BUILDINGS AS SYSTEMS

by

MICHIO ANDO

B.Arch., Waseda University, 1961
M.Arch., Waseda University, 1965

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER IN ARCHITECTURE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE, 1966

Author. ..
Cambridge, Massachusetts
June, 1966

Dean Lawrence B. Anderson
School of Architecture and Planning
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dear Dean Anderson:

In partial fulfillment for the degree of Master in Architecture
I submit this thesis entitled, "Buildings as Systems".

Yours respectfully,

[Signature]

Michio Ando
ACKNOWLEDGEMENTS

I am grateful to all those members of the staff who offered their encouragement and criticism during the development of this thesis, and particularly to Mr. Waclaw Zalewski, Visiting Professor of Structures and Professor Eduardo F. Catalano, Thesis Supervisor.
TABLE OF CONTENTS

Letter of Submission 1
Acknowledgements 3
Table of Contents 4
Introduction 5
 A. Preface 5
 B. The Phenomena in Modern Architectural Society 6
 C. The Necessity and the Applicability of Analytical Method in Architecture 7
 D. The Importance of the Concept for Architecture in the Future 9
Abstract 10
The Development of the System 11
The Spatial Flexibility 13
The Description of the Structural System 14
Erection 16
Core 17
The Description of Mechanical System 18
Drawings and Photographs 19
INTRODUCTION

A. PREFACE

There are various existences in this universe which are living having some relative connections with one another. Human being, who is one of these existences, is moving with time flowing on.

Architecture started as a shelter for man from changeable weather and invaders, and it has been advancing and progressing keeping pace with man's step. Man has to find and invent what he needs to go further. He is continuously changing not only his way of leading life, but also his social organization. After the Industrial Revolution, the industrial power which works for him instead of his own physical force, has been developed rapidly. Still now man is trying to find out more improved way to get the power speedily, economically, and mass-productively. In order to carry it out, it becomes necessary for him to know factors, properties, and characters of things around him. He has learned to analyze various kinds of things which compose some systems of them.
If we consider the latest society of architecture, we recognize that there are two main ways to create architectural space.

One of them is derived from natural conditions which we lived in once, in a shelter by mountain and on the seashore. Nature is still like what it was long time ago. We now see various scenery in nature which our ancestors might see, although the aspect of society is changing by modern technical industrialization. Nature, from which we feel nostalgia, has various creative patterns in herself. Consciously or unconsciously, people see nature to memorize in their brain. If we create design without any restriction, this must be one of ways to make architectural design. As I understand, there are several outstanding architects recently whom we call genius.

The other way to make design is that we utilize the modern industrialized things to make space. People are gradually getting accustomed to live among industrialized things which have modern texture themselves like train, car, airplane, and even city itself. It may come the time in the future when we feel some philosophy from them.
C. THE NECESSITY AND THE APPLICABILITY OF
ANALYTICAL METHOD IN ARCHITECTURE

The way to create architectural space in which industrial
mobilization is accomplished, has more potentiality in
the future. Because this makes it possible for us to analyze
building system to units, and reorganize them to another kind
of systems which suitably meet the requirement of many situa-
tions under rules of construction process and design factors.
Besides this way makes it easy to satisfy the demand of man,
it is helpful to improve the quality of buildings.

On the other hand, upon recent conditions that the industrial
mobilization is not sufficiently done, architects must use
logic and clarity to put his emotion on a responsible level,
namely, on the building made from units. It is ideal to find
out some permanent system as a base by which it is possible
to make buildings economically with modern technical mobili-
ation, and to grow them to any direction and in any space.

The applicability of building depends on the quality of result
from the research. This research is naturally restricted by
the limit of capacity of modern science and industrial engi-
nearing. Therefore it is necessary to make the possibility
and potentiality keepint its step with progress of science
and industrial engineering.

In order to increase the potentiality to create architectural
space, we should make some suggestion under consideration
of industrial power.
D. THE IMPORTANCE OF THE CONCEPT
FOR ARCHITECTURE IN THE FUTURE

The recent modern science and industrial engineering are progressing steadily and rapidly, which makes more freedom of the selection to create the architectural space.

I believe that the building which has many possibilities will be made from this concept in the near future.
This thesis serves to illustrate how a structural system is derived from clear techniques of construction to form a self-sufficient building unit with its own integrated mechanical services.

The system is designed to grow in two directions as well as diagonal directions while the integrity of the building to which it is applied is preserved at any stage of growth.

Here it is applied to any type of building which does not need long span. However, recent building always changes its need extremely quickly and the system of construction must provide flexibility and potentiality for growth to prevent the obsolescence that arises when expansion or alteration is virtually impossible even though the structural shell of the building is still intact.
Members which carry the load are composed of bottom beams and upper beams. Bottom beams, 5' x 5', will be applied for making partition.

Upper beams which run through diagonally are main beams in this structure. The span of the beams is 7' x 7'.

The loads on the bottom and upper beams are transferred to the column clusters, 5' x 5', which are composed of four columns. Span of the column clusters is 50 feet.

The system of the beam is cut in the place, 15' away from the center of column clusters and provides flexible sections for making space.
The simplicity of the organization of structural and mechanical units provides the potentiality for growth in diagonal directions as well as two directions, and for making void area in the building.
1. As the span of bottom beam is 5' x 5', the potential partition for dividing the vertical space may be put every five feet.

2. Although 10' ceiling height is a economical solution in general, the ceiling height may be changed as desired.

3. The system of beams is cut at the place, 15' away from the center of column clusters and it provides a potential for making changeable space in the building.
The one bay of the structure measures 50' x 50' and is composed of six basic precast concrete elements.
Each unit is composed of:

(a) The hexagonal shaped column precasted by reinforced concrete is in a body with one unit of beam. Four columns are cast by concrete mortar with separated slabs in a horizontal position. While the steels in the columns go through the holes in slab and are cast by welding and concrete mortar with next column in a horizontal position.

(b) A precasted bottom beam, 5'x5' and 4" thick and 2" thick partially, is provided with channels and perforations through which run the post-tensioning cables. The joint part of two bottom beams and one upper beam is cast by concrete mortar.

(c) The bottom beam in column area is provided with same members as mentioned in (b). While one corner of the beam is removed in order to connect with column by concrete mortar. The removed part is reinforced with steels for transportation.

(d) The bottom beam in edge area, 1'x5', is provided with same members as mentioned in (b).

(e) Upper beam is 3' deep. It is in a body with slab, 5'x5'x5'', and provided diagonally with channels and perforations. Especially, large channels are run inside the slab of upper
beams to connect with next unit in which the reinforcement is stopped that is pierced from next unit.

(f) Separated slab which has holes to pierce reinforcement in column area is provided for the connection with next column.

erection

Step 1 Placement of footing foundation
Step 2 Setting up formed columns
Step 3 Erection of scaffoldings
Step 4 Placement of lower beam units
Step 5 Placement of upper beam units
Step 6 Pouring grout to joint parts
Step 7 Post tensioning
Step 8 Slab reinforcement and pouring concrete for making floor
Step 9 Revert back to step 2
There are two cores; one of them, 45'x45', is a major core which is used for service in such ways as bank of elevator, scissor staircase, washroom, flight elevator, vestibules and storage. The other, 20'x10', has a fire staircase for emergency. They are located in a place which does not disturb two way structure. The location of major cores is among column cluster, permitting an orderly four directional circulation within the building.

Washrooms have a movable partition dividing the space to accommodate the men to women ratio.

The speed of flight elevator is 200 ft per minute.
The speed of passenger elevator is 500 ft per minute.
THE DESCRIPTION OF MECHANICAL SYSTEM

The mechanical service comprised of supply and return air ducts and pipes for hot and cold water, and vent, and waste, are run to the appropriate floors in the column clusters. Beam depth of 3'2" is needed for openings to be made in the structure for the passage of mechanical services. It allows drain pipes to have sufficient slope in their distance to be housed within the structural depth. As a result, the building is free to grow as needed and take with it the necessary mechanical services in its structure. The building unit is therefore self-sufficient.

The air handling system is high velocity 4000 F.P.M. two duct system calculated as .66 sq.ft. of supply duct for every 1000 sq.ft. of floor area served and in low velocity 1200 F.P.M. calculated as 1.25 sq.ft. of return duct for every 1000 sq.ft. of floor area. So that the column clusters do not become overly large with services, the building confined to the height of five to six floors. Supply and return air utilize the different diffuser. The supply and return ducts are always run diagonally. Supply ducts and return ducts are not put upon one another. Ducts are invisible on the ceiling line. Pipes, which are invisible on the ceiling line, are run in two directions. The special panels are used for acoustics in the beams on the boundary line of rooms. One unit of illumination is composed of 4-40W lamps with diffuser of supply or return duct.
1966. M.Arch. Course IV-A

Thesis Arch. ANDO, Michio
M.Arch. 181. 14 plates, diagrs. 30 cm.
Supervised by Eduardo F. Catalano
1966. M.Arch. Course IV-A.

Multi-Core Details 1

BUILDINGS AS SYSTEMS
Master of Architecture Thesis
Massachusetts Institute of Technology
Michio Ando June 1966

Fire Stair

Multi-Core