < 3350
v cSt low = 0.0166*(1000) + 0.7149;
v cSt high = 58.81 + 3.980e-11*(3350)^3.4;

Mvec = [1000,3350];

viscvec = [v cSt low, v cSt high];

fit = polyfit(Mvec,viscvec,1);

v cSt = polyval(fit,MW);

else
v cSt = 58.81 + 3.980e-ll*MW^3.4;

end

v v cSt*le-6;
mu = v*ro;

end

function Pn = Pn calc(fA,fB,r)

if r>=l
f = fA;

else
f = fB;

end

Pn = (1+r)/(1 - 2*f*r + r);
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end

function Mn = Mn calc(Pn)

MA = 900; % g/mrrol..
MB = 210;

MM = 32;

M_0 = (MA + MB - 2*MM)/2;

M-eg = MM;

Mn = Pn*M_0 + Meg;

end

function Mw = Mw calc(Pn)

MA = 900; % g/rr
MB = 210;

MM = 32;

M_0 = (MA + MB - 2*MM)/2;

Mw = M 0*(2*Pn-1);

end
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Appendix C: Sample calculation of model parameters and model results

Calculation of the Intrinsic Rate Constant

The effective forward rate constant was estimated experimentally. Based on the

geometry of the system in which the forward rate constant was estimated, the effective

forward rate constant is related to the intrinsic forward rate constant according to

(reproduced from EQUATION 29):

_ kV
Kf Yenz - f melt

AcatNcat

The value for kf was determined from the forward rate constant determination

experiment, while the other parameters on the left hand side were known according to

system- and geometry-specific parameters. The enzyme surface concentration was

unknown. Fortunately, the product on the left hand side appeared as such in the effective

rate constant equations for the other situations considered: single bead, stagnant melt, and

Protherm (EQUATIONS 27, 28, and 39).

The terms on the right hand side used in the calculation are summarized below. SI

units were used throughout the calculations for consistency.

Term Value SI Units
k, 1.5x1C- m3/mol-s

Vmit 8.33x10-6  M3

Nbi.d 3.8x103  dimensionless
Awed 3.14x104 M2

These values were used to determine the product, Kfaenz, which was 1.05x10_' 0 m4/mol-s

according to EQUATION 29 (reproduced above).
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Calculation of the Damkdhler Numbers

The Damk6hler numbers were calculated over a range of polymer molecular

weights. These molecular weights were used to estimate polymer melt viscosity, which,

in turn, was used to estimate the diffusivities. A single polymer molecular weight, 10

kDa, was chosen to demonstrate the calculation of the forward and reverse Damk6hler

numbers for the case of a single bead. The relevant parameters for each geometric case

were summarized in TABLE 3.5. These values, together with the steps described above,

can be used to verify any of the calculations for the single bead, stagnant film, and

Protherm cases across the range of simulated weight-average molecular weights.

The methanol and PEG self-diffusivities in a polymer melt of 10 kDa are 2x10-1

and 4x1 0-14 m2/s, respectively. These values were determined according to the results

presented in FIGURE 3.28. The concentrations of the hydroxyl, linker ester, and ester

linkage groups also vary as a function of molecular weight. An increase in molecular

weight corresponds to a decrease in the concentration of the reactants A and B and a

corresponding equimolar increase for the concentration of L. (Note: the bulk methanol

concentration was assumed to be constant for all molecular weights.) The values for CA,

CB, and CL at a polymer weight-average molecular weight of 10 kDa were calculated

according to EQUATIONS 18 and 21 and summarized below:

Term Value SI Units
CA 1.98x 0-4

Ce 1.98x1 0-4 m3/mol
C1  1.80x10-3

The forward and reverse Damk6hler numbers for the single bead case were

presented in EQUATION 33:
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Dabead = fbead R _CACB

fM DM Cm(R),k, eadRr CJ

Da ead -kf bead (CL
DMK eq

where,

k bead = faenz

The remaining terms required for the calculation were the bead radius, bulk

methanol concentration, and the equilibrium constant. According to the manufacturer, the

bead radius for the Novozym435 beads has a range of 1.55 to 5.0 mm. The bead radius

was assumed to be 5x10 4 m (5 mm) for the Damk6hler number calculations. The bulk

methanol concentration, 1x10~7 mol/m3 , was determined assuming a Raoult's Law

description of the vapor-liquid equilibrium. The equilibrium constant, Keq, was assumed

to be one.

The forward and reverse Damkbhler numbers for the single bead case were

calculated using the following combination of terms:

fM 2.0X10~" 1.00X10~7
(1.0510- )(5010-4I) 1.3x0

Dar = ' (1.'xloo)(5.Ox (1.80x10-3 )= 4.73x10-6

r,M (2.Ox1O")(1)

These results can be compared to the corresponding points on the plots in

FIGURES 3.29 A and B.
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Appendix D: Viscosity Measurements of PEG and Catalyst

Note: This appendix was adapted from a report prepared by Nathalie Pinkerton (NP). All
experiments and data analysis were performed by NP during participation in the MIT
Undergraduate Research Opportunity Program (UROP) under the guidance of the author
and Clark K. Colton.

Overview

The viscosity of the polymer melt can significantly affect the backbone

polymerization. Specifically, the diffusivities of the species within the melt, including the

methanol byproduct and monomer or oligomer reactive endgroups, are inversely related

to polymer viscosity. Viscosity increases as the reaction proceeds and higher MW

backbone polymer is achieved. Viscosity can also be affected by the addition of solids

into the melt, such as the support upon which the catalyst is immobilized, or by addition

of solvent, such as the PEG250 dimethyl ether. As a result, a study was performed to

develop a quantitative understanding of the viscosity of the backbone polymer melt as a

function of MW, catalyst loading, and solvent wt% (w/w).

Materials and Methods

The effect of the aforementioned on viscosity was investigated by adding solvent

to samples of PEG4600, PEG8000 and PEG12000 with and without catalyst beads. These

relatively low polydispersity (PDI < 1.15) PEGs were assumed to be representative of

backbone polymer of comparable MWs. An AR-G2 plate-plate rheometer (TA

Instruments, New Castle, DE) was used to perform the viscometry measurements.

Measurements were performed at 90'C across a range of shear rates. Samples were dried

before viscosity measurement to remove water.
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Results

Addition of Solvent

Solvent was added to PEG12000 in wt% (w/w) between 5 and 25% without

catalyst beads present (FIGURE 1). Solvent addition significantly reduced the viscosity

across all measured shear rates. In particular, the average viscosity was reduced from

4.26 Pa-s to 1.33 Pa-s with the addition of 25 wt% PEG250 dimethyl ether. Interestingly,

the independence of viscosity with respect to shear rate implied that the polymer

exhibited Newtonian behavior over the range of shear rates investigated.

Viscosity vs. Shear Rate of PEG12000 and Wt%
Plasticizer

5

4

CL
a.

3

0
V

> 2

- 0% Plasticizer

-t

-- 5% Plasticizer

-- -- 15% Plastcizer

- - -20% Platicizer

-27% Plasticizer

0 200 400 600 800 1000
Shear Rate (1/s)

Figure 1: PEG12000 viscosity measurements with different wt% of solvent added as measured across
a range of shear
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Addition of Catalyst Support

Polymer melts with catalyst beads (10 wt%, w/w) suspended were also measured

in order to assess the effect of such a solids addition. Solvent was also added at 5 and 25

wt% (w/w). The shear rate range was decreased for these measurements because of

technical issues - the catalyst bead polymer suspension was ejected from between the

plates at shear rates greater than 100 s-1. The gap size was increased from 1000gm to

2000gm to accommodate the beads.

The results for PEG4600, 8000 and 12,000 exhibited similar trends (FIGURES 2-

4). As anticipated, the presence of the catalyst support greatly increased the melt

viscosity, with a corresponding decrease in viscosity upon addition of solvent. In fact,

addition of solvent at 25 wt% (w/w) was able to restore the viscosity to a level below that

of the original, pure PEG sample. The addition of 5 wt% (w/w) solvent actually increased

the viscosity for both PEG4600 and 12,000. This result may have been an artifact of the

increase in the gap between the rheometer plates.
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Figure 2: Viscosity measurements of PEG4600 at various solvent wt%, both with and without the
catalyst beads added (10 wt%, w/w).
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Figure 3: Viscosity measurements of PEG8000 at various solvent wt%, both with and without the
catalyst beads added (10 wt%, w/w).
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Figure 4: Viscosity measurements of PEG12000 at various solvent wt%, both with and without the
catalyst beads added (10 wt%, w/w).
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Appendix E: Effect of lodination on Molecular Weight: Recovery Calculation and
Chromatogram Adjustments

In order to compare the chromatograms, the sample analyzed by the GPC system

had to be representative of that which was recovered at the end of the purification step.

However, in order to perform the GPC analysis, water had to be removed from the

sample before resuspension in the organic mobile phase solvent, THF. There were two

procedural difficulties that may have affected the quality of the sample during this

transition from water to THF. First, some polymer degradation had been observed due to

the freeze-drying process itself (FIGURE 4.10). Secondly, it was difficult to dissolve the

freeze dried product in THF due to the presence of crystallized salts from the phosphate

buffer solution. To maximize recovery, the vial containing the freeze dried product was

washed and resuspended in a known volume THF.

The overall recovery of polymer for the entire experiment, which included the

iodination with cold, 1271 freeze-drying, and resuspension in THF, was calculated

according to the peak area of the resulting GPC chromatogram. This calculation was

performed using a calibration curve constructed by analyzing samples of backbone

polymer dissolved in THF at a broad range of concentrations.

The calculation was performed according to the following steps: (1) the initial

mass of polymer at the beginning of the experiment was 1 mg (100 pL of 10 mg/mL

solution). This was the denominator for the fractional recovery calculation. (2) The

concentration of backbone polymer in the unknown sample was determined according to

the peak area calibration curve. (3) The total mass in the resuspended sample was

determined by multiplying the concentration by the total volume of THF used to wash

293



and resuspend the freeze-dried sample. (4) The fractional recovery was determined by

dividing the final mass by the initial mass.

To construct the peak area calibration curve described above, chromatograms

were generated for a wide range of backbone polymer concentrations. The result with the

peak area most closely resembling each of the two cold iodination sample chromatograms

was selected from this library of chromatograms. Using this strategy, the library

chromatogram for the first cold iodination was that for backbone polymer dissolved in

THF at 0.25 mg/mL, while the concentration of the library sample for comparison to the

second cold iodination was 0.0625 mg/mL. Each pair of chromatograms, which included

that for each cold iodination sample and its corresponding library chromatogram for

comparison, were normalized by their total peak area. The resulting y-axis for the

normalized chromatograms was the normalized absorbance response.
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Appendix F: Unicorn Method Code for Polymer Fractionation

The following method was used to perform the polymer fractionation described in
Chapter 5. The code includes a loop command with the loop number set to 8.

Method: C:\UNICORN\Local\Fil\default\Method\Kevin Prep Run 5xw.mOl

Main method:
n (Main)

0.00 Base Volume 318.557 {ml}
(HiLoad 26/60 Superdex 75 prep grade)#Column
* 0.00 Block StartwithPumpWashPurifier

(Start with PumpWash_Purifier)
0.00 Base SameAsMain
0.00 PumpWashBasic On On
0.00 EndBlock

* 0.00 Block FlowRate
(Flow Rate)
0.00 Base SameAsMain
0.00 Flow (0.800)#FlowRate {ml/min}
0.00 End-block

* 0.00 Block ColumnPressureLimit
(ColumnPressureLimit)
0.00 Base SameAsMain
0.00 AlarmPressure Enabled (1.00)#ColumnPressureLimit {MPa} 0.02 {MPa}
0.00 EndBlock

n 0.00 Block StartInstructions
(StartInstructions)
0.00 Base SameAsMain
0.00 AveragingTimeUV (10.00)#AveragingTimeUV
0.00 End-block

a 0.00 Block EluentAInlet
(EluentAInlet)
0.00 Base SameAsMain
0.00 BufferValveAl Al1
0.00 End-block

a 0.00 Block EluentBInlet
(EluentBInlet)
0.00 Base SameAsMain
0.00 End-block

U 0.00 Block StartConcB
(StartConcB)
0.00 Base SameAsMain
0.00 Gradient (0)#StartConcB {%B} 0.00 {base}
0.00 End-block

n 0.00 Block ColumnValve
(Column Valve)
0.00 Base SameAsMain
0.00 ColumnPosition (Position7)#ColumnPosition
0.00 EndBlock
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* 0.00 Block ColumnEquilibration
(ColumnEquilibration)
0.00 Base SameAsMain
(325.00)#Equilibratewith EndBlock

* 0.00 Block AutoZeroUV
(AutoZeroUV)
0.00 Base SameAsMain
0.00 WatchOff UV
0.00 AutoZeroUV
0.00 End Block

0.00 Loop 8
* 0.00 Block Sample_Run

(Sample _Run)
0.00 Base SameAsMain
0.00 Gradient 100 {%B} 0.5 {base}
4.00 Gradient 0 {%B} 0.5 {base}
95.00
214.00
245.00 ColumnPosition Position 1 Bypas
245.10 ;
246.00 Flow 10 {ml/min}
286.00 Flow 0.800 {ml/min}
288.00 AlarmPressure Enabled 1.00 {M
288.40 ColumnPosition Position7
289.00 EndBlock

0.00 Loop_ End
a 0.00 Block IsocraticElution

(IsocraticElution)
0.00 Base SameAsMain

n 0.00 Block LengthofElution
(LengthofElution)
0.00 Base SameAsMain
(320.00)#Length-ofElution EndBlock

0.00 EndBlock

Pa} 0.02 {MPa}
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Appendix G: Additional Representations of the Cellular Uptake Results

The uptake results in FIGURE 5.11 were also calculated according to the number

of polymer chains per cell. To manipulate the data, the mass per cell results were divided

by the molecular weights presented in TABLE 5.5 and multiplied by Avogadro's number.

Hydrocarbon Sidechains Perfluorocarbon Sidechains
10

0-X 10+ HC -- X= 10+, PFC
-- X 25+. HC --X= 25+, PFC
--6-X 25.HC -X = 25-. PFC

. 8 -I-X=50+.HC
-O-X =50+. no other SC

4

0

0,

0 1 2 3 4 5 0 1 2 3 4 5

Time (hr) Time (hr)
Based on these manipulations, the greatest uptake observed was for the X=25+,

PFC polymer, which still exhibited selective uptake relative to its untargeted, X=25-,

PFC counterpart, albeit to a lesser extent than that observed for the polymer mass per cell

method of data presentation.

The uptake results for the second synthesis batch were also subjected to the same

manipulations to yield the number of polymer chains per cell.
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For the second batch, no selectivity was observed based on the chains per cell

representation. In fact, the uptake for the untargeted polymers was higher than that for the

targeted polymers for three of the polymer pairs.

The data were also manipulated to determine the fraction of the initial activity

added to each well that was internalized or bound to the cell at given time point. These

results were also normalized by the number of cells in each well. The polymer mass and

bound radioactivity (as 12I) are related by:
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where a is the activity, Aspec is the specific activity of a radiolabeled polymer (units of

activity per mass), and m is the mass. The specific activity can be used to convert mass to

total activity. It can also be used to convert the initial mass added to the initial activity

added. When calculating the fraction of activity per cell at a given time point, the specific

activity of the polymer in question cancels. Therefore, the uptake results for the fraction

of initial activity per cell will be qualitatively identical to those for the polymer mass per

cell representation. This is a consequence of the choice to maintain the initial mass of

polymer in each experiment constant.
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Appendix H: Positron Emission Tomography (PET) of 12 4I-labeled polymers

A collaboration was established with Dr. Mikhail Papisov, Professor of

Radiology, Harvard-MGH. The polymer labeling and PET imaging weree graciously

completed by or under the supervision of Dr. Papisov. Image reconstructions and much

of the data interpretation described in this Appendix were also performed by Dr. Papisov.

The backbone polymer and polymer 027 (see FIGURE 4.2A and B) were labeled

with iodine- 124 according to the standard protocol and purified using the radio-HPLC

techniques described in Chapter 4. The labeled polymers were injected into non-tumor-

bearing rats as a proof-of-principle for the use of the amphiphilic alternating copolymers

as a diagnostic tool. The PET imaging of these polymers provided real-time, non-invasive

pharmacokinetic data. Images after 20 min for both the backbone polymer and polymer

027 were similar; the image for polymer 027 is presented below as a representative result.

Liver (median lobe)

Kidneys

Spleer, banmna-shaped

Addition from the
left lobe of the liver

Bladder (urine)

The greatest signal was observed in the bladder, which indicated that the majority

of the activity exiting the animal was due to excretion in the urine. This result was
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consistent with observations during the biodistribution experiments in which the greatest

activity within each experimental cage was measured in the urine accumulated by the

bedding. The other organs observed in the image, the liver, kidneys, and spleen, are all

heavily vascularized. The signal measured in these organs indicated that the labeled

polymer was present in the bloodstream at 20 min.

The best candidates from the uptake and biodistribution studies described in

Chapter 5 were also studied in the laboratory of Dr. Papisov. The goal of these

experiments was to replicate the selective uptake observed during the biodistribution

studies in a live animal. EGFR-positive tumors were grown subcutaneously on nu/lnu

mice, while three different polymer formulations were chosen for labeling with iodine-

124 and subsequent injection into the animals. The polymer formulations were: X=25+,

PFC, X=25-, PFC, and X=50+, HC.

The radio-HPLC result for the X=25-, PFC polymer is presented below.

Absorbance measurements for four different proteins and one small molecule were also

measured and plotted with the results for the X=25-, PFC polymer. The radio-HPLC

results, which include both the UV and gamma-detector response, are presented below.

701 1 S I I R I I
-- radioactivity

60 -sample abs
50 standard abs50 'lndr Sample MWV (Ica)

40 thyroglobulin 670
0

30 g-globuln 158
0ovalbumin 44

10

a myoglobin 1
Vitamin B-12 13

0 200 400 600 300 1000 1200

Elutioni Time (s, radio-HPLC)
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The UV absorbance profile was broad, ranging from approximately 300 to 800

seconds in elution time. According to the protein and small molecule 'standards,' these

elution times corresponded to a breadth of molecular weights, from 670 kDa to 1.35 kDa.

This suggested that the X=25-, PFC polymers existed in both micelle and individual

polymer states under the analytical conditions. The radioactivity measurements

corresponded strongly with the absorbance measurements, which indicated that the

polymer was labeled uniformly throughout the polymer chains in the sample.

The radio-HPLC results for all three polymers after the labeling experiments are

presented below.
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The absorbance profiles for both of the E13.4.3-conjugated polymers were

drastically different from that for the X=25-, PFC polymer. In both of these profiles, there

was a small peak near approximately 300 s, which likely corresponded to a particle. The

remaining absorbance was recorded at much longer elution times (lower molecular

weights). This result could indicate the formation of smaller particles or associations of a

small number of chains with one another, such as dimers or trimers, during the analytical

testing procedure.

The activity profiles for both E13.4.3-conjugated polymers did not have a strong

correlation to the absorbance profiles. In fact, there was little activity signal at all in the

purified label polymer samples. The labeling yields for the E13.4.3-conjugated polymers

were extremely low (<1%). This result was unexpected because labeling yields of the

same polymers performed at MIT, albeit with iodine-125, were approximately 5-10%.

The result was also particularly interesting considering the fact that, although the

absorbance detector indicated the presence of significant material in the sample, material

which is known to have potentially iodination sites both within the linkers of the polymer

backbone and the tyrosines in the E13.4.3 peptide, minimal labeling was achieved. This

suggested that the iodination sites may had somehow become inaccessible to the

iodination procedure or that the iodination sites were inactivated.

The increased molecular weight of the polymer backbone (12 kDa) and the

associated decrease in solubility of the individual polymer chains was one proposed

explanation for the observed phenomenon. Additionally, due to significant restrictions in

the scheduling of PET machine time, the samples for all three polymers were refrigerated

for approximately 8 weeks. This refrigeration period occurred after the polymers were
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studied at MIT in uptake and biodistribution experiments. The stability of the polymers

and, in particular, the conjugation of the E13.4.3 peptide to the polymer backbone, was

unknown and not studied.

Unfortunately, due to the low labeling yield, no PET imaging was performed for

the E13.4.3-conjugated polymers because sufficient signal would not have been achieved.

Improvements in labeling yield are absolutely necessary for any viable PET studies due

to the high cost of iodine-124. It is recommended that future experiments minimize the

time polymers exist in solution before labeling and imaging and that additional labeling

yield and stability studies are performed on polymers synthesized from high molecular

weight, low polydispersity backbone polymer.
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